Genomic Prediction in Livestock

Monday May 11, 2015 — Friday May 15, 2015 8:30 AM - 5 PM daily

Course website: qtl.rocks

Preamble — installing Julia

d.

An overview as to the promise of genomic selection
Include basic idea of linkage disequilibrium (LD)

An introduction to simple linear models and the simulation of data for such models
{using Julia)
Concept of a Model Equation
Other aspects of the model
Expected Values, location parameters or First Moments
Sccond Moments or variance-covariance
Distributional Assumptions
Simulate X
Simulate b
Simulate e
Construct y=Xb+e
Form a function to simulate data

The theory and application of Least Squares (using Julia) to simulated data
Ordinary Least Squares

Estimating the fixed cffects

Standard crror of fixed effects

Estimating linear functions of fixed effects

Estimability — is a function able to be estimated

Residual standard error

Modcl sum of squarcs (reductions)

Cocfticient of Determination
Generalized Least Squares and Weighted Least Squares

An introduction to Monte Carlo methods, including Markov chains (MCMC) via
Metropolis-Hastings and Gibbs Sampling

Intcgration of a pdf — for example to determine intensity of selection

Numerical integration — Monte Carlo sampling to estimate intensity of sclection
More complex cxample — intensity of sclcction in a multivariate context
Metropolis-Hastings sampling from a bivariate normal distribution

Gibbs sampling from a bivariate normal distribution

Application of MCMC (Gibbs sampling) for statistical infercnce from linear
regression (using Juiia)
Livestock Production paper
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Course QOutline / Topics
Genomic Selection in Livestock P

Preamble - instalting Julia
. Inroduction to Genomic Prediction

b. Anintroduction to simple linear models and simulation of data for such models
. The theory and application of Least Squares {using Julia) to simulated data

Short course -focus

2.
d. Introducticn to Monte Carlo metheds

- Statistical, quantitative genetic, ©
e, Application of MCMC for statistical inference from linear regression
9

and computational aspects of genomic selection

f. Theory and application of pedigree-based mixed lingar madels to predict BV

. Introduction to Bayes theorem with applications to Bayesian linear regression
Next week’s Short course - focus {for genemic analyses

h. Mixed models fiting marker eMects or fitling BV using genomic relationships
i. The Bayesian alphabet for genomic analyses

i. GWAS and QTL inkrence using the Bayesian alphabet

k. Concepts of estimability and upper limits on aceuracy of BayesCO/GELUP

I. Imputation, fitting haplotypes and using imputed sequence for GWA S
m.
n.
0.

Design of Breeding Programs with
Genomic Selection

Single step GELUF, Sinple step hybrid models
Multi-trait genomie prediction
Industry applications of genomic prediction 1

+ Strategies for implementation of genomic selection in
livestock breeding programs
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Introduction to
Genomic Prediction

Dorian Garrick
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Genomics

gC‘I]U'HllCS s

pluralneun [ weated assing,

the branch of molecular biology concerned with the
struceure, funcrion, evolution, and mapping of genomes.

GRIGIN 1980s: (rosn gersme the complete set of genes
present in an organism’ + s,

Genomic Prediction

* Ranking candidates for selection using
knowledge of the “complete set of genes”
afong with conventional pedigree and
performance information

— Using everything we’ve got to ohtain the most
accurate EPD/EBY (at as young an age as possible)

Suppose we generate 100 progeny on
1 bull

A

Progeny

Performance of the Progeny

+30 kg
+15 kg
-10 kg
+ 5 kg
Offspring of one sire exhibit =
more than % diversity of Sﬁ,} +10 kg

the entire population Progeny +10 kg

We Learn about Parents from Progeny

s ) 10k
(EBV is "shrunk g
(I<52x progeny) hf“

Sire EBV +16-18 kg (""" 'Progeny 710 kg

How much we shrink depends upon the number of progeny




With enough progeny,

o= this is usually close to

5 the bulls true EBV/EPD
{not surprisingly!)

Sire

Sire EBV +18-18 kg

EBVs on widely-used oid sires are accurate;

Chromosomes are a sequence of base pairs

Par of 1 pair
of chromosomes

Caltle usually have 30 pairs of chromosomes

One member of each pair inherited from the sire, one from the dam
Each chromosome has about 100 million base pairs (A, G, T or C)
About 3 billion describe the animal

Blue base pairs reprasent genes
D Yallow represents the strand inherited from the sire
Orange represents the strand inherited from the dam

Mutations

* Could cause camplete loss-of-function of the
gene {ie the gene is “broken”)
— These can sometimes he catastrophic when an

individual is homozygous and carries 2 copies of
the broken gepe

* For examples DUMPS, Citrullinemia, BLAD, etc
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Suppose we generate new progeny

Expect them
to be 8- kg
heavier than
those [ram an
average sire
-

Seme will be more
others will be less
but we cant tell
which are better
withaut "buying”
maore informatian

Acommen error is the
subsntution of one base pair
for another
Single Nucleotde Polymorphism
(SMPY

Errorsin dupllcaﬁan‘f
- Most are repaired|
- Some will be transmitted

- Some of those may influence parformance
- Some will be benehcial, others harmful

Inspecton of whaole genome sequence
+ Demanstrate historical ercors
- #nd oreasional new {de novo) mutations

Mutations

*+ Could cause complete loss-of-function of the
gene (ie the gene is “broken”)

Could increase or decrease expression level

The variant might change amino acid sequence to
cause subtte changes to the shape of the protein
products making them function a little better or a
little worse

— Natural or artificial selection will favour the variants
that improve fitness in that particufar climatic and
environmental circumstance




Prokop et al, Pephdes. 2012
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Leptin Receptor

Prakep et al, Pephdes, 2012

Joining the two

Prokap et al, Peptides. 2012

Leptin and its Receptor Across Species

i A

There are small differences (within &} between species in these prateing

Prokop et al, Peptides, 213

EBV is sum of the Gene Effects

-2 +3 -4 +5
OO R ) Sum=+2
OO R ORI e Sum=re
+ -3 +4 +5
EBV=10
[ B'ue base pairs represent genes EPD=5

EPD is HALF the sum of the gene effacts

Consider 3 Bulls

-2 +3 -4 +5
: T - -~ EBV=10
L NS
+2 -3 +4 +5

CH T HEH T I RS
+2 +3 ) 5

Below-average bulls will have some above-average alleles and vice wvéisal
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lllumina Bovine 770k, 50k (v2), 3k llumina SNP Bead Chip
i ry ! BeadChip
e eg 1.000.000 vells/siripe
- Ty
E I ] :!
Loadi ol H
L. ] H
LI
)
e
?“ Silica plass beads
-'- se\l—asiemble nto
Lol microwells on shdes
-
s
I .
-

~§00,000 copies of
specific olige per bead
S0k or more bead types

700k {HD) 50k {Several versions} 3kiLD)

* L

lllumina Infinium SNP genotyping SNP Genotyping the Bulls

ey
BeadChip scanned
For red or green

o 9 1 of 50,000 loci |50k chip)
Y 2 5
(eg haw] - T (L) = f
<ample 7 I J reporte ; =’
Amplihcation kRt ) i ] H B e

SNP is tabeled wath fluorescent
dye while on BeadChip

DINA finds its complement
on a bead (hybridization)

Regress performance on SNP genotype Linkage Disequilibrium (LD)

Variation due to
other genes

Estimated Breeding Value

Slope = advantage of substituting
an A alfele with a B allele

LD occurs when genotypes at one locus
are predictive of genotypes at another

AA AB BB
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Practice — EBV/EPD on SNP
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Practice — EBV/EPD on SNP

Only sipmificant, validated GWAS findings used in prediction

Theoretical Basis for Accuracy

Heritability=0.8

N=100
like Holsteins & lerseys

1,000 Lraining anirnals
r=0.43 20% geneho vanance

3,000 training animals
r=(1.6 36% genebc variance

‘Predictive A_bility‘

l Size of Training Population | s s we st vereie e,
Reliable prediction requires large training populations
of gerotyped and phenotyped individuals
Predictive Ability = Accuracy (r} = correlation true & predicted merit

Et D e
= 38
> g8

an 2
£ 23

© 3
g 5%
g I
= GE
] =z S
=} T
2 -

[ g
E Z
5
5g
g3
Use SMP genotypes at locus 2 {in low LD) as surrogates for QTL Eu §

Ak, A8, B.6, ,,.

* Coronary Heart Disease fries-Ned
Garrm
Marker Effecty
.u;:a: el
Foch has represents a dfjesent rsk Q1 aliefe
fmpuseover shaws the il and faks 1o fhe resrarch mublcanonst
A _Quanntatie Trait iacus
Only signihcant, validated GWAS findings used in predictian 3

Carr{g.gnal]

Accuracy of Genomic Prediction

Validation in Offspring

Correlation(g g-hat}
Early Selechon
Layers

Superiarily
I of prediction

- using
o . .

genomic relationships
o,
e

S
— PBLUF

@
a

Walc el of SWCGALP




5/10/15

Accuracy of Genomic Prediction

[ Validation in Offspring

Correlation(g.g-hat]
Early Selechon
Layers

as

0.6

Extent genomic

é predichan
g ‘ o [ a captures
H o Mendelian Sampling
)
/
2 /U/
& e
l;a.up
°
e e —_ . - S
. P vA A B EA 00 €3 Walt et ot 9WCGALP

Cut genome into 2,700 1Mb windows

#SNPs sVar Ccumdvar map_pos
11 7.10 7.10 793 Regions
28 3.70 10.80 20_4 with
22 1.34 12.14 13_58 biggest
22 1.23 13.37 2634 effects
9 0.92 14.29 6_29
25 0.89 16.09 4_75
26 0.79 16.88 4_114
23 0.65 17.53 2_121
17 0.61 18.14 18_55
25 0.60 18.74 8_89

Genome-Wide Association Studies
{GWAS)

* Use a historical population of bulls and cows
with EBV information that have been
genotyped with 50k panels

* Derive an EBV for every chromosome
fragment {we call this training}, and find the
regions with biggest effects

Argus Birth Waight

Major Regions for Birth Weight
7N\

Genetic Variance %

793 | 710 5,85 0.02 0.18 0.02
. 63839 047 \ 848 J 590 16.3 4.75
i 204 3.70 7.9 0.07 153 0.03
142426 042 | 001 | on 305 | 814

Some of Ihese same regions have big efiects on one or more of
weaning weight, yearling weight, marbling, nbeye area, calving ease

lowa State University (ISU)

* Aland-grant institution with responsibilities for

research, teaching and extension

— Such activities have been applied to genetic
improvement of animals since 1930’s when lowa
State Professor, Dr JL Lush, wrote the first textbook
on animal breeding

- That tradition continues just as strongly today as we
research the role of genomics for improvement

Summary

* Genomics will increase accuracy of evafuation

— The technology is starting to mature but works
better in some traits and breeds than in others

— It works better with greater amounts of data

~ Genomic prediction will get more accurate than it
is today if we continue to undertake research

This workshop will explain the statistical basis
for methods of genomic prediction and GWAS
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An Introduction to Linear
Models

Models

* Concept of a Model Equation
* Other aspects of the model

— Expected values, focation parameters or first
moments

—~ Second moments or variance-covariance
— Distributional assumptions

Simple Models
* Performance = Breeding + Feeding
* Phenotype = Genotype + Environment

+ Animal Model - model equation
y = herd — year — season + BV +e
y=Xb+Zu+te

The “usual” Animal Model

y= Xb + Zau -+ [ } 1. Model Equanon

Elu] =0 and Elef =0
therefore Elyl = Xb T

rarfu] =G = Ag! varlel = R = I covlu.e'] = 0}
varlyl| = V=Z20C2"+ Rk

y ~ MVN[Xb, V] }

3. Dispeision Parameters

Fixed Effects — Linear Regression

y=Xb+te

Elul=0

varle] = R = Io’

Perhaps assume e ~ N[0.1g7]

e = N|0.oY

Simple Linear Regression

y=Xb+te
b= Ia* _ [ intercept
1A slope
1 a7
x={. "
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Multiple Linear Regression

y=Xb+e
« intercept

he {3 _ slo:pe
. slope.
I !

y= t r r !

Estimation

i
y=Xbh+y¢

then
Ky = KX+ K'e

Jorerample. choosing ' = X'
Aly=XXb+ X'

and if X'y = X'Xbthen X'e =0

so b is solution to X'Xb = X'y

Linear Regression

* Linear Regression
y=Xb+e
* Residual
e =y — Xb, with E[e]=0, and var[e]=lg,?
* Residual Sum of Squares
e'e =y - Xb)'(y - Xb)
=y'y— y'Xb = b'X'y + b'X'Xb

Least Squares

+ Residual Sum of Squares
e'e=y'y-yXb-b'Xy+ b’X'Xb

* Take derivatives with respect to vector b
de'efdbh=—X'y—X'y+ XX+ [X'X))b

set=0 and solve to find minima/maxima gives

X'Xb =Xy
known as the Least Squares Equations
¢r the Normal Equations

Estimation

¥ is sotution fo X'Xb = X'y
which for full rank X isb =] XX ] X'y
EWB = E{xX] Xy
=[XX] XL
=[XX]XNb=b
ra rlm =rar[|A'X] :_\"‘_a,t|
=[AN] Xeer|gl X XN
=Yy ] Vi X))
=[Ny e
=[yy] e

Linear functions of b

k'b 1s estimated from kD
with var [k‘f;] =k[X'X] 'ko?




X not full rank
k'D 25 estimaled from ED
with var kD] = XX ko®
provided k' = B'[ X'X | X'X

rows of K can be stacked in o matric K
ceclor I is estimaited from Kb

with var — cov [Kb] = K[ X'X ] Ko
provided K = K[ X'X | X'X

5/10/15

Residual Standard Error

3= MSiaw = S df
= (g=XBy = XU )N — rankiX))

S8 = 88 1w — SS s
=gy - by
R = 88t v 7SS rorv s
S8yt e = SSuser — 5SS
SSyen = Ay
58y e = S8 — 8w r,
=yy— Ny

Generalized Least Squares

y=Xb-+(Zu+te)
=Xb+te

rarlyl=V =ZGZ' +R

b is solution to X'V'Xb = X'V 'y

Weighted Least Squares

y=Xb+e
varle] = R = D= diag(c7)
b is solution fo X'D™' Xb = X'D™! Yy

Hypothesis Testing

* To test hypotheses we need 1o know the
distribution of the test statistic
— Which is derived from the distribution of the
residuals
« Commonly assumed to be normally {iid) distributed

Linear Regression

1. Least Sguares simple linear regression
(unknown B, and B,}

2. Gibbs Sampler with known o,

3. Bayesian Gibbs sampler with unknown g2

4. As above but with random not fixed B,

5. Bayesian {multiple} linear regression
(many random f's}
6. Various models {BLUP, BayesA, B, C, Cn etc)

10
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Fixed effects models
to predict SNP effects

Performance

Data on some locus

How do we model it?
(e What are our eapectators?)

Numina ratation
Ady AR

B8 Genotype

Data on some locus

© Model tbe data as gematypic elfect !_[ - ]
= =H

FeluitQude A

- AR

Perfarmance

e

com———
fe-maa
~—sooaa

Four Unknowns

Three pieces of infarmation
[or less if a genatype is

aot represented)

. E[.Tn ]= Mt 8y

Genotype

: v'E[T ]:.“'*'S'.w + 8

Parameters and Information Content

* The information content {in fixed effects model)
is partly reflected in the degrees of freedom
— Some degrees of freedom are available to estimate
functions of fitted parameters
— The remainder, if any, contribute 1o the error sum of
squares
* Overparameterized madels have more
parameters than {independent) estimable
functions

Fixed Effects Model for Genotypes
y=Xb+Wq+e
b contains the nsual fived effects

4
q=| %u

on

. defines o class effect

W is the incidence nxariv for AACAB BB genoivpes
aitd s 3 columns = one Jor each genatype clusy
wid N orovwes — e for pach animal with exacefy one

Lin each row aecording to the genotvpe of the aninal

Fixed Effects Model for Genotypes

y=Xb+Wq+e
E[y]=Xb + Wq

var[y] = var[e] = Lo’

5/12/15
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Least Squares Equations

h
4

X'y
W'y

X'X X'w
WX W'w

In this example
Only hxed effect is mean

For [b] = [,n], X=1

1% " L Fan ¥
. " a,, 0 . e
Lify = RitS =
o o, 0! o
e 00 | o

In general equaticns have crder equat ta number of fixed eHects plus genatypes

No unique solution

Mt iy,
T Wy = . .
b=| Yo T s anather possible soaion

G ™ Hin
0
Ny oy ng Yo
LS = i, #, 0O
Hy O o, D

1 g D ,,QW,VN“ S A

No unigue solution

I o]
o 0
LiS - ' RS =
"o 0 on, C Vo
", o0 o oa, Vo
¥
TN
b= —_— iy e prossible solution
gy,
e

Different Solutions have same
Estimable Functions

14 ifg s
. o+
boo| 4uYu b = ‘7*"‘_‘
' N gy,
fow — Y .
9 Gy

Interesting contrasts

k'z[ 11 00 }.'iu'nk'f:,:k‘l;z:;f-rq_n

k’:[ 01 =10 ]r!m:k'ﬁ,=k'l32=q_u—q;g

Estimable Functions

+ In fixed effects models, many model
parameters or functions of model parameters
are not estimabte, even though a numeric
value can be obtained by solving the ieast
sguares equations {eg by generalized inverse)

[X'K] isany generalized inverse of X'X il (X'X)[X'x]' X'X)=X'X
Deline H = [X'X] X'X)
A linear function K'b° is esimable il K'H = K’

var(k'h®) = kXX ] k {nr K[X'X] ka®Gf R was not explicidy r.uun}

Performance

i Modeb the data as additie and dooanance elfects
Dymln #Fl4e

Data on some locus

Three Unknowns
Fhree pieces of information

Genotype




Genotypic vs genetic effects

u -
. I
B=| v [0 mewonpic chnoodfhens a=| o I celederss e il dimndnanee cftects
Yo o

Bt g

2

_Ban ¥

1
o cand d =g, -

k-| ’
K|

i

-

1

L Ky =a, rows of Koae oulogomal KK, =0

!
ol

Dt Srerte Qell s not extisaste, bt fanctions ble g, -2, are

Suppose | ignore dominance (d=0)

Model the daia 2 20 inicroept aad allcle dosage

yelueFiae }:'[F.,;]:(HQ,H_ o Slope-p

1]

Performance
[

o E \_ =a+0f
<% T[. H] f swpramnt, lack of feear i
AFF)

A AB 88 Genotype

Suppose | ignore dominance (d=0)

. Mudel the data s 20 intercept and allele dozage

g Irlrubee E[_?w ]: 05, + 263, fatt1
£ T o2 ¥

E \ o e Ny .

o e | [T ":_,;-L‘[_\_'.,, ]: 13+ 1f;,

E[TH] =2f + Oﬁ:

Heprasonisiack ¢ inear 51

AR 48 B Genotype
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Equivalent Models

10=13-3

Ad H*En

AB 179 14=13+1

BB [ 16=13+3
u=13
a=3
d=1

= 16

Both madels have the same expectation
Both models have the same variance

Therefore the models are equivalent
{l can fit either mode! and migrate from one to the other}

Performance

Suppose | ignore dominance {d=0)

Model the daca as 2 sean end sabsuaton elizet

Dy=luaTrae

! m]=.“+7

4 ¥ Fervereniiad otle

A AB 88 Genotype

Equivalent Models

2B, 10B;

AL OB 10
A3 aslf 3w 13 1p+1B, 13:5+3
B2 ae2p 16 16 OB.2p, 16=2n8
a=l0 u=13 By=5
p=3 3 B8
NBR.-f.=2

All models bave the same expectation
All models have the same variance

Therefore the models are equivalent
(tcan Fit any of the models and migrate from one to the other)




Summary Fixed Effects Models

dominance d=0 daminance d=0 d=0

Model df 3 2 :
Genantypic ves no H
Allalleles yes ¥es
Substitutian yer 0 es

Animals nfa rfa

¢ fquivalent madels
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Summary Fixed Effects Models

daminance d=0  dominance d=0 d=0

Madel of 3 2

Gendlypic yes . no

All alleles ves yes.”
Substitution ves - yes :

Ammals nja nfa

3 G—p

i Eouwalent models HNon squivatent madels

Fitting SNPs as random effects

Fixed or Random

+ Reasonable to consider animal effects as
random in the usual context
— Variation in alleles {ie genotype} between animals
that contributes to the genetic variance
« Not variation in allelic value at a particular locus
* Not so clear that an individual locus (or every
foci) should be treated as random
— Especially when the genctypes are observed and
treated as known in the incidence matrix

Suppose we have many loci

The obvious solution is to fit the g effects jointly for every locus

y=Xb+Ma+e
i=nmarkers
=Xb + 2 muda +e

i=1

@, is the substitution effect for the ith locus

Singular Coefficient Matrix

The incidence matrix of genotypes, M, has n rows
(= number of genotyped animals) and p columns
(= number of loci/markers/haplotypes)
Typically using lllumina livestock chips

{cattie, horses, pigs, sheep, chickens, dogs}

n < 10,000 and p > 40,000

1f no 2 animals have the same p genotypes, then
M has full row rank

The M'M component of the coefficient matrix
cannot be full rank {rank M’M is n<<p)

— Rank{AB) is at most the |esser of rank(A} and rank{B}




Practical Consequence

* Itis not possible using ordinary least squares
to simultaneously estimate more than n
effects of loci plus other fixed effects
— Can use stepwise approaches to successively add

loci and determine a subset of markers that are
informative in the training data

+ But least squares tend to produce upwards biased
estimates of effects (especizlly when power is limibng)

-- Cannot use alt markers to predict genomic merit

5/12/15

Alternative Approaches

* Modifications to Least Squares

—~ Ridge Regression, Partial Least Squares etc

* Treat g effects as random rather than fixed

— We routinely fit single and multi-trait animal
models with many more effects than observations

— Provides opportunities for many mixed model
procedures, such as BLUP, REML, Bayesian analyses

— These methods will also “shrink” estimates

Random locus effects

* Following the treatment of locus effects as
fixed, we could consider the following possible
models for random locus effects
— A} fitting every genotype at a locus

"+ This would require us to describe the variance-
covariance matrix between the alternative genotypes
+ That matrix is singular in the absence of dominance
— B) fitting every allele at a locus
— ) fitting substtution effect at each locus
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and the corresponding partitions of the inverse are

-1
X'R'X X'R'Z
ZR'X Z'R'Z+G

CI] C12
CEI CZZ ]

[n relation to random effects, we need only concern ourselves with the C* partition
of the inverse coefficient matrix. Note however that the entire coefficient matrix
must be inverted to obtain the partition of interest. From this partition you have the
prediction error variance-covariance matrix. That is,

varffu-i]=C*

var[ii] = G - C*, and recall that var[u] = G.
A common unitfree measure of how well we have estimated the BLUP is the square
of the correlation between the true and estimated effect. Since the true effects are

not known, this cannot be calculated directly, but is a function of the G and C*

arlt]  diag{G-C*
matrices. Specifically, r* = varfu] _ g‘{ ]
var[u] dmg[G]

and best linear unbiased predictions (BLUP).

for best linear predictions (BLP)

Exercise 4

In many circumstances we are interested in linear combinations of random effects.
For example, we might want to know the BLUP and the r? of a team of sires rather
than an individual. Alternatively, we might be interested in the contrast or
difference between one or more alternative sires or teams. To compute these, we
need to construct a relevant vector of contrasts that we will denote as k. For

example, to predict the superiority of sire 1 oversire 2,foru'=| «, u, u, u, |,
1 2 3 4

we would form k' = [ I -1 0 0 ] . To compare a team of the first two sires to

the second two sires we would use k'= [ 05 05 -05 -05 ] Both of these
contrasts can be considered simultaneously by stacking them up the rows of K’
_[1 -1 0 0

0.5 0.5 -05 -05
The BLUP of k'u is simply obtained as k'u, and var(k'u) = k'Gk,
var(k'tl) = k' [G -C* ] k.
Construct some linear combinations, and estimate the prediction error variance and
12 for these linear combinations.

together in a matrix, K

MaAatimen 7 Al ol
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Introduction to Monte-Carlo Methods
Rohan L. Fernando

May 2015

Mean and Variance of Truncated Normal
Suppose ¥ ~ N(uy, Vy).

The mean and variance of ¥ given truncation selection are:

E(YIY > 1) = py + Vi

where
_f®
P
f(s) is the standard normal density function
I —uy
112
Vy
p=Pr(Y >0

Var(YLY > ) = Vy[l — i(i - 5)]

Proof:

Start with mean and variance for a standard normal variable given truncation selection.

1 _lzz
f(z)=\fﬂe 2

The density function for Z given truncation selection is

f@lz > 5) =f@Ip

Let Z ~ N(O, 1).

The density function of Z is:

From the definition of the mean:
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E@z>@=$/ #(D)dz

5

= l[—f ()]
P

P

=1
because the first derivative of f(z) with respect to z is:

d 1 1z _
d_zf(Z)_\/'z?e 79 (=2)

= —zf(2)

Now, to compute the variance of Z given selection, consider the following identity:
d d '
—f(2) = f(2) + z—f(2)
dz dz
= f(2) - 2f(2)

Integrating both sides from s to co gives

H @I = / f(2)dz - / f(2)dz

Upon rearranging this gives:

/ f(z)dz = / f2)dz — 7 (DI

l/ ﬁm&=1/umm+ﬁ%
pJs pJs p

=1+1is

So,
Var(ZIZ > 5) = E(Z*1Z > 5) — [E(Z1Z > 5)]?
=1+4is—#
=1—i(i —s)

Results for Y

Results for Y follow from the fact that
py + Vi2Z ~ N(uy, Vy)

So, let
Y = py + V"2,
Then, the condition
Y>1t

is equivalent to
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py + V?Z >t
VIRZ >t —py

I — Hy
Z> ‘/1/2
Y
Z>s
Then,
E(YIY > 1) = E(uy + VJ2Z1Z > )
= uy + V{2,
and

Var(Y1Y > t) = Var(uy + V}WZEZ > 5)
= Vyll —i(i = )]

Numerical Example

g =10
o= 10
t = 15
5]
d
i

In [39]:

(t-p)/o

Normal(0.0,1.0)

pdf(d,s)/(l-cdf(d,s))

meanTruncatedNormal = g + o*1i

variTruncatedNormal = O*O*(1l - i*(i-s))

@printfi "mean = %8.2f \n" meanTruncatedNormal
@printf "variance = %8.2f \n" variTruncatedNormal

21.41
26.85

mean
variance

Monte-Carlo Approach:

In [43]: using Distributions

H = 10
g =10
z = rand{(Normal(M,0),10000);

In [56]: mcmcMean = mean(z[z.>t])
mcmcVar = var(z[z.>t])
@printf "MC mean = %8.2f \n" mcmcMean
@printf "MC variance %8.2f \n" mcmcVar

MC mean = 21.34
MC variance 25.78

Bivariate Normal Examble

hitp:#/127.0.0.1:8888/Mmotebooks/Google%20Drive/iJulia/Presentations/ wrk ShpSlides2.ipynb
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In [541}:

Out[54]:

Let (¥) ~ N(u, V)

10 100
‘u = ’V:

20 50
[10.0;20.0]
[100.0 50.0
50.0 200.0]

d = MvNormal(u,V)
XY = rand(d,10000)"'

H
v

10000x2 Array{Float64,2}:

10.3117 41.2371
8.49604 30.121

1.49591 5.04669

2.0137 - 21.2858

8.12043 9.99512

17.9018 16.9568

1.01726 20.0321
-8.29162 40.2454
14.649¢6 45.1535

13,9381 12.9118
-0.612875 24.1609
20.5875 15,1366

16.2409 25,9275

3.98896 3.67185

13,8927 24.0219
3.93784 11.8521

3.83364 4,41762

20.7947 37.1139
9.11036 15.7678
4.45919 32.2166

19,5114 21.9018

12.777 29.3537

18.1348 11.6092
0.64099%4 14.643¢
3.39195 27.4398

50
200

|
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In [111]:

Out(111]:

In [115]:

Oout[115]:
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10.3117
8.49604
1.49581
2.0137
8.12043

17.9018
1,01726

-8,29162

14.6496

13.9381

-0.612875

20.5875

16.2409

3.98896
13.8927
3.93784
3.83364
20.7947
9.11036
4.45919
19.5114
12.777
18,1348
0.640994
3.39195

sel = XY[:,1].>10
xxy= [XY sel]

41.2371
30.121
5.04669
21.2858
9.,99512
16.9568
20.0321
40.2454
45,1535
12.9118
24.1609
15.1366
25.9275

3.67185
24,0219
11.8521

4.41762
37.1139
15.7678
32.2166
21.9018
29.3537
11.6092
14.6436
27.4398

18.03854352069298

10000x3 Array{Float64d4,2}:

1.0

. .

F P ORFRF P OOFOOOO
- . . . - - . . .
Lo I w B o B o TR o T e N o Y e Y e O s Y s Y i

QO Q=== O O O OO
[ T s R O o Y s Y e N e O e Y e Y e Y i Y i

{(xxy[:,1][xxy[:,3]1.==1])
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In [59]: selY = XY[sel,2]

Qut[59]: 5026-element Array{Floaté6d,1}:
41.2371
16.9568
45,1535
12,9118
15.1366
25.9275
17.4284
20.6601
44,2587

7.21451
26.9525
29,502
41,1791

41.4734
20.1128
33.6962
17.7152
16.6372
48.6728
27.0785
24,0219
37.1139
21.9018
29,3537
11.6092

In [60]: mean{selY[selY.>30]}

out[60]: 38.95540792778809

In [61]: var{(selY[selY.>30])

Out[6l]: 52.61527300087836

Markov Chain Monte-Carlo Methods

« Often no closed form for f(@ly)

« Further, even if computing f(8ly} is feasible, obtaining f(&;ly) would require
integrating over many dimensions

« Thus, in many situations, inferences are made using the empirical posterior
constructed by drawing samples from f(@ly)

« Gibbs sampler is widely used for drawing samples from posteriors

Gibbs Sampler

http://127 0.0.1:8888/motebooks/Google%20Drive/ilulia/Presentations/wrkShpSlides2.ipynb 611
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« Want to draw samples from f(xy, x5, ..., %,)
« Even though it may be possible to compute f(x;,x2, ..., x,), it is difficult to draw
samples directly from f{xy,x3,...,x,)
« Gibbs:
» Get valid a starting point xV
= Draw sample X' as:
xi from  fOq bt L x
xy  from  flgbd, x4t X

x from  fOglx],xd, .., xi)

xp  from  f(x I, xh, .., x0_ )
« The sequence x!,x?,...,x" is a Markov chain with stationary distribution
flxr,x0, .00, x,)

Making Inferences from Markov Chain

Can show that samples obtained from a Markov chain can be used to draw inferences from
f(x1,x, ..., x,) provided the chain is:

+ Irreducible: can move from any state i to any other state j
+ Positive recurrent: return time to any state has finite expectation
« Markov Chains, J. R. Norris {1997)

Bivariate Normal Example

Let f(X) be a bivariate normal density with means
W=[1 2]

V= 1 05
0.5 2.0

Suppose we do not know how to draw samples from f(X), but know how to draw samples
from f(x;lx;), which is univariate normal with mean:

V,'j
Bij = i+ —x — p))
Vij

and covariance matrix

and variance

v{?}.
Vij =Vii — —

Vij

hittp:#127.0.0.1:8888/motcbooks/Google%20Drive/iJulia/Presentations/wrkShpStides2.ipynb Wt
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In [125]: m = £i11(0,2)
nSamples = 2000
m= [1.0, 2.0]
v =[1.0 0.5; 0.5 2.0]
v = fil1(0.0,2)
sum = £i11(0.0,2)
sl2 = sqrt( v(1,1] - v[1,2]1*v[1,2]1/v[2,2])

521 = sqgrt(v[2,2] - wv[1l,2)*v{l,2]/v[]1,1])
ml = 0
mZ = 0;

for (iter in l:nSamples)
ml2 = m[1] + v[1,2])/v[2,2]*(y[2]) - m[2])
m2l = m[2] + v[1,2}/v[1,1)*{y[1l} - m[1])
y[1l] = rand{(Normal{ml2,s12),1)[1]
yIi2] rand(Normal{(m21l,s521),1)[1]
sum += y
mean = sum/iter
if iter%100 ==
@printf "%10d %8.2f %8.2f \n" iter mean[l]) mean[2]

il

end
end
100 1.09 2.21
200 1.06 2.16
300 1.06 2.16
400 1.05 2.12
500 1.03 2,11
600 1.01 2.10
700 1.00 2.09
800 1.01 2.09
900 1.00 2.08
1000 1.02 2.10
1100 1.00 2.09
1200 1.01 2,08
1300 1.01 2.08
1400 1.02 2.08
1500 1.03 2.10
1600 1.02 2.08
1700 1.02 2.08
1800 1.02 2.08
1900 1.03 2,07
2000 1.02 2.06

Metropolis-Hastings Algorithm

» Sometimes may not be able to draw samples directly from f(x;Ix; )
« Convergence of the Gibbs sampler may be too slow
Metropolis-Hastings (MHj) for sampling from f(x}:

a candidate sample, y, is drawn from a proposal distribution q(ylx"l)

http:#/127.0.0.1:8888/notebooks/Google % 20Drive/tlulia/Presentations/wrkShpSlides2 ipynb
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o = ¥ with probability a
L ! with probability 1 — a

FOgx="ly)
T FNglxl)

» The samples from MH is a Markov chain with stationary distribution f(x)

)

a = min(]

Bivariate Normal Example

hetp://127.0.0.1:8888/notebooks/Google % 20Drive/iJulia/Presentations/wrkShpSlides2 ipynb 911
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In [127]:

wrkShpSlides2

nSamples = 10000
m= [1.0, 2.0]

v = [1.0 0.5; 0.5 2.0]
vi = inv(v)
y = £i11(0.0,2)

sum = £i11(0.0,2)

ml = 0

m2 = 0

XX = 0

vyl =0

delta = 1.0

minl = -delta*sqrt(v{l,1])
maxl = +delta*sgrt(v[1l,1])
minZ2 = -delta*sqrt(v[2,2])

max2 = +delta*sqrt(v(2,2])
zZ = y-m
den0ld = exp(-0.5*z'*vi*z)
dl = Uniform(minl,maxl)
d2 = Uniform(min2,max2)
ynew = fill(0.0,2);
for (iter in l:nSamples)
ynew[l] = y{1l] + rand(dl,1)[1]
ynew[2] = y[2] + rand(dZ,1l)[1]
denNew = exp(-0.5*(ynew-m)'*vi*(ynew-m));
alpha = denNew/den0ld;
u = rand(}
if (u < alphal[l])
Yy = copy(ynew)
den0ld = exp(=-0.5*%(y-m) *vi*(y-m))
end
sum += y
mean = sum/iter
if iter%1000 ==
@printf "%10d %8.2f %8.2f \n" iter mean{l]

end
end

1000 1.04 1,93
2000 1.10 1.91
3000 1.13 1.91
4000 1.13 1.98
5000 1.05 1.96
6000 1.03 1.94
7000 1.03 1.96
8000 1.03 1.96
9000 1.04 1.96
10000 1.06 1.97

hitp:#/127 0 0.1:8888/motebooks/Google % 20Drive/tiulia/Presentations/ wrkShpSlides2 ipynb
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Install PedModule

Do this only once

In [1]: Pkg.clone("https://github.com/reworkhow/PedModule.jl.git"})

5/12/15, 12:59 AM

INFO: Cloning PedModule from https://github.com/reworkhow/PedModule.jl.git
INFO: Computing changes...

In [2]: wusing PedModule

In [3]: ;cat pedFile

(=AW I - PO (R
== -=o O O
w o oo

In [4]: ped =

PedModule.mkPed{ "pedFile")
ped.idMap

Out[4]: Dict{Any,Any} with 6 entries:

|r4||
lrlll
Il5ll

II2" =
||6lr =

I|3n

hitp:/7127.0.0.1:8888/notebooks/Google%20Drive/idJulia/Presentations/wrkShpPedSlides.ipynb#

=>

PedNode(3,"1","2",0.0)
pedNode(1,"0","0",0.0)
pedNode(4,"1","2",0.0)
pedNode(2,"0","0",0.0)
PedNode (6,"1","3",0.0)
pedNode(5,"0","0",0.0)

Page 1 ¢f 3
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In [5]:

Oout[5]:

In [6]:

out[6]:

In [7]:

out[7]:

hitp://127.0.0.1:8888/notebooks/Google%20Drive/iJulia/Presentations/wrkShpPedSlides.ipynb#

(1,
L2,
[3,
[4,
[5,
(6,
(1,
(2,
(3,
[4,

(2,
[3,
(1,
[2,
[4,
[1,
(5,
(6,
(1,
[5,
{6,

full(Ai)

1.0
2,0
-1.0

-1.
0.
0

0.0

OO0 O O =
o B o BN O ) BN & ) I o]

oo o

1]
1]
1]
1]
1]
1]
2]
2]
2]
2]

3]
3]
4]
4]
4]
2]
51
5]
6]
6]
6]

0.5

OO OO
N S O G,

2.5
1.0

-1.0
2.0
-1.0
-1.0
2.0
0.5
1.5
-1.0
-1.0
-1.0
2.0

6x6 Array{Floatéd,6 2}:
-1.0

6x6 Array{Floaté4,b2}:

0.5

.

o B o B O e B o |
.
N O O U

O R OO O O

PedModule.AInverse (ped)

round(inv({(full{ai)),2)

.
o oo o O

6x6 sparse matrix with 22 Float64 entries:

|l e B e R e Y s T o
(=R B WG T AN B e B S |
U

5/12/15,12:59 AM
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The Prediction Problem

Pedigree-based
mixed linear models Model Equation
y=Xb+Zu+e
Other aspects of the model
Firstmoments  EJu] =0, Efe] = 0. therefore E{y] = Xb
Second mements var[u] = G, var{e|= R, cov[u,e'|=10
Distnbutional Assumptions e.g.u,e ~ MVN

Want to predict u or linear functions like k'n

Original Solution BLP vs GLS BLUP

Generlized Least Squares (G1LS)

y=Xf+Zu+e

For egtitmable q'b. q'f)" is BLUE (Best Linear Unbiased Estimator)
y-XfB=2Zu+e, afully modom model

where b® = [ X'VIX) X'V lor ¥V =ZGZ' + R , B
w ( ) ¥ Selection Index Equations Pb =Gv

then i = GZ'V? y - Xb'). is BLUP (BLU Predictnr) : . . .
[y ) b =P'Gv, defines the best linear function to predict u

selecti X ? exre CXb i ace ol {y - . . .

(same s Selection Index/BLP except {y - Xb?) in plce of (y - Xb) the "weights" are the same for every animal with the same

obiained hy exploiting {genetic) covanances between animals sources of information (ie sanie traits observed)
BLPu=b'(y-X8)=vGP'(y-X8)

In teaditional animat breeding prmctice
G is large and dense and detenmined by A the numerator elp matnx

¥ is 100 big to compule X'V ¢f GLSBLUPu=GZ'V’ (y .xﬁ”)

Henderson’s Contributions One Henderson’s Contributions Two

Invented the Mixed Model Equalions

Henderson's Method I {not his n = ‘ for full rank G
RIUELGA . for itk
son's ( ) ZR'X ZR'Z+GT 3 Z'R?

Developed methods to compute G and R from field data X'R'X X'R*Z }
Including tircumstances that involved selection

and jointly showed k'B® and & were BLUE and B1,UP

Compuationally imctable it G and R assumed diagonal or block-diagonal
(eg sire model with relationships ignored)

(Order 40 matnix takes weeks winven by hand)

MME typically sparse in national animal evaluation
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Example NRM or A matrix

Sue1 Dam1  Srel Dami  Swe? 7 Swg2 7

Offspring, 1 Y L0 io0

Sires and dams unrelated and non-inbred
Simple calculation of AP" requires including all ancestors
and would result in a matrix of order 7 not 4

Al matrix (animal model)
Sire1  Damil Sirez 2

Srrel Dami Sire2 7

‘ -
0867 0 0 0 ;1333

oo e _
Ancestors w/oul records are fitled for simple A structure

Henderson’s Contributions Three

[nvented an algorithm 1o directly form A™ Trom a pedignee list
Then G can be formed as o sealar produet or kronecker praduct
define of to be "mendelian” sumpling vafance
d=t1.3/4.142) for 0, 1 ar 2 parents known

detine s'=(-1/2, -12, 1) 10 represent sire G known). dam (if known)

and individual equalions
accumulate s¢7's"in the sire, dam and individual Towsfecolumns

Tor every trio of animals in the pedigree lise

Consequence of A structure

sire dam i

Accumulate for each animal st 02s 025 -5
dum | 035 025 05 &7
H 05 -5 1

When both parents are known
Nonparents (e lenninal oflspring)

Cw equation (ie row) hus 2 on diagonal, -1 in sire columin -1 in dam colum
Parent with one olfspring

Own equaion has 2+1/2 on diagonal. -1 in sire and dam columns

in addition ko <142 in the column of its nute, -1 i column of oflspring
Parent with many ofTspring to dilferent nves

accunlales a large diagonal element, many smatl negative ofkhagonals

Consider rearranging the MME

In general,
[ zr'x ZR'Z+G" ]{ :': ]:[Z'R"y]

or eqrivalently [Z'R'lZ+G'1][fl] = [Z'R"(y - Xb* )]

Single it animal model R=[s?, G=Agl, G'=A"'0]

ormdtiphving of [Z'Z+AA" ][] = [Z'(y ~ Xb’ ]]. with A = %

Consider the MME for a nonparent

[zz+ 2a" ][a)=[ Z/(y-xb°)]

MNonparent animal with one record

(1+ 24, — At — AR, = adjusted _y
g 2ali,, 44,0 (adjusted _v)
b=
et {1+24)2 (1+24)
1
={1—w)PA+wladjusted _y) for w= (HT)U
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Consider the MME for a nonparent

b = (= WIPA o (adjutsted _v) for w= ———
.= =) wiladfiested _x) for w (14241

-5

A= o so for F =1 A=w=L (o shrinkege)
i

Jor b =low, A= bige w=suali. (shrink the deviarion)
Two sources of BV intomation are pooled

The parent averige PA

The individual prediction (shruk deviation)

wilh heritability influencing shrinkage

Consider the MME for a nonparent

(2724247 ][&]=[ 2/(y-xB*)]
Nonparent animal with one record
T i
Nonparent animal with no record
A, —An,, =0

221, = A, i
(u_\m' + ”d‘:ml)

N Al . +i ”
W it = ( = o ) = =PA
A2 2

=(1—w)PA + wladfusied _x)

Reliability of nonparents

. . N . var{i
Property of BLIYBEUP is covin. wy = varli) so r° = )
var(i)
- Foe A :

but .= 5 +T. Sfor wonparent withont a record
: P e ¢ |
L T T )
4 4 2

i, LIcTTY ’0‘ v - v
Finally &G = ’T limiting selection response

when candidates at puberty lack phenotypic infonnation

An option to do better

Solution

* We need a different representation of the
covariance between relatives, that allows
relatives other than parents to directly
contribute to the prediction of nonparents
without records

The NRM or A-matrix is an expectation of
relationships in the context of repeated
sampling of the pedigree (conditional on
pedigree)

A-matrix

Relaticnship with self is 1+F {noninbred F=0)
{Additive) relationship of % between non-inbred
full-sibs and between parents and non-inbred
offspring

Relationship of % between non-inbred half-sibs
and between grandparents and offspring

But particular individuals can have greater or
lesser values

— If we know their genotype we can compute

relationships conditional on the chromasome regions
they inherited
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Relationship matrix

A miatex
0 s 5 508
1 5 8 = 5
S 15 58
s 51 55
585 1 8
55 5 050

Cansider a sire, dam and 4 full sibs
A-inverse matim

-1 -1«
-1 - -k
nonon
20 on
O T
B U (-

Relationship matrix

G matnix
A matrix
hos s o s 1 ¢ .55 .58
L s % & 8 01 5 5.5 .5
51 5 505 550 6 a4
5 51 5 5 55 6 1 4 4
S5 5 s 55 4 4 1 ¢
A S A 55 4 4 6
G-inverse matix

A-inverse motrix

3525 125 -13% -1as 0 —12S
Dol 25 35 —125 —13% 13 133
e S I |
S s u e —125 S125 21875 03125 03125 03125
Sl o2onon 125 -1.25 03125 21875 03125 03125
see 2 ~125 135 03125 03125 21875 03125
Shemono S125 <125 03125 03125 -03125  2IHTS

[L

i

Predict the last animal with no data

L2806, —125%, 0 31256 31256, - 31284, 21878, ]:[n]

12504, +iy,, ) = 03125(i,,, ik, )+ 031250,

R 2.1875

But to form G, we needed to know which loci/QTL
contribute to variation in performance

Some MME Results

XX XZ
Z'X Z'Z+ AGT

_ Cll C”
le C;’l

. - < s SCLI )
varig) =G vang) =G -C* vang-g)=C r_:="m%uw)

vir(k'g) = K'Gk  vark'g)= k'((; -CHk
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1 Bayesian Regression Models for Whole-Genome Analyses

Meuwissen et al. (2001} introduced three regression models for whole-genome prediction of breeding value
ol the form

N
Wi = -+ Z .\','A','(l", + 5.

=1

where gy is The plenotypic value, pois the mtereepl. Ny s G marker covariate of animal /. aj is the
partial regression cocflicient of X, and ¢; are identically and independently distributed residuals with mean
zero and variance o2, In mosl current analyses. X;; are SNP genotvpe covariates that can be coded as 0. 1
ane 2. depending on the nunber of B alleles at SN locus .

[ all three of their models. a flat prior was used for the inmtereept and a scaled inverted chi-square
distribution for nf The three models introduced by Meuwissen el al. 0 lewwissen. THIS ca. 20014 difler only
in the prior used for a;.

1.1 BLUP

- . . . . . - . 2l
In their first model. which they called BLUP. a normal distribution with mean zero and known variance, o
is used as the prior for a;.

1.1.1 The meaning of o

Assume the QTL are in the marker panel. Then. the genotypic value g; for a randomly sampled animal ¢
can be writlen as
!
g =+ Xjav.

/

where x| is the vector of SN genotype covariates and e is the vector of regression coeflicients. Note that

randomly sampled animals difler only in %7 and Lave e in common. "Thus. genotypic variability is entirely
- o1- . . - 9 . . . - .
due to variability in the genotypes of animals, So. o is not the genetie variance at a locus (I'ernando:2007.
Glanola:2009:Genetics: 19620397).
. . i . .
1.1.2 Relationship of 7 to genetic variance

Assume loci with eflect on trait are in linkage equilibrium. Fheu, the additive génetic variance is

‘[l‘
o Sy 2
V= g 2piang.
J

2

where pj =1 — g is gene lrequency at SNP locus j. Letting /5 = 2pjq; and Vy = o3

;
ba=) UV
J



For a randomly sampled locus. covariance between U and 15 s

. Z;l'—.i‘:’ 7(2711‘;}){21
ok k A

i
(-[7". ' ..‘)

Rearranging this expression lor €1 gives

b
ST = ke + (X 1)
i J

So.
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where @ denotes all the unknowns.

1.1.4 Full-conditional for y
s
The [ull-conditional for g is a normal distribution with teean fr and variance fl -where 1 is the least-squares

estimate of g in the model

k
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2
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is the variance of this estimator (77 is the number of observations).

and
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and this is proportional to a scaled inverted chi-square distribution with i, = v, + & and scale parameler
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1.2 BayesB
1.2.1 Model

The usual model lor BayesDB is:



i
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where the prior g is flat and the prior for o is oo mixture distribution:
o 0 probability =
K ~ ;\'(U.rrf) probability (1 — &)

where r'r;) fras o sealed inverted chi-square prior with seale pavameter 82 and v, degrees ol freedom. The
resichual s normally distributed with mean zero aud varianee 0?. which has a scaled inverted chi-square prior
with scale parameter ’u;’ and . degrees of freedom. Meuwissen el al. M euwlssen. THLE.ea 2001a gave a
Metropolis-Hastings sampler (o jointly sample af and a;. Here. we will show how the Gibbs sampler can be
used in BavesB.

In order 1o use the Gibbs sampler, the inodel is written as

v
=t Z Nopdd 4o
j=I
where 35 ~ N(0. (Tj) and d; is Bernoulli(l — x):

0 probability 7
J - .
1 probability (| ~ 7)
Other priors are the same as in the usual model. Note that in this model. a; = J;d; has a mixture
distribution as in the usnal BavesT3 model.
1.2.2 Full-conditionals:
The joint posterior for all the paramelers is proportional to
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where & denotes all the inknowns.

1.2.3 Full-conditional for

. o2
[he full-conditional for 4 is a normal distribution with mean j and variance ==, where ji is the least-squares
estimate of pzin the model

s
and Z= i the variance of this estimator (n is the number of observations).
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which is proportional to a scaled inverted chissquare density with 2, = w + 1, degrees ol freedom and
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BayesCO

Simulating Genotypes and Phenotypes

In [31]: using(Distributions)

In [2]: nObs = 100
nMarkers = 1000
X = sample([0,1,2], (n0bs,nMarkers))
o = randn{nMarkers)
a = X*o
stdGen = std{a)
a = a/stdGen
y = a + randn(nObs)
saveAlpha = o
nothing

Centering Genotype Covariates

In [3]: meanXCols = mean(X,1)
X = X - ones(n0Obs,l)*meanXCols;

Priors

In [4]: seed = 10 # set the seed for the random number generator

chainlLength = 2000 # number of iterations

probFixed = 0 # parameter "pi" the probability SNP effect is :z
dfEffectVar = 4 # hyper parameter (degrees of freedom) for locus
nuRes = 4 # hyper parameter (degrees of freedom) for resic
varGenotypic = 1 # used to derive hyper parameter (scale) for loc
varResidual = 1 # used to derive hyper parameter (scale) for loc
scaleVar = * varGenotypic*(dfEffectvar-2)/dfEffectVar # scale fe
scaleRes = varResidual* (nuRes-2)/nuRes # scale fe
nothing

Function for Sampling Marker Effects

http://127.0.0.1:8888/notebooks/Google%200rive/iJulia/BayesABC/BayesCQ.ipynb# Page 1 of 7
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In [5]: function get column(X,nRows,7j)
indx = 1 + (j-1)*nRows
ptr = pointer{X,indx)
peinter to array(ptr,nRows)
end

Qut[5]: get column (generic function with 1 method)

In [6]: Xpx = [{X[:,1]'X[:,1])[1l]::Floatéd for i=1l:nMarkers]
xArray = Array(Array{Floaté64,1},nMarkers)
for i=l:nMarkers
xArray[i] = get column(X,nObs,i}
end

In [7]: typeof(xArray[l])

Qut[7]: Array{Floaté64,1}

Computing the adjusted right-hand-side efficiently

We want to compute:
rhs = X}(y('()l'r + Xjaj)
This is more efficiently obtained as
! !
rhs = Xi¥Yeor + X;Xja5,
using the diagonals of X'X that have already been computed (line 4 of the function below).

function sampleEffects! (nMarkers,xArray, Xpx,yCorr,0,meanAlpha,vare,var
n0Obs = size(X,1)
for j=l:nMarkers
rhs::Floaté4 = dot(xArray[Jj],yCorr) + xpx[Jj]*&[]]

In [19]: 1
2
3
4
5 lhs::Floaté4 = xpx[j] + vare/varEffects
6
7
8

invLhs::Floaté64 = 1.0/1lhs
mean::Float64 = invLhs*rhs
oldalpha::Floatéd = &[]]

9 ¢[j] = mean + randn{)}*sqgrt(invLhs*vare)
10 BLAS.axpy! (oldalpha-&[j],xArray{j],yCorr)
11 end
12 nothing
13 end

Out[19]: sampleEffects! (generic function with 1 method)

Function for BayesCO

The intercept is sampled first and the sampleEffects! function is called to sample the marker effects

http://127.0.0.1:8888/notebooks/Google%20Drive/idulia/BayesABG/BayesCO.ipynb# Page 2 of 7
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In {10]: chil=Chisqg(nObs+nuRes)
chiz=Chisq(dfEffectVar+nMarkers)

function BayesCO! (numIter,nMarkers, X, xpx,yCorr,mu, meanMu, &, meandlpha, vare,
for i=l:numlIter
# sample residula variance
vare = (dot(yCorr,yCorr)+nuRes*scaleRes)/rand(chil)

# sample intercept

yCorr = yCorr+mu

rhs = sum(yCorr)

invLhs = 1.0/{n0bs)

mean = rhs*invLhs

mu = mean + randn()*sqrt{invLhs*vare)
yCorr = yCorr - mu

meanMu = meanMu + (mu - meanMu)/i

# sample effects
sampleEffects! (nMarkers,xArray, xpx,yCorr,§,meanadlpha,vare, varEffec
meanAlpha = meanAlpha + (& - meanAlpha)/i

#sameple locus effect variance
varEffects = (scalevar*dfEffectvVar + dot(0,0))/rand{chi2)

if (i%1000)==
yhat = meanMu+X*meanAlpha
resCorr = cor(a,yhat)
println ("Correlation of between true and predicted breeding v
end
end
end

Out[10]: BayesCO! (generic function with 1 method)

Run BayesCO

htp://127.0.0.1:8888/notebooks/Google% 20Drive/idulia/BayesABC/BayesCO.ipynb# Page 3 of 7
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In [30]:

In [18]:

In [32]:

meanMu =0

meanAlpha = zeros(nMarkers)

#initial valus
vare = 1
varEffects = 1
mu = mean{y)
yCorr = y — mu
alpha

#run it

fil11(0.0,nMarkers)

5/12/15, 11:00 PM

@time BayesCO!(chainLength,nMarkers,X,xpx,yCorr,mu,meanMu, alpha,meanAlpha,

Correlation of between true and predicted breeding value:

0.77452987300536

Correlation of between true and predicted breeding value: 0.77472194735639
elapsed time: 0.213988087 seconds (53211392 bytes allocated, 12.66% gc tin

Compare Runtime with R Implementation

:Rscript RBayesC0/BayesCO0.R

user system elapsed
50.936 1.524 52.569

;cat RBayesC0O/BayesC0.R

F 3% Ik IR 3k

# Parameters
setwd( "RBayesC0")

seed = 10
chainLength = 2000
dfEffectVar = 4
nuRes = 4
varGenotypic = 1
varResidual = 1
windowSize = 10
outputFrequency = 100
markerFileName =

trainPhenotypeFileName
testPhenotypeFileName

fl

Rohan Fernando
Dorian Garrick
copyright Augqust 2012

{rohan@iastate.edu)
{dorianfiastate.edu)

This code is for illustrative purposes and not efficient for large prc
Real life data analysis (using the same file formats) is available at
bigs.ansci.iastate.edu/login.html based on GenSel cpp software impleme

# set the seed for the random number generator

# number of iterations

H* o W W%

hyper parameter (degrees of freedom) for locus
hyper parameter (degrees of freedom)} for resid
used to derive hyper parameter (scale) for loc
used to derive hyper parameter (scale) for res
number of consecutive markers in a genomic win

# frequency for reporting performance and for c

"genotypes.dat”
“trainPhenotypes.dat”
"testPhenotypes.dat”

http://127.0.0.1:8888/notebooks/Google%20Drive/iJulia/BayesABC/BayesC0.ipynb#

Page 4 of 7
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set.seed(seed)

genotypeFile = read.table(markerFileName, header=TRUE}
trainPhenotypeFile = read.table(trainPhenotypeFileName, skip=1)[,1:2]
testPhenotypeFile = read.table(testPhenotypeFileName, skip=1)[,1:2]
commonTrainingData = merge{trainPhenotypeFile, genotypelile, by.x=1, by.
Ype

commonTestDhata = merge(testPhenotypeFile, genotypelFile, by.x=1, by.
Ype

remove {genotypeFile) # Free
remove (trainPhenotyperile) # Free
remove (testPhenotypeFile) # Free
animalID = unname(as.matrix{commonTrainingDatal[,1]}) # Firs
Yy = commonTrainingData[, 2] _ # Secc
Z = commonTrainingData{, 3: ncol{commonTrainingData)] # Rema
Z = unname({as.matrix{{(Z + 10)/10)}; # Recc
markerID = colnames(commonTrainingData)[3:ncol(commonTrainingData)] # Reme
remove (commonTrainingData)

testID = unname({as.matrix(commonTestDatal,1])} # First fi
yTest = commonTestData[, 2] # Second f
ZTest = commonTestDataf, 3: ncol(commonTestData)} # Remainin
ZTest = unname(as.matrix(({ZTest + 10)/10})); # Recode g
remove (commonTestData)

nmarkers = ncol(Z) # number c
nrecords = nrow(Z) # number c

# center the genotype matrix to accelerate mixing

markerMeans = colMeans(Zz) # compute the mean f
Z = t(t(2) - markerMeans) # deviate covariate
p = markerMeans/2.0 # compute frequency
meanZpgq = mean{2*p*{(1l-p}) # compute mean genot
varEffects = varGenotypic/(nmarkers*mean2pq) # variance of locus
#(e.g. Fernando et a
192-195)
scalevVar = varEffects*(dfEffectVar-2)/dfEffectvVar; # scale factor for 1
scaleRes = varResidual* (nuRes-2)/nuRes # scale factor for r
numberWindows = nmarkers/windowSize # number of genomic
number3amples = chainLength/outputFrequency # number of samples
alpha = array(0.0, nmarkers) # reserve a vector to store sampled
meanAlpha = array(0.0, nmarkers) # reserve a vector to accumulate th
modelFreq = array(0.0, nmarkers) # reserve a vector to store model f

http://127.0.0.1:8888/notebooks/Google%20Drive/idulia/BayesABC/BayesCO.ipynb# Page 5 of 7
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mu = mean(y) # starting value for the location g
meanMu =0 # reserve a scalar to accumulate th
geneticVar = array(0,numberSamples) # reserve a vector to store sampl

# reserve a matrix to store sampled
windowVarProp = matrix(0,nrow=numberSamples, ncol=numberWindows )
sampleCount =0 # initialize counter for number of

# adjust y for the fixed effect (ie location parameter)

yCcorr = y - mu
ZPZ=t(Z)%*3%%Z
zpz=diag(ZPZ})
ptime=proc.time()
# mcme sampling

for (iter in l:ichainLength){

# sample residual variance

vare = ( t(ycorr)%*%ycorr + nuRes*scaleRes )/rchisq(l,nrecords + n

# sample intercept
YyCOrr = ycorr + mu
rhs = sum(ycorr)
invLhs = 1.0/nrecords
mean = rhs*invLhs
mu = rnorm(l,mean,sqrt({invLhs*vare))
YCOrr = ycorr - mu
meanMu = meanMu + mu

# sample effect for each locus
for (locus in l:nmarkers}){

HoH W H ok R W

Unadjust y for the previou
Form X'y

Form (X'X)-1

Solve (X'X) mu = X'y
Sample new location parame
Adjust y for the new sampl
Accumulate the sum to comp

rhs=t{Z[,locus]}%*%ycorr +zpz[locus]*alpha|locus]

mmeLhs = zpz[locus] + vare/varEffects
invLhs = 1,0/mmeLhs # In
mean = invLhs*rhs # so
oldAlpha=alpha[locus]
alpha[locus]= rnorm(l,mean,sqrt{invLhs*vare)) # Sa
ycorr = ycorr + Z[,locus]*(oldAlpha-alpha[locus]};
meanAlphal[locus] = meanAlpha[locus] + alpha[locus]; # Ac

}

# sample the common locus effect variance

varkEffects = ( scaleVar*dfiEffectVar + sum(alpha~2) }/rchisq(l,dfEf

}
hitp://127.0.0.1:8888/notebooks/Google%2CDrive/iJulia/BayesABG/BayesCO.ipynb# Page 6 0f 7
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proc.time()-ptime

http://127.0.0.1:8888/notebooks/Google%20Drive/idulia/BayesABC/BayesCO.ipynb# Page 7 of 7









R.L. Fernando A, Toosi D.J). Garrick J1.C.M. Dekkers

Gepartment of Animal Science
lowa State University

10" World Congress of Genetics Applied to Livestock
Production

o Bayesian multiple-regression models (BMR)

o Single-marker models {SM}

SM BMR

Model Simple Regression Multiple Regression

False Positives (FP)  Genomewise Error Rate  Proportion of FP

Inference  Frequentist Bayesian

-Simple.Regression

@ QTL may.have low LD with all markers iri region
9 Need ta explicitly model population’ structure

Multiple Regression = - AR
@ inference based on genomic windows
@ Markers can capture popuilation structure

‘o Explicit modeling of striicture fesults in lower power

........

..Géhc'iri'l'Wise'zé'rif_O't‘ "f'at'e'” it i ]
-@ Control probability of one or more false positives ameng all
tests : : :

-@ Incurs muiltiple-test penalfy

o Control proportion of false positivés:(PFP}
o Related to FDR" : '

o No mﬁltiple-test penalty (Fernanda et al., 2004; Ste_phe_hs and
Balding, 2009)




o V number of false positives

@ R number of positives
o PFP = gt

o FDR = E(%|R > 0)Pr(R > 0)

o If PFP is yin each of n independent experiments, the
proportion of false positives among significant results across all
experiments will converge to ¥ as n increases.

@ In general, the above property does not hold for FDR.

@ PFP is a multiple test extension of the posterior type 1 error
rate {PER).

o If PER is y for a random test, PFP is aiso ¥ for the collection
of tests.

@ In the frequentist approach, inference on Hy is based on the
distribution of some test statistic given Hy is true

a posterior type | error rate (PER) is the conditional probabifity
of Hp being true given that, based on a statistical test, Hy has
been rejected.

Pr(Hais rejected, Hyis true)
Pr(Hpis rejected, Hais true) 4+ Pr{Hpis rejected, Hyis false}
aPr(Hp)
aPr(Ho) +(1—B)[1 ~ Pr(Ho))

PER =

o is the type | error rate, and (1 —f3) is the power of the test

o in the Bayesian approach, inference on Hy is based on
PrHoly).

@

Typically, Pr(Hply) is estimated by counting the number of
MCMC samples where Hy is true.

If Hy is rejected when Pr{Hgly) < 7. PER < ¥.

Q

Pr(Hgly) is not a frequentist probability.

@ 52k SNP genotypes from 3,570 Angus bulls
o 100 data sets of size 1000 or 3,570 were randomly sampled

o marker effects randomly sampled according to BayesC with
7 =0.995

@ markers with nen-zero effects (QTL) were not included in
marker pane!
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@ Genomic window based inference multiple regression madels

@ When PFP is used to manage false positives, no multiple-test
penalty

@ Bayesian posterior probabilities can be used to control PFP

e Pr{Hy) and power of test can be treated as unknown
a Do not need to know the distribution of test statistic
s Simple to determine significance threshold

o Funding:

e NIH Grant RO1GM099992
o USDA/AFRI project EBIGS




Fxtension to Multiple Linear Regression

wounsider the multiple regression model

yi =P+ Z xihi+ e 2)
i
which extends model (1) to include multiple covariates X;; - In matrix notation, this model can be written as
y=X/+e,
where **f' = [0, 2, ..., ] *and the matrix X contains the corresponding covariates.

Model with Normal Prior for Regression Coefficients

Here we consider a model with a flat prior for f3; and iid normal priors for the slopes:
/)’j- ~ N(O,oﬂz) forj=1,2,...,k,

where aﬁ is assumed to be known. The residuals are assumed iid normal with null mean and variance o2,
which itself is assigned a scaled inverted chi-square prior. Then, the joint posterior for @ is

FOly) « f(yl@)f (@)
2\ —ni2 { (y—X8)(y - Xﬂ)}
« (07) " exp{ —

oF

207
k 2
—ki2 Ej:l B;
X (0'2) eXp {4 ——m8
14 252
3
_ S2
X (62)" 2 exp {_ Le : } :
207

The posterior distribution for # can be written as



SIB. 6}, o) (Blo}f (62
[y, 05,62

x [(¥If. o, 02 ) Blof (00)

o f(yIB, o, 6 ) (Blcy)

3y =12 (y - Xﬂ)!(y - Xﬂ)
x (ac) exp 4 — -

k
2\ k2 i1 B
x(aﬁ) exp X — -
[

fPBly.05,07) =

yY-XPy-XB) + 3 A
X eXp 1 — - Lb
207
[ VY- 2YXB+F XX+ DY)
x expq — U
267
‘ ’ A/ ' a’ )A ot ai o
YY-B-H)XX+D )P~ - XX+D5)p
x expd — L -
267
J - ﬂ)(XX-l-D )(ﬂ ﬁ)
x exp 4 ~ ,
26}
for
(XX + D—)ﬂ X'y, 3)
O3

where D is a diagonal matrix with zero on the first diagonal and ones on the remaining diagonals. Thus, the
full- condmona! posterior for #§ is a normal distribution with mean glven by (3} and variance

(XX+D—) ol

i



Full-conditionals;

The full conditionals for f3; and o/ are identical to those in simple linear regression.

Full-conditional for fj;

The full-conditional for /)’J- is obtained by dropping from the joint posterior all terms and factors that do not
involve f3;:

'"‘X-)’-’W-—x. .
F(BIELSE) « exp { % = b, ) v, .,/i,)}
X exp
{ 20'ﬁ
w]’w = 2Wix;f; + /5 (xx; + 0(;3/%3)
X exp
207
& expj ﬁ )2(x + 6"2/0/?) - f";(xjxj + 03/6/;‘))
207
; ~
(f; = /)),)2
X eXpy———>—
(X% +a;l0;)

where $$ \hat{\beta}{j}=\frac{\mathbf{x}{j} \mathbf{w}{j} }{\mathbf{x}{j} \mathbf{x}
{i}+\sigmaf{e}™{2}N\sigma_{\beta}*{2})}, $$ and $\mathbf{w}f{j}=\mathbf{y}-\sUm_{l\neq
jAmathbf{x}_{I\beta_{I}.$ So, the full-conditional posterior for $\beta_{j}$ is a normal distribution with mean
$\hat{\beta}_{j}$ and variance $\frac{\sigma_{e}"{2}}

{(\mathbf{x}_{j} \mathbf{x}_{j}+\sigma_{e}*{2}/Asigma_{\beta}"{2})}.$

Exercise

1. Use ff; = I, crﬁ = 0.1 and 67 = 1.0 to generate a data set with 10 observations from model (2)

with k = 15 covariates. -

Setup and solve the mixed model equations given by (3).

Sample the elements of # using Gibbs.

Compute the posterior mean of # from the samples and compare with the mixed mode! solutions.
Compute the posterior covariance matrix from the sampled values. Compare results with inverse of
the mixed-model coefficient matrix.

s WD



Model with unknown aﬁz

1e previous section, we assumed that of;’- in the prior of the slopes was known. Here, we will consider
this variance to be unknown with a scaled inverted chi-square prior with scale parameter Sﬁ and degrees of

freedom vy. The joint posterior for this model is

J(0ly) < f(yI0)f(6)
2\ /2 { (y — Xp)'(y — Xp) }
x (a7) "Texp{ —

bl

207
14 2
yy k2 Z':l ﬁj
X (O'p“) exp —2_2
oy
UjSZ
o\ —(2+e)2 #p
< (o) exp § -
o)
) US?
X (63)" " exp {— — }
207
Then, the full-conditional posterior for 05 is
k 2
5 5 5y k2 21 B;
floply,B,05) (aﬁ) exp =
o
1
SZ
o\~ (24,2 Vg
X (a/;) exp { ——
26}_,)7
k 2 2
Zj:l ﬁ,‘ + VﬁSﬁ

o (a%) "7 ex _
f 262
[}

which can be recognized as a scaled inverted chi-square distribution with Dﬁ =k+ vy degrees of freedom
...,2 2 -

and scale parameter S; = (Ej-;l ﬂjz + u/;S/;; Mup. A sample from this posterior can be obtained as

T B eS;

X,;ﬂ



Exercise

Ftend the sampler used in the previous section to treat aﬁz as an unknown. Plot the posterior distribution

2
jﬁ .

Model with unknown covariate-specific variances

Here we consider a model where the prior for the slope corresponding to covariate j is normal with mean 0
and variance c:rf.2 , where sz has scaled inverted chi-square prior with scale parameter [2,) and degrees of

freedom vy, The joint poéterior for this model is

fOly) « f(yl0)f(0)

2y =2 (y - Xﬂ)’( - Xﬂ)
o (0'{,) exp R — .

It can be shown that:

1. The full-conditional posterior for [)’j is normal with mean
%W

A

g

Tt 2, 280

. (o
and variance —————~.
(x}. X;+o; /a,.' )

2. The full-conditional posterior for ojz is a scaled inverted chi-square distribution with by = | + 1

~7
degrees of freedom and scale parameter S, = (/)'J-2 + I//;Sﬁ ). A sample from this posterior can
54,53
be obtained as = ;’ ‘
bﬁ
3. Marginally, the prior for [)’j is a scaled ¢ distribution with v4; degrees of freedom, mean 0 and scale

2
parameter K

Exercise

Derive the full-conditional posterior for ;.
2. Derive the full-conditional posterior for ojz.
3. Use a Gibbs sampler to compute the posterior mean of ff.



Model with Mixture Prior for Regression Coefficients

hefore, a flat prior is used for the intercept, 4. The prior for slope j is a mixture:
- 0 probability =
Fi=3 ~ N(O, oﬁz) probability (1 — z)

where oﬁz has a scaled inverted chi-square prior with scale parameter ﬁ and degrees of freedom v. In
order to use the Gibbs sampler, it is convenient to write f3; as
Bi = v,
where 6, is a Bernoulli variable with probability 1 — 7 of being 1:
5 = { (0 probability
! 1 probability (I — 7)’

and y; is normally distributed with mean zero and variance oﬁ. Then, the modei for the phenotypic values

can be written as
yi=p+ Z Xiivi0; + ;.
j=1

Full-conditionals:

2 joint posterior for all the parameters is proportional to
o' (y — 1u — X Xi76) }

JOly)  f(yl0)f (0)
)~11/2 exp {_(y — Iy — ij}’j i

]
2062

x (a7

£ Ay 12 }’,-2
e L)

2

) YpS
X(O_ﬁ)—(wﬁu)ﬂ exp 4 — ;‘
20/;

voSe
X (62)"F 2 exp {— — } :
20;

where @ denotes all the unknowns.



Full-conditional for y

full-conditional for ¢ is a normal distribution with mean /i and variance (:—r where /1 is the least-squares
w.amate of i1 in the model

k
y— D X6 = lu+e,

and % is the variance of this estimator (77 is the number of observations).

Full-conditional for y;

Sy IELSE) o exp

(WJ X;7i0) (w; = X;1,0)) }

{ wwj = 2w/ Xy, +VJ (x{x;0; + o7 /crﬁ)J }
X exp >
O-g

207

X exp

2
'_}’,)
(x X9 +a; /(r)

where

w,=y—1y-— Z X710,
I#]

So, the full-conditional for Y is a normal distribution with mean
X/’ W;0;

(xj’. X;0; + 6,32/05)

~

V=

2

and variance ——————
( "X +a; /rr )

Full-conditional for J;
h(s; = 1)

(& = 1) + h(5; = 0)°

Pr(6; = 1IELSE)

re $Sh(\deltafj})=\pir(1-\delta{if}(1 -\pi)A{\delta_{j}\exp\left] -\frac{ (\mathbf{w}{j}-\mathbf{X}
{ihgammafji\defta{j}}’ (\mathbf{w}{j}-\mathbf{X}{j}\gammafjhdefta{j}) {2\sigma_{e}*{2}}\right} .$$



Full-conditional for (f/‘j:

k 2
N ny —kf2 Z-zl 7
f(o;|ELSE) (o'/;) exp —"—q"
20/;
]
. vpSy
X () bt exp { — i
20),;
A 2 2
2i-1 Vi S

2\ —(ktu 4202
Oc(ﬁ)( vt+2)

exp -
2o}

and this is proportional to a scaled inverted chi-square distribution with Dﬁ = vy + k and scale parameter
o ko2 2977
Sy = (Ej:l Vi +upSy 7

Full-conditional for =
F(HELSE) o« n*Zii (] — 1y Zia &

which is proportional to a Beta distribution with parameters ¢ = & — Z;;l 6;+ land b = 2(3, + 1.

Jll-conditional for &2

f(62ELSE) (oc?)“”/2 exp {

2
- : UeSe
X (07) e exp{— — }

7y~ exp { == 2 Xy (y — Iy = X Xyd) + v Se }

=1 = Y Xy6) ' (y = L = Y X)) }
202

x (o;
262

which is proportional to a scaled inverted chi-square density with v, = n + v, degrees of freedom and

™ (y—1u- 2 X, 5V (y—1p=2, Xj3,5)+0.5;
S¢ = = scale parameter.
v,




Rayesian Inference by Application to Simple Linear
..agression

Simple linear regression is used to illustrate Bayesian inference, using the Gibbs sampler. The Gibbs sampler
is used to draw samples from the posterior distribution of the intercept, the slope and the residual variance.

The Model

Consider the linear model:
yi = fo+x:f + e (35)

where for observation i/, y; is the value of the dependent variable, f3; is the intercept, x; is the value of the
independent variable and ¢; is a residual. Flat priors are used for the intercept and slope, and the residuals
are assumed to be identically and independently distributed normal random variables with mean zero and

variance o7. A scaled inverted chi-square prior is used for oz.

Simulation of Data

™ [1]:

ing Distributions
using StatsBase

In [20]:
n = 20 #number of observations
k = 1 #number of covariates

x = sample([0,1,2],(n,k))
X hcat(ones(Inté4,n),x)

betaTrue = [1,2]
y = X*betaTrue+ randn{n);



Least Squares Estimation

matrix notation, the model (35) is
y = Xfi +e,

where
X = [1 xpl owmr il
Then, the least-squares estimator of /7 is
p=XX)y"'Xy,
and the variance of this estimator is

Var(p) = (X'X)" o2,

Calculations in Julia:

In [3]):

XPX = X'X

rhs = X'y
XPXi= inv(XPX)
println(XPXi)

16363636363636364 -0.09090909090909091
-0.09090909090909091 0.07272727272727274]
In [4]:

betaHat = XPXi*rhs
println(betaHat)

[0.6986138506616033,2.293983905821345]

In [5]:

eHat = y - X*betaHat
resvVar = eHat'eHat/(n-2)
println({resvar)

{0.45974834730130465]



Bayesian Inference

~~nsider making inferences about # from f(fly, 67). By using the Bayes theorem, this conditional density is

«©n as
By, oy = LIV BY )
Sy, 00)
< f(yIB, s ) (B)f (od)
« f(ylf, 62)
— (21?0_32)—11/2 exp {_% (y B Xﬁ) 7()I - Xﬂ) } (36)
. Oc

which looks like the n-dimensional normal density of y with mean X and covariance matrix I, But,

F(Bly, 63) should be a two-dimensional density. So, the quadratic O = (y — Xp)'(y — Xp) in the exponent
of (36) is rearranged as '

Q =(@y-X8'(y-Xp
=y'y =2y Xp+ [ (X'X)p
~ A At ~
=Yy +@ - XX -p - p XX,
where f§ is the solution to (X'X)f = X'y, which is the least-squares estimator of B. In this expression, only
the second term depends on f. Thus, f(Bly, 62) can be written as

1B-pXB-H }

9
2 o2

f(Bly, 62) « exp {—

which can be recognized as proportional to the density for a two-dimensional normal distribution with mean

p and variance (X’X)~'6Z. Thus, in this simple setting, the posterior mean of B is given by the least-
squares estimate, and drawing samples from the posterior are not needed. But, to illustrate the Gibbs
sampler, we will apply it to this simple example.



Gibbs Sampler for

Tha simple regression model can be written as

y =1ﬂ() + Xﬁ| + €.
In the Gibbs sampler, f3y is sampled from its full-conditional posterior: f(fuly, /3|, 6 ). This conditional
distribution is computed for the current values of 5, and 7. So, we can write the model as

wy = 10 + e,
where Wg = Y — X/3. Then, the least-squares estimator of f3; is
/ 1’ W()
U
and the variance of this estimator is
A oo
Var(fy) = 1,—‘1
By applying the strategy used to derive f(ﬂly, O ) above the full-conditional posterior for f; can be shown
to be a normal distribution with mean /30 and variance —~. Similarly, the full-conditional posterior for 3| is a
normal distribution with mean
!
" X Wy
B = 7
X'X

3

. a; . .
and variance —~, where w; =y — 1/}. In the calculations below, we will use the true value of ol

~dlculations in Julia:



In (9]:

# loop for Gibbs sampler

niter = 10000 # number of samples
(0.0, 0.0)

. .anB = [0.0, 0.0]

a=Float64[ ]

for iter = l:niter

# sampling intercept

w =Yy - X[:,2] * b[2]

X X[:,1]

xpxi = 1/(x'x)[1,1]

bHat (xpxi*x'w)[1,1]

b[l] rand(Normal (bHat, sqrt(xpxi))}) # using residual var

It

# sampling slope

w =Yy - X[:,1]*b[1]

x = X[:,2]

Xpxi = 1/(x'X)[1,1]

bHat (xpxi*x'w)[1l,1]

b[2] rand(Normal (bHat, sqrt(xpxi))) # using residual var
meanB = meanB + b

push! (a,b[2])

if ((iter%1000) == 0)
@printf("Intercept = %6.3f \n", meanB[l]/iter)
@printf("Slope %6.3f \n", meanB[2]/iter)
end
end

H



Intercept =

Siope

Intercept =

Slope

ercept =

Jpe
Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope

Intercept =

Slope

Intercept =

Slope

Intercept =

Slope

In [11]:

using Gadfly

N ONONODNDNDODNONODNODRNODNDND

. 725
.283
.695
.301
.700
.297
702
.294
.700
.294
.696
.296
.699
.294
.709
.287
714
.283
.712
.285



In [15]:

plot(x=a, Geom.histogram,

Guide.title("Posterior distribution of B1"),
de.ylabel {"Frequency"},

. .ide.xlabel("R1"))

out[15]:
Posterior distribution of B1
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Full-conditional Posterior for ¢2

~ ~all that we assumed a scaled inverted chi-square prior for 03. The density function for this is:

3 (Scz V{J/z)b"lz 2 (24002 U(,Sg
2) = T ()2 - : 37
T = =5y o) A R &7

where S7 and v, are the scale and the degrees of freedom parameters for this distribution. Applying Bayes
theorem to combine this prior with the “likelihood” {(given in (36)), the full-conditional posterior for the
residual variance can be written as
f(ofly,ﬂ) _ fylg, otz)f(ﬂ)f(o'cz)
‘ fy.B
x f(ylp, O'Lz)f(ﬂ)f(o'cz)

2\l I (y— X8y - Xp)

x {(o7) exps ——= -
2 ol (38)
X (67) T 2 axp {— V"Sf }
20;

DN (1421, - XpY(y - + 1,87

— (O.E)—(n+-_+b(,)/_ exp {_ (y - Xp) (yz 2Xﬂ) v } '
o;

Comparing (38) with (37), can see that it is proportional to a scaled inverse chi-squared density with
(¥=XpY (y=Xp)+1.S;

I

= 11 + v, degrees of freedom and S2 = scale parameter. A sample from this density

: (y=XB) (y—Xp)+v.5; : . , L~
can be obtained as - / Lz P , where ;(3 is a chi-squared random variable with v, degrees of

Ly

o

freedom.

Exercise

in the Julia script given here, the simulated value of the residual variance was used in the sampling of f§.
Extend this script to also sample o2 from its full-conditional posterior given above. In Julia, rand(Chisqg(r),1)
gives a chi-squared random variable with © degrees of freedom. Solutions can be found here
(../solutions/BayesSimpleLinearExercise.ipynb) where flat priors for 62 is used.

Model with Normal Prior for Slope

Consider the simple regression model that can be written as

y =184+ xp, +e.
Here we consider a model with a flat prior for f; and a normal prior for the slope:

ﬁl NN(OsO-’()% ’

where Jf} is assumed to be known.



Then, the full-conditional posterior for &' = [#, 6;'] is
f0ly) « f(y10)f(0)
o (03)7"/2 exp {_ (v =15 —xp)Y (y = 15, - Xﬁl)}

267
X ("ﬁz)_m exp {_ 2/(}:2 }
3

v,S?
X (62) Gt exp {— s } .

>
207

Full-conditional for f3;:

The full-conditional for f#; is obtained by dropping all terms and factors that do not involve P

£8,IELSE)  xp {_ (v = 1o =)'y = 1o = x/m} s exp {_ i }
20'(7 20'/}

{ w'W = 2wW'xff + 1 (X'x + 02/07) }
X exp sy —

2
207

J ww-—(f — f)’l)z(x’x + 03/0'},12) - /A))?(X’X + aﬁ/aﬁ)

x exp e
p
7232
0(6Xp<——(ﬂl _ﬂl) s
207
(x’x+(r,?forﬁ)

\

where
x w

ijl = 24 20
x'x + ai/0y)

and w = y — 1/3;. So, the full-conditional posterior for /3, is a normal distribution with mean fi, and
-

variance —————,
(x'x+alo})



Exercise

1 Use Julia to simulate a vector of 1000 values for /3| from a normal distribution with mean zero and
variance 3. Plot a histogram of these values.
2. Usefip=1,0 =2and 6; =5, 10 generate a vector of observations, y, that follows a simple
linear regression model.
3. Use the Gibbs sampler to draw 10,000 samples for /3; from its posterior distribution.
A. Compute the mean and variance of the sampled values.
B. Draw a histogram of the sampled values. Compare with prior.
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An Equivalent (animal) Model
for Genomic Prediction

More loci than animals

allelic efiects - but for selechion we arz mose injergsied in animal ot alleac] merit

e it

y=1u+ E Ma, +e
rel

y=lu+l {='E“

=

MJaJ}+e

}’=I_U+"Z"”l]“+ﬁ

Orde: of MME 15 number of ficed eflects plus number of animals
Consider the impliLations for L00-1,000 amima's with 52,000 isei

Mixed Model Equations

y=l'n+Zu+e
N I'E I Iy
o || 2y

1 270G L for full rank G = varfu)
. t

v= I';n+lEMln.+c

17

) :w:[\-arz.zm\]]" 27’7'

Order of MME 1s number of heed afiects plus number af ammals
Consider the impheanons fo+ 100- 1000 animals with 50,000 loei

Mixed Model Equations
N | i

y=lue 1T Ma e |
I |+nj[\-ar{zm,a,ﬂ' ET:. =F I\\ ]

var{ S Ma - TvardMa - Y MAM =S MMOS - hie a0’
| , | =2 AL ;

Aumerator relabonship mainy=A

1

N " 4 I'y
Loreo {SMMT SMa, =‘ ¥ ]

]

GBLUP

» {f the variance parameters are assumed
known and the inverse of the genomic
relationship matrix is multiplied by (known} A,
the system is known as GBLUP, as opposed to
conventional pedigree or PBLUP

- It is effectively weighting all the loci equally

— It is similar to BayesC0 except that in that method
we estimate the variance components after
inciuding a prior distribution for them

Lack of Equivalence

* The GBLUP and Marker Effects Models {MEM)
such as BayesCO with high df for the prior
variances will give the same EBV for the
genotyped animals
~ This is true regardless of

* whether the models fit the A allele a1 every lotus, the 8
aliele at every locus, or balh alleles at every locus

+ how the alleles are centered {¢coded 0,1,2 or -1,0,1 etc)
— However, the PEV (and reliability) for GBLUP are
not invariant to these alternative models
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Genomic Analysis
Combining Genotyped
and Non-Genotyped Individuals

Why a Combined Analysis?

+ To exploit alf the available phenatypic data in
GWAS and genomic predicticn
— Not just the records on genotyped individuals
— Account for preselection of genotyped individuals
* To ensure that genomic predictions include all
available information
* Ta avoid approximations required in multi-
step analyses {that lead to double-counting)

Multi-step Genomic Prediction Analysis

+ Mixed model evaluation using all phenotypes and
pedigree informatton to generate EBV and R?

« Deregression of EBY on ganotyped individuals
using EBV and R? of trios of every genotyped
individual, its sire and its dam

+ Weighted multiple regression analysis of
deregressed EBV to estimate SNP effects

* Genomic prediction DGV of genotyped individuals
*+ Pedigree prediction of DGV for nongenotyped
Selection index blending of DGV & EBY for GE-EBY

Pedigree Prediction

[yﬂ} Xn PZTL O u’!} |:€'”}
= h+ +
y,l LX) L0 Zolud e,
with
Un i 714:::: Anq] 9
T — o
va FU,Q _A(m AWJ

Where A is the numerator relationship matrix {from pedigree}
with subscripts n=non-genotyped & g=genotyoed

Nejati-lavaremi et al (1997)

0= Ffocy 2= Telivley

Replace AwithG =

=1 2=1

m,m,' for genotyped

Various other authars expanded this
with various approaches to center the marker covariates
10 create a Genomic Relationship Matrix

Fitting G1 in the mixed madel equations
is known as GBLUP
and gives the same estimates
of genomic merit as MHG “BLUP”

Genotyped Animals

yg :X9b+Zng+6y

hMeuwissen, Hayes & Goddard (2001)

= o
with u, = M, = Z m,a,0,
J=1
o, = substituiion effect
8, =(0,1) indicator variable
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Bayesian Alphabet
6,=1, g; = (known) g% was "BLUP"
6,=1, 0. = (unknown)s: was BayesA

|8, m=awith known probability=—=
ga, = (unknown) o was BayesB
Meuvwissen, Hayes & Goddard {2001)
= {0 awith (wnYinown probability = ©

G.:
g5 = lanknewn) ¢ awas BayesC or i BayesCr )

Kizilkaya et al [2010); Habier et al (2011)

Evotution of “The Model” j

- Aplarunchip bz

v T

Fedigrae Relehansmip et

Equivaieny

1 IR

vl = At aer i = I

Bragdig Vaise Mosel

What to do with the non-genotyped?

Known as Single-Step “First Attempt”

Un . A nn A g 9
- . o
u.{;‘ A gn GQQ

tust replace that part of the numeralor relatonship matrix with genomic relationships

var

Then need a "brute-force” inversion of the var-cov matrix

haiszeal et al (200%)

What to do with the non-genotyped?
Knawn as Single-Step "Second Attempt” hwith brute {orce inverse}

, ]a _ {A ot A AT GuA A 4LAKG,
’ (S G

Legarrs et al {2005}

H= 1;(1.7‘{u

U,

Then with recognirion of its simply structured inverse

0 0

H' =47+
Ao gnoay

Apurar gl 2l [2010)

OMHering programming appeal by simply repfacing A1 in MME by K 2
known as Single-Step GBLUP and variants of which are widely used

What's wrong with Single-Step GBLUP?

« When there are less loci than genotyped

individuals, G is singular
* When there are more loci than genotyped
individuals, G is singular if focus covariates are
centered by allele frequency

{since G=MM" and M'1=0 then G1=0)

These problems can be overcome by adhoc
regression of G towards A

What's wrong with Single-Step GBLUP?

-

The var-cov matrix involves a blending of A

and G requiring that they represent the same

“base”

— The base in A is the pedigree founders but the
aliele frequencies are not usually known in that
population

It is not clear what to use to cenfer lacus
covariates in populations of mixed breeds, or
populations with variable breed percentages
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What's wrong with Single-Sten GBLUP?

+ Its predictive ability can be improved by
introducing ancther ad hoc constant k whose
optimal value can be found by trial and error

H'=A"+

] 0 }
0 X(G;g] _A;cl)

What's wrong with Single-Step GBLUP?

* It requires brute force inversion of 2 matrices
whose order is the number ¢f genotyped
individuals (ie G and A_))
~— The inversion effort increase rapidly with number

of genotyped individuals
- tnversion is impractical beyond say 100,000
individuals

What's wrong with Single-Step GELUP?

* It is not computationally straightforward for
extension to Single-Step BayesA
* |tis not suitable for application of mixture
models (BayesB, BayesC, Bayas(n)
— But these modeis that provide variable selection
are parbicularly appealing in fine-mapping
applications such as with imputed NGS genotypes

Let’s revisit the basic idea

o S A

with w, = M, for genolyped individuals

— SN T
whereas ., = w, /1, + (= 100 /1) = 1S 1, + &4

. =y -
with ./ u, = A, AL 1w,

501, = Aoda w1, Andn u,)

Substituting these results gives

R S
=[5l 2 5 ol5 1+

:[X.,}hlz.fl,.u,mw;] *[Z”IE +le,,]
X, 3 A A Y e

A M
M,

Fernando et 3l {2014) GSE

With “Hybrid” Mixed Model Equations

XX XZM XZ. by Xy
MZX MZZM+¢ M'ZVZ, fa|=|MZy
Z,X.  Z0ZM. 208+ A" Alle. Z.'y.

0z M.,

where X = I’Y"}.z = lzr v ] M= H;] = \A“:A;M:’]- ¥ = [y]

X, Ye :
with EBV given by
wo=Ma

w=Ma+E,

M, =A.A4,M,
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If everyone is genotyped

X¥ X'ZM X4z,

b X'y
MZX MZIM+¢ MUEZ |al|=|M2y

These are the MMZ that form the basis of Bayesh, BayesB, BayesC etc

If no one is genotyped

i
Xy Xizn Xz { b X'y
] _M%ZJXAAA)A¢IZ|.EZﬂ4ﬁ,¢~ ‘ﬁ’f."Z.,’Z._ . Q = A,IJZJE” P
2K, LM, 20T AN 15. 7.

These MME form the basis of lragimonz| pedigree-based BLUP

Invariant to Covariate Centering

Genotyped

v, T X 5T Z T o,
=1pg+Xh+Z1ca+2,(M,—1c')a +e,

define t = c'a

v, = Wpt )+ X6+ Z,(M,—1c)e +e,
=1 + X, b+ Z Mo +e,

...... when all animals genotyped {BayesA, BayesB etc)

But non-genotyped NOT invariant

Non — genotyped
. ST LA LA AL L

Sl X b+ 2. Aud Yoo+ 2. 4.4 (M, —1d)a+Z.e +e

=1+ X b+ 2 AGAL T2 A4  Ma=Z. 6.~ ¢

S0 combined analysis of genotyped and non-genotype animalg
need {0 include 3 covariate for1if there is arbitrary centering
{unless t = 0}

Computational Aspects

* Itis easy to compute A, ATM,
— And this can be done in paratlel

+ The computing becomes easier (rather than more
difficult or impossible} as more individuals are
genotyped

+ Readily caters for variable selection or mixture
models {eg BayesB, Bayes()

* We believe this formulation is readily extended
to multi-breed and multi-trait settings

* Inan MCMC framework can provide PEV

summary

+ Genomic prediction is an immature
technology

Much effort is required tc extend algorithms
and to develop parallel computing procedures
to implement the full range of multi-breed,
multi-trait, maternal effects and other madels
that have been routinely applied to large-scale
animal prediction in recent decades
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Prediction of BVs

with EBV given by

u, =M, a

w, =M. 2+,

or,with M, = A, A, M,

W= AL AIM, 7+ E,
= A AU+ el




