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Introduction, Background, and Mathematical Foundation of 
Quantitative Genetics 

Jack Dekkers 1 and Jean-Luc Jannink2 

1 Dept. Animal Science, Iowa State University 
2 Currently at Cornell University, formerly Dept. Agronomy, Iowa State University 

Quantitative genetics is the study of continuous traits (such as height or weight) and its underlying 
mechanisms. It is based on extending the principles of Mendelian. and populations genetics to 
quantitative traits. 

Mendelian inheritance: 
1. Law of segregation: A trait is influenced by a pair of alleles but each individual only passes a 

single, random allele on to its progeny. 
2. Law of independent assortment: Alleles of different factors combine independently in the gamete. 

Population Genetics is the study of the allele frequency distribution and change under the influence 
of the four evolutionary forces: natural selection, genetic drift, mutation, and migration. 

Falconer and Mackay: 
"Quantitative genetics theory consists of the deduction of the consequences of Mendelian inheritance 
when extended to the properties of populations and to the simultaneous segregation of genes at many 
loci." 

For the purposes of this class: Quantitative genetics = A set of concepts based on the theory of 
inheritance that help us understand and dissect the genetic basis of quantitative traits and predict what 
the consequences of different breeding choices will be and therefore allow us to make decisions that 
lead to the most desirable outcomes. 

Quantitative traits 
Quantitative genetics covers all traits that are determined by many genes. 

• Continuous traits are quantitative traits with a continuous phenotypic range. They are usually 
polygenic, and may also have a significant environmental influence. 

• Traits whose phenotypes are expressed in whole numbers, such as number of offspring, or number 
of bristles on a fruit fly. These traits can be either treated as approximately continuous traits or as 
threshold traits. 

• Some qualitative traits can be treated as if they have an underlying quantitative basis, expressed as 
a threshold trait (or multiple thresholds). E.g. diseases that are controlled by multiple traits but for 
which phenotype is observed as healthy/diseased. 

See also Lynch and Walsh Chapter 1 and "Philosophical and Historical Overview.pd]" 
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Quantitative Genetics Theory 
-Theory underlying the inheritance of quantitative traits 
-Falconer and McKay: "the deduction of the consequences of Mendelian inheritance when extended to 
the properties of populations and to the simultaneous segregation of genes at many loci." 

-Theory of population changes in quantitative trait as a result of selection, genetic drift (inbreeding), 
mutation, migration (crossing) 

-A set of concepts based on the the0ry of inheritance that help us understand and dissect the genetic 
basis of quantitative traits and predict what the consequences of different breeding choices will be and 
therefore allow us to make decisions that lead to the most desirable outcomes 2 



" ... genetics is meant to explain two apparently antithetical observations -that organisms resemble 
their parents and differ from their parents. That is, genetics deals with both the problem of heredity 
and the problem of variation." Lewontin, 1974. 

Francis Gaitan (1822-1911): regression toward mediocracy- progeny of parents with extreme 
phenotypes tend to be closer to average. 

The modern synthesis of Quantitative Genetics was founded by R.A. Fisher, Sewall W1ight, and 
J.B.S. Haldane, based on evolutionary concepts and population genetics, and aimed to predict the 
response to selection given data on the phenotype and relationships of individuals. 

Analysis of Quantitative trait loci, or QTL, is a more recent addition to the study of quantitative 
genetics. A QTL is a region in the genome that affects the trait or traits of interest. 

Some Basic Quantitative Genetic Concepts and Models 
Quantitative genetics dwells primarily on developing theory or mathematical models that represent 
our understanding of phenomena of interest, and uses that theory to make predictions about how those 
phenomena will behave under specific circumstances. The model that exists to explain observations 
of quantitative traits contains the following components: 
• Loci that carry alleles that affect phenotype - so-called quantitative trait loci or QTL 

Many such quantitative trait loci 
Alleles at QTL that act in pairs (2 alleles per locus) but that are passed on to progeny individually 
Which of the parent's alleles are passed on to progeny occurs at random (i.e. a random one of the 
pair of alleles that a parent has at a locus is passed on to a given progeny), which introduces 
variability among progeny 

• Loci that affect phenotype sometimes show independent assortment (unlinked loci); sometimes 
not (linked loci) 

• Environmental factors influence the trait 

In order to develop the quantitative genetic theory and models and to deduce its consequences or 
predictions it might make, quantitative geneticists have translated these concepts and their behavior 
into mathematical and statistical tenns/models. The most basic model of quantitative genetics is that 
the phenotypic value (P) of an individual is the combined effect of the individual's genotypic value 
( G) and the environmental deviation (E): 

P = µ + G + E whereµ is the trait mean 

G is the combined effect of all the genes that affect the trait. 
Eis the combined effect of all environmental effects that affect the phenotype of the individual. 

The simplest model to describe inheritance of a quantitative trait (under a lot of assumptions that will 
be covered later), is that the genotypic value of the offspring can be expressed in terms of the 
genotypic values of its sire (s) and dam (d), based on the fact that half of the genes that the offspring 
have come from each parent: 

Go= ½ G, + ½ Gct + RA, + RAct 

Here the terms RA, and RAct are random asso1tment or Mendelian sampling te1ms, which reflect that 
parents pass on a random half of their alleles (i.e. a random one of two alleles at each locus). 
Developing these quantitative genetic models and deducing their consequences, e.g. the consequences 
of natural or a1tificial selection on the trait and the population, then involves manipulating the 
mathematical terms, that is doing algebra and even a little calculus sometimes (!). Quantitative 
geneticists were really pioneers in this type of mathematical treatment of biological phenomena and as 
a result the early growth of quantitative genetics was almost synonymous with the early growth of 
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statistics. Indeed, R.A. Fisher is hailed as a founder of quantitative genetics but also of analysis of 
variance and randomization procedures in statistics. The early geneticists Gallon and Pearson 
originated the concepts of regression and correlation. Anyway, the upshot for us here is that we will 
be deeply involved with the mathematical manipulation and statistical evaluation of our 
representations of the basic quantitative genetic model. We will review some of the rules of 
probability and statistics, such as variance, covariance, correlation and regression, and will give a hint 
at how they may relate to the quantitative genetic model. 

Mathematical Foundations for Quantitative Genetics 

See also Lynch and Walsh Chapters 2 and 3 

Random Variables 
In p1inciple, we are interested in the random and non-random processes that detennine the value of 
variables. If the variable of interest is which allele a heterozygous (Mm) father passed on to his 
daughter for a given marker locus, the rule of random segregation indicates that this is a random 
process. If the variable of interest is the height of the son of a tall woman, some portion of the 
vaiiable will be non-random (we expect a relatively tall son) and some portion will be random (we 
don't know exactly what the height will be). Either way, we can identify a random variable with a 
symbol (say X P to designate the paternally inherited marker allele, or Y to designate height). Common 
notation is to use capitals for the name of a vaiiable (e.g. X or Y) and regular font to represent the 
value (or class) of that vaiiable. E.g. X=x indicates the event that variable X has value x. 

Sample Space 
The sample space is the set of possible values that a random variable can take. So, for example 
X P E [M, m] (i.e., the progeny inherits either allele Mor allele m from its heterozygous Mm father), 
and 1 < Y < 2.5 if height is measured in meters. Note that these two example random vaiiables are 
very different. Random variable X P can take on just two states ( one of the two alleles that the parent 
has), it is a categorical variable, while Y can take on all values between 1 and 2.5, it is a continuous 
variable. Neve1theless, many of the mathematical manipulations we will discuss below can be 
applied equally to either type variable. 

Probability ( ~ frequency) 

We designate the probability of an event A as Pr(A). For example, if the event A is "the daughter 
received marker allele M from her heterozygous Mm father" then Pr(A) = Pr(X P = M). In this case 
Pr(A) = ½. The probability function Pr(') has certain rules assigned to it, just like, for example 
multiplication has rules assigned to it. For example if event A is "any possible event in the sample 
space of events" then Pr(A) = 1. Thus, the probability that X P = M or X P = m for a progeny of a 
heterozygous Mm father is equal to½+½=!. Intuitively, though, it is most useful to think of the Pr(A) 
as the chance that event A will happen. If you look at many events (N events, with N very big) and 
you count NA, the number of times event A happens, then we can interpret Pr(A) as a frequency, i.e. 
Pr(A) = NA/N. As examples related to the random variables we gave above, if the father is a 
hcterozygote, then Mendel's law of segregation say Pr(X P = M) = Pr(X P = m) = ½. For the height Y 
of the son of a tall woman, we can guess that Pr(l.5 < Y :S 1.6) < Pr(l.8 < Y :S 1.9), that is, the son is 
less likely to be in a sh01t ten centimeter bracket than a relatively tall ten centimeter bracket. 
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Probability Density (~frequency distribution for continuous variables) 

The second example leads to the question what is Pr(Y = 1.8)? And the answer, oddly, is zero. That 
is, given that Y can take on an infinite number of values in the range [1, 2.5], there is a probability of 
zero that it will take on any specific value. Intuitively, though, we want to be able to express the idea 
that the chance that the height will be some tall value is greater than the chance it will be some short 
value. To do this we define the probability density f(y) = Pr(y < Y :S y+e)/e as e comes increasingly 
close to zero. This probability density will be useful to discuss random variables that vary 
continuously (such as the value of a quantitative trait). Using the probability density function (or pdf) 
and integration, we can calculate the probability that Y is contained in a certain bracket as 

1.6 

Pr(l.5 < Y s; 1.6) = ff (y )dy. 
L5 

The most prominent pdf that we will use is that of the normal distribution, i.e. the bell-shaped curve, 
which is illustrated in Figure I. 

14 1.6 1.8 

Height [m] 

2 2.2 

'-------------------------' Figure 1 

Expected Value(~ mean or average) 

The expected value of a random variable is a measure of its location in the sample space,'' and can be 
thought of as a mean or an average. It takes slightly different forms depending on whether the variable 
is categorical or continuous. Consider a categorical variable X with sample space x1, x2, ... , Xk. The 
expected value of Xis essentially calculated as a weighted average of the values that X can take on, 

k 

with weights equal to the probability with which X takes on each value: E(X) = LX; Pr(X = x;). 
i=I 

Example 1: The number of florets per spikelet in oat(= variable X) is affected by a recessive allele 
that inhibits development of tertiary kernels (this example is slightly fictitious but serves its purpose). 
Note that the expected value of a categotical trait may not belong to any of the categories of the trait: 
the expected value for the number of florets per spikelet is E(X) = 2.75 though any given spikelet 
obviously has a whole number of florets. 

Table 1 Example for computing expectations for a categorical variable 

Genotype 
T 

t / t 
TI t 
TIT 

Sum 

Probability Number of florets 
(frequency) per spikelet 
= Pr(X=x;) X=x; 

0.25 3 
0.50 3 
0.25 2 
1.00 

x; , Pr(X =x;) 

0.75 
1.50 
0.50 

E(X) = 2.75 

2.25 
4.50 
1.00 

E(X) = 7.75 
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Example 2. Now consider the continuous variable height discussed above. The sample space for Y 
given was 1 < Y < 2.5, and the pdf is.f(y) = Pr(y < Y '.S y+e)le as e comes increasingly close to zero. Its 

2.5 

expected value is E(Y) = f yf(y)dy. Here, instead of multiplying the value of a category by the 
I 

probability of that category as we did above, we multiply the value by its probability density and 
integrate over the sample space of the continuous variable. Note that integration is the continuous 
variable equivalent of summation for categorical variables and the pdf is the equivalent of the 
probability of each value occurring. 

Example 3. Consider again a categorical variable X with sample space xi, x2, ... , Xk, Now assume 
that there is a function g(X), and we want the expected value of g(X). This expectation is again 
computed as a weighted average, but now the average of g(X), rather than X itself. The formula for 

k 

the expectation of g(X) is: E[g(X)] = Lg(x, )Pr(X = x,). 
X i=l 

Here, E means that the expectation is taken over all possible values of variable X. E.g., referring back 
X 

to Example 1, the expectation of g(X) = X2 is equal to 7.75, as calculated in the last column in Table 1. 

Properties of Expectations 
Assuming X and Y are random vaiiables and a is a constant (e.g. a=5): 
E(a) = a The expectation of a constant is that constant 
E(aX) = aE(X) The expectation of the product of a random variable by a constant is the 

product of the constant and the expectation of the random variable 
E(X + Y) = E(X) + E(Y) The expectation of a sum of two variables is the sum of their expectations. 
Note that E(XY) = E(X)E(Y) ONLY IF X and Y are independent - see later 

Joint Probability (~joint frequency) 

The joint probability is the probability for given values of two or more random variables to occur 
together. The joint probability that random variable X = x and random variable Y = y is denoted 
Pr(X = x, Y =y). 
As an example, assume two genetic loci A and B. The genotypes of a set of individuals are obtained 
for both loci, resulting in two random variables (GA and GB), One obtains a table of the joint 
probability of carrying specific genotypes at each of the two loci: 

Table 2 Example of ioint probabilities 
Genotype Genotype for locus B (Gs) Marginal 

for locus A bb Bb BB Prob. for GA 
(GA) 
aa 0.10 0.04 0.02 0.16 
Aa 0.14 0.18 0.16 0.48 
AA 0.06 0.10 0.20 0.36 

Marg.Prob.GB 0.30 0.32 0.38 1.00 

The entries in the body of this table are the joint probabilities. So, for example the joint probability 
that an individual has genotypes Aa and BB is: Pr(GA = Aa, Gn =BB)= 0.16. 
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Marginal probability(~ marginal frequency) 

Marginal probability is used in Table 2 to show the probabilities of, for example, G8 = bb, as the sum 
down a column of joint probabilities. That is, 
Pr(Gs = bb) = Pr(Gs = bb, GA=aa) + Pr(Gs = bb, GA=Aa) + Pr(Gs = bb, GA=AA) 

= 0.1 + 0.14 + 0.6 = 0.30 
What works in the columns for Gs also works in the rows to get marginal probabilities for GA. 
In general if {£ 1, £ 2, ... , £,,} is a mutually exclusive and exhaustive set of events (i.e. a set of non­
overlapping events that includes the complete parameter space for the variables involved), then 
marginal probabilities for event I can be calculated as the sum of joint probabilities of event I and 

" 
events E;: Pr(!)= L Pr(E,, /) 

i=l 

In Table 2, for example, events GA=aa, GA=Aa, and GA=AA are mutually exclusive and exhaustive 
events and marginal probabilities for Gs can be obtained by summing the joint probabilities in a 
column of Table 2. 

Conditional probability 

Intuitively, the conditional probability is the probability of a certain event to occur when you already 
know that another event is true. Alternately, it is the probability of obtaining a given value for one 
variable (say, X=x), conditional on the fact that the value of another variable (say Y=y) has already 
been observed. This conditional probability is denoted Pr(X=x I Y=y). First, in order to obtain a 
given value for X (say X=x) while Y has another value (say Y=y), both conditions have to hold. So we 
need the joint probability Pr(X=x, Y=y). Second, because we know that Y=y, the parameter space for 
X is restricted to the subset of events where Y=y. All this to help you intuit the definition of 
conditional probability: 

Pr(X =xlY = y) = Pr(X =x,Y = y) 
Pr(Y = y) 

In words, the probability of X=x given Y=y, is the joint probability of X=x and Y=y divided by the 
marginal probability of Y=y. 
Refening back to Table 2, the probability of Aa cows having genotype BB is the probability of 
Gs=BB conditional on GA=Aa, which is: 

Pr(Gs = BBi GA = Aa) = Pr(Gs = BB,G A = Aa) = 0.16 = 0.333. 
Pr(G A = Aa) 0.48 

One way to interpret this conditional probability is as follows: assuming that we have a total of 100 
individuals, then on average 48 (=0.48*100) will be Aa and of those, on average 16 (=0.16*100) will 
be BB. Thus, the proportion of Aa cows that are BB= 16/48 = 0.333. 

Bayes' Theorem 

Sometimes, the conditional probability of X given Y is more difficult to derive than the conditional 
probability of Y given X. We can then use conditional probabilities to convert one into the other, as 

Pr(X = x,Y = y) . Pr(X = x,Y = y) 
follows: Pr(X = xi Y = y) = -'-----'--------'~ . Then, usmg Pr(Y = YI X = x) = ------, 

Pr(Y = y) Pr(X = x) 

I 
Pr(Y=ylX=x)Pr(X=x) 

we can write this as: Pr(X = x Y = y) = -'------'--'---'------'-----'­
Pr(Y = y) 

This is known as Bayes' Theorem. 
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For example, suppose somebody tosses a coin three times and gets three heads. What is the 
probability that this is a double-headed coin, instead of a fair coin? 

Let X represent a variable that denotes the state of the coin, i.e. X = 'double' of X = 'fair' 
Let Y represent the data, in our case Y = 3 heads in three tosses. 

Thus, we are looking for the following conditional probability: Pr(X = double I Y = 3) 

Using Bayes' theorem, we can also w1ite this as: 

Pr(X = double I y = 3) = Pr(Y = 3 IX= double)Pr(X = double) 
. Pr(Y = 3) 

Considering each of the three probabilities: 
Pr(Y=31 X=double) = 1 because every toss will give heads for a double-headed coin 
Pr(X = double) is known as the 'prior' probability of a random coin being double-headed, 

rather than fair. So what proportion of all coins is double-headed. Let's say 
that that is 0.01. 

Pr(Y=3) is the probability of getting 3 heads out of 3 tosses for a randomly chosen coin, which 
can be a double-headed coin with probab=0.01 and a fair coin with prob=0.99 

Thus Pr(Y=3) = Pr(Y=31 X=double)*Pr(X=double) + Pr(Y=31 X=fair)*Pr(X=fair) 
= 1.0 * 0.01 + (0.5)3 * 0.99 = 0.134 

Filling these probabilities into the Bayes' theorem equation gives: 
1 * 0.01 

Pr(X =doublelY =3)=-- 0.075 
0.134 

Statistical independence 
Random variable X is statistically independent of Y if the probabilities of obtaining different 
categmies of X are the same irrespective of the value of Y. 
That is, Pr(X = x;IY = yj) = Pr(X = x;!Y = Yk) = Pr(X = x;) for all i,j, and k. 
In other words, the conditional probabilities are equal to the marginal probabilities. It follows from 
the definition of conditional probability that if X is statistically independent of Y, the joint 
probability is equal to the product of their marginal probabilities: 

Pr(X = x;, Y = yj) = Pr(X = x;)Pr(Y = yj), 

For the example in Table 2, GA and Gs are NOT independent because, e.g.: 
Pr(G8 = BBi GA = Aa) = 0.333 is NOT equal to Pr(G8 =BB)= 0.38. 

Also, Pr(G
8 

= BB ,GA = Aa) = 0.16 is NOT equal to the product of the marginal probabilities: 

Pr(G8 =BB)Pr(GA =Aa)=038*0.48=0.1824 

Conditional expectation(~ conditional mean or average) 

The expectation ( =mean) for variable X conditional on variable Y being equal toy is: 
k 

E(XIY = y) = LX; Pr(X = x;IY = y) 
i=l 

and, for continuous variables, E(XIY = y) = f xf(xlY = y)dx 
X 

So conditional expectation is also computed as a weighted average, but now with weights being equal 
to the conditional probabilities. 
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For example, in the oat example of Table 1, consider the expectation for the number of florets per 
spikelet, conditional on the fact that the line carries at least one T allele. From Table 1, first 
computing the conditional probabilities: 

P (G Tl IG 
. T) Pr(G =TI t,G containsT) Pr(G = T It) 0.5 ~ 213 r = t con tams = -'------'------_:_ = ___ _:c __ _:_ __ ~ = ---- -

Pr(GcontainsT) Pr(G=Tlt)+Pr(G=TIT) 0.5+0.25 

Pr(G = TIT I G contains T) = Pr(G =TIT) = 0,25 113 
Pr(G=Tlt)+Pr(G=TIT) 0.5+0.25 

Then the conditional expectation is : E(XI G contains T) = 3*(213) + 2*(1/3) = 8/3 = 2.67 

Note that this expectation is slightly lower than the overall E(X) (=2.75). So, if we know that the line 
carries one T allele, we expect the number of florets per spikelet to be slightly lower than average. 

Variance 
The variance of a random variable is a measure of the spread of a variable over the sample space. 
Intuitively, we want to know how far we can expect the value of a given vatiable on average to be 
from its expected value. That is, we want to know something about the average deviation of the 
random variable from its expected location. The way to obtain a variance is to find the average of the 
squared deviation from the mean: 

var(Y) = E{ [Y - µy]2) where µy = E(Y) 

= E{ Y2 
- 2Y µy + µ/)= E(Y2

) - 2E[Y µy] + µ/ = E(Y2
) - 2 µyµy + µ/ 

Thus: var(Y) = E{ [Y - µy]2) = E(Y2
) - µ/ 

Looking back at Table 1, the number of florets per spikelet given different genotypes, 
var(X) = 7.75 - (2.75)2 = 0.1875 

Note from your statistics class that when we have a sample of N observations for a random variable X 
(instead of frequencies of the variable attaining cettain values), the variance of the sample can be 

computed as: var(X) = _;~_, ___ _ 
N 

N 

Ix/ 
or as var(X) = £'____ - x 

N 
where xis the average of X 

Realizing that taking the average is sample equivalent to taking the expectation of a variable, note that 
these equations are similar to the equations for variances based on expectations, as given above. 

Covariance 
The covariance between variables X and Y quantifies the (linear) relationship or dependence between 
X and Ybased on the extent to which they "co-vary". 

Cov(X, Y) = E{ [X - µx][Y - µy]) 

where E(XY) = L;LJ x;y1 Pr(X = x;, Y = yj) 

Example: The covariance between the genotypic value and the phenotypic value will play a big role in 
quantitative genetic inferences. Refer back to Table 1, the number of florets per spikelet, conditional 
on the oat genotype. In Table I, the genotypic value for the number of florets per spikelet G is 
considered the same as the phenotypic value for the number of florets per spikelet P. In that case, the 
covariance between the genotypic and phenotypic values is equal to the variance of the phenotypic 
values (0.1875, see above). But consider a slightly more complicated situation in which the 
environment also contributes to detennining the phenotype so that: 
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Table 3 Example for computing covariances 
Genotype, T Probability Genotypic value Phenotypic value Pr(T) xGP 

G p 

t It 0.20 2.8 3 1.68 

tit 0.05 2.8 2 0.28 

TI t 0.30 2.6 3 2.34 

TI t 0.20 2.6 2 1.04 

TIT 0.05 2.2 3 0.33 

TIT 0.20 2.2 2 0.88 

Expectation: 2.55 2.55 6.55 

With this environmental effect, the covariance between genetic and phenotypic values is: 

Cov(G, P) = E(GP) - E(G)E(P) = 6.55 - (2.55)2 = 0.0475. 

Check that for this specific example, Cov(G,P) = Var(G) = 0.0475 
The variance of phenotype is greater: Var(P) = 0.2475 

E 

0.2 
-0.8 
0.4 

-0.6 
0.8 

-0.2 
0 

The model that relates phenotype to genotype is: P = G + E where E represents the effect of 
environment. So, for the first row in Table 3 the E = 3-2.8=+0.2. For the second row: E=2-2.8=-0.8. 
Environmental effects are in the last column of Table 3. Note thatE(E)=0. You can also check that: 

Cov(G,E) = 0 (i.e. environmental effects are independent of genetic effects) 
Cov(P,E) = 0.2 
Var(E) = 0.2 

Properties of Variance and Covariance 
Assuming again that a is a constant: 

Var(a) = 0 The variance of a constant is zero 

Var(aX) = a2Var(X) The vaiiance of the product of a variable by a constant is the product of the 
constant squared and the variable's variance 

Cov(X, Y) = Cov(Y,X) 

Cov(X,aY) = aCov(X, Y) 

Cov(X,Y+Z) = Cov(X,Y) + Cov(X,Z) 

Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y) The variance of a sum is the sum of variance plus twice 
the covariance 

(for the Table 3 example: Var(P) = Var(G+E) = Var(G) + Var(E) + 2Cov(G,E) = 

= 0.0475 + 0.2 + 2 * 0 = 0.2475 

Generalizing the equation for Var(X + Y) to the sum of many variables: 

Var(L;X;) = L;Var(X;) + 2L(ki)Cov(X;, Xj) If X's are independent ➔ Var(L;X;) = L;Var(X;) 

Also: Var(X-Y) = Var[X+(-Y)] = Var(X) + Var(-1 *Y) + 2Cov[X,(-1 *Y)] = 

= Var(X) + (-1/*Var(Y) + 2*(-l)*Cov(X,Y) = 

= Var(X) + Var(Y) - 2Cov(X,Y) 
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Cov(X, X) = E(XX) - E(X)E(X) 

= E(X2
) - [E(X)]2 

= Var(X) ➔ the covariance of a variable with itself is its variance 

If X and Y are independent: E(XY) = L;LJ x;y1 Pr(X = x;, Y = YJ) 

= L;LJ x;yJ Pr(X = x;)Pr(Y = YJ) 

= [I:; x; Pr(X = x;)] [I:1 Yi Pr(Y = yj)] 

= E(X)E(Y) 

So that Cov(X, Y) = E(XY) - E(X)E(Y) = 0 

Correlation 
The correlation measures the (linear) relationship between two variables on a standardized scale, by 
dividing their covariance bv the oroduct of their standard deviations: 

Cov(X,Y) 
rxy =Corr(X,Y) = --;==~~~= Note that:-1 ::'. rxr::'. 1 

-Jvar(X)Var(Y) 

Cov(G, P) 0.0475 
For the example of Table 3: rep = 

1 
= = 0.438 

-v Var(G)Var(P) -Jo.0475 * 0.2475 

Based on rearrangement of the correlation equation, we get the following expression for the 
covariance, which we also frequently use: 

Cov(X ,Y) = rxr-Jvar(X)Var(Y) 

Regression 
A repeated theme in quantitative genetics is the estimation of quantities associated with individuals or 
parameters associated with populations when those quantities or parameters are themselves not 
directly observable. The most obvious example is the desire to estimate an individual's genotypic 
value for a trait when the only information 
we have available derives from the 
individual's phenotype. Regression is used 
for this kind of estimation. 

Definition: The regression of Y on X is the 
expected value of Y 
conditional on having a certain 
value for variable X: 

y = E(YjX) 
This is also called the best (linear) predictor 
of Y given X. 
Regression can be used to define a model: 

y = y + e where e is called the 
residual, which is the deviation of the 
observed value for Y from its expected value 
conditional on X. 

y 

• 

• 
• 

•• 
' ' ••• 
' • ' ' 

X 
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For quantitative variables, the predicted value for Y can be derived using linear regression: 

y = E(f!X) = µy + brx (x-µx) 

with µy = E(Y) µx = E(X) 
brx = coefficient of regression of Yon X = expected change in Y per 1 unit increase in X 

Given data, brx can be derived by fitting the following linear regression model: 

y = µy+ brx (x-µx) + e 

Using least squares (see Lynch & Walsh p39), brx can be derived to be equal to: 

brx = Cov(Y,X)Nar(X) 

Note that brx can also be expressed in terms of the correlation coefficient: 

brx = Cov(Y,X)IVar(X) = rxy .Jvar(Y)Var(X) I Var(X) = rxr 

So the important equations to remember for the regression coefficient are: 

brx = Cov(Y, X) = rxr Var(Y) 
Var(X) 1 Var(X) 

Var(Y) 

Var(X) 

Note that these only hold for simple regression with a single independent variable (X). 

For the example of Table 3, suppose we want to predict the genotypic value of an individual based on 
its observed phenotypic value. We would use the following regression model: 

G = G + bcp(P-P) + e with G =E(G)=E(P)= P =2.55 

The regression coefficient can be computed as: 

or 

bcp = Cov(G,P)IVar(P) = 0.047510.2475 = 0.192 

Var(G) = 0.438 -J0.047510.2475 = 0.192 
Var(P) 

So the prediction model is: {; = G + bcp(P-P) = 2.55 + 0.192(?-2.55). 

Results are in Table 4. The last column in this table shows the prediction error: e =G- 6 

Table 4 Example prediction based 011 linear regression 
Genotype, T Probability G p E {; e 

tit 0.20 2.8 3 0.2 2.636 0.164 
t It 0.05 2.8 2 -0.8 2.444 0.356 
TI t 0.30 2.6 3 0.4 2.636 -0.036 
TI t 0.20 2.6 2 -0.6 2.444 0.156 
TIT 0.05 2.2 3 0.8 2.636 -0.436 
TIT 0.20 2.2 2 -0.2 2.444 -0.244 

Expectation: 2.55 2.55 0 2.55 0.0004 
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Properties of Regression 

1. The average of predicted values is equal to the average of Y's: E(Y) = E(Y) = µy 

E( y) = E[µy + brx(x-µx)] = E(µy)+ E[brx (x-µx)] = µy+ brx [E(x)-µx] = µy 

This also implies that the regression line always passes through the mean of both X and Y; 
substituting µx for x into the prediction equation gives y = µy 

2. The average value of the residual is zero: E(e) = 0. 

E(e) =E(Y-Y) 

= E(Y) - E(Y) 
=0 

from regression model 

property of expectation 

from property 1 above 

3. The expectation of the residual is zero for all values of X: E(elX) = 0 

E(elX) = E(Y - YJX) from regression model 

= E(YjX) - E(YJX) property of expectation 

= Y - Y = 0 by definition of regression 

This implies that predictions of Y are on average equal to the tlue Y across the range of possible 
values for X. 

4. Accuracy of prediction = Corr(.Y, Y) = r,Y 

The accuracy of the prediction equation is equal to the correlation of y with its true value y. We 
can derive accuracy as: 

Cov(y, y) 
Accuracy = r. = -;====== 

YY .Jvar(y)Var(y) 

Since µy and µx are constants, this simplifies to: 

Cov(brx x, y) brx Cov(x, y) 
Accuracy = = -;============ 

.Jvar(brxx)Var(y) .Jbrx 2 Var(x)Var(y) 

Cov(x, y) 

.Jvar(x)Var(y) 
rxy 

So the accuracy of a prediction equation based on simple(= I-variable) regression is equal to the 
correlation between the dependent and independent variables. 

5. Decomposition of variance in Y into that explained by the prediction and unexplained variance 

Using the above equation, we can also show that the variance of Y is the sum of the variance 
explained by the regression on X and residual variance (note that Cov(X,e)=O): 

Var(y) = Var(µy+ brx(x-µx) + e) = brx2Var(x) + Var(e) = [Cov(y,x)]2/Var(x) + Var(e) 

Note that because Cov(y,x) = rxy .Jvar(x)Var(y) the first te1m can also be written as: 

[Cov(y,x)J2/Var(x) = rxy 2 Var(x) Var(y) / Var(x) = rxy 2 Var(y) = r~ Var(y) 

This is the vaiiance in Y that is explained by the X through the prediction model 

By subtraction we get Var(e) = [1- rx/] Var(y). This is the unexplained/residual vaiiance. 

Thus, variance of Y can be decomposed as: Var(y) = rx/Var(y) + [1- rx/] Var(y) 
Note that the variance of predicted values is equal to the explained va1iance: 
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2 
Var(_j)) = Var[µy+ brx(x-µx)] = brx2Var(x) = { Cov(y,x)} Var(x) = 

Var(x) 

= [Cov(y,x)]' = [Cov(y,x)]' Var(y) = rrx2Var(y) 
Var(x) Var(x)Var(y) 

So the variance of predicted values is equal to the vmiance explained by the model, which 
depends on the conelation between Y and X. 

The above equations apply when prediction is based on one variable (x), in which case r;y = rxr. 

In general, prediction can be based on multiple x's = multiple regression. In that case the 
pmtitioning of variance is: Var(y) = Var( _j)) + Var(e) = r;, Var(y) + [1- r;,] Var(y) 

6. Residuals are unconelated with the predictor variable, X: 
Cov(x, e) = Cov[x,y-y] =Cov[x,y-(µy+ brx(x-µx))] = 

= Cov(x, y) - Cov(x,µy) - brx Cov(x, x) - brx Cov(x,µx) 

= Cov(x, y) - 0 - brx Var(x) 0 
Cov(y,x) 

=Cov(x,y)- ---Var(x) =0 
Var(x) 

7. Residuals are unconelated with the predictions: 

Cov( y, e) = Cov[ y, y - y] = Cov( y, y) -Var( y) = 
= Cov(x, y) - Cov(x,µy) - brx Cov(x, x) - brx Cov(x,µx) 

=Cov(x,y)- 0 - brxVar(x) 0 
Cov(y,x) = Cov(x, y)- -~-Var(x) = 0 
Var(x) 

Cov(X,e) = 0 

Cov( _j), e) = 0 

Properties 6 and 7 imply that all infmmation on Y that is contained in X is captured in the 
predicted values, as the residual is uncorrelated to both X and the predicted values. 

Some Applications to Quantitative Genetic Theory 
The standard quantitative genetics model equation for the observed phenotype of an individual i for a 
quantitative trait (P;) is that it is the sum of the effect of genetics (the genotypic value G;) and the 
effect of environment (E;): P; = µp + G; + E; 

In practice, we only observe phenotype and 
cannot directly observe G; or E;. However, if we 
could observe both P; and G; for a group of 
individuals, we could plot genotypic against 
phenotypic values, as in the figure below. 

Genotypic 
value 
G 

+150 

Slope = b G,P = h'=.3 

~i:~~i~~c\i~:y::i~ees~~f :r:;;~~=~~:~~i~:: µc=O - · }\/i}t:t::::{i};:i)::r: • a = h2(P-P) 
impmtant population parameters such as ._, • • 1 

heritability (li2) and make a number of 
inferences or predictions, such as predicting an 
individual's genotypic value or 'breeding value' 
from its observed phenotype: 

µp=6000 6500 

Accuracy r= h 

Phenotwe P 
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1) Covariance and correlation between phenotypic and genotypic values: 
Based on P; = µp + G; + E; 

Cov(P,G) = Cov(µ + G + E ,G) = 

= Cov(G,G) + Cov(G ,E) = Var(G) 

The last step assumes that Cov(G ,E) =·0, i.e. that the environment that an individual receives is 
independent of its genotypic value. The result of this covariance, Var(G), which is often denoted 
cra2 , is the genetic variance in the population, i.e. the variance of genotypic values of individuals 
in a population. This in contrast to the phenotypic variance, Var(P), often denoted cr/, which is 
the variance of phenotypic values of individuals in a population. 

Then, the correlation between phenotypic and genotypic values can be derived as: 

Cov(G,P) CY~ CY a 
~c= = 

• .Jvar(G)Var(P) [c_;[;;f CYP 

Thus, the correlation between genotypic and phenotypic values of individuals in a population is 
equal to the ratio of the genetic and phenotypic standard deviations for the trait. 
The square of this coffelation, therefore, is equal to the ratio of the genetic and phenotypic 
variances, or to the proportion of phenotypic variance that is genetic. This prop01tion is also 

2 

defined as the heritability of the trait(= h2
). Thus: (rp,c/ = = CY~ = h2 

CY P 

2) Regression of genotypic on phenotypic values: 
Using the above model and refen-ing to the figure, we can also set up a regression equation 
between the genotypic and phenotypic values to predict G: 

G; =~La+ bc,P(P;-µp) + e; where bc,P is the coefficient of regression of G on P. 

1. . ff.. b d. d b Cov(G,P) CY~ h' T 11s regression coe • 1c1ent can e enve as: c p = ---'---'--'- = -
2 

= 
' Var(P) CY P 

Thus, the slope of the regression of genotypic on phenotypic values is equal to heritability 

3) Prediction of genotypic values: 
The above regression model can be used to predict an individual's genotypic value based on it's 
observed phenotype, using the following prediction equation: 

• 2 
G, = µG + h (P;-µp) 

In practice, we often set µG to zero, because we're primatily interested in ranking individuals in a 
population. Thus: G, = h2(P;-µp) 

As an example (see figure), assume a dairy cow produces 6500 kg milk, which is its phenotypic 
value (P;). The mean production of the herd she is in is 6000 kg(= µp). 

Milk production is a trait with an (assumed known) heritability of 0.3, a phenotypic standard 
CY' 

deviation of 1200 kg (crp=l200). Using h 2 =-%- and, thus, CY~ = h 2
CYJ, the genetic standard 

CY P 

deviation for milk yield is equal to crc=hcrp= ✓03 *1200 = 657.3 kg 

Then, this cow's genotypic value can be predicted to be: 
G, = h2(P;-µp) = 0.3 (6500-6000) = +150 kg 

So this cow's genotypic value is expected to be 150 kg greater than the average in this herd. 
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We can also attach an accuracy to this prediction, based on the previously derived result that the 
correlation between predicted and true values based on linear regression is equal to the correlation 

to the dependent (Y) and independent (X) variables: re,G = rG.P = h 

Thus, when predicting an individual's genotypic value based on its phenotypic value, the accuracy 
of this prediction will be equal to the square-root of he1itability of the trait. 

When we predict genotypic values for all individuals in a population in this manner, and take the 
variance of these predicted values, we expect this variance to be equal to (based on property 5): 

Var( y ) = rr.lV ar(y) 

which in this case simplifies to: Var(G) = h2
CJi = h4

CJi 

And, using property 5 above, the variance of prediction errors (e; = G - 6) is equal to: 
Var(e) = [1- rx/] Var(y) 

which in this case simplifies to: Var(e) = (1-h2
) CJi 

For the example, the variance of predicted values is: Var( 6) = h2 
CJi = 0.3*657.3

2 = 129600 

and the variance of prediction errors is: Var(e) = (l-h 2
)CJi= 0.7*657.3

2 = 302430 

Note that these two variances sum to the genetic variance: 129600 + 302430 = 43203 = 657.3
2 

Based on Var(e) = 302430 kg2 we can also add a confidence interval to our prediction (see later). 

4) Regression of offspring phenotype on parent phenotype 
One of the problems with predicting genotypic ~---------------~ 
values, as described above, is that it requires you 
to know the heritability of the trait. Luckily, we 
can also get estimates of heritability for a trait 
from phenotypic data. We do this by observing 
how similar the phenotype of offspring is to that 
of their parents; if these are very similar, we 
expect the trait to be more heritable. 

When we have phenotypes observed on offspring 
and their sires, we can estimate he1itability by 
regressing the phenotype of the offspring on that 
of their parents, as illustrated below: 

The regression model is: 

Po = µo + bPoPs(P,-µ,J + e 

The regression coefficient can be derived as: 
_ Cov(P

0
,P,) Cov(G

0 
+E

0
,G, +E,) 

bPoPs - --~~ = --~-~~-~ 
Var(P,) CJ: 

Offspring 
Phenotype 
po Slope = bPo,Ps = ½ti' 

Parent phenotype P
5 

_ Cov(G
0
,G,)+Cov(G

0
,E,)+Cov(E

0
,G,)+Cov(E 0 ,E,) _ Cov(G0 ,G,) 

- -
(J2 (J2 

p p 

The last step assumes that the environment that the offspring progeny received is independent of 
the phenotype of the sire (a sometimes strong assumption), making the last 3 covariance terms 0. 

To derive the covaiiance between the genotypic value of offspring and that of their sire, we can 
express the genotypic value of the offspring in terms of the genotypic values of its sire (s) and 
dam (d), based on the fact that half of the genes that the offspring have come from each parent: 
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G0 = ½ G, + ½ Gd + RA, + RAd 

Here the terms RA, and RAd are random assortment or Mendelian sampling terms, which reflect 
that parents pass on a random half of their alleles (i.e. a random one of two alleles at each locus). 
Using this genetic model (which has quite a number of assumptions, which well be covered later), 
we can continue our derivation as: 

Cov(G 0 ,G,) = Cov(½G,+½Gd+RA,+RAd,G,) = 

= Cov(½G,,G,) + Cov(½Gd,G,) + Cov(RA,,G,) + Cov(RAd,G,) 

Assuming random mating and the fact that Mendelian sampling terms are independent (see later), 
the last three covariance tenns are zero, resulting in: 

b _ Cov(G0 ,G,) _ Cov(YzG,,G,) _ YzCov(G,,G,) _ ½ai -Yzh' 
PoPs - 2 - 2 - 2 - 2 - 2 

CYP aP aP CFP 

Thus, he1itability of a trait can be estimated based on phenotypes of relatives, by measuring the 
degree of resemblance between relatives, using statistics such as linear regression. More on this later. 

Some Distributions useful in Population and Quantitative Genetics 

Bernoulli distribution. 
Named after the mathematician Daniel Bernoulli, 1700-1782. A Bernoulli random variable is 
characterized by one parameter, that is typically designated p and is sometimes called the "probability 
of success". The random variable can have one of two values: 1 with probability p and 0 with 
probability 1 - p. 
If Y is a Bernoulli random vaiiable with probability p, its expectation is: 

2 

E(Y) = _I;y,Pr(Y = y,)=0(1-p)+l(p) = p 
i=I 

Its variance is var(Y) = E(Y2
) - E(Y)2 

= [02(1 -pl+ 12(p)J -l 
=p-p2 
=p(l-p) 

The Bernoulli distribution is used in population and quantitative genetics in relation to the presence or 
inheritance of alleles at a locus. For example, for a locus with two possible alleles, A and a, and with 
the frequency of allele A in the population denoted by p, then the process of drawing one allele at this 
locus from a population can be specified by a Bemouilli distribution by specifying a variable Y that is 
equal to 1 if allele A is drawn and equal to O if allele a is drawn. 

Binomial Distribution 
The Binomial distribution is based on the Bernoulli disttibution. A binomial random variable is the 
sum of k independent Bernoulli random variables all with parameter p. The binomial is therefore 
characterized by two parameters, k and p and can have integer values from O to k. If Xis binomially 
disttibuted with k trials and p probability of success: X - Binomial(k, p), then: 

From the prope1iies of expectation of a sum, the expected value of Xis kp: E(X) = kp. 
From the properties of vaiiance of a sum of independent variables, the variance of X is 

kp(l - p): var(X) = kp(l -p) 
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The probability density function Pr(X = x) is 

Pr(X = x) = (kJpx (1- p)k-x where (kJ = k! and a!= 1 *2*3* ... *a 
x x x!(k-x)! 

When conside1ing population or quantitative genetics, the Binomial Distribution could correspond to 
the process of randomly drawing k alleles at a locus from a population. 

Normal or Gaussian distribution. 
This is perhaps the most important distribution in quantitative genetics, as phenotypes for most 
quantitative traits approximately follow a normal distribution, or can be transformed to follow a 
normal distribution. This is a property of the fact that phenotype is the sum of many genetic factors 
and of many environmental factors. Following the Central Limit Theorem of statistics, this is 
expected to result in a Normal distribution, even if the distribution of variables that are included in the 
sum is not Normal. See also Falconer and MacKay Chapter 6. 

Normal disttibution N(µ,c?) for vaiiable y with meanµ and st.dev. cr. 
Truncated Notmal distribution for fraction p selected, truncation point T, 

ordinate height zr, and mean of selected group µs . 

µ y 

The probability distribution function for a variable y that has a Normal disttibution with meanµ and 

[
_(,-µ)'] ,., 

e standard deviation a, denoted by y~N(µ,cr2
) is: Pr(y)=z= 1 

.J2n:a 
It is often useful to work with the Standard Normal disttibution, which has mean zero and standard 
deviation 1: N(0,1) Any Normally distributed variable can be 'standardized' to a variable that follows 
N(0,1) by subtracting the mean and dividing by the standard deviation: 

If y- N(µ,cr2) then y' = (y-µ)/cr follows N(0,1) 

Truncated Normal distribution. 
In plant and animal breeding, we often are interested in using individuals with the highest phenotype 
for breeding. If phenotype (y) is Normally distributed (y- N(µ,cr2)) then it is of interest to know 
something about the distribution of phenotypes of the selected individuals. This is the Truncated 
Normal disttibution, as illustrated in the figure above: 
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Selecting a proportion p of individuals from a population based on phenotype (y) is equivalent to 
trnncating the Normal distribution at a trnncation point T, such that a fraction p falls above the 
trnncation point. 

The mean phenotype for the selected individuals is denoted by µs (see Figure). 

The difference between the mean of the selected individuals over that of all individuals is called the 
selection differential: S = µs - µ 

Maximum Likelihood Estimation 
Maximum Likelihood (ML) is a procedure for estimating parameters from an observed set of data. It 
was introduced by Fisher and is widely used in population and quantitative genetics. 

The basic idea of ML estimation is to find the value of the parameter(s) that is 'most likely' to have 
produced the data that is observed, i.e. that maximizes the likelihood of getting the data that you got. 

As a simple example to illustrate the concept of ML estimation, consider the following observed 
genotype frequencies. 

Table I. Falconer and Mackay, p. I, blood group categories in Iceland: 

Blood Group Counts Probabilities 
MM 233 P = 233 / 747 = 0.312 
MN 385 H = 385 / 747 = 0.515 
NN 129 Q = 129 / 747 = 0.173 
Total 747 747 / 747 = 1.000 
P, H, and Q are the estimated genotype frequencies - obtained by counting 

To estimate allele/gene frequencies, we could obtain these simply by counting: 2 * 747 alleles were 
sampled; the number of M alleles is (2P + H) * 747. Thus, the allele/gene frequency of allele Mis 

= (2P+H)*747 =P+1-H 
p 2*747 2 

Sop= 0.312 + 0.515 / 2 = 0.57 and q = 0.173 + 0.515 / 2 = 0.43. 

This estimates of allele frequency obtained by counting is actually an ML estimate: for the example of 
Table 1, if 57% of all alleles in the sample is M (vs. N, as is observed in the sample), then the ML 
estimate of p, the frequency of Min the population that the sample came from, is 0.57, because that is 
the value of p that is most likely to have produced a sample with 57% of alleles being M. 

A more fonnal de1ivation of this estimate uses the Binomial distribution to specify the Likelihood of 
the data as a function of the parameter(= Likelihood function): if out of n alleles sampled nM are M, 
then the likelihood to get these counts given the population frequency of Mis equal to the probability 
that the value of a Binomial variable with parameters n and p is equal to llM: 

( 
II ) "M n-nM 

Likelihood( data Ip) = Pr( data Ip) = P (1- P) 
11M 

For the data in Table l n = 2*747 = 1494 and nM = 2*233+385 = 851 

So: (
1494) 851 643 

Likelihood( data Ip) = 
851 

P (1- P) 
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Now the ML estimate of pis the value of p that maximizes the above function. To find this value we 
can take the first derivative of the Likelihood and set it equal to zero. However, it is often easier to 
first take the natural log of the Likelihood and to maximize it for p: 

Then, using some algebra, this can be 'simplified' to: 

L(data IP) =ln(n:)+ln(p"M)+!n[(l- p)"-"M ]= 

= In( n:) + nM ln(p) + (n-nM )ln(l- p) 

The first derivative of the LogLikelihood with respect top is: 
1 -1 

nM-+(n-nM)--
p l- P 

Setting this to zero to find the maximum and solving for the ML estimate of p, p, gives: 

1 -1 1 1 l- p n-nM 
nM---;::+(n-nM)--, =0 ➔ n -=(n-n )-- ➔ M , M l , 

p l-p p -p p 11M 

l n l n 
➔ --1=--1 ➔ ---;::-1=--l ➔ 

, nM 
p=-, i.e. count estimate. 

p 11M p nM n 

This is obviously a simple example, where we don't need ML estimation to obtain a good estimate 
(we can just count). 

Another (obvious) example is the following: Suppose n values, Yt, Y2, .... y,,, are sampled 
independently from an underlying Normal distribution with unknown meanµ and variance 1. What 
is the MLE for µ given the data? 

Let's denote the data by a vector y = (y1, y2, .... y,,). Using the probability density function of the 
Normal distribution with meanµ and standard deviation 1, the likelihood for a given data pointy; 

] [-(Y1~µ)'] 

given the mean,µ, is: Likelihood(y; Iµ)= Pr(y; Iµ) ~ e 
'V 21l 

Because each 

observation is independent, the likelihood function for all observation y is the product of n no1mal 
density functions: 

,, 1 [-(y;-µ)'J ,, [-0_e_ll__]____l 

IT 
~ 2 ( )-n/2'\' 2 

Likelihood(y Iµ)= Pr(y Iµ)= ;=t -J2Ji e = 21l ";:'; e 

" 
Again, taking the natural log of the likelihood: L(ylµ)= -(1)1n(2n)-½L(Y;-µ) 2 

i=l 
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Maximizing by taking the first derivative gives: 

dL(µ I y) = f (y; - µ) = n(y - µ) 
dµ i=l 

where y is the average of the observations 

Setting this equal to zero gives: n(y - µ) = 0 ➔ the MLE ofµ is: fl= y 

Again, this is obvious but it does illustrate the principle behind the use of ML to estimate 
parameters in more complex situation. For example, if we want to estimate a parameter such as 
heritability from data (y) we have observed in a pedigreed population, we can formally state the 
problem by that of finding the MLE of heritability, given the observed data; i.e. what is the most 
likely value of heritability that would have given rise to the data that we observed. To do this, we 
need to formulate the Likelihood function, or the log of the likelihood, and maximize it. 

Likelihood( data I h2
) = Pr(data I h2

) 

This is the basis of ML procedures for estimation of genetic parameters. 
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A Review of Elementary Matrix Algebra 

Notes developed by John Gibson for Economics of Animal Breeding Strategies notes 
(Dekkers, Gibson, van Arendonk) 

Dr. B. W. Kennedy originally prepared this review for use alongside his course in Linear Models in 
Animal Breeding. His permission to use these notes is gratefully acknowledged. Not all the 
operations outlined here are necessary for this course, but most would be necessary for some 
applications in animal breeding. 

A much more complete treatment of matrix algebra can be found in "Matrix Algebra Useful for 
Statistics" by S.R. Searle. See also Chapter 8 of Lynch and Walsh. 

A.1 Definitions 

A mallix is an ordered array of numbers. For example, an experimenter might have observations on a 
total of 35 animals assigned to three treatments over two trials as follows: 

Trial 
Treatment 1 2 

I 6 4 
2 3 9 
3 8 5 

The array of numbers of observations can be written as a mattix as 

6 4 

M = 3 9 

8 5 

with rows representing treatments (1,2,3) and columns representing trials (1,2). 

The numbers of observations then represent the elements of matrix M. The order of a matrix is the 
number of rows and columns it consists of. M has order 3 x 2. 

A vector is a matrix consisting of a single row or column. For example, observations on 3 animals of 
3, 4 and 1, respectively, can be represented as column or row vectors as follows: 

A column vector: X --[431] 

A row vector: x' = [3 4 1] 

A scalar is a single number such as I, 6 or -9. 
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A.2 Matrix Operations 

A.2.1 Addition 

If matiices are of the same order, they are conformable for addition. The sum of two confonnable 
mattices, is the matrix of sums element by element of the two matrices. For example, suppose A 
represents observations on the first replicate of a 2 x 2 fact01ial experiment, B represents observations 
on a second replicate and we want the sum of each treatment over replicates. This is given by matrix 
S =A +B. 

[ 2 5 ] [ -54 
6 l A = B = 

1 9 2 

l 2 - 4 5 + 6 ] [ -2 11 l s = A+B = 
1 + 5 9 - 2 6 7 

A.2.2 Subtraction 

The difference between two conformable matrices is the matrix of differences element by element of 
the two mattices. For example, suppose now we want the difference between replicate 1 and replicate 
2 for each treatment combination, i.e. D = A • B, 

D=A+B 

A.2.3 Multiplication 

Scalar Multiplication 

1 2 + 4 

l 1 - s 
5 - 6 

9 + 2 ] = 

A matrix multiplied by a scalar is the matrix with every element multiplied by the scalar. For 
example, suppose A represents a collection of measurements taken on one scale which we would like 
to convert to an alternative scale, and the conversion factor is 3. 

For a scalar A= 3. JcA = 3 6 15 J 
3 27 

Vector Multiplication 

The product of a row vector with a column vector is a scalar obtained from the sum of the products of 
corresponding elements of the vectors. For example, suppose v represents the number of observations 
taken on each of 3 animals and that y represents the mean of these observations on each of the 3 
animals and we want the totals for each animal. 
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v' = [3 4 1] y CI:] 

t = v'y = [3 4 {] = 3(1) + 4(5) + 1(2) = 25. 

Matrix Multiplication 

Vector multiplication can be extended to the multiplication of a vector with a matrix, which is simply 
a collection of vectors. The product of a vector and a matrix is a vector and is obtained as follows: 

,, ,, c f3 4 11 M " [ : : l 
v'M = [3 4 l] 

[ 6! 4:l 

= [3(6) + 4(3) + 1(8) 

= [38 53] 

3(4) + 4(9) + 1(5)] 

That is, each column (or row) of the matrix is treated as a vector multiplication. 

This can be extended further to the multiplication of mat1ices. The product of two conformable 
matrices is illustrated by the following example: 

l 2 5 

l l 4 
-2

6 l AxB = 
1 9 -5 

l 2(4) + 5(-5) 2(-6) + 5(2) 

l = 
1(4) + 9(-5) 1(-6) + 9(2) 

= l -17 -2 l· 
-41 12 

For matrix multiplication to be conformable, the number of columns of the first matrix must equal the 
number of rows of the second mattix. 
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A.2.4 Transpose 

The transpose of a matrix is obtained by replacing rows with corresponding columns and vice-versa, 
, 

e.g. M' • [ : : j a [: : : l 
The transpose of the product of two matrices is the product of the transposes of the mattices taken in 
reverse order, e.g. 

(AB)'= B'A' 

A.2.5 Determinants 

The determinant of a matrix is a scalar and exists only for square matJices. Knowledge of the 
determinant of a matrix is useful for obtaining the inverse of the matrix, which in matrix algebra is 
analogous to the reciprocal of scalar algebra. If A is a square matrix, its determinant can be 
symbolized as jAj. Procedures for evaluating the determinant of various order matrices follow. 

The determinant of a scalar (1 x 1 matrix) is the scalar itself, e.g. for A = 6, IAI = 6. The determinant 
of a 2 x 2 matrix is the difference between the product of the diagonal elements and the product of the 
off-diagonal elements, e.g. for 

IAI = 5(3) - 6(2) = 3. 

The detenninant of a 3 x 3 matrix can be obtained from the expansion of three 2 x 2 matrices obtained 
from it. Each of the second order determinants is preceded by a coefficient of+ 1 or -1, e.g. for 

A=[!~;] 
8 7 9 

Based on elements of the first row, 

IAI = 5(+1) 
3 1 

7 9 
+ 2(-1) + 

6 1 

8 9 

= 5(27 - 7) - 2(54 8) + 4(42 - 24) 

= 5(20) - 2(46) + 4(18) 

= 100 - 92 + 72 = 80 

+ 4(+1) 
6 3 

8 7 
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The determinant was derived by taking in tum each element of the first row, crossing out the row and 
column corresponding to the element, obtaining the determinant of the resulting 2 x 2 matrix, 
multiplying this detenninant by +1 or -1 and the element concerned, and summing the resulting 
products for each of the three first row elements. The (+l) or (-1) coefficients for they"' element 
were obtained according to (-lt 1. For example, the coefficient for the 12 element is (-1)1+ = (-1)3) = 
-1. The coefficient for the 13 element is (1)1+

3 = (-1)4 = 1. The dete1minants of each of the 2 x 2 sub­
matrices are called minors. For example, the minor of first row element 2 is 

[:~]=46 

When multiplied by its coefficient of (-1), the product is called the co-factor of element 12. For 
example, the co-factor of elements 11, 12 and 13 are 20, -46 and 18. 

Expansion by the elements of the second row yields the same detenninant, e.g. 

IAl=6(-1) [ ~ ; ] +3(+1) l: ; ] +1(-1) l 
= -6 (18 - 28) - 3 (45 - 32) + l (35 - 16) 

= 60 + 39 - 19 = 80 

5 2 ] 
8 7 

Similarly, expansion by elements of the third row again yields the same detenninant, etc. 

IAl=8(+1) l:;] +7(-1) l:;] +9(+1) [::] 

= 8 (2 - 12) - 7 (5 - 24) + 9 (15 - 12) 

= -80 + 133 + 27 = 80 

In general, multiplying the elements of any row by their co-factors yields the determinant. Also, 
multiplying the elements of a row by the co-factors of the elements of another row yields zero, e. g. 
the elements of the first row by the co-factors of the second row gives 

5(-1) [ ~ ; ] + 2(+1) [ : ; ] + 4(-1) [ : ~ ] 

= -5 (18 - 28) + 2 (45 - 32) + 4 (35 - 16) 

= 50 + 26 - 76 = 0 

Expansion for larger order matrices follows according to IAI = I au( -1/+ 11Mijl 
j=I 

for any i where n is the order of the matrix, i = 1, ... , n and}= 1, ... , 11, aij is the i/" element, and IMijl 
is the minor of the i}"' element. 
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A2.6 Inverse 

As suggested earlier, the inverse of a matrix is analogous to the reciprocal in scalar algebra and 
performs an equivalent operation to division. The inverse of matrix A is symbolized as A"1• The 
multiplication of a mattix by its inverse gives an identity matrix (I), which is composed of all 
diagonal elements of one and all off-diagonal elements of zero, i.e. A x A-1 = I. For the inverse of a 
matrix to exist, it must be square and have a non-zero determinant. 

The inverse of a mattix can be obtained from the co-factors of the elements and the determinant. 

The following example illustrates the derivation of the inverse. 

i) Calculate the co-factors of each element of the matrix, e.g. the co-factors of the elements of 

the first row are (+l{ ~ ~ l , (-1)[ : ~ l • and (+l)[ : ~ l = 20, -46 and 18. 

Similarly, the co-factors of the elements of the second row are 

and the co-factors of the elements of the third row are 

ii) Replace the elements of the matrix by their co-factors, e.g. 

r 
5 2 4 l 

[ 

20 

A = 6 3 1 yields C = 10 

8 7 9 -10 

iii) Transpose the matrix of co-factors, e.g. 

[ 

20 -46 18 l 

r 

20 

C' = 10 13 -19 = -46 

-10 19 3 18 

-46 

13 

19 

10 

13 

-19 

= 10, 13 and-19 

= -10, 19 and 3. 

18 

l -19 

3 

-10 ] 
19 

3 

iv) Multiply the transpose mattix of co-factors by the reciprocal of the determinant to yield the 
mvcrsc, e.g. 

IAI = 80, 1/IAI = 1/80 

[ 

20 10 -10 

I 
A-1 = 810 -46 13 19 

18 -19 3 
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v) As a check, the inverse multiplied by the original matrix should yield an identity matrix, 
i.e. A-1 A= I, e.g. 

~r 20 10 
-10] [ 5 

2 ; ] [ 1 0 0 l -46 13 19 6 3 = 0 1 0 

18 -19 3 8 7 0 0 1 

The inverse of a 2 x 2 matrix is: [: b] 1 [ d 
d - ad-be -c 

-ab] 

A.2.7 Linear Independence and Rank 

As indicated, if the detenninant of a matrix is zero, a unique inverse of the matrix does not exist. The 
detellllinant of a matrix is zero if any of its rows or columns are linear combinations of other rows or 
columns. In other words, a determinant is zero if the rows or columns do not form a set of linearly 

[!5~2~31 independent vectors. For example, in the following matrix j 

rows 2 and 3 sum to row 1 and the determinant of the maliix is zero. 

The rank of a matrix is the number of linearly independent rows or columns. For example, the rank of 
the above matrix is 2. If the rank of matrix A is less than its order n, then the determinant is zero and 
the inverse of A does not exist, i.e. if r(A) < n then k 1 does not exist. 

A.2.8 Generalized Inverse 

Although a unique inverse does not exist for a matrix of less than full rank, generalized inverses do 
exist. If A- is a generalized inverse of A, it satisfies AA-A = A. Generalized or g-inverses are not 
unique and there are many A- which satisfy AA_ A = A. There are also many ways to obtain a g­
inverse, but one of the simplest ways is to follow these steps: 

a) Obtain a full rank subset of A and call it M. 
b) Invert M to yield M 1

. 

c) Replace each element in A with the c01Tesponding element of M-1. 

d) Replace all other elements of A with zeros. 
e) The result is A-, a generalized inverse of A. 
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Example 

a) M, a full rank subset, is 

b) 

A= 

6 3 2 1 

3 3 0 0 

2 0 2 0 

1 0 0 1 

[: 
0 

:1 2 

0 

><'" [ 
1/3 0 

0 1/2 

0 0 
:] 

c) Replacing elements of A with conesponding elements of M-1 and all other elements with O's gives 

d) 

A.2.9 Special Matrices 

0 0 0 0 

0 1/3 0 0 

0 0 1/2 0 

0 0 0 1 

In many applications of statistics we deal with matrices that are the product of a matrix and its 
transpose, e.g. 

A=X'X 

Such matrices are always symmetric, that is every off-diagonal element above the diagonal equals its 
counterpart below the diagonal. For such matrices 

x cx·xr x·x = x 

and X(X'X)X' is invaiiant to (X'Xr, that is, although there are many possible g-inverses of X'X, any 
g-inverse pre-multiplied by X and post-multiplied by X'X yields the same matrix X. 

A.2.10 Trace 

The trace of a matrix is the sum of the diagonal elements. For the matrix A of order n with clements 
( aij), the trace is defined as 

" 
tr (A) = _La,, 

i=l 
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As an example, the trace of IS 3+6+5=14 

For products of matJices, tr(AB) = tr(BA) if the products are conformable. This can be extended to 
the product of three or more matrices, e.g. 

Tr(ABC) = tr(BCA) = tr(CAB) 

A.3 Quadratic Forms 

All sums of squares can be expressed as quadratic forms that 1s a y'Ay. If 
y ~ (µ, VJ, then 

E(y'Ay) = µ'Aµ 

Exercises 

1. For 

Find the sum of A + B. 
Find the difference of A - B. 

2. For A and B above and v' = [1 3 -1], find v'A and v'B. 

3. For B' = [ ! 2 5 ] 
~4 ~l 

and A as above. Find B 'A. Find AB'. 

4. For A and B above, find AB. 

5. Obtain detenninants of the following matrices 

[ ~ ~84 ] 

l _; ; l 
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I : 
1 : 3 

5 

l i 2 : l 5 

8 

1 6 4 3 

2 8 5 4 

3 8 7 5 

4 9 7 7 

6. Show that the solution to Ax= y is x = A-1y. 

7. De1ive the inverses of the following matiices: 

3 0 0 0 

0 4 0 0 

0 0 2 0 

0 0 0 5 

8. For and B = l : ; ! l · 
7 8 9 

show that tr(AB) = tr (BA). 
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Day 1 

Multi-locus Population Genetics - Linkage & Disequilibrium 

Objective 
Present population genetic principles of 

allele, haplotype and genotype frequencies, 
and of linkage and linkage disequilibrium 

1. Single locus allele and genotype frequencies 
2. Multi-locus haplotype and genotype frequencies 
3. Measures of Linkage Disequilibrium (LD) 
4. Estimating LD from genotype data 
5. Linkage maps and recombination 
6. Mechanisms that generate and erode LD 
7. LD balance between drift and recombination 
8. Persistence of LD across breeds 
9. Erosion of LD in crosses vs. outbred population 
10. LD always exists within families 

1. Single locus allele and genotype frequencies 

Consider a single locus in a random mating outbred population. 

The locus has alleles A, and A, with allele (or gene) frequencies p and q 

Under random mating (Hardy Weinberg Equilibrum), the allele received from one parent is 

independent of the allele received from the other parent, resulting in the following 

relationship between allele and genotype frequencies: 

Table I: Genoh ,e probabilities, sinf!le locus two-allele case 
Maternal allele 

Paternal allele Pr(A,) =P Pr(A2) = q Marf{i11al prob 

Pr(A1) =p 2 
p pq p' + pq = p(p + q) = p 

Pr(A,) = q pq q' pq + q' = q(p + q) = q 

p'+pq= pq + q' = 
Marf!inal prob. v(v+a)=v a!n+a)=a 

This results in the HWE genotype frequencies: rl , 2pq , cf 
2 
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2. Multi-locus haplotype and genotype frequencies 
With multiple loci we also need to consider haplotypes and their frequencies, 

and relationships between allele, haplotype, and genotype frequencies. 

Haplotype = the combination of alleles at> I locus that an individual inherited from a parent 

E.g. an individual with (unordered) genotype A1A2 and B1B2 at loci A and B, can have the 
following combinations of haplotype pairs (separated by I): 

A1Bi/A2B2 ➔ alleles A1 and B1 received from one parent and A2 and B2 from the other 

A1B2/A1B2 ➔ alleles A1 and B1 received from one parent andA1 and B1 from the other 

Haplotype frequency = frequency of a given haplotype in a population 

What is the relationship between haplotype frequencies and the frequencies of alleles that 
make up each haplotype? 

The ,,,::i:,,:~;:::::,o,::,~;::::,t:::,~::~:,;~,t ,:,::~,: ~oci are de!oendent or indep\endent: 

bit misleading because disequilibrium can occur between unlinked loci, 
although it is more likely to be present (and persist) between linked loci (see 
later). Thus, 'Gametic phase' disequilibrium is a better term; gamelic phase 
refers to lhe haploid phase of chromosomes and disequilibrium refers to 
dependence between alleles that make up the haplotypes that are present in 
!he current generation and which originaled trom the haploid gametes 
produced by their parents. 

Linkage 
Disequilibrium 

Linkage 
Equilibrium 

3 

Haplotype probabilities/ frequencies 
What is the probability Of a progeny to receive from a parent: allele A; at locus A 

and allele B; at locus B ? 

i) if the alleles at the two loci are independent from each other 
➔ joint probability= product of marginal probabilities 

Locus B Locus A - allele frequencies 
allele frPn's Pr(A1ho, Pr/A,1-n, Marl!inal orob 

Pr(B1) =pn Pr(A1B1) = PtJJB Pr(A2B1)~ 
PtJJB + qtJ}B 

= PB (pA + qA) = Ps 

Pr(B,) = q8 Pr(A1B2) = PAqs Pr(A,B,) = qAt/B PAqB + qAqB 
=qB/nA+qA)=an 

PtJJB + PAqB q,PB + qAqB \ 
Mar~inal nrob = VAlnB +QB)= n, = nA/nB + nB) = n, Haplotype frequency 

Locus B Locus A - allele frequencies 
allele frea's Pr(A1) = 0.5 Pr(A,) = 0.5 Mar11inal nrob 

Pr(B1) = 0.5 Pr(A 1B,) = 0.25 Pr(A 2B1) = 0.25 
0.25 + 0.25 

= 0.5 

Pr(B2) = 0.5 Pr(A1B2) = 0.25 Pr(A2B2) = 0.25 0.25 + 0.25 
=0.5 

0.25 + 0.25 0.25 + 0.25 
Marvinal nrob - 0.5 =0.5 4 
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Haplotype probabilities/ frequencies 
What is the probability of a progeny to receive from a parent: allele A, at locus A 

ii) What if the alleles at the two loci are NOT independent? 
and allele Bi at locus B ? 

-+ joint probabilities deviate from product of marginal probabilities (by +D) 

Locus A 
Locus B Pr/A 1l ~ v, Pr/A,)~ n, Mardnal vrob 

Pr(B1) =p 8 Pr(A1B1) = r Pr(A2B1) = I p,pa+ D + q,pa - D 
=p,pa + D = q,pa-D =pa (p, + q,) =ps 

Pr(B2) = q8 
Pr(A1B2) = s Pr(A2B2) = u p,qa-D + q,qa+ D 
= p,qa-D = qAqB +D = qa (p, + q,) = q, 

Marginal PAP•+ D + p,qa-D q,pa-D+ q,q 8 + D D = rt P,Pa 
prob = p,(pa + qa) = PA = q,(pa + qa) = q, 

[ Pr(A1Bi) - Pr(A1)Pr(B1) 

D = measure of disequilibrium Value of JDI is the same irrespective of the haplotype used 

Locus B Locus A - allele frequencies 
allele frea' s Pr/A 1) = 0.5 Pr/A,)= 0.5 Mareinal urob 

Pr(B1) = 0.5 Pr(A1B1) = 0.4 Pr(A2B1) = 0.1 0.4 + 0.1 = 0.5 

Pr(B 2) = 0.5 Pr(A1B2) = 0.1 Pr(A2B2) = 0.4 0.1 + 0.4 = 0.5 

Marf!inal prob 0.4 + 0.1 = 0.5 0.1 +0.4=0.5 D= 0.4 0.5'0.5 - 0.15 5 

3. Measures of Linkage Disequilibrium (LD) 
D = Pl{A181)- p,p8 

D' = D standardized to make it less dependent on allele frequencies 

D' = D!Dmfil where Dm,, = Min(pA]2a, qAqa) if D<O 

DmITT = Min(p AqB , q APa) if D>O See F&M Ex 1.6 p17 

r
2 = squared correlation between allele at locus A and allele at locus B 
- also measures ability (R 2) to predict allele at locus A from allele at locus B 

D' 
Locus A - allele frequencies r2= Locus B 

p,q,p,q, allele frPll 's Pr/A 1) - 0.5 Pr/A 2) - 0.5 

Pr(B1) = 0.5 Pr(A1B1) = 0.4 Pr(A2B1) = 0.1 
D = 0.4 - 0.5"0.5 = 0.15 

Pr(B2) = 0.5 Pr(A1B2) = 0.1 Pr(A2B2) = 0.4 

D'= 0.15/0.25 = 0.6 
Dmax = Min{0.5'0.5, 0.s•o.5) = 0.25 

2 
_ 0.152 2 

ID'] and r range between O and 1 
r - 0.5*0.5*0.5*0.5 - 0-36 

ID'! is strongly inflated if one haplotype has low frequency 

r2 is the preferred measure of LD for most uses 
0 
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To derive r2: Let X = 1 when allele A1 present, X = 0 if A, present(= Bernoulli var.) 
Y = 1 when allele B1 present, Y = 0 if B2 present(= Bernoulli var.) 

Then: cov(X, Y) = E(XY) - E(X) E(Y) A1 X=l A, X=O 
= r - PA PB =D B1 Y=l Pr(A,B1) = r Pr(A2B1) = t 

XY- I XY-0 
cov(X,Y) D Pr(A1B2) = s Pr(A2B2) = u 

-+ Corr.= fxr = .Jvar(X) var(Y) .J(pAqAXp,q,) 
B2 Y=O XY-0 XY-0 

'-+ r
2

= rxl= 
D' 

pAqApBqB 
(Note: this r is different than r in the table in previous slide) 

if A is a marker and B a QTL -+ r2 = proportion of QTL variance observed at marker 

- eg if QTL variance= 200 kg2, and r2 = 0.2 -+ variation observed at marker= 40 kg2 

r2 is a key parameter determining the power of LD mapping to detect QTL 

• Experiment sample size must be increased by l/r 2 

to have the same power as an experiment observing the QTL directly 

For multi-allelic markers, see Zhao et al. 2005 and 2007. Genetical Research 
7 

Why is LD important? M Q 

Use of linked markers relies on I I 
I I 

association of markers with phenotype m q 

QTL detection 

Marker Mean 
Genotvoe Phenot~~e 

MM 20 I 
Allele Mis 

Mm 18 associated with 
favorable QTL 

mm 14 allele 

MAS 
Select MM or individuals that inherited allele M 

Requires Linkage Disequilibrium between 
marker and QTL 8 
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4. Estimating LD from Genotype Data 
Disequilibrium is quantified by comparing haplotype frequencies to their expected 
frequencies based on independence (D = Pr(A

1

B
1

) ~ Pr(A
1

)Pr(B
1

)). 

The problem is that genotyping data is in the fonn of unordered genotypes, not haplotypes, 
requiring special methods to estimate haplotype frequencies. 

With 2 loci with 2 alleles, there are 4 possible haplotypes, 16 ordered genotypes (ordered 
based on haplotypes), and 9 unordered genotypes (see tables 2,3) 

Table 2: Haotonme preouencies and eenohme freouencies under random matine (HWE) 
Maternal havlotvve 

Haplotype - freq A1B1 r A1B2 s A2B1 t A2B2 u 

A,B, r A1B,IA1B1 r' A1B1IA1B2 rs A,B,!A 2B1 rt A1B,IA2B2 ru 

~" s' ~t A1B2 s A1B2IA1B1 sr A,B,!A,B 2 A1B2IA2B1 st A1B2IA2B2 SU 

~.s A2B1 t A2B1/A1B1 tr A2B1/A1B2 ts A2B1/A2B1 t' A,B,JA2B2 tu ~ti' ... .., 
A,B, A2B2/A1B1 A2B2IA1B2 A,B,!A 2B1 A2B,IA2B2 u' u ur us ut 

9 

2 loci with 2 alleles ➔ 4 haplotypes ➔ 16 ordered genotypes ➔ 9 unordered genotypes 

Table 2: Haofon,ne reouencies and f!enotune freouencies under random matinf! (HWE) 
Maternal havlonme 

Haplotype - freq A1B1 r A1B2 s A,B, t A2B2 u 

A,B, r A1B1IA1B1 r' A1B1/A1B2 rs A,B1IA2B1 rt A1B1/A2B2 ru 

~" s' :.it A1B2 s A1B2/A1B1 sr A1B2IA1B2 A1B2IA2B1 st A1B2IA2B2 SU 

t.s 
A2B1 A2B1IA1B1 tr A2B1/A1B2 ts A2B,IA2B1 t' A2B1IA2B2 tu ~ ti' t ...... 
A2B2 A2B2/A1B1 A2B2IA1B2 A2B2/A2B1 A2B2/A2B2 u ur us ut u-

Table 3: Unordered a,id ordered rrenof""es and their freouencies under random malinrr 
Unordered Frequency Possible ordered genotypes and their frequencies (from Table 2) 

genotypes =sum of ordered 'ordered' based on parental origin (paternal haplotype/matemal haplotype) 
fre□ueocies 

A1A1B,B1 
,., A1Bi/A1B1 

,., 
A1A1B1B2 2rs A1B1IA1B2 rs A1Bi/A1B1 sr 
A 1A1B,B, s' A1Bi/A1B2 s' 
A1A2B1B1 2rt A1Bi/A2B1 rt A2B,IA1B1 tr 
A,A 2B1B2 2ru+2st A1B1IA2B2 ru A1Bi/A2B1 st A2B1IA1B2 ts A2B2/A1B1 ur 
A IA2B,B, 2su A1Bi/A2B2 SU A1Bi/A1B2 us 
A,A,B,B 1 t' A2Bi/A2B1 i' 
A2A2B1B2 2tu A2Bi/A2B2 tu A2Bi/A2B1 ut 
A2A2B2B2 u' A2Bi!A1B2 u' 
The unordered genotype is what is obtained from genotyping, i.e. the genotype at each locus 10 
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Simple method for estimating haplotype frequencies 
The simple method to estimate haplotype frequencies (r,s,t,u) is to assume that double 
heterozygotes are equally likely to have either haplotype configuration. 

Simnle method to estimate hanlot""e freauencles and LD 

Observed data Exp. Hanlot••ne counts 

Genotvne Counts Freauencv Fren A1B1 A1B2 A2B1 A2B2 

A1A1B1B1 19 0.475 
,., 

38 

A1A1B1B2 5 0.125 2rs 5 5 
A1A1B2B2 0 0 s' 0 
A1A2B1B1 8 0.2 2rt 8 8 

A1A2B1B2 8 0.2 2ru+2st 4 4 4 4 

A1A2B2B2 0 0 2su 0 0 
A2A2B1B1 0 0 t' 0 
A2A2B1B2 0 0 2tu 0 0 
A2A2B2B2 0 0 u' 0 

40 0.6875 0.1125 0.15 0.05 
=r =s =f =U 

D = ru-st= 0.0175 

8 individuals are observed to be double heterozygotes, so it is assumed that of the 2*8 = 16 
haplotypes that are carried by these individuals, 4 are A1B1, 4 are A

1
8

2
, 4 areA

2
B

1
, and 4 are A2 B2 • 

The problem with this method is that the 4 haplotypes are NOT equally likely. In fact, even 
based on the simple method, the frequency of the A1B1 haplotype is 0.69 and that of A1B1 is 0.11. 

In fact, using the frequencies obtained from the simple method, we can calculate the probability 
that a double heterozygote will have the one versus the other haplotype configuration 

Pr{-tfill A,A,B,8 2 )-
2

ru 
ru 

and (Aili )- 2st st 
Pr A2Bl ~~B1B2 - ---

2ru + 2st ru + st 2ru + 2st ru + st 
Slmnle method to es11male hanlot••M 1r--uencles and LO 

Observed da1a "' lot··-- coonls 

For the example data, these probabilities will equal: ,- Coools F, ,- A181 "" "" "" A\A18181 19 0475 I " 
Pr(ifil A1A281B2) 

o.6875 •o.o5 AlA1B1B2 5 0.125 '" 5 5 

0.67 A1A18202 0 0 ,' 0 

0.6875 '0.05 + 0.1125 '0.15 A1A20101 ' 0.2 ,,, 
' ' A1A28182 ' 02 2ru+2sl 4 4 4 4 

A1A2B2B2 0 0 b, 0 0 

(-""-IA A,B B) 0.1125'0.15 
A2A28101 0 0 I 0 

0.33 A2A281B2 0 0 "" 0 0 

Pr .-1,B, 1 1 2 ~ 0.6875*0.05+0.1125*0.15 """" 0 0 •' 0 

40 0.6375 0.1125 0.15 o.o, ., ., o] ·• 
o,, ru-st~ 0.0175 

Thus, based on these haplotype frequencies, the A1Bi/A2B2 Observed data "' Ha-'-1·-- COl.fflS 

haplotype configuration is twice as likely as A1B2IA2B1 
G8'101·- Coools " F,- A\81 A1B2 "'' "" A1A181B1 l9 0,475 ,. 

" A1A\B1B2 s 0.12s ,,, s s 
So now we can these to adjust haplotype counts for double A1A1B202 0 0 ,' 0 

heterozygotes to 5.33, 2.67, 2.67, 5.33 A1A2B1B1 ' 
o., '" ' ' 

and use these to re-estimate the haplotype frequencies. 
A1A28\B2 ' o., 2ru+211 5.33 2.67 "' 5.33 
A1A282B2 0 0 b• 0 0 

We can then repeat this procedure until the haplotype A2A2B101 0 ' 
I 0 

A2A2B1B2 0 0 •• 0 0 
frequencies don't change anymore (have converged). A2A20282 0 0 

., 
0 

40 0.7046 0.0954 0.1329 0.0671 ., .. • I .. 
D• ru-$t~ 0.0346 

This is the Expectation Maximization algorithm for Maximum Likelihood haplotype frequency estimation. 

" 
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EM algorithm for ML haplotype frequency estimation 

Based on (assumed) unrelated individuals 

Implemented in the 'EM for haplotype frequencies' sheet in the EM_estimation.xls file 

P(A181/IA282) = 
"P(A1B1//A2B2 I A1A281B2) • P(A1A2B182) = ru/(ru+st) • P(A1A281B2) =sV(ru+st) • P(A1A2B182) 

EM algorithm orithm ··> 

~G~ea~o~•tJC~o~oa~ts~F,~eii::;:::;--r-:--:::-::::-:::::-----'i)iF~,e~1=E~F~ 2 E Fre 3 E Fre 4 E Fre 5 E Fre 6 E Fre 7 
A1A1B1B1 0.475 A1B1//A2B2 0.134 0.158 0.170 0.174 0.176 0.177 
A1A1B1B2 0. A1B2//A2B1 0.066 0.042 0.030 0.026 0.024 0.023 
A1A1B2B2 
A1A2B181 
A1A2B1B2 
A1A2B2B2 
A2A2B1B1 
A2A2B1B2 
A2A2B2B2 

40 

pA= 
B= 

r"'P(A181) 
s=P(A182) 
t=P(A281) 
u=PA282 

0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 
0.8375 0.8375 0.8375 0.8375 0.8375 0.8375 0.8375 0.8375 
0.6700 0.6875 0.7046 0.7163 0.7223 0.7247 0.7257 0.7260 
0.1300 0.1125 0.0954 0.0837 0.0777 0.0753 0.0743 0.0740 
0.1675 0.1500 0.1329 0.1212 0.1152 0.1128 0.1118 0.1115 
0.0325 0.0500 0.0671 0.0786 0.0648 0.0672 0.0882 0.0885 

Chan e in fre uencies 

D 0.0000 0.0175 0.0346 0.0463 0.0523 0.0547 0.0557 0.0560 

0.0350 0.0341 0.0235 0.0119 0.0049 0.0016 0.0007 

Implemented in Haploview hnp://www.broad.mit.edu/mpg/haploview/ 

Other software: FastPhase hnp://depts.washington.edu/ven1ures/UW_Technoldgy/Express_Licenses/fastPHASE.ph 

MCMC methods Phase http:/ldepts.washington.edutventures/UW_Technology/Express_Licenses/PHASEv2.php 

- also estimates recombination rates 

Also used for. computing missing genotypes 
• assigning haplotype probabilities to individuals 13 

What if individuals are not unrelated? 
Does the assumption of unrelatedness bias LD results? 

Little if sample size large enough (e.g. De Roos et al. Genetics 2009) 

But unrelatedness assumption DOES affect haplotype probabilities of individuals 

- Marker genotypes of relatives help determine haplotypes of individual 

In large paternal half sib families (dairy cattle) 

• haplotype phase of a sire can be inferred based on which sire alleles 
co-occur most often in progeny 

• Maternal haplotypes receved by progeny then obtained by subtracting 
sire haplotype from progeny genotype 

In complex pedigrees. much more difficult 

-SimWalk 

-GenoProb 

·Iterative peeling 

-MCMC methods 
14 
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SHl99 

_J--""' 5. Linkage maps 

t

/;/,~:::,:' " "":'. And Recombination 
"' 1.05; 

55£6 

• Microsattelites 

• SNP'S,§ingle 
.f:!ucleolide 
folymorphlsm 

Polymorphism = locus with 
observable allelic variants 

centiMorgan (cM) = distance unit 
Related to recombination rate (r 

RECOMBINATION FREQUENCY VERSUS MAP DISTANCE 

Recombination rate (A,B) = c = proportion of recombinants generated by meiosis. 
= measure of distance between loci in terms of recombination rate 

We like distances to be additive: if A, B, and Care on a string and dist(A, B) = CAB and 
dist(B, C) = CBc, then dist(A, C) is cAB + cBc? 

CAB _ 

' Ca" ' 
Are recombination frequencies additive? NO A B C 

Given CAB and CBc, what is cAc? CAc= CAB + CBC ? 

Four possibilities: 

A-B interval B-C interval ➔ A-C interval Qrobability 
Af:- no rec ➔ B f- no rec ➔ C ➔ A f- no rec ➔ C (I - c,B)(l- cBc) 

A no rec B rec C ➔ A rec C (I - c, 8) c,c 

A rec B no rec C ➔ A rec C c,B (1-c,c) 
A rec B rec C ➔ A no rec C CAB c,c 

➔ A-C rec.rate= cAc = Pr(2.) + Pr(3.) = (1- cA8)cBc + cAB(l - c8c) =CAB+ cBc - 2cAs csc 

Example CAB= 0.2 Coe= 0.3 ➔ c,c = 0.2 + 0.3 - 2*0.2*0.3 = 0.38 
Note: c..,_c < 0.5 = 0.2 + 0.3, because 12% of all gametes (2*0.2*0.3) are double recombinant, thus, 
despite recombination, a parental configuration of alleles will exist between A and C (A1C1 or A2C2). 

An important assumption in this calculation is independence of recombination events - no interferenc,r, 
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Recombination ~➔ Crossover 

...._,,:,r;r 
,:,:,~ ....... 

....,.,_, 

L"";'::?:;'.';, 

f,.. ~~ ~'w""' !• /U><el,,h· 1 =- ~f.,~ ..... ,iwf .,,,.~ -d .,,.. ,\.,, __ _ 

Thomas Hunt Morgan's illustration of crossing over (1916) 

Recombinations result from crossovers. 

' 

~~::> 

~---=-r~ 

A double crossing over 

A crossover occurs when segments of homologous chromosomes of a pair (i.e. the 
maternal and paternal chromosomes) are exchanged during meiosis. 

Multiple crossovers can occur between loci A and B but only an uneven number of 
crossovers results in a recombination event between A and B. 

17 

Map distance (A-B) = d,e = E(# crossovers in A-B) =expected #cross-overs 
generated during a meiosis in A-B interval 

A 

dac 

+---~B~---•C 
dAc= dAa + dac 

Map distances ARE additive because expectations are additive (even with dependence): 

(# crossovers in A-C) = (# crossovers in A-B) +(#crossovers in B-C) 

➔ E(# crossovers in A-C) = E{ (# crossovers in A-B) +(#crossovers in B-C)) 

= E(# crossovers in A-B) + E(# crossovers in B-C) 

Recombination rate, c, = proportion between 0 (completely linked) and½ (unlinked) 

Map distance, d, is measured in Morgans: if dA 8 = I Morgan ➔ on average 1 cross-over 
event will occur per meiosis 
• if dA8 = l Morgan ➔ on average 1 cross-over event occurs between A and B per meiosis 
• I Morgan= 100 cM 
• For cattle, genetic map length ~ 30 M (3000 cM) ➔ ~ 30 crossovers per meiosis. 

c 5 d because an even number of cross-overs results in a non-recombinant gamete 18 
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Mapping Function 
Provides the relationship between recombination rate (c) and map distance (dJ 

• Complete interference -+ c = d 

• No interference-+ Haldane mapping function: c = (l-e"')/2 d = -ln(l-2c)/2 

• Some interference= Kosambi mapping function c = (e4
d -1)/2( e4

d +1) 

2o.4 
~ 

C 

~0.2 
0 
u 

~0.1 

Haldane 

0.5 1 1.5 
Map distance (Morgans) 

d =114 ln[(l+2c)/(l-2c) 

E.g. d=0.2 

➔ CHaJdm, = (l-e· 2
'"·

2)/2 = 0.165 

➔ CKos=s;= (e''"·2 -l)/2( e''"·2 +I 
= 0.190 

➔ Ccomplete int = 0.200 

19 

6. Mechanisms that Generate and Erode LD 
A variety of mechanisms generate linkage disequilibrium, and several of these can operate 
simultaneously. They can be separated into: 

1. Recurrent factors - operate to create LD each generation 

a. Drift (inbreeding) in small populations - by chance or sampling, haplotypes 
passed on to the next generation are not in LE frequencies 

b. Recurrent migration - continuous mixing of populations in which haplotypes occur 
in different frequencies (e.g. Pr(A1B1)=1 for pop. I and :::cO for pop. 2) 

c. Selection - certain haplotypes may be selected upon and increase in frequency 
- selection also creates LD between loci that are selected upon 

(= Bulmer effect- see later) 
- selection with epistasis (certain combinations of alleles are favorable) 

also creates LD between loci involved. 

2. Punctual factors - operate only sporadically over time to create LD 

a. Mutation - occurs in a specific haplotype, which is then the only haplotype 
that contains that mutation, resulting it to be in LD with the mutation. 

b. One-time admixture/migration/crossing (e.g. producing F1/F2) - results in mixing 
populations with different haplotype frequencies 

c. Population bottleneck I founder effects - severe drift from 1-time sampling effects 
20 
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Processes that create LD 
Inbred line I Line Crossing Inbred line II 

M a M a 
~ 

m q 
m 
I 

M a M a M a X m q m 

q 

T ~ m q 

M a M a m ~ I 

T ~ M Q a 
M a 

m q 

Processes that create LD 
Mutation and Selection 

M q M 
m q m q T ~ 

M q m q m ~ 
Selec- M q M 

I y 
~ 9 

m q M Q t1on 
M ~ m M ~ I I 

m q m q 

QTL allele on M chromosome mutates from q to Q 
and then increases in frequency because of 
- random drift 

q 

m 

a 

M 

q 

21 

- or selection on Q ➔ selective sweep = LO block around Q 
22 
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Selective Sweep 

Original mutation (q ~ Q) occurred in marker haplotype: 
001110010Q01001110110 

Many generations D of recombination 

100110 00110100 
011110 01011010 
001001 00010111 
001110 01101110 
011010 01100010 

Unique haplotype <~~ 000110 01000111 
associatedwithQ • 1 111010 11101111 

010110 ~-'-~01101010 
23 

Processes that create LD 
Random drift/inbreeding 

M 
m q m q M Q 

M q M Q 
Game) 

M Q 
m Q 

m Q M Q m ~ M Q I I 

sampling M q m q 

m q 

24 

----
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LD created by Drift 

~ 
~ 1010000 

001q010 

0110110 1100011 
0100110 ~ 

~~ 

010q110 ~ 
011q110 ~ 

010q110 

M 

1100100 1110001 

0010010 

0100110 

0000101 0110100 

Garn tes assed 
o to ext 

000q101 011q100 

-----~ 110q100 111q001 

110q011 

110q100 111q001 

25 

LD is continuously 

eroded by recombination 

C c = recombination M•····a 
rate 

m q 
~ ,s,~ 

.,:.'If "o :Q~ 
meiosis '?6. 

0~ ~ e? ~? 
-~ ~ 

'<?-0,;< 

Q m q M q m Q 

1/i1-c) frequency 1/2(1-c) 1/2C frequency 1/2C 
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LD continuously eroded by recombination: how does D change over time? 
Let ro = frequency of A1B1 haplotypes in generation O ➔ Do= ro - PAPs 
What is the frequency of AtBt haplotypes in generation I? 
In the following derivation, we will consider parental origin ofhaplotypes and let• indicate 'any' allele, 
so A 1B1IA.B. indicates an individual that received the A18 1 from its father and any haplotype (A1B1 or 
A1B2 or A2B1 or A2B2) from its mother) 

There are four ways that parents from generation O can generate gametes that carry the 
A1B1 haplotype and that will produce generation I· 

1. non-recombinant A1B1 haplotype produced by a A1B1 /A0
B

0 
parent 

2. non-recombinantA 1B1 haplotype produced by a A
0
B/A,B, parent 

3. recombinant A1B1 haplotype produced by a A,B/A.B 1 parent 
4. recombinant A,B, haplotype produced by a A_B1/A1B. parent 

Case l: the frequency of A 1B1IA•B• parents is ro and the frequency of non-recombinantA 1B1 haplotypes 
produced by these parents is ½(1-c). Since these two events are independent, the frequency of A1B1 
haplotype produced by A18 1 IA.B. parents= Prob(l.) = ½(1-c)ro. 

Case 2.results in the same frequency: Prob(2.) = ½(1-c)r 0 

Case 3: the frequency of A1B/A.B 1 parents is PA p8 because the frequency of generation 0 
individuals that received a A1B. haplotype from their father= frequency of individuals that received 
the A1 allele from their father= frequency of the A1 allele= PA. Similarly, the frequency generation 0 
individuals that received a A.B, haplotype from their mother = p8 • Then, the frequency of 
recombinantA 1B1 haplotypes produced by these parents is 1/zc, so the overall frequency= ½cPAPB· 

Case 4.results in the same frequency: Prob(4.) = ½cPAPB·• 27 

LD continuously eroded by recombination: how does D change over time? 

Let ro = frequency of A1B, haplotypes in generation O ➔ Do= ro - PAPB 

What is the frequency of A1B1 haplotypes in generation I? 

Thus, the overall frequency of A 1B1 gametes produced by generation O is the some of these 
four mutually exclusive cases: 

-+ r, = r,(1-c) + PAPB c 

-+ D 1 = r,-p;.p, = r,(1-c)+PAP•C-PAPB = 

= r,(1-c)-PAPB(l-c) = (ro+ PAP,)(1-c) 

= Do(l-c) 

-+ D 2 =D,(1-c) ={D0(1-c)} (1-c) = 

= D 1-c 2 

-+ D, = Do(1-c)1 

-+ Erosion of LD by recombination occurs faster when loci are further apart. 
LD is halved each generation if loci are unlinked (c = ½). 

D' 
Since r2 ;::; ----- , LD measured by r 2 will decline at a rate of ( 1-c )2 per generation: 

pAqApBqB 

r/ = r/(1-c) 21 
28 
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r2 

Break-up of LD by recombination 
1 C=.001 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 m q 

0.2 

0.1 

0 
0 5 10 15 

Generation 
20 25 

Another way of looking at LD 
Conservation of chunks of ancestral chromosomes 

Marker Haplotype 

1 1 1 2 
--

~ --

Size of conserved chunks depends on how 

Long ago LD was created - longer if N. larger 

30 

------
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Recent LD extends over large distances 

r2 1 

0.9 

0.8 

0.5 

0.4 

0.3 

0.2 

0.1 

Generations of recombination 

. LD ov: 
distance ~,r long 

1 ere t recently a ed 

0 ~~~~::;::;..,..,....,:::;::;::;=;:;::::;::::;,c:;=:;=;=;=;,......-.,...., 
0 5 10 15 20 25 30 

31 

7. Balance between Drift and Recombination 
In small(er) closed populations 

• LD is continuously created by drift - more with smaller effective pop. size, Ne 
• LD is continuously eroded by recombination - faster at longer dist'lll"es...--~~----1 

1 
This results in a balance/equilibrium of average LD at a given distance: E(r

2 
o:i,J = 1 + 4N .c 

0.9 

0.8 

0.7 

f ! 0.6 

9 0.5 

l1 ii! 0.4 

i 
0.3 

0.2 

0.1 

0.1 0.2 0.3 0.4 
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7. Balance between Drift and Recombination 
In small( er) closed populations 

• LD is continuously created by drift - more with smaller effective pop. size, Ne 
• LD is continuously eroded by recombination - faster at longer dist'lll"=---~~---1 

I 
This results in a balance/equilibrium of average LD at a given distance: E(r' .,,) = ~ 

0,9 

0,8 

0,7 

0,6 
C' 

! 0,5 

0.4 

0,3 

0,2 

0,1 

a.a 

(Sved 1971) 

LD is very variable 

LD at short distance 
is often lower than 
expected based on a 
given N

8 

Because LD 
reflects historical 
N, and this has not 
been constant 

a 2 3 4 s 6 7 a g 1 a 11 12 13 14 cM 33 

Effect of historical Ne on LD 

0 7 

~ 0.6 
~ 0.5 

[ 0.4 

~ 

• 0 
~ 

! 

0.3 

0.2 

0.1 

0.7 

0.6 
0.5 
04 
0.3 

02 
0.1 

0 
0 2 4 6 

Distance (cMJ 
8 10 

LD at distance c (M) : 

E(r;) = I 
I+4N,,, c 

• Where t = 1/(2c) 
generations ago 
- markers 0.1 M (1 0cM) 

apart reflect N, 
5 generations ago 

- Markers 0.001 (0.1cM) 
apart reflect N, 
500 generations ago 

• LO at short distances 
reflects historical 
effective population size 

• LO at longer distances 
reflects more recent 
population history 

34 

-------
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Estimating historical N0 from average LD at a 
given distance 

==> E(r/) = l 
1+4N"c 

fl =-
1 

(__!_-1J ,,, 4 2 
C r, 

r' 1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

160 

140 

120 

100 

80 

60 

40 

20 

0 
0,2 >100 80-100 60-80 40-60 30-40 20·30 10-20 5-10 1-5 

0.1 

0 

0 5 10 15 

'00 
-----HF_NlO _.,_ R'l','_NLD 

0.00 J-------------a -.-HF._.AUS • .,.. ANG_AUS 

000 , 
1.000.000 

Ji t 10,000 

i 
I 

1.000 

10 20 

----HF_NZL ·<>· JER_NZl 

"' " 00 

Morilor<llstonOI (l<b) 

20 

,oo 

25 

LD in Dairy 
Cattle 

De Roos et al. 
(Genetics 2009) 

-~HF_NLO -~- RW_NLD 

-HF_AUS ---••ANG_AUS 

----- HF _NZL - ,a - JER_NZL 

30cM 

rnC------------------_L ____________ _JJ 

" ,oo 10.000 100,000 1.000.000 
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8. Persistence of LD across breeds 

• Can the same marker be used across breeds? 

- Yes if marker-QTL LO is similar in both breeds 

• This can be assessed by evaluating the 
consistency of LD between SNPs across breeds 

- Could compare r! between same pair of SNPs across 
breeds 

• However, the r2 statistic between two SNPs can be same value 
even if phases of haplotypes are reversed 

➔Use comparison of rinstead = correlation between SNP 
alleles, instead of square of correlation 

37 

Persistence of LD across breeds 
Use r instead of r2 

Breed 1 
Marker A D 

Marker B Al A2 Freouencv r= 
Bl 0.4 0.1 0.5 .JPA1PA2PB1Ps2 
B2 0.1 0.4 0.5 

(0.4-0.5*0.5) Frequency 0.5 0.5 0.6 = 
.Jo.5*0.5 *0.5 *0.5 

Breed 2 
Marker B 

Marker A 

r = (0.3-0.5 *0.5) 
Bl I ~i I~! l~Qll<Il<Y 0.2 
B2 .Jo.5 *0.5 *0.5 *0.5 
Frequency 0.5 0.5 

Breed 3 
Marker B Marker A 

(0.2-0.5*0.5) 

I &i I&~ I g'.f uency =-0.2 Bl r= 
B2 .Jo.5 *0.5 *0.5 * o.5 
Frequency 0.5 0.5 

Hayes '07 38 

------
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Consistency of LD • 1n 
commercial broiler breeding lines 

correlation of r within 1 cM Andreescu et al. Genetics, 2007 

chr1 Line Line Line Line Line Line Line Line Line 

Plot of r line 8 vs line 1 
2 3 4 5 6 7 8 9 10 

' Line 1 .15 .40 .52 .46 .54 .45 (94) .57 .45 
. ' .. ' .. Line 2 .36 .68 .35 .53 .69 .44 .49 .67 

' • :, ,. -1.~·. ·: {em) Line 3 .42 .28 .62 .49 .50 .50 ., ... ~-~· ·:•<: .44 .36 .. Line 4 .51 .72 .55 .72 
;§~ ·. : . 

_..:.f:.:>·· Line 5 .37 .43 .42 .42 .41 

' ,.._ .. ·. Line 6 .57 .50 .69 .52 
,;,• .. 

' : Llne7 .50 .58 (97, 

" 
., ., 0, " Line 8 .51 .52 

line 1 
Line 9 .58 

A high correlation between r means that SNP effects are expected to persist 
across lines - assuming QTL effects are consistent across populations 

Phylogenetic trees 
LD Correlation-based 

line 9 

line 8 
line 1 

line 5 

line 7 
line 10 

line 2 

Allele frequency-based 

line 9 line 5 
line 3 

LD correlations are expected to be related to the number of generations the 
lines / breeds have been separated 
More generations of separation ➔ more erosion of LD by recombination 

39 

➔ less consistent LD 40 

------
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" 

De Roos et al. 

-;-----------------, (Genetics 2009) 1.00 ._. 

LD across cattle breeds 

0_60 rr'~'-':r---:----"~-------------11........_HF_NLDvsHF_AUS 

0 --o-HF_NLOvsRW_NLD 
C 
0 
~ 0.40 --HF_NLOvsHF_NZL 

°e . -.-HF_AUSvsHF_NZL 
l5 
U -o-HF_NZlvsJER_NZL 

0.20 r I 

1 -,t,,- HF_AUSvsANG_AUS 

-ANG_ AUS vs JER _ NZL 

-0.20 ~---------------~ 

Marker distance (kb) 

LD correlations expected to decline with distance ➔ more recombination 
41 

Persistence of LD across breeds 

• Recently diverged breeds/ lines have good 
prospects of using a marker found in one 

• line in the other line 

• More distantly related breeds, will need very 
dense marker maps to find markers which 
can be used across breeds 

• Important in multi breed populations 
- eg. beef, sheep, pigs 

42 
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9. Erosion of LD in crosses vs. outbred pop. 
Break-up of LD by recombination in outbred population: 

r2 1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

LD does not immediately 
drop to zero for unlinked loci 

10 15 
Generation 

c:.001 

q 

20 25 

Erosion LD for unlinked loci in F2 cross vs. outbred pop. 
In random mating outbred populations, D does not drop immediately to zero for unlinked 
loci but LD is halved each generation: 

Dt = D0(1-c)', which with c:::½ gives: D1 = D0(1- ½f = 1//Do 

This is different when crossing breeds or lines, e.g. when producing an F2 population for 
QTL mapping: in an F2, LD=0 for unlinked loci. 

Reason is that D, = D0(1-c)' only holds only if parents were produced by random mating. 

In F2 cross, parents (=Pt's) were NOT produced by random mating (F, 's are A 1BifA 2B2): 

Cross between inbred lines: 

Fo: A1Bi/A1B1 x A2B2'A2B2 Disequilibrium in the F2 is: 

/"'-. D., = Pr(A
1

B
1

)- Pr(A
1

)Pr(B
1

) 

F1: A1B1IA282 x A1B1IA2B2 = ½(1-c)-½ ½ = ¼(1-2c) 
.--------7~ ➔ for unlinked loci 

F2 haplotypes: A1B1 A1B2 A2B1 A2B2 

Frequencies: ½(l-c) 'he 'he ½(1-c) c=½ ➔ DF2=0 

~
\ ./ / ➔ for completely linked loci recombmants 

non-recombinants c=0 ➔ DF2=¼ 
• But Dmax = Min(pAqB 'qAPa) = ¼ ➔ v'Fl =¼I¼:::: I 

• Also: r\ 1 = (Dn) 2
/( PAQAPaQa) = (¼)2/(½)4 =I-+ LO between Jinked loci is maximum in F2 

I In F3 , etc, the standard equation does apply (random mating): DF 2+1 ~ DF2(1-cf I 44 
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Break-up of LD by recombination in 
Advanced lntercross Line 

r' 1 C=.001 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 
m q 

0.2 

0.1 

0 
oD 5 
F2/BC 

10 15 
Generation 

20 25 

10. LD always exists within families 
1 ~•.001 

LD behavior similar to BC/F2 
Sire 

D 
Progeny m q 

meiosis 

M a M 
m 

M q 
M q M a m q m q m a 

M a 
M Q M a '!1 ~ ma 

M q m 
M Q m a 

M Q m q 

~ Marker - QTL LD among progeny at large distance 4 
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BUT .... Within-family LD is not 
consistent across families 

Except for (close) markers with population-wide LD 

Sire 1 Sire 2 Sire 3 Sire4 

[HJ I I 
I I 

q 
[ru I I 

I I 
q 

Different marker-QTL linkage phases within each family 

Linkage phase = assortment of alleles into haplotypes 

Sire 1 has genotypes Mm and Qq; haplotypes MQ and mq 

Alleles M and Qare in coupling linkage phase 

Alleles M and q are in repulsion linkage phase 

Day 1 

Multi-locus Population Genetics - Linkage & Disequilibrium 

Objective 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

Present population genetic principles of 
allele, haplotype and genotype frequencies, 

and of linkage and linkage disequilibrium 

Single locus allele and genotype frequencies 
Multi-locus haplotype and genotype frequencies 
Measures of Linkage Disequilibrium (LD) 
Estimating LD from genotype data 
Linkage maps and recombination 
Mechanisms that generate and erode LD 
LD balance between drift and recombination 
Persistence of LD across breeds 
Erosion of LD in crosses vs. outbred population 

10. LD always exists within families 

4' 

4 
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Day 2 QTL Detection 

Objective 
Present principles for detection of genes affecting 

quantitative traits (QTL) using genetic markers 
in 'simple' experimental designs 

Concepts covered relevant to issues in 'genomic selection' 

1. Single locus quantitative genetic model 
2. Principle of use of LD to detect QTL using markers 
3. Overview of strategies for QTL detection 
4. QTL detection using line crosses 
5. QTL interval mapping in line crosses 
6. QTL detection in line crosses - additional topics 

a. Significance testing 
b. Accuracy of position estimates 
c. Breed crosses (vs inbred line crosses) 

7. QTL detection in outbred populations - linkage analysis 
8. Summary and limitations 
9. Software for QTL mapping 

1. Single locus Quantitative Genetic Model 

• Partition phenotype into genetic and environmental 
components: 

P= mean+ G+ E 

• G = collective effect of many genes 
= quantitative trait loci (QTL) 

• Genotypes for QTL have an associated genotypic value: 

Gr= E( PIT) 

Gr= phenotype you expect to get 
from an individual with genotype T 

Gr= Average phenotype over all individuals 

with genotype T 

Gr is often deviated from the mean ~ overall average G, is zero 

------

2 
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Falconer Model for effects of QTL 

Genotype T A2A2 A1A2 A1A1 

Genotypic value G7 µ-a µµ+d µ+a 
µ is NOT the population mean - it is the "mid-homozygote" value. 

- it is often standardized to zero (by subtraction) 

Under HWE: T Frequency, Genotypic 
f( 7) value,Gr f(T) x Gr 

A1A1 /i a /ia 

A1A2 2pq d 2pqd 

A2A2 cf -a -cfa 

>opulation mean = E(Gri = M = ,ia + 2pqd +-c/-a 

= a(p-q) + 2pqd 3 

Example 
The pygmy gene in mice 

Allele frequency: Pr(+)= p = 0.7 q:0.3 

Genotype: ++ + pg pg pg 

Average weight (gr): 14 12 6 ➔ µ = 1.4':!: 1 0 
2 

Genotypic value Gr a =4 d:2 -a= -4 

Expected freq. 2 
p = 0.49 2pq = 0.42 

2 
q = 0.09 

under HWE: 

Mean Gr= E(Gr) = M= 0.49*4 + 0.42'2 + 0.09'(-4) = 2.44 

=a(p-q) + 2pqd = 4(0.7-0.3) + 2'0.7'0.3*2 = 2.44 

Expected population mean= 0.49'14 + 0.42*12 + 0.09*6 = 12.44 = µ+ E(Gr) 

Most QTL have much smaller effects than the mouse pygmy gene 
and cannot be observed directly 4 
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How can we find these QTL? 

Since we cannot observe the QTL directly, 
we want to use (or create) an association 
between the QTL and something we CAN 
observe: 

A genetic marker ... 

-G 
2. Principles of the use of LD 

to detect QTL using markers 

Molecular Genetics 
"In Search of the Holy Grail" 

Major genes 
Quantitative 
Trait 
Loci (QTL) 

5 

= position (locus) on 
genome associated 
with genetic 
differences for a 
quantitative trait 6 
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Most QTL cannot be observed at DNA level 

Two types of observable molecular 
genetic loci 

• Functional mutations - known genes fTlq 

• Most beneficial and easy to use rrJ 
• Difficult to find 

• Anonymous markers linked to QTL [E:] I I 

• Easier to find • • 
• More restrictive and difficult to use 

Use of markers for QTL detection and M Q 

MAS relies on association of markers I I 
I I 

with phenotype m q 

QTL detection 

Marker Mean 
Genot~~e Phenot~~e 

MM 20 I 
Allele Mis 

Mm 18 associated with 
favorable QTL 

mm 14 allele 

MAS 
Select MM or individuals that inherited allele M 

Requires Linkage Disequilibrium between 
marker and QTL 8 
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Illustration that marker genotype means don't differ 
if marker and QTL are in Linkage Equilibrium 

Allele frequencies:P(M)=p,. P(m)=qM P(Q)=P P{q)=q D=0 
uenoryp1c Freauenc'il 
_ value 

M Q M Q l!I Q o--
C: 

"' µ+a " Q I PM2P2 I 

~ ~ 

Q I qM'P' I 
0 M m QI 2PMqMp2 I m -0 
ai 
~ M Q M Q l!I 9 "' E µ+d oi 

q I PM'pq I 

~ ~-
"- M m q I 2pMqMpq I m q I qM'pq I E' 
C: 

" M ~ M ~ m ~ _c 
"- µ+d I I I 
C: I I ~ 

0 M QI PM'pq I QI 2pMqMpq I Q I qM'pq I 13 m m 
" "' " M ~ M ~ m ~ "' "' I I I 

_c µ-a I I 
__J 

M q I PM'q' I q I 2pMqMq' I q I qM'q' I f- m m a 
Average µ+a(p-q)+2pqd µ+a(p-q)+2pqd µ+a(p-q)+2pqd 9 

Illustration that marker genotype means don't differ 
if marker and QTL are in Linkage .!;_quilibrium 

Allele frequencies: P(M)=PM P(m)=qM P(Q):0.7 P(q)=0.3 D=0 

Genotypic 
value 

Example 

M QFrequency M Q m Q 
10 

M QI PM'(.49) I m al 2pMqM(.49) m 01 qM'(.49) I 

8 M Q M Q m Q 

-M q I PM'(.21) I m q I 2pMqM(.21) m q I qM'(.21) I 

8 M 9 M 9 m 9 I I I 
I I ~ 

M QI PM'(.21) I m Ol 2pMqM(.21) m 01 qM'(.21) I 

5 M 9 M 9 m 9 I I I 

M q I PM'(.09) I m q I 2pMqM(.09) m q I qM'(.09) I 

Average ,49•10+.21 ·a+.21 •s+.09*5=8. 71 .49•1 o+.21 ·a+.21 ·a+.os•s=B. 71 .49•1 o+.21 •a+.21 •a+.os•s,,,s. 7 
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Detection of QTL based on markers requires 
Linkage Disequilibrium between marker and QTL 

Relative frequency of Q must differ between marker genotype 

Example (arbitrary) 

Allele frequencies: P(M) = PM =0.4 
P(Q) = p =0.7 

Assumed 
Haplotype frequencies 

M Q 0.38 = PMP + D 

M q 0.02 = pMq- D 

P(m) = qM =0.6 
P(q) = q = 0.3 

m Q 0.32 = qMp- D Disequilibrium = D 

m 
= P(MQ)- PMP 

I ~ 0.28 = qMq + D = 0.38-(0.4)(0.7) = +0.10 

Example D=+0.10 
Genotypic Random mating of parents 

value 
M Q Frequency M Q m Q 

10 . 
I I 

M Q (.38)(.38) m Q 2(.38)(.32) m Q (.32)(.32 
=.1444 =.2432 =.1024 

8 M Q M Q m Q -. 
M q (.38)(.02) m q 2(.38)(.28) m q (.32)(.28) 

=.0076 
M 

=.2128 =.0896 

8 M ~ ~ m ~ I I I 
I I 

M Q (.02)(.38) m Q 2(.02)(.32) m Q (.28)(.32) 
=.0076 =.0128 =.0896 

5 M ~ M ~ m ~ I I I 
I I 

M q (.02)(.02) m q 2(.02)(.28) m q (.28)(.28) 
=.0004 =.0112 =.0784 

Average 9.80 8.94 7.92 

I 
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3. Overview of Strategies for QTL Detection 
Depend on the type of LD between markers and QTL 
that You Want to explo .lt trategles differ In the# of rounds of 

recombination that occurred since 
creation of LD and, therefore, In how 
close a marker needs to be to be In 

lliclent LD with a TL • LD you create by a cross 
• F2 cross .. 
• Backcross " ,, 
• Advanced lntercross Line - AIL ,, 
• Recombinant Inbred Line - RIL " 

• LD that exists within families 
• Within half-sib families 

c:.001 

• In extended pedigree ec' 
Laaa+""'-aaaaa;~=---...-i 

• LD that is already present in an outbred population 
• LD created in past by drift, mutation, selection, migration 

Type of LD used affects marker density required, type of 
anal sis needed and how results are to be inter reted 

Scope of QTL Detection Strategy 

► Targeted - e.g. candidate gene approach 
► Look for QTL in targeted region if the genome 

► Genome-wide - genome scan approach 
► Place markers across the genome 

► Look for associations of markers with trait phenotype 
across the genome 

► Identify QTL across the genome 

M, M2 M3 Q M4 Ms M6 

m, m2 m3 q m4 ffl5 m6 
1 
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··.: ~~ Overview of Strategies for QTL mapping 

.. ~ [ Outbred population [ •• Line/breed cross :; N /Linkage analysi~ 1.inkage analysis / LD mapping' 

:: \~ ~- LD markers LE markers LD markers 

HS/FS Extende1 Candidate High .. . .. , ••• , F / BC AIL 
', , 2 • RIL families pedigree genes densit\ 

LD used Population wide Within family Population wide 

Recomb. 

LD extent 

Marker ma~ 

Scope 

Map resol. 
' , " , ' 

I 

4. QTL detection in Line Crosses 
Line crossing creates extensive 

Linkage Disequilibrium 

M Q M Q m q 
T ~ m q 

M Q 
M Q X M Q m q m q 

M Q 
M Q q m ~ I 

m q 

M Q M Q m ~ I 

r:1 ~ M Q M Q 

Q 

m q 
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etect1on 1n 
M Q m q 

1nes 

Parental lines-ti---+--- X -----11---=r=r: m q M 

m q 

m q 

Proge 

Q 
c = recombination rate 

M•--e-Q 

q 
reduced 

Back M Q µ+d m q µ-a Non-recombinants 
cros 

I I 

M q µ-a 
I 

m q I ,,, C 

I I 
m q I •1,(1-c) I 
m 

I 
m 

Q µ+d 

q I ,,, C I 

Recombinants 

Contrast Y Mm" Y mm 

Mean phenotype by marker genotype 
= (1-2c)(a+d) 

Y = µ - ca+ (1-c)d Y = µ - (1-c) a+ c d 

Line crossing creates 
extensive LD 

I Contrast YMm.ymm = (1-2c)(a+d) 

,,' 

BC has only 1 round 
of recombination 

➔ marker doesn't need to be 
close to the QTL to show 
an effect on phenotype 

C = 0.2 ➔ 1-2c = 0.6 

➔ marker with 0.2 rec.rate with QTL still shows 60% of QTL effect 
General recommendation is a marker every 20 cM 

Lis within 1 ker 
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F2 Cross between Inbred Lines •--► 
M ca m q 

F2 l.i b X 

M Q Q µ+a Dm q 
µ+a m 

- - -- - .. 

ffi
F:ffia I I -M QI •1,(1-c)(1-c) I m Q[ 1/4 CC m q 
~ 

M q µ+d m q µ+d -
~ 

-
I I 
M QI •1, c (1-c) I m QI '1,(1-c) c 

M Q µ+d m Q µ+d 
- . . 
I I ~ q I •1, c (1-c) M q I •1,(1-c)c I m 

M q µ-a m q µ-a - Contrast Y MM • Y mm - -
I I 
M qi 1

/, CC I m q f '1,(1-c)(1-c) =2(1-2c)a 
Expected mean of marker genotypes 

Y MM=µ +{1-cfa+2c{1-c)d -c2a Y-m= µ +c2a+2c{1-c)d -(1-cfa I 

F2 Cross between Inbred Lines I M Q M u 
I X m n 

M Q µ+a M Q µ+a m Q µ+a m ~ µ+a - - -. . . 
I I I I I I I I 
M a ,,.(1-c){1-c) 1 m al ,,,{1-<:)c I M QI 'f,c(l-c) m n 'f,cc 

M q µ+d M q µ+d m q µ+d m q µ+d . 

- - - -I I I I 
I 

I I I I 
M (1 'l,c(1-c) m QI 11, cc M al ,,.{1-c)(1-c) I m QI 'l,(1-c)c 

M Q µ+d M Q µ+d m Q µ+d m Q µ+d 
- - -- - - -

I I 
I 

I I I !.- I I 
M qi 'l,(1-c)c m q I 'f,{H:)(1-c) I M •t,cc m ql 'l,c(1-c) 

T 

M 9 µ-a M q µ-a m q µ-a m 9 µ-a 
-

~ T - -
I I I 

~I 
11,c{H:) I I I I I 

M qi 'l,cc m M q I 11,(1-c)c m q 1 •,,(1-c1(,-c) I 

Mir µ+(1-c}'a+2c(1-c)d -c'a (!Mm=µ +c'd +(1-c!'d) Ymm= µ+c'a+2c(1-c)d-(1-c}'a 

a(1-2c)=(Y MM°y mmJ/2 d(1-2c)2=YMm" 1/iYM~YmmJ 2 
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M~--e-Q Summary . 
. -
m q Ex~ectation if c = 0.5 

Backcross: (1-2c)(a+d)= YMm"Ymm =0 

F2 cross: (1-2c)a =(YMM"Ymm)/2 ::::0 

(1-2c)2 d = YMm" 1/JYMM+Ymm) =0 

Estimates confound QTL position and effect 

E.g. if (YMM" Ymm) /2 = 10 kg (F2 cross) , 

• QTL could be near M with a= 10 (if c=0) 

• QTL could be distant (c=0.25) with a= 20 Marker-associated 

• or any other possibility effect= 10 

• QTL can be on either side of the marker 
2 

But, if we test multiple markers 

and find the following marker-associated effects: 

M1 M2 M3 M4 Ms 
- - . - . . 

(YMM.ymm)/2 = (1-2c)a = 5 10 10 5 2.5 

there is evidence that the QTL is between M2 and M3 

(although we cannot exclude presence of multiple QTL) 

r 
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5. QTL Interval Mapping in Line Crosses 

Use of flanking markers 
To estimate QTL position and effect separately 

Backcross 
m q n 

-----ti- X 
m q n 
+-- -- -- - --- - --- -► 

m q n 

0 = assumed known 

Contrast . YNn-Ynn = (1-2c:J(a+d) ➔ 3 equations 
3 unknowns c1, c2 , (a+d) 

No interference ➔ e = c1 + c2 -2c1c2 
2 

Backcross 
m q n 

Interval Mapping 
~-+---1-x 

m q 
To estimate QTL position and effec 

separately 
+-------- -------> 

0 F1 gametes and progeny 

Frequency 

'1,(1-0) { 

Frenu0 n~ .. value 
M Q N 

'I,( 1-c1 )( 1-c2) µ+d 

M q N µ-a 'I, c, c, 

•1,0 { 

IVI IJ 11 •1,(1-c1) c2 µ+d - - -

~ ~ n 
(1-c2) µ -a - 1/2 C1 

'1,0 { 

r_n 9 !'l 'I, c, ( 1-c,) µ+d -
r_n ~ N 

'1,(1-c1) c2 µ-a -

m Q n µ+d 'I, c, c, 

m q n 
'I, (1-c1)(1-c2) µ •8 

'1,(1-0) { 

Pr(Olmarker data) = X0 
nTL nosltlon 

(1-c1)(1-c2)/(1-0) 

(1-c1) c, /0 

c, (1-c,)/0 

c, c, /(1-0) 

C: 

:€ 
CD 
II 

~n 
+ 
Jl 
,(, 
Jl 
Jl 

2 
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E(YilMarker Genotype) 
• Two possible QTL genotypes: Qq or qq 

- If Qq, E(Y,IOq) = µ + d 
- If qq, E(Y,lqq) = µ - a 

• Put those two together with P(Qq I gmarke,) = XQ1 

and P(qq I gmarker) = 1 - XQI 

• E(Y1 I M) = (µ + d)XQ1 + (µ - a)(1 - XQ1) 

= (µ - a) + (a + d)XQ1 

= m + ba Xai 

➔ Regression model: Y1 = m + b0 XOi + e 
2' 

Regression Interval Mapping H 
I 

d K (
1 

, 

I 
a ey an nott 992 

Estimate QTL position and effect separately Heredity 69: 315 

Backcross regression model c, c, 
M---·+a•····+N 

Yi = m + ba Xai + ei - -- - -
- -. -

E(b 0) = a+d 
m q n 
+ - --- - - - - - -- -- --► 

8 

-

" 
Fit Model for various 
positions of QTL " 
(e.g. in steps of 1 cM) ' 

! 
.. J ' 

Position with lowest RSS 
. 

' or highest F-test gives 
best estimate of c1 and ' 
b0 (=a+d) . 0 

0 " " " " so 
Position {oM) 
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M a N m q n -
F2 Cross between 

c, C2 

l.i b 
• X - M---·+a•····+N 
~Dm q n 

Inbred Lines . . . 
M a N F1 M Q N -+ - -- -- - - --- -- - --► 

- e 
: X -

m q n m q n 

J I 

9markers Pr(QQlsmarkers> Pr(Qqlsmarkers> Pr(qqlsmarkers> 

MM NN 

MM Nn 

MM nn 

F2 
Mm NN 

Mm Nn f(c1,C2,0) f(c 1,c2,0) f(c 1,c2,0) 

Mm nn 

mm NN 

mm Nn 

mm nn 0 

F2 Cross between Inbred Lines I Haley and Knott (1992) 
Heredity 69: 315 

Additive coef. Dom. Coef. 

Xadd Xdom 

Markers Pr(QQ) Pr(Qq) Pr(qq) Pr(QQ)-Pr(qq) Pr(Qq) 

MM NN 

MM Nn 
MM nn 
Mm NN l(c,,C2,8) l(c 1,c2,9) l(c1,c2,9) l(c,,C2,8) l(c1,c2,9) 

Mm Nn 
Mm nn 
mm NN 
mm Nn 
mm nn 

Yi = µ + baXadd i + bdXdom i + ei 
' ' 

at QTL position 

E(b.) = a E(bd) = d 

Fitted at each 1 cM position on chromosome 
Position with hiahest F-test ➔ "TL 1if sinnificantl 2 
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M28 
\ I ,0 l "t' !G ,' '}/';'.o(1 f,F,'n;iM7.f,t~ I)/; ;'(:!'"~." OCI" J"'""ncii"?E "\e!'.,½~s' £:1, ;,. '~"CT.c,, 

Only change numbers in red: 
Position ol 4 marlNs (c~ll5 C27 th1ou9h F27) 

To map theo QTL, change lhe poslul,1ted QTL position in cell CM27 ilnd enluate lbt F-trst (CA27)s~Hf1t.,.,,1,.i ... 

u,,., " " 

- 1'"'· _..__._ _ _._ _ _.___,__--; 
~ lnteival mapping regression 

--- j J: lritHcepl • b," Add cotll • b, "(Dom_coelf) • e 

Lin,2 22 22 22 22 Postu- d .?/2:f,'./ '""'"'' 
lated QTL _ u,t .. ,,.,. 0.927 'fo1.2B1i.> 1.11> 

Marker ositions inc s .•. tr~ ..... ,,. 1.4~ 0111 Ul4 

Marhr 3 

PuitiH O 15 35 50 
•'· o.m 

F-value = 11.00 I "' 
)71,st l)WU 

' 

Prob(QTL guot,pt) 
9iru -~•hr5,pHiliH .. •• 

u~ ,.m 
t.m UH ,.~ Mfl un 
UH t.141 -•.Ht 

,.m ,.m ..... 
UII UH un 
,.m t.114 ..... 
U!I UIJ •1.115 

Uli UIJ .,.,n 

6. QTL detection in line crosses 

Additional Topics 
(see also Lynch and Walsh ch 15) 

a. Significance test for presence of QTL 

b. Accuracy of position estimates 

• Advanced intercross lines 

c. Breed Crosses (vs inbred line crosses) 

31 
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6a. How to decide if you've detected a QTL? 

Test statistic (e.g. For LR) > threshold T 
Set T to control the Type I error rate (False Positives) 

• Comparison-wise test at 5% : set threshold T such that: 

• Prob(test > T I no QTL) < .05 allow 5% FP tests 

Possible outcomes for test for QTL at a given position: 

Result of sianificance test 
True state Accept H 0 

Reject H 0 

Ho is true (no QTL) True negative False positive 
Type I error 

Ho is false (QTL) False negative True positive 
Type II error 3 

Expected result for tests at 100 positions on chromosome 
with NO QTL at 5% comparison-wise test level: 

Result of significance test 
True state Accept H0 Reject H 0 

Ho is true (no QTL) 95 5 
Type I error 

H 0 is false caTL) 0 0 
Type II error 

+ Significance testing complicated by: 

• Large# tests performed (many markers, QTL positions) 
• At a= 0.05, 5% of tests significant even if no QTL exist 

• Tests on the same chromosome are dependent 

• Bonferroni adjustment (a*= a/(# tests)) is too stringent 3' 

16 



trateg1es to contro o a se pos1t1ves o 
(Lander & Kruglyak, 1995, Nature Genetics 11: 241-247) 

• Chromosome-wise test - control % FP at chrom. level 

• Account for multiple (correlated) tests on chrom. 

• # FP/chromosome 2: 1 on 5% of chromosomes 

• Experiment-wise test - control %FP within experiment 

• Account for all tests conducted in experiment 

• # FP/experiment 2: 1 on 5% of experiments 

• Genome-wise test - control % FP at genome level 
• Account for all tests conducted on the genome 
• # FP/genome 2: 1 on 5% of genomes tested 

• Significance Levels (Lander & Kruglyak, 1995) 

• Significant Linkage at p < .05 : Prob(,:: 1 FP) < .05 

• Suggestive Linkage : at least 1 false positive test 

Computing significance thresholds 

• Adjust Table test statistic values by equation of Lander & 

Kruglyak (199s) 

• Assumes high-density marker map 

• Develop empirical threshold based on permutation test 
(Churchil and Doerge, 1994, Genetics 138:963) 

• Simulate data under the Null Hypothesis (=no QTL) 
• Compute test statistic (F-test I LR) 

• Replicate many times 
• Determine 95 % level of tests statistic (for 5% test) 

3 
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Significance thresholds by Permutation test (Ch,,ohlll&Doe,go,1994Goootlo, 
138:963) 

• Simulate data under the Null Hypothesis (=no QTL) 
• Compute test statistic (F-test / LR) 
• Replicate many limes 
• Determine 95 % level of tests statistic (for 5% test) 

Anlmal 

i;, ')·'./,Qf'!t'·)N, 17{MrnNtJL:f;; '/1},~ta:o 
10 mmNn 10.7 

Randomly permuted data 
Pheno­

type 
•·11r 

,,. '_•,q "'"""'· , " .,_,, ,,;;;,,,,· •e,~,f,', • 

10 mmnn 10.7 

Test statistic under Null Hypothesis 

95% , 5% ~ R@cate 
"v---.J Distribution of test statistic 3 

Control of False Discovery Rate (FDR) 

Result of significance test 

True state Accept H0 Reject H0 

H0 is true u V 
Type I error 

H0 is false T s 
Type II error 

FDR - Control the expected proportion of 
significant tests that are false positives 

- Control E(V /(V+S)) 
3 
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Frequency Distribution of p-values across 
many tests 

400 
Low FDR ■ HO False 

tJ:li HO True 

300 

200 

100 

0 
flt. 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

P-value 

See notes "False discovery rate.doc" for further details 

6. QTL detection in line crosses 

Additional Topics 
a. Significance test for presence of QTL 

b. Accuracy of position estimates 
• Advanced intercross lines 

c. Breed Crosses (vs inbred line crosses) 

3 

3 
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Replicate Genome Scan results for F2 
N=500 6 markers Trait with SD=2 

QTL at 23 cM a=1 d=0.5 --> 14% of variance 

l•v _ _...___J 

:Replicate Position a d 

1 15 0.791 0.19 

2 24 1.56 0.19 

3 23 1.03 0.3 

4 27 0.771 0.24 

5 20 1.201 0.93 

6 28 1.35 0.94 

7 22 0.96 0.14 

8 13 0.991 0.64 

9 17 0.94 0.52 
10 29 0.924 1.44 

Average 21.8 1.052 0.55 
St.dev. 5.231 0.236 0.41 

TRUE 23 1 0.5 4 
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F2 cross desi n 
Line 1 Line 2 

FO X [I 
F1 [OOlx IBil] 

F
2 tmIDJrnE----oo{m-rnJ---rmEnJ-Im 

MM Mm mm 

• Large chunks 
• High LD 
• Only 1 round of recombination 
-+ low accuracy of QTL position 

4 

Resolving Power of QTL Mapping 
(Darvasi & Soller 1997. Behavior Genetics) 

25 m--------------~ 

e 20 
0 
~ . 
0 

E: 15 
J 
~ 

" 
'.: 10 
0 

"' ~ 

~ 5 

Approxi111ate 95% confidence interval 
for QTL location(cf,I) for a=.5a, 

-aooo/ktla' 
k=1 for BC k=2 lor F2 

' 
N=pop11latlo11 :srze 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 

Mapping population size {actua~ 

Increase resolution with advanced intercross lines 
• Recombination breaks genome up in smaller pieces 

• reduces LD except at short distance (Darvasl & Soller 1995 Genetic 
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Strategies to increase accuracy of 

estimates of QTL position in line crosses 

F2/BC: 

• Increasing marker density limited effect 

• Increase population size e' c;.001 

" 
" 
" -
" -
" Advanced intercross lines 

-+Higher accuracy of QTL position :'. 
J,J;:....:::;,.........;::::;c,=,.~ 

• Requires more markers 
to maintain power to detect QTL (lower LD) 

Recent LD extends over large distances 

r2 1 

0.9 

0.8 

Generations of recombination 

0.5 

0.4 

0.3 

0.2 

0.1 

0 jj\~~~"'r-,-~:;:;:;:::;::;::;:::;=:;::=;,=;=;.,,,,...,..~ 

4 

0 5 10 15 20 25 30 
44 
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··.: ~ Overview of Strategies for QTL mapping 
:: [ Line/Breed cross I Outbred populationJ 

:: ~ "Linkage analysis 1.inkage analysis' / LD mapping ' 
:: \~., = LD markers LE markers LE marke~s 

·: =• F / BC AIL HS(fS E?(t. Cand. High 
• • 2 families pedigree genes densih 

LD used Population wide 

Recomb. 1 rnd >1 rnd 

LD extent Long Smaller 

Marker map Sparse Denser 

Coverage Genome wide 

Map resol. Poor Better 
" J ' '-

6. QTL detection in line crosses 

Additional Topics 
a. Significance test for presence of QTL 

b. Accuracy of position estimates 

• Advanced intercross lines 

c. Breed Crosses (vs inbred line crosses) 

J 

4' 

4 
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9 Yorkshire dams 
X VY IM2N2I 

lM 
x BY 26dams 

I M2 N2I \ 

I M1 N1 I 

~ 
F2 525 BB BY YB VY 

I M1 N1 I I M1 N1 I I M2 N2 I 

I M1 N1 I ~ I M2 N2 I 
..£1..- ..£1..- ..£1..- ..£1..-

Breed origin P88 P8v Py8 Pyy 
probabilities derived for a given position 4 
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F2 Cross between breeds I 
Haley and Knott (1992) 

Heredity 69: 315 

I 
Identical to cross of inbreds I Additive coef. Dom. Coef. 

but follow B vs. Y alleles Xadd Xdom 
Markers Pr(BB) Pr(BY) Pr(YY) Pr(BB)-Pr(YY) Pr(BY) 

MM 
MM 
MM 
Mm 
Mm 
Mm 
mm 
mm 
mm 

I 

0.. 
0) 

Q 
' 

NN 
Nn 
nn 
NN l(c,,c2,0) l(c1,c2,0) l(c1,c2,8) l(c1,c2,0) l(c1,c2,0) 

Nn 
nn 
NN 
Nn 
nn 

Y; = µ + baXadd i + bdXdom i + e; at QTL position , , 

E(b.) = a E(bd) = d 

Fitted at each 1 cM position on chromosome 
Position with hinhest F-test ➔ nTL lif sinnificant' 

SSC1 

4.5 - Line-Cross Breed cross 

4.0 
a:-0.13 
d = +0.19 

3.5 1% Chr.w 

3.0 

2.5 

2.0 

1.5 

1.0 

Detect QTL that differ in 
fre uenc between breeds 

4 

13 

------
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Breed cross interval mapping 
F0 2J3ttl~shir,7 sire~ 9 Yorkshire dams 

III BB x YYlii\1··· 

,\\•R .s ·" l >< l -· --
F, 8sires~26dams 

F, 525 BB BY YB YY 

Compares average Berk allele to average York allele 

+ QTL only detected if breeds differ in frequenc) 

Berk X York 
Frequency of Q Ps Pv QTL effect 

Line cross additive effect = (Ps·Pv)a 
Line cross dominance effect= (p8-py)d 

Summary of QTL mapping 
in Line/ Breed Crosses 

QQ +a 
Qq d 
qq -a 

• QTL detection requires LD between markers and QTL 

• Cross ➔ extensive LD 
➔ genome scan with markers @ 20 cM 

• Regression interval mapping 
➔ estimate QTL position, effect 

• Estimates have limited accuracy 
➔ 10 - 30 cM confidence intervals 

• Fine mapping not limited by# markers but requires 
• larger populations 
• crosses that accumulate recombinations 

• Recombinant Inbred Lines 
• Advanced lntercross Lines 

• Only detects QTL that differ between breeds 5 
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Breed 
cross 
QTL 
scan 

Fo 2.~~i:!)jre~res 9Yorl<shiredams QTL that differ 
llli>(YiW + in frequency 

F, 8~res ty x BY 26dams between breeds 

~ 
F, 525 BB BY YB VY 

+ Wide QTL region 
(20-50 cM) 

Within-breed MAS requires QTL 
that segregate within breeds 

Follow-up within-breed research in QTL region: 
➔ Linkage mapping ➔ see next 

Evans et al. (2003 Genetlcs:621) - confirmed QTL In 10 commercial lines 

➔ LD mapping ➔ day3 

5 

··.: ~ Overview of Strategies for QTL mapping 
•• 
,., I Line/Breed cross I Outbred population 

:·.: \\~/Linkage analysis' 11....inkage analysis' ' LD mapping 
:: i\ ~ LD markers LE markers LE marke~s 

" L~ F / BC AIL HS/FS Ext. Cand. High 
•. , 2 families pedigree genes densit\ 

LD used Population wide 

Recomb. 1 rnd >1 rnd 

LD extent Long Smaller 

Marker map Sparse Denser 

Coverage Genome wide 

Map resol. 
' 

Poor Better , ' ,, " ,, 
5 
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7. QTL detection in outbred 
populations - linkage analysis 

e.g. livestock, wildlife, human 

Reading 

Dekkers and van der Werf (2007) Chapter 10 at 
http://www.fao.org/docrep/01 0/a1120e/a1120e00.htm 

LD always exists within families 
LD behavior similar to BC/F2 ··,: 

Sire r 

n M•----Q 

Progeny 

M Q M 
m 

M q M Q m q m q m 

M Q M Q M Q m q m Q 
M q m 

M m Q 

M Q m q 

:,001 

Q 

~ Marker - QTL LD among progeny at large distance 

5 

5 
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------ ------

QTL mapping in half-sib family design 

Within-family LD not consistent across families 

Sire 1 Sire 2 Sire 3 Sire4 

[E]Q 
I I I I 
I I I I 

m Q 

+ Analysis must allow for 
different marker-QTL linkage phases within each family 

QTL effects must be fitted w/in family: 

Vii = µi + aa,i P a,ii + eii 

P0 ,;1 = Prob(OM1 I marker genotype, QTL position} 
aa,1 = QTL allele substitution effect for sire i 

See e.g. Knott et al. Theor.Appl.Genet. 1996. 93: 71-80 5 

Power of alternative QTL mapping designs 

For given number of animals genotyped 

Typical size used 

animals 

F2 > BC > Fullsib > Halfsib 

> 500 animals >1000 

Outbred designs: Fraction p2+q2 of parents are homozygous for QTL 
= non-informative 

5 
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Daughter design for QTL detection and MA 

Mm 

m 
m 

Grand daughter design 

Mm 

m 
m 

m 
m 

m 
m 

5 
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Grand-daughter Design (Weller et al. 1990) 

Grand 
Sire 

M•--ca 

. -
m q 

? ? 
X 

? ? 

SonsD- Genotyped for marker 

M Q µ+'i,a M q µ .,1,a m q µ .,1,a m Q µ+11,a 

? ? I •1,(l-c) I ? 
I 
? 

I -1--1-1---

? I •,,o-c) I ? ? ~ 

Mean he ype of progen r each son 
's EBV or deregress 

Average µ- 1!4 (1-2c)a 

6 

,, ' ------i Overview of Strategies for QTL mapping •• .. 
,., ~ Line/Breed cross Outbred population 
•• 

~ 
l'Unkage analysis\ •. , !linkage analysis' r LD mapping ' 

•• 
.. , 

~ 
LO markers LE markers LD markers 

., 
' .. F

2
/ BC AIL .. , HS/FS Ext. Cand. High . families pedigree genes densit, . • 

LD used Population wide Within family 

Recomb. 1 rnd >1 rnd 1 rnd >1 rnd 

LD extent Long Smaller Long Smaller 

Marker map Sparse Denser Sparse Denser 

Coverage Genome wide Genome wide 

Map resol. Poor Better Poor Better 
~ ,, ~ , ' 

Linkaqe Analysis in extended pediqrees by random OTL effects - see later 6 
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8. Summary and limitations of QTL mapping 
in outbred populations using sparse markers 

• Within family ➔ extensive LD 
➔ genome scan with markers @ 20 cM 

• Regression interval mapping 
➔ estimate QTL position, effect 

• Estimates of marker/QTL effects differ by family 
➔ complicates MAS 

• Estimates have limited accuracy 
➔ 10 - 30 cM confidence intervals 

• Fine mapping not limited by# markers but requires 
• larger populations 
• Populations that accumulate recombinations 

• Linkage analysis in deep pedigrees 
• Historical recombination ➔ LD mapping 6 

Software for QTL mapping 
by linkage analysis 

Many programs available (with tutorials) 

See: http://linkage.rockefeller.edu/soft/list.html 

• For inbred line crosses: Mapmaker QTL 
http://www.broad.mit.edu/genome soflware/other/qtl.html 

http://darwin.eeb.uconn.edu/notes/gtl-mapmaker.pdf 

• For breed crosses and outbred populations: QTL Express 
http://qtl.cap.ed.ac.uk/ 

6 
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Day2 QTL Detection 
Objective 

Present principles for detection of genes affecting 
quantitative traits (QTL) using genetic markers 

in 'simple' experimental designs 
Concepts covered relevant to issues in 'genomic selection• 

1. Single locus quantitative genetic model 
2. Principle of use of LD to detect QTL using markers 
3. Overview of strategies for QTL detection 
4. QTL detection using line crosses 
5. QTL interval mapping in line crosses 
6. QTL detection in line crosses - additional topics 

a. Significance testing 

b. Accuracy of position estimates 

c. Breed crosses (vs inbred line crosses) 

7. QTL detection in outbred populations - linkage analysis 
8. Summary and limitations ➔ need for LD mapping 
9. Software for QTL mapping 65 
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