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OUTLINE / TOPICS
¢ Infroduction and motivation (Jack)
Models to predict single SNP effects (Dorian)

o Fixed effect models
o Fitting SNPs as random effects

Bayesian methods (Rohan)
o Bayes theorem
o Gibbs sampler
o Metropolis Hastings

Genomic prediction (Dorian)
o An equivalent (animal) model for genomic prediction
o Some alternative computing strategies that are not equivalent models
o Two practical problems of genomic prediction
Bayesian methods applied to genomic prediction (Rohan)
o Bayes A
o Bayes B
o G-BLUP

Interpretation of SNP effect estimates (Jack)
o Linkage and Linkage Disequilibrium
o Spurious associations from relationships and breed mixtures

Application of genomic prediction models to real data (Dorian)
o Training and validation
o Problems with validation
o Improved Validation — simulated real beef cattle applications
o Validation Statistics

Other genomic prediction methods (Rohan)
o Bayes Cn and estimation of &t
o Estimating the scale factor
o Alternative distributions - Heavy-tailed vs. Normal distributions
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ADDITIONAL TOPICS
e BIGS Genomic Selection Analysis software (Dorian)
e Genomic Prediction across‘breeds and in crossbreds (Dorian, Jack)
e Low density panels for Genomic Selection (Jack)
e Degression of EBV and weighting information (Dorian)

e Pooling genomic EBV and pedigree or own information (Dorian, Jack)

il




Genomic Selection in Livestock

Dorian Garrick
Rohan Fernando
Jack Dekkers

June 14 - 18, 2010

Animal

i Ly
§odmal g R
wiH 2005 8
i

[OWA STATE SCIENC;E
UNIVERSITY |

College of Agriculture and Li fences — "¢

Genomic Selection in Livestock

Some housekeeping

Course hours;
8:30 - 12 AM with 30 min, break at ~ 9:45
Lunch on your own

1:30 =5 PM with 30 min. break at ~2:45

Course notes:

Distributed daily + posted at:

htip:h’laurus.anscl.iaslale.edufroups!genomicseIeclionlnllveslock}wikih293dJCourse_lnformatinn.html

Course BBQ: Thursday @ 5:30 - details to follow




Genomic Selection in Livestock

Introduction and Motivation

Jack Dekkers

Past and Current
Selection Strategles
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This approach has been very successful

for many traits
US Holsteins - Milk production
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$$3$3 later

and has important limitations
eg. Need to select Bulls by Progeny Test

5 years and -

Superior progeny
tested bull

Limitations:

-Long genaration intervats
-High cost of progeny test
-Difficult to Improve
low heritable tralts
tfertility, diseaze resistance)
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Molecular Genetics
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The promise of MAS

Phenotypic Q
data
N %

Marker-Assisted
Selection (MAS)

Molecular
data

+ Expressed in both sexes

+ Expressed at early age
* Requires less phenotypic data

Potential gains from MAS in livestock

Movwiszan 4 Godderd, 1098 (GSE)
QTL with 173 of genetic variance haplotype-marked
Lo RS | R baneficial for
2. _.i,/ ‘ditficult’ tralts
£
40 1/”
30 l/
20 -'["/ m
P 7/ Carcass trait
ﬁ"’ / / Sax-limited trait

P & /" Phanotyped after selection
A Phanotyped before sslection
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Trait Direct markers LD markers LE markers
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Reasons for limited use of MAS

in livestock (w date)

* # markers available was limited
Markers only explained limited % of genetic variance
* Only QTL with moderate - large effects detected
Genotyping costs
Marker/QTL effects were not consistent /
not transferable to commaercial breeding populations
* ‘Beavis’ effect — effects of ‘signiticant’ markers
tend to be overestimated

* Marker effects were estimated within families
or in experimental crosses
* Interactions of marker/QTL effects with genetic
background and / or environment
* Inconsistent marker-QTL LD across populations

A Revolution in Molecular Technology

d| High-through-put
SNP enotyping

NOW AVAILABLE:
Illumlna Bovine 50k Baadchip
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High-density SNP genotyping tools are
now available for most livestock species

- Developed in collaboration with USDA ~ Beitsvilie. University of
Misscur, and University of Alberla

4 CanineSNP20 - CanineHi coming in G4 26601

- 22,000 validated SNP probes derived from the CamFam2.0 assembly

EquineSNP50

~ Developed in coliaboration with: Internafional Equine Genome
Mapping Workshop and the Morris Animal Foundation's Equine
Genome Consortium

> PorcineSNPG0
- Developed in coliaboratipn with Int't Porcine SNP Consortivm (Marlien
Groenen; Wageningen Univ)

CvineSNP50
- Developed in collaboration with the Internationsl Sheep Genomics
Consorlium (15GC)

< MaizeHD - coming in G4 2009}
4+ And many more.....
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Conduct Statlstical Analysis for

eaCh SNP {Genome-wide Association Analyses - GWAS)




GWAS SACCUTI QAL
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SNP genotype vs. phenotype ¥
associations analyses across genome

Progeny tested hulls grouped by SNP geno g
SNP Average EBV 5

Genotype  protein yileld 3

AA +20 8
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SNP effect estimate = +5 forA | 3

Estimates of SNP Effects

itk

' Very noisy estimates

*+ Hard to separate true
from false associations
- Many false negatives/positives -
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How to use hlgh-dens.lty SNP data?
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= Conduct Statistical Analysls for ‘
T each SNP cwss)
\ﬂ\ | Attows detecting more LD markers
Use only but still suffers from only using
Sighﬁ:&ﬁg NPs ‘mnﬁicts are missed
* Beavis effect

Use of hlgh-densuy SNPs for MAS

N i% fé*i%w% (T

4

Conduct Statistical Analysis for

each SNP cwas)
Use only Use all Genomic
significant SNPs SNPs selection
for MAS for MAS (Meuwissen et al, ‘01)
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Solution: Genomic selection

Meuwissan ot al. 2001 Genatica
Genetic Evaluation using high-density SNPs

* All SNPs fitted simultaneously, i.e. 50,000 vs. 1 at a time

* SNP effects fitted as random vs. fixed effects
* enables all SNPs to be fitted simultanecusly
* shrinks SNP effect estimates to 0 depending on evidence from data

o
2 o .\\:‘?:“.\.l ‘
+ + e
i N ﬂk 9& i
?LJ? Use to estimate
Estimates of SNP effects ﬁk breading value of new

Implemented using a variety of animals based on
Bayesian methods (Bayes-A, -B, -C) genotypes alone
Or by using genomic vs. pedigree
relationships_in_animal model BLUP (GBLUP) Genomic EBV = z ﬁk S

Example Genomic EBV based on 3 SNPs

with estimated effacts (B for # A alieles ¢1em) of:

+10 for SNP 1
+ SforSNP2
~10for SNP 3
Genomic
SNP 1 SNP 2 SNP 3 Breeding
individualiGenofype Value [Genotype Value |Genotype Value] Value
1 AA 10 AA 3 AR -10 5
2 AA 10 AA 5 BB 10 25
3 AB 0 BB 5 AB 0 5
4 AB 0 BB 5 AA -10 15
5 BB 10 AA 5 AB 0 5




Number of Animals

Data used to develop
Genomic predictions in Holsteins

1000 4 >3,500 progeny-testad bulls I..PrEdfcmr
Predictee
800 - “ Young
600 -
400 -
200 -
0 A

1950
1970
1990
1992

H

Genomic EBV have greater reliability
for young bulls and heifers

than Parent Average EBV
E.g. for Young Holstein Bulls

nRaden and Tooker, 2009 USDA-AIPL)
fip:/alpl.arsusda.gov/pubvoulgoing/GenomicRellablity(608.doc

Gain over parent average
Trait reliability (~39%)
Net merit +23
Milk yield +32
Fat yield + 36
Protein yield + 28
Productive life +33
Dtr. Pregancy rate + 20

12



The Promise of Genomic Selection
(based on simulation and some empirical results)

* Increase accuracy of EBV at a young age
* Reduce generation intervals
* Reduce rates of inbreeding

+ Reduce need to obtain phenotypes on
selection candidates and/or close relatives

This has the potential to revolutionize the
design and implementation of breeding
programs for livestock (and plants)

Potential impact of GS on dairy cattle breading

Superior progeny-
tested bull

AR o by v S i
P i s?':..::"-
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Potential impact of GS on Dairy
Cattle Breeding

+ Al Studs market
young bulls / bull teams
selected on Genomic EBV

+ These young bulls result from
ET flushes of heifers contract-
mated to young bulls

selected on Genomic EBV

+ Need for progeny-
testing may decrease

Genomic Selection in Livestock

Short course - focus

+Statistical, quantitative genetic,
and computational aspects of genomic setection

-Software for genomic selection analyses

‘Strategies for implementation of genomic selection in livestock breeding
programs

2 Animal
IMAL
IO;NA STATE AN CIENCE Breedmg@

UNIVERSITY
College of Agriculture and Life
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Course Outline / Topics

Models to predict singfe SNP effects (Dorian)
* Fixed effect models ; Fitting SNPs as random effects

Bayesian methods (Rohan)
+ Bayes theorem, Gibbs sampler, Metropolis Hastings

Genomic prediction (Dorlan)
* An equivalent (animal) model for genomic prediction
+ Some alternative computing strategies that are not equivalent moedels
= Two practical problems of genomic prediction

" Bayesian methods applied to genomie prediction (Rohan)
+ Bayes A, Bayes B, G-BLUP

Interpretation of SNP effect estimates {Jack)
+ Linkage and Linkage Disequilibrium
» Spuricus associations from relationships and breed mixtures
Application of genomic prediction models to real data (Dorian)
» Training and validation; Problems with validation
+ Improved Validation — simulated real beef cattle applications
+ Validation Statistics

Other genomic prediction methods {(Rohan)
+ Bayes Ca and estimation of

+ Estimating the scale factor
+ Alternative distributions — Heavy-tailed vs. Normal distributions

BIGS - Genomic Selection Analysis software (Dorian)

Additional Topics

- as time / interests permit -

« Genomic prediction across breeds and in crossbreds

» Development and use of low density panels

+ Degression of EBV and weighting information

» Pooling genomic EBV and pedigree or own information

+ Examples of the design of breeding programs

15






Genomic Selection
Why does it (not?) work?

Jack Dekkers

AB&G short course 2010

Animal

Iom ’STATE CIENCE
UNIVERSITY JAAG

College of Agriculture and Li le-Sci

Original Premise of Genomic

Selection
(Meuwissen et al. 2001)

Although SNP panels contain few (if any)
genotypes for the actual QTL,
they are predictive because causative
SNPs capture the effects of closely linked QTL
through Linkage Disequilibrium between SNPs
and QTL

i.e. associations between SNPs and phenotype
result from the QTL being in LD
with one or more SNPs




Marker-phenotype

associations

Mean )

weight .,
wn 105

+

n 3
o2

u, [
= « 100 _ _
" O Marker is associated
;0_, 8 . with phenotype
S e .because the marker is
& 95 1 in LD with the QTL

Two loci are in
Linkage Disequilibrium
in a population
if
Alleles present at the two loci are not independent
(statistically)

Thus...

If the allele you see at locus M (e.g. marken)
{(on a particular chromosome / haplotype)

depends (in part)
on the allele that is present at locus Q (e.q.am)




Linkage Equilibrium (LE)

M is as often associated with Q
as m is associated with Q

Marker genotype NOT related to phenotype

Linkage Disequilibrium (LD)

M is more often associated with Q
than m is associated with Q
D=Pyg-PyPg#0

= Marker genotype IS related to phenotype
(if Q/q has effect on phenotype)




A useful measure of LD between two loci

2 = squared correlation between allele/genotype present at
locus M and the allele/genotype present at locus Q

Indi- Parental | Ordered genotypes #1 alleles
vidual origin Locus M Locus Q Locus M LocusQ
1 Paternal 0 0 0 0
Maternal 0 0
2 Paternal 1 0 2 1
Maternal 1 1
3 Paternal 1 1 1 1
Maternal 0 0
4 Paternal 0 i} 1 0
Maternal 1 0
5 Paternal 1 1 2 1
Maternal 1 0
Correl =0.53 Correl =0.76
r2=0.29 r2=0.58

12 based on alleles and 2 based on genotypes are expected to be equal
if males and females are mated at random

r? based on genotypes is much easier to compute (doesn’t require haplotyping)

Consider 1 SNP and a nearby single QTL
The SNP will have an association with phenotype
iff the SNP is in LD with the QTL
The SNP effect depends on LD between the SNP and QTL

Phenotype =y =+ dgr + € gor. = additive QTL effect

SNP association analysis: y=pu+3dgyp+©  Gsnp = 0/1/2
or -1/0/1

B= COV(V,QSNP)/ Var(ggyp) = COV(gQTLagSNP)/ Var(dgyp)

= r VVar(ggr )/ Var(gsyp) = © War(gQTL)/ 2pq
r = correlation between SNP and QTL = VLD

Amount of variance explained by the SNP:
Var(Bgswe) = B2Var(gshe) = [r2Var(ggn)/ Var(@sye)] Var(gswe)

=12 Var(dor)

= The proportion of variance at the QTL that is explained
(captured) by the SNP = r?2 = LD between SNP and QTL




Mechanisms that Generate and Erode LD

A variety of mechanisms generate linkage disequilibrium, and several of these can operate
simultaneously. They can be separated into:

1. Recurrent factors — operate to create LD each generation

a. Drift {inbreeding) in small populations — by chance or sampling, haplotypes
passed on to the next generation are not in LE frequencies

b. Recurrent migration — continuous mixing of populations in which haplotypes occur
in different frequencies (e.g. Pr{A4,8,)=1 for pop. } and =0 for pop. 2)

c. Selection — certain haplotypes may be selected upon and inerease in frequency
— selectjon also creates LD between loci that are selected upon
(= Bulmer effect - see later)
— selection with epistasis (certain combinations of alleles are favorable)
also creates LD between loci involved.

2. Punctual factors — operate only sporadically over time to create LD

a. Mutation — occurs in a specific haplotype, which is then the only haplotype
that contains that mutation, resulting it to be in LD with the mutation.

b. One-time admixture/migration/crossing (e.g. producing Fy/F») — results in mixing
populations with different haplotype frequencies

c. Population boittleneck / founder effects — severe drift from 1-time sampling effects

Processes that create LD
Inbred line | Line CrOSSing Inbred line I




Processes that create LD
Mutation and Selection

Allele on M chromosome mutates from q to Q
and then increases in frequency because of
- random drift
- or selection on @ > selective sweep = LD block around Q

Selective Sweep

Original mutation (q & Q) occurred in marker haplotype:
001110010Q01001110110

Many generations ﬂ of recombination

1001100610Q01{100110100
0111100{10Q01p01011010
001001110Q01P00010111
001110110Q01101101110
011010010Q01001100010
Unique haplotype 000110010Q01P01000111
associated with Q 111010410Q01011101111
010110010Q01p01101010




Processes that create LD
Random drift/inbreeding

But, any LD is continuously
eroded by recombination

¢ = recombination

M*"Q'b rate
L . S = proportion of
' ql recombinant
Py gametes
1)
Gametes "’6,-
2
produced "%
by meiosis
M Q m q M q m Q
5(1-c) frequency '/y(1-c) il,c  frequency Y/,




Break-up of LD by recombination

2

1

c=.001

0.9
0.8
0.7 1
0.6

c=.01

0.5 -
0.4 -
0.3

0.2 -
0.1 A

0 L — T T T T T T T 1 LN R Y I o

0 5 10 15 20
Generation

25

Another way of looking at LD

Conservation of chunks of ancestral chromosomes

Marker Haplotype

111 2

Size of conserved chunks depends on how
long ago LD was created — longer if N larger




Historic LD expected only over short distances

{ Generations of recombination |

/

Gen 1

2

0 74—@ T T T 1 T T T T ] T T T T 1 T T L) T T T T T T T T T L) L 1
1] 5 10 15 20 25 30
; Distance (cM)

Balance between Drift and Recombination

In small(er) closed populations
¢ LD is continuously created by drift — more with smaller effective pop. size, ¥,
¢ LD is continuously eroded by recombination — faster at longer distances

This results in a balance/equilibriumn of average LD at a given distance! E(rzm,c) =1

1+dNcf "
(Sved 1971) k
1.0
0.9 LD is very variable
0.8 LD at short distances]
0.7 is often lower than
’ expecied basedona
0.6 given effective
g’ 0.5 populat_ion size
“ {= yellow line)
0.4
0.
3 Because LD
0.2 reflects historical
0.1 effective population
size and this has
0.0 not been constant
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14¢cM




Balance between Drift and Recombination
In small(er) closed populations

* LD is continuously created by drift — more with smaller effective pop. size, N,

s LD is continuously eroded by recombination — faster at longer distances

1
This results in a balance/equilibrium of average LD at a given distance: E(roc) =1V AN

1
(Sved 1971)

0.9
Most outbred domesticated plant
08 and animal populations have
small{er) {historical} effective
Lo population size and drift-
3 recombination balance is expected
g8 to be the main contribulor to LD
L os = LD is expected to be sizeable at
g : short distances, but small at
EM longer distances.
“ os Most human populations have large
(historical) eflective size
o2 P ER) = —
1+4N,c
o = LD is smaller at given distance.
o
o 0.1 0.2 0.2 0.4 0.5

Genetic distance (Morgans)

Estimating historical N, from average LD ata
given distance

1 - 111
E(rc2) - == Ne.l' - — —2—1
1+4N, ¢ del r;
1
160
0.8
140
0.8 S
& 120
c
0.7 £ 00
s
0.6 §- 80
o,
0.5 £ &0
3
0.4 £ @
20
0.3
0
0.2

>100 B0-100 60-80 40-60 30-40 20-3¢ 10-20 5-10 1.5

Generatlons ago
0.1
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) —e—MF_HLD  -o- RW N LD i n Dai ry
—«HF_AUS  -u- ANG_AUS Cattle

——HF_NZL -o- JER_NZL

De Roos et al.
(Genetics 2009)

R
1.000 J“f@‘:ﬁ“
e

Ealimaied alfeciiva popuikion size

J—-cgﬁ-oa-
. ,-g_g:gg —e— HF_NLD —+— RW_MLD
1 yeadie Effga’ﬂﬁ HF_AUS ANG_AUS
4= e HF_AUS  sewees s AUSs |
P B HF_A ¢
pipd
—s— HF _NZL_ —a- JER_NZL
] -
1 10 100 1L00Q 10,000 100 GO0 T.O00,000

Humbar of genaratlans la paet

But: LD always exists WITHIN families

Sire

ﬂ

Half-sib M

meiosis m
Progeny
M Q M q m q m Q
——— e ——— ————
1,(1-¢)=0.4  Freq. ,¢=0.1 11,(1-¢)=0.4 Freq.  %,c=0.1

And this LD extends over long distances
- only 1 round of recombination
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-4 |Implications for
——— | QTL detection

Dimacualibriur
sppoesap e
SE2asgos

and MAS

¢ In closed breeding populations
- Population-wide LD only over short distances (< 2 cM)

» need many markers or carefully placed markers
(candidate genes) to detect QTL
> Positive markers expected to be close to QTL

e Recent crosses

¢ Within-families
> Fewer markers needed to detect QTL

> Positive markers may be far from QTL

}- LD over long distances (20 cM)

Accuracy of EBV from Genomic selection
Does it result from historic SNP-QTL LD?

Meuwissen et al. (2001 Genetics: 1819)

N, = 100

Estimates from 2200 individuals 3‘0;

GEBV accuracy Marker distance | 50
y S07 \N\' e

0.85 1cM ]
0.81 2 CM Y 3(.?er‘:em!i;n C
0.75 4 cM

And does the decline of accuracy over
generations result from

erosion of LD by recombination?

12



Impact of historic LD on accuracy of GEBV
A SimUIation StUdy = Habler, Dekkers, Fernando (unpublished)

* 8 chromosomes

« 200 QTL/chromosome

+ Heritahility 0.5 for female phenotypes, 0.8 for male phenotypes
* No historic LD, only LD from the pedigree

D. Habier

Simulations — without historic LD

Generation 0 Population in equilibrium
N=500

Real pedigree
(13 generations)

1500 males + 1500 females
(Matings: 50 sires + 500 dams)

4 training generations start

<_LE§ "w»- PR

Gevw )4 By S, D. Habier




Linkage disequilibrium
No Historic LD - Real pedigree

038

064", .

Map dislance (CM)

Simulations — WITH Historic LD

Generation -1050 Random mating
(N=500 )

Generation - 50 Random mating
(N=100)

Real pedigree 1500 males + 1500 females

(13 generations) (50 sires + 500 dams)

4 training generations start

D. Habier

14



Linkage disequilibrium
Historic L.D — Real pedigree

o
Map distonce (cM] D. Habier
Accuracy of GEBV
With/without historic LD
l -
* Similar initial accuracy
+ Faster decline in accuracy without historic LD
08 4 s
TR
““-m\‘__‘ """ C e
——— T With
ve - T
E' Without
3 0 T
q':? .....
04 -
Pedigree
BLUP
02
0 T ! ' l
i 2 3 ¢

Generation D. Habier
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Factors that contribute to accuracy
of Genomic Selection EBV

» Historic marker-QTL LD - the original premise of GS

* Pedigree relationships captured by markers
* Does not require marker-QTL LD or linkage \
Habler, D. et al, Genetics 2007:177:2389-2397
» Deviations from pedigree relationships
(genomic vs. pedigree relationships)

+ Requires marker-QTL LD or linkage to be useful>

» Population structure / stratification
(e.g. mixed populations, unbalanced family structure)

« Within-family linkage / cosegregation information
« Cosegregation between markers and )
linked QTL from parents to progeny

More important for accuracy in short term
(generations immediately following training)

Pedigree vs. Genomic Relationships

Sire, dam, and 4 full sibs (from Dorian Part |)

)} G matrix
A matrix _ -
10555 51 1 0 5 5 5 5
01 5555 015555
5 511 5|5 5 5 511 6|4 4
5 5|5 1|5 5 5 516 114 4
55 5 511 5 55 4 4|1 6
| 5 5 5 5|5 1] 55 4 4|61

Deviations of genomic from pedigree relationships
are predictive only if SNPs are in LD or linked to QTL

16



COVARIANCE BETWEEN RELATIVES BASED ON A LINKED MARKER
Example for paternal half-sibs and for full-sibs based on

Qo Qo genotypes at a marker linked to a QTL with recomb. rate ¢.
Covariances between HS/FS at QTL if marker alleles
1
< 0.8
E 0.8
§07
&
8 506
£ J
T 605
§ S04
203
8- 0.2
g0
£0o.1
0
0 0.1 02 0.3 0.4 0.5
Marker-QTL recombination rate
Proportion T prg, Distribution of the proportion
shared by | ba- of alleles shared by Sibs
fullsib pair | bility Based on Van Raden 2007, Interbull
11ocus Percentage of alleles shared
0/2=0 e # Loci Full sibs Half sibs
1/2=025 Ve Mean SD Mean SD
22 = 1 Y [ 50| 354 25|  17.7
Average | 0.5 3 |5 50| 15.8 25 7.9
St.Dev. | 0.35 % 10 50 11.2 25 5.6
2 loci | a {59 50/ 5.0 25| 25
= 0
0/a=0 /s S. [100 50/ 35 25| 18
- 1
1/4=0.25 3“ Infinite 50, 0.0 25| 00
2/4=0.50 %s_{ [Linked loci 50| >35 25| >18
= . 1
3/4=075 “ Genomic relationships capture some of the
4/4 =1 g Mendelian sampling terms
Average | 0.5 if the SNPs are linked to QTL
StDev.| 025 Note that a parent and offspring always share
exactly 50% of their alleles 34

17



]

Genomic vs. pedigreei relationships
in real data

Wolc and Dekkers, unpublished

parker » -£ 3371 +0 5503 pediprec
0.? Y.
ok + F..?m
[ . A Tt (%7
LI Mike
o Cast b, o vkl
Z fos : o ¥
B k ﬁ+ [JEES
= e *** '
o ' *
'..3 + f:;t +
-— o of
Q +
T +
© +
o]
c
[T
: o
Pedigree errcrs?
0.4

T
0.6 6.1

0.2 ol €8
Pedigree relationshiil

The impact of genetic relationships on genome-

assisted breeding values in German Holstein cattle
David Habier, J. Tetens, F. Seefried, P. Lichtner, G. Thaller

Institute of Anima! Breeding and Husbandry, Christian-Albrechts University of Kiel
GSE 2010 42:5

> 3,863 progeny-tested German Holstein bulls » Sampling of bulls into training and validation

» Genotyped for 54,001 SNPs » Excluding bulls that cause 1o excesd amax

» Traits: Milk, fat and protein yiefd, somatic cell score » Training size: 2,084 and 1,042 bulls
» Family structure: Half- and full sib famities, fathers » Validation size' 480 bulls

and sons

Controled the maximum additive-genetic relationship
{@mar) betwesn bulls in training and validation

Amax Close relatives in training

06 Fathers, full sibs, half sibs

049 Half sibs

0.249

01249 - D. Habier
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Additive-genetic relationships between
bulls in training and validation

0.6

Additive-genetic relationship

0.43 |

0.249 4

0.125 |
0.085 -

upper / under quartile
median M

-

0.60 0.49 0.249 0.1249
Armax D. Habier

BayesB (Meuwissen et al., 2001)

» 1% of available SNPs are fitted
G-BLUP

» Genomic relationship matrix (uses all SNPs}
P-BLUP

» Numerator-relationship matrix

Estimation of GEBV

D. Habier
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Accuracy of GEBV against a,,,,, between
training and validation populations

Milk yield
14 _
i BayesB =-
0.8 ' \::“\K\ G-BLUP -&-|
. ":T:::\N _ s
Sl b |P-BLUP
0.8 o e
O_ 7 ) - e - .
ey T
0.4 1- -
"\
\" .
0.2
0 -
1 0.65 0.49 0.249 0.1249
qmax D. Habier
Conclusions

» Genetic relationships (between individuals used for training and validation /

prediction) can contribute substantially to the accuracy of GEBV|

Implications

» Accuracy of GEBV will be lower for individuals that are not

well connected to the training data.

*» Part of the decline in the accuracy
of GEBV over generations results
from declining genetic relationships

with the training data.

09

i

= 0.8

2

< 0.7
0.6

1 2 3 4 5 6 7 8

Generation

» 2 0ngoing phenotyping and re-training will be needed to

maintain accuracies of GEBV

+ How accurate are GEBV when used across breeds? sce tater
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6/12/10

Motivation
The problem of predicting genetic merit

What's wrong with what we do now?

The Prediction Problem T e

Model Equation
y=Xb+Zu+e

Other aspects of the model
First moments  E[u] = 0,E[e] = 0, therefore Efy] = Xb
Second moments varfu] = G, varfe] =R, cov[u,e']=0
Distributional Assumptions e.g.u,e ~MVN

Want to predict u or linear functions like k'u




Original Solution

Generalized Least Squares (GLS)

For estimable q'b, q‘B” is BLUE (Best Linear Unbiased Estimator)
where b® = (X'VIX) X'V1y  for V=2GZ'+R

then @t = GZ'V"'(y - XB"), is BLUP (BLU Predictor)

(same as Selection Index/BLP except (y - XB”) in place of (y - Xb)

obtained by exploiting (genetic) covariances between animals
In traditional animal breeding practice
G is large and dense and determined by A the numerator relp matrix

V is too big to compute X'V

BLP vs GLS BLUP

y=XB+Zu+e

y-XpB=Zu+e, afully random model

Selection Index Equations Pb = Gv

b =P'Gv, defines the best linear function to predict u
the "weights" are the same for every animal with the same
sources of information (ie same traits observed)

BLP o= b'(y-Xf8) = vGP" (y - Xf)
o GLSBLUPa=GZ'V'(y-Xj)

6/12/10



Henderson’s Contributions One

Developed methods to compute G and R from field data
Henderson's Method | {not his!), Il and llI
Including circumstances that involved selection

Henderson’s Contributions Two

Invented the Mixed Model Equations

XR'X X'R"Z “: BO :|={ X‘R'ly ], for full rank G
ZR'X Z'R'Z+G™ u Z'R'y

and jointly showed k'b® and & were BLUE and BLUP

Compufationally tractable if G and R assumed diagonal or block-diagonal

(eg sire model with relationships ignored)

(Order 40 matrix takes weeks to invert by hand)

MME typically sparse in national animal evaluation

6/12/10



Henderson’s Contributions Three

Invented an algorithm to directly form A™ from a pedigree list
Then G™ can be formed as a scalar product or kronecker product
define d to be "mendelian" sampling variance
d=(1,3/4,1/2) for 0, 1 or 2 parents known

define s'=(-1/2, -1/2, 1) to represent sire (if known), dam (if known)

and individual equations
accumulate sd™*s'in the sire, dam and individual rows/columns

for every trio of animals in the pedigree list

Consequence of Al structure

sire  dam {

Accumulate for each animal sire 025 025 05
dam { 025 025 —05 |d
i -05 05 1

When both parents are known
Nonparents (ic terminal offspring)

Own equation (ie row) has 2 on diagonal, -1 in sire column -1 in dam column
Parent with one offspring

Own equation has 2+1/2 on diagonal, -1 in sire and dam columns

in addition to -1/2 in the column of its mate, -1 in column of offspring
Parent with many offspring to different mates

accumulates a large diagonal element, many small negative offdiagonals

6/12/10



Consider rearranging the MME

In general,

[ ZR'X ZR'Z+G" |

b |_[me
|-
or equivalently [Z'R'IZ +G"! ][ﬁ] = [Z'R'l (y - Xf)")]

Single trait animal model R = Iof, G= AO';, G'= A_IO'J;2

or multiplving 0':, [Z'Z + lA'l][ﬁ] = [Z'(y —-Xb° ):l, with A= O%;

Consider the MME for a nonparent

(22 + 27 ] =[ 2y - Xb°) ]

~ Nonparent animal with one record

(1 + %\a')ﬁﬂ"fm’ __-/A“ﬁsire - ﬂ"I”‘Edam = adj“ﬂed_)’
l';' i :7 22”—(&5&: + L‘Eci'mn ) (adjust(?d___ y)
arimal (1-{—2)‘_)2 (1+2l)
={1-w)PA+ w(adjusred_y) for w= i +12,1)

6/12/10



Consider the MME for a nonparent

1
{1+224)

u

= (1-w)PA+w(adjusted _y) for w=

animal

5

1-h?

A= P so for B* =1, A=0,w=1, (no shrinkage)

forh® =low, A=big, w=small, (shrink the deviation)
Two sources of BV information are pooled

The parent average PA

The individual prediction (shrunk deviation)

with heritability influencing shrinkage

Consider the MME for a nonparent

(27424 J[8]=| 2(y-Xb°) ]
Nonparent animal with one record
Bopima = (L= W)PA + w(adjusted _y)

Nonparent animal with no record

~

2ﬂ’uanimal - ]’usire - ;Lu’dam = 0
A ;L (usire + udam ) (usire + udam )
u’animal = 12 = 2 = PA

6/12/10



Reliability of nonparents

: - “ var(u
Property of BLP/BLUP is cov(u, &) = var(i) so 1’ = ()
var(u)
o} ﬁsirﬂ J"’:;'dam :
but u , = ——+—L for nonparent without a record
HonAparen. 2 2

2 2 1
50 1_2 — _sire + dam < _

nonparenr 4 4 - 2
ir ared, o . .- .
Finally AG = —Tﬂ%, limiting selection response

when candidates at puberty lack phenotypic information

An option to do better

6/12/10



6/12/10

Solution

* We need a different representation of the
covariance between relatives, that allows
relatives other than parents to directly
contribute to the prediction of nonparents
without records

* The NRM or A-matrix is an expectation of
relationships in the context of repeated
sampling of the pedigree (conditional on
pedigree)

A-matrix

* Relationship with self is 1+F (noninbred F=0)

* (Additive) relationship of ¥ between non-inbred
full-sibs and between parents and non-inbred
offspring

* Relationship of % between non-inbred half-sibs
and between grandparents and offspring

* But particular individuals can have greater or
lesser values

- If we know their genotype we can compute
relationships conditional on the chromosome regions
they inherited




A matrix
5 5

nlhinin o —
hinthin — o
noban o — n
h th — in in
th — i tn n a

A-Inverse matrix

s 2 -1 =1 -1

2 3 - -1 -1

Relationship matrix

= bl

-

b CONsider a sire, dam and 4 full sibs

-1 -1 2 0D 0 0
-1 -1 0 2 0 0
-1 -1 ¢ 0 2 0 _“J
-1 -1 0 0 0 ZJ
]
Relationship matrix

A matrix G matrix
{0 5 5 5 5 1 0 5 5 5 5
01 5.5 5.5 01 55 55
5515 5 5 5 5[t 6] 4 4
5551 55 5 506 1/4 4
55551 5 5 5 4 4[1 78
5 5 5 5 51 5 5 4 4 1'_i_,-..1_

A-inverse matrix

i 2 -1 -1 -1

2 3 -1 -1 -1 -

-1 -1 2 00
-1 -1
-1 -1
-1 1

(= = I =]
o C W

-1

[ VI = = R e }

G-inverse matrix

35 25 -125 -1.25
2.5 35 -125 -1.25
-125 -~125 21875 03125
-125 -125 03125 21875
-125 -125 03125 03125
-125 -125 03125 03125

-1.25
-1.25
03125
0.3125
2.1875
-0.3125

-125
-125
03125
0.3125
-0.3125
21875

6/12/10



6/12/10

Predict the last animal with no data

[ -1254,, -12Sd,, 31254, 31258, —3125i,, 2187Si,,,. ]=10]

) 1.25(i,,, + 4, }— 03125 (85 +1,)+031258,,,
u
2.1875

candidate —

But to form G, we needed to know which loci/QTL
contribute to variation in performance

Fixed effects models
to predict SNP effects

10



6/12/10

Genomic Prediction

* Two-step process
— Training population
* Predict the breeding value of (every) (small) genomic
region {to find the informative regions ie QTL)
— Target population
* Predict the breeding value of the selection candidates

by summing up the breeding values of all the genomic
regions they inherited

Performance

Data on some locus

1)
Y pa,
§ +*
7 - L]
=Y 4p.

‘

¥
M How do we model it?
; _ (ie What are our expectations?)

v Yaa
v
umina notation

AA AB BB Genotype

11



Performance

Data on some locus

L)
#
Model the data as genotypic effecs ] —
y=1p+Qg+e . ' E[yBB]_!'L
v [
Yao —
i 100 - — +
Tuz 1 ooy, . E[yAB.] Ht 8ap Ers
A [
Yoo |_{ 1 100 v
v 10 F 010 [R“‘}”
¥ 1 8 L o[ &
A
1 D0
Yuw
1
y _ Four Unknowns
- E[yM'] =L+ g4 Three pieces of information
p {or less if a genotype is
not represented)

AR AB BB Genotype
—1

Parameters and Information Content

» The information content (in fixed effects
model) is partly reflected in the degrees of
freedom

— Some degrees of freedom are available to
estimate functions of fitted parameters

— The remainder, if any, contribute to the error sum
of squares
* Overparameterized models have more
parameters than estimable functions

6/12/10
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Fixed Effects Model for Genotypes
y=Xb+Wq+e
b contains th¢ usual fixedeffects

m
q=| 4.5 | defines a class effect

Ggp
W is the incidence matrix for AA, AB, BB genotypes
and has 3 columns — one for each genotype class
and N rows — one for each animal with exactly one

Lin each row according to the genotype of the animal

Fixed Effects Model for Genotypes

y=Xb+ Wq+e
Ely]=Xb + Wq

var[y] = var[e] = 1o

6/12/10
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Least Squares Equations

%

For [b]=[u],X=1

XX X'W b
WX W'W

N n, n, N Y.
n n 0 0 .
LHS=| ™ ™ RHS=| 7
n, 0 n, 0 Vap-
ngg 0 0 ny Yas-

Equations have order equal to number of fixed effects plus genotypes

No unique solution

[ MNein ] [ ]
AX Ab BE P
0 0 .
LHS=| % " RHS =| ¥
e 0 n, 0 Yag-
n, 0O 0 ny You-
[0
- Htdqa,
b= , i5 one possible solution
Ht g
#"}'QBB ]

6/12/10
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No unique solution

H+ggy
b=| 94" | s another possible solution
a5 ~ 4
L O -
N n, n,e N, Y
n n 0
LHS=| * ™ RHS =| 7™
ne 0 n, YaB-
LnHE'n B '5_5 L}'B'BJ

Different Solutions have same
Estimable Functions

L+ Gy 0
+
B]: Gos— dp l;lz Ltq,
+
948 — 95r HT
i 0 | i H+4p, )

Interesting contrasts

kK'=[ 11 0 0 ]henk'h,=k'h, =74,

k':[ 01 =1 0 ]rhenk‘ﬁl:k'f)zququ

6/12/10
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Estimable Functions

* In fixed effects models, many model
parameters or functions of model parameters
are not estimable, even though a numeric
value can be obtained by solving the least
squares equations (eg by generalized inverse)

[X'X] is any generalized inverse of XX if (X'X)[X'X]" (X'X) = X'X
Define H=[X'X] (X'X)
A linear function k'b® is estimable if k'H = k'

var(k'b®) = K[X'X] k {ork [X'X] ko” fR was not explicitly fitted)

Data on some locus

Model the duta 25 addilive and dominance effects
y=lpg+Fl+e

Yaar

Y

Performance

Yarr |

‘e

Yam

|
& - —ms e

¥
)E&}
Three Unknowns

] = [.L —{ Three pieces of information

s ogouem - o = —

6/12/10
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Genotypic vs genetic effects

8 -a
g=| £.s | genonypicclasseffects a=| 4 |, additive and dominance effects
8er a
-8 Bt
a:&w Y andd=g,, -S4 & pp
2 2
-1 |
K| ]2 %3
K'= 1 = .K'q=a, columns of K are othogonal kk, =0
-1 -1
2 —_ 1 =
2 2

but note g itself is not estimable, but functions like g, —g,, are

Equivalent Models

AB TN 14 wd 14=13+1
.:BB_ o . : u'*'g'“; . 16 . . u+a i.: L 16=13+3
A
I3 b1
1=0 p=10  y=16 p=13
Ban= 10 Ban= 0 Ban= -6 a=3
Bas= 14 Bpg™ Bae= 2 d=1

Bge= 16 Bep=6 B~ 0
Both models have the same expectation
Both models have the same variance

Therefore the models are equivalent
{l can fit either model and migrate from one to the other)

6/12/10
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Suppose | ighore dominance (d=0)

Model the data as an intercept and allele dosage

@ | y=lurFree E[yAB]:GH_ Zﬁi Slope=p
%) ! 3 Extra
g Yau 1 _¢ residual
£ Yaa 1 ) yBB.
= Yas |_| 1
"g Yz R
i Yt 1

1

Yoz
[ < vy
T F - ’ Represents lack of linear fit
Y aa.

a =] '

AA AB BB Genotype

Suppose | ignore dominance (d=0)
Model the data as 2 mean and substitution effect _
=1+Tr+ E[ ] = + 7T

§ ! v © Yas. u ! Extra
g o Y. residual
S *
€
& J=u

Represents lack of linear fit

AA AB B8 Genotype

6/12/10
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Performance

Suppose | ignore dominance {d=0)

Mode] (he data as an intercept and allele dosage

y=ly+Rbee E[ym_]:(}ﬁl+2ﬁ3 a
You . Y i xtra
: v ¥ residual
Yaaz 4 BB,
[] L]
[ L]
=15, +15,
Represents fack of finear fit
L3
v

AA AB B Genotype

Equivalent Models

AR a+1f 13 p 13 1p+1B, 13=548

BBI @2 c 160 w16 0B2B, 16518
=10 u=13 B,=5
p=3 =3 B,=8
NB B,-B,=3

All models have the same expectation
All models have the same variance

Therefore the models are equivalent
(1 can fit any of the models and migrate from one to the other)

6/12/10
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Summary Fixed Effects Models

Model df 3 2
- Genotypic . . yes A _

All alleles yes

-S'Libsﬁtution Lot yes W@

Animals nfa n/a

Equivalent models

Summary Fixed Effects Models

Modeldf

Genotypic i yes
. .AH alleles e
- Substitution - yes!

Antmals

Equivalent models Non equivalent models

6/12/10
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Fitting SNPs as random effects

Fixed or Random

*+ Reasonable to consider animal effects as
random in the usual context
-- Variation in alleles {ie genotype) between animals
that contributes to the genetic variance
« Not variation in allelic value at a particular locus
* Not so clear that an individual locus {or every
loci) should be treated as random

— Especially when the genotypes are observed and
treated as known in the incidence matrix

6/12/10
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Suppose we have many loci

The cbvious solution is to fit the a effects jointly for every locus

y=Xb+Ma+e

i =nmarkers
= Xb + 2 ma +e

i=1

a; is the substitution effect for the ith locus

Singular Coefficient Matrix

The incidence matrix of genotypes, M, has n rows
(= number of genotyped animals} and p columns
(= number of loci/markers/haplotypes)

Typically using lllumina livestock chips

(cattle, horses, pigs, sheep, chickens, dogs)

n < 10,000 and p > 40,000

If no 2 animals have the same p genotypes, then
M has full row rank

The M’M component of the coefficient matrix
cannot be full rank {rank M’M is n<<p)

— Rank(AB) is at most the lesser of rank{A} and rank(B)

6/12/10
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Practical Consequence

* |t is not possible using ordinary least squares
to simultaneously estimate more than n
effects of loci plus other fixed effects
— Can use stepwise approaches to successively add

loci and determine a subset of markers that are
informative in the training data

* But least squares tend to produce upwards biased
estimates of effects (especially when power is limiting)

— Cannot use all markers to predict genomic merit

Alternative Approaches

« Modifications to Least Squares
— Ridge Regression, Partial Least Squares etc

» Treat a effects as random rather than fixed

— We routinely fit single and multi-trait animal models
with many more effects than observations

— Provides opportunities for many mixed model
procedures, such as BLUP, REML, Bayesian analyses

— These methods will also “shrink” estimates

6/12/10
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Summary Fixed Effects Models

Natural {but incorrect} progression to fitting loci as random
Simply augment the coefficient matrix with a variance ratio

d=0.  .dominance =0

- dominance;; :

Model df

3 2
: Genotyplc . yesf": Sl
All alteles yes

Substitution ; f

Animals nfa nfa

The random models for substitution effects are NOT equivalent to the
other random models unless you are very careful

Random locus effects

* Following the treatment of locus effects as
fixed, we could consider the following possible
models for random locus effects
— A) fitting every genotype at a locus

« This would require us to describe the variance-
covariance matrix between the alternative genotypes

+ That matrix is singular in the absence of dominance
— B) fitting every allele at a locus
— C) fitting substitution effect at each locus

6/12/10
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Mixed Model Theory

* Prediction and estimation follow logically once
we define relevant variance-covariance matrices
— All effects are estimable (unlike least squares)

var(g)=G  var(f)=G-C® var(g-g)=C¥ rg?:var(g)var(g)

varlk'g)=k'Gk var(k'g)= k'(G - Cn)k

* The analogous terms in routinely applied animal
models are the numerator relationship matrix,
genetic and residual variances

— Random effects might be interpreted in the context of
resampling in repeat experiments

Summary of Model Alternatives

~d=0 -,;__5d.dmin'én¢:._é CUde0

Model df 3 2 Not Relevant
: Génotyp:ic_ \ - fyes no
All alleles yes yes

Substitution’ .-~ yes: - 1 yes’

Animals nfa n/a

6/12/10
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Fit all allelic effects as random

» Assuming no dominance we could fit effects of
two (or more) individual alleles

y=Xb+Ma+e

» M is a matrix of covariates, one column for each
allete (or haplotype), that counts the number of
copies — each row sums to two

0o 2 Yaa
G,

rowsof M areoneof | 1 1 |[,a= a | for| v
20 g

Yaz

Estimable Functions in Fixed Models

» Class variables of fixed effects are not estimable

— Differences between levels in the same class are
estimable

— The sum of any one level and the mean are estimable
(in a 1-way model)
— Fitting a fixed class variable is typically done by

» deleting the row and column of the coefficient matrix for any
one level of the class

s Introducing a lagrange multiplier to fit a sigma constraint

6/12/10
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Sum to Zero in Random Models

* Class variables of random effects (e.g. sire or
animal) are all estimable
— Typically all levels are fitted, even though interest may
be focused on differences between levels
{eg one sire compared to another)
+ A feature of BLUP(u} is that certain sums of the
elements are zero
— A biallelic factor fitting say a, and a, will have
solutions that sum to zero (ie a-hat, = - a-hat,)

~ In a model fitting many bialtelic loci as random effects,
the number of equations can be halved

Var(a) (ie allelic effects)

a
var(a)= A =var| ° |= Lo o’ =10}
ay 0 1

For the 3 possible
biallelic genotypes

o]
[®]

var(MA)=MAM'=| 1 | A[

01
2 0 21

|
il
==\ N
[ B o A
0O
Q
X

Note this A is the variance-covariance matrix of allelic eflects, not the NRM

6/12/10
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Peculiar Feature of this Model
y=1u+ma +m,a, +e but m, =V2i--m1
=1 +mya +(2 1-m,)a, +e
=lpg+ma -ma, +2la, +e
but 2a, =k, = constant

=1(Ju+k2)+mlatl -m,a, +¢

Peculiar Feature (cont)

y =1 *+ma -m,a, +e¢ (last slide)

t 1 ~
N 1'm, —1'm, i* 1'y
ml1 mm+A -mm, a, |=| my
-m;]1 -mm, mm,+A24 a, —m,y

Now add equations 2 and 3

Aa, + A4, =0

(3, +4,)=0

a, =-4a, and therefore 4, —4,=24 =-2a,

This “sum to zero” feature is common to all mixed models with factors

6/12/10
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Extension to multiple loci

Allellic effects

y=1u+Ma+e (1locus)

i=ploci
y=1u+ 2 M.a, +e (ploci)
i=l
MME for two uncorrelated loci {order is 1+ 2 x 2 = 4 allelic effects)
) N
N 1'M, 1'M, i 1'y
M1 MM, +4 MM, a, |=| My
M.,1 M,M, MM, + A4, a, M.,y
0.2
Crder of MME is number of fixed effects plus twice number loci {if biallelic) A= h“;.
Gai

Consider the implications for 100-1,000 animals with 50,000 loci

Summary of Model Alternatives

.  dominance -~ d=0: -, dominance d

| ’Model. df N 3 2 . .:Nc‘»t Rél val

: ._Gendt:\.n.::i‘t.: Ves no ¢ i
All alléies ye.s yesn

' Subsntunon yes yes ReD
A‘niméls n./.a. o n,.f.a” This model

follows

6/12/10
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An equivalent (animal) model
for genomic prediction

More loci than animals

Allellic effects - but for selection we are more interested in animal [not allelic) merit

i=ploci

y=1u+ E Ma, +e
i=t
i=ploci
y=1,u+1{ 2 Ml.a,}+e
i=1

y =1u+"Z|llluH+e

Order of MME is number of fixed effects plus number of animals
Consider the implications for 100-1,000 animals with 50,000 loci

6/12/10
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Mixed Model Equations

y=1'pg+Zu+te

N 1'Z ii 1y ok G — var(a)
= r —
Z1 Z’Z+0G" | Ly » Jor Jul ran vand

y=1p+I3 Ma, +e

~

i

N 1
{ i I+Gf[var(ZMia,‘)T} > Ma,

Order of MME is number of fixed effects plus number of animals
Consider the implications for 100-1,000 animals with 50,000 loci

2

Mixed Model Equations

y=1'u+IY Ma, +e

. v [ vy
1 I+Gf[var(2M,’a;)I Y Ma, i y}

var(Y M, )= Y var{Ma, } = 3 MAM, =3 MMo;, = like Ac;

i~ al
numerator relationship matrix=A

2

~

H

———

> Ma,

N 1
1 1+ [YMMes ]

6/12/10
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An Equivalent Animal Model
210
MM, G2 contains elements like| 1 1 1 |20%
01 2

M M. has order equal to number of animals (N)

ZM,,M,' is summed over p loci

A diagonal element for a totajly heterozygous animat is 1x 2203;
Therefore 07 in a typical animal model is (at least) 2y 0,

A diagonal element for a totally homozygous animals is (14F)=2 x 22 o2

A typical offdiagonal element is a weighted function of 0, 1 or 2

The number of ('s is the number of loci that the 2 animals are altemate homozygotes
The number of 2's is the number of loci that the 2 animals are the same homozypote

The number of 1's is N minus the number of 0's and 2's

Non-inbred animal

* |n the usual context, a non-inbred animal is

I8S but not IBD (with a;=1)
* The fraction of homozygosity across loci is

expected to be the sum over all loci of p?+g?in

the absence of inbreeding

* Such an animal would have an average
diagonal of the genomic matrix >> 1

6/12/10
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Summary of Model Alternatives

S . dorminarice .. _' ' domiﬁ'antg_-;_- dd=0: 4
Model df 3 2 Not Relevant

' Génptirﬁi:c'- i yes ol :n_o;_ :
All alleles yes yes

: S‘uhéﬁtﬁtipn:' S yes yes LUReD R=D -
sy R b : 5o This.model

. follows

Animals n/a n/a

Some alternative computing
strategies that are not equivalent
models

6/12/10
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Reconsider a single locus

y=1u+Ma+e or y=1lg+ma +mya, +e

' ' A '
N ],Ill1 1 m, U 1'y
m1 mm,+A mm, A, |=| my
m,] m,m, —mm,+A a, m,y
2
For A=—%,these MME have the same solution for 4, ~a, {but not j1) as
! ~
N 1I'm, * 1'y
m,1 mm, + % a4, —d, m,y

As if we fitted y =1y +m,q, + ¢ with different A

Hint of Identical Solutions
y=1u+Ma+e (Modell), with M'1=21

2
Ely]l= i, varlyl=MM'c? +1o7 A, :%2
y=1lp+ma +mya, +e but m, =21-m,
=14+ maq, +(2 l-ml)a2 +e¢ but 2a, =k, =constant
=1(,u+k2)+mla]-m1a2+e
=1(p+k,)+m (g —a)+e (ModelII)

: o’ A
E[y]z(,u+k2), var[y]=m1m120‘f+lcrf A, = %02= %

a

Clearly the first and second moments are different in models I and II
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Proof of Identical Solutions

y=1lu+Ma+e
=1u+MT ' Ta+e
=1y +[MT" |[Ta]+e

wl o e o]

1 — 1
and MTJ:ME[ i 11 }=~2—[ m, +m, u,-m, }

Proof of Identical Solutions

y=1p+[MT"][Ta]+e

1 a, +a,
=1y+—[ m,+m, m,-m, } +e
2 a, —q
but m, +m, =21 and m,-m, =2(1-m,)

=1u+[ 1 d-m,) }[ Zl+a2 ]+e

2 al

6/12/10
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Proof of ldentical Solutions

y=1ﬂ+[ 1 (1-m,) ][

11 11+

11 ]

1
1'1 —
20?2

(d-m)y1 0

1'1 11

(1-m) {1-m,)'1

11-m,)
1

> 1'(l-m,)

subtract column 1 from column 2

1'(1-m,)

1'(1-m,)

1
(l-ml)'(l-rn,)+2—o_2

o

{1- m,)'(l-ml)+%

(T|+G.z
a =

a,+a, |=

a, -4,

o +a,

a] +ﬂ'2
+ e, var
a, -4 @ —4a

M

(1-m,)y

1y
1'y
(1-m,)y

Pr'oof of Identical Solutions

+
y=1,u+[1 (l—ml)] HT +e, var “
a, — 4,

1'1 0

1
1'1 —
262

(L-m)l 0

1'1 0
1
0
257
(l-m)1

1'(1-m,)

1'(1-m,)

1
(1-m.)'(1-m1)+2~52-

a

subtract row 1 from row 2

1'(1-m,)

]

(l-m.}'(l-ml}+—-1r5

<

{a,+a,)—pn

=

+a,

a, — a,

His

1'y

(1-m))'y
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Proof of Identical Solutions

a1+a2

y=lu+[ 1 (1-m,) ]{

a,+a,
+e, var
a, —ad

|

4, — 4
11 0 1(1-m,)
0 — 0 b 1y
20, (“'l"'a:]'"ﬂ = 0
- 1-m,)
(1-m,)1 0 (1.m‘)'(1-ml)+rL2 a—q (1-m)’y
2a,
equation 2 is independent from equationsl and 3
L 1'(1-m,) 0 |
1 H 1'v
(l'ml)‘l (1'm1)‘(1'm|)+__2 ¥
20‘H a,—a = (l'm,)'y
(1] 0 1 (ai+az)“ﬂ 0
20?7

Proof of Identical Solutions

a +a a, ta 2 0
=ly+| 1 (1-m P e, S P g’
y=lp+[ 1 @-m) ][ az_all e var[ oo |02 %

11 1'(1-m,) 0 :

1 U 1

(t-m)1 (1-m)'(-m)+-—5 0 ¥
20, a, =4 ={ (1-m,}y

1 {al+a2)—‘u 0

0 0
207

has the same solution for substitution effects as

1 1(1-m,) ,
. H _ 'y
(t-m,)'1 (1-m,)'(1-m1)+-2r(;; a,—a, {1-m}y

a

from the mode] equation y =1+ (L - ml)(a2 -, )+ €
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More Alternatives

Previously y=1(g+k,)+m,(a ~a,)+e

Note m, (and m,) contain covariate values of 0, 1 or 2
another model with k,, ={a, — az) is

y=1(p+k +k,)+m(a —a)-1{a—a,)+e
y=1(u+k +k,)+(m, -1)(a,-a,)+e

whereby the covariate values are now -1, 0 and 1

Computational Alternatives

covariates
y=lu+Ma+e 0,1,2and 2,1,0
y=1{p+k) +m,(a,~a,) +e 0,1,2
y=1{p+k +k,)+(m -1)(a,—a,)+e -1,0,1
y=1(,u,+k]) +m2(a2—al) +e 2.1,0
y=1(#+kl+k21)+(m2-1)(a2—a])+e 1,0,-1
All these models have diffarent E[y]

All these models have identical predictions of random effects
Only the first model has the correct PEV for the random effect if e assumed diagonal
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Consider the genetic part of var[y]

20
covariate genetic variance (ZGZ"} M=[ m, m, ]=[ 11 }
M a0 0 2

. var[Ml]:MAM’: 22 2 |e
ny a2 4
m, -1
j 420
m, k'ar[m‘(al—a,_)]:lo':m,m‘lz 2 1 ¢ |2}
000
m, -1 -1

1 0
. \-ar[(m)—l)(a,-a,)]—ﬁa:(mlv-l)(m‘rl)'—[ 0o 0 0 ol

-1 0 1
:|2u:

T v, =1} - )] = 203 (my = 3)(m, 1) =

R

o oo
o= O
&ea

var[m, (a, 7a|]] = 265!11,!11: = [

[ |
o0 0 j2o
-1 e 1

These are typically singular, unless there are more loci than animals

Animal Model Counterpart
Any full rank inverse of the following
can be used in place of A'c? in MME

to predict animal merit

YMM 0] = 3 (mymy, + mamy, o,
> mym, 20,

3, 20

2. (my; =1)(m,; —1)"20;,

2 (g = 1)(my, —1)'207,

Only the first can be used for PEV or r*
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Summary of Model Alternatives

dominance:: - d=0- domjnance -~ | d=0 d=0-
Model df 3 2 Not Relevant
© Gepotypic :*" - yes” ' no.
All alleles " yes yes
Substitution o .'ye:s;x_: " yes: CReD T
. A follgws
Animals nfa " nfa

Correct handling of the model
y=1lpg+Ma+e with M'1=21

2
Ely]=pu, varly]=MM'c’ +1c> 1, = %2

y=1pg+ma +mya,+e but my=21-m,
=1g+ma +(21-m,)a, +e
=1y +ma -ma, +(12q, +e)
=1,u+m1(a1~a2)+e*

with var(e') = var(12q, + e} = 411'0" +10o?

but cov[(a, ~a,),€ ‘] =—21'vara, # 0 = no MME, GLS OK
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Summary of Model Alternatives

 dominance | dz0

Model df 3 2 ' Not Relevant

© Genotypic - Joyest ~no
All alleles yes yes
'Subétitﬂ't_ioh: s “yes
Animals nfa nfa

Models (1) are equivalent
Models {2) are equivalent {if both use 1 allele, or 2" allele, or -1,0,1 etc}
Models (1) and {2) give the same BLUP solutions, but not PEV or r?

Equivalent “Animal” Model

» Any of these models with equivalent
computations for loci effects, can be
formulated to solve for animal effects rather
than locus effects
— Give identical estimates for every animal

— Will not all give the same PEV for animal {or locus)
effects
* This has implications in quantifying accuracy/reliability

6/12/10
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More complex model

+ Partition variance unequally among every locus
(Bayes A)
-~ Practical impact of this will depend upon shrinkage
* Partition variance unequally among a subset of
the loci (Bayes B)
— But which subset?

— And how do you assume the size of the subset,
a parameter they referred to as it

The variance component problem

* We need to jointly estimate the residual and
genetic variances for perhaps tens of
thousands of loci, simultaneously considering
model selection criteria to discard models
with low levels of support
— 50k 1-locus additive models
— About 50k? 2-locus models and so on

— little knowledge of how many loci might be
needed but it could be hundreds

6/12/10
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Fitted Model

« We will use the model that fits a substitution
effect for each locus, recognizing that we
cannot use the equations for estimating
reliabilities
— Equations are too big anyway

— Bayesian posteriors can be used for reliability of
SNP effects
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Reliabilities

Reliability (R%) of EBV/PTA

+ Difficult concept

— Square root of reliability reflects the correlation
you would observe if you could relate the true and
estimated merit of animals with that particular
reliability

* Square root of reliability is known as accuracy
— Used in many industries other than dairy cattle

— US beef industry uses another (related) measure
known as “BIF accuracy”, as defined by the Beef
Improvement Federation

6/16/10






True Merit

150

100

50

High & Low Reliability

Rellabllity = 0.36 Rellability = 0.50 Reliability = 0.85
Correlation = 0.6 Corrglation=0.7 Correlation = 0.92
. 0 B -
o%? %°° 2
£°%8 "

L3 o

= ]

= [

4 2 d
0 000
LIPS o o
T T T T T T T T T T T T T T T T T
40 B0 120 180 40 & 120 180 50 100 150
Estimated Merit Estimated Merit Estimated Meril

Reliability of non-genotyped Offspring

2 2
2 _ Rsirc +Rdam
oflspring — 4

Reliability increases with individual records or offspring
Reliability of individual

with accurate sire is at most 0.25
with accurate sire & dam is at most 0.5
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Reliability of EBV/PTA

* Unreliability is easier to understand

— (100-reliability) is the percentage of genetic
variation that cannot be explained from
knowledge of the pedigree & performance
information {or pedigree, performance and
genomic information)

Density

1.0

0.8

06

0.4

0.2

0.0

With no other information
we expect a Holstein to have “average” merit

but could be

or above average

below average

Halstein

Deviation
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A young bull born to a high reliability sire
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Conventional Reliability

* Computed from the coefficient matrix of the
MME

* Has nothing to do with observed performance
values or deviations, but everything to do with
information content

— Reliabilities of parents, number of records on the
individual and offspring, loss of information from
fixed effects

Genomic Reliability

+ If the estimated effects of allelel are the
negative of the effects of allele2, what is the
contribution of one locus to the genomic
merit of a heterozygote?

— What about an animal that is completely
heterozygous?
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Genomic Reliability

* Consider the genomic merit (using an additive
model) for an animal that is homozygous for
the superior allele at every locus

= What s the reliability of this animal likely to be?

* Genomic reliability is determined by the
genotypes, and these dictate genetic merit
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Laboratory 1

The objective of this laboratory session is to gain familiarity with the R
programming language and the mixed linear models that we will be using in the
Bayesian analyses later in the course.,

Exercise 1

The lecture notes introduced the equations for generalized least squares (GLS). The
GLS equation(s} for the model we discussed in the Jecture are

b® =(X'V'X)(X'V'y), for V=ZGZ'+R,
These equations are useful as V is typically full rank, but are not practical in many

situations where V is large. In this example with just the mean fitted as the only
fixed effect, the GLS equation will be a scalar form.

In order to form V, you will need to know G and R.

Create a small Hendersonian data set by constructing a vector y of phenotypic
observations (no more than 6 observations}. Create a corresponding X matrix to
represent the incidence matrix for the fixed effects. This matrix will have as many
rows as there are observations in y, and as many columns as there are fixed effects
in b. The minimum configuration for X would be a vector of 1’s that would
correspond to a model that included an overall mean. Other alternatives for X might
be to include a vector of covariates (eg age of the animal at measurement} or a class
variable such as a fixed effect for the sex of the measured animal.

Construct a G matrix that will be square and have order equal to the number of
animalis in the pedigree file. For ease of viewing, the order of G should not exceed 6.
The G matrix is the variance-covariance matrix of the fitted random effects, such as
the breeding values. In that case, G will be the product of the numerator
relationship or A matrix, and the scale additive genetic variance. Form A for some
simple pedigree and assume a value of the additive genetic variance. Note that the
pedigree might contain some animals that do not have observed phenotypes, so the
length of y may be less than the order of G. '

Construct an incidence matrix Z, that relates the observations in y to the
corresponding breeding value in u, The matrix Z may be an identity matrix if all
animals in the pedigree have a phenotypic record. More typically, Z has as many
rows as there are records in y, and as many columns as there are animals in u (and
therefore the G matrix).

Lastly, construct R, the variance-covariance matrix for the residual effects, which for
independent and identically distributed residual effects will be an identity matrix of
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order equal to the length of y, multiplied by the scalar residual variance. Recall that
the heritability is the ratio of the genetic variance over the phenotypic variance, and
the phenotypic variance in this model is the sum of the additive genetic and residual
variances, so the values you assume will imply a particular heritability.

Given defined values for all these vectors, matrices and constants, calculate the
phenotypic variance-covariance matrix V, and then solve the GLS equations to
obtain best linear unbiased estimates (BLUESs) of the fixed effects. Use the BLUEs to
adjust the phenotypic records and form deviations, that you can then use to
compute the best linear unbiased predictions (BLUP) of the random effects as a
linear function of these deviations, as described below. Note that this form of
obtaining BLUP works with a singular G matrix.

The equations to obtain BLUP estimates are
i=GZ'V'(y-Xb°).

Be sure to save all your steps so you can immediately repeat your calculations with
a modified dataset or different parameters. Print out and inspect the results of all
your calculations.

Exercise 2

Repeat the same exercise as above, but this time estimate the BLUEs and predict the
BLUPs by setting up and solving the mixed model equations. The answers should be
identical to those you obtained using GLS. The mixed model equations are shown
below.

i Z'R'y

X'RIX X'R7
Z'R'X Z'R'Z+G!

b’ ]_ X'R'y

Exercise 3

Obtain the variance of the estimated BLUP effects, and the prediction error variance.
These values require elements of the inverse of the mixed model coefficient matrix.
We will use the following notation

XR'X XR'z | | G Gy
ZR'X Z'R'Z+G! C, Cy

and the corresponding partitions of the inverse are
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_]_ ' ocv
- c* 2

In relation to random effects, we need only concern ourselves with the C* partition
of the inverse coefficient matrix. Note however that the entire coefficient matrix
must be inverted to obtain the partition of interest. From this partition you have the
prediction error variance-covariance matrix. That is,

X'R'X X'RZ
ZR'X ZR'Z+G?

var[u-1]=C%*

var[1]= G — C*, and recall that var[u]=G.
A common unitfree measure of how well we have estimated the BLUP is the square
of the correlation between the true and estimated effect. Since the true effects are

not known, this cannot be calculated directly, but is a function of the G and C2
var[di] diag[ G—C* ]
var{u] B diag[G]
and best linear unbiased predictions (BLUP).

matrices. Specifically, * = for bestlinear predictions (BLP)

Exercise 4

In many circumstances we are interested in linear combinations of random effects.
For example, we might want to know the BLUP and the r2 of a team of sires rather
than an individual, Alternatively, we might be interested in the contrast or
difference between one or more alternative sires or teams. To compute these, we
need to construct a relevant vector of contrasts that we will denote as k. For

example, to predict the superiority of sire 1 over sire 2, for u' =[ uou, U, u }

we would form k' :[ I -1 0 0 ] To compare a team of the first two sires to

the second two sires we would use k' :[ 05 05 05 -05 ] Both of these
contrasts can be considered simultaneously by stacking them up the rows of k’
1 -1 0 0 }
05 05 05 05
The BLUP of k'u is simply obtained as k'ii, and var(k'u) = k'Gk,
var(k'd)=k'[ G- C* ]k,
Construct some linear combinations, and estimate the prediction error variance and
r? for these linear combinations.

together in a matrix, K =[
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Useful R commands for this exercise,

array()
matrix()

dim()
diag()

t0
%*%
solve()

rbind()
chind()
?

Dorian Garrick

used to form a vector

used to form a matrix

used to determine the dimension of an object (eg vector or matrix)
used to construct a diagonal matrix

or extract the diagonal elements of a matrix

transpose a matrix

used to perform matrix (or matrix-vector) multiplications
used to solve a set of equations

or to obtain the inverse of a matrix

used to join objects in different rows

used to join objects into columns

used for syntax help, e.g., 7solve
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Laboratory 2

Consider the dataset in Table 1, from p110 Ben Hayes course notes. We will use this
dataset to explore some alternative models for fitting SNP effects. The columns
include the allele calls at each marker locus (M1, M2 and M3}, followed by the
covariate that represent the number of 1 (al, b1 and c1) or 2 (a2, b2 and c2) alleles
at each locus (designated A, B and C}.

Animal phenotype M1 M2 M3 al a2 b1 b2 c1 c2
1 968 222111021120
3 229 122222110202

20 081 11 2112201111

4 342 11 21 11 2 01120
2 569 22 22 22020202
5 592 211111112020
6 282 21 21 22111102
7 507 22 2122021102
8 892 222211020220

9 2411 22 122 002 11

10 901 22 22 11 0202 20
11 424 12 12 21111111
12 635 22 11 12 02 2011
13 892 22 12 11 021120
14 -064 11 22 22 2 00 2 0 2
15 595 21 11 11112020
16 613 12 21 11 11112 0
17 672 21 2111111120
18 486 12 21 12 11 1111
19 636 22 22 22 0 2 0 20 2
21 967 22 12 11 0 2112 0
22 774 22 2112021111
23 145 11 2221200211
24 122 11 2121201111
25 -052 11 22 22 200 20 2

This data first needs to be read into R. The command getwd() will show the
working directory. The datafile needs to be located in the working directory. You
could either copy it there, navigate to the working directory from the menu options,
or change the working directory using the setwd("“dirname”) command, where
dirname is the path to the working directory. The command dir() will show the files
in the working directory.

A simple R script will be provided with the following commands to read the datafile.
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genomicdata <- read.table("BenHayesp110.txt", header=TRUE)

will read the text file into a table object in R. Typing the name of the table (ie
genomicdata) or using the command print(genomicdata) will display the
information if the read.table command was successful. The commands dim() or
str() will also provide details of the object if you place the object name between the
brackets. The named columns of the table can be accessed using the name of the
table, followed by a $ sign, followed by the name of the column. For example,

ytmp  <- matrix(genomicdata$phenotype, ncol=1)
Ztmp <- as.matrix( cbind(genomicdata$al, genomicdata$aZ,
genomicdata$h1, genomicdata$b2,genomicdata$el,genomicdata$c2))

will read in a potential y vector and Z matrix.

We will be fitting some models where rank is an issue for certain analyses. For
example, in least squares models, we need to have at least as many animals as we
have effects. This is typically not an issue if the fitted effects are treated as random.
However, for equivalent models that fit animal effect using SNP genotypes to form
relationships, the genomic relationship matrix will not be full rank unless there are
at least as many SNP effects fitted as there are animals. For this reason, in different
models we will use different subsets of the complete y and Z vector. The variable
nanim sets the number of animals to be used. The following lines will set up the
example to use the first thirteen animals in the datafile.

nanim <-13

y  <- matrix(ytmp[1:nanim])

X <- matrix(1,nanim)

Z  <-Ztmp[l:nanim,]

neffects <- dim(Z)[2]

nfix <-dim(X)[2]

nloci <- neffects/2

istart <-nfix+1 #these are pointers to assist in extracting subvectors
iend <-nfix+neffects

Example 1: Fitting both alleles at the three loci as random effects using GLS.

The GLS equation(s) for the model we discussed in the lecture are
b0 =(X'V'X) (X'Vy), for V=2GZ'+R.
These equations are useful as V is typically full rank, but are not practical in many

situations where V is large. In this example with just the mean fitted as the only
fixed effect, the GLS equation will be a scalar form.
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In order to form V, you will need to know G and R. Suppose the residuals are
homogeneous and uncorrelated. We will use a residual variance of 1. R can be
formed using the diag command.

R <-diag(sigmasqe,nanim)

The incidence matrix Z has 6 columns - one for each of the allelic effects. Suppose
the three loci have different variance — say 2, 4 and 3, respectively. Createa G
matrix of order 6 with columns corresponding to the columns in Z. Inspect V. You
will need to use commands for transpose (eg t(X)), matrix multiplication (eg, X %*%
Vinv), and matrix inversion (eg solve (V)). Take advantage of the help facility in R,
using commands such as ?solve or ?t() for any commands you are unsure of. Inspect
the intermediate calculations and record the subsequent results.

Be sure to save all your steps so you can immediately repeat your calculations with
a modified dataset or different parameters.

Estimate the fixed effects by solving the GLS equations. Print out the result(s). The
BLUPs of the random effects can then be obtained from selection index principles,
but adjusting the phenotypic records with the GLS estimates of the fixed effects
(rather then the true values as is required in selection index). Thatis, solve

a=GZ'V'(y-Xb').
Note that the estimates of the allelic effects sum to zero, even though no such

constraint was actively used. This is a feature of mixed models in certain
circumstances.

Calculate the substitution effects by forming a contrast vector (k) with order equal
to the order of a, that contains all zeros except elements 1 and -1 corresponding to
the first and second allele at a Jocus, and then compute the linear function k'a.
Record the results. You can align (using cbind()) the three contrast vectors into a
matrix K whose first column is the k vector given above and the second and third
columns are the corresponding vectors for computing substitution effects at the
second and third loci respectively. In that case, the matrix-vector product K'a will
compute all three substitution effects at once.

Example 2: Shrinkage of substitution effects.

Modify the three pairs of diagonal elements of G, or equivalently, modify the single
diagonal element of the nanim by nanim matrix R in order to modify the variance
ratio lambda, of residual to genetic variance. In an animal model, lambda is (1-h?)/
h2 which will be 0 ifhZis 1 and a large number if h? is small. For a heritability of
(.25, lambda is 3. In genomic prediction models, the genetic variance is partitioned
among all the loci. If there are hundreds of loci, the lambda ratio for each locus will
be large. You can simulate this effect by making the diagonal elements or R say 10
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or 100 times larger than G. Compare the estimated substitution effects for varying
values of residual variance (in relation to additive variance). Shrinkage is related to
the magnitude of the ratio of residual to additive variance. If residual variance is
small this ratio will be reduced and the estimates will approach least squares.
Inspect the variance ratio for each scenario you attempt.

If order to compute the least squares estimate you will need to form the least
squares equations treating allelic effects as fixed. To do this, you need to form a new
incidence matrix for fixed effects that includes the old fixed effects (eg the overall
mean) as well as the allelic effects. You can do this using chind(X,Z) to augment the
columns of the two incidence matrices. However, this new matrix will not have full
column rank so the least squares equations will not be full rank. You should be able
to constrain the new equations to full rank by limiting the augmented matrix to
include only one column of allelic effects for each locus.

For example, Xnew <- cbind(X,Z[,c(1,3,5)]) will use only those three columns. Then
the least squares solutions can be obtained from solving the following full rank
equations. The first effect in these equations will be an intercept rather than a
mean, unless you center the covariates in the Z matrix by subtracting 1.

XX, ) B |=[X,..y]

Modify the constant nanim to alter the number of animals in the datafile that will be
used in the calculation. Try larger and smaller values.

What do you conclude about the importance of treating SNP effects as random in
terms of shrinkage of estimated effects?

Before continuing, you will want to reset the genetic and residual variances back to
their original values.

Example 3: Fitting both alleles at the three loci as random effects using MME.
An alternative approach to estimate random effects is to use the mixed model
equations. Rather than requiring the inverse of V, the typical form of the mixed

model equations requires the inverse of G and the inverse of R. Its general form is
as follows

X'R'X  XR'Z b | X'R'y
ZR'X Z'R'Z+G" i Z'R'y
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In simple cases where R is a scaled identity, only the inverse of G is required as the
scalar residual variance can be factored out by multiplication. Remember that the
inverse of the coefficient matrix will need to be scaled by the residual variance to
compute the correct prediction error variances or reliabilities when you use this
modified form. Form and solve these simpler mixed mode! equations, as follows

B || XY

a || Zzy |
You will need to use the commands cbind(} and/or rbind(} to join two matrices of
conformable order by column or by row respectively.

XX  XZ
Z’X 2'7+0G"

Compare the solutions for the fixed effects and the six random allelic effects to the
GLS solutions. They should be identical. If not, check your equations before you
proceed.

Extract the prediction error variance-covariance (PEV) matrix (var(a-a)= C226?)
of the fitted allelic effects, where C22 is that submatrix of the inverse of the mixed
mode] equations corresponding to the rows and columns representing random
effects (ie Z'Z +02G™ portion of the inverse). Compute var(d@)= G- C220? by
subtracting the PEV matrix from the genetic variance-covariance matrix. The
reliability of the predictions (squared correlation between true and predicted merit}
are obtained by dividing the diagonal elements of G-C22 o7 by the diagonal
elements of G. You might find the R function diag() useful for this purpose.
Reliability is used in some industries (eg dairy) to convey the information content in
estimated breeding values (EBVs).

Compute the substitution effects by forming relevant contrast vectors as in the
previous question.

From the viewpoint of genomic prediction rather than QTL detection, we will be
more interested in linear functions of the estimated SNP effects, such as Za.
Compute that linear function for all animals. You may want to plot that estimate of
genetic merit against the phenotype using the plot(} command, or compute the
correlation with phenotype using the cor() function.

We typically have to compute reliabilities of estimated breeding values. The
reliability for any arbitrary contrast k, can be calculated as linear function of the G
and C22 matrices as follows

* ] 2
G diag[ k'(G-C2207 )k |
- diag[k'Gk| '
In mixed models, any linear combination of random effects is estimable, so
conformable k can contain any elements. One meaningful choice of k' is the
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elements of a row of Z, as that contrast estimates the linear combination of random
contributions relevant to a particular animal. The reliabilities of all animals can be
simultaneously predicted using the entire Z matrix in place of K’ in the above
equation. Compute the breeding values of all the animals and their corresponding
reliabilities.

Example 4: Directly fitting animal effects using genomic relationships.

Rather than estimating allelic effects at every locus, an equivalent model can be
derived that directly solves the animal effects in the appropriate mixed model
equations. This formulation of the problem in the usual representation of the mixed
mode] equations will only work when the genomic relationship matrix is full rank.
The genomic relationship matrix will not be full rank if there are more animais than
loci or if any two animals have identical genotypes.

Reduce nanim to 3 and recompute the quantities in example 2. The animals in the
original Hayes datafile have been reordered so that the genomic relationship matrix
is full rank for the first three animals.

Form the genomic relationship matrix as ZGZ', and invert it using solve(). Form and
solve the mixed model equations, and compute the reliabilities for each animal. In
computing the reliabilities, note that the matrix you previously used for G should
now be replaced by ZGZ'. To fit animal effects directly, use the mixed model
equations in the form below where the previous incidence matrix for the random
effects has been replaced by the matrix Z.

X'X X' g | | xy
X I+0[2GZ]’ {ﬁ }_ y

Compare your results to the answers you obtained in example 2. They should be
identical.

Example 5: Alternative parameterizations fitting substitution effects rather
than allelic effects.

Modify the Z matrix by reading only columns 1, 3 and 5 {or 2, 4 and 6). This allows
you to fit substitution effects rather than both allelic effects. You will also need to
appropriately alter the order of G and double the genetic variance for substitution
effects for each locus compared to allelic effects because

var (o) = var(a, - a,) = var(a, )+ var(a,) = 2 var(a). 1f you don’t recode the new Z
matrix, you have effectively modified the overall mean and the estimated breeding
values will all be altered by a constant compared to the previous questions. This is

Dorian Garrick 6



lowa State University 15 June 2010 Genomic Selection Course

no problem in real life, as breeding values are typically rescaled to a consistent base
after computation and prior to publication of the resuits.

You may want to further experiment by subtracting 1 from every element of Z, so
each SNP is coded -1, 0 and 1 rather than 0,1 or 2.

For the modified incidence matrices, repeat example 1, fitting the GLS equations,
example 2, fitting the mixed model equations for substitution effects and example 3,
fitting the genomic relationship matrix. These three models are equivalent to each
other and should give the same solutions to each other for this parameterization.
You should also find that the solutions for substitution effects or animals are the
same as you obtained in examples 1-3 except the breeding values may differ by a
constant depending upon your parameterization. The fixed effects solutions will not
be the same, neither will the prediction error variances or reliabilities of predicted
random effects be typically identical.
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Bayes Theorem

The conditional probability of X given Y is

PriX,Y) Pr(Y|X)Pr(X)

XYY = ey = P

where Pr(X, Y) is the joint probability of X and Y, Pr(X) is the
probability of X, and Pr{Y) is the probability of Y.

5/67

Conditional Probability by Example

Joint distribution of smoking and lung cancer in a hypothetical
population of 1,000,000:

Smoking
Yes No
42,500 7,500 | 50,000
No | 207,500 | 742,500 | 950,000
250,000 750,000

Lung Cancer

Question: What is the relative frequency of lung cancer among
smokers?

. 42500
Answer: 550,600 0.17

6/67



Conditional Probability by Example

» As explained below, this relative frequency is also the
conditional probability of lung cancer given smoking.

» The frequentist definition of probability of an event is the
limiting value of its relative frequency in a large number of
trials.

» Suppose we sample with replacement individuals from the
250,000 smokers and compute the relative frequency of
lung cancer incidence.

» It can be shown that as the sample size goes to infinity, this

; : 42,500
relative frequency will approach zseags = 0.17.

» This conditional probability is usually written as
42,500/1,000,000 _ 4 47
250,000/1,000,000 ' "

» The ratio in the numerator is joint probability of smoking
and lung cancer, and the ratio in the denominator is the
marginal probability of smoking.

Meaning of Probability in Bayesian Inference

» In the frequency approach, probability is a limiting
frequency
» In Bayesian inference, probabilities are used to quantify
your beliefs or knowledge about possible values of
parameters
» What is the probability that A% > 0.5?
» What is the probability that milk yield is controlled by more
than 100 loci? :

7187
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Essentials of Bayesian Inference

¥

it probabilities quantify beliefs about parameters before
the data are analyzed

Parameters are related to the data through the model or
“ikelihood”, which is the conditional probability density for
the data given the parameters

The prior and the likelihood are combined using Bayes
theorem to obtain poesterior probabilities, which are
conditional probabilities for the parameters given the data

Inferences about parameters are based on the posteior

v

v

7

9/67

Bayes Theorem in Bayesian Inference

» Let f(6) denote the prior probability density for &
» Let f(y|@) denote the likelihood
» Then, the posterior probability of & is:

foly) = L)

o f(y|6)f(8)

10/67



Computing posteriors

Gibbs

B

Often no closed form for f(8iy)
Further, even if computing f(8|y) is feasible, obtaining
f(9;|y) would require integrating over many dimensions

Thus, in many situations, inferences are made using the
empirical posterior constructed by drawing samples from

F8ly) .
Gibbs sampler is widely used for drawing samples from
posteriors

sampler
Want to draw samples from f(xy, xo, ..., Xn)
Even though it may be possible to compute
f(x1,X2,- - ., Xn), it is difficult to draw samples directly from
f(x11x2> te )Xn)
Gibbs:
» Get valid a starting point x°
» Draw sample x! as:
Xt from foalx T x0T
xi from  f(xelxlx X
Xt from  f(aixl, X, xp7h)
xh from  fxlxd, xE o ) )
The sequence x', x?,..., x" is a Markov chain with

stationary distribution f(xy, X2, ..., Xn)

11/67
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Inference from Markov chain

Can show that samples obtained from the Markov chain can be
used to draw inferences from f(xy, X2, ..., xp) provided the
chain is:
» irreducible: can move from any state 7 fo any other state j
» Pusitive recurient: return time to any state has finite
expectation
» Markov Chains, J. R. Norris (1997)

Example _
Let f(x) be a bivariate normal density with means
W=t 2]
and covariance matrix
1 05
V= [0.5 2.0]

Suppose we do not know how to draw samples from f(x), but
know how to draw samples from f(x;|x;), which is univariate
normal with mean:
v..
pij = i+ “\*}_(Xf = 1)
f

and variance

13567
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Gibbs sampler

» Gibbs:

» Start with x® = [0

0
» Draw sample x' as:

xi o from  flalxs)
x} from  f(xo|x{)
» Use the sequence x', x2, ..., x" to compute any property

of f(x), for example

Pr(xy > py and xo > uo)

15/67

MCMC Estimates of Pr(x; > p1 and x2 > up)

.30
1

Q.25

0.20
i

R

[oX: )
1

iteration

16/67



Metropolis-Hastings sampler

» Sometimes may not be able to draw samples directly from
f(xilx; )

» Convergence of the Gibbs sampler may be too slow
» Metropolis-Hastings (MH) for sampling from f{x):

» a candidate sample, y, is drawn from a proposal distribution
alylx'™")

o = y with probability o
" x*-! with probability 1 — e

fly)a(x'"y)

o= gl )

» The samples from MH is a Markov chain with stationary
distribution f(x)

17/87

Proposal distributions

Two main types:

» Approximations of the target density: f(x)
» Not easy to find approximation that is easy to sample from
» High acceptance rate is good!

» Random walk type: stay close to the previous sample
» Generally easy to construct proposal

» High acceptance rate may indicate that candidate is too
close to previous sample
» Intermediate acceptance rate is good

18/67



MH Sampler to Estimate Pr(x;.> p1 and xo > up)

MH Sampler:
» Start with x0 = [0]

» Draw sample x! as:

f—-1

14 :X1 + Uy
f—1

Yo =X, + Up
1/2 12
—V' T v

where y; is Uniform(

» Compute
o fy)
a = min(1, f(xH))

and
Xt — y with probability o
- with probability 1 - o

xt—i
16/67

MCMC Estimates of Pr(xy > i1 and xp > o)

a4

!

*

4

4 |
mmwﬁﬁw e

03
1

Prab
0.2

o1

T
o4O

a0

4
=
3
2]
b4
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Distribution of y; Sampled Using MH

Histogram of y¥1

g - 1.

000
1
1
1

Frague

1000
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Model

Model:
yi=p+ Y Xjoj+e
j
Priors:
» u o constant (not proper, but posterior is proper)
b (6i]02) ~ (TIN(D, 02): 02 ~ veS2xp2 5.0l priw

» Consider several different priors for o;

23/67

Normal

» Prior: (aj|o?) ~ (iid)N(0, 03); o2 is known
» What is 027

» Assume the QTL genotypes are a subset of those
available for the analysis

» Then, the genotypic value of i can be written as:

g,-z,u+Xl;Ot

» Note that « is common to all i
» Thus, the variance of g; comes from x} being random
» So, o2 is not the genetic variance at a locus
» |f locus j is randomly sampled from all the loci available for
analysis:
» Then, o; will be a random variable
» U‘i = Var(o:j)

24/67



Relationship of o2 to genetic variance

Assume loci with effect on trait are in linkage equilibrium. Then,
the additive genetic variance is

K
Va=>_2pgof,
i

where p; = 1 — q; is gene frequency at SNP locus .
Letting U; = 2pjq; and V; = of,

k
Va=)_ UV,
/
For a randomly sampled locus, covartance between U; and V} is

UV U Vi
Cuv = ka’ ’—(z;(. .{_)(Z;( ")

25/67

Relationship of o2 to genetic variance
Rearranging the previous expression for Gy gives

S U = kCuy + (3 U
i i

So, 5
50
Va = kCuv + (3 2pa) (=)
]

o
Letting 62 = gf;’— gives

Va=kCuv + (D _ 2piq)a?
j

and,
o Va—KkCyy

UQ =
Y 2P;q;

26/67



Blocked Gibbs sampler

v

Let ' = [u, o]
Can show that (8]y, 02) ~ N(8, C™'02)

¥

b=C'"Wy W=[,1X

. 1'1 1'X
X XX 4%

Blocked Gibbs sampler
» Garcia-Cortés and Sorensen (1996, GSE 28;121-126)
» [ikelihood, Bayesian and MCMC Methods --- (LBMMQG,
Sorensen and Gianola, 2002)

v

27167

Full conditionals for single-site Gibbs
- (uly e 02) ~ NCLWZX o)

]
. . 2 N{ & ol
> (ajlyhu’aj_aae)w (aj’?j)
>

~

x}w
aj =

G

w=y—1u— Exf'af'
i'#

2
¢ = (Xix; + %)
- ()~ Ly~ WOy~ W) + 1S3

208/67



Derive: full conditional for «;

From Bayes’ Theorem,

f(ij, Y. ou o, Jg)
f(yu My aj_>gg)

f(ajlya Hy O Jg) =

o f(Ying. o, a2)i{n 3w, 0 ,02)

W — X)) (W — X0y O 2
( Jt j') (2 / f) }{7.:!} e @XF}; ;:.f,.‘.
20% 2o

2

o (02) "2 exp{- |

SN ]

where
w=Yy-— 1#— ijlajf
J£I

28/67

Derive: full conditional for «;

The exponential terms in the joint density can be written as:

2

/ t . !y Jgq 2
_?‘g{w w — 2x),'WCXJ, 4 [XJ.'XJ- - %]C}f}}
Completing the square in this expression with respect to o
gives
1 A N2 ! ~ 2
—"é—O_—E{Cj(ij — &)+ W'w - ¢d;°}
e
where
x}w
Cj
So,
(o) — &)
f(a,"ya M, o, Ug) x eXp'{——Z—US—}_}
G
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Alternative view of Normal prior

Consider fixed linear model:

y=1u+Xa+e

This can be also written as
- H
y=[1 X] [a] +e
Suppose we observe for each locus:

J/J.-*=Ozj+fj

Least Squares with Additional Data

Fixed linear model with the additional data:

y . 1 X Ju' + e - ‘117
y* 0 o €] .!'A.’;.i
OLS Equations:
1 0 [z O X)[a)_[1 0] [
X r 0 IK# 0 /j|la] | X T 0
1'X

11 [
X1 X'X+1% [ ]:

€
. /!\. /\l\

O T

o o

33/67
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Univariate-t

Prior:
2 2
(aj|ffj )~ N(Oagj)
O'jz ~ VO:SEQX;:)

Can show that the unconditional distribution for o is
Qj ~ (”d)t(oa 850,7 Va)

(Sorensen and Gianola, 2002, LBMMQG pages 28,60)

This is Bayes-A (Meuwissen et al., 2001; Genetics
157:1819-1829)

35/67

Univariate-t

EOEE far ol Daramietens:
04
0.3
0.2 "
0.1 . A0
i
O‘O Lrmmliians s s
-4 8 10

Generated by Wolfram{Alpha (www.wolframalpha.com)

36/87



Full conditional for single-site Gibbs

Full conditionals are the same as in the "Normal" model for

i, o, and o2. Let
2 2 2
£: [01162}"'501(]

Full conditional conditional for aj?:

f(o'j?'ya“:aa&j_sag) X f(y,u,a,ﬁ,og)

o Ay |, o €, S2)H(aglo?) o) (1, e, € 02)

( 2) 1/2 (_Y}? ’ ( (’) {24 w0 rf/'{usg‘
o (02) T2 axpl— L W2y R gy 1 T Ty
/ p{ 20'-,‘2}\ ! p] 2;/:;;?:
2 2
af + 1S,
2y-{2 1}/2 ) o
oL (Of) ( tra+1)/ exp{ 262 }
/

Full conditional for (_rjz

So,
| (oF 1Y, 1, €, 05) ~ 282,
where
Vo = Up + 1
and ) )
35, _ a; + VoS5

Vg

37/87
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Multivariate-t

Prior;
(ajloB) ~ (iIdIN(0, o3)

0_621 ~ VQSEO,X;C?
Can show that the unconditional distribution for «x is
a ~ multivariate-t(0, /S | v, )

(Sorensen and Gianola, 2002, LBMMQG page 60)

We will see later that this is Bayes-C with = = 0.

Full conditional for o2

We will see later that

(g’ily, oy oy Ug) ™~ ﬁﬂfsﬁX;f

where
Do — Uy + Kk

and
= oo+ vy S2

2 __
gyt
Vo

67
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Spike and univariate-t

Prior:

(| o) | ~ N0 97} probabilty (1 — )
T =0 probability
and
(0 Iva, S2) ~ vaSaxs2
Thus,
| ~ univariate-(0, 82,v,) probability (1 - ),
(gt )(iidl)
Qe
| =0 probability

This is Bayes-B (Meuwissen et al., 2001; Genetics
157:1819-1829)

41/67

Notation for sampling from mixture

The indicator variable 4; is defined as
8 =1= (qjlef) ~ N(0,07)

and
& =0 = (alof) =0

42/67



Sampling strategy in MHG (2001)

» Sampling o2 and 4 are as under the Normal prior.

» MHG proposed to use a Metropolis-Hastings sampler to
draw samples for crf and oy jointly from their full-conditional
distribution.

» First, o} is sampled from

f(szIya M, , 6_: Ug)

using MH with prior as proposal.

» Then, o; is sampled from its full-conditional, which is
identical to that under the Normal prior

43/67

MH acceptance probability when prior is used as
proposal

Suppose we want to sample 8 from f(8|y) using the MH with its
prior as proposal. Then, the MH acceptance probability

becomes:
f(ecan|y)f(9r_1)
C (01 y) f(Ocan)

where f(8) is the prior for §. Using Bayes’ theorem, the target
density can be written as:

f(Bly) o f(yl6)f{(6)
Then, the acceptance probability becomes

F(¥|0can) f(Ocan)f(6'7)
T (Y101 (011 ) (Bcan)

a = min{1

a = min(1

44/67



Sampling of

Thus when the prior for crj? is used as the proposal, the MH
acceptance probability becomes

f(y|‘7§an= 91.'“)

a = min{1,
f(y|02391_)

)

where oZ,, is used to denote the candidate value for o2, and 6;_
all the other parameters. It can be shown that, «; depends on y
only through r; = xj’.w (page 30). Thus

f(yloF.6; ) o< {(rjl07.6; )

"Likelihood" for aj2

Recall that
w=y—1uy— Zleajr = X+ €
i
Then,
E(w|o}?,6,) =0

When d = 1: ‘

Var(w|§; = 1,07,6; ) = X;xjoF + lo3
and § = 0:

Var(wl|é; = 0,0%,6; ) = Io2

45/67
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"Likelihood" for aj-z

So,
E(r|lo?,8, ) =0
and
Var(rj|s; = 1,07,8; ) = (X{x;)°07 + X[Xj05 = vy
Var(rj{d; = 0,07, 8, ) = X;Xj0% = v
So,

2
F(r7165, 07,85 ) o< (v5) '/ exp{—ﬁ}

47/67

Alternative View of Prior in BayesB

» How much information is being added by the prior?
» BayesB is identical to ML with additional data!
» Can “see” how much additional data in BayesB prior.

48/67



Maximum Likelihood with Additional Data

» Suppose at locus /, §; = 1, and we observe additional data:
u; ~ N(O, chrf)

Assume that only unknown is o7
So, adjust phenotypes as:

A4

v

w=y-— 1,u,m ZXijzj:
F#i

Likelihood:

v

L(O‘J;E; w, U’j) = L(crf,’ é}j, U’j)

Likelihood with Additional Data

»
L(af: &), Up) o< fi(&l07) x fa(ujlo?)
»
r_.u’.u],'
Blujlof) o< (o) ¥ expl 4]
7

o ({w-:—i} iz ] OXQ,“,’)“‘E
A oy o0

iy,
» v=g-28=""1

v
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Alternative algorithm for spike and univariate-t

Rather than use the prior as the proposal for sampling aj?, we
» sample ¢; = 1 with probability 0.5
» when é =1, sample af from a scaled inverse chi-squared

distribution with
» scale parameter = of‘“‘"

when 6}3_1) =1, and

> sg:ﬁlg parameter = S2 and 4 degrees of freedom when
6j- =0

)/2 and 4 degrees of freedom

51/67

Multivariate-t mixture

Prior:
(oy|m, 02) {N N(0,02) probability (1 — ),
=0 probability
and -
(02|, S2) ~ va S22
Further,

7 ~ Uniform(0, 1)

» The oy variables with their corresponding 6; = 1 will follow
a multivariate-t distribution.

» This is what we have called Bayes-Cx

52/87



Full conditionals for single-site Gibbs

Full-conditional distributions for i1, @, and ¢2 are as with the
Normal prior.
Full-conditional for 4;:

Pr(éj[y) Hoy O _jj, 6"1" Ui’ Ug’ ﬂ-) -
Pr(gl7.6;.)

f(d;, rii6;
Pr{glr,8; ) = (f(j,:,'jg} Iy)

_ F(r;18), 8 ) Pr(8)lm)
f(r;16; = 0,8; }m + f(r|é; = 1,6;_ )1 — =)

Full conditional foro=
This can be written as

o2y, o, 8,02) o H{ylo2, 1, o, 8,08) (05, 1, e, 8,02)
But, can see that
f(ylo2, 1, ,8,02) o< f(y|, &, 8,0%)

So,
F(o2ly, 1 @, 8,02) o< f(02, u, ¢, 8,02)

Note that o2 appears only in f(a|s2) and f(c2):

!
kj2 o Q

exp{-5—}

f(alo) o (08)” e

and

o

f02) o (02) =+ exp( 22
* 202

a4

53/87
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Full conditional for o2

Combining these two densities gives:

~(ktvat2)/2 exp{ala + :asf,}

Fo2lY, 1 0, 8,02) o (02)
2a

&

So, )
(crf;Iy, wa, b, Ug) ~ ﬁasciX;f
where
U = K + g
and
g2 _ o'+ v, 52
o 170:

55/67

Hyper parameter: G2
If o2 is distributed as a scaled, inverse chi-square random
variable with scale parameter S2 and degrees of freedom v

1/82“
v—2

E(o?) =

Recall that under some assumptions

o2 = —Va
DTS o]le!
So, we take
(vo — 2)Va

2 =
Sa vak(1 — 7)2Dg
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Full conditional for =

Using Bayes' theorem,
f(TI-'&a#:an?xagg:y) X f(y{ﬂ', 6,,u,,a,ag,ag)f(ﬁ,é,#,a,aé, Jg)

But,
» Conditional on § the likelihood is free of =

» Further, = only appears in probability of the vector of
bernoulli variables: &

Thus,
fH(n|6, p,a,02,02,y) = ak=M(] — )7

where m = &8, and k is the number of markers. Thus, 7 is
sampled from a beta distribution with a = kK — m + 1 and
b=m+1.

E57/67

BayesCar with Unknown S4

Prior for S2: Gamma(a,b)

b

f(SZla,b) ox b*(SZ)*" exp{~bS.}

¥

Using Bayes theorem,
f(S2|8, u, ot 02,02, y) o F(Y1S2, 02, .. J(Sh,0°...)

Given u, o, and o2, f(y|S2,02,...) does not depend on S2.
In f(S2,02...), S2is only in f(S2|a, b) and f(o2|S2, ve)

v

A

58/67



BayesCx with Unknown S2

» Prior for S2: Gamma(a,b)
f(S2|a, b) o< bA(SZ)*~" exp{—bSZ}
» Prior for o2:
82

—(va Vooy
f(Uczx) X (Ug) (vot2)/2 9XP{F}
23

» Combining these gives:

(S5, S Pt <)

a

59/87

BayesCr with Unknown S2

So, f(82|a, b) is Gamma(a*,b*), where
ax =a-+v,/2

and y
—hr =
b + 202

o
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Simulation |

2000 unlinked loci in LE

v

Y

» h2 =05

Y

Results for Bayes-B

Correlations between true and predicted additive genotypic

10 of these are QTL: = = 0.995

Locus effects estimated from 250 individuals

values estimated from 32 replications

T 82 Correlation
0.995 0.2 0.91(0.009)
0.8 0.2 0.86(0.009)
00 0.2 0.80(0.013)
0.995 2.0 0.90 (0.007)
08 2.0 0.77(0.009)
0.0 20 0.35(0.022)

61/67
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Simulation |l

A

2000 unlinked loci with Q loci having effect on trait

N is the size of training data set

Heritability = 0.5

Validation in an independent data set with 1000 individuals
Bayes-B and Bayes-Cx with 7 = 0.5

¥

¥

v

v

63/67

Results

Results from 15 replications

Corr(g, 9)
N Q T 7 Bayes-Cr Bayes-B

2000 10  0.985 0.994 0.995 0.937
2000 200 090 0.899 0.866 0.834
2000 1800 0.05 0.202 0.613 0.571
4000 1900 0.05 0.096 0.763 0.722

64/67



Simulation I1H

v

Genotypes: 50k SNPs from 1086 Purebred Angus
animals, 1SU
Phenotypes:

» QTL simulated from 50 randomly sampled SNPs
» substitution effect sampled from N(0,0%)

UZ

2 _ 9%
Y 9 T Sodgg
» P =025

QTL were included in the marker panel
Marker effects were estimated for 50k SNPs

T

v

¥

85/67

Validation

» Genotypes: 50k SNPs from 984 crossbred animals, CMP
» Additive genetic merit (g;) computed from the 50 QTL

» Additive genetic merit predicted (§;} using estimated
effects for 50k SNP panel
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Results

Correlations between g; and g, estimated from 3 replications

Correlation

T Bayes-B Bayes-C

0.999 0.86 0.86
0.25 0.70 0.26

BayesCm:
» 7 =0.999
» Correlation = 0.86

67/87






Summary of Methods

Various Methods

y=Xb+ZM,.a,. +e
estimate ¢, and o
. BayesA

y=Xb+> Mas, +e

estimate &, o, and o’
BayesB

estimate &, o. and o’
BayesC

. 2
estimate , &, o and o’
BayesCPi

2010-06-16



Various Methods

Markers in Model

Marker Effects All {n=0}) Fraction {1-m)
Random - Individual Variance (Normal} “Bayes A" (BO) “Bayes B”
Random - Constant Var {when in model} Bayes C (CO}="BLUP" Bayes C
Random - Constant Var {when in model) Fraction (1-m)

estimated from
data=Bayes CPi

Categorical Variants {threshold models)

Qther Variants {estimate scale, heavy tails}

Practical experience and results with
various methods using real and
simulated data

2010-06-16



ModelFreq10
ModelFreq20
ModelFreq40
ModelFreq500

Correlations

Correlations

Pi influences convergence

pi=0.95
ModelFreqi0 ModelFreq20 ModelFreq40 ModelFreq500
1 0.8869 0.9053 0.9223
0.8869 1 0.9425 0.9593
0.9053 0.9425 1 0.9786
0.9223 0.9593 0.9786 1
pi=0,998

ModelFreql0 ModelFreq20 Mode!iFreq40

ModelFreql0 1 0.9903 0.9927

ModelFreq20 0.9903 1 0.9961

ModelFreq40 0.9927 0.9961 1
Genomic Selection

Shrinkage of marker effects

Dorian Garrick
dorian@iastate.edu

A

L

'?g: poat 9
mss ]

IO\MK;{%TATE
UNIVERSITY
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Simplest Approach

No selection of loci Assume

normally distributed
- allelic effects

- residual effects

constant o7 and
"BLUP""

Mixed Model Equations

These equations have order = number of SNP+1 and are dense

Like Ridge Regression

2010-06-16



! 2 i /

. ’f‘ ! ,? Q‘ ’.: o~ “» .‘,’ 5

‘Estimat-ed ‘Effeczté-f |

Marfer EffectVar GenVar EffectDeltal  SDDeltal
3.218723e+01 0.485 11292244e+08 -1.63759¢+80 5.39318e400
2 1.250e+90 3.2187230+81 8.399 71440695e-01 1.2508362+08 5.36582e+400

3.218723e+01
3.218723e+01
3.218723e+81
3.218723e401
3.218723e481
3.216723e481
3.218723e+81
3.216723e+01
3.218723e+81
3,218723e+61

4 -1.881e+80
5 -3.432e+00
6 -3,792e-81
7 1.335e+08
8 -3,396e-01
9 1.010e+00
i1 -7.814e-01
12 2.146e-01
13 -1.792e+00

0.560 1597777¢4%6 -1.80061e+08 5.43059e+00
8.200 3 P693i4e+00 -3.43246e+02 5.436894e+00
8.839 3.p75831e-82 -3.79198e-81 5.43625¢+00
0,581 8.573961e-61 1,33465e+88 5.32627e+08
0.604 5516143e-62 ~3.39616e-81 5.300032+08
0.391 4 B38477e-B1 1.81844e+88 5.29647e+00
0.415 2)388126e-81 -7.861378e-B1 5.38394e+00
0.555 2§274302e-82 2.14591e-B1 5.27857e+00
0.474 15.60889%e+00 -1.79176¢+00 5,41718e+60
8.193 §.699557e-01 9.29526e-01 5.43949e+00

shrink
6.479
08.479
B.493
0.343
B.3856

8,490
29.475
0.476
B.4905
0.497

Equivalent Model (All SNPs)

y=Xb+ZMia,.+e
y=Xb+[1][ Y Ma, |+e, u=3 Mpa,
var(y, M,a) = 3 M, var(a)M,'= 0, 3 MM’

XX X b X'y
X I+AGT it y

G=Y MM,

Current methad using genomic G instead of pedigree A
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Analytical Methods

No selection of loci

y:Xb+ZM‘.af+e

constant ¢ and O}

Need to estimate a variance
component for every locus
Markov Chain Monte Carlo

"BLUP" is an efficient method to explore
SNP— speczﬁc ot and o* the likelihood surface
BayesA
Meuwissen, Hayes & Goddard (2001}
Bayesian Methods
Model that
Data .
describes
nature \
Prior Posterior
Knowledge Knowledge

2010-06-16



.

Markov Chain Monte Carlo

Sample unknown parameters based on
knowledge of the prior

Quantify the fit (given the data)

Sample unknown parameters based on joint
knowledge of the prior and the previous fit of
each parameter

Repeat this process until convergence

Bayes A

Prior ( a,./()',.z) ~ N(0,0'iz)
o} ~v,S2

Y

so that a; ~ (lid)t (O,Sfa ,va)

-2
XV‘, Meuwissen, Hayes & Goddard (2001}

Sorensen & Gianola, 2002

v, v
> 2p(-p) k2p(L—p)
2 (Va *Z)Va
v, k2p(1-P)

Assume O} =

S0 for k SNP

2010-06-16



8,300 Holstein Bulls w/50k

Effect¥ar
3.93114Be+81
3.,846712e+061
3.768716e+01
4,949039%+81
3.799973e+01
4,145301e+01
3.878845e+01
3.567120e+01
3.7852658e+01
3.718394e401

1 -1.659¢+00
2 1,418e+00

3.865098¢e+

Bayes A

1.9009
1.9880
1.00808
1.0800
1.0800
1.0000
1.0008
1,0800
1.0800
1.0000

1.0000

1.00800

_____ Genvar  EffectDeitol
8.405 1.326415e+B0 -1.65912e+80 5.
8.399 9.573883¢-01 1.41831e400 5.
8.560 1.586915¢+00 -1.79448e+00 5.
B8.280 4.997357e+88 -3.95225e+00 7.
8.839 5.474991e-02 -4.50678e-01 5.
8.581 6.67B957¢-61 1.17062e+98 5.
.684 1.132672e-01 -4.86648e-01 5.
391 1.471572e-81 5.55940e-01 5.
415 2.984811e-084 -2.47957e-02 5.
555 1.846104e-82 1.93337e-81 5.

1.936189e+88 -1.97050e488 6.

[}
a
[}
a
0.474

0.193 2.181811e-61 8.37045e-81 5.

4
5!
4
i

SDDeltol

84901e+00
62114e+00
72854e+08
25751e+08
64675408
58165e+0@
54109e+68
208357e+00
53166e+00
22843e+80
87676e+00
69654e+08

BLUP estimate

Shrinkage =

OLS estimate

Bayes A Effect vs Var(effect)

Vae i effect

df=4

crmed A . D e

Gdx OX<1 sma GRAD bma dEN 1S

2010-06-16
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Analytical Methods
* Two major classes of mixed models

No selection of loci Mixture Models {(model selection)

y=Xb+Y Ma +e y=Xb+) Mas +e

constant ©: and ©? estimate 6,, 0, and O,
"BLUP" BayesB (known 1)

estimate O':f and g: 7 = fraction loci with no effect
BayesA

Meuwissen, Hayes & Goddard {2001)

Mixture Models

nchains y= Xb + EMia@ +e

kSNPs

6,=1 L,=LXb+Ma, +e) given (1-7)
6,=0 L,=L(Xb+e) given 7

L

Compute p = 3 Draw u = uniform[0,1]

1
u < p then locus i is in the model this chain




Performance

Shrinkage Estimation

Biased up

cov(y,X)
var(x)
_m(y- )
m,m,
_ my- )
=—ad i ~
mm, +%2_ BLUP=Shrunk

slope = True

OLS=Biased up Biased down

AA, A8, B,8, Genotype

Bayesian Estimation

* Extent of shrinkage that results by treating
effects as random (due to uncertainty)
depends upon the relative magnitude of
m,m, and 0. /0.

— Less shrinkage than animal models

* Additional shrinkage in mixture models due to
model frequency

2010-06-16
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Bayes A vs B marker effects

Mork EffectVar rea\Genefreq  Genvor EffectDeltal  SDDeltal t-tikefshri
1 -9.777e-B1 3.5960698e+01 0,405 4,696214e-01 -9.616B5e+60 1.53699¢+01
2 4.965¢-01 Y 2.593115e+01 0.399 1.1730168¢-01 6.29821e400 1,20837e+81
4 -9.941e-01 3.696611e+01 8.569 4.870099e-81 -9.74378e+08 1.6066Be+01
ﬁ 5 ~4.23%e+00 9.636366e+01 8.2088 5.748372e+08 -1.99874e+81 2.4697Ze+B1
Uf 6 -2.2236-01 | 2.729070e+01 0.839 1.331562¢-02 -2.7813%+08 1,33251e+01
&) 7 1.113-61 2.111116e+01 0.561 6.935581e-93 1.634962488 1.16551e+B1
8 -2,598e-01 2,267326e+91 8.604 3,228674e-B2 -3,69196e+08 1.10733e+81
9 6.843e-02 [ 2.173070e+81 B.391 2.22976Pe-83 9.92863e-B1 1.83528e+01
11 -4.227%-02 2.312403e+81 0,415 8,674018e-04 -5.976%0e-01 1,16347g+01
12 Z.658e-81 2,19568pe+81 0.555 2.092882e-82 3.07760e+68 1.8362Be+B1
3 -1.338e480 f 4.2868431e+81 8.474 B.923563e-B1 -1.20680e+81 1,70199e+B1
4 6.115e-081 f 3.1386206e+01 0.193 1.164567¢-01 6.963190+88 1.38614e+81
Marke Effectvar _ Genefireq,  Genvar EffectDeltal SDDeltal
1 3.931140e+03 B.405 1,326415e+00 -1.65912e+00 5.84991e+88
2 3.046712e+01 k 0,398 9,573683e-01 1.41831e+08 5.62114e+00
4 -1.794e+68  3.788716e+81 1.B088  0.560 1.596915e+00 -1.7944Be+60 5.720542+90
5 -3.952e+08  4.949039¢+81 1.0080  8.208 4.9973570480 -3.95225e+80 7.25751e+00
ftn 6 -4.507e-B1 3.799973e+01 1.8888  B.B39 5.474991e-0Z -4.58678e-01 5.64675e+88
Y 7 1.171e400 4.145301e+01 1.0600  ©.581 6.670957¢-91 1.17962e+00 5.568165¢+00
& B -4.866e-81  3.870045e+81 1.8008  0.604 1.132672e-81 -4.8664Be-8L 5.54189£+00
9 5.559e-01 3.567120e+81 1.0800  B.391 1.471572e-61 5.55940e-B1 5,28357e+08
11 -2.488e-82  3.765258e+B1 1.0000  B.415 2.984811e-84 -2.47957e-02 5.53166e+60
12 1.933e-81 3.7483%4e+681  1.06000 B.555 1.846184e-092 1.93337%e-81 5.22843e+09
13 -1.970e+08 4.230106e+81  1.0900 0.474 1,936189%¢+00 -1.97050e+80 6.07676e+00
14 6.370e-61 3.865098e+B1  1.8000  0.193 2.181811e-61 8.37845¢-81 5.69654e+80 0.147 B8.390
df=4 m=0.99
Var vy effect Var vs cffectA2
riceor . bt -
i . .
o s pmor P - 2akeva
ORI Lioee
P ; ]
; < «
B LROURE § o e
A B 7
P %«, - SwEgy TR — e -
>4 H
won&alm-m»mﬂk‘-«wxn:‘n wull; u;\;l um-c‘ ;s&“{w;,v;w SO%00 (1021 13598 LO%.05 5%

11



2010-06-16

Analytical Methods
* Two major classes of mixed models

No selection of loci Mixture Models {model selection)

)’:Xb"'EM;a.'"‘e y=Xb+ZM,.a,.5,.+e

constant > and O’ estimate 6,, 62 and o’
“BLUP" BayesB (known )
. 2 2 — " ’ . «
estimate 0°, and 6> 7 = Jraction loci with no effect
BayesA

Meuwissen, Hayes & Goddard {2001}

Var vs effect

160504

e B o e et i 1 et e

1720504

1:00564

R 1 L LT

2000y

— == ¢.00E~ 0

-6.00£-03 -4.00E.03 -2.00€-03 0.002+00 2.095-03 4.00£.61 6.042-03

Bayes CO

24

12



Bayes C (pi>0) or Bayes CPi

Like the following

Var vs effect
Cpemn got s oo

436003304 D3 2EL D LLCAIE A3 1 3000) YOS 10000 E3U4T $ 206 83 6743

500005 %2

SR T
01100

SEN O

UM - e

P TR TR SO

PRV S

Var vs effectA2

[y LK

kG

2u% 08

Bayes C Var(Effect)

| Horker  Effect EffectVar Modelfreq Genefreq  GenVor EffectDeltal  SDDeltal t-tike shrink
1 -1.126e+86 3.354322e+01\ B.1067 9.465 6.108635e-81 -1.05549¢+81 1.61887e+01 ©.652 0.897

2 5.086e-B1 2.359998e+81} 0.0749 0.390 1.232100e-01 6.79312e+08 1.30135e+01 B.522 0.896

4 -1.0090+00 3.867306e+81 § ©.0973 0.560 5.022085e-81 -1.03724e+81 1.67905e+01 B8.618 £.983

5 -5.030e+00 7.567490e+01 | 0.2403 0.208 8.993031e+00 -2,893256+81 2.38519+061 0.878 0.822

‘d 6 -2.276e-81 2.691091e+81 | ©.6830 0.839 1.396912e-82 -2.71491e+08 1.39947e+01 0.194 B.793
g 7 2.364e-61 2.1656233e+01 | ©.0685 8.581 2,7208276-62 3.45256e+80 1.16842e+01 ©.295 0.901
o 9 -2,716e-01 2.276660e+01 | 0.8722 0.609 3.5289497e-82 -3,76069e+00 1,25527e+01 0,300 8.895
© 5 5.250e-02 2.825334e4+81 | 8.0644 0.351 1.859712e-03 9.6969%e-91 1.89925¢+81 ©.689 B.8%6
11 -1.582e-01 2.391427e+01 § 0.076@ 0.415 1.095698e-82 -1.97555¢4+08 1.25212e+061 ©.158 0,899

12 2.674e-B1 2.966088e+01 § 0,0656 B.555 2.124543e-82 3.16166e+00 1.12493e+01 0.281 ©.904

13 -1.269e+00 | 3.417813e+0%f ©.10B4  0.474 8.827106e-01 -1.16991e+B1 1.60533e+81 ©.694 0.985

14 7.3%5e-81 \ 2.799078e+Bf 0.8868 = 0.193 1.693761e-01 §.38527c+00 1.51948e+01 8.547 8.811
Marker Effect EffectVar ModelFreq Genefrea,  GenVar EffectDeltal SDDelteil t-like shrint
1 -9.777e-01 596898e 01 6.1817 0.405 4.606214e-01 -9.61605¢+60 1.53689e+01 B.626 0,997

2 4.965e-81 2Ng31jwe+01  0.8788 0.390 1,17391Be-B1 6.29821e+0@ 1.20837e+01 ©.521 9.901

m 4 -9.%4le-01 3.696611e+01  0.1620 0,560 4.87809%e-81 -9.74370e+08 1.60608¢+01 ©.687 08.915
& 5 -4.239e+09 9.636366e+01  B.2121 8.208 5.748372e+80 -1.998746+01 2.40972e+01 0.829 B.869
% 6 ~2.223e-91 2.729970e481  0.0823 8.839 1,331562¢-02 -2.7013%92+08 1.33251e+91 0.203 5,002
© 7 1,113e-01 2.111116e+81  B.8661 0.581 6.035501e-83 1,63446e+00 1.10551e+01 B,148 0.900
8 -2.598e-B1 2.267326e+81  0,0794 0.684 3,228674e-82 -3.69196e+08 1.10733e+81 8.333 0.098

9 6.843e-82 2.173070e+01  0.0669 0.391 2.229760e-03 9.92863¢-61 1.03528e+01 6.896 0.897

11 -4.227e-82 2.312403e+01  0.0707 0.415 B.67481Be-04 -5.97699e-01 1.16347e+81 @.651 0.983

12 2.958e-01 2.195698e+81  9.8669 0.555 2.892082e-62 3.87760e+00 1.83B20e+01 0.296 8.968

13 -1.338e+00 4.200431e+01 ©.1108 B.474 B.923593e-01 -1,28680e+01 1.7619%e+91 0.709 0B.920

14 6.115e-01 3.,130620e+81 6.8878 6.193 1.164587e-91 6.96319¢+08 1,38614e401 8.502 0.639

2010-06-16
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Summary

* Genomic Selection methods rely on shrinkage
of marker effects to get reliable estimation

* There are several alternatives for shrinking
marker effects
— Treating marker effects as random
— Fitting mixture models
— (Using densities less extreme than normal)
* Fitting Mixture distributions provides a much
more powerful method for shrinking marker effects
than simply treating marker effects as random

Web-based system

2010-06-16
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Bioinformatics Infrastructure

* |dentify informative regions for fine-mapping
and gene discovery

* Provide a platform for collaborating (beef)
researchers to undertake genomic training
— eg US Meat Animal Research Center
— Federally-funded beef projects

* Provide a platform for delivering genomic
predictions to (the beef) industry

Site access

* Follow links from bigs.ansci.iastate.edu

— BIGS — bioinformatics to implement genomic
selection

* Federally-funded project (2010-2012) for US
beef cattle researchers

— Available for limited access to other parties
conditional on demand for processors (64 CPUs)

— Useful for benchmarking

2010-06-16
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Required Information

* Research from analysis of high-density genotypes
to predict merit has several objectives

— Determine predictive ability of

* same-density panels in validation/target populations
closely related to the training population

» same-density panels in validation/target populations less
related or unrelated to the training population

* low-density panels in populations closely related to the
training population

— Motivate other genomic selection research

Predictive ability
of Individual Chromosomes

16
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Data kindly shared by Vlad, LIC

Milkfat

v @
€ E
9 o
DA
Q o
E E
(o=
£ =
© o
-
4
<
)
Q o
s 2
wy
a g >
zZ &S T
Vv = o0
= oo
n s
L)
T3¢
e o O
T T T 1

T 1777 T

T 7
20 22

18

24 28 28

18

14

12

01 23 458678681

Problems with Validation
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BayesB then BayesA (100 markers)

“Heritability” for 100 markers chosen for trait in row, applied to trait in column

0.64 050 D23 033 029 022 045 030 0.24
053 .61 024 033 029 P23 045 030 0.26
027 029 057 033 029 022 036 030 0.25
027 027 P23 067 029 026 042 030 0.29
0208 024 023 033 057 D25 P40 035 027
027 .29 D26 033 020 053 042 030 .25
020 029 023 033 020 025 070 026 025
029 27 D24 33 029 p22 b36 1063 024
032 027 026 033 029 025 042 030 0.65

35

Bayes B then Bayes A (100 markers)

Correlation in training data

chosen for trait in row applied to trait in column

0.79 .68 37 041 A2 33 56 046 0.39
069 1076 038 P4 044 034 054 042 p41
039 P41 077 04 0.39 10.35 5 0.4 0.39
036 036 0.35 0.78 041 41 053 045 043
0.41 P4 0.38 036 079 039 51 P51 .41
039 04 039 045 041 072 055 041 0.38
0.41 0.4 035 045 04 041 1087 p4 0.41
043 041 37 04 048 .37 05 0.79 0.37
044 P.4 039 P44 038 037 0.5 0.45 .78

36

2010-06-16
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1st attempt Cross Validation

» Dataset 1 comprising 8 breeds
* Select best 100 markers in all data using BayesB

B1 vlviv]iv]v]v]v
B2 | v vliviv]iviv]v
Dles| v [~ vivIiviv]vy
=l v]v]v vv]v]v
sl v|iv]|v]v vlvlv
Ele|v|v]v]v]v Vv
B7 | v | viv]|v]iv]v v/
BB | v | v]v]v]|v]v]v
Validation | B1 | B2 | B3 [ B4 [ B5 | B6 | B7 | B8

Bayes B then Bayes A (100 markers)

markers in row chosen from Bayes B on all data, Bayes A trained in cross-
validation for trait in column, predicting merit in omitted data

0.66 053 0.02 .09 002 006 pP.O7 0.08 -0.03

06563 .65 001 .03 0.1 t0.02 0.06 002 0.06

0.01 0.03 .68 0.02 0.03 0.02 10.04 }0.01 }0.05

+0.06 +-0.06 001 p.68 .02 0.04 .02 0.08 0.11

008 0.07 +0.02 10 0.68 004 DO 0.2 0.04
-0.02 .01 P06 0.14 b.OB 058 0.11 0.03 [0.03
-0.01 0.01 004 P14 DO 0.1 0.74 0.07 0.04

006 005 ©0O1 PO5 p022 0O7 P06 0.69 0.05

.08 002 p0.02 P15 }0.08 (0.01 0.01 14 0.7

38

2010-06-16
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StepWise then BayesA

Trait |

iR

126

o6~

_Number of Markers in Model

r

- S

6696~

129
- _105

0.923

0e2e

TT0.906

058
1 0.927
70925

- 0926

0927

T0.825
G

TEEST

33

StepWise then BayesA

Data Set

Numper of Markers in _Model‘ __

1237

T

29

o

7333
T 48T

Successive datasets have previously best markers removed

40

2010-06-16
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StepWise and BayesA

DataSel | Numberof Markers In Model 1

Data Set 1 |- v 50

e _.:l_oﬁ RN .,_T, __ .,;.,.h_\..f:

4

Improved Validation

2010-06-16
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Proper cross-validation

* Marker subset selection and marker
estimation are undertaken on each training
data subset and used to predict “virgin” data

» Correlation dropped to 0.18 (at best) when
properly (100 marker subset chosen in
training data) cross-validated

43

Training and Validation

Purebred (PB) Purebred
(PB)

PB > PB

50K SNP

2010-06-16
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Validation

* Almost always SNP that spuriously fit the data
well
— Having a model that fits the training data well
provides relatively little information about how
good the prediction will be in new data
* Many world-changing research discoveries are
announced in news releases and then never-to-be-
heard-of-again
* Training & Validation can be done together to
quantify the likely confidence in predictions

Cross Validation

* Partition the dataset (by sire) into say three
groups

0o G1

c

c G2 v/

% . Derive g-EPD
‘_t G3 v

Compute the
correlation between
Validation G1 predicted genetic
merit from g-EPD and
observed performance

2010-06-16

23



Cross Validation

* Every animal is in exactly one validation set

00 G1 v/ /
C
c G2 v v
‘©
,: G3 / v/
Validation G1 G2 G3

Cross-Validation

» 1800 bulls with EPDs - split into 3
— At random
— By sire ID - sire of bulls nested in subset
— Bysire ID - sires also fitted as fixed effects
— By time - oldest, middle-aged, youngest

8
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Results
41028m |Random| Sire | Sire+cg| Time
Bayes A
(B0) 0.745 0.726 0.646 0.732
Bayes B
(99) 0.722 0.700 0.618 0.712
Bayes CO | 0.746 0.728 0.648 0.730
Bayes
C(50) 0.746 0.728 0.647 0.730
Bayes
C(.99) 0.728 0.708 0.625 0.717
100m
c.99r/nc100 0.553 0.567 0.389 0.583
StepWise | 0.547 0.558 0.393 0.542
PRESS 0.523 0.539 0.365 0.574

49

Simulated SNP Results - 1184 QTL

52566 markers Number of training animals

T1=0.977 1000 2000 3000 4000
B(true) 0.65 0.76 0.82 0.84
C{true) 0.62 0.74 0.80 0.83
B(inflated) 0.63 0.75 0.80 0.83
C(inflated) 0.60 0.71 0.77 0.80
B(0.50) 0.62 0.74 0.79 0.82
C(0.50) 0.60 0.70 0.75 0.78
B(0) 0.64 0.74 0.79 0.81

C(0) 0.59 0.70 0.75 0.78

True=#QTL/#markers; inflated=0.9 true; heritability=0.5
(Christian Stricker for Swiss Cattle Breeders)

50
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Simulated Results

2000 animals Number of QTL
171 493 1184
B(true) 0.88 0.82 0.76
C(true) 0.88 0.81 0.74
B(inflated) 0.84 0.79 0.75
C(inflated) 0.70 0.74 0.71
B(0.50) 0.81 0.78 0.74
C(0.50) 0.65 0.72 0.70
B(0) 0.82 0.77 0.74
C(0) 0.64 0.72 0.70

True=#QTL/#markers; inflated=0.9 true; heritability=0.5
(Christian Stricker for Swiss Cattle Breeders}
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50k within-breed predictions

Angus Al bulls | Train 2 & 3 Train 1&3 Train2& 3

Trait Predict 1 Predict 2 Predict 3 Overall
BFat 0.71 0.64 0.73 0.69
CED 0.65 0.47 0.65 0.59
CEM 0.58 0.56 0.62 0.53
Marb 0.72 0.73 0.64 0.70
REA 0.63 0.63 0.60 0.62
SC 0.60 0.57 0.50 0.55
WWD 0.65 0.44 0.66 0.52
YWT 0.69 0.51 0.72 0.56

2010-06-16
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50k within-breed predictions

* These predictions are characterized by
correlations between genomic merit and realized
performance from 0.5 to 0.7
— They will account for 25 (0.5%) to 50% (0.7?) genetic
variation

— Compared to a trait with heritability of 25%, the
genomic predictions would be equivalent to observing
6 to 15 offspring in a progeny test

* Correlations of 0.7 are similar to the performance
of genomic predictions in dairy cattle

50k within-breed predictions

* These predictions are not as highly accurate as
can be achieved in a well designed and
managed progeny test, say with 100 or more
offspring

* However, for many traits they are much more
reliable for animals of a young age (eg prior to
first selection) than is currently achievable
from individual performance
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Across-breed prediction

+ Refers to the process of predicting performance for a
breed or cross that was not in the training dataset

» Critical interest to those selecting breeds that are not
well represented in the training populations

*+ May not be as reliable as within-breed predictions due
to complexities associated with non-additive genetic
effects (dominance and epistasis)

+ Potential can be assessed by simulating the effects of
major genes using real SNP genotypes on various
populations

Introduction

« Toosi et al.,(2008) simulated genotypic and
phenotypic data
— Training in crossbred and MB populations
— Successful selection of PB for MB performance

+ Linkage Disequilibrium (LD)
— Simulated LD in pure and MB populations may
not accurately reflect real LD in beef cattle
populations

2010-06-16
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Obijective

Training Populations =»  Validation Populations
Multi-breed (MB) Purebred (PB)

MB =» PB

50K SNP

PB =» MB

50K SNP

50K SN PLDatasets
MB P{opulation (N=924) PB Population (N=1086)
A i Angus 239 . /nous 1086

3

- Brahman 10
’ Charolais 183
: 78

; Limousin 45

8% South Devon 135
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Simulation of Additive Genetic Merit and
Phenotypic Performance

50K SNP @J@@DDDDDDDD@DDDD

0,1o0r2

am, at, QT

SNP chosen at random @DDDDDD@ ,[ N

QTL 50, 100, 250, 500 L ]

|
Additive Genetic Merit

K =
! A

Phenotypic performance

Marker Panels
50K SNP m@@D@@DDDDDD@E@DDm

LD=r2 LD=r2
ulyL,tm2 1 ar, l
QTL 50, 100, 250, 500 DDDDDD@
HLD, HLD, HLD,
HLDSO, 100, 250, 500 @DDDDDDDD@

sokwfoQrL - D] CICICIE) ) DIRJCICIRD
Y

Bayesian Analysis
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Simulated Phenotypes/real 50k Data

+ Effect of number of available markers

Train in Multibreed Train in Purebreed
50 QTL Validate in Validate in
Purebreed Multibreed
Just QTL 0.953 0.962
QTL + Best markers 0.931 0.938
QTL + 50k 0.766 0.842

Simulated Phenotypes/real 50k Data

» Effect of number of available markers

50 QTL  [Variace i bireorecd |Vatcatemn
Multibreed

Just QTL 0.953 0.962

QTL + Best markers 0.931 0.938

QTL + 50k 0.766 0.842

Just Best markers 0.570 0.489

50k w/o QTL (real life) 0.388 0.422

Kizilkaya et al, ASAS, 2009
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Effect of number of available markers

* Redundant markers reduce accuracy
— Increased type | errors

* Accuracy suffers greatly when QTL not on
panel
— Not enough markers of sufficiently high LD to act

as good proxies on a one-for-one basis

* Multibreed population generally inferior to

purebred

Purebred or Crossbred

Multl-Breed {r}

Highest LD markers for random QTL with Training in Purebred

y=1.2018x - 0.371
R*=0.48308

1 Means {r} . FRRR~
Purebred = 0.717 N . .e ».0”
o Muiti-breed = 0,491 . R * . ¢ . .""'
few QTL with
06 .
LD <0.4 in
o training
* e
. b ¢+ Many markers
0 I X , erodein
’/‘ SR SR N validation
* .
o 4w :0: J «population

02

Purebred (r) 4"& B e
[EEAT RN
) /
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Purebred or Crossbred

Purebred {r)

Highest LD markers for random QTL with Training in Crossbred

¥ =0.8775x + 0.0408
R*=0.39451
Means {r}
Multl-breed = 0,625
Purebred =0.588 ¢

w LD<0.4in
training

0.2 .
s G e . still robust
.
oo ¢y in vatidation
0 ol os oo . . . R
. population

Most markers

o 02 DIH 06 08 1

Multl-Breed (r)

Effect of number of available markers

Easier to find high LD markers in purebreds than
multibreed populations because average LD is higher

— Favors the use of purebred populations

— Necessitates higher density SNP panels in multibreeds

Markers chosen in purebreds may be less informative in
multibreed populations as they will have less LD

Markers that work well in multibreed populations seem

to work just as well in purebred populations

Nice to have larger multibreed populations & denser

panels

2010-06-16
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Correlations between true and predicted genetic
merits in validation population

Panel: QTL
QTL MB=>PB PB=>MB
50 0.953 0.962
100 0.938 0.941
250 0.840 0.853
500 0.720 0.786

Simulated Phenotypes/real 50k Data

» Effect of number of QTL

50k W/0 QTL |y i brebrecd | vatidate i Mutsibreed
50 QTL 0.388 0.422

100 QTL 0.289 0.308
250 QTL 0.247 0.276

500 QTL 0.200 0.299

* ldentical trends when panel comprises QTL only
* These correlations a/c for < 20% variation at best

2010-06-16
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Correlations between true and predicted genetic
merits in validation population

Panel: HLD
QTL MB=>PB PB=2>MB
50 0.570 0.486
100 0.513 0.480
250 0.510 0.429
500 0.372 0.391

Average LD between QTL and HLD marker
in PB or MB populations

HLD to QTL HLD-QTL LD
chosen from assessed in
PB MB
PB 0.549 0.322

MB 0.412 0.408

2010-06-16
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‘Conclusions

« MB population
— A good choice to carry out genomic selection

— Reasonably accurate estimate of genetic merits
of selection candidates in a PB population
« Accuracy of genetic merit in genomic selection
— Higher with fewer QTL
— Erodes when more uninformative SNPs added
« The extent of LD hence r? are highly variable
— Lower average r2 in MB than PB populations
— No complete LD for all QTL with SNPs
— Denser markers are needed

Training and Validation

Purebred (PB) Purebred
(PB)

2010-06-16
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Training and Validation

Purebred (PB) Purebred (PB)

PB=» PB

Reduced
Panel

Reduced panel within-breed selection

* Two-stage Bayesian analysis
— Run all 50k markers
* in each of the three training sets (2&3, 1&3, 1&2)
— Select the best 600 markers on model frequency
and genomic coverage
— Rerun the training and validation analyses using
only the markers on the 600 marker panel

2010-06-16
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50k versus 600 markers

Angus Al bulls

Trait

50k panel
Overall

600 markers
OQverall

BF at

0.69

0.63

50k versus 600 markers

Angus Al bulls 50k panel 600 markers
Trait Overall Overall
BFat 0.69 0.63
CED 0.59 0.61
CEM 0.53 0.55
Marb 0.70 0.67
REA 0.62 0.56
SC 0.55 0.51
WWD 0.52 0.49
YWT 0.56 0.55

2010-06-16
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384 SNP Panels

* Panels of 600 markers per trait for 8 traits
would require a single panel of 4,800 markers

» Technology is moving such that larger panels
are costing the same as smaller panels used
to, rather than reducing the cost of smaller
panels

* Significantly cheaper panels are currently
limited to 384 (or less) SNP
— Allow 100 or so of the best SNP for 3-4 key traits

Even Smaller Panels

Validation in 698 steers with carcass phenotypes

50 100 | 150 | 200 | 384
Trait
Marb 0.28 | 0.29 | 0.39 | 0.43 | 0.49
REA 0.43

2010-06-16
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Validation in New Al Bulls

50k 600 384

Trait
Validation 3-way 275
BFat 0.69 0.63 0.32
Marb 0.70 0.67 0.59
REA 0.62 0.56 0.58
YWT 0.56 0.55 0.35
CCWT 0.44
HP 0.39

Summary — beef cattle in US

* 50k within breed (like 5-15 progeny)

* 50k across breed
(like 1 individual record or 5 progeny)

* Reduced panel within breed
(varies up to 50k accuracy)

2010-06-16
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2010-06-16

Validation Statistics

Validation Statistics

* Proportion of additive variation accounted for by
the genomic prediction
— Molecular BV used as an observation

1/ Multivariate model using the MBV as a trait to
estimate (eg ASREML) the genetic correlation

2/ Reduction in estimated sire variance when the
MBV is included as a fixed effect in the model

3/ Regression of phenotype on MBV

Thallman et al, 2009 BIF
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Thallman et al, 2009 BIF

Data on 1,000 animals representing 100 sires

Proportion of additive variance explained by MBV
BVN BVN Reduction Regression
res cov estd res cov=0
heritability rg
Data Simulated from Additive Model Only

0.1 0.04 0.11 0.08 0.02

0.1 0.16 0.21 0.23 0.17

0.1 0.36 0.38 0.44 1.40

0.1 0.64 0.54 0.64 0.29

0.3 0.04 0.06 0.05 0.04

0.3 0.16 0.17 0.19 0.15

0.3 0.36 0.35 0.40 0.35

0.3 0.64 0.64 0.68 0.66

0.5 0.04 0.05 0.05 0.04

0.5 0.16 0.16 0.18 0.16

0.5 0.36 0.35 0.39 0.36

0.5 0.64 0.63 0.66 0.63

http://www.bifconference.com/bif2009/proceedings/C4_5_pro_Quass.pdf

Some observations on across-
breed prediction in dairy cattle

2010-06-16
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Comparison of the 5-SNP window
variance in unrelated animals

Holstein (HO) using 8512 bulls
Jersey (JE) using 1915 bulls
Brown Swiss (BS) using 742 bulls

Milk Production

Correlations Genomic & ProgenyTest

Method Brown Swiss Jersey Holstein
Bayes A 0.194 0.198
0.191 0.201
Bayes B (n=0.9) 0.141 0.244
+FindScale | 0.143 0.247
Bayes C (rn=0.9) 0.141 0.180
+findScale | 0.145 0.183
+FindScale | 0.077 (JE & HO) 0.197 (BS & HO) 0.253 {BS & JE)
Bayes CO 0.180 0.084
+FindScale | 0.184 0.082
Bayes CPi 0.146 0.172
+FindScale | 0.152 0.169

2010-06-16
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Holstein BTA1 Milk

Absolute value
of SNP effects

Variance of

™ 5-SNP window
x '
'
y
‘ :
R . ‘. te L i :
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el a 20 w M M M n e M Yoo i o T 110 1o
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'
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BTA6 - Milk
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BTA16 -Milk

HO

JE

BS

Genomic Selection

Estimation of the mixture fraction

Dorian Garrick
dorian@jastate.edu

Anmvar

SCIENCE

18

[OWA STATE
UNIVERSITY
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Analytical Methods

“BLUP” | BayesA | BayesB | BayesC | BayesCPi
All All
Number SNP 1_p| 1-pi 1-pi
constant constant | constant
SNP Variance variable | variable
NA NA
pi known | known
unknown
Simulated Results
2000 animals Number of QTL
52,566 SNP markers 171 493 1184
BayesB(true pi) 0.88 0.82 0.76
BayesB(inflated pi) 0.84 0.79 0.75
BayesB(0.50) 0.81 0.78 0.74
Bayes A=B(0) 0.82 0.77 0.74
“BLUP”"=C(0) 0.64 0.72 0.70
True=#QTL/#markers; inflated=0.9 true; heritability=0.5 )
(Christian Stricker for Swiss Cattle Breeders) pi matters!

2010-06-16

50



How do you know pi?

Mixture Models (model selection)

Fernando et al 2009
(in preparation)

Simulated Results

+ 2000 unlinked loci, Q QTL, N training
animals, 1000 validation animals,

heritability =0.5

BayesB (.5) Bayes Cpi
{pi known) (pi unknown)

N Q pi Correlation pi-hat Correlation
2000 10 0.995 0.937 0.994 0.995
2000 200 0.90 0.834 0.899 0.866
2000 1900 0.05 0.571 0.202 0.613
4000 1900 0.05 0.722 0.096 0.763

2010-06-16
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Simulated Results - Real 50k

+ Train 1086 purebred animals

» Validate 984 multibreed animals

* Random 50 SNP = QTL (pi=0.999)
* Heritability=0.25

Correlation True and Predicted Merit

Assumed pi Bayes B Bayes C Bayes Cpi
(pi known) (pi known) | (piunknown)
0.999 0.86 0.86
0.25 0.70 0.26
N/A 0.86

aod

oam IRON CONTENT OF RIBEYE

oo f

oo b

w0z

o018 b

oo} LT

os |- f ]

L

S ) o . ‘

50,000 markers (bovine)

0.998=100 loci
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“Best” 100 markers

IRON CONTENT OF RIBEYE
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Bayes C pi on 8,300 bulls
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Summary

« The mixture fraction (pi) is an important
parameter in determining the relative
performance of alternative methods for
genomic selection

» The mixture fraction can be concurrently
estimated from the data, more easily in
Bayes C than in Bayes A

Genomic Selection
Scale Factor Estimation

Dorian Garrick
dorian@jiastate.edu

Animal

W T

[OWA STATE
UNIVERSITY

IMAL
SCIENCE
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Bayes A

Meuwissen, Hayes & Goddard (2001)

Sorensen & Gianola, 2002

BayesA/B not Bayesian Methods

Data Mode'l that
describes
nature \
Prior g ; § Posterior

Knowledge Knowledge

Gianola et al “Bayesian Alphabet’ 2009

But they work very well in practice!

2010-06-16
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Bayes A on 8 300 bulls

........................

| Posterior Holstein Milk Yield
*®| Scale Parameter "
VUSS
o
201%
uot I ‘
Q.04
AP

State Fackr

(- 2)Va  (4-2)x 646100
v k2p(l— p) 4 x 43043 x 0.36

=20.85

Alternative Distributions
(to the normal)
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Students-t Distributions

0.4
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Real SNPs - Simulated Traits

Training Data

— 2,869 Angus and Angus-cross (steers)
Validation Data

— 1,086 ISU Angus

— 972 CMP half-sib groups representing 8 sire
breeds (predominantly Angus)

Random 50 or 500 SNPs were QTL
Panels were the QTL, 50k+QTL, 50k-QTL

Error Distributions

* The impact of normally distributed vs
students-t distributed residual effects in the
true and/or the fitted model
— Simulated effects had 3 degrees of freedom

— Fitted effects estimated degrees of freedom
simultaneously with all other relevant parameters
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50QTL

True = Markers Normal Residuals Normal
Fitted = Markers Normal Residuals Normal

50QTL BayesC Training-Y Training-G 1SU cMPp
50SNP=QTL | m=0. 0.725 0.991 0.988 0.991
50k+QTL n=0.999 0.743 0.975 0.973 0.974
50k-QTL n=0.999 0.661 0.763 0.649 0.591
50k-QTL Cpin=0.996 |0.763 0.806 0.657 0.599
Fitted = Markers Normal Residuals t
50QTL BayesC df Training-G | ISU cvp
S50SNP=QTL | n=0. 91 0.991 0.988 0.991
50k+QTL n=0.999 91 0.975 0.973 0.974
50k-QTL n=0.999 80 0.764 0.650 0.590
50k-QTL Cpin=0.996 |59 0.807 0.658 0.598

500 QTL

True = Markers Normal Residuals Normal
Fitted = Markers Normal Residuals Normal

500QTL BayesC Training-Y Training-G I5U cme
50SNP=QTL | n=0. 0.776 0.932 0.910 0.910
50k+QTL n=0.99 0.878 0.821 0.619 0.620
50k-QTL n=0.99 0.853 0.760 0.370 0.318
50k-QTL Cpin=0.701 }0.915 0.773 0.358 0.301
Fitted = Markers Normal Residuals t
500QTL BayesC df Training-G | ISU cmp
S50SNP=QTL | n=0. 78 0.932 0.910 0.910
50k+QTL n=0.99 57 0.821 0.619 0.620
SO0k-QTL n=0.99 53 0.760 0.370 0.319
S0k-QTL Cpin=0.701 |51 0.771 0.352 0.285
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Conclusion (1)

* There is no real harm in fitting a model that

assumes residuals follow a students-t

distribution with unknown df when the true
model has normally distributed residuals

50 QTL

True = Markers Normal Residuals t
Fitted = Markers Normal Residuals Normal

50QTL BayesC Training-Y Training-G | ISU cMP
S50SNP=QTL | n=0. 0.552 0.977 0.977 0.973
50k+QTL 1=0.999 0.592 0.901 0.893 0.877
50k-QTL 1n=0,999 0.551 0.664 0.529 0.472
Fitted = Markers Normal Residuals t
50QTL BayesC df Training-G [ ISU cwP
SOSNP=QTL | n=0. 3 0.989 0.988 0.987
50k+QTL 1=0.999 3 0.953 0.947 0.942
S0k-QTL n=0.999 36 0.724 0.599 0.531

2010-06-16
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500 QTL

True = Markers Normal Residuals t
Fitted = Markers Normal Residuals Normal

500QTL BayesC Training-Y Training-G ISV CMP
S505NP=QTL | m=0. 0.613 0.848 0.800 0.800
50k+QTL n=0.99 0.778 0.652 0.405 0.414
50k-QTL n=0.99 0.763 0.608 0.270 0.247 -

Fitted = Markers Normal Residuals t

500QTL BayesC df Training-G | ISU CMP

SOSNP=QTL | n=0. 3 0.897 0.869 0.868
50k+QTL n=0.99 3.1 0.723 0.501 0.480
50k-QTL n=0.99 3.4 0.669 0.324 0.268

Conclusion (2)

* |f residuals follow a students-t distribution

with few degrees of freedom, there are
modest benefits of fitting models that

estimates the degrees of freedom from the

data
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Marker Effects Distributions

* The impact of normally distributed vs
students-t distributed marker effects in the
true and/or the fitted model
— Simulated effects had 3 degrees of freedom

— Fitted effects estimated degrees of freedom
simultaneously with all other relevant parameters

50QTL
True = Markers Normal Residuals Normal
Fitted = Markers Normal Residuals Normal

50QTL S0k-QTL Training-Y Training-G | ISU CcMP
Bayes B n=0.999 0.656 0.761 0.648 0.589
Bayes C n=0. 0.905 0.765 0.345 0.300

Fitted = Markers t Residuals Normal

50QTL S0k-QTL df Training-G ISU cwp
Bayes C n=0.999 31 0.770 0.646 0.580
Bayes C n=0. 2 0.822 0.663 0.593
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True = Markers Normal Residuals Normal
Fitted = Markers Normal Residuals Normal

500 QTL

500QTL 50k-QTL Training-¥Y | Training-G [ ISU CMP
Bayes B n=0.99 0.836 0,753 0.362 0.314
Bayes C n=0. 0.916 0.770 0.348 0.281
Fitted = Markers t Residuals Normal
500QTL 50k-QTL df Training-G | 15U CcMP
Bayes C n=0.99 48 0.762 0.370 0.319
Bayes C n=0. 33 0.775 0.369 0.320

Conclusion (3)

* Recall the usual approaches (Bayes B or C)
suffer from incorrect values of n

— When nis correct, and effects are really normal,
the estimated degrees of freedom are large and
no harm is done to prediction accuracy

— When mntis too low, and effects are really normal,
the estimated degrees of freedom are small,
shrinking the effects of spurious markers and
overcoming the erosion of accuracy from fitting
too many markers
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50 QTL

True = Markers t Residuals Normal
Fitted = Markers Normal Residuals Normal

50QTL 50k-QTL Training-Y Training-G 1SU CcMP
Bayes B n=0.999 0.637 0.769 0.647 0.581
Bayes C n=0. 0.891 0.732 0319 0.274
Fitted = Markers t Residuals Normal
50QTL 50k-QTL df Training-G ISV CMP
Bayes C n=0.999 19 0.767 0.646 0.587
Bayes C n=0. 2.2 0.807 0.640 0.586

True = Markers t Residuals Normal
Fitted = Markers Normal Residuals Normal

500 QTL

500QTL 50k-QTL Training-Y Training-G I1SU CMP
Bayes 8 n=0.99 0.828 0.765 0.462 0.395
Bayes C n=0. 0.907 0.754 0.298 0.247
Fitted = Markers t Residuals Normal
500QTL 50k-QTL df Training-G 15U CcMmP
Bayes C n=0.99 8.7 0.779 0.476 0.404
Bayes C n=0. 2.9 0.776 0.457 0.395
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Conclusions (4)

* When marker effects are distributed as
students-t with small degrees of freedom
— there is little accuracy loss if appropriate m is used
and effects are fitted as if normally distributed

— When too many markers are in the model, that is
TLis too small, this has little impact on prediction if
degrees of freedom are estimated from the data

Spurious Markers Effects
Can Validate in Relatives
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Goal in Marker/Gene Discovery
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Goal in Marker/Gene Discovery
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DNA markers (e.g. SNPs)
>1,000 per chromosome
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Goal in Marker/Gene Discovery

Research is looking for markers in tight

linkage disequilibrium (LD} due to close GENE

physical proximity to causal mutations 2 C
ST
S

1

Linked Marker
Inheritance of a marker allele is indicative of inheritance of favorable allele in gene

Ideal Validation of Good Marker

Target Population

Validation Population
{Independent)

2010-06-16
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Ideal Validation of Good Marker

) ) Validation Population
0 copies 1 copy 2 copies ¥ (Independent)

ry ry

Ideal Validation of Good Marker

Phenotypic performance

1 2

»  Validation Population
Number of marker copies (Independent)
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|deal Failed Validation of Bad Marker

Validation Population
{Independent)

Phenotypic performance

»  Validation Population
Number of marker copies {Independent)
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Validation in Practice

Target Population

ey
Related Validation Population

~——{tadependeny—

Problems with Related Validation
and Discovery Populations

Totally spurious markers can be discovered in the training population
especially when there are many more {e.g. 50k} markers to consider
then there are training animals

2010-06-16
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Problems with Related Validation
and Discovery Populations

Only these
N 2 . y thes R
_— recombinant
—_—r gametes fack the
B association

Gametes from a parent in the discovery population show a marker effect

Problems Validating in Relatives

Regression in Discovery

Regression in Validation
(when offspring of Discovery)

Phenotypic performance

Spurious markers validate
with HALF their discovery
effect, rather than NQ effect

1 2

v

Number of marker copies

2010-06-16
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Validating in Relatives

* The marker effect of
— real associations will be retained
— spurious associations will halve each generation if the
marker and gene are not linked

* In general, the marker effect reduces by (1-rg,,)
each generation

* Marker panels that comprise a mixture of real
and spurious results, validated in relatives, will
gradually erode over time

— Validation will overestimate their real value

Practical Demonstration - Habier et al

amax is the maximum additive relationship between
any bull in training and any bull in validation

Scenarios:
amax of 0.6, 0.49, 0.249 and 0.1249
0.6: Fathers, full-and half sibs in training
0.49: Half sibs in training
<0.25: No half sibs
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Additive genetic relationships between
training and validation subsets

LIPSt S under Juante
0 modg:n
o
X
@
£
¥
& 0.248
o
)
$ o1z
o 0088 '
e

amax

These represent four different partitionings of the data into training & validation

Accuracy of genomic EBVs vs amax
Milk yield
i s e m s 4
‘K"" (BayesB ¥
ol e G-BLUP -
w . iP-BLUP e r=0.7 50% variance
08 e r=0.5 25% variance
0.4 R
03
¢ 1 0.65 049 0,249 Q1245
T Apax
rin training data 2084 training bulls
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Conclusions

* Presence of parent-offspring links, or of half-sibs
represented in both the training and validation
data leads to genomic predictions that appear to
account for 2x as much variance compared to
using less related animals in validation

 Discovery populations that use all Al bullsin a
breed will make it very difficult to form a reliable
validation dataset

* Validation results will overstate the real value of
genomic tests

2010-06-16
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Introduction sy
[OWA STATE

Implementation of GS UNIVERSITY
Original principle of Genomic Selection (GS)

High-density (HD) SNP genotypes used for both
+ Estimation of marker effects {training)
* Prediction of GS-EBV for selection candidates

Not feasible for many species
Need Low- (<380) vs. High-density panel for routine implementation
2? $50 vs. $250 per animal

‘Standard’ approach to developing Low-density panels:

Select the ‘best’ SNPs from the HD-panel
¢ Trait and population specific

22

Proposed approach: use well-spaced Low-density SNP genotypes on
selection candidates to ‘fill in’ missing HD SNP genotypes

Concept of Low-Density Io-m?m
. : WA STATE
Genomic Selection UNITERAATY

. O R R . paternal
Sire s 4 HHHHAHHHHHH AR maternal

R paternal
R maternal
Sum estimates of effects
of maternal and paternal

HD-GS & EBV, =2 (g + ¢ )
SNP k SNP alleles

Dam d

LD-GS > EBV,=2 (Po+ IO+ PR PG

Prob. that i received dam’s mat. allele at SNP k = Prob. descent of marker (PDM)
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A% Methods IOWA STATE

UNIVERSITY
[ L 1 ] |wes] |

P paternal
ng.eny+l-I-H44444+H4+H+++++m+|-H+m—|—|-H44ﬂ—|+H+l+ maternal

I A A R T 1 N

Steps of proposed low-density genomic selection method:
1. Estimate marker allele effects of HD-SNPs — Bayes-B

2. Infer HD-SNP haplotypes of parents of selection candidates
* Hequires muitiple generaticns of HD genotyped ancestors

3. Track HD-SNP alleles from parents to selection candidates
based on LowD-SNP genotypes, i.e. imput HD genotypes
= Probability of descent of marker alleles (PDMs)

4. Predict GS-EBV of selection candidates S
» Sum of effects of parental HD-SNP alleles weighted by PDMs

I. Estimation of HD-SNP effects

N |

General statistical model used for training:

y=1u+ Zxkﬂk@c +e
k R

x, = # “1” alleles carried at SNP k

B, = substitution effect of SNP &
& = indicator variable for SNP k to be in (=1)

or out (=0) of the model

BayesB is used here, but other methods
modeling disequilibrium and co-segregation,
dominance or epistasis can be used also. 6




1I. Infer HD-SNP haplotypes of
parents

To track chromosomal segments from parents to progeny,
haplotypes must be inferred for parents

. HHHHHH S
Parent i

“HHHHHEH

—
xSEA xii = maternal and paternal allele states
of parent i at SNP k
II1. Track HD-SNP alleles
—impute HD genotypes
Parent i I

Hi

p ik Probability of Descent of

pﬁ Marker alleles (PDMs)
“ik

Selection  —HHHHHHHHHHHHHHHHEH

Candidate I I I [ I I I

Genotyped for evenly-
spaced LD-SNPs
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Estimation of PDMS

® MCMC sampling:

m Joint probabilities of sampled allele origins for
adjacent ELD-SNP pairs were estimated

m Information from all ELD-SNPs is utilized

m Haplotype phases of HD-genotyped ancestors
assumed known

1V. Prediction of GEBVs

= =3
m ELD-SNP genotyped selection candidates:

loci
_ smooap
GEBV,, = > (&' +2)b,
k
Generation afler training: om s i ’\J): PP
X ED X N T A

Later generations: 1 m g o ge AP

_ W P
N =P T N E 0N

loci

® HD genotyped parents: GEBV,, = ZXIS,C
k

loci

. m HARA
= Z(xk +x} 1)]bk
k
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Tested by Simulation  jovwa GIATE
UNIVERSITY
Population Genome
Generation -1060 Random Mating 10 chromosomes of 1 M
(Ne=500) 20,000 SNPs ; 500 QTL
Generation -60 Random Mating
(N,=100) 1,000 SNPs selected

after 1060 gener.
Generation -10 Population Growth HD SNP spacing ~ 1 cM

{N=100 to N=1000)
LD SNPs at 10 or 20 cM

Generation 1-3 50 males x 500 females  1raith*=0.5
(N=1000)

Pedigree recording |and | genotyping starts

Generation 4 Training data Bayes-B (Meuwissen et al. '01)
(N=1000)

GS-EBV using Hl?hD SNPs

Generation 4-7 10 males x 100 females T GS.EBV L
using LowD SNPs

"ﬁ ot }"-\1}
IRy
o
Results [OWA STATE
UNIVERSITY
Accuracy of GS-EBV based on High- and Low-Density
___SNP genotyping (20 Replicates) 500 QTL. (220 MaF=0.01)
0.8
0.7 1
-
o 0.6 1 HD
5 ELD-10+
3 05 ELD-10
< ELD-10 = LD SNP every 10 cM ELD-20+
0.4 1 ELD-20 = LD SNP every 20 cM ELD-20
: +: animals used for breeding are re-
genociyped using the HD panel
0.3 i T T T T 1
4 4.5 5 5.5 6 6.5 7
- Generation
Training
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: | S
: | IOWA STATE
8 :UNIVERSITY
£ B
ELD-10+
. *3:;{
:
#
. = __B 1 13
ELD-10+ BB-110 FSS-0.01 FSS-110
tt?.]::f i
. - . b ]
Discussion & Conclusions owixSiare
UNIVERSITY
Genomic Selection can be E:
implemented with low-density SNP £
genotyping of selection candidates ot
* Loss in accuracy limited: < 3.5% after 1 generation " " ot '

<8 % after 2 generations
with 300 equally spaced SNPs (10cMm)
* Loss in accuracy ~ independent of # QTL and # traits
» Lower rate of fixation of panel SNPs with selection - slower accuracy decline

* Cost effectiveness needs to be analyzed
*« Dependsoncostsof Low- vs. High-density genotyping
$40 €77 $200
» Optimal implementation needs to be further analyzed
« Which individuals to genotype — HD / LD
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