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Introduction, Background, and Mathematical Foundation of
Quantitative Genetics

Jack Dekkers' and Jean-Luc J annink®

! Dept. Animal Science, lowa State University
* Currently at Cornell University, formerly Dept. Agronomy, lowa State University

Quantitative genetics is the study of continuous traits (such as height or weight) and its underiying
mechanisms. It is based on extending the principles of Mendelian and populations genetics to
quantitative traits.

Mendelian inheritance:

1. Law of segregation: A trait is influenced by a pair of alleles but each individual only passes a

~ single, random allele on to its progeny.

2. Law of independent assortment: Alleles of different factors combine independently in the gamete.

Population Genetics is the study of the allele frequency distribution and change under the influence
of the four evolutionary forces: natural selection, genetic drift, mutation, and migration.

Falconer and Mackay:

“Quantitative genetics theory consists of the deduction of the consequences of Mendelian inheritance
when extended to the properties of populations and to the simultaneous segregation of genes at many
loci.”

For the purposes of this class: Quantitative genetics = A set of concepts based on the theory of
inheritance that help us understand and dissect the genetic basis of quantitative traits and predict what
the consequences of different breeding choices will be and therefore allow us to make decisions that
lead to the most desirable outcomes.

Quantitative traits
Quantitative genetics covers all traits that are determined by many genes.

« Continuous traits are quantitative traits with a continuous phenotypic range. They are usually
polygenic, and may also have a significant environmental influence.

» Traits whose phenotypes are expressed in whole numbers, such as number of offspring, or number
of bristles on a fruit fly. These traits can be either treated as approximately continuous traits or as
threshold traits.

« Some qualitative traits can be treated as if they have an underlying quantitative basis, expressed as
a threshold trait (or multiple thresholds). E.g. diseases that are controlled by multiple traits but for
which phenotype is observed as healthy/diseased.

See also Lynch and Walsh Chapter 1 and “Philosophical and Historical Overview.pdf”
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Quantitative Genetics Theory

-Theory underlying the inheritance of quantitative traits

-Falconer and McKay: “the deduction of the consequences of Mendelian inheritance when extended to
the properties of populations and to the simultaneous segregation of genes at many loci.”

-Theory of population changes in quantitative trait as a result of selection, genetic drift (inbreeding),
mutation, migration (Crossing)

- A set of concepts based on the theory of inheritance that help us understand and dissect the genetic
basis of quantitative traits and predict what the consequences of different breeding choices will be and
therefore allow us to make decisions that lead to the most desirable outcomes




““...genetics is meant to explain two apparently antithetical observations — that organisms resemble
their parents and differ from their parents. That is, genetics deals with both the problem of heredity
and the problem of variation.” Lewontin, 1974.

Francis Galton (1822-1911): regression toward mediocracy — progeny of parents with extreme
phenotypes tend to be closer to average.

The modern synthesis of Quantitative Genetics was founded by R.A. Fisher, Sewall Wright, and
J.B.S. Haldane, based on evolutionary concepts and population genetics, and aimed to predict the
response to selection given data on the phenotype and relationships of individuals.

Analysis of Quantitative trait loci, or QTL, is a more recent addition to the study of quantitative
genetics. A QTL is a region in the genome that affects the trait or traits of interest.

Some Basic Quantitative Genetic Concepts and Models

Quantitative genetics dwells primarily on developing theory or mathematical models that represent

our understanding of phenomena of interest, and uses that theory to make predictions about how those

phenomena will behave under specific circumstances. The model that exists to explain observations

of quantitative traits contains the following components:

« Loci that carry alleles that affect phenotype — so-called quantitative trait loci or QTL

+ Many such quantitative trait loci

«  Alleles at QTL that act in pairs (2 alleles per locus) but that are passed on to progeny individually

«  Which of the parent’s alleles are passed on to progeny occurs at random (i.e. a random one of the
pair of alleles that a parent has at a locus is passed on to a given progeny), which introduces
variability among progeny

+ Loci that affect phenotype sometimes show independent assortment (unlinked loci); sometimes
not (linked loci) '

« Environmental factors influence the trait

In order to develop the quantitative genetic theory and models and to deduce its consequences or
predictions it might make, quantitative geneticists have translated these concepts and their behavior -
into mathematical and statistical terms/models. The most basic model of quantitative genetics is that
the phenotypic value (P) of an individual is the combined effect of the individual’s genotypic value
(G) and the environmental deviation (E):

P=u+G+17r where g is the trait mean

G is the combined effect of all the genes that affect the trait.
E is the combined effect of all environmental effects that affect the phenotype of the individual.

The simplest model to describe inheritance of a quantitative trait (under a lot of assumptions that will
be covered later), is that the genotypic value of the offspring can be expressed in terms of the
genotypic values of its sire (s) and dam (d), based on the fact that half of the genes that the offspring

have come from each parent:
Go=Y2 G+ %2 G4 + RA; + RA4

Here the terms RA, and RAq4 are random assortment or Mendelian sampling terms, which reflect that
parents pass on a random half of their alleles (i.e. a random one of two alleles at each locus).

Developing these quantitative genetic models and deducing their consequences, e.g. the consequences
of natural or artificial selection on the trait and the population, then involves manipulating the
mathematical terms, that is doing algebra and even a little calculus sometimes (!). Quantitative
geneticists were really pioneers in this type of mathematical treatment of biological phenomena and as
a result the early growth of quantitative genetics was almost synonymous with the early growth of

3



statistics. Indeed, R.A. Fisher is hailed as a founder of quantitative genetics but also of analysis of
variance and randomization procedures in statistics. The early geneticists Galton and Pearson
originated the concepts of regression and correlation. Anyway, the upshot for us here is that we will
be deeply involved with the mathematical manipulation and statistical evaluation of our
representations of the basic quantitative genetic model. We will review some of the rules of
probability and statistics, such as variance, covariance, correlation and regression, and will give a hint
at how they may relate to the quantitative genetic model.

Mathematical Foundations for Quantitative Genetics

See also Lynch and Walsh Chapters 2 and 3

Random Variables

In principle, we are interested in the random and non-random processes that determine the value of
variables. If the variable of interest is which allele a heterozygous (Mm) father passed on to his
daughter for a given marker locus, the rule of random segregation indicates that this is a random
process. If the variable of interest is the height of the son of a tall woman, some portion of the
variable will be non-random (we expect a relatively tall son) and some portion will be random (we
don’t know exactly what the height will be). Either way, we can identify a random variable with a
symbol (say X ¥ to designate the paternally inherited marker allele, or Y to designate height). Common
notation is to use capitals for the name of a variable (e.g. X or ¥) and regular font to represent the
value (or class) of that variable. E.g. X=x indicates the event that variable X has value x.

Sample Space
The sample space is the set of possible values that a random variable can take. So, for example
X P e[M,m] (ie., the progeny inherits either allele M or allele m from its heterozygous Mm father),

and 1 < Y < 2.5 if height is measured in meters. Note that these two example random variables are
very different. Random variable X ¥ can take on just two states (one of the two alleles that the parent
has), it is a categorical variable, while Y can take on all values between 1 and 2.5, it is a continuous
variable. Nevertheless, many of the mathematical manipulations we will discuss below can be
applied equally to either type variable.

Probability (~ frequency)

We designate the probability of an event A as Pr(A). For example, if the event A is “the daughter
received marker allele M from her heterozygous Mm father” then Pr(A) = Pr(X ¥ = M). In this case
Pr(A) = V4. The probability function Pr() has certain rules assigned to it, just like, for example
multiplication has rules assigned to it. For example if event A is “any possible event in the sample
space of events” then Pr(A) = L. Thus, the probability that X ? = M or X¥ =m for a progeny of a
heterozygous Mm father is equal to Y2+%4=1. Intuitively, though, it is most useful to think of the Pr(A)
as the chance that event A will happen. If you look at many events (N events, with N very big) and
you count Ny, the number of times event A happens, then we can interpret Pr(A) as a frequency, i.e.
Pr(A) = Na/N. As examples related to the random variables we gave above, if the father is a
heterozygote, then Mendel's law of segregation say Pr(X ¥ = M) = Pr(X P =) = V4. For the height ¥
of the son of a tall woman, we can guess that Pr(1.5 < ¥ < 1.6) < Pr(1.8 < ¥ < 1.9), that is, the son is
less likely to be in a short ten centimeter bracket than a relatively tall ten centimeter bracket.



Probability Density (~ frequency distribution for continuous variables)

The second example leads to the question what is Pr(¥ = 1.8)? And the answer, oddly, is zero. That
is, given that ¥ can take on an infinite number of values in the range [1, 2.5], there is a probability of
zero that it will take on any specific value. Intuitively, though, we want to be able to express the idea
that the chance that the height will be some tall value is greater than the chance it will be some short
value. To do this we define the probability density Ay) = Pr(y < ¥ < y+e)/e as e comes increasingly
close to zero. This probability density will be useful to discuss random variables that vary
continuously (such as the value of a quantitative trait). Using the probability density function (or pdf)
and integration, we can calculate the probability that Y is contained in a certain bracket as

16
Pr(1.5<Y<16)= [f(y)dy.
15
The most prominent pdf that we will use is that of the normal distribution, i.e. the bell-shaped curve,

which is illustrated in Figure 1.
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Figure 1
Expected Value (~ mean or average)

The expected value of a random variable is a measure of its location in the sample Space,‘ and can be
thought of as a mean or an average. It takes slightly different forms depending on whether the variable
is categorical or continuous. Consider a categorical variable X with sample space x;, xz, ..., X The
expected value of X is essentially calculated as a weighted average of the values that X can take on,

k
with weights equal to the probability with which X takes on each value: E(X) = Zx,. Pr(X =x,).

i=1
Example 1: The number of florets per spikelet in oat (= variable X) is affected by a recessive allele
that inhibits development of tertiary kernels (this example is slightly fictitious but serves its purpose).
Note that the expected value of a categorical trait may not belong to any of the categories of the trait:
the expected value for the number of florets per spikelet is E(X) = 2.75 though any given spikelet
obviously has a whole number of florets.

Table 1 Example for computing expectations for a categorical variable

Probability Number of florets

Genotype  (frequency) per spikelet x; « Pr(X=x;) x; % Pr(X=x;)
T = Pr(X=x;) X=x;
t/t 0.25 3 0.75 2.25
T/t 0.50 3 1.50 4.50
T/T 0.25 2 0.50 1.00
Sum 1.00 - E(X)=275 E(XY) =175




Example 2. Now consider the continuous variable height discussed above. The sample space for ¥
given was 1 < ¥ < 2.5, and the pdf is f{y) = Pr(y < ¥ < y+e)/e as e comes increasingly close to zero. Its

25
expected value is E(Y) = _[ yf(y)dy. Here, instead of multiplying the value of a category by the
1

probability of that category as we did above, we multiply the value by its probability density and
integrate over the sample space of the continuous variable. Note that integration is the continuous
variable equivalent of summation for categorical variables and the pdf is the equivalent of the
probability of each value occurring.

Example 3. Consider again a categorical variable X with sample space xy, x2, ..., Xx. Now assume
that there is a function g(X), and we want the expected value of g(X). This expectation is again
computed as a weighted average, but now the average of g(X), rather than X itself. The formula for

the expectation of g(X) 1s: I;,[g(X )] = ig(xf)Pr(X =x,).

Here,I;? means that the expectation is taken over all possible values of variable X. E.g., referring back

to Example 1, the expectation of g(X) = X7 is equal to 7.75, as calculated in the last column in Table i.

Properties of Expectations

Assuming X and ¥ are random variables and g is a constant (e.g. a=5):

E(a)=a The expectation of a constant is that constant

E(aX) = aE(X) The expectation of the product of a random variable by a constant is the
product of the constant and the expectation of the random variable

B(X + ¥Y)=E(X) + E(Y) The expectation of a sum of two variables is the sum of their expectations.

Note that E(XY) = E(X)E(Y) ONLY IF X and Y are independent — sce later

Joint Probability (~ joint frequency)

The joint probability is the probability for given values of two or more random variables to occur
together. The joint probability that random varjable X = x and random variable ¥ = y is denoted
Pr(X =x, ¥ =y).

As an example, assume two genetic loci A and B. The genotypes of a set of individuals are obtained
for both loci, resulting in two random variables (G4 and Gg). One obtains a table of the joint
probability of carrying specific genotypes at each of the two loci:

Table 2 Example of joint probabilities

Genotype Genotype for locus B (Gg) Marginal
for locus A bb Bb BB Prob. for G,
(Ga)
aa 0.10 0.04 0.02 0.16
Aa 0.14 0.18 0.16 0.48
AA 0.06 0.10 0.20 0.36
Marg.Prob.Gg 0.30 0.32 0.38 1.00

The entries in the body of this table are the joint probabilities. So, for example the joint probability
that an individual has genotypes Aa and BB is: Pr(G, = Aa, G = BB) = 0.16.



Marginal probability (~ marginal frequency)

Marginal probability is used in Table 2 to show the probabilities of, for example, Gp = bb, as the sum

down a column of joint probabilities. That is,
Pr(Gg = bb) = Pr(Gg = bb, G4=aa) + Pr(Gg=bb, Ga=Aa) + Pr(Gg=Dbb, G4=AA)

= 0.1 + 0.14 + 0.6 =0.30
What works in the columns for Gy also works in the rows to get marginal probabilities for Ga.
In general if {E), Ey, ..., F,} is a mutually exclusive and exhaustive set of events (i.e. a set of non-

overlapping events that includes the complete parameter space for the variables involved), then
marginal probabilities for event [ can be calculated as the sum of joint probabilities of event I and

events I Pr{l) = Z Pr(E..I)

i=1
In Table 2, for example, events Ga=aa, G4=Aa, and G4=AA are mutually exclusive and exhaustive
events and marginal probabilities for Gz can be obtained by summing the joint probabilities in a
column of Table 2.

Conditional probability

Intuitively, the conditional probability is the probability of a certain event to occur when you already
know that another event is true. Alternately, it is the probability of obtaining a given value for one
variable (say, X=x), conditional on the fact that the value of another variable (say Y=y) has already
been observed. This conditional probability is denoted Pr(X=x | Y=y). First, in order to obtain a
given value for X (say X=x) while ¥ has another value (say Y=y), both conditions have to hold. So we
need the joint probability Pr(X=x, Y=y). Second, because we know that Y=y, the parameter space for
X is restricted to the subset of events where Y=y. All this to help you intuit the definition of
conditional probability:
Pr(X =x,Y =y)

Pr(Y = y)
In words, the probability of X=x given Y=y, is the joint probability of X=x and Y=y divided by the
marginal probability of ¥Y=y.
Referring back to Table 2, the probability of Aa cows having genotype BB is the probability of
G5=BB conditional on G,=Aa, which is:

Pr(X =x|Y =y)=

Pr(G, =BB,G, = Aa) 0.16
Pr(G, = Aa) 0.48
One way to interpret this conditional probability is as follows: assuming that we have a total of 100

individuals, then on average 48 (=0.48*100) will be Aa and of those, on average 16 (=0.16*100) will
be BB. Thus, the proportion of Aa cows that are BB = 16/48 = 0.333.

=0.333.

Pr(G, = BB|G, = Aa) =

Bayes’ Theorem

Sometimes, the conditional probability of X given Y is more difficult to derive than the conditional

probability of ¥ given X. We can then use conditional probabilities to convert one into the other, as

Pr(X =x,Y = y) Pr(X =x,Y =y)
Pr(Y = y) Pr(X = x)

Py =y | X =x0)Pr(X =x)

B Pr(Y = y)

Then, using Pr(Y = y| X =x)=

follows: Pr(X = xl Y=y)=

we can write this as: Pr(X = x| Y=y)

This is known as Bayes’ Theorem.



For example, suppose somebody tosses a coin three times and gets three heads. What is the
probability that this is a double-headed coin, instead of a fair coin?

Let X represent a variable that denotes the state of the coin, i.e. X = ‘double’ of X = fair’

Let Y represent the data, in our case ¥ = 3 heads in three tosses.

Thus, we are looking for the following conditional probability: Pr{X = double| Y=3)

Using Bayes’ theorem, we can also write this as:
Pr(Y =3| X = double)Pr(X = double)

Pr(Y =3)

Pr(X = double|Y =3)=

Considering each of the three probabilities:
Pr(Y=3| X=double) =1 because every toss will give heads for a double-headed coin
Pr(X = double) is known as the ‘prior’ probability of a random coin being double-headed,
rather than fair. So what proportion of all coins is double-headed. Let’s say
that that is 0.01.
Pr(Y=3) is the probability of getting 3 heads out of 3 tosses for a randomly chosen coin, which
can be a double-headed coin with probab=0.01 and a fair coin with prob=0.99
Thus Pr(¥=3) = Pr(Y=3| X=double)*Pr(X=double) + Pr(Y=3| X=fair)*Pr(X=fair)
= 1.0 * 0.0l + (057 % 099 =0.134
Filling these probabilities into the Bayes’ theorem equation gives:

*
Pr(X = double|Y =3)= L7001 _ 4 075
0.134

Statistical independence

Random variable X is statistically independent of Y if the probabilities of obtaining different
categories of X are the same irrespective of the value of Y.

That is, Pr(X = x|Y =) =Pr(X = xi|Y = y¢) = Pr(X = x) for all {, j, and k.

In other words, the conditional probabilities are equal to the marginal probabilities. It follows from
the definition of conditional probability that if X is statistically independent of Y, the joint
probability is equal to the product of their marginal probabilities:

Pr(X = x;, ¥ = y;) = Pr(X = x)Pr(¥Y = y)).

For the example in Table 2, G4 and G are NOT independent because, e.g.:
Pi(G, = BB| G, = Aa) =0.333 is NOT equal to Pr(Gz = BB) = 0.38.

Also, Pr(G, = BB,G, = Aa)=0.16 is NOT equal to the product of the marginal probabilities:
Pi(G, = BB)Pr(G, = Aa) =038*0.48 = 0.1824

Conditional expectation (~ conditional mean or average)

The expectation (=mean) for variable X conditional on variable ¥ being equal to y is:

k
EX|r =)= x,Pr(X =x|Y =)

and, for continuous variables, E(X|Y =y)= Ixf (x|Y = y)dx

So conditional expectation is also computed as a weighted average, but now with weights being equal
to the conditional probabilities.



For example, in the oat example of Table 1, consider the expectation for the number of florets per
spikelet, conditional on the fact that the line carries at least onc T allele. From Table 1, first
computing the conditional probabilities:

P = / G [ | =
PH(G = T/t |G contains T) = (G=T1/t, c'onrams T) _ Pr(G=T/t) _ 0.5 —93
Pr(G containsT) Pr(G=T/0)+Pr(G=T/T) 05+025
Pr(G = T/T | G contains T) = PrG =1/T) 0B i
Pi(G=T/)+Pr(G=T/T) 05+0.25
Then the conditional expectation is : E(X| G contains T) = 3*(2/3) + 2*(1/3) = 8/3 = 2.67

Note that this expectation is slightly lower than the overall E(X) (=2.75). So, if we know that the line
carries one T allele, we expect the number of florets per spikelet to be slightly lower than average.

Yariance

The variance of a random variable is a measure of the spread of a variable over the sample space.
Intuitively, we want to know how far we can expect the value of a given variable on average to be
from its expected value. That is, we want to know something about the average deviation of the
random variable from its expected location. The way to obtain a variance is to find the average of the
squared deviation from the mean:

var(Y) = E{[Y - i]"} where uy = E(Y)
= E{Y2 = 2Y pty+ iy )= E(Y?) — 2E(Y p) + py* = E(Y?) — 2 payay + ity”
Thus: var(Y) = E{[Y - )’} = E(Y)-py”

Looking back at Table 1, the number of florets per spikelet given different genotypes,

var(X) = 7.75 - (2.75)° = 0.1875
Note from your statistics class that when we have a sample of N observations for a random variable X
(instead of frequencies of the variable attaining certain values), the variance of the sample can be

o 2 o 2

Z (x, ~ %) X
computed as: var(X) = % oras var(X)= 41N~_ —% where xis the average of X
Realizing that taking the average is sample equivalent to taking the expectation of a variable, note that
these equations are similar to the equations for variances based on expectations, as given above.

Covariance

The covariance between variables X and ¥ quantifies the (linear) relationship or dependence between
X and Y based on the extent to which they “co-vary”.

Cov(X, V) =E{[X~mllY-ml}
= E(XY) — tixpty where B(XY)= XL xiy; Pr(X =x;, Y =)

Example: The covariance between the genotypic value and the phenotypic value will play a big role in
quantitative genetic inferences. Refer back to Table 1, the number of florets per spikelet, conditional
on the oat genotype. In Table 1, the genotypic value for the number of florets per spikelet G is
considercd the same as the phenotypic value for the number of florets per spikelet . In that case, the
covariance between the genotypic and phenotypic values is cqual to the variance of the phenotypic
values (0.1875, see above). But consider a slightly more complicated situation in which the
environment also contributes to determining the phenotype so that:



Table 3 Example for computing covariances

Genotype, T Probability Genotypic value Phenotypic value Pr(T) X GP E
G P

t/t 0.20 2.8 3 1.68 0.2

t/t 0.05 2.8 2 0.28 -0.8
T/t 0.30 2.6 3 234 0.4
T/t 0.20 2.6 2 1.04 -0.6
T/T 0.05 2.2 3 0.33 0.8
T/T 0.20 2.2 2 0.88 -0.2

Expectation: 2.55 2.55 6.55 0

With this environmental effect, the covariance between genetic and phenotypic values is:
Cov(G, P) = E(GP) - E(G)E(P) = 6.55 — (2.55)* = 0.0475.

Check that for this specific example, Cov(G,P) = Var(G) = 0.0475
The variance of phenotype is greater: Var(P) = 0.2475

The model that relates phenotype to genotype is: P = G + E where E represents the effect of

environment. So, for the first row in Table 3 the E = 3-2.8=+0.2. For the second row: E=2-2.6=-0.8,
Environmental effects are in the last column of Table 3. Note that E{F)}=0. You can also check that:

Cov(G,E) = 0 (i.e. environmental effects are independent of genetic effects)
Cov(P,E)=0.2
Var(E) =0.2

Properties of Variance and Covariance

Assuming again that a is a constant:

Var(a)=0
Yar{aX) = a*Var(X)

The variance of a constant is zero

Cov(X,Y) = Cov(Y,X)
Cov(X,aY) = aCov(X,Y)
Cov(X,Y+Z) = Cov(X,Y) + Cov(X,Z)

The variance of the product of a variable by a constant is the product of the

constant squared and the variable’s variance

Var(X + ¥) = Var(X) + Var(Y} + 2Cov(X, Y} The variance of a sum is the sum of variance plus twice

the covariance

{for the Table 3 example: Var(P) = Var(G+E) = Var(G) + Var(E) + 2Cov(G,E) =

=00475+ 02 +2%*0

Generalizing the equation for Var(X+Y) to the sum of many variables:

Var(Z;X,-) = E[V&T(Xf) + 22(,’<j)COV(X[', XJ)

Also: Var(X-Y) = Var[X+(-1)] = Var(X) + Var(-1*Y) + 2Cov[X,(-1*Y)] =

= Var(X) + (-1)**Var(Y) + 2*(-1)*Cov(X.,Y) =
= Var(X) + Var(Y) - 2Cov(X,Y)

=0.2475

If X’s are independent = Var(ZX;) = X;Var(X))

10



Cov(X,X) =EXX) -EXEX)
= B(x) - B
= Var(X) =» the covariance of a variable with itself is its variance
If X and Y are independent: E(XY) =LY, xy; Pr(X = x;, Y = y))
= X% xy; Pr(X = x)Pr(Y = y;)
= [ x; Pr(X = x)] [ 3 Pr(Y = 3]
= E(X)E(Y)
So that Cov(X, ¥) = E(XY) - E(X)E(Y) =0

Correlation

The correlation measures the (linear) relationship between two variables on a standardized scale, by
dividing their covariance by the product of their standard deviations:
Cov(X,Y)

JVar(X)Var(¥)
For the example of Table 3: rgp = CoviG.F)___ 0.0475 =
JVar(G)Var(P)  0.0475%0.2475

Based on rearrangement of the correlation equation, we get the following expression for the
covariance, which we also frequently use:

Cov(X,Y) = ryy+/Var(X)Var(Y)

ryy =Corr(X,Y) = Note that:-1 <rgy <1

0.438

Regression

A repeated theme in quantitative genetics is the estimation of quantities associated with individuals or
parameters associated with populations when those quantities or parameters are themselves not
directly observable. The most obvious example is the desire to estimate an individual’s genotypic
value for a trait when the only information
we have available derives from the
individual’s phenotype. Regression is used
for this kind of estimation.

Definition: The regression of ¥ on X is the
expected value of Y
conditional on having a certain
value for variable X:

y=E{X)

This is also called the best (linear) predictor

of ¥ given X.

Regression can be used to define a model:

y=3y +e where e is called the

tesidual, which is the deviation of the
observed value for ¥ from its expected value
conditional on X. Hx X

I



For quantitative variables, the predicted value for Y can be derived using linear regression:
¥ =EWX) = iy + byx (x-tx)
with  wy=E()  mx=EX)

byx = coefficient of regression of Y on X = expected change in Y per 1 unit increase in X

Given data, byy can be derived by fitting the following linear regression model:

y = Uyt byx (x-lix) + e
Using least squares (see Lynch & Walsh p39), byx can be derived to be equal to:
byy = Cov(Y X)/Var(X)

Note that byy can also be expressed in terms of the correlation coefficient:
byx = COV(Y,X)/VEII‘(X) =Ixy w[Var(Y)Var(X) /Var(X) = Iyy

So the important equations to remember for the regression coefficient are:

Cov(Y,X) -r Var(Y)
Var(X) 7 \Var(X)

Var(Y)
Var(X)

};x:

Note that these only hold for simple regression with a single independent variable (X).

For the example of Table 3, suppose we want to predict the genotypic value of an individual based on

its observed phenotypic value. We would use the following regression model:
G=G+bepfP-P)+e  with G =E(G)=E(P)= P =2.55
The regression coefficient can be computed as:
bgp = Cov(G,P)/Var(P) = 0.0475/0.2475 = 0.192

Var(G)
Var(P)

=0.438 +/0.0475/0.2475 =0.192

or bgp = rGp

So the prediction model is: G = G + bgp(P- P ) = 2.55 + 0.192(P-2.55).

Results are in Table 4. The last column in this table shows the prediction error: 2 =G- G

Table 4 Example prediction based on linear regression

Genotype, I Probability G P E 6 é

t/t 0.20 2.8 3 0.2 2.636  0.164

t/t 0.05 2.8 2 -0.8 2444  0.356
T/t 0.30 2.6 3 0.4 2,636  -0.036
T/t 0.20 2.6 2 -0.6 2444  0.156
T/T 0.05 2.2 3 0.8 2,636  -0.436
T/T 0.20 2.2 2 0.2 2444  -0.244
Expectation: 255 255 0 2.55  0.0004
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Properties of Regression

1. The average of predicted values is equal to the average of Y's: E(¥) = E(Y) =
E($) = Eliy + byx (x-£40)] = B(uy) + Elbyx (:-1x)] = piy+ byx [B(x)-tix] = tty

This also implies that the regression line always passes through the mean of both X and Y;
substituting #x for x into the prediction equation gives y = py

2. The average value of the residual is zero: E(e) =0.
E(e) =B(¥Y - f}) ) from regression model
= E(Y) - E(Y) property of expectation
=0 Sfrom property I above
3. The expectatton of the residual is zero for all values of X: E{|X) =0
E(6|X) =E(Y - ?IX) ) from regression model
= E':,(Y]‘?‘() -E(X) property of expectation
=Y-Y=0 by definition of regression

This implies that predictions of ¥ are on average equal to the true ¥ across the range of possible
values for X. '

4. Accuracy of prediction = Corr(P,Y) = o
The accuracy of the prediction equation is equal to the correlation of y with its true value y. We
can derive accuracy as:
Cov(y C +b -
Accuracy = r,, = Ovh(y, y)  __ Cov(iy +hy (x—y),y)
VVar()Var(y)  Var(py + by (x 1y ) Var(y)
Since #,and g, are constants, this simplifies to:

Covib b, C ,
Accuracy = ov(byy x, ¥) 3 w Cov(x, y) B Cov(x, y) -

- VarlbyVary) o, Varovary)  VarVar(y)

So the accuracy of a prediction equation based on simple (= 1-variable) regression is equal to the
correlation between the dependent and independent variables.

5. Decomposition of variance in Y into that explained by the prediction and unexplained variance

Using the above equation, -we can also show that the variance of Y is the sum of the variance
explained by the regression on X and residual variance (note that Cov(X,e)=0):

Var(y) = Var(uy + byx (x-fty) + €) = by’ Var(x) + Var(e) = [Cov(y,x)]/Var(x) + Var(e)
Note that because Cov(y,x) = rxy +/Var(x)Var(y) the first term can also be written as:
[Cov(y,x))/Var(x) =gy * Var(x) Var(y) / Var(x) = rxy * Var(y) = 7] Var(y)

This is the variance in Y that is explained by the X through the prediction model
By subtraction we get Var(e) = [1- l'xyz] Var(y). This is the unexplained/residual variance.

Thus, variance of ¥ can be decomposed as: Var(y) = ryy’Var(y) + [1- rx/’] Var(y)
Note that the variance of predicted values is equal to the explained variance:

13



2
Var( $) = Var{ty + byy (x-p2x)] = byxVar(x) = { %}2 } var =

_ [covr, 0] _ fcoviy, 0]
Var(x) Var(x)Var(y)

So the variance of predicted values is equal to the variance explained by the model, which
depends on the correlation between Y and X.
The above equations apply when prediction is based on one variable (x), in which case r;, =7, .

Var(y) = ryXZVar(y)

In general, prediction can be based on multiple x’s = multiple regression. In that case the
partitioning of variance is: Var(y) = Var( ) + Var(e) = rji, Var(y) + [1- r;y] Var(y)

6. Residuals are uncorrelated with the predictor variable, X: Cov(X,e)=0
Cov(x, &) =Covlx, y-$1=Covlx,y —(tir+ byx (x-p))] =
= Cov(x, ¥) — Cov(x,uy) — byx Cov(x, x) ~ byx Cov(x,tx)

=Cov(x,y)— O — byx Var(x) - 0
=Cov(x,y) - M Var(x) =0
ar(x)
7. Residuals are uncorrelated with the predictions: Cov(y,e)=0

Cov(y,e) =Cov[J,y-31=Cov(y,y)-Var($)=
= Cov{x, y) — Cov(x,iy) — byx Cov(x, x) - byx Cov(x,tix)

=Cov(x,y)— 0 — byy Var(x) - 0
Cov(y,x)
= _—— V =
Cov(x, y) VarG) ar(x) =0

Properties 6 and 7 imply that all information on Y that is contained in X is captured in the
predicted values, as the residual is uncorrelated to both X and the predicted values.

Some Applications to Quantitative Genetic Theory

The standard quantitative genetics model equation for the observed phenotype of an individual i for a
quantitative trait {P;) is that it is the sum of the effect of genetics (the genotypic value G;) and the
effect of environment (£): Pi=lp + Gi + E;

- Genotypic
In practice, we only observe phenotype and value

cannot directly observe G; or E;. However, if we | g
could observe both P; and G; for a group of
individuals, we could plot genotypic against
phenotypic values, as in the figure below. +1501...
Using such a hypothetical plot, or model, and =D
statistics such as correlation, covarance,
variance, and regression, we can specify
important population parameters such as
heritability (#*) and make a number of
inferences or predictions, such as predicting an L
individual’s genotypic value or ‘breeding value’ p=6000 6500
from its observed phenotype:

Slope =b s, = #=.3

G = h?(P-P)

Accuracy r=h

14
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2)

3)

Covariance and correlation between phenotypic and genotypic values:
Basedon P;=up+G; + E;
Cov(P,G)=Cov(u+ G + E,G) =

= Cov(G,G) + Cov(G ,E) = Var(()
The last step assumes that Cov(G ,E) =0, i.e. that the environment that an individual receives is
independent of its genotypic value. The result of this covariance, Var((), which is often denoted
o4 , is the genetic variance in the population, i.e. the variance of genotypic values of individuals

in a population. This in conirast to the phenotypic variance, Var(P), often denoted op? , which is
the variance of phenotypic values of individuals in a population.

Then, the correlation between phenotypic and genotypic values can be derived as:
_ Cov(G, P) B Jé _0g
©T WarGVar(P) Jolo: o
Thus, the correlation between genotypic and phenotypic values of individuals in a population is
equal to the ratio of the genetic and phenotypic standard deviations for the trait.

The square of this correlation, therefore, is equal to the ratio of the genetic and phenotypic

variances, or to the proportion of phenotypic variance that is genetic. This proportion is also

0_2

G _p2
~=h
o

defined as the heritability of the trait (= h%). Thus: (tpg) = =

Regression of genotypic on phenotypic values:
Using the above model and referring to the figure, we can also set up a regression equation
between the genotypic and phenotypic values to predict G:
Gi=Ug +bgp(Pi—p) +e;  where bgp is the coefficient of regression of G on P.
Cov(G,P) _0g _ 2
Var(P) J,f
Thus, the slope of the regression of genotypic on phenotypic values is equal to heritability

This regression coefficient can be derived as: bg p =

Prediction of genotypic values:
The above regression model can be used to predict an individual’s genotypic value based on it’s
observed phenotype, using the following prediction equation:

G, = ho+ H(Pi—pp)
In practice, we often set Ug to zero, because we’re primarily interested in ranking individuals in a
population. Thus: G, = KW Pi—up)
As an example (see figure), assume a dairy cow produces 6500 kg milk, which is its phenotypic
value (P;). The mean production of the herd she is in is 6000 kg (= up).

Milk production is a trait with an (assumed known) heritability of 0.3, a phenotypic standard
2

. g, .
deviation of 1200 kg (6p=1200). Using h* =—< and, thus, ¢ = h’c2, the genetic standard
Jg G P
F

deviation for milk yield is equal to 0g=hcp= +0.3 ¥1200 = 657.3 kg

Then, this cow’s genotypic value can be predicted to be:
G. = H*(Pi—pp) = 0.3 (6500-6000) = +150 kg
So this cow’s genotypic value is expected to be 150 kg greater than the average in this herd.

15



4)

We can also attach an accuracy to this prediction, based on the previously derived result that the

correlation between predicted and true values based on linear regression is equal to the correlation
to the dependent (¥) and independent (X) variables: Tas =Top =N

Thus, when predicting an individual’s genotypic value based on its phenotypic value, the accuracy
of this prediction will be equal to the square-root of heritability of the trait.

When we predict genotypic values for all individuals in a population in this manner, and take the
variance of these predicted values, we expect this variance to be equal to (based on property 5):

Var(y) = ryx-Var(y)

which in this case simplifies to: Var(G)=h o} =h'c]

And, using property 5 above, the variance of prediction errors (¢; = G - G ) is equal to:
Var(e) = [1- 1'Xy2] Var(y)

which in this case simplifies to: Var(e) = (1-h%) ol

For the example, the variance of predicted values is:  Var( Gy=h'ol = 0.3*657.3% = 129600
and the variance of prediction errorsis:  Var(e) = (1-K) o2 = 0.7%657.3% = 302430

Note that these two variances sum to the genetic variance: 129600 + 302430 = 43203 = 657.3
Based on Var(e) = 302430 _kg2 we can also add a confidence interval to our prediction (see later).

Regression of offspring phenotype on parent phenotype
One of the problems with predicting genotypic
values, as described above, is that it requires you
to know the heritability of the trait. Luckily, we
can also get estimates of heritability for a trait
from phenotypic data. We do this by observing _ »
how similar the phenotype of offspring is to that Fo , Slope = bpy oy = A 17
of their parents; if these are very similar, we
expect the trait to be more heritable.

When we have phenotypes observed on offspring
and their sires, we can estimate heritability by
regressing the phenotype of the offspring on that
of their parents, as illustrated below:

Parent phenotype P,

The regression model is:

Po= Ko + bPoPs(Ps‘u's) +e

'The regression coefficient can be derived as:
Cov(P,,P) Cov(G,+E, G +E)
Var(F,) o)
_ Cov(G,,G)+ Cov(G,,E )+ Cov(E,,G )+ Cov(E,E) Cov(G,,G,)
o} o
The last step assumes that the environment that the offspring progeny received is independent of
the phenotype of the sire (a sometimes strong assumption), making the last 3 covariance terms 0.

bpops =

To derive the covariance between the genotypic value of offspring and that of their sire, we can
express the genotypic value of the offspring in terms of the genotypic values of its sire (s} and
dam (d), based on the fact that half of the genes that the offspring have come from each parent:
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Here the terms RA; and RA4 are random assortment or Mendelian sampling terms, which reflect
that parents pass on a random half of their alleles (i.e. a random one of two alleles at each locus).
Using this genetic model] (which has quite a number of assumptions, which well be covered later),
we can continue our derivation as:

Cov(G,,Gj) = Cov(G+2G+RA+RA4,Gy) =
= Cov(¥2G;,G5) + Cov(YaGy, Gy) + Cov(RAs,Gy) + Cov{RA4,Gy)

Assuming random mating and the fact that Mendelian sampling terms are independent (see later),
the last three covariance terms are zero, resulting in:
_Cov(G,,G,) Cov(4G,,G)) WCov(G ,G) Yo

_ 2
bpops = 2 2 2 2 =)h
o; o} o, o}

Thus, heritability of a trait can be estimated based on phenotypes of relatives, by measuring the
degree of resemblance between relatives, using statistics such as linear regression. More on this later.

Some Distributions useful in Population and Quantitative Genetics

Bernoulli distribution.

Named after the mathematician Daniel Bernoulli, 1700-1782. A Bernoulli random variable is
characterized by one parameter, that is typically designated p and is sometimes called the “probability
of success”. The random variable can have one of two values: 1 with probability p and 0 with
probability 1 - p.

If Y is a Bernoulli random variable with probability p, its expectation is:

2
E(Y)=Y y,Pr(Y =y,)=00-p)+1(p)=p

i=1

Tis variance is var(Y) = E(Y") - E(Y)°

=[0°(L-p) + ()] - p°

=p-r

=p(l-p)
The Bernoulli distribution is used in population and quantitative genetics in relation to the presence or
inheritance of alleles at a locus. For example, for a locus with two possible alleles, A and «, and with
the frequency of allele A in the population denoted by p, then the process of drawing one allele at this
locus from a population can be specified by a Bernouilli distribution by specifying a variable ¥ that is
equal to 1 if allele A is drawn and equal to O if allele a is drawn.

Binomniial Distribution

The Binomial distribution is based on the Bernoulli distribution. A binomial random variable is the
sum of k£ independent Bernoulli random variables all with parameter p. The binomial is therefore
characterized by two parameters, k and p and can have integer values from 0 to k. If X is binomially
distnibuted with & trials and p probability of success: X ~ Binomial(k, p), then:

From the properties of expectation of a sum, the expected value of X is kp: E(X) = kp.
From the properties of vanance of a sum of independent variables, the variance of X is

kp(l - p): var(X) = kp(1 - p)
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The probability density function Pr(X = x) is
k ‘e k k!
Pr(X =x)=| |p*(1-p)*™" where =————— and a! = 1¥2*3* . *a
X x}  xMk-—-x)!
When considering population or quantitative genetics, the Binomial Distribution could correspond to
the process of randomly drawing k alleles at a locus from a population.

Normal or Gaussian distribution.

This is perhaps the most important distribution in quantitative genetics, as phenotypes for most
quantitative traits approximately follow a normal distribution, or can be transformed to follow a
normal distribution. This is a property of the fact that phenotype is the sum of many genetic factors
and of many environmental factors. Following the Central Limit Theorem of statistics, this is
expected to result in a Normal distribution, even if the distribution of variables that are included in the
sum is not Normal. See also Falconer and MacKay Chapter 6.

Normal distribution N{u,5°) for variable y with mean p and st.dev. o.
Truncated Normal distribution for fraction p selected, truncation point 7,
ordinate height z7, and mean of selected group Us .

p

7

u T Hg

The probability distribution function for a variable y that has a Normal distribution with mean p and
b-#)
L
N2no 't

It is often useful to work with the Standard Normal distribution, which has mean zero and standard
deviation 1: N(0,1) Any Normally distributed variable can be ‘standardized’ to a variable that follows
N(0,1) by subtracting the mean and dividing by the standard deviation:

If y~N(u,6%)  then y = (y-u)/o  follows N(0,1)

standard deviation o, denoted by y~N(,0%) is: Pr(y)=z=

Truncated Normal distribution.

In plant and animal breeding, we often are interested in using individuals with the highest phenotype
for breeding. If phenotype (y) is Normally distributed (y~ N(u,0%) then it is of interest to know
something about the distribution of phenotypes of the selected individuals. This is the Truncated
Normal distribution, as illustrated in the figure above:

18



Selecting a proportion p of individuals from a population based on phenotype (¥) is equivalent to
truncating the Normal distribution at a truncation point 7, such that a fraction p falls above the
truncation point,

The mean phenotype for the selected individuals is denoted by pg (see Figure).

The difference between the mean of the selected individuals over that of all individuals is called the
selection differential: S=pg-u

Maximum Likelihood Estimation

Maximum Likelihood (ML) is a procedure for estimating parameters from an observed set of data. Tt
was introduced by Fisher and is widely used in population and quantitative genetics.

The basic idea of ML estimation is to find the value of the parameter(s) that is ‘most likely’ to have
produced the data that is observed, i.e. that maximizes the likelihood of getting the data that you got.

As a simple example to illustrate the concept of ML estimation, consider the following observed
genotype frequencies.

Table 1. Falconer and Mackay, p. 1, blood group categories in Iceland:

Blood Group Counts Probabilities _

MM 233 P=233/747=0312
MN 385 H =385/747=0.515
NN 129 Q=129/747=0.173
Total 747 7477747 = 1.000

P, H, and Q are the estimated genotype frequencies — obtained by counting

To estimate allele/gene frequencies, we could obtain these simply by counting: 2 * 747 alleles were
sampled; the number of M alleles is (2P + H) * 747. Thus, the allele/gene frequency of allele M is

2P+ H)*747
2%747
Sop=0312+0.515/2=057and¢g=0.173 +0.515/2=0.43.

This estimates of allele frequency obtained by counting is actually an ML estimate: for the example of
Table 1, if 57% of all alleles in the sample is M (vs. N, as is observed in the sample), then the ML
estimate of p, the frequency of M in the population that the sample came from, is 0.57, because that is
the value of p that is most likely to have produced a sample with 57% of alleles being M.

=P+3H

A more formal derivation of this estimate uses the Binomial distribution to specify the Likelihood of
the data as a function of the parameter (= Likelihood function): if out of n alleles sampled ny are M,
then the likelihood to get these counts given the population frequency of M is equal to the probability
that the value of a Binomial variable with parameters n and p is equal to ny:

n -
Likelihood( data | p) = Pr( data | p) = (n ] pM (- p)y

M

For the datain Table | n=2%747 =1494  and ny = 2%¥233+385 = 851

1494
So:  Likelihood( data { p) = [ 351 J Pw (- P)643
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Now the ML estimate of p is the value of p that maximizes the above function. To find this value we
can take the first derivative of the Likelihood and set it equal to zero. However, it is often easier to
first take the natural log of the Likelihood and to maximize it for p:

4
L( data |p) = ]1’1{{ J pnM (1- p)rHtM }
fim

Then, using some algebra, this can be ‘simplified’ to:

n —lpy
L(data|py =In| " [+In(p™)+n[1-py ™ )=
iy
n
=In +n, In(p) +(n—n,, )In(1- p)
Fly
1 -1
The first derivative of the LogLikelihood with respect to p is: n,, —+(n-—n, )1—
r - P
Setting this to zero to find the maximum and solving for the ML estimate of p, P, gives:
1 -1 1 1 1-p n-—n
ny —+m—n,)——=0 =2 n,—=(n-n,)—— > Ap: M
-p p 1-p p Mg
1 n 1 n . R
> ——1=—-1 » ——1=—-1 = p=— ie. countestimate.
P Py 14 1y n

This is obviously a simple example, where we don’t need ML estimation to obtain a good estimate
(we can just count).

Another (obvious) example is the following: Suppose n values, y1, ¥2, .... ya, are sampled
independently from an underlying Normal distribution with unknown mean 4 and variance 1. What

is the MLE for # given the data?

Let’s denote the data by a vector y = (¥4, ¥, ... yn). Using the probability density function of the
Normal distribution with mean g and standard deviation 1, the likelihood for a given data point y;
- ()’i —H )2
2

given the mean, 4, is: Likelihood(y; | ) = Pr(y; | 1) \/— € Because each
27

observation is independent, the likelihood function for all observation y 1s the product of n normal
density functions;

477 (zz)mz'e[ 2

1 1
keli = P = —F—¢€ =
Likelihood(y | 1) = Pr(y | 0) 1:[1 m

Again, taking the natural log of the likelihood:  L(y | g} = — (%)IH (277) - %Z (¥, ~ U

i=1
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Maximizing by taking the first derivative gives:

aL n 3
(;ul 2 - Z (y" B ‘u) =n(y- /1) where y is the average of the observations
i=1

Setting this equal to zero gives: n(y — () =0 2> the MLEof u is: i =y

Again, this is obvious but it does illustrate the principle behind the use of ML to estimate
parameters in more complex situation. For example, if we want to estimate a parameter such as
heritability from data (¥) we have observed in a pedigreed population, we can formally state the
problem by that of finding the MLE of heritability, given the observed data; i.e. what is the most
likely value of heritability that would have given rise to the data that we observed. To do this, we
need to formulate the Likelihood function, or the log of the likelihood, and maximize it.

Likelihood( data | hz) = Pr(data | h? )

This is the basis of ML procedures for estimation of genetic parameters.
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A Review of Elementary Matrix Algebra

Notes developed by John Gibson for Economics of Animal Breeding Strategies notes
(Dekkers, Gibson, van Arendonk)

Dr. B.W. Kennedy originally prepared this review for use alongside his course in Linear Models in
Animal Breeding. His permission to use these notes is gratefully acknowledged. Not all the
operations outlined here are necessary for this course, but most would be necessary for some
applications in animal breeding.

A much more complete treatment of matrix algebra can be found in "Matrix Algebra Useful for
Statistics” by S.R. Searle. See also Chapter 8 of Lynch and Walsh.

A.1 Definitions

A matnx is an ordered array of numbers. For example, an experimenter might have observations on a
total of 35 animals assigned to three treatments over two trials as follows:

Trial

Treatment 1 2
1 6 4

2 3 9

3 3 5

The array of numbers of observations can be written as a matrix as

6 4
M=|3 9
8 5

with rows representing treatments (1,2,3) and columns representing trials (1,2).

The numbers of observations then represent the elements of matrix M. The order of a matrix is the
number of rows and columns it consists of. M has order 3 x 2.

A vector is a matrix consisting of a single row or column. For example, observations on 3 animals of
3,4 and 1, respectively, can be represented as column or row vectors as follows:

3
A column vector: x= | 4
i
A row vector: x' = [3 4 1]

A scalar is a single number such as 1, 6 or -9.
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A.2 Matrix Operations

A.2.1 Addition

If matrices are of the same order, they are conformable for addition. The sum of two conformable
matrices, s the matrix of sums element by element of the two matrices. For example, suppose A
represents observations on the first replicate of a 2 x 2 factorial experiment, B represents observations
on a second replicate and we want the sum of each treatment over replicates. This is given by matrix
S=A+B.

A.2.2 Subtraction

The difference between two conformable matrices is the matrix of differences element by element of
the two matrices. For example, suppose now we want the difference between replicate 1 and replicate
2 for each treatment combination, i.e. D= A - B,

2+4 5-6 6 -1
D=A+B = .
1-5 9+2 -4 11

A.2.3 Multiplication

Scalar Multiplication

A matrix multiplied by a scalar is the matrix with every element multiplied by the scalar. For
example, suppose A represents a collection of measurements taken on one scale which we would like
to convert to an alternative scale, and the conversion factor is 3.

25 6 15
For a scalar A = 3. A =3 = .
1 9 3 27

Vector Multiplication

The product of a row vector with a column vector is a scalar obtained from the sum of the products of
corresponding elements of the vectors. For example, suppose v represents the number of observations
taken on each of 3 animals and that y represents the mean of these observations on each of the 3
animals and we want the totals for cach animal.
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r=vy = [3 4 1|5 = 3(1) + 45) + 1(2) = 25.
2

Matrix Multiplication

Vector multiplication can be extended to the multiplication of a vector with a matrix, which is simply
a collection of vectors. The product of a vector and a matrix is a vector and is obtained as follows:

6 4
eg. Vv =[3 4 1] M=|3 9
| 8 5

q--
=
I

3 4 1]

oo W O
O

[3(6) + 4(3) + 1(8) 3(4) + 4(9) + 1(5)]

[38 53]

That is, each column (or row) of the matrix is treated as a vector multiplication.

This can be extended further to the multiplication of matiices. The product of two conformable
matrices is illustrated by the following example:

25 4 -6
1 9 -5 2

_ [ 2(4) + 5(-5) 2(-6) + 5(2)
1) + 9(-5) 1(-6) + 9(2)

R YAy
o -4l 12 ]

For matrix multiplication to be conformable, the number of columns of the first matrix must equal the
number of rows of the second matrix.

AxB
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A.2.4 Transpose

The transpose of a matrix is obtained by replacing rows with correspending columns and vice-versa,
|6 3 8
S|4 9 5]

The transpose of the product of two matrices is the product of the transposes of the matrices taken in
reverse order, e.g.

e.g. M' =

oo L O
th WO =

{AB)' = B'A’

A.2.5 Determinants

The determinant of a matrix is a scalar and exists only for square matrices. Knowledge of the
determinant of a matrix is useful for obtaining the inverse of the matrix, which in matrix algebra is
analogous to the reciprocal of scalar algebra. If A is a square matrix, its determinant can be
symbolized as |A|. Procedures for evaluating the determinant of various order matrices follow.

The determinant of a scalar (1 x 1 matrix) is the scalar itself, e.g. for A =6, |A| = 6. The determinant

of a 2 x 2 matrix is the difference between the product of the diagonal elements and the product of the
off-diagonal elements, e.g. for

oa
A:

6 3

|A| = 5(3) - 6(2) = 3.

The determinant of a 3 x 3 matrix can be obtained from the expansion of three 2 x 2 matrices obtained
from it. Each of the second order determinants is preceded by a coefficient of +1 or -1, e.g. for

5 2 4
A=16 3 1
8 7 9
Based on elements of the first row,
3 3
Al = 5(+1) ‘ . + 2(-1D) + + 4(+1) . ‘

= 527 - 7) - 254 - 8) + 4(42 - 24)
= 5(20) - 2(46) + 4(18)

= 100 -92 + 72 = 80
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The determinant was derived by taking in turn each element of the first row, crossing out the row and
column corresponding to the element, obtaining the determinant of the resulting 2 x 2 matrix,
multiplying this determinant by +1 or -1 and the element concerned, and summing the resulting
products for each of the three first row elements. The (+1) or (-1) coefficients for the gj”’ element
were obtained according to (-1)". For example, the coefficient for the 12 element is (-1)'** = (-1)’} =
-1. The coefficient for the 13 element is (1)1+3 = (-1)4 = 1. The determinants of each of the 2 x 2 sub-

matrices are called minors. For example, the minor of first row element 2 is
6 1
=46
g8 9

When multiplied by its coefficient of (-1), the product is called the co-factor of element 12. For
example, the co-factor of elements 11, 12 and 13 are 20, -46 and 18.

Expansion by the elements of the second row yields the same determinant, e.g,

2 4 5 4 5 2
|A| = 6(-1) [ - }+3(+1) [ g o } +1(ﬁ1)l: 8§ 7 }

6 (18 - 28) - 3 (45-32) + 1(35-16)

60 + 39 - 19=80

Similarly, expansion by elements of the third row again yields the same determinant, etc.

2 4 5 4 5 2
A| = 8(+1) [ Y }+7(-1)[ - }+9(+1)[ . }

8(2-12) - 7(5-24) + 9(15 - 12)

-80 + 133 + 27 =80

11

In general, multiplying the elements of any row by their co-factors yields the determinant. Also,
multiplying the elements of a row by the co-factors of the elements of another row yields zero, e. g.
the elements of the first row by the co-factors of the second row gives

5(-1 2 4 +2(+1) > 4 +4(-1) 52
REREP ( 8 9 8 7

=-5(18 - 28) + 2(45 - 32) + 4(35 - 16)

=50 + 26 - 76=0

Expansion for larger order matrices follows according to  |A] = Za Hd 1 M UI
i=l

for any 1 where n is the order of the matrix, i =1, ..., rand j = 1,..., n, ay is the ij’h element, and |Mu|
is the minor of the i element.
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A2.6 Inverse

As suggested earlier, the inverse of a matrix is analogous to the reciproca] in scalar algebra and
performs an equivalent operation to division. The inverse of matrix A is symbolized as Al The
multiplication of a matrix by its inverse gives an identity matrix (I), which is composed of all
diagonal elements of one and all off-diagonal elements of zero, i.e. A x A =1. For the inverse of a
matrix to exist, it must be square and have a non-zero determinant.

The inverse of a matrix can be obtained from the co-factors of the elements and the determinant.

The following example illustrates the derivation of the inverse.

5
A=1]6
8

-~ W N
o o= A

Calculate the co-factors of each element of the matrix, e.g. the co-factors of the elements of

, 3 1 6 1 6 3
the first row are (+1) , 1D ,and (+1) =20, -46 and 18.
7 9 8 9 8 7

Similarly, the co-factors of the elements of the second row are =10, 13 and -19

and the co-factors of the elements of the third row are =-10, 19 and 3.

ii) Replace the elements of the matrix by their co-factors, e.g.

i11)

5 2 4 20 -—-46 18
A=1]6 3 1 |yieldsC = 100 13 -19
g8 7 9 -10 19 3
Transpose the matrix of co-factors, e.g.
20 -46 18 ] 20 10 -10
C' = 10 13 -19 | =] —-46 13 19
-10 19 3 18 -19 3

Multiply the transpose matrix of co-factors by the reciprocal of the determinant to yield the

inverse, e.g.
|A| = 80, 1/|A| = 1/80

1 20 10 10

=~ —46 13 19
80

18 -19 3
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V) As a check, the inverse multiplied by the original matrix should yield an identity matrix,

ie. ATA =1, e.g.
20 10 -10 5 2 4 1 00
§16 -46 13 19 6 3 1 =10 10
18 -19 3 8 7 9 0 0 1
b d -b
The inverse of a 2 x 2 matrix is: “ = 1
¢ d ad—bc|l—c a

A.2.7 Linear Independence and Rank

As indicated, if the determinant of a matrix is zero, a unique inverse of the matrix does not exist. The
determinant of a matrix is zero if any of its rows or columns are linear combinations of other rows or
columns. In other words, a determinant is zero if the rows or columns do not form a set of linearly

52 3
independent vectors. For example, in the following matrix | 2 2 0

3 0 3
rows 2 and 3 sum to row I and the determinant of the matrix is zero.

The rank of a matrix is the number of linearly independent rows or columns. For example, the rank of
the above matrix is 2. If the rank of matrix A is less than its order n, then the determinant is zero and
the inverse of A does not exist, i.e. if H(A) < n then A does not exist.

A.2.8 Generalized Inverse

Although a unique inverse does not exist for a matrix of less than full rank, generalized inverses do
exist. If A" is a generalized inverse of A, it satisfies AA'A = A. Generalized or g-inverses are not
unique and there are many A" which satisfy AA'A = A. There are also many ways to obtain a g-
inverse, but one of the simplest ways is to follow these steps:

a) Obtain a full rank subset of A and call it M.

b) Invert M to yield M.

¢) Replace each element in A with the corresponding element of M’
d) Replace all other elements of A with zeros.

e) The result is A-, a generalized inverse of A.
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6 3 2 1
Example A= 5300
20 2 0
1 0 0 1
3 0 0
a) M, afull rank subset, is 0 2 0
| 0
1/3 0 0
b) M'=| 0 1/2 0
0 0 1

¢) Replacing elements of A with corresponding elements of M and all other elements with 0’s gives

0 0 0 0
_ 0 1/3 0 0
) A =
0 0 1/2 0
0 0 0 1

A.2.9 Special Matrices

In many applications of statistics we deal with matrices that are the product of a matrix and its
franspose, e.g.

A=X'X

Such matrices are always symmetric, that is every off-diagonal element above the diagonal equals its
counterpart below the diagonal. For such matrices

X (X'X) X'X =X

and X(X'X)X' is invariant to (X'X), that is, although there are many possible g-inverses of X'X, any
g-inverse pre-multiplied by X and post-multiplied by X'X yields the same matrix X,

A.2.10 Trace

The trace of a matrix is the sum of the diagonal elements. For the matrix A of order n with clements
{a;), the trace is defined as

r(d) = Ya,
=1
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As an example, the trace of

is 3+6+5=14

S "
N =
e N

For products of matrices, tr{(AB) = tr(BA) if the products are conformable. This can be extended to

the

product of three or more matrices, e.g.

Tr(ABC) = tr(BCA) = tr(CAB)

A.3 Quadratic Forms

All
y ~

sums of squares can be expressed as quadratic forms that is a y'Ay. If
(u, V), then
E(y'Ay) = u'Au
Exercises
6 3 8
For A= 0 B=|2 -4
-5 1 5 -1

Find the sum of A + B.
Find the difference of A - B.

For A and B above and v'=[1 3 -1}, find v'A and v'B.

3 2 5
For B' = { 2 4 . } and A as above. Find B'A. Find AB',

For A and B above, find AB.

Obtain determinants of the following matrices
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6. Show that the solution to Ax =y isx = A’"y.

7. Derive the inverses of the following matrices:

8. For

show that tr(AB) = tr (BA).

O N

2

-5
1 4

ew S e I s B SV

b L =

4 2
6

1

few S e N - N e

|

1
1

[ea S olie B WV

(el O I e B o

~1 Ak W

th O O O

and B =

-~ A =

o W N

=R = S UL

31






Day 1
Multi-locus Population Genetics — Linkage & Disequilibrium
Objective
Present population genetic principles of

allele, haplotype and genotype frequencies,
and of linkage and linkage disequilibrium

Single locus allele and genotype frequencies
Multi-locus haplotype and genotype frequencies
Measures of Linkage Disequilibrium (LD)

Estimating LD from genotype data

Linkage maps and recombination

Mechanisms that generate and erode LD

LD balance between drift and recombination
Persistence of LD across breeds

Erosion of LD in crosses vs. outbred population

0. LD always exists within families 1

“‘DPZ".‘"‘P‘PP’!\’T‘

1. Single locus allele and genotype frequencies

Consider a single locus in a random mating outbred population.

The locus has alleles A; and A, with allele (or gene) frequencies p and g

Under random mating (Hardy Weinberg Equilibrum), the allele received from one parent is
independent of the allele received from the other parent, resulting in the following

relationship between allele and genotype frequencies:

Table 1: Genotype probabilities, single locus two-allele case
' Maternal allele
Paternal allele Pr{A;)=p Pr{A;) =gq Marginal prob
Pr(A;)=p p’ pq p’+pg=plp+q9)=p
- Pr(d)=¢q Pq g pa+q'=qlp+9)=9q
p+pg= pa+q =
Marginal prob. pp+q)=p gp+ag)=g

This results in the HWE genotype frequencies: p* , 2pq , ¢




2. Multi-locus haplotype and genotype frequencies
With multiple loci we also need to consider haplofypes and their frequencies,
and relationships between allefe, haplotype, and genotype frequencies.
Haplotype = the combination of alleles at >1 locus that an individual inherited from a parent
E.g. an individual with (unordered) genotype A;Az and By B; at loci A and B, can have the
following combinations of haplotype pairs (separated by / ):

A;BA;B; - alleles A; and B, received from one parent and A; and B; from the other
A;By/A;B, > alleles A; and B; received from one parent and A; and B; from the other

Haplotype frequency = frequency of a given haplotype in a popuiation

What is the relationship between haplotype frequencies and the Jfrequencies of alleles that

make up each haplotype?
This depends on whether the alleles at the two loci are dependent or independent:

The term ‘linkage” in Linkage diseguilibrium is actually not guite cortect and &

bit misleading because diseguilibrium can occur between unlinked loci,

although itis more likely to be present (and persist) between linked loci {see

later). Thus, ‘Gametic phase' disequilibium is a etler term; gametic phase . H

refers to the haploid phase of chromosomes and disequiliveium salers 1o Lmkage L".“.‘ag_e
dependence between alleles ihat make up the haplotypes that are presentin | Disequilibrium Equilibrium

ihe current generalion and which originated from the haploid gametes
produced by their parents.

3

Haplotype probabilities / frequencies

What is the probability of a progeny to receive from a parent:  allele 4; at locus A
and allele B; at locus B ?

i) if the alleles at the two loci are independent from each other
2 joint probability = product of marginal probabilitics

Locus B Locus A — allele frequencies
allele freq’s PriA)) =pa Prid;) = qu Marginal prob
Pr(B) = Pr(A;B;} = Pr(A,B @ PaPe + qaps
(B1) Ps (A1B1) = paps (A:B)) = pn (Pa 4 40) = P
Pr(B;)=qs | Pr(A;B2)=pags  Pr(A:B2) = qgags Pads + gagn
: =qgp(patga)=gs
PaPp +Pads qaPe + gaqs
Marginal prob | = pa(ps + g8) = ps = ga(Pe + gs) = ga Haplotype frequency
Locus B ~- Locus A — allele frequencies
allelefreq’s | - Pr(A)) =05 ~ Pr(A;) =05 - Marginal prob
Pr(B)=05 | Pra8)=025  Pr(A;B)=025 025 : (5’-2_5
Pr(B,)=05 | Pr(A;B)=025  Pr(A:B;)=025 0.25 + 025
i o L =0.5
o 025+0.25 025+025 -
Marginal prob =0.5 ={.5




Haplotype probabilities / frequencies
What is the probability of a progeny to reccive from a parent:  allele A; at locus A

and allele B; at locus B ?
i) What if the alleles at the two loci are NOT independent ?

=¥ joint probabilities deviate from product of marginal probabilities (by +D}

Locus A
Locus B PriAp) =p, PridA,) =g, Marginal prob
Pr(B) =ps Pr(A;B) =r Pr(A:B) =1 pape+ D+ qapg— D
=papst+D =gapp—D =pn (Pa+ga)=pa
Pr(B;) = g5 Pr{A;B;) =5 Pr(A:B)=u Page— D+ gagp+ D
=pags—D =gage + D =gn(patqa)=gs
Marginal |pape+ D+ page—-D gapp—~D+gaga+ D D=r—p.pg
prob =paPrt4ge)=ps  =4aPs+48) =4

Pr(A,B,) - Pr{A)Pr(B,}

D = measure of disequilibrium Value of |2 is the same irrespective of the haplolype used

Locus B Locus A — allele frequencies

allele'freq’s _ Pr{A;) =0.5 Pr{A,) = 0.5 Marginal prob.
Pr(B)=05 | PrAB)=04.  Pr(A:B) =0.1 0.4+0.1=05
CPrB)=05 | PrAB)=01  PrAB)=04 | 0.1+0.4=03
Mdr'gijwfﬁ}ob 0.4+01=05 0.1+04=05 |p= 0._4 - 0_5*0.,5 =015 5

3. Measures of Linkage Disequilibrium (LD}
D= PriAB,) - papy

D’= D standardized to make it less dependent on allele frequencies

D' = D/D,... where D, = Min(papy , quB) if D<0
D,..=Min(pags , gapp) if D>0  See F&MEx 1.6 pl7

1’ = squared correlation between allele at locus A and allele at locus B

- also measures ability (RH to predict allele at locus A from allele at locus B
2 ‘

2 = D— - Locus B Lociis A - allele frequencies
Pad4Pss allele freq’s | Pr(A;) =0.5 Pr{A;) = 0.5

Pr(B;) =05 . Pr(A;B)=04 Pr(A;8/) =0.1
D=04-~05'05=0.15 S

Pr(B;)=05 | Pr(A;B)=0.1  Pr{A:B)=04
D’=0.15/0.25 = 0.6

0., = Min(0.5'0.5,0.5'0.5) = 0.25

2
, 015

2
- s |} and T° range between 0 and 1
I = 0.5%0.5%0.5%0.5 = 0-30

|D'{is strongly inflated if one haplotype has low frequency|

s the preferred measure of LD for most uses




To derive r": Let X = 1 when allele A, present, X = 0 if A; present (= Bernoulli var.)
Y =1 when allele B, present, ¥ = 0if B, present (= Bernoulli var.)

Then: cov(X, Y} = E(XY} - E(X) E(Y) b A X=1 Az X=0
= r - paps = . | PrAB) =7 | PriAzB =1
cov(X,Y) D il Pr(iYB=) l: 5 Pr(jf },;:) 3 u
> Com=Txr = Jvar(X) var(Y) ) \/(PAQA )(Psqa) B 120 X;i 0 Xzyz: 0
n?
> = Ty~ m {Note: this I'is different than ¥ in the table in previous slide)

If A is a marker and B a QTL = 12 = proportion of QTL variance observed at marker
- eg if QTL variance = 200 kg?, and r? = 0.2 = variation observed at marker = 40 kg?

r? is a key parameter determining the power of LD mapping to detect QTL

« Experiment sample size must be increased by 1/r2
to have the same power as an experiment observing the QTL directly

For multi-allelic markers, see Zhao et al. 2005 and 2007. Genetical Research

7
Why is LD important? M Q
Use of linked markers relies on —
association of markers with phenotype L ™9
QTL detection
Marker Mean
Genotype Phenotype
MM 20 Allele M is
associated with
Mm 18 favorable QTL
mm 14 allele
MAS

Select MM or individuals that inherited allele M

Requires Linkage Disequilibrium between
marker and QTL 8




4. Estimating LD from Genotype Data

Disequilibrium is quantified by comparing haplotype frequencies to their expected
frequencies based on independence (D = Pr(4,8,) - Pr{A)Pr(B,)).

The problem is that genotyping data is in the form of unordered genotypes, not haplotypes,
requiring special methods to estimate haplotype frequencies.

With 2 loci with 2 alleles, there are 4 possible haplotypes, 16 ordered genotypes (ordered
based on haplotypes), and 9 unordered genotypes (see tables 2,3)

Table 2: Haplotype frequencies and genotype frequencies under random mating (HWE)

Maternal haplotype

Haplotype - freq A, r ArB; 5 AB; AB; u

AB; r |ABJAB, F |ABJAIB: rs |ABJAB rt 1ABIAB: 1w

A;Bg 5 A;BQ/A;B; Sr A]BZIIA[BQ .S‘2 A;Bz.‘rAsz st A;Bz/Ang) Sit

A;B; t |A;B)A B, & |A;ByAIB;  ts | A;BifAB; r ABy)/AB, w

Paternal
haplotype

Asz I AZBZIA}BI ur Ang/A;Bz s Ang/AgB; ut Angf'Asz uz

2 loci with 2 alleles - 4 haplotypes > 16 ordered genofypes 2 9 unordered genotypes
Table 2: Haplotype frequencies and genotype frequencies under randomn mating (HWE)

Maternal haplotype
Haplotype - freq’ AlB; r AB; 5 AB; ¢t AB; u

AB; r | A;BYAB,; P A1BiABy rs {AIBJABy rt |A;BJAB; ru
AB, 5 |ABJAD; st |ABJAB: & |ABJABr st | ABiAB, su
AB;  t |MBJAB, ir |ABJAB, 15 |ABJAB; 7| ABjA:B;
A8,  u|ABJAB: wr |ABJAB, us | ABJAB, wi |ABAB,

Paternal
haplotype

Table 3: Unordered and ordered genotypes and their frequencies under random mating

Unordered | Frequency Possible ordered genotypes and their frequencies (from Table 2)
genotypes =S‘f’r‘;‘q‘\’lfes£?::°d ‘ordered’ based on parental origin (paternal haplotype/matemal haplotype)
A,A;B;B; r ABJAB, P

AJA[B}B) 2rs A;B;/A;Bz rs A]Bg/A;BJ S

AA BB, 5 ABAAB; §

AABB; 2rt ABJAB, 1t AzB;/A;BJ ir

AA:B,B, 2ru+2st ABJAE, ru | AiBlAB, st | ABHAE 15 A;B.AB; ur
AJA;BJB; 2su A;le’Asz su | AzBoA; B, us

ALA,BB; ¢ ABJAB, P

A AB;B, 2tu ABJAB,  tw | AsByYAB,  ut

AzAszB; HE Asz’A'_)B) !,t?'

The unordered genotype is what is obtained from genotyping, i.e. the genotype at each locus 10




Simple method for estimating haplotype frequencies

The simple method to estimate haplotype frequencies (r,s,t,4) is to assume that double
heterozygotes are equally likely to have either haplotype configuration.

Simple method to estimate haplotype frequencies and LD

Observed data Exp. Haplotype counts
Genotype  Counts  Freguency Freq A1B1 AiB2 A2B1 A2B2
A1A1B1B1 19 0.475) - a8
A1A1B1B2 5 01251 2rs 5 5
A1A1B2B2 0 0| 0
A1AZB1B1 B 0.2 2rt B B
A1A2B1B2 ) 02| 2ru+2st| 4 4 4 4
A1A2B2B2 0 ol 2su 0 0
A2A2B1B1 0 0] £ 0
A2A2B1B2 0 0] 2 0 0
A2AZB2B2 0 o] ¥ 0

40 0.6875 01125 0.15 005
=r =5 =t =u
D = ru-st= 0.0175

8 individuals are observed to be double heterozygotes, so it is assumed that of the 2*8 = 16
haplotypes that are carried by these individuals, 4 are A, By, 4 are A(By, 4 are A;B), and 4 are A,B;.

The problem with this method is that the 4 haplotypes are NOT equally likely. In fact, even
based on the simple method, the frequency of the A,B, haplotype is 0.69 and that of A,8;is 0.1 1.1 1

In fact, using the frequencies obtained from the simple method, we can calculate the probability
that a double heterozygote will have the one versus the other haplotype configuration

25t 5t
and  Prisa BB, )= =
(”’m iA1A2 ! 2) 2ru+2st ru+st

Simple mathod 1o estimate haplotype frequencles and LD

2ru _ ru
2ru+2st ru+st

P"(ﬁg"z" AIAQBIBQ)=

e . Observed dala Exp’ Haplotypa counts
For the example data, these probabilities will equal:[Gesonpe _coms Fy F AIB1_ AIB2  AZB1 _AIB2
AATBIBI 18 0475 3
aB 0.6875%0.05 ASAIBIB2 5 o125 | 2 5 5
pr(“ziﬂ AAB, B;)= =0.67 |ammee o o & v
! 0.6875%0.05+0.1125*0.15 AlAZB1BI 8 02| 8 8
AlA2B1E2 8 0.2 | Zrusldsi| 4 4 4 4
A1A28202 Q of 2w 0 0
. AZA2B1BY 0 [ 0
Pr(ﬁlAlAquBz)= 0.1125*0.15 =033 |Aeneeim2 a 0 11;' 0 0
i 0.6875*0.05+0.1125*0.15 ropcezez 0 ok o
[ 06675 0.125 0.5  0.05
=r & et =y
D= ru-si= 0.017%
Thus, based on these haplotype frequencies, the A;ByA:8; |—— %5;::1:3‘:' — E‘P‘ — %
. . . n . Bnolvpe equenty i -
haplotype configuration is twice as likely as A;B2A2B) [ s o 0475 ‘—jg——‘—‘-"“”"“—‘aa
. ALAIBIB2 5 . 05| s 5 s
So now we can these to adjust haplotype counts for double | aiaiezez 0 of & 0
heterozygotes to 5.33,2.67,2.67,5.33 AlA2B181 8 0.2 2 1"1 55 8 .
} . AlA281B2 . B 0z|2ruvdst| 533 267 2867 533"
and use these to re-estimate the haplotype frequencies. MazmB2 0 ol o o o
We can then repeat this procedure until the haplotype :2"’-':2::; g. : zf“ g 0
frequencies don't change anymore (have converged). A2AZA2BZ 0 ol 0
w0 D708 0.0954 D.1323 00671
=r =% =1 =y
D= ru-ai = 0.0046

This is the Expectation Maximization algorithm for Maximum Likelihood haplotype frequency estimation.
12




EM algorithm for ML haplotype frequency estimation

Based on (assumed) unrelated individuals

Implemented in the ‘EM for haplotype frequencies’ sheet in the EM_estimation.xls file

P(A1B1//AZB2) =
= P(ATB1/AZB2 | A1AZB1B2) " PIATAZBTE2) = ruffrusst) * P{ATAZBIB2)  =st/(ru+st) * P{A1A2B1BR)
EM algorithm lterations of EM gidorithm -->
Genotype  Counts Freq }EgFrecm E(Fréq)2 E(Freq)3 E(Freq)d E{Freq)5 E{Freq}6 E{(Frea)?
ATAIBIB1 s AlB1/AZB2 0.100 0134 0.158 0.570 0.174 0.176 Q177
AlA1B1B2 A1B2/AZB1 0.500°  0.066  0.042 0030 0.026  0.024 0023
AlA1B2B2 Freg MFreq)1 M{Freq)2 M(Freq)3 M(Freq)4 M(Freq)5 M(Freq)6 M(Freq)7
A1AZB1B1 : pA= 08000 0.80CO 08000 0.B000 0B80G0 0.5000 08000 0.8000
AlAZB1B2 B pB= 08375 08375 08375 08375 08375 0.8375 08375 0.8375
AlAZB2B2 3 l r=P{A1B1) 068700 0.6875 07046 07163 07223 0.7247 0.7257 0.7260
AZAZBIBI : 9; s=P(A1B2} 01300 0.1126 00954 0.0837 00777 00753 00743 0.0740
AZAZB1B2 _:‘ ] i@ t=P(A2B1}) 01675 0.1500 01328 0,212 01152 0.1i28 01118 0.1115
AZAZB2B2 | D u=P{A2B2} 0.0325 0.0500 0.0871 0.078B  0.0848 00872 0.0B82  0.0885
40
D 00000 00175 00348 0.0463 0.0523 0.0547 0.0557 0.0560
Change in frequencies 0.0350 0.0341 0.0235 0.0119 00043 00018 0.0007

Implemented in Haploview niip:/iwww broad.mit.edu/mpghaploview!

Other software: FastPhase ntpdepts.washington.eduiventures/UW_Techneldgy/Express_LicensasffastPHASE.php
MCMC methods Phase hip:idepts.washington,sduiventures/UW_Tachnology/Express_Licenses/PHASEV2.php
- also estimates recombination rates

Also used for - computing missing genotypes
- assigning haplotype probabilities to individuals 13

What if individuals are not unrelated?
Does the assumption of unrelatedness bias LD results?
Little if sample size large enough (e.g. De Roos et al. Genetics 2009)

But unrelatedness assumption DOES affect haplotype probabilities of individuals
- Marker genotypes of relatives help determine haplotypes of individual

In large paternal half sib families (dairy cattle)

- haplotype phase of a sire can be inferred hased on which sire alleles
co-occur most often in progeny

- Maternal haplotypes receved by progeny then obtained by subtracting
sire haplotype frorm progeny genotype

In complex pedigrees - much more difficult
-SimWalk
-GenoProb
-lterative peeling

-MCMC methods
14
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RECOMBINATION FREQUENCY VERSUS MAP DISTANCE

Recombination rate (A,B) = ¢ = proportion of recombinants generated by meiosis.
= measure of distance between loci in terms of recombination rate

We like distances to be additive: if A, B, and C are on a string and dist(A, B) = ca5 and

dist(B, C) = cgc, then dist{A, C) 1s cap + cac ?

Are recombination frequencie

Given cap and cgc, what is c4c?

Four possibilities:

s additive? NO

Cag

— B,
C

B

r' s

Cac= Cap + Cpc 7

A-B interval B-C interval 2> A-C interval probability
A€ norec 2 B € norec 2> C 2> A <Cnorec 2 C  (1-cap)l-cac)
A no rec B Tec C 2> A rec C (1~cap) cac
A rec B no rec C 2> A rec C Cap (1- Cac)
A rec B Tec C 2> A no rec C Cag Cac

= A-Crecrate = cuc= PI'(Z) + Pr(3) =(1- CAB)CBC + CAB(]- - C,gc) = Capt+ Cpc - 2Cap Cac

-Exa_mple Cap = 0.2 Cac = 0.

3

>y =02+ 03-2%02%03=0.38

Note: cac <0.5=02 + 0.3, because 12% of all gametes (2*0.2*0.3} are double recombinant, thus,
despite recombination, a parental configuration of alleles will exist between A and C (A1Cy or AxCy).

An important assumption in this calculation is independence of recombination events —no interfcrenc:_<|=,6




Recombination €-> Crossover

Fro WL B e e Fhadiople g oscSieol sl pomabig moew wT W BR Befleine 14 dhanliate dadfe prwnileg wiae
T ) ey, L

Thomas Hunt Morgan's illustration of crossing over (1916) A double crossing over

Recombinations result from crossovers.

A crossover occurs when segments of homologous chromosomes of a pair (i.e. the
matemnal and paternal chromosomes) are exchanged during meiosis.

Multiple crossovers can occur between loci A and B but only an uneven number of
crossovers results in a recombination event between A and B.

17

Map distance (A-B) = d,, = E# crossovers in A-B) =expected #cross-overs
generated during a meiosis in A-B interval

A B O
dac=das + dac

Map distances ARE additive because expectations are additive (even with dependence):
(# crossovers in A-C)=  (# crossovers in A-B) + (# crossovers in B-C)

“»  Ef# crossovers in A-C) = E{(# crossovers in A-B) + (# crossovers in B-C)}

= E(# crossovers in A-B) + E(# crossovers in B-C)
P dyc=das+dpc

Recombination rate, ¢, = proportion between O (completely linked) and %2 (unlinked)

Map distance, d, is measured in Morgans: if d45 = 1 Morgan - on average 1 cross-over
event will occur per meiosis

s if d45 = 1 Morgan = on average 1 cross-over event occurs between A and B per mejosis
s 1 Morgan = 100 cM

» For cattle, genetic map length ~ 30 M (3000 cM) = ~ 30 crossovers per meiosis.

¢ < d because an even number of cross-overs results in a non-recombinant gamete 18




Mapping Function
Provides the relationship between recombination rate {c) and map distance (d)

« (Complete interference = c=d
¢ No interference = Haldane mapping function: ¢ = (1-e2/2 d=-In{1-2c)/2

¢ Some interference = Kosambi mapping function ¢ = e -1y2(e" +1)
d =", In[(1+2c)/(1-20)]

05
c=d
204 Haldane
-
2031 Eg. d=02
= > e = (1-6202/2 = 0.165
£ i
ED.Z 9 CKosambi = (64*0.2 -l)/2( 64*0.2 +1)
< _ =0.190
=’ 9 tcumplele' i.nI: =0.200
0 . : :
0 0.5 1 15 2
Map distance (Morgans) 19

6. Mechanisms that Generate and Erode LD

A variety of mechanisms generate linkage disequilibrium, and several of these can operate
simultaneously. They can be separated into:

1. Recurrent factors — operate to create LD each generation

a. Drift (inbreeding) in small populations — by chance or sampling, haplolypes
passed on to the next generation are not in LE frequencies

b. Recurrent migration — continuous mixing of populations in which haplotypes occur
in different frequencies (e.g. Pr(4:B8,)=1 for pop. 1 and =0 for pop. 2)

c. Selection — certain haplotypes may be selected upon and increase in frequency

— selection also creates LD between loci that are selected upon
(= Bulmer effect - see later)

— selection with epistasis (certain combinations of alleles are favorable)
also creates LD between loci involved.
2. Punctual factors — operate only sporadically over time to create LD

a. Mufation — occurs in a specific haplotype, which is then the only haplotype
that contains that mutation, resulting it to be in LD with the mutation.

b. One-time admixture/migration/crossing (e.g. producing F)/F;) — results in mixing
populations with different haplotype frequencies

¢. Population bottleneck / founder effects — severe drift from 1-time sampling effects
2

10



Processes that create LD
Inbred line | Line CrOSSing Inbred line 1l

Processes that create LD
Mutation and Selection

QTL allele on M chromosome mutates from q to Q
and then increases in frequency because of
- random drift

- or selection on Q - selective sweep = LD block around Q
22

11



Selective Sweep

Original mutation (q 2 Q) occurred in marker haplotype:
001110010Q01001110110

Many generations ﬂ of recombination

100110010Q01}100110100
0111100110Q01p01011010
0010011j10Q01p00010111
0011101[10Q01101101110
011010010Q01p01100010
Unique haplotype 0001100110Q01D01000111
associated with Q 1110100110Q01P11101111
0101100{10Q01p01101010

23

Processes that create LD
Random drift/inbreeding

24
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LD created by Drift

101Q000

01001100110110 1100071

110Q100

001010

0104110
0114110

0114100

010q110

000q101
111Q001

0o01Qo10
010Q110

1019000
110011

011Q100

0o0Q101 110100 111q001

25

LD is continuously
eroded by recombination

¢ = recombination
rate

M Q m q M

[ We]
3
[»)

1(1-c) frequency '/,(1-c) /,c  frequency ‘'/,c

o

v




LD continuously eroded by recombination: how does D change over time?
Let # = frequency of A; By haplotypes in generation ¢ =2 Do = 1o - paps

What is the frequency of AB; haplotypes in generation 17

In the following derivation, we witl consider parental origin of haplotypes and let , indicate ‘any” allele,

so A1By/A B, indicates an individual that received the A1 B, from its father and any haplotype (4158, or
A1B; or AaB) or AyB;) from its mother)

'There are four ways that parents from generation 0 can generate gametes that carry the
A,B, haplotype and that will produce generation 1.

1. non-recombinant A5, haplotype produced by a2 A,8,/A B, parent
2. non-recombinant A,B haplotype produced by a A B /A8, parent
3. recombinant A B, haplotype produced by a A\B_/A B, parent
4. recombinant AyB haplotype produced by a A _B,/A,B_ parent
Case 1: the frequency of A1B1/A B, parents is ry and the frequency of non-recombinant 418, haplotypes
produced by these parents is ¥2(1-c). Since these two events are independent, the frequency of A48y
haplotype produced by A,B,/A B, parents = Prob(1.) = Ya(1-c)ro.

Case 2.results in the same frequency: Prob(2.) = Y(1-c)rp

Case 3: the frequency of A,B/A B, parenis is ps pp because the frequency of generation 0
individuals that received a A,B, haplotype from their father = frequency of individuals that received
the 4, allele from their father = frequency of the A, allele = p,. Similarly, the frequency generation 0
individuals that received a A By haplotype from their mother = py . Then, the frequency of
recombinant A, B, haplotypes produced by these parents is ¥4c, so the overall frequency = Yzcpy pe.

Case 4.results in the same frequency: Prob(d.) = YVacp, pa-. 27

LD continuously eroded by recombination: how does D change over time?
Let 1 = frequency of 4By haplotypes in generation 0 = Dy = 1o - paps
What is the frequency of A;B; haplotypes in generation 17

Thus, the overall frequency of A, 8, gametes produced by generation 0 is the some of these
four mutually exclusive cases:
2 ri=rl-c)+papsc
> Dy = ri-papp = r(l-cHpapac-paps =
= ro(1-¢)-pa pal-c) = (ro+ pa pe)1-c)

= Do(1-¢)
2> D, =Di(1-¢} ={Do(1-0)} (1-) =

= Dy(1-¢)®
2D, = Dy(1-c)' 2 D=0

=» Erosion of LD by recombination occurs faster when loci are further apart.
LD is halved each generation if loci are unlinked (¢ = ¥2).
2
e 2= b 2 . ) 2 .
Since . LD measured by I will decline at a rate of {1-¢)* per generation:

PadaPp4s > 5
2 t
re =ro (1-¢) o8

14



Break-up of LD by recombination

2

1 ¢=.001

0 T T T T T T T T T T T T T T T T T T T T T T T 1 '

0 5 10 15 20 25
Generation

Another way of looking at LD

Conservation of chunks of ancestral chromosomes

Marker Haplotype

111 2

Size of conserved chunks depends on how
Long ago LD was created - longer if N, larger

30

15



Recent LD extends over large distances

| Generations of recombination |

Gen 1

0.5
0.4
0.3
0.2
0.1

Distance (¢hM}

7. Balance between Drift and Recombination

In srmall(er) closed populations
¢ LD is continuously created by drift — more with smaller effective pop. size, N,
¢ LD is continuously eroded by recombination — faster at longer distances

1
This results in a balance/equilibrium of average LD at a given distance B(rse) = 144N ¢

1 1 SEscET

0.9 08
0.8 08
0.7 oy
£
o
ES 0.6 0.8
2
&
0.5
a 05
3
204 0.4
o
xx
w
0.3 0.3
0.2 0.2
041 0.1
0 o
0 01 0.2 0.2 0.4 1] 001 002 D003 004 005 0.06 007320
—Genetic distapce (Morgans) Gonotic ol L)
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7. Balance between Drift and Recombination

In small(er) closed populations

¢ LD is continuously created by drift - more with smaller effective pop. size, N,
* LD is continuously eroded by recombination — faster at longer distances

This results in a balance/equilibrium of average LD at a given distanced E(+*,, ) = 1+4N ¢

(Sved 1971)

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

r-sq

0.0

2 3 4 5 6 7 8 9

10 11 12 13 14 ¢M 33

LD is very variable

LD at short distances
is often lower than
expected based on a
given N,

Because LD
reflects historical
N, and this has not
been constant

Effect of historical N, on LD

r-squared

r-gquared

Digtance {cM)

LD at distance ¢ (M) :
() =———
I1+4N,,c

Where [ = 1/(2c)
generations ago
— markers 0.1M (10cM)
apart reflect N,
5 generations ago
— Markers 0.001 (0.1cM)
apart reflect N,
500 generations ago

LD at short distances
reflects historical
effective population size

LD at longer distances
reflects more recent
population history

34
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Estimating historical N, from average LD at a

given distance
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8. Persistence of LD across breeds

* Can the same marker be used across breeds?

— Yes if marker-QTL LD is similar in both breeds

* This can be assessed by evaluating the
consistency of LD between SNPs across breeds

— Could compare 2 between same pair of SNPs across
breeds

* However, the r2 statistic between two SNPs can be same value
even if phases of haplotypes are reversed

= Use comparison of rinstead = correlation between SNP
alleles, instead of square of correlation

37
Persistence of LD across breeds
Use r instead of r2

Breed 1
Marker A D
Marker B Al A2 Frequency r= =
B! 04 0.1 0.5 \/pMpMpBlsz
B2 0.1 0.4 0.5
Frequency 0.5 05 - (04“05*05) — 06
0.5*0.5%0.5*%0.5 '
Breed 2 v
Marker A
Marker B Al A2 Freguency (0_3 —-D5* 0_5)
Bl 0.3 0.2 0.5 r= = 0.2
B2 02 03 05 V0.5%0.5%0.5%0.5
Frequency | 0.5 0.5
Breed 3
Marker A
Marker B Al A2 Frequency _ (0-2 ~0.5* 0-5) =—0.2
Bl 0.2 0.3 0.3 r= =
B2 05 0 0 J0.5%0.5%0.5%0.5
Frequency | 0.5 0.5
Hayes 07 38




Consistency of LD in
commercial broiler breeding lines

correlation of r within 1 ¢cM Andreescu et al. Genetics, 2007
chri Line | Line | Line | Line | Line | Line | Line | Line | Line
Plot of r line 8 vs line 1 2 3 4 5 8 7 8 i 10
. 7 [Linet | a5 | 40 | 52| 45 | .54 | 45 57 | 45
"1 [uine2 36 | 68 | 35 | 53 | .60 | 44 | 49 | 67
? & Line 3 a2 | 28 [ 62 | .49 | 50 | (o0)| 50
s Line 4 44 | 51| 72 | 36 | &5 | 72
; Line 5 A7 | 43 | 42 | 42 | A
NSRS Line 6 57 | 50 | 69 | 52
e LA Line 7 50 | 58
w o e “;1 s = |Llinesd 51| 52
Line 9 58

A high correlation between r means that SNP effects are expected to persist
across lines — assuming QTL effects are consistent across populations

39
Phylogenetic trees
LD Correlation-based Allele frequency-based
line 3 line 5
line 9 line 5 line 3
line 6 line 6 line 2
line 4

line 8 .
line 8

line 1

line 10
line 1

LD correlations are expected to be related to the number of generations the
lines / breeds have heen separated
More generations of separation -» more erosion of LD by recombination

- less consistant LD 40
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LD across cattie breeds

De Roos et al.
{Genetics 2009)

T e, o ]
v \D/—\EH-
: 4
}\xll | i
- —a—HF_HLD vs HF_AUS

—a—HF_NLD vs RW_NLD
—+—HF NUDvs HF_NZL

i A 1] 3
T ! Lr T T
. N ‘v} nf' 1\? \7’—'—'@/ ff' l{ }' A B [.:\ —+—HF_AUS vs HF_NZL
4 \l &7\ ]‘ Ea ! \ud N\d,v \ XEA‘\
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Marker distance (kb)

LD correlations expected to decline with distance -» more recombinatior:”

Persistence of LD across breeds

* Recently diverged breeds / lines have good
prospects of using a marker found in one

" line in the other line

* More distantly related breeds, will need very
dense marker maps to find markers which

can be used across breeds

* Important in multi breed populations

— eg. beef, sheep, pigs

42
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9. Erosion of LD in crosses vs. outbred pop.
Break-up of LD by recombination in outbred population:

¢=.001

i} 5 10 15 20 25
LD does not immediately Generation
drop to zero for unlinked loci

Erosion L.D for unlinked loci in F2 cross vs. outbred pop.

In random mating outbred populations, D does not drop immediately to zero for unlinked

loci but LD is halved each generation:

Dy = Dy(1-c)', which with c=Va gives: D, = Dp(1- ) = W'Dy

This is different when crossing breeds or lines, e.g. when producing an F, population for
QTL mapping: in an F;, LD=0 for unlinked loci.

Reason is that D, = Dy(1-¢)' only holds only if parents were produced by random mating.
In F, cross, parents (=F,'s) were NOT produced by random mating (F,'s are A,B/A;B,):

LCross between inkred lines:

Fy: ABJAIB) X ABoASB,
F: ABifAB; A AB/Aq.B,
F, haplotypes: AiBy AB; Ay
Frequencies: Ya(l-c) Vac Yac
recombinants

non-recombinants

AsB,
15(1-¢)

o But Dy, = Min(pags , qapp) =% P Dp=Y/ti=1

Diseguilibrium in the F2 is:
Dra = Pr(A,B1) - Pr(A\)Pr(B))
= 1%{1-c} - 18 ¥ = 1a{1-2¢)
=>» for unlinked loci
c=%dDy=0
=> for completely linked loci
c=0"> Dp="Y

o Also: Py = (D) /( pagapags) = (¥)*/(4)* = 19 LD between linked loci is maximum in F;

In F;, etc, the standard equation does apply (random mating): Dgzyy = Dpa(t-c) 44




Break-up of LD by recombination in

Advanced Intercross Line
r2 1 - ¢=.001
09

08

0.7

0.6

0.5 1

0.4 4

0.3 1

0.2 1

0.1 1

LD behavior similar to BC/F2
Sire r

ﬂ M
e

s s mal "
Progeny M/m 4 \{‘IA it

meiosis

M Q
"—"MQ_'_'niq
M d -

—_-— M Q
B

@ MQ T T

=
=
»)

2 Marker - QTL LD among progeny at large distance 44
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BUT .... Within-family LD is not
consistent across families

Except for (close) markers with population-wide LD

Sire 1 Sire 2 Sire 3 Sire 4
M Q M g M Q M q
i . —-— i
—— -+t -t -—
m ( m Q m Q m q

Different marker-QTL. linkage phases within each family

Linkage phase = assortment of alleles into haplotypes
Sire 1 has genotypes Mm and Qq; haplotypes MQ and mq
Alleles M and Q are in coupling linkage phase
Alleles M and q are in repulsion linkage phase

Day 1
Multi-locus Population Genetics — Linkage & Disequilibrium
Objective
Present population genetic principles of

allele, haplotype and genotype frequencies,
and of linkage and linkage disequilibrium

Single locus allele and genotype frequencies
Multi-locus haplotype and genotype frequencies
Measures of Linkage Disequilibrium (LD)
Estimating LD from genotype data

Linkage maps and recombination

Mechanisms that generate and erode LD

LD balance between drift and recombination
Persistence of LD across breeds

Erosion of LD in crosses vs. outbred population

SOPNDG R LN

0. LD always exists within families 4
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Day2 QTL Detection

Objective
Present principles for detection of genes affecting
quantitative traits (QTL) using genetic markers
in ‘simple’ experimental designs
Concepts covered relevant to issues in ‘genomic selection’

Single locus quantitative genetic model
Principle of use of LD to detect QTL using markers
Overview of strategies for QTL detection
QTL detection using line crosses
QTL interval mapping in line crosses
QTL detection in line crosses — additional topics
a. Significance testing
b. Accuracy of position estimates
¢. Breed crosses (vs inbred line crosses)
7. QTL detection in outbred populations - linkage analysis
Summary and limitations
9. Software for QTL mapping 1

I N

o«

1. Single locus Quantitative Genetic Model

» Partition phenotype into genetic and environmental

components:
P=mean+ G+ E

¢ G =collective effect of many genes
= quantitative trait loci (QTL)
* Genotypes for QTL have an associated genotypic value:
G,=E(P|T)
Gr = phenotype you expect to get
from an individual with genotype T

G, = Average phenotype over all individuals
with genotype T
G is often deviated from the mean =» overall average G, is zero
2




Falconer Model for effects of QTL

Genotypic value G| u-a M u+d u+a
4 is NOT the population mean - it is the “mid-homozygote” value.

- it is often standardized to zero (by subtraction)

Under HWE: T Freuency, Cemowpic  yryx g,
AA, I°2 a pa
AqA; 2pq d 2pqd
AA, ¢ -a ~qa
Population mean = E(Gy) =M= pfa+2pqd +-¢fa
=ap-q) + 2pqd 3
Example

The pygmy gene in mice
Allele frequency: Pr{+})= p=0.7 g=03

Genotype: ++ +pg PY PY
Average weight (gn: 14 12 6 ANu-= 11?: 10
Genotypicvalue G; | a=4 d=2 —a= -4
Expected freq. p’=0.49  2pq =0.42 q° =0.09
under HWE:

Mean G;= E(G;) = M=0.49"4 + 0.42*2 + 0.09*(-4) = 2.44
=ap-q) + 2pqd = 4(0.7-0.3) + 2*0.7*0.3*2 = 2.44
Expected population mean = 0.49*14 + 0.42*12 + 0.09*6 = 12.44 = u + E(Gy)

Most QTL have much smaller effects than the mouse pygmy gene
and cannot be observed directly




How can we find these QTL?

Since we cannot observe the QTL directly,
we want to use (or create) an association
between the QTL and something we CAN
observe:

A genetic marker...

J L

2. Principles of the use of LD
to detect QTL using markers

Molecular Genetics
“In Search of the Holy Grail”

Major genes
Quantitative
Trait

Loci (QTL)

= position (locus) on

with genetic
differences for a
quantitative trait

genome associated

6




Most QTL cannot be observed at DNA level
Two types of observable molecular
genetic loci

* Functional mutations - known genes Q
* Most beneficial and easy to use | ——

« Difficult to find

* Anonymous markers linked to QTL M Q
 Easier to find -

* More restrictive and difficult to use

Use of markers for QTL detection and M Q
MAS relies on association of markers | 37—«

with phenotype m 9
QTL detection
Marker Mean
Genotype Phenotype
MM 20 Allele M is
: associated with
Mm 18 favorable QTL
mm 14 allele
MAS

Select MM or individuals that inherited allele M

Requires Linkage Disequilibrium between
marker and QTL g




lllustration that marker genotype means don’t differ
if marker and QTL are in Linkage Equilibrium

Aliele frequencies:P(M):p P(m)=q,, P(Q)=p P(q)=q D=0
Genotyplc Frequency

graie | w g M_Q m_Q

2 p+a -o— — —
£ | Q|| ™ Ofmaw]| ™ Qfa
Q

E M Q M Q m Q

s M q m q m q
|

£ g | N9 m_q

c & —— A : — B ——— ]
§ M  Qpgpa]l]| M Qapyaeall| m Q
=

o M g M g m_ g

S pa ||| —

C':’, M ¢q m g | 2p,qud? m ( qM_“GFI
Average p+a(p-qiH2pgd p+a(p-q)+2pqd  p+a(p-gl+2pqdsy

lllustration that marker genotype means don’t differ
if marker and QTL are in Linkage Equilibrium

Allele frequencies: P(M)=p,, P(m)=q, P(Q)=0.7 P(q)=0.3 D=0

Genotypic Example
value
10 |\_[| QFrequency M Q m Q
——— ' . * »
M Qaem]| [ M Ol | m QL)
g | M _Q n_©Q m_Q
M q m  qapag2n| | M g qu2(.21)
s [N _9g 9 —3
M Qp,21) m  Qzpa2D)| | M Qfgu2n]
5 | M_g || M_g T T
e ff— B e - +
M q[p209)])] | m  qamau09)] | M q|awo9)

Average .49410+.21*8+.21'8+.09°5=8.71 .49"10+.21*8+.218+.09'6=8.71 .49"10+.21"8+.21*8+.09*5=8.7
Iny




Detection of QTL based on markers requires
Linkage Disequilibrium between marker and QTL

Relative frequency of Q must differ between marker genotypes
Example (arbitrary)

Allele frequencies: P(M) = p,,=0.4 P(m) = q,,=0.6
P(Q) =p =07 P(Q) =q=03

Assumed
Haplotype frequencies

M Q 038=p,p+D

M 9 0.02=p,q-D
m Q

——s— 0.32 =qup-D Disequilibrium = D
= P(MQ) - p,p
m
L 028=q,q+D = 0.38-(0.4)(0.7) = +0.10_
] Example D=+0.10
Genotypic Random mating of parents
value
10 M Q Frequency M Q m Q
M Qfcsx3s)] | m Q23832 m Q[ (32)(32)
=.1444 =.2432 =.1024
s | M@ Mg m_Q
M q (-38)(.02) m q 2(.38)(.28) m g (32).28)
=.0076 =.2128 =.0896
8 M9 N9 n_9
e — & ¥ ¥ &
M Q] 02).38) m  Qf2(.02).32) m Q] (.28)(.32)
=.0076 =.0128 =.0896
5 | —— S
M q.02).02 m q 2(,02)(.28) ‘m q (.28)(.28)
=.0004 =.0112 =.0784

Average 9.80 8.94 7.92




3. Overview of Strategies for QTL Detection
Depend on the type of LD between markers and QTL

that you want to exploit Sreoombmation that oceurred Singe.

creation of LD and, therefore, in how

close a marker needs 1o be fo be in
* LD you create by a cross *"" suficiont LD with a GTL
* F2 cross "] —=—

* Backcross w

¢ Advanced Intercross Line — AlL | .

* Recombinant Inbred Line — RIL
® LD that exists within families o

* Within haif-sib families ¥

* In extended pedigree e e Butbrd
® LD that is already present in an outbred population

* LD created in past by drift, mutation, selection, migration

Type of LD used affects marker density required, type of
analysis needed, and how results are to be interpreted 11

Scope of QTL Detection Strategy

> Targeted - e.g. candidate gene approach
» Look for QTL in targeted region if the genome

» Genome-wide — genome scan approach
» Place markers across the genome

» Look for associations of markers with trait phenotype
across the genome

» |dentify QTL across the genome

M, M, M @ m, M, M,

m, m, m; g my m; mg




Overview of Strategies for QTL mapping

[Linelbreed cross ] ‘Outbred populationJ

LD used

. _
Recomb.
LD extent

Marker map;

B
Scope

Map resol.

/Linkage analysis\ /Linkage analysis\/~ LD mapping
LD markers LE markers LD markers
F./BC AlIL HS/FS Extended|Candidate High

2/B%  RIL || families pedigree| genes density
Population wide Within family “ Population wide
- J\ AN _/

4. QTL detection in Line Crosses
Line crossing creates extensive
Linkage Disequilibrium




QTL detection in Backcross of Inbred Lines
M Q m d
Parental lines 5 X
M
@ = m d ¢ = recombination rate
m M TQ
X [5= Fy
m q m q
Proge _=produced
Back M 9 u+d m 4 y-a Non-recombinants
cross 53— H—
m g m q
M g9 43 m Q wrd Recombinants
ri, q o m q Contrast Yy,-Yom
Mean phenotype by marker genotype = (1-2c)(a+d)
Yyp=u-ca+(1-c)d Y, =u-(1-c)a+cd 1]

Line crossing creates
extensive LD

BC has only 1 round
of recombination

1y =001

Bd "beneulloﬂs " "

= marker doesn’t need to be
close to the QTL to show
an effect on phenotype

Contrast Yy,-Ynm = (1-2c)(a+d)

c=0.2>1-2c=06

= marker with 0.2 rec.rate with QTL still shows 60% of QTL effect
General recommendation is a marker every 20 ¢cM
= each QTL is within 10 ¢M of a marker 14




F, Cross between Inbred Lines v m g
F X et
M Q ,4q * m Q u+a " JL™
— — Ma |F[MQ
M Qv m Q| G m 'q x-'_'—h :
M_ 9 psd m_ 9 psd
M Q m Q vioe
M Q yid m Qg
M gl vioe m q| v, G (1-c)
M q - m q .
—t pa — pa Contrast Yy, - Yom
M q m quooual|  =2(1-2c)a
Expected mean of marker genotypes
Yym= 1 +(1-cfa+2c(1-c)d -¢?a__ Y,,,= p +c?a+2¢(1-c)d -(1-cPa 14
- M a ma
F, Cross between Inbred Lmej — X
M Qo | [ O usa @ Qyra| [ _Opea
r.VI (-i‘hﬁ'ﬂm'ﬂ}i r'r| -Ql i<)e ' -M -Q ¥, o {i<) I:n t-i Y,co ]
M dpurd || M dpsg M 9ped| | M 9 psd
M d' Y, (1) I'.TI -Q Vyec ﬁn b I':TI -Ql Y f1c)e
M Qusd|| M Qg ™ Qpad| | M Qi
M dqpa (| M dpuag M dua | | ™M™ 9 pa
lill EI Y00 m EI Yo 1<) M E‘ T m av,u-cnm_
Y = Wt (1-c)2a+2c(1-c)d c%a w Y, = n+c?as2c(i-c)d (1-cFa
a(1-2¢)=(Y Y mml/2 d(1-2¢P=Y pn = /o Y una+ Y i) 2

10



- G-
Ma Summary
m_ g Expectation if c= 0.5
Backcross: (1-2c)(a+d) = Yy Yum =0
F2 cross: (1-2c)a =(Yupr Youm)/2 =0

(1-2cFd = Yy - VA Yug*Yomm) =0

Estimates confound QTL position and effect

E.g.if (Yyu-Ymm) /2 =10 kg (F2 cross)
* QTL could be near M with a = 10 (if ¢=0)
* QTL could be distant (c=0.25) with a = 20 | Marker-associated
* or any other possibility effect =10

* QTL can be on either side of the marker
21

But, if we test multiple markers

and find the following marker-associated effects:

M, M, M; M, M

(Yom-Yom/2 = (1-2c)a = 5 10 10 5 25

there is evidence that the QTL is between M, and M,

(although we cannot exclude presence of multiple QTL)

11



5. QTL Interval Mapping in Line Crosses

Use of flanking markers
To estimate QTL position and effect separately

c c,
S P
I\_ﬁ Q +N Ba(l:nkgrgss
: a ™ X a——
y - L mgq n
m q n
D L E e >

0 = assumed known

Contrast Yy,-Y,..=(1-2c,)(a+d)
Contrast  Y,,-Y,, =(1-2¢,)(a+d)

No interference - 6 = ¢, + ¢, -2¢,C,

> 2 3 equations

3 unknowns ¢4, ¢, , (a+d)

T, T, .
MmN Backcross Interval Mapping
j—a—3— X === To estimate QTL position and effect
m gq n q separately

-9 F1 g;metes and progeny Pr(learker data) =X a

Frequency a H Frequency val_uel QTL position

$ h - {1-c,)(1-c;) p+d

W0l w g N ronel (1-c,)(1-c;)/(1-6)

: :Cl — 5 & ¢ H-a -
M Q n ! o
. . = h(1-c) ¢ +d|

1[29 | " - " 1) 2 ﬂ (1"01) c, i) ?
I:VI .'fl ? % ¢ (1-c,) M -a "2
m Q N 9
: h = U ¢ (1) u+d 6, (1-c,)/0 a

"o N 1 2 8
4 (o), 4-a 9
m Q n t

,(1-6) { e e e ¢ ©, £1-0)

md 0 ()i u-a ,
4
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E(Y;|Marker Genotype)

* Two possible QTL genotypes: Qq or qq
~ 1f Qq, E(Y]Qq) =p+d
- Ifqq, E(Y|qq) =p-a

+ Put those two together with P(Qq | 9,a1er) = Xai
and P(qq I gmarker) =1- XQ!

o E(Y;|M)=(u+d)Xy+ (u-a)1-Xy)
= (u-a) + (a+ d)Xy

= m + bQ in

2 Regression model: Y;=m + bg Xg; +e

2]

Regression Interval Mapping

Haley and Knott (1992)
Estimate QTL position and effect separately Heredity 69: 315
Backcross regression model M"E’* Ll
N
Yi=m+bQXQi+ei E E E
m q n
E(by) = a+d e ? ------- >
Fit Model for various |
positions of QTL _
(e.g. in steps of 1 cM) B
]
Position with lowest RSS . ! N
or highest F-test gives :
best estimate of ¢, and =
bQ (=a+d) ° a 1‘0 20 a0 4‘0

Positton {¢cM)

13
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Q N

3
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'“5“@
M Q NF1MQN

".'_iq_-l'x"'_'_._

3

:l "3

ufn

F, Cross between
Inbred Lines

gmarkers

Pr(QQIQmarkers)

Pr(qugmarkers)

Pr(qq I gmarkers)

MM
MM
MM
Mm
Mm
Mm
mm
mm
mm

NN
Nn
nn
NN
Nn
nn
NN
Nn
nn

f(c1,02,6)

f(c1,c2,9)

f(CT ,C2,B)

F, Cross between Inbred Lines

Haley and Knott {1992)

Heredity 69: 315

Additive coef. |Dom. Coef.
xadcl XdDm

Markers | Pr{(QQ) Pr(Qq)| Pr(qq) | Pr(QQ)-Pr(qq)] Pr(Qq)
MM NN
MM Nn
MM nn
MITI NN f(c1,cz,6) )‘(31,02,9) ‘f(c1,02,9) f(c1,02,9) t(cnczle)
Mm Nn
Mm nn
mm NN
mm Nn
mm nn

Yi=p+ b, Xaadi + PaXaom,i + € atQTL position

E(ba) =a E(bd) =d
Fitted at each 1 cM position on chromosome
Position with highest F-test & QTL (if significant) 24
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£l 2 i S ei% 1 H : E ¥ R
Only change numbers inred: Data
Pasition of 4 markers {cells C27 through F27)

To map the QTL, change the postulated QTL position in cell CM27 and evaluate the F-test [CR2T) sHFTFoterscdestets
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6. QTL detection in line crosses

Additional Topics

(see also Lynch and Walsh ch 15)
a. Significance test for presence of QTL
b. Accuracy of position estimates
* Advanced intercross lines

c. Breed Crosses (vs inbred line crosses)

3
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6a. How to decide if you’ve detected a QTL?

Test statistic (e.g. F or LR) > threshold T

Set T to control the Type | error rate (False Positives)

+ Comparison-wise test at 5% : set threshold T such that:
* Prob(test > T | no QTL) < .05 allow 5% FP tests

Possible outcomes for test for QTL at a given position:

Result of significance test

True state AcceptH, Reject H,
H, is true noomy | True negative False positive
Type | error

H, is false @m)

False negative
Type ll error

True positive

31

Expected result for tests at 100 positions on chromosome
with NO QTL at 5% comparison-wise test level:

Result of significance test

True state AcceptH, RejectH,
H, Is true @oam) 95 5
Type | error
H, is false @m) 0 0
Type ll error

=>» Significance testing complicated by:

+ Large # tests performed (many markers, QTL positions)
* At o = 0.05, 5% of tests significant even if no QTL exist

+ Tests on the same chromosome are dependent
« Bonferroni adjustment (¢*= o/(# tests)) is too stringent

33
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Strategies to control % false posttives (%FP)

{Lander & Kruglyak, 1995, Nature Genetics 11: 241-247)
* Chromosome-wise test - control % FP at chrom. level

» Account for multiple (correlated) tests on chrom.
* # FP/chromosome > 1 on 5% of chromosomes

» Experiment-wise test - control %FP within experiment

» Account for all tests conducted in experiment
» # FP/experiment > 1 on 5% of experiments

* Genome-wise test - control % FP at genome level
» Account for all tests conducted on the genome
* #FP/genome > 1 on 5% of genomes tested

» Significance Levels (Lander & Kruglyak, 1985)

+ Significant Linkage at p < .05 : Prob(> 1 FP) < .05

* Suggestive Linkage : at least 1 false positive test %

Computing significance thresholds

* Adjust Table test statistic values by equation of Lander &
Kruglyak (1sss)
* Assumes high-density marker map

» Develop empirical threshold based on permutation test
(Churchil and Doerge, 1894, Genetics 138:963)

Simulate data under the Null Hypothesis (=no QTL)

Compute test statistic (F-test/ LR)

Replicate many times

Determine 95 % level of tests statistic (for 5% test)

34
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Significance thresholds by Permutation test (chucnmancerge, 1934 Geneties
138:963}

* Simulate data under the Nuli Hypothesis (=no QTL)
+ Compute test statistic (F-test/LR)

* Replicate many times

* Determine 95 % level of tests statistic (for 5% test)

Original data Randomly permuted data

Animal Pheno- Marker Pheaeno-

Test statistic under Null Hypothesis
95% Y 5% R@cate

Threshold Distribution of test statistic 4

Control of False Discovery Rate (FDR)

Result of significance test

True state AcceptH_ Reject H,
H, is true U v
Type | error
H, is false T S
Type Il error

FDR - Control the expected proportion of
significant tests that are false positives

- Control E(V/(V+S))

34
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Frequency Distribution of p-values across
many tests

400

H HO False
BE HO True

200 A

100

0.5 0.6
P-value

See notes “False discovery rate.doc” for further details

3]

6. QTL detection in line crosses

Additional Topics
a. Significance test for presence of QTL
b. Accuracy of position estimates

« Advanced intercross lines

c. Breed Crosses (vs inbred line crosses)

34
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Replicate Genome Scan results for F2
N=500 6 markers Trait with SD=2

QTL at 23 cM a=1 d=0.5 --> 14% of variance

Wl

I o~ 1//\\
N\
+ « NA: L] !L l: - ré-b: - £l L] L :éw ] =
b i //T\\ i /5\\ | ?/ : \
CTERD || R AT T I
Replicate Position a d
1 15 0.791 0.19
2 24 156 0.19
3 23 1.03 03
4 27 0.771 0.24
5 20 1.201 0.93
6 28 1.35 0.94
7 22 096 0.14
8 13 0991 0.64
9 17 0.94 0.52
10 29 0.924 1.44
Average 21.8 1.052 0.55
St.dev. 5.231 0.236 041
TRUE 23 1 0.5 4(




F2 cross design

Line 1 Line 2

o M) > [
- R

* Large chunks

* High LD

* Only 1 round of recombination
=» low accuracy of QTL position

F;;EC s Hheneration * ® 4]

Resolving Power of QTL Mapping

(Darvasi & Soller 1997. Behavior Genetics)

25
Approximate 95% confidence interval
2 ] . for QTL location {cM) for a=.30,,
2 © ~ 3000/kNa’
3] ¢ k=1forBG k=2forF2
215 1 ! - ‘
=] N=pepulation size
o ] . ;
2149 ] !
s |
. ;
w |
51 o
7 _ 1
T
0 1000 2000 3000  40OC 5000 6000 Y0OO  B0GO 9000 10000
Mapping populztion size {actual)

Increase resolution with advanced intercross lines

® Recombination breaks genome up in smaller pieces
- reduces LD except at short distance (parvasi & solier 1995 Geneticqy




Strategies to increase accuracy of

estimates of QTL position in line crosses

F2/BC:

* Increasing marker density limited effect

* Increase population size

Advanced intercross lines
=» Higher accuracy of QTL position

* Requires more markers

t=5
FngC SH "éhnemior‘s

to maintain power to detect QTL (lower LD)

Recent LD extends over large distances

2 1 I Generations of recombinationJ
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Overview of Strategies for QTL mapping
[LineIBreed cross [Outbred populationj

ﬂinkage analys& /ﬁnkage analys& /LD mapping\
LD markers LE markers LE markers

HS/FS Ext. | Cand. High
F,/BC AIL fam{Iies pedigree| genes dengsity

LD used Population wide
A

Recomb. | 1 rnd >1 rnd

—_—

LD extent | Long  Smaller
—

Marker maﬂl Sparse  Denser

Coverage Genome wide
e

.Map resol. \F‘oor Betterj \ j \ Y,

6. QTL detection in line crosses

Additional Topics
a. Significance test for presence of QTL
b. Accuracy of position estimates

e Advanced intercross lines

c. Breed Crosses (vs inbred line crosses)

44
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F, 2 Berkshire sires

9 Yorkshire dams

M, N, BB X YY |[M,N,
M, N, M, N,
F, 8 sires X BY 26 dams
M, N, M, N,
M2 N2 M2 Nz
F, 525 BB YB YY
M, N, M, N, M, N,
I\,'1 N1 M2 N2 |\'II2 N2

S |

Breed origin  Ppgg

probabilities

Pgy

Pys  Pyy
derived for a given position

4§
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F, Cross between breeds

Haley and Knoit (1992)
Heredity 69: 315

Identi'cal to crbss of iribreds
but follow B vs. Y alleles

Markers | Pr(BB)

PrBY)|Pr(YY)

Additive coef. |Dom. Coef.

xadd Xdom
Pr(BB)-Pr(YY)| Pr(BY)

MM

MM
MM
Mm
Mm
Mm
mm
mm
mm

NN
Nn
nn
NN
Nn
nn
NN
Nn
nn

f(C1 ,02,0)

f(c,C,,0) [f(c4,C,,0)

f{c,,c,,6} fic,,c,,0)

Yi =u+ baxadd,i + bdxdom,i + el at QTL position

E(b,)=a

E(by) = d

Fitted at each 1 cM position on chromosome |
Position with highest F-test > QTL (if significant) 4

-logP

_——Line-Cross

SSC1 MAR

a=-013
d = +0.19

5% Chr.w

" J \

Detect QTL that differ in
frequency between breeds | iy
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Breed cross interval mapping

Fo 2 Berkshire sires 9 Yorkshire dams
At i BB X

ek
i\\\ﬁ AT ¥ i .
Fy 3 sires Y X BY 26 dams

F: 525 BB BY YB YV

Compares average Berk allele to average York allele
> QTL only detected if breeds differ in frequency

Berk X York
Frequency of Q Ps Py QC%-M
+a
Line cross additive effect = (Pg-Py)a Qq d
Line cross dominance effect = (Pg~Py)d qq -a

Summary of QTL mapping
in Line/ Breed Crosses
» QTL detection requires LD between markers and QTL

» Cross - extensive LD
- genome scan with markers @ 20 cM

» Regression interval mapping
- estimate QTL position, effect

» Estimates have limited accuracy
> 10 - 30 cM confidence intervals

« Fine mapping not limited by # markers but requires
* larger populations
« crosses that accumulate recombinations

* Recombinant Inbred Lines
« Advanced Intercross Lines

* Only detects QTL that differ between breeds

26



Breed
Cross
QTL

Scan F, 525 BB BY YB YY

QTL that differ
g = in frequency
between breeds

= Wide QTL region
(20-50 cM)

2 LD mapping

Within-breed MAS requires QTL
that segregate within breeds

Follow-up within-breed research in QTL region:

- Linkage mapping - see next
Evans et al. (2003 Genetics:621) - confirmed QTL in 10 commercial lines

> day 3

57

Overview of Strategies for QTL mapping

| Line/Breed croﬁssx |

Outbred population

- /Linkage analysis /Linkage analysis LD mapping\
LD markers LE markers LE markers
" F,/BC AL |[HSFS Ext | Cand. High

families pedigree genes density

LD used Population wide

Recomb. 1rnd >1rnd

Marker map| Sparse  Denser

)
LD extent | Long  Smaller
R

Coverage Genome wide

@Qoor Better/
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7. QTL detection in outbred
populations - linkage analysis

e.g. livestock, wildlife, human
Reading

Dekkers and van der Werf (2007) Chapter 10 at
http://www.fao.org/docrep/010/a1120e/al 120e00.htm

59

LD always exists within families

£=001

LD behavior similar to BC/F2 |-
Sire N

!

Progeny

=
o

= Marker - QTL LD among progeny at large distance

54
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QTL mapping in half-sib family design

Within-family LD not consistent across families

Sire 1 Sire 2 Sire 3 Sire 4
M Q M q M Q M q
. — - R -
-—t ~+—t ——t= -+
m q m Q m Q m q

=» Analysis must allow for
different marker-QTL linkage phases within each family

QTL effects must be fitted w/in family:
Yij= W + g Poj; + €

Pq,; = Prob(Qy, | marker genotype, QTL position)
g = QTL allele substitution effect for sire i

See e.g. Knott et al. Theor.Appl.Genet. 19986, 93: 71-80

Power of alternative QTL mapping designs

For given humber of animals genotyped

F2 > BC > Fullsib > Halfsib

Typical size used

> 500 animals >1000
animals

Outbred designs: Fraction p2+q? of parents are homozygous for QTL
= non-informative

39
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Daughter design for QTL detection and MAS

\ "l\.“
Compare production™

59

Grand daughter design




Grand-daughter Design (weter etal. 1990)

<---c--
Grand M b 9 9
Sire $ - X 5 i
m d ? ?
SonsiL Genotyped for marker
WO e M9 pa M 4 pme Qe
2 ?[wo] ? 2 [me ]|l ? ?[wo] ? % [ue
Mean phepgtype of progeny<or each son
(or ’'s EBV or deregresseéd EBV)
w2 S
J+,(1-20) & Average L= 1,(1-20) O
Contrast of average EBV of sons my,-m,,,= ,(1-2c)a|

Overview of Strategies for QTL mapping

| Line/Breed cross'| Outbred population

/Linkage analysﬁ /Cinkage analysis\/” LD mapping

| LD markers LE markers LD markers
HS/FS Ext. | Cand. High
o - F,/BC AIL families pedigree genes den%ity

LD used Population wide Within family
Recomb. || 1rnd >1 rnd 1 rnd | >1 rnd
LD extent | Long  Smaller || Long  Smaller

Marker maal Sparse Denser Sparse Denser

;

Coverage Genome wide Genome wide

i

Map resol. \Poor Betteu \Puor Better

/

Linkage Analysis in extended pedigrees by random QTL effects - see later
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8. Summary and limitations of QTL mapping
in outbred populations using sparse markers
« Within family - extensive LD
- genome scan with markers @ 20 cM

» Regression interval mapping
- estimate QTL position, effect

» Estimates of marker/QTL effects differ by family
- complicates MAS

« Estimates have limited accuracy
> 10 - 30 cM confidence intervals

« Fine mapping not limited by # markers but requires

* larger populations

» Populations that accumulate recombinations
= Linkage analysis in deep pedigrees
» Historical recombination - LD mapping 6

Software for QTL mapping
by linkage analysis

Many programs available (with tutorials)
See: http://linkage.rockefeller.edu/soft/list.htm]

* For inbred line crosses: Mapmaker QTL
hitp://iwww.broad.mit.edu/genome_software/other/gtl.html
http://darwin.eeb.uconn.edu/notes/gti-mapmaker.pdf

» For breed crosses and outbred populations: QTL Express
http://gtl.cap.ed.ac.uk/
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Day 2 QTL Detection

Objective
Present principles for detection of genes affecting
quantitative traits (QTL) using genetic markers
in ‘simple’ experimental designs
Concepts covered relevant to issues in ‘genomic selection’

Single locus quantitative genetic model
Principle of use of LD to detect QTL using markers
Overview of strategies for QTL detection
QTL detection using line crosses
QTL interval mapping in line crosses
QTL detection in line crosses — additional topics
a. Significance testing
b. Accuracy of position estimates
c. Breed crosses (vs inbred line crosses)

7. QTL detection in outbred populations - linkage analysis
Summary and limitations 2 need for LD mapping
9. Software for QTL mapping

@ kwbh=

®
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