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1. EVOLUTION OF STATISTICAL METHODS IN QUANTITATIVE GENETICS
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Visual appraisal (still widely used) fBinhcal times.

Fisher’s 1918, Path analysis, "Animal Breeding Plans” {1418-18475]

|A_ﬁo_\f@j_> ANOVA (Method 1), least-squares, selection index [1936-1947)

[EM@ Mesthods 2+3, MINQUE, MIVQUE REGRI AT
[“BJLLSSST@ Mixed models, BLUP, animal model, multi-traits [1048- 1080
[Remiian. > VCE,ASREML, DMU 11071 2009
[Posteriozoic> Threshold models, Survival, MCMC, QTLs [1982-2008

Balding et al. (2007) “Handbook
of Statistical Genetics”. Wiley

Chapter 20
D. Gianola

“Inferences from Mixed Models in
Quantitative Genetics”




2. Chalienges from complexity

and use of phenomic data

Gene structure

Transeription

Transcriplion
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sptieing ‘cantaining only exons

4‘ Translation

Initiak transiation .
prroduct o
(amnc acid chain}

Posttranslational madification

Firishad peotedn

Some genes do not have introns
Some genes are located within introns of other genes

Khatib (2011)

Wy
. 3
[N
J,\N"G\ A
Y
o X s
S ‘_Cf/
-
b} o7
(’\{U«JJ \icﬂ‘
= [l
4



How many genes do we bave?
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Organism Genome size  # of genes DNA/gene
= Haemophilus influenzae 1.8 Mb ~1,700 ~1 Kb
« Escherichia coli 4.6 Mb ~4,300 ~1Kb
+ Baker’s Yeast
(Saccharomyces cerevisiae) 12.1 Mb ~6,000 ~2Kb
+ Aworm
(Caenorhabditis elegans) 97 Mb ~18,000 ~5.4 Kb
*  Fruit fly
(Drosophila melanogaster) 185 Mb ~14,000 ~13 Kb
«  Human {Homo saplens) 3,000 Mb -~ 25,000 - 85 Kb
«  Aflowering plant
(Arabidopsis thaliana) 100 Mb ~25,000 ~4 Kb
Khatib (2011) 1Mb = 1,000, 000 bp
POTATO GENOME
(Nature 2011)
* Final assembly 727
Mb
* Genome size 844
Mb
* 1 SNP every 40 bp
L ]

1 indel every 394 bp

(average 12.8 bp)

24,051 genes cluster

with at least one of
11 genomes




The Phenomic data
(phenotypes+genomic)

1YMassive phenotypic data exist
2)Massive genomic data increasingly available

ampler SNPs (aleo gene expression)
- 107 8NPs dbSNFP 124 (Nat. Center Biotechnology)
>Perlegen: 1.58 million SNPs

-2 Animals:
-Wong et al. (2004) -- chicken genetic variation map with 2.8 million SNPs
-Hayes et al. (2004) -- 2500 SNPs in salmon genome
-Poultry breeding companies-- Thousands of SNPs on sires/dams
-USA (2008) -- >50,000 SNPs in over 3000 Holstein sires
-Pigs --60,000 SNPs

-All over developed world  -- chips with 800,000 SNPs in cattle
13

All you wanted to know about SNPs
but were afraid to ask...

guencs variation occurring when a single nygegtide - A, 75, 0r &
wneme differs between members of a species (or between paired chromosomes)

ABOVE: two sequenced DNA fragments
AAGCCTA to AAGCTTA, contain a difference in a single nucleotide.

we say that there are two g/lelcs :Cand T 14




Copy number (CNV ) of copy number
polymorphisms (CNP): other source of
information about genetic variation

+ Individuals vary in number of copies of genomic regions

« Disease genes located in CNV regians
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SEQUENCES FOR THOUSANDS OF
ANIMALS (WITHIN SPECiES) COMING SOON

A human  TAZAL
dog =
maouse
ral T
cow T
OPAsSSUM  TACAT
X laevis (Ran(G4)
X, faevis (AY250711)
X tropicatis {XiRaxG)

COOCOOOTORTTENTTE
-OT0CT N

(R A TN

pt
B 1 kb , Rax gene \ D . E>‘
CNs1 axonl exon2 exond é\g o'? F 5
b e 3]
+¢ pes Py ‘;.g, r\f': WE 3 3
c feds
T T =
; 1
CNS?I ’I e e s Ed %wa\,r\,
o s .y - - & 6, X
Exond | e wmm v - pRax-2600b-Luc
Meuwissen, Hayes and Goddard (2001)
“Genomic selection”
Better terms:
“Genome-enabled selection” S oy oo

“Genome-assisted selection”

y = ul, +@}X’;g; + e

'\ Effect of chromosomal segment,

alielic, haplotype

ANIMAL BREEDING:
USE ALL SNP MARKERS IN MODELS
FOR GENOMIC-ASSISTED EVALUATION

QUESTION: BYE-BYE QTLS, PEDIGREES, GENES?.

10



Essentials of genome-enabled
prediction and selection

Fit (train} some regression model (typically Bayesian) to
a data set with markers and phenotypes

Estimate marker effects

Predict marked genetic value or phenotype in a new
sample (testing or validation sample) for which only DNA
information is available

Once phenotype {or something related to phenot?/pe) is
observed, asses quality of prediction. For example,
calculate predictive correlation or mean squared error of
prediction (choice of metric?)

Objective: gain reliability and if new sample is of
juveniles, reduce generation interval. Dispense with
progeny testing? Reduce frequency of phenotyping?

24

TYPES OF QUESTIONS TO BE ANSWERED (Drosophila)
OBER et al. (2012, Plos Genetics, forthcoming)

Tispsterssent ing genemic prediction withe fnll setiome scquence data raiges o rimber of gnestions, What
¥ §

1 the moest officlent wav to incorporate the cownplete genowie informaiion i prediction? How much
prediciive alility is galued T wsing whole genome sequence dara compared to high deusity SNE ponels?
Ex i1 possible o inerense prodicive alility by aprescloction of SNPs or models with on iutenial feaine
auloction? How cotnparable ave Lhe results of genomic prodiction and penome wide association? Ileve,
we arddress these gquestions epirieally Lased on fall geuomic sequences of a popualation of Draseplala
welanogasicr inbred Bhes, The jubred lines have heon sequenicell. and coustitnte the Drosopiula Genetices
Reterence Panct {DORP). a new eomzoundty resoures for geuetic studies of eauplex traits (07

Wo repori the results of a full sequenee based zeromic predietion for two quantitative traiis, starvation
styess Tesistance amd oeonaor stactle respouse, hoth of which dizplay coansiderable genetic yaristion in

natural populations and respoud rapidly to artiicial selection 238 3] Wi nsed whole-senome sequences

delermined on the [humina platform oy 157 (155 DGRP-Tues for starmiion resistance istarile tesponsel

127). OQur reference wethad s o GBLUP approach in which ~ 2.5 million polyimorphic SNPs are used 1o

derive a genomic relationship matrix 8L We evaluated predicrive abiloy via crossvalidation (0V) and

vorpared prediction within e, across sexcs, vrions SNP densitics. and fraining ser sizes. Woe assessed

whether BavesTd is supevior over GBLUP given il genome sequence data (261, and compared onr genomic

prediction resudts with those of GAWAS eonducted on the same DGRIT hnes 27),

11



CROSS-VALIDATION

+ Data available (genomic, phenotypic)
+ Data generated according to unknown process
+ Split into training (fitting)- testing (predictand) sets

+ Fitting process essentially describes current data
(model is typically wrong)

+ Use training process to make statement about yet-
to-be observed data (testing set)

* Prediction error (conditional and unconditional):
point estimate

« Distribution of prediction errors (conditional or

unconditional): interval estimate "

BREEDERS: FUNDAMENTAL THEOREM OF NATURAL SELECTION=> additive effects

Schaeffer (2006):

A potential drawback of genome-wide selection
may be he existence ol interactions or epistalic
ellects between QTL. 11 epistatic elfects are large,
then the accuracy of GEBY may never reach 0.75. A
statistical model could be written to account for
interactions, but this would likely be very dilficult to
compute.

YES, iT WOULD BE DIFFICULT!
SEE NEXT. .

24
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COULD WE WRITE A MODEL FOR SOMETHING LIKE THIS?
A SYSTEMS BIOLOGY MAP OF THE BRAIN

Levi-Strauss
(1908-2009)

Lacan
(1901-1981)

Foucault
(1926-1984)

Althusser
(1918-1990)

13



Will “systems biology” help?
« von Bertalanffy (1968) wrote:

Allgemeine Systemtheorie

“There exist models, principles, and laws that apply to generalized systems or their subclasses,
irrespective of their parlicular kind, the nature of their component elements, and the relation

or 'forces' between them.
It seems legitimate to ask for a theory, not of systems of a more or less special kind, but of

universal principles applying to systems in general.

In this way we postulate a new discipline called General Sysfem Theory. Its subject matter is the
formulation and derivation of those principles which are valid for 'systems' in general.

Concepts iike those of organization, wholeness, directiveness, teleology, and differentiation are
afien to conventional physics. However, ihey pop up everywhere in the biclogicai, behavioural

and social sciences, and are, in fact, indispensable for dealing with living organisms or social groups

Thus, a basic problem posed to modern science is a general theory of organization.

General system theory is, in principle, capable of giving exact definitions for such concepts and,
in suitable cases, of putting them te quantitative analysis. ..

Systems analysis 1s not new in the
animal sciences...

MODELING BEEF PRODUCTION SYSTEMS'
G. E. Joandet® and T. €. Cartweight
Texas A&M University, College Station

JOURNAL OF ANIMAL SCIENCE, Vol 43, No. 4, 1975

THE USE OF SYSTEMS ANALYSIS IN ANIMAL SCIENGE WiTH
EMPHASIS ON ANIMAL BREEDING'

T.C. lf:unnrrighlz'l

Texas A&A University, Coilege Station 77843
JOURNAL OF ANIMAL SCIENCE, Vol, 49, No, 3 (1979}

Where is the beef? N

14



WHAT CAN WE EXPECT FROM SYSTEM ANALYSIS?

SYSTEMS ANALYSIS INACTION: PENTAGON “SYSTEMS" VIEW OF
THE WAR IN AFGHANISTAN

OUTEINE SUPPUT'R!
TO INSURGEN
Tﬂé?FsC';L FACTIONS

GENERAL McCHRYSTAL:
“By the time we understand this slide, the war will be over”

COALITION .
CAPACITY 8 (and he was sacked by Obama after The Rolling Siones)
PRIORITIES

3

LBELIEFS *

1;5‘-{:»;11;}-;,{}%._‘: . E
" POPULAR; - -
+5  BUPPORT =

LR

CCOALTION.  « - -
" DOMESTIC .. TRUAL
SURPORT GONEIANCE T

Dealing with epistatic interactions
and non-linearities
gene x gene
gene x gene x gene
gene X gene X gene X gene

ooooooooooooo

(Alice in Wonderland)

30

15



(unravelling “physiological epistasis” a

Fixed effects models

la Cheverud?)

« Lots of "main effects”
+ Splendid non-orthogonality
« | ots of 2-factor interactions

+ Lots of 3-factor interactions
+ Lots of non-estimability
« Lots of uninterpretable high-order interactions

» Run out of “degrees of freedom”

Y

Epistatic networks will probably involve a few genes of large effect

o

Example of epistatic network

Old fashioned, Ford-T car Modern Swedish car

Say one knows genes A, B, C, D. Do ANOVA:

A
B
Cc
D
AB> ..

AC-» Significant at 0.01

AD
BC

BD=» Significant at 0.01
CD=» Significant at 0.001

“at0.05

Yawn. nobody will publish...

Publish in Nature and claim 3,
new paradigm for epistasis

16



RANDOM EFFECTS MODELS
FOR ASSESSING EPISTASIS REST ON:
Cockerham (1954) and Kempthorne (1954)

--Orthogonal partition of genetic variance into additive, dominance
additive x additive, etc. GRLY if

ONo selection

UNo inbreeding

UNo assortative mating
UNo mutation

N0 migration
linkage equilibrium

Just consider ALL
Linkage disequilibriu ASSUMPTIONS
VIOLATED! 33

A VIEW OF LINEAR MODELS
(as employed in g. genetics)

Mathematically, can be viewed as a “local” approximation of a complex process

£ laty A 1) £

fivbe Flad b £y - ald S (v e a¥ 4 e @) 44— e al b

3t nt

Linear approximation

. S/
'
Quadratic approximation
S~ 7
—
n'" order approximation FELDMAN and LEWONTIN §k975)

CHEVALET (1994)

17



How good are linear and quadratic approximations? A Taylor series provides a
local approximation only...

y=gx)+e  gx) = sinx)+cosx)

4
1. Sin and cosine function y !

3. Quadratic approximation
1217 /

; | + | ) 1 |
t t t T t 1 t {
| 2 3 4 5

X

4, Approximations
-0.8 T aregoodatx=0...

CLOSE ENCOUNTERS OF THE PREHISTORIC KIND

Homo Neanderthal
sapiens

GENOMICS AND NO! THE ADDITIVE
COMPLEX BIOLOGY GENETIC MODEL 36

18



A prevailing view, and for good reasons
(Hill et al., 2008; Crow, 2010; Hill, 2010)

Fisher’s theorem of natural selection
Interactions are second-order effects;
likely tiny and hard to detect

Epistasis probably arises with genes of
large effects, unlikely to be observed in
outbred populations

Epistatic systems generate additive
variance and “release” it, so why worry?

a7

A much less popular view
(Gianola and a few others)

If everything behaves as additive, can
additive models allow us to learn about
“genetic architecture”?

In areas where phenotypic prediction is
crucial (medicine, precision mating) can
the exploitation of interaction have added
value?

Is so, should we consider enriching our
battery of statistical tricks?

38

19



2| What is machine learning? |
+, such as s:iv and o, fro

Automatically produce

SRS I A RS R
Paltern
recogrition

ross-validatio
designs
Random forest i Sampling
algorithms malhads
lon-parametri
prediction

Suppar veclor Bayesian
machines networks
t 3

a. Cosely related to ...

Dala minin Universal Machne
i approximatars. tearning
Kernel
methods

Ensemble
Metheds:
boosting

Ensemble
Methods:
bagging

Do not fight over methods (Gonzalez-Recio, Sun}

Distinctive aspects of non-parametric
fitting

*» Investigate patterns free of strictures imposed by
parametric models

» Regression coefficients appear but (typically) do not
have an obvious interpretation

« Often: very good predictive performance in cross-
validation

+ Tuning methods and algorithms (maximization,
MCMC) similar to those of parametric methods

« Often produce surprising results

40
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PENALIZED and BAYESIAN METHODS
for functional inference play a role

« The idea of “penailty is ad-hoc
» It does not arise “naturally” in classical inference
- It appears very naturally in Bayesian inference
= L, penalty: equivalent to
(Gaussian prior
=?» L, penalty: equivalent to double
exponential prior
=2 Penalties on covariance matrices
equivalent to priors (e.g., inverse
Wishart)

Bayesian methods arise naturally in predictive inference

The concept of penalized likelihood
(example: ridge regression viewed from this perspective)

y = Xf+e;, e~N(0,I62)
SSR = (v - XB)' v - XP)
L(ﬁl}’) ~ exp| — (y_Xﬁ) (}’—Xﬂ) :l

202

—

Penalty ~ exp —~§—€:l
Op

Penalized likefihood ~ exp

=Xy -XP) Jexp BB
B 202 26123
Penalized sum of squares = —2log[Penalized likelihood ]

_0-XB v -XpB) N BB
plez: 26}

42

21



Ridge regression estimator obtained by minimizing penalized SS over

o(Penalized sum of squares) o 0-XB) —Xﬁ) ﬁ
= Setto 0
(oo Jo - v
o}

B=(XX+0) X'y, A=

Q ,q
-1l ) ]

Verify minimumn:

&’ (Penalized sum of squares) , p>:
i) (e, 1) (e o

Positive-definite=» minimum

43

The concept of penalized likelihood
(example in the mixed linear model)

y=XB+Zu+e
¥|B, u, R~N(XPB + Zu,R)
u~N(0,G)
POYIBUR) = ——L—exp[ - (y - XB - Zu)R My - XB - Zw) |
e HR|?
plG) = —L —exp|-LuGlu
@) 3G [-3ue ]

22



Assuming known variance compoenents, the log of the joint density of the data and

random effects is termed “penalized likelihood

|:> H{P.uyv.RG)=K- %()' - Xp~Zu)R (¥~ Xp ~ Zu) ~ Tlu'G"u

P RGY = K+ (-~ XB—Zu) (v~ XB— Zu) + ' G-y Penalized 53

:> cz(n.n?éR,G> = X'R ' (y—XB - Zu)

CH By, R.G) _ ZIR_] (y - Xﬁ - le) B G,lu

£u

Setling the derivatives to 0 yields

XR'X XR'Z B | | XR'y
ZR'X ZR'Z+G i ZRy

> The solution to these equations produces the "maximum penalized
likelihood” estimates of § and u
»These solutions are also the BLUE{EY and BLUPHG

23



OVERVIEW OF BAYESIAN
INFERENCE

Rev. Thomas Bayes

1702 London, England
1761 Tunbridge Wells, Kent, England

1763. "'An essay wowards solving a problem in the doctrine of chances™,
Philosuphical Transoctions of the Roval Society of London 53, 370-415,

Pierre-Simon Laplace

1749 Beaunmont-en-Auge, France
1827 Paris, France

1

1774, "Mémaire sur la probabililé des causes par les événements™.
Savants éiranges 6, 621-656. Ocmres 8, 27-65

HISTORICAL NOTES

* Karl Pearson (without knowing) used Bayes
- Fisher (likelihood, fiducial inference)

* Lack of admissibility of classical procedures
(James-Stein)

* Revival: Neo-Bayesianism (Lindley, Box, Zellner)

* MCMC procedures (Metropolis, Geman and
Geman)

- Bayesian methods in genetics: Haldane (1948),
Dempfle (1977), Gianola and Fernando (1986)

 Explosion of Bayesianism in statistics: Gelfand
and Smith (1990)

* Explosion in genetics as well




Bayesian methods in Genetics: today

-Classification of genotypes

~-Molecular evolution
-Linkage mapping RED anines sedars

-QTL cartography
-Genetic risk analysis

SBOMb pAnEACINIC,

~Transcriptional analysis

SStructusal egietioh hoduling
-Bayestan proteomics with wavelets
-Metheds Tor genomie seleation

AR Conil L and e

the Bavesk

-Bavesian nen-p weirics {Dhriehies process prior)

THE BAYESIAN APPROACH IN A
NUTSHELL

All unknowns in statistical system treated as random
Randomness reflects (typically) subjective uncertainty
Can include as unknowns:

The model (distribution, functional form)

lts parameters (heritability, inbreeding coefficient)
Genetic effects, number of QTL loci, marker effects

Combine with what is known a priori with information
from data: Bayesian learning

Bayesian approach can also be used for developing
predictors of future observations without taking inference

too seriously




HOW DOES ONE DO THIS?

» Introduce a prior distribution for all unknowns
(PRIOR)

« Define a distribution for the data under a
certain model (LIKELIHOOD)

+ Arrive at conditional distribution of all
unknowns given data (POSTERIOR)

« Derive marginal or conditional posterior
distributions of interest by standard
probability theory

* Display summaries or entire distribution
< interpret resulls probabilisticaity

+ Example: the posterior probability of Ho is 8%
5

BAYES THEOREM: DISCRETE

= {4 disjoint hypotheses about some mechanism. Assign
probabilities to the events “the hypothesis is true”:

Gap(My <1, =12 . M
PH Y =0 P,

//.,-m—'—" I --“_‘\_‘\
< utually exclusive >/

S ptHy =1

\ ’/“/‘_,,,_W 7 ——
( Exhaustive

b
— o

6




* N observable effects. Given that a hypothesis
hoids, one observes events with probabilities

A5 D
R
L// Probability distribution of events under hypothesis \\,
R (“likelihood™) e

» Assume that events E and the hypotheses H have joint distribution:

DU = H B = B = plEHp(H)

*The conditional probability that a hypothesis holds,
given the observed effects is;

Prior

Posterior —|
probability

Baves theorem probability
<
. Pl =L POEH )
- [)(][( !J{A ) - ]7”,) e j}{ﬁ,:"
Likelihood

Marginal distribution
of data

A




THE "PROPORTIONAL TO" REPRESENTATION:

syf 1 [f{ \i?';{ff 3
e s VSR IAIV IS
é‘}é ;‘_‘;: f ; “E T ! {

. P h TT
. ;.f{zw; foplil).

=

The “Pac-Man™ operator: eats anyvthing that does not depend on /~

48

BAYESIAN LEARNING: DISCRETE

sLet 2 bits of evidence accumulate. Then:

PEE HpUH)
ErplE B H),

o pUE L H P

o UL HOQUE U
v U E HapUH B,

*Prior before bit 2 15 posterior after bit 1

PUHIE, EY =

*[f. given the hypothesis. the 2 bits of evidence are independent:

P HpUEAFE) = pUE A
h'd

49
Conditional independence




EXAMPLE OF DISCRETE PROBLEM; HEMOPHILIA IN HUMANS

A Hewaphaicn <ou genelic discase su bnaens, Hhe focus vosponsibic for s capresseon
rr beerited dp e s cfposoges Hhese e desabed ax XN s woe o amd XYt oneen
13 \ / ST | ol . : .yl il . v enddierdid ' H -
fieconalibion s chscread op seaneesc onig ne doubile poecasies cpdiesdiais el wid g e

thad wee ovevicrs of e o allide s e Xocdiromasine

Non-hamophiliac father

DATA

Non-hemophiliac mother

|
[ Non-hemophikiae ] [Hcmuphihnc brother of w omanJ
wonian
IMPLICATI ON Non-hemophiliac tather
Nen-hemophiliac motser Z Carrier of &
I
I 1
Non-hemophiliac Hemophiliac brother of woman

WOaEn (carier of &)

Problem: Probability(woman is carrier)= Probability(6=1) ?

P

PRIOR IMPLIED BY THIS INFORMATION "'\\\

— ) 1
(mother must be Aa) ki Peit =1y =Prit=01= .|
-

MORE DATA BECOME AVAILABLE

-

)
{ . .
| Woman has 2 non-atfected sons ;2

Y,=0 [ Y,=0

I

.,

Grien thail itz U the probabidity of the obsevved dotn s

e = ¥ =t = |
I e ke 8%
= Pl =0 =0 (Y, =00 1) = (3) @

On e other baied, of she s not a carvieclith = 100,

Pridy =00y = i =i
= PriVi=0=0iPrita=00=0,=1x 1@

THE DATA CONFER 4 TIMES MORE LIKELIHOOD TO NON-CARRIER
HYPOTHESIS




POSTERIOR PROBABILITIES

Pyift = 11[’]‘!‘)'; = (1,5:: = ||‘!": i
Py =0Y =10
Pevid= 1P Y| =1 Y =06 = |

Priv=11 =0t = =

]
STlrie =Pl =00y, = =

1

UFSTRE

mned ! |
Pon=0}, =i =thi=1- - = ..

)

=2 WE MOVED FROM 6.5: 0.5 TO 4,7: 0.8

= SHARPER STATE OF KNOWLEDGE BUT CANNOT
RULE (3£t HYPOTHESIS WOMAN IS A CARRIER

=2 STILL UNCERTAINTY... MORE DATA NEEDED

13
EVEN MORE DATA BECOME AVAILARLE. .
i_ Woinan has 3 non-affected sons -
Y J Y0 Y0
U‘-lllg posterior 7 Prid =1V =0, =0Y,=1
as prior for new dara. Sy = e
assunung conditional TPy = s L P by = 09 = o

imdependence

Using prior before
Any progeny data,

. e T N,
And combining all (= 1 )
mformation R

WOMAN COULD STILL BE A CARRIER!




Pr(g = 1)+
Pr(¢ = 1){4}" = Pr(8 = 0)1"

Prtd = 117 = 001 =0l Yo=0) =

TENDS TO ¢+ AS :» GOES TO INFINITY. HOWEVER.

Pr(f = 1|11 =0.1: = 0..... Yv=01nv1=1)=1

IF WOMAN HAS AT LEAST ONE HEMOPHILIAC SON.

&d

BAYES THEOREM: CONTINUOQUS

*Evidence 1s now given by a vector of observations y
*Hypothesis 1s a vector of unknowns &

*A probability model 17 poses jomnt distribution [ #. v 3/]
with density

n.v) = g(9)(¥B) = m(¥)p(8y)

»Assume that both the unknowns and the parameter are
continuous-valued

55




BAYES THEOREM IN A NUTSHELL

Pra
S
e
Py
Sednit
e
pa——
|
.
™y,
73
p—
-
Lot
e
.,
PR
it
potgn,
Noie®
S

\ )
P

rior density
Likelihood function
Marginal data density

Posterior density 17

BAYLESIAN INFERENCE and MCMC
(can fit any model)

PRIOR DATA POSTERIOR

Most of the times the prior comes “out of the blue” 18




THUS: THE ANTI-BAYLESTAN ARGUMENT. ..

<+ BORIS KARLOFE

LARGE SAMPLES

» “Asymptotic domination” of the prior by the
data (likelihood)

» For parameters on which there is a lot of
information from the data, the prior matters
littte

* Prior may be influential in small samples;
worthwhile to investigate sensitivity

« What is a small sample?

+ Even if prior matters little, Bayesian approach
allows to use probability theory to measure
uncertainty

What about asymptotics in situations where n<<<p, and where thgge
are strong non-iinearities? Can one learn about marker effects?

Siaye e

i.é (2N

et d

e dtod
VY aoe &
b—c Clomtt jeet
e VA ‘J\’{"l]lo nart

pb

ik L/{'\\‘m{(.w
AN .
W L

3 b

i
J(' o '»,]}" 3\
K \‘\‘b\\ A
Ot U

P ™

e

f

04

10



CAN ONE ESTIMATE MARKTER EFFECTS FROM DATA WHEN n<<p WITHOUT

BRINGING EXTERNAL INFORMATION?
v = XB+ ¢ e~N(0,lc2)
o e L)

202
loglL ()] - —2= Xﬁz);? —XP)
If p>>n
Information(),,, = [;"C oL (A1) = —ﬁ[—rw] - M
Expected Information(),, = “; f( = Does not have full-rank

= MARKER EFFECTS ARE NOT INDIVIDUALLY ESTIMABLE

21
VERY IMPORTANT TO KEEP IN MIND

ORDINARY LEAST-SQUARES
(MAXIMUM LIKELIHOOD UNDER NORMALITY)

y=AXf+e
=X\J+ X6 +e Rank(X, X,)=p<n

“OLS" estimator i} [ xn xx - Xy
) - o | | o
= XXXy
E(BIX) = X X" X EQy)
= XX XXp =

"OLS" is biased If full model holds and one fits "smaller” model (e.g., single marker
Regressions, or just additive effects)

_V:X|ﬁ| + e
‘ ERI) = (X0 E)

“Full model”

= (X)) +X8:] | Typical of GWAS

= Bi+ (X X)X X2y

11



Example: n=4, p=5

100 0 O
I 11 1 1
X:
1 24 8 16
1 3 9 27 8i A
4 6 14 36 98 ]
6 14 36 98 276
XTX = 14 36 98 276 794
36 98 276 794 2316
98 276 794 2316 6818 i
. LEAST-SQUARES DOES NOT ALLOW
X" X=0 ESTIMATION OF INDIVIDUAL REGRESSIONS

IN THE n<<p SITUATION

Example again: n=4, p=5 BUT ADD 5 TQ DIAGONALS OF X'X

100 0 0
111 1 1
)
1 24 8 16
1 39 27 81
6 14 36 98 9 6 14 36 98
6 14 36 98 276 6 19 36 98 276
quXz 14 36 98 276 794 |XTk+IxS5=| 14 36 103 276 794
36 98 276 794 2316 36 98 276 799 2316
98 276 794 2316 6823
98 276 794 2316 6818

Determinant= 0

Determinant= 25782105

12



RIDGE REGRESSION

Clagsical view: “estimator™ of a fixed vector of regression coefficients

B v = XX+ 217Xy

[7+x A% ™ x)y

[+ @072 B

E(Brugel) = [1+ 20 2] E(Bos)
TP —

Biased estimator but more precise

Classical view: “predictor” of a random vector of regression coefficients ,8~(0, J‘,}?),

f=BLUP, E(ﬁ)=E([3), taking A:Z—é as known
il

Bayesian view: Mean of posterior distribution of regressions under prior 5~(0, UE),
normal likelihood and known variance parameters

EXAMPLE OF CONTINUOUS CASE
Inferring the Poisson parameter (ML)

N independent samples

N Z"’ N p Zl‘ N
1.0 L VA ‘;'u—- ikeliho ]l];y © A 'r?"}'
plvim ald) _I ; likelihood > /{A]¥) ¢

»il

Log keiinod> L) = K+ 3 vlog(h) - N

dLiAly) _ Vi
ai 2
MLE(A) = —Z\J—
_Edfl(,i%}') _r 3w _N
(d3)* FE A

69

13



Inferring the Poisson parameter (Bayes)
[CGamvapior > p(Ala, f) = grb—rA" exp(—4)

P, @, B) = [(Aly)p(Ale, B)

BPD MISVEPRIN (%)
oo (v )]

o] s |
N+l

Posterior is Gamma as well (Conjugacy) o7

Aly,a,B ~ Gamma Ny +a .)

\'gﬂ)\’_m
ﬁ ;{\1*{: l(’— le 2

p(Aly,a,f) = T )

Suppose the mean of the observations is 3 and that N=2,5, 10.

a=f=1. The posterior densities look like

.10
Density T
oo T

0.8 T
(UM o

1 Posterior density

1 of A tends to normal

047
03T
0.2+

[ of

0.0

Langnbda 28

As sample size incread

14



[:> EQa,B) = af; Var(Ala, ) = af?

EGya ) = OF = o) 577 )

(Nﬁ +1 ) (Nﬁ + 1 )
- 1) Weighted ave.
= N L , of MLE and prior mean
2) When Ngoes to
' ~ g Y to MLE.
Var(Ala. B) = (NT + a){ 7375

infinity, expectation tend
2
= (N7 +a l
(; )(N+#)

2 2
1 1
=N MLE(A
(N+%) ‘)*(~+ﬁ)“

3 . _ MLE(A) Tends to AsyVar of
th"“’ Var (A'|a= ﬁ) - N MLE estimator @

Joint, Conditional and Marginal Posterior
Distributions
Put §:= f(-}; (}J representing distinct features of models,

(e.g., means and variances)
*Then, elicit a joint prior density

o e o~

where (%} isthe marginal priorand £{8.0,) is a conditional prior G

. . . g jjndl
+Joint posterior density is P )/'b.f) ;
;mo 6. \.MO e)cn s
o 1000.0:3(0,0:),

iy =

*Must decide which is the object of inference

«Joint, conditional or mmurginal posterior probability statements?
30

15



i posterior densities

*Obtained directly from probability calculus as:

*Additional marginalizing may be needed if 6 - o .6,

JE A S { ,>{G o skt

= poyy

31

Conditional posterior distributions

*By definition of conditional density:

p818:.¥)

*Here, one is interested in variation about 0. only

p(iiB, vy e p(B;,0:y)
a L(8. 0.0y )p(8:.6;)
a L{8;, 02y )p(0:0.)
o L{8; 0.y )p(0:10:).

*Identifying conditional posterior distributions: important for
implementing MCMC methods (sampling from posteriors)

32

16



BAYESIAN LINEAR REGRESSION MODEL
(normal distribution of residuals)

*MAKE DISTINCTION BETWEEN 2 SETS OF LOCATION PARAMETERS

rCEICSS10NS
Dummy variales Treatment cfﬁ:cts/

ey RS L2 B
y=XB 30, e

TEEressors
7 £y H Wé} 1

Vector of

Maximum likelihood (also least-squares) estimator: / right-hand
sides

17



LIKELIHOOD FUNCTION

*Under standard conditional independence

” . - i i § LU0
LB.B o lyv)y e (g°) CXp] — ﬂ;j:w..éw:‘
[ P
*Decompose
F=XB, - Xob) (v KB, - "‘%ﬁ) = S+ S

Does not invelve B

Soo= N v - X~ [J
SO NN )

Involves b oy
sl o) Gy Je Bl

Inference using improper (flat)

priors
p(B,.By02ly) = (67) % exp] -
Joint posterior is proportional to hkehhood

Se‘f’S}g ]

a) Conditional posterior of coefficients, given variance

p(B]sﬁzlczsy) &« exp[_%]
B, - B,

KSRGS

}_

p(B15B2|62=Y) « EXp; — 2ot

18



“Similar™ (but not same) as distribution of maximum
likelihood (OLS) estimators under normality

B, XX, X)X;
B, ﬁ2 , X5X, X5Xo

b) Conditional posterior distribution of coefficients, given
variance and other coefficients

B1|ﬂ2,0'2,y « N(E]: (xf]xl )ﬁlo-z)

B8, 0%y « (B (X3X2)0?)

“offset”
B, = (XX Xi(y —, i=1,2,i%]

c¢) Conditional posterior of individual coefficient, given the
variance and all other coefficients

Normal, with mean and variance: without parameter &

o X, (y-X_,B_,)
ﬁk _ X kP

!
Xp Xk < Column kof X

Var(BilB_ 02, y) = =

1

d) Conditional posterior of variance, given all coefficients

—2 Se+S
p(@?B,,B;,¥) = (62) exp[—_—z-&_z-ﬁ}

p(e?B, B, ) = (02)_(%“) GXP[—SEZ-l-;S'ﬁ :I

g

2 Sc+8p Y -2 | Curious toss
o BB,y ~(n —2){ —= )12 . L
P Pauy )( n-2 )Z 2| of2df (due 1o prior)
<

N N
et

o

ﬁ,\

19



> BBy ~1-2) (=58 ) i,

-7 _; 2y 2
EGi7) = 53 Var(?) = ———

BB, B,.¥) = (1 - z)(S + S )E(an

Se +8
— e

- B Se + S5 2 2(;1—2)2
Var(a®B,,B,.y) = [(” 2)( n—72 ):I (n—4) (k- 6)

:> _2(Se +Sp)* (n-2)?
(n—4)*(n-6)

MULTIVARIATE-t DISTRIBUTION

Let:

Y|l-1» Z: W ~ N(YI“’B %)

and w~Ga(%, % );v > 0

Joint density:

Py, WL Z,v) = p(y|u, Z, wip(wlv)

(B[ el o w (B) o -w]

Wi2)T ., Cvw
* Ty "’ e"p[ 2 ]

20



Marginal density of y:

1 (vi2)*
V) = 2a2]7 T ——
P T "5 -1 —
< [we exp[__w Y-wWE'y-m+v ]dw_
2
0
Integrand is kernel of Ga(w|”—+v (v—p) = y—p)+v )
’ 2

X

0

- -l —
J-WL;"IBKP[__W() Wy u)+Vde

2

res)

- E e
7

Multivariate-t density: Degrees of freedom

PV Z,v) =

dimension /

(vV)TT(5E) et g
_ - — 2
T [(-mWZ'y-w+v]

I(4*) [1 L -mIT - ]_ :
[(L)rZ|z v

2t

E(yw.Z,v) = u

“Scale matrix”

Var(y.Z,v) = 75X

21



o e hlest e et/ ot P et e d
Ul v ettt d

)\' L \ \ NS \v,/ \\ I '\L,\V‘t C L \‘(t“

All marginal and conditional distributions are multivariate or
univariate t
Starting trom

Y M Zn Zui |,

uZ,w~N , -
Y, [T Zy I»

all marginal and conditional distributions are normal. Integration over

pey () T (yp)y
Ga (w oy

yields t-distributions, For example, the », dimensional distribution  y [y,, b, Z,v
has mean vector and covariance matrix

E(y] yz: u:zs V) = l'l'[ +E]2(222)_](y2 - “2)

¥l Z,V) = & [E]l —212(222)4221]

v—2

Var(y,

Marginal distribution of regression coefficients

PO « @) exp[‘% ]dgz

a
={(n-2-p\ —pzlz

e (S +8p) ) e 14 Sp S [

3

S,
(n 2 ~ Pl 7‘02) (n-2-p1-p2)

Sp = (Bl _ ﬁ])’ (Bz _32)’ ]C El :gl dimension
27 P2

| —

Degrees of freedom

n>prtpr+l2
Mean vector ﬁ =[B,.B,)

ovariance matrix

-1
X\X, X)X
. _ Se ] l ] %2
Var(B,.B,ly) = m[ :l

W

XX, X50Xo

22



Marginal distribution of variance
_n S, Sg 7
p(o?ly) = (62) % exp[ -2 | [ [ exp| -4 |dB, 4B,

[ (-5 (B Jc[ bk

fJov e

N i
- en)Fc e R

—>

p(o2ly) « (62)(

n—p|

-2 )
+1 Se
2 CX (-—‘
p 22

S. _
0-2‘y ™~ (Ft —Pr—pP2- 2) (FI — P —p2— 2) xngpl—})z—2
S
E(olly) = d
(c“ly) e ——
2
Var(c?ly) = 25

(n—p1—p2—4)*(n—p—pr—6)

23



Posterior distribution of residuals

ei = yi—X;p

univariate-r on n — 2 — p, — p, degrees of freedom

Eeily) = yi — x/p

SQX:C—’ X,
(n=p1—p2—4)

Var(ely) = Var(x;Bly) =

Exact and estimated posterior densities
{most of the time we will not be able to derive the posterior, but

may be able to sample from it)

Density
0.7
0.6 True, unknown posterior
0.5 Estimated posterior
0.4 (from samples)
0.3
0.2 .
E Pr(biol. Important)
6.1
0.0 EI ,,,,, ,
] 1 2 3 4 5

Parameter value

24



Estimating a posterior
expectation and variance from
samples
Posterior Expectation;:  E(6ly) = j 0p(8ly)d0

May be posterior is unknown or integral impossible to compute

~ Samples available from [6]y]
ORI

s
E =1 ()
i+ Estimate integral as E(@ly) = S ZB I

i=1

Monte Carlo Error = E(0)y) — £(0ly) Goes 1o i) as

§
- i , infini
-1 29( ) _ EOly) 5 tends to infinity,

;’;‘3‘%% Monte Carlo Variance of estimate of posterior mean

&

Measures variability to be expected if repeated sampling
(each time S samples drawn) is done from the posterior

Var(Monte Carlo Error )=Vargy [E“(Bly) — E(Bly) :|

Var(Monte Carlo Error) = Var,

50

25



s

I/m-(MCE) = %I: Vares(8©) + 2 Z Zm Covgy (8,60 )i|
=1
§

- Lz[ Var(Bly) + 2Var(Bly) Z ZM pﬁi|

Cn

i=1

- L (2T )

" Null only if samples
are independent

[F MARKOV CHAIN MONTE CARLO SAMPLING IS
PRACTICED, SAMPLES ARE TYPICALLY SERIALLY
CORRELATED

IMPORTANT TO EVALUATE AUTO-CORRELATIONS
IN MCMC, TO ASSES MONTE CARLO ERROR

METROPOLIS-HASTINGS
ALGORITHM

...and derivatives

52

26



1. FORM OF ALGORITHM

|.Generate candidate 8* from proposal density 811}
2.Draw random number 10, 1)

3.Compute ratio ‘
i e = Posterior or conditional posterior
_ g@eTET) > A

N

T @O T

U< min(R, 1) set0l) = g*
4.1f ; -1 T Imporiant: sample not rejected.
gl = glr-1] \\ R Chain value is just repeated

. .
_ Dl Ehatt ) 1 gy
Integration constant is not needed i)" o¥ 7 k‘

cp(v9* )p(0* )/f0* )
cp(Vv-1)p(Bl-1 )/ 11 9")

PP )p(8* )01y |
pOL-HpO-1y/Re-19") 53

2. SPECIAL FORMS: USING THE POSTERIOR AS PROPOSAL

PGB PO YAE )
pBIHp@-)/e-tie=)

_ pOIR™ PO )/ [cp(I0*)p(6*)] 1
PRI )pB" )/ [cp(iel 1 )p(el-)]

If this were not so, one would have doubts...

54
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3. SPECIAL FORMS: METROPOLIS ALGORITHM

Take a symmetric (in its arguments) proposal density;
forpt-1)) = fek-1jg)

Acceptance rate becomes

_ T )p®)Re7e )
P18 1)p (@I )R8 )

__p0e)p®)
PORUDp(e)

— U < min(R, 1) set 811 — 9~
o1 — g1l

55

GIBBS SAMPLING

Want to sample from joint posterior
[ABCHFATAY

Sample 1s

[AT BU O DATA]

Each coordinate i1s a draw frem marginal
pojterior

(AU DATAT (B DATA] [CO IDATAR

28



Gibbs sampling works as follows:
1) Form all fully conditional posteriors
2) Draw and update successively
3) Repeat a number of times without storing samples
(burn-in)
4) Collect all subsequent samples, and thin them if
needed for storage purposes

57

At the end of process:

i1 A B C
1 AL BD O
- first 7 samples
' ' ' as burn-in

t  A® B B®O

t+1  A®D B@ED B+ ) Keep subsequent
m samples for
Posterior analysig

t+m A(t+m) B(t+ 1) B(f+m) D

56
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EXAMPLE: MH FOR A GLIM (Carlin and Louis, 2000}

Number of flour beeties killed after exposure to carbon disulphide

Dosage No. Kilted No. Exposed
w; i Ry

1.6087 6 59

Generalized logit model
1.7242 13 60 :
§ my
1.7552 18 62 Pl’(deathhﬂ) _ h(\fﬂ’) _ [ C?(p(,\)— ] i
17842 28 56 trexp() 1
18113 52 63 :
1.8369 53 59 w,=dosei=1,2,...,k
A L L
1.8610 61 62 = a  ae- s Unknown paramelers
1.8839 60 60 my>0 7
| Priors |
my ~ Gamma(ag,by) « m‘,'”flexp(—';#) 1~ N(cp,dyp)
(i3
2 . 2y —leg+1) I 59
a* ~ Inverse Gamma(ey,[v) = (c?) exp o
0o
éJoint posterior
plu,o2,mly,ag,bo,c0,do, €0./0)
4 2
. - 1—
« § TTtHOw)TT1 — b)) b exp| =)
i=1 2d0
2y~(eo+1) 1 ap-1 ( ml)
x (o ex —— |m exp|l ——
( ) p( f{]O’Z ) 1 p bl]
* ap—1 ( 2
. s 1- o) m 1
« (B PPl = Aw) ] 8 P oxp| —MEZC02 _m 1
i=1 l : (O_z)(e‘oﬂ) P 2“% bo  foo?
Joint posterior is not recognizable...Use Metropolis-Hastings
60

o N
> M
2
A -
. ’53
[ S
'7\\ bl
Jg
: <
Y
P O
v\\ Q.)
Y
o o

)’I’D‘!’ﬁc.‘- (3043
po
be

&

( {
Y +
S %3
\-Q ‘{:k
W 2

A é 2
T b
B w3
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Transform variables, to work on

th = u =0
B, = —é' ]Og(O’z) <=> ! = exp(zgz)
8; = log(m,) ny = exp(f3)

R * so that Gaussian proposals can be used

l_ fu G e 7]
b s &6 1 0 0
_ da? éo? dg? _
J = o6, ev, on, =1 0 2exp(20:) 0
& iy &nny 0 0 exp (9 3 )
a0, @0, 80, J

~ Wl = 2exp(262 + 63) |

Cl) //"‘ A

81
N \ New densily= old density (evaluated at transformed variables) times Jacobian
p81,02,03ly,a0, b0, co,do,e0,fo)
k [Jn—]
« & [ [rhewn) 11 = hwpyrr b LexR@I
=1 (3XP(292))(90+ )
_ 6 — cp)’ exp(ds) _ 1
X exp[ 2 ho o exp(207) exp(262 + 03)
“,ﬁ]/) Collecting terms
p(01,02,81)y,a0,b0,c0,do,e0,/0)
k
« {H[h(w,-)]ff[l - h(wf-)]"”’f} exp(f — 2eq02)
i=1
(61 o)’ exp(0s) _ |
* EXP[ 2 bo  Feexp(20,)
POSTERIOR IS NOT RECOGNIZABLE... 82

"r‘::-'—j.‘.";

31



Hyper-parameters: a;= .25, by=4, ¢,=2, dy=10, ¢,=2.000004, f,=1000

1) Metropolis-Hastings proposal distribulion used

o; 0" 00012 0 0
5| ~N | e D= 0 .03 0
&3 gl 0 ¢ .10

R POBp@ (0T
p(yle[.ffl )P (9[{—] )Irf(e[.'—[]lgx)

wsigle-11y = 1 Yot a1y n-1rar _ale-il
R et i AU R O )

- Y _ 1 1 - 11— - *
BT - Wﬂmexp[‘i(e[ V-0 D e -0 ]

SO = 101"

Symmetric: use METROPOLIS RATIO

=>» Three parallel chains run each with 10,000 iterations

=» Burn-in= 2,000 in each chain

=>Histograms based on the {10,000-2,000)3= 24,000 sampled values
=> Autocorrelations and inter-correlations estimated from chain 2

LR SRR WE R DR asmE e VR IR

R e YRR TN Y

Tl B3tada294 G S0 DT gt are 1 8230 b

[

-Chains mixed slowly (13.5% acceptance rate)
-High correfations between parameters: -
-Makes sense to explore different proposal

-0.78 1

1 —0.78 —0.904 |

Y F
t
._0 ~
R
\.AEL ¥
v
L3
L
S
o
L1
={_;,
kY
g o
T
S
3
¢ 3SR
R
A - LN
__é Load
-
= =S
=W
0.89 . TR L
1
54
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2) Metropolis-Hastings proposal distribution used

"

>From first algorithm ,estimate posterior covariance matrix as £ = -1 3 (09 - T)(0¢' - T)]

i1

2> Use Gaussian proposal with covariance matrix (gave acceptance rate 27.3%)

0.000292 003346 -0.007856
—003346  0.074733  0.117809
=0.007556 0.117809 0.24155]

&
I
1853

X3
I

(PR EE RN 1 4 HE
e
: 5
omugmae ap Tsiv vl kS =
Y
i
- .
o o
B 4 fagtant s el L R E e TR I

Faaie 1A debgode amaipets of e s otk cae e

PR

65

e g e ey
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4. GENOME-ENABLED PREDICTION
GENOMIC BLUP, BAYES A, BAYES B,
BAYESIAN LASSO

Standard analysis (fixed X)

Genotypic value {signal from genome) Assumption

e

y=f+te=Xp+e
Bayesn(erﬁrr]‘nocr:; F':te::;entlst? g ﬁ|0'?g - N(O, ]O'%; )
EQIX,B) = XP
EGX) =0
Var(y\X,03,05) = XX'0% + Io?




Example 1 {Ridge regression from Bayesian and freguentist points of view)
Suppose the condifional prior of the regressions has the form

307 ., A fmy o [ I 0 -
[ 'Bi ot Hy ~ N ! . ) o | Frequentist: random
Sy it | m2 0 I=# ) effects model

so the two sets of cocfficients are independent. a priovi. Then the
mean of the condefional posterior distribution of the regression cocf
cwends. using (1.50) and i1.32) is , .
fiesen g 18- ‘ Frequentist: conditional
. 22 - —1 , o distribution
a XX+ 15 X X X\ v+~m -
BI ! J | [ :J"Sl

‘ 3, . )
A [ X5X, XoXs + 15 J [ Xiy + my - J '

g2
When there is a single set of regression coefficients and when the
prior meen 1§ a nudl vector. this reduces to Freguentist: mean of conditional
_ distribution (BLUPR here)
A=(X'X+ Ilc}_l X'v.  Bayesian: mean of conditional

posterior distribution
where

w

Frequentist: estimate var. comp by, e.g., REM{
k= —  Bayesian use posterior distributions

L b2

}QJ Lé,é, j‘??’f\t‘?—.k-\. 03 o A e fiw-v\, wF sl ey

. - Can
C'\a""gs)‘ Co Srm Mt v \ vl L’)S e "{3 ‘t\\-..,’"\— .

Prediction of marker effects: BLUP
(iid marker effects)

|:X'X+ "g IJE - Xy
B

&)

/ Assume inverse exisls

al R PN -1/-
1+G—5(X'X) p=XxX)y Xy

1
Bows = SHRINKAGE

B = [1+ ;’j (X’X)']:l

B

Prediction of signal (Xf8) to phenotype

Var(Xply) = XVar(By)X'
-1
S(XX) | Xog
Tp b p.(7_\,{

oF:

I+

e

{

PLINL LN,



Prediction of future record

fuibin ¢ €l
pt o X gt i et i

EX*B+e*y, X, X*) = X*E(By,X)

0'3 Y| ~
e | o
B

=X*| I+

Var(X*B + e* v, X, X*) = X*Var(Bly, X)X* + I*o2

1. Standard BLUP of signal {f}
y=f+e=Xf+e
X is fixed here [~ NO,Var()) Var(") = XX'Var(f)
Var(| X} = XX Var(B) + Io?
BLUP(f) = Cov(f,y" XX Var(8) + Io] 1y
= XX Var(B)[XX Var(B) + Ic2] Ty

[ i)

[1+ 0oy 225 Jarupg) =

Var(f})

2. Morph into genomic BLUP a la Van Raden

G = DEEDIOCEY e
» Vissw Center using allelic
2 Z”f“"”) frequency information
J=1

2

—1 [ o~ _
[1 +a Var(B¥V sem :lg Y

IS THIS G THE BEST ESTIMATE OF THE UNKNOWN G,, ? ARGUABLY NOT

-T\’L;,\_ o )Lg ;Z\-

e O ol e “,}'}-T-}‘ L

L NY

¢ G ey f\jy
({LV\-{?"L Ll )



Gt menler 6-&?(¢-¢fﬁ’w _ﬁw\ Q’@\u\? s

3. Estimate marker effects from genomic BLUP? Use standard BLUP theory under
normality!

# = E(XBlv.variance components ) under normality
E(BXB) = E(B)+ Cov(B, B'X" Y [Var(XP] ' [XP — E(XB)]
=0+ o2 (XX'y 'L-xp
9%
E( By, variance components ) = E g, [E(BIXB.»)]
= Ey[ X' ()" X ]
= X'(XX')" Expy[XPI] = X' (XX) '8

. -
B = E(ply, variance components ) = X’(XX’)“[H (XX’)"—,—“—‘"’——:I y

O/ Farmm

[REMEMBER THIS]

BRUTE FORCE DEFINITION: BLUP is a conditional expectation under normadity

™)

= E(ply, variance components) = Cov(8, BX")[ XX o} + 2]y
G,%X[XXIO'% +]0‘§]_1y = U%AX’()O(’)_][U% + (H{)—]Ug]—l

[REMEMBER?]

o2
2

-1
= X’(XX’)_]|:1+ xx)™ }
Tp

CAN GO BACK AND FORTH BETWEEN GENOMIC BLUP AND RIDGE REGRESSION
ESTIMATES OF MARKER EFFFECTS

e g KEE _(-}a-- @@Ju‘;’ ’ﬁ — X’(XX’)AQ\

‘ w7 = XB
N7 fran et g = XP




GAUSSIAN PROCESS ANALYSIS (IID MARKER EFFECTS)

y=f+e=XB+e
B ~ N0, %) e
X ~F
EGIX, B) = XP
EQIB) = ExE(IX,B) = E(X)f
E(y) = ElE(X)B] = E(X)E(p) = 0

[Read Falconer and Mackay IQG]

[Genotypes vary at random; population Genetics)

Big assumption

Are frequencies effect-dependent? Are effects frequency dependent?
TURELLI, ZHANG&HILL, MACKAY WITH MARKERS AND 4

V\{Z‘L{/{ f - 51_15//) Larg. 77/\»f L e z .
Al ae ek T Jp dust af o o fecbge e

Var(y) = Var(f) + Var(e) = Var(f) + lo:

Var(f} = Var(XB)
= Ex(Var(XB|X} + Varx[E(XBLX))
= Ex[XVar(B)X 1} + Vary[XE()]

= Ex[XX'a}] + Var x(0) BP= "best predictor”
Covariance y . . (MULVN assumed)
matrix of signal = opExXX],
7= BP()
I:L]+ Var-1 (f) ? = Ly
03 . 0'§
3 .- Looks like
Te o - '
I:” gExl[XX'] =y genomic BLUP
B .. (it is not)

: .
EF[xx'| Ex[xx)+ —;‘—w 7=y

[Ex[)Of T+ °—§I f = Ex[Xx'ly
o




Under multivariate normality

Var(fiy) = Var(f) — Cov(f,y)Var ' (3)Cov'(f.y)
Var(/) — Var(D[Var(f) + Is2] " Var(f)
= GREAXX') - oREX[XX GREMXX' ] +102] " 03 ([ XX']

-1 YA v 2 -1
= GHEXX] OBELXX ]%[H 2 EX[XX]] OHEALYY']
i} f#

5 -1
{I— |:1+ gz E,\,[XX’}:’ }c};Ex[XX’].
;I

Proper assessment of posterior uncertainty requires knowledge
of the genotypic distribution

X . Xy
X2 . X
Kingmarker =
Xnl « Xap
’_ X Xip
X Xz . A,
X221 . Xyp
XX =
Xip Y2 . Xgp
Xal o X
I B »
-2 - LA
E .11’ E .'I.]’Xzj E ,11’.1,,{.
=1 i=l =1
»
.2
X
. 2
= o
ri
2 .2
l"l
J=1




W — E(# ycoding 1

Genotypes {random variable W denotes genotype at a locus)

Epr(W)=p>—g> = (p—q) =

) *ﬁﬁbjﬁ [ W(aa) » -1
i W(da) = 0 Varg{(W) = E(X?) — ENX)
W(dAd) - 1 =pirq - p-gq)
i = 2pg
§ Wlaa)y - 0 i
WEA 3 I o () =207 +2pg = p(p+q) = p
a) —
¥, . — 2 _ ?_
W(AA) - 2 aru (W) = 4p” + 2pg - 4p* = 2pg
Coding does not affect the variance of genotypes but mean shifts Ww-(p-qy=1

DEVIATIONS FROM MEAN AND STANDARDIZED DEVS. ARE INVARIANT

I - E(H)coding 2

“l-(p-q)=-l-p+g==-2p 0-2p W = IF=E(IY
O-(p-g)=g-p=1-2p 1-2p Jing
l-p—-gq)=1-p+g=201-p) 2-2p=2(1-p))

Under HW

” P i
E Z\?i = Var{x;) + Z Exy)
#=1 i=1 =l
» r
2
=D g+ 2 (pi - qp)
J=1 i=1
» r
=3 0-2p9) =p-> 2y
-1 -l

I

4 P
E(Z,\‘],.’Fz,) = Z COV(.\'}JIzJ) + ZE(II,)E(IZJ)
=1

4=l fal
p »
- Z 2bp.q; + Z(Pf - ‘ff)z
i=1 =1
I?
= pi gl -2l §)
=1

Covixyxa) = pl +af —2mq;(1 - ) — (p, - g;)°
= 2pg9




E(YX') =

UNDER HARDY-WEINBERG AND IDEALIZED CONDITIONS

P

’— ” 1 I r »
Zzﬁl'(ff"'z(ﬂf"qt'y [ Ell’fqi+z(f’f_(a'i)‘ R Ulnzzﬁtfh +E(PF_{J‘))_
=1 =t =1 -1

=1 s-1

v . B .
Symmetric D+ D) A 3, 20,95+ 3y — )’
-1 J=1 i1 i=1

» P
nnet Q2P0+ 2 i — 1)
=1 i~

» P
> i+ Y wi-a)
i1 =

Additive relationships

E

Likewise, if the x's are centered

1 yz . . Qi
’ Symmetric | A2up
E{IX — X)X - EXaip)])' 3 = (Z 2qu;)
J=1 Ayt
1

P
=4 (Z 217;'%)
=l

[X ~ E(Xnp )X — E(Xp)]

A= n x n matrix of additive relationships




Then, the "genomic” relationship matrix

Is the realization of a process. If this process is the HW process, then its expectation

IS

CY—E() HA-E(A) _ X

_fJ
2 E pill=p;)
=1

G:

Vs

-

[X—E(anp )]{X*E(anp ) ]'
P

2 P4

=1 _

For example: parent and offspring are expected to have a relationship=0.5
but in reality it could be larger or smaller

THE CURSE OF THE BAYESIAN
ALPHABET

Sarah Palin
sings
“To Russia with
love, a view from
my igloo”

Featuring

Kim-Jong II,
as “Bayes”

Scarlett Johansson
as “B”

w Herman Cain as

- k ..* N
mr BORIS K, Sy i “Cor—9—9 — g




BAYESIAN STATE OF KNOWLEDGE
(in a finite sample)

Minimum=> Prior
Maximum=> Conditional posterior
(Enow sama vinos bt not others

Intermediate=>» I\/Iarglnal posterlor

Pledeniam bom tiongy iss e fia ey ey byrny o e
oo to use informaiion i Gannass unoaorismt \f 00T A8

UGS

REASONABLE BAYESIAN MODEL
(for learning about state of nature)

+ For any parameter, must be able to “kill” the
prior asymptotically

+ For any parameter, statistical distance between
prior and posterior (and therefore conditional
posterior) must go to infinity

« If this distance has a finite upper bound, it
means that the prior is influential

* Must be able to reduce statistical entropy as
conveyed by the prior by a sizable amount. If the
reduction is tiny=>» prior very influential

10



THE PROCESS OF
DECONDITIONING
(MARGINALIZATION
CONSUMES INFORMATION
ABOUT THE FOCAL POINT

Meaning: conditional posterior is
the best world to live in

Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps

T. H. L. Meawissen.” B, J. Hayes' and M. E. Goddard’’

BAYES A + BAYES B

(as | understand these two methods)

11



Code for genctype
. . of SNP J;
Linear model proposed by Meuwissen et al. {2001) x=-1,0,1

/

})
g+ xib +e,
j=1

SCALAR i=12,....,n, n<<p

P
y,],u,x,-, b, (Tg ~ N(‘u + Zl’!’,‘b}',()'g)
=1

Vi

Additive substitutio
effect of
. SNPj

= 1u+ Xb +e,
MATRIX Yii, Xob ~ N(1u + Xb, Io7)

The priors

1 ~ uniform

Zz,j); j=12,...,p
orall j

—2

Hyper-parameters, specified arbitrarily

12



BAYES A (Meuwissen et al., 2001)

blo? ~ N(0,67)  Fl2..p

2 2 2 ., -2
C; IU, S* ~ S Av Note. each SNP has a variance
(think of a sire model in which
each sire eflect has a variance)

Marginal prior

plhitn,5?) = I Neg )p(uS%(f)dcr

[ texpl ——5 o7 () cX ¢
These hyper-parameters I( 2) p( )( ) p,: :l /0, ‘
g

will control the extent

0
of shrinkage. Questicn: z iy 1,? + 0§ _ foves 0 e
toes their infiuence vanish | = J-( L da’? W N \‘(fn"" .
! ol 7 2 o Y4

asymplotically? i ’ S e

2y A e ol
o« r( Lt )(b‘ + USL 2 /"!FU' o -"-j‘b( - ko
"/:'7/ \)LL‘L i ‘\‘__(;/,,
-4 The prior of @ marker  ~ ¢~V
« — = 1(0,v,5%) eflect is a t-distribution
US with known scale and df

MARGINALLY: IN BAYES A ALL MARKERS HAVE THE SAME VARIANCE

Bayes B is Bayesianly “STRANGE”

Bayes B assumptions

bo? point mass at some constant k if 7 = 0
. O'. ~
T N(O,a}) ifa? >0

0 with probability =

afln = . .
vS5?x % with probability 1 —

3. Recall: if a prior variance
is 0, this means complete
certainty 1. Meuwissen takes the constant = 0

2. Meuwissen assumes i is known, e.g., 0.95

13



Joint density:

b; = k and o} = 0 with probability z

boln) =
P( 20 fﬂ> N(O,qf)p(szx‘Tz) with probability 1 — =

Marginal prior

by = k with probability »

bilmy =< %
p(biim) J'N(O,of)p(szxiz )do; with probability 1 —
0
Further

Jioi): exp(-i—’;) () U exp[—-*% }fﬂf
0 i G;
2 w2 b+ ps? ,
~ j(gf) E exp( - ;U )dcr_;
[ 4

R SPICEE

p2 \ %
« (1+—§2) = 1(0,,5?)
v

PRIOR = MIXTURE OF A POINT MASS AND OF A {-DISTRIBUTION. BAYES B PUTH
Then: / THE MASS AT G (IF NOT 0, THIS GETS ABSORBED INTO THE GENERAL MEAN)
‘1 b; = k with probability =
p(bjlm) = o N
1(0,v,8%) with probability 1 — «

MARGINALLY: ALL. MARKERS HAVE THE SAME DISTRIBUTION

E"J&Jﬁ'\z\\) ,'A{' B fw-'+ vt f—}"&"‘f V A N i

H e Ay ¢ S oowdt s l’}w A ;} (i f'»r"J
f oy

14



Mean and variance of a mixture (e.g., Gianola et al. 2006, Genetics)

The Birst and seeond moments, sand the vintithwe of o

anite nuxine of K Coossian distabsaons. \\il!z |>n".mu'—

R N 3 2 2% g

wis @=L P P O (r ,owhent

the nxture proportions C aresocbed }il : ]’ = FLoane
-

N

. K
‘ Eiv 8) = ’\[Z PN Gy of;,] dy=3 Py (A)]
B k3 EES

H:?ﬂ)“| [Z! Ny g, (r} }d\ —-Y}';‘(p.; 4 trA)
k|

K K :
. RIS WD TR Pty
| -1

In Bayes B:

Ehjln) = nk+ (1 - n)0 = 7k
= 0ifk =0

7% 0+ (1 —n)VSi"z + k2 + (1 — 1)0? — (k)>

+:rk2(1 7)

Vai‘(bﬂ?[)

:(1—7?.')
_ S TR
= (]—:11.')V_V2 ifk=10

f

ALL MARKERS HAVE THE SAME VARIANCE IN BAYES B!

¢

gl ey heey  fuiwe  piew and Vi

fo filor /*’a ! ﬂ’“f{‘if)



BAYES A IS A SPECIAL
CASE OF BAYES B (1r=0)

Meaning: if Bayes A has an
inferential flaw, this carries to
Bayes B

HEURISTIC ARGUMENT:
view form of Gibbs sampler
for Bayes A

(element-wise sampling)

Note: the form of the implementation it
is just an algorithmic matter: it is
immaterial with respect to the issues

16



Sampling the mean

n p

HELSE ~ N| £ 37 =3 xyby |, 4
J=1

=1

Flat prior for the mean (or for the fixed effects) is not influential

Sampling the residual variance

02|ELSE ~{n(1 + =)

7

Goestlon

-2
Kvern

The prior can be “killed” simply by indreasing sample size

This will dominate the weighted average
as n increases

17



Sampling the marker effects

" P
xy| yi—u= D xib;

i= j'=1 o2

bl|ELSE ~ N n - Yoo {
I 2
2 ae 2 Or
PR D oxbe
R Gb- . Ty,
=1 / =1 J

J=12,...,p

Kill the prior simply by increasing sample size. The effect of the shrinkage ratio vanishes

n

n
3
2 g 2
E )Cy--f";z— g E x,j
b =

=] 7

Sampling the variance of the marker effects

b_].2+v.§?2
1 +v

o} (ELSE ~ v(1+1)

Prior ¢f: very influential -, .
= AY 2

F=12,...,p

x—2
v+l Typically very small

*Prior cannot be killed here. One can increase the number of data or of
markers ad nauseum and gain only one degree of freedom, always

*Recall that, in the conditional posterior, all other parameters are known {i.e.,
they are assigned values)

+Since one must de-condition, actually the true posterior moves less than
one degree of freedom away from the prior

18



RECALL: STATE OF KNOWLEDGE
Minimum=3 Prior
Maximum=» Conditional posterior

Intermediate=®»  Marginal posterior

T
Ratio
a4

naT

{19 + + Attt
i i x 1 L

b Ié R 2
earees of freedam

o Prgare LBt Detwognn soedlichants of variation €8 (o LS EY 0V el ) s
ooof Hie rondiGionsd postevior and peior distrilaions of sl varbanee of e marker elloct, 10 a

Farction of the dognes of Treedean & of Whe prion,

For df>8, the relative variability of the posterior distribution of the variance of
a SNP effect is essentially COPYING that of their prior distribution

19



ENTROPY OF A DISTRIBUTION (“DISORDER”)
H(p(x|0) = E p[—logp(x)]

Example: norma! distribution

. 2 1 ; x°
plxjpe = 0,07} = cxp(— - )
J2ra? 20°
loglp(xlpe = 0,67)] = log(j‘%—) - ?llog(c;l) - -:2‘0%
E{-log[p{x|tt = 0,0)]} = —lo L +Llog(e?) +1
{~log[p(xl M} g(m) 7 llog(e=} +1]
- 0.91893853 + %[log(az) +1]
Entropy * I Enttopy v

LW i
Vanance

a4, s
Variance

ENTROPY CALCULATIONS

Bayes A: variance of effect

. Variance of marker effect
Prior entropy {sorry, change of notation)

H{[a?,Ib,5%]}
- j loglp(a2, |, 52)1p(02, |, $2)do?,
-z 1og|:VTSQr(%) ] +(1+%) dé) togT(4).

Entropy of the conditional posterior

H{[02,|[ELSE]}
= ~ [ toglp(o2, IELSE) Ip(a3, IELSE )do?,

=_V+I _Iog[(v‘gz+af')r v+ ] }4‘ 1+ v+ 1 (:?' logr- v+1
o (Y4 o (02 52) g (2

Learning from data: reduces entropy

{cannot calculate entropy of posterior in closed form)

20



Relative information gain

2 . £ ot ph
RIG = H{[G(,AIUS‘ }*H{ O?:A.TELSE]} £ 2 s

H{[U“AIU Sz]}

Fora; =0,S=1andv =100, RIG=9060x103

Fora,=0,S=1landv =10, RIG=6.51x1072

Fora,=0,S=1andv =4, RIG=0.125

Metapharically: the prior is totalitarian in Bayes A {B) ﬁ

- Mif‘“
be A0 i< “

STATISTICAL DISTANCE BETWEEN CONDITIONAL POSTERIOR AND PRIOR
(KULLBACK-LEIBLER)

.v:).‘iﬁ .Jc'uh_..h")

Specifc distance at a given variance

where rior
pims fie 59 P

folooe b 5. mt ) o g
v WECERIRTS

2|F KL IS LARGE, THEN LEARNING BEYOND THE PRIOR HAS
TAKEN PLACE.

=KL SHOULD GO TO INFINITY AS DATA ACCUMULATE IN ANY
REASONABLE BAYESIAN MODEL

Lgfenee T

(/\40"34[ J"-—(*j {ff'\f{} L)f_.)‘]L T }} ar %{f [ hg- e
oo AG)/L )_f b f\(k?«fb J}

lt fJ'"f’\ TS ( 9
C

r\Z\, 4 ~

) o

i
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KULLBACK-LEIBLER DISTANCES
BETWEEN CONDITIONAL
POSTERIOR AND PRIOR

(of variance of marker effect)
1)7.33x 102 forv=4S=1l,p=1and g =0

2)2.64x102forv=10,S=1,p=1andg, =0

3)2.52x 107 forv =100,S=l,p=1and g, =0

If 10 markers are allowed to share the same variance, KL= 4.47
Relative to (1), KL distance increases 61 times...

Y otow Guy) roeuicers A4 4

BAYES A (B)

» The prior always matters

» The effect of the prior is via the extent of
shrinkage of marker effects

» Cannot learn about variance of marker
effect

« Statistically greedy models (same will
apply for any model assigning marker-
specific variances)

« May have good predictive ability

22



SIMULATION

(never take a simulation too seriously)

RESURRECTION OF BAYES
A

(If additive model holds, it may give
sensible inferences about marker effects)

23



Description far slides 1. 2 and 3

+ Bayes A was fitted on a simulated data of 50 observations.
~ Tree tuea: relahonshp between response and SMP (x1 x2 x3) ellects
S Y Ew o+ Dwa X, = 2+ By e error (SN0 s 120
- Model fiked.
= Y= W+ Xg ¢+ oerror
» Wis incidence matnx or two nuisance parameters.

* X s inciderce matnx for SNP effects. Besides x1. x2 and x3, five acdronal
srralevant SNPs (x4 10 x&) addec. SN value is allele cooy numbers. e, 0
tor2

«  Slide 1—Posterior distributions of SNP effects g, (i = 4, 2,...
ditterent priors on 0,7 scale determined by estlinated residual varia
~ Black: o ~ urfiQ 1003
- Red: U;i:“‘ scated inverse x? (di=4, scale=1.5)
~ Biue o,?~ scaled nverse x2 (di=d4. scale=d)
~ Green 092 -~ scaled inverse x*{cf=8. scale=1 5)
- Pink 0,7~ scaied inverse x2(df=8. scale=3)

8) when usinp five
nce 8.5)

»+  Slides 2 and 3—Posterior distributions of 8 SNFP specific varfances under
abave liverriors. Because the uniform prior leads to a very dilferent posterior
of SNP variance as compared to the other four Pﬂors. it was plotted separately
(slide 2). Slde 3 is for the four scaled inverse chi-square priors, with same
color representations in slide §,

POSTERIOR DISTRIBUTION OF SNP VARIANCES UNDER UNIFORM PRIOR

o
aoo1s] | i
oo : L] ]
i Sa-td
i i i
gl | Ge-04] i i
oonre 0010 :
& H 3 z i
i E E £ i i
Soono] | & ; & d4e-0a1 1 ;
| : o |
wo00s] 1 Il ot ;
[t = I T =l ¢
0.0000 00000 * - De+dly T [ s ——
L S T TV ) [ U F R [ T 200 et TR
05 ay L LY
. . Q.0010-
| oo |
LEoIT | 0062 !
0.0 . 00020
Foove Fo0a1s 5
& ; & i &
.00 oot
aomg| oonoe]
A, . e,
[Feni ] T ©.0000 P 0.0000) e 0.0000 e B
U 2090 amon 10T T2000  Eoie - 10000 T 20m w10 LIS E T )
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Lengiy

Lensin

n . q a5
0.2 .
0.4 a5 B
ok
o4 015
0.4 : o
203 K =
2 201 Eog
2 & &
o2
0zl ] 02
! ; .0 N
G5 \ )
| el .
‘:-\,.‘7_\_ N
i — 0.5y e o0 - —
ELOR R ] o 20 3 40 W o 30 1%
[ oy o, ag
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05 &
o5 G g
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0.4 = 04 04
Eod £ E
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.z i o2 0z LY
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i
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0o e —1 o0 — — 5 —
0 20 30 @ W20 3 40 LT W v 39 40

POSTERIOR DISTRIBUTION OF SNP VARIANCES UNDER FOUR S.INV. CHI-SQUARE PRIORS

THE GOOD NEWS

Posterior distribution of SNP effects
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Bayes A

‘picks Lip the 3 relevan

I SNPs

l; ' -

an i

24 4 o
En) b S

Lennty

-6 -25 8R 23 1

30

: 40

TR EETERTEE T

SRR AT

BETVETVE e

DEATH-RESURRECTION-DEATH

Bayes A may give a distorted

picture if there is non-linearity or
non-additivity
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Description for slides 3, 6 and 7

.

Bayes A was fitted on a simulated data of §0 observations.
— True w0 relationshep betwaen responsa and SMP (x1 X2 x3) effects
¢ Y wy b Ehwe 4 expix 1SN 0.5) " + error (~N(G. s270.25))

— Model fitted,
Y2 W3 Rg+ oerror
« Wi incsdence malnx for twe nuisance parameters.
= Xas modente malnix for SN effects. Desides x1, x2 and x3, five acdit-onal
srrelevant SMIMs (xd to x8; addec. SN value s allefe cepy nurnckers. ... 0

Tor2

« Silde 5—Posteror disiributions of SNP effects g, {i = 1, 2,...,8) when using five
different priors on o2, scale determined by estimated residual variance ?42)
— Black. o, ~ unif(0,3001
- Red. ogii scaled mverse x (df=4. scale=42)
~ Ble o2~ scaled inverse x° (df=4, scalerdd)
~ Green cg?= scated inverse x? (018, scale=42}
~ Pk o2~ scated mverse x2 (di=8, scale=84)

Slides 6 and 7-—Posterlor distributions of 8 SNP specific variances undey the
above five priors. Because the uniform prior leads to a very different pasterior
of SNP varlance as compared to the other four priors, it was plotted separately
{slide &), Slide 7 Is for the four scaled inverse chi-square priors, with same

color representations in slide §.
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BAYES A vs. BAYES L

(Bayes L= Bayesian Lasso)

.

ﬂ%f“n\. Jé N é Ry 5‘7’“ e e A i A
#

In the Bayesian Lasso, marker effects are assigned double exponential distributions

2 1 7,1’,8}-' EACH MARKER HAS THE SAME D.E DISTRIBUTION:
p(l}) = l I — /'Le NO HETEROGENEOQUS VARIANCE EITHER
J=1 2

L
=}

03 04

Density

0.1

a0
i Jﬁi —

Density of a Normal and of a Double-Exponential Distribution

']:)-" e
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Graphical Representation of the hierarchical structure of the Bayesian LASSO

and Bayes A
Bayesian LASSO/}([)‘,IJJT,EDP(TE ) oo 1.0%)
o(2) i LD le)
ol o e bl ) oy, 18.0°)
o olod S, plv18,6°)
Bayes A : : plo)
ol Joz o |,.5,) ply, 18.0%)

0_{) ,Mf U5t u)u\f:a)/m /"3}"99"' (n lasieye |

ANOTHER SIMULATION
(learning of marker effects
versus learning signal)

(never take simulation too seriously,

although it is great for checking ideas
and code)

DE LOS CAMPOS ET AL. {2009)
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280

yi = ZXWBJ -+ 6",- f = 1,,300
i=

280 markers. Residuals assumed N(0,1)

Pearson’s correfation between marker genotypes

(average across markersand 100 Monte-Carlo simulations)

by scenario (X,: low LD; X, high LD).

Adjaceney between markers

Scenario | 2 1 E]
X4 0.007 0.002 -0.002 0.013
X 0.722 0.567 0.430 0330

Only 10 markers had effects=» 270 had no effect on the trait simulated

03

H i
: 1 )
Chiomasame 1§ Chrom osome 2 ‘Chranesame 3 3 <hranogome 4

a2

0t
1

Effet
ac

-0l
1

-0.2

T T T 1] T
[t} a0 100 150 200 250

Miarker mugher

Positions (chromosome and marker number) and effects of markers
(there were 280 markers, with 270 with no effect}
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NINE SPECIFICATIONS OF
BAYES A

Prior df Prior Scale
10 J 10 fx102
0 1) {2) {3)
Y {4) (5} ()
1 {7} (8) (9)

PRIORS 1, 2, 3 ARE IMPROPER
PRICRS 7, 8, 9 WOULD LEAD TO CAUCHY PRIOR DISTRIBUTION OF
MARKER EFFECTS IF SCALE WERE 1

Table 3. Posterior estimates of yesidual varianee (O‘ ] and correlation between the
true and estimated value for several items (¥, phenotypes: Xi}, true genomic value:

B, marker effects; all quantities averaged of 100 MC replicates).

o’ C'u."f‘(___\' XB} ("m'r{XIS. Xfi) C 'r)r'p‘(l.l. ﬂ)
Means  SD% Mear D= Mear SD% Meant SDE
Low linkaye disequilibriun: between markers {X)

Bayes A:
(1) (518 [ 0062 0.83y 0027 (.550 0.063 0102 0048
) 0,941 ] 0.089 0577 0.028 0.721 0.092 0.200 0022
t3) 1.074 | 0105 (4o (32 (L701 0106 {1199 0.020
{h .30 [ (.053 (0.893 02.022 (.331 0.060) 0.079 .05t
(5} 0824 0477 (L6532 0025 (.699 0.079 {1183 (.028
{tv) 0L.950 ] 0089 0378 0.027 (.722 0,088 0.201 {h021
N ATTTA | G033 A 096G L0153 SRR 0057 | D2 0.043
(8} 573 (0056 [ORM | o019 0406 0066 | 0016 0.0
{9) AXT0 000 0,728 0020 3 00630 072 0452 [{HAIRY]
BL 1 nxR6 0.080 0623 ams S| 0708 RS I 0.024

Vit Maan {across 100 M replicates) of the poslumr mean. 27 Betweenreplicate standard

deviation of the extimale. 37 Mean (across MC replicates) of the correlation evaluated at

the podterior meanol I

/

N

i [ T of i &
\1;'-"\ . 5’“‘ ) | |}:\,;<.LL( H\‘L_P i‘{ .:Li“r\r].{v

AN (o (U'“)( & \\k“ N 'TJO ’]

o co Y

)r\uk A ! > Ug\) \ "‘(Ll\!
A Cr\@‘hw-- it
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Fable 3, Posterior otingates of residual variance (G':] and correlation between the
true and estimated value for several items (v, phenotvpes: XB. troe genomic valiee ;

I marker offeets; all quantities averaged of T NC replicates).

a (_'m'r(_)’. .\l-i.} C'm'l'{X[i. \[l} C 'm‘r(ﬂ. ﬂ}
Memrs  sDE Kewd Sh= Muarr™ ST Mear- Sh=

Hish trnkage dizequilibrium botween marker (3}

Baves A\
{L¥ D35 [ 04 1824 (020 (3RO 0070 ni21 RN
[ 0O 0n7n (RSN [SNERR} 0.677 [EREER) 021 (L0216
[RY} 193] OLIRS (1.32% 0.034 0.630 0086 021 (0.425
{h {404 oe? {LRRN 0023 1333 3067 0.0 HOdR
(53 080 [ 0069 (3,670 (3,030 0.039 0,076 .20 0,03)
[{33] Ouds | 073 0606 (1031 (676 0081 21 (1026
{7} 0193 DS (3460 [$A I .462 0.060 N.062 LIRS
(&%) 0,560 (LOSK [ R 0,027 1.593 .07y 132 0042
{0y 0680 0062 0,734 0024 0,629 0072 0,173 0.U30

RI. 1,00 (LO8N ol 2042 {1608 .07 0.2l o2

L Mean Grerass 1000 MO replicates) of the posterior mean. 27 Retweenreplicate standard
devialion of the estimale. 30 Mean tacross MO replicates) of the correlation evaluated at

the posterior meanol” .

Simple fixes of Bayes A

+ Assign the same variance to

all markers (trivial Bayesian regression
probiem)

+ Assign the same variance to groups of
markers (e.g., chromosomes or genomic
regions): model comparison issue

« Assign non-informative priors to S and to
the degrees of freedom v

=» can be done. Just an algorithmic matter
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Issues and questions

Bayes A can be “fixed”, but may not the best
thing to do. Open question...

Bayes A, as is, may still have a good predictive
(out of sample) behavior, even though it is not
completely defensible

Bayes B is Bayesianly ill-posed. If you do not
believe me, check with local Bayesian
statisticians...

More reasonable: mixture at the level of the
effects. This is done in Bayes C (Habier et al.
2010), for example [ASK OUR IOWA STATE
HOSTS]

Bayes B may have good predictive ability though

33



EADY 6 AGA
4. Dealing with epistatic
interactions and non-linearities
gene x gene
gene X gene X gene
gene X gene x gene x gehe

Statistical Interaction
(fixed effects models)
Yik =p+A;+ B+ ABy + egx
E(yyxldi,Bj,ABy) = p+ A; + B+ ABy
E(yg —yywldi, B, ABy, Ay, Bj,AB ;) = i+ A; + B; + AB,;
- (u+Ay+B; + 4By,
= Ai— Ay +AB;— 4By,

Difference between levels of factor A depends on level of B

i factor A has a levels and faclor & has b levels, the degrees of freedom are:
- {a-1)

- {b-1}

- fa-1}(b- 1} [assuming no-emply cells)




Multi-SNP Fixed effects models?

(unraveling "physiological epistasis” a la Cheverud)

« Lots of “main effects”

» Splendid non-orthogonality
+ |ots of 2-factor interactions
» Lots of 3-factor interactions
« Lots of non-estimability

* Lots of uninterpretable high-order
interactions

» Run out of “degrees of freedom”

Dealing with interactions ("statistical epistasis™): much of this

PIGS AGAIN

MORE
PIGS HERE

C.C.C

T.E,5,2,pigh, —(22 2,2, pig,)* /as many pigs as you got




RANDOM EFFECTS MODELS
FOR ASSESSING EPISTASIS REST ON:
Cockerham (1954) and Kempthorne (1954)

--Orthogonai partition of genetic variance into additive, dominance,

additive x additive, etc. TRLY if
/

(ANo selection

[ANo inbreeding

UNo assortative mating
UNo mutation

LINo migration
ULinkage equilibrium

|:‘> A standard decomposition of phenotypic value in
quaniitative geneties (Falconer & Mackuy. 1996) 1s
Teutatd+ite,

where o, of and {are additive. dominance and epistatic
cffects, respectivelv, and e is a residual. reflecting

era et ol Feasedddiia By snala bl TRIG Hacao e e

— The i

chicet can be decomposed into additive x additive,
additive x dominance, dominance x dominance. ete..
deviates. T what has been termed “stalistical cpista-
5187 (Cheverud & Routman, 1993), these deviates are
assumed to be random draws from some distributions




The degrees of freedom of the distribution are NOT GIVEN by the number of levels.

There is now 1 df for each type of genetic effect,

N(0,02)
N(0,03)
N(0,0%,)
N(0,c2))
N(0,63)

N(Oso-gdd...d)

Ve X Gt d i g+ i) e
~Nf+g+e €

where 18 some nuisance location vector fequat to g il’
it contains a stople clement): X is a known incidence
matrix: a and d are vecilors ol additive and dominanee
effects. respectively g, by und i are epistatic effects.
and g a-bd b, bt iges the  otal” gencte vahue,
Assuming that g and € wre uncorrelated, the vari-
ance covarianee decomposition is

Matrix representation

Vo=V, 4V, (2)

Variance-covariance
Decompasilion

where V. ¥, and V. e the plienotvpic, genctic and
residual vartance covarianee matrices, respectively,
Further,

Ve Aol + D% HAF A, +H(A#D), +(D# D)o,
(3}

Hereo Ads the numerator relationship matrin; D is a
watrix due 1o dominance relationships which can
be computed from entrivs in A, and the remainisg
mutrices mvolve Hadamard (clement by element)
products of matreces A ov DL Thus, under CK. ali




DO THESE ASSUMPTIONS HOLD?

RANDOM EFFECTS MODELS
FOR ASSESSING EPISTASIS REST ON:
Cockerham (1954) and Kempthorne (1954)

--Orthogonal partition of genetic variance into additive, dominancs
additive x additive, etc. ONLY if

INo selection

[UNo inbreeding

WNo assortative mating
UNo mutation

No migration
JdLinkage equilibrium

ALL Just consider
ASSUMPTIONS Linkage disequilibrium

VIOLATED!

GAMETIC DISEQUILIBRIUM
(variances, covariances,

correlations)
Ganete a ots 6(70)7 B(1) Marginé-isw T
a(0)  Pw=P{=0F-0)|Pu=Pr¥=07=1)|PatPu=po.
A0 [Po= Pl =17 =0) [Py =P = L= 1) PusPo -
.i-'Marginals [ Poo+Pig = pap Pu+Py=pa Pa+Po +Pig+ Py =1

EX)=0x(Po+Po)+ 1 x(P+Pu)=pu E(Y)=0x(Poo+ Pu)+ (P + P11) = pu
E(X?) = 0%(Poo + Poy ) + 13{Pu+ P1y) = p1s E(Y?) = 03(Pog + Prg) + 13(Po1 + P11) = pu
Var(X) = E(X?) - EX(X) = p1. - pi, Var(Y) = E(¥?) - E}(¥) = pa - p},

=pull ~pi) =pall —pa)




“Gamele atlocus b {0) YT Marginals

P =PX=0F=0) Py PrA =00 1) PatPaepe

 PusB =LY} Py =Pk LF D) Pt P g |
ijlferfpﬂ ) PatPu=pa P+ Py +iP.|n_J_r_P|| =1 J

E(XY)=0XOXP()()+OX 1 XPm
+ 1 x0xPp+lxlxPy,

= Pn
D= Cov(X,Y) = E(XY) - E(X)E(D
=Ph~pupa

If D >0 = there is "positive” disequilbrium
If D=0 = the two loci segregate independently, P, = p.p. {stochastic independence
if o (0 = there is "negative disequilibrium"

: Pi_G_émete at locus I b () B } B (1) ! Marginél_s_j
1 popstD | pali=piy—D| Po+ Py = pus
A(l) 777”‘;’;6 7“:!’;0.)__D‘ Prpa+D Pro+ Py 1P|+ 71?
: MargmaTsi o Pgl;w_fpm Pu+Pu=pa {Pu+Pu+Pu+Pu=1

Under the hypothesis of no gametic disequilibrium
N =sample size (large)

Oy = #observed in cell (i,j)

E; = #observed in cell (i,j)

2 = ZZ (Oﬁgfrj)'
g

i

_ (NPE'—NPAPM)Z
= ZJZ INpHpH J

- D 2 1 1 1 1
- NZZ DisP+i ND (P0+P+0 + PopPa * P10 + PP+ )
i

_ NszlﬂU—] + PP T PoPr P00

Poip o 1441
i = = o R
~ N g
W > XT% {for large N)




_ Cov(X, T}) _ Piy-papis
JYarOvVar(Y)y — fpr(L=pipal—pa)

P = (P —P+1P1+)2

P|+(1 APH—)P—*—I(I —P+1)
. n? i Maost commonly used
P O —p) TN meticforLD

2 2 2
Y g XY 2 ny _ 42
E( v ) ~ N,Var( )T Var| = ) = 5

S Falim Mlack SErimaed

- Some correlation wilt be found
: Under the null for small samples.
 However, the expected “studentized” value

;.fL will be

o i

T - ¥ = 1
oS TN

Under Hy, Nt ~ x3%

E(Nr) ~ E(33) =1 & Var(Nr?) =2

Empirical distribution of 10,000 chi-square variates, df=1

08
1

Density
06
!

04

02
I

028

Chi-sguare




METRICS FOR GAMETIC
DISEQUILIBRIUM

1. Squared correlation (conceals negative disequilibrium: values in 0-1)

2 _ D2
P1+(]—P|+)P+| (]_.04.[)

I3

2. Lewontin's O

Puo+Py = piro= Py <pi
Po+Pin = pa=Pn<pa
D= Py—pupa
IFD >0
Duax = P+ — Prab+t
= p1{1 = py) > 0 [actually 0.5]

Doy = P+1—P1+P+
= pu(l = pi) > 0 [actually 0.5]

Dmax = mill[pl_‘_(l —p+1),p+](1 _p1+)]

D =Py —prpa
IFD<0
Dimax| = 10 = prap 1| = prap
Dunse] = 0= pospeol = posp-o
[Dimax| = min(po.p0,p 14041)

- Lewsntin's

' D
D =
leﬂxl
D max| = min[p).(1 = ps1),pal = p1)]ifD > 0

D max| = min{po,pao,props) ifD <0

\‘/J\./\/ o ﬂ"j_{ g ”\"ﬁ e [ IS l,.i?'(.ff N /5"’/] - /f iif\ﬂ\rj
| | 5o ] -
}) o (VY S (,f.,e_ 4// en J,cu?f' . f”““?fbm/"\cﬂ? é (/s

Mo some b 0 for Hhoesloid Tocts )



VISUAL DISPLAY OF LD

combined
“Exponential” decay with inter-marker N
genetic distance 3
i
Mapping and linkage disequilibrium analysis with PR
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Goddard ME, Hayes BJ. 2009. Mapping genes for complex traits in domestic animals and
their use in breeding programmes
Nature Reviews Genetics 10, 381-391

+

a | Decline of LD with distance between pairs of
SNPs as measured by LD within breeds of cattle
(derived from approximately 35,000 SNPs, and a
human population with norlhern and western
Evurcpean ancestry (CEPH cohort)}y . b} LD
between breeds of cattle. The heat map shows the .
correlation between LD in different breeds for SNPs N
within 10 kb of each other. For two closely related '
breeds (Angus and Red Angus) the correlation is
high, as shown in a hypothetical example in which
a—g and A-Q chromosomes are commeon in both
breeds {upper box). However, when Angus is
compared with Brahman (a distantly relaled breed)
the correlation is low and, in the hypathetical
example, Brahman chromosomes often carry a—Q,
which is a rare haplotype in Angus (lower box). In
fact, the correlation is low for any combination of a
Bos indicus breed and a Bos faurus breed .. ANG,
Angus; BMA, Beefmasler; BRM, Brahman; BSW,
Brown Swiss; CHL, Charolais; GIR, Gir; GNS,
Guernsey, HFD, Hereford; HOL, Holstein; JER,
Jersey; LIM, Limousin; NDA, N'Dama; NEL, Nelore;
NRC, Norwegian Red; PMT, Piedmontese; RGM,
Romagnela; RGU, Red Angus; SGT, Santa :
Getrudis; SHK, Sheko. soare Bersees et

Genome-Wide Association 7 » e SR

Study of Survival in NSCLC ‘] MIHAOE SRy
s 1

Journal of the National Cancer . i

Institute. 2011. 103(10): 817- i ;

825 £ v

Figure 3. Linkage '
disequilibrium structure and o :
association of observed and Chromspma 12 (M) 1055 1070
imputed single-nucleatide iy '
polymorphisms (SNPs)
surrounding rs1878022 on
chromosome 12. The
linkage disequilibrium
structure was created with
the GOLD heat map
Haploview 4.0 color scheme
using the standardized
disequilibrium coefficient, D’,
with associations expressed
as =log,,(P) and calculated
by the multivariable Cox

il i b

L3t P2
s e
Liecisen -

I sk Corices k6 71 s S s
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EVOLUTION OF LD FOLLOWED
BY RANDOM MATING

Suppose we start wnth the fo!lowmg gametlc array and that loci are physwally llnked

| Gamete at Jocus \' b (0 B Bay Marglnais -
la(d) ‘PM’ 0+D[n - um(l -pi- ) D[” | Pwt Por = pu. !
A1) e Pl = peo) - DO |,,,+,, +Dpy _,_P|0+P;| -
Q,Mafg'”a's ‘ Pt Pio=pa  Pa+Pu=py  Po+Pa+Pu+Pi=1,

Let Pr(recombination) =c

Recombinarion between
Hoemologous Chremosomes
N
Alicles: Anada /

Bando +Pr(4Bino recombinaiion)m] Pr(no recombination )

Pup: = Pr(4B),,, = Pr(4Brecombination)} Pr(recombination

s and Broe are _ .
hamatogous =prpac+ Pyl —¢)
Chromesomes;

one from each parant

Dni=Pum - ppa
=prpuc+ Pyl —c}—prpa
= Pujo = prpa — (Pl —Prpa
=({l-¢}Dy

Py = Pr(4B),; = Pr(4Birecombination) Pr{recombination)
+Pr(4B/no recombination)m Pr{no recombination))
=pupact+ Pl - ¢}
Doy =prpac+Puml —¢)—prpa
=ppac—Pume+ Dy
= =cDpy+ Dy = Dpy(1 - ¢)
= (1 -¢)’Dyy,

D[,] = (1 —C)tD{()]

Dmax| = min[Pl+(] ~pahpafll *PH—)} ifD >0
{Dmax| = min(pop s, propa ) ifD < 0




Let D[()] = Py —Pisfra = 0.250r-0.25

¢=10.050.1,0.3,0.5

0.25(1 - 0.05)' [RED]
0.25(1 -0.1)" [BLUE]
0.25(1 - 0.3)' [GREEN]
0.25(1 - 0.5)' [YELLOW]

-0.25(1 - 0.05)' [RED}
-0.25(1-0.1)" [BLUE]
-0.25(1 - 0.3)' [GREEN]
~0.25(1 - 0.5)" [YELLOW]

£ i ey
~-raeerations

e

POPULATION ADMIXTURE

Often populations have a hidden structure and
LD can be due to admixture or hidden heterogeneity

; Haplotype ; Probabi‘iity : Sub-population 1 j Sub-ﬁopulalion 2 | Mixture (50:5_(-)-)“1
AB  |r. 0.0025 0.9025 0.4525 o
Ab Pro 0.0475 0.0475 0.0475
bA | Po ~ T0.0475 0.0475 0.0475

I ab Puo 0.9025 0.0025 04525

| p=PiPw-PuPu |0 0 0.2025 )

Conceivably, if genotypic frequencies vary over groups with LD=0
mixing these groups results in LD

| V Lo‘*‘*\ﬂ‘\f\-“*

pl ATl 5

! . -
,(._{," -

' {’ o 1ot L/)

12



Two populations in LD:
one in positive LD, the other in negative LD
Mixed at 50:50 yields

!?eiblo?ypg ‘P;obablllts; ) . Sublpopufation 1 Sub-populaﬁgaé : Mixture {50:50) |
a8 | py B 04525 loo41s 02 |
R lo.0a75 04525 1025 L
D 00475 Jo4s2s i 0.25
ENE 04525 00475 025 ]

|p=rupw-pupy]o20s T o205 o B

Mixing populations can also eliminate LD

ANIMAL GENETICS Inumogersis Mo Gruts  EER |

Ao 2 TNEL IMGE-2082 N0 Grhir s

The pattern of linkage disequilibrium in German Holstein cattle

5. Qanbari*, £. C. G, Pimentel*, §. Teteas'. G. Thalier®, P, Lichiner®, A R $harifi* and H. Simianer*

1~ ¥ I j?fvjb‘»dnf_rif

r , :
L {

% | ] (L;{(,n s (\
3 ;
a 6.2 1 {
A s 4,
E 04 P ’4945
£ 03 ¢ - ’
[ e P L e 02

[hstarcs by 217N ; ALAE

0L o

Fippre 3 Ty denesond durfice pol demcte g e iy of Bk

]

Heoquliat Ve, sites - TueT Selype o mebor ool fecurney
anlerad
LD measures are frequency-dependent
T &%= Cannot compare populations or
Pasr-wise Distance [Mbp) even distributions of pairs of loci
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A VIEW OF LINEAR MODELS
(as employed in g. genetics)

Mathematically, can be viewed as a "local” approximation of a complex process

P day £ ad AR Y

it f et d P {ad iy < ] § e £y - gl o —_— [RURT) R U Sevwivwy SUSPF S S R

b

R, 3t #!
Linear approximation
A A
YT
Quadratic approximation
N -
—

LINEAR MODELS ARE "LOCAL"

" .
n™ order approximation (Feldman and Lewontin, 1974)

Response variate
Example

Model residual

y=glx)+e
\ Some function of a covariate x

Suppose  g(x) = sin(x) + cos(x)
“L[sin(x)] = [cosx]
“Llcos(x)] = [—sinx]

%[sin(x) + cos{x)] = [cosx — sinx]
o
o
42
(dv)?
Second-order Taylor series expansion ahout 0

[cosx —sinx] = [-cosx — sinx]

[sin{x) + cos{x)}] = [-cosx — sinx]

[sin{x) + cos{x)] = [sin(0) + cos{0)] + [cos0 — sin O](x — 0) + %—[—COSO - sin0](x — 0)?

2
=1+x—%

14



How good are the linear and quadratic approximations? Recall that a Taylor
series provides a local approximation only...

y 14 ;

1. 8in and cosine function 1247 3. Quadratic approximation

1.0
0.F T

2, Linear approximalior}f'

3 -4 3 ! 2 3 ¢
04T
0.6 T
0.8 T 4 Approximations
are good at x=0...

-10 T

! \

Finding structure from noisy data without models
we have measurement noise...:

evaluate function sin{x)+cos(x) at x=0, 0.5 and 1

True values are:

> sin(0)+cos(0) 5\
[1]1

> ?i”fos'g%%";(o-f’) VERY CLOSE TO EACH OTHER
[111. 7 NOISE CAN MASK SIGNALS!

> sin(1)+cos(1)
[1] 1.381773

15



Creale an R data set (N=300) from adding 100 N{0,1} residuals to each of the 3 values

> y0<-sin(0}+cos(0) +rnorm(100,0,1)
> y05<-sin(0.5)+cos(0.5)+rmorm{100,0,1}
> y1<-sin{1)+cos(1) +rnerm(100,0,1)
> y<-¢(y0,y05,y1)
density.defaultix = y)

1

MEASURING MACHINE 1 =] .

This is arrived at by using kernel o H

estimation

[

WKL)
|

PL- 3000 Banoswini - ) 7557

From a finite sample, provide estimate for each of an infinite number of poinls

/%\/ “kernel”
/ nh ZK( 7

fh:

_ 1 1 pfx—xi \f\q
Z K( } L"" '\rrA\)
K@) 20 w“ '\,6“\1/9 N /”
J- K(z)dz = 1 N v
\L_érr‘(J’ )\]\\yﬂ
J‘ zK(z)dz = 0 (\],(\; A
j 22K (z2)dz 2 0

Wasserman L. 2004. All of Statistics. Springer

5
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Epanechnikov

K(s) = { L2y 5 forlv] <5

0 otherwise

Gaussian

KG) = —L=exp-2)

Jin

Example: 5 draws from exponential distribution with parameter 40
52. 32,82 55, 11. 47, 106.63, 40. 21
Gaussian kernel with bandwidth h

_ 2 _ 2
__ 1 {exp(_% x 52.32) HXP(_%(X shz.ss)

+exp(_%(x— 11.47 )2+exp(_l(x— 106.63)2+exp(_1(x—40.21

2 h 2 h

17



3 bandwidths h = 0.2 [BLACK]
h= 2 [BLUE]

h=10 [RED]

Density 025

0101

0.05 1

90 oo 130
X

Assumed samples are [ID:

) = (25)
7= 5 D) = ke
i= =1

£(7,)

% ZE(K;,(x,X)) = E(K,(x, X))
1

Var(f’n) = (%)2 i VGF(K;,(X,X)) _ VGF(KZ(X,X))
=1

18



E(Ky(x, ) = [ Lr(3=L)nar

- Change vatiables - lety = XL — gy = _4dl |¢| _p
y h h du

E(Ky(x,X)) = I?I;K(I—gi)f(f)dz
- IK(I’)f(-\' — hut)du

Fxpanding at i = 0
S —hu) = f) + f(x = h)f, o (x —hoe = x) + %f(\ = )| o (x = A ~x)
= o) - i) %j”(x)hzu2

EKi(x. X)) = [ KG[f0) = /'y = Lo J
=) IK(ff)dif ALY J u K(u)du + %}‘”(Jr)h2 _[ u " K(u)du

E(Kn (6, X)) ~ jK(u)[f(x) — (Y + %/"(x)hzzrz]dxr
= f{x) IK(u)du - [ I u K(idu + %}"”’(x).ﬁ'?2 Iu 2K(u)du

Using properties of the kernel function (see above)
IK(H)du =1 ;Iu K()du = 0; o} = Iu K{(a)du

E(Ki(x,X)) = fix) + 5/ (x)h*ok
Bias is
E(Ki(x,X)) = flx) = /" (x)h*0%
E(F,) = fx)+ L1 ()nio}

19



Similarly

Var(Kn(x,X)) = E(Ky(x,X))* = E*(K)(x,X))

2R 0) = [(3) (5 o
= [(4 ) K2t
= LR A0) = o Lo
~ 22 [ ke

VG?‘(fn) _ Vm(K;(t,X)) ~ S sz(u)du

nh

The conditional risk (mean squared error= variance+ squared bias) is

R(fT ) = L [K2@)du+ +('(0)) o

The integrated risk is

R(f.7,) = f[# .[Kz(u)du:lf(x)dx
+j[i(f’(x))2h4o§<]dx

K2()d high
) (”) S [ e+ T [ o)y

K2 d 4
-1 n(;’)” POk [ ey

20



dR (/j”) J‘ K2 (a)du

B !1301, / 2
dh S T3 I(f(x)) dx

_[Kz(u)du ol ¢
el LA
4.[ K2 w)edu
P
ok J0"))?
! 1 4IK2(zr)dtf
h =

S ok [(00)7

Not very useful because it depends on unknown f(x)
through second derivatives /*(x)

X’ = [xflsxlzs AL 3xlp]

=) ) - ZMI HK(“’ )

Dimension |»

Sample size required to obtain MSE<0.1
for multivariate normal density and optimal /
selected.

19
67

223
768
2790
10700
143700
9 187000

110 842000

mi~v|lo|lo|la|lwin|a

The curse of dimensionality...

21



> y0<-gin(0)+cos{0)

> y1<-gin{1)+cos(1)
> y<-c(y0,y05,y1)

LARGE NOISE (ERROR VARIANCE)

Create a larger R data set (N=300000) by adding
100000 N{(0,1) residuals to each of the 3 values

+rnorm{100000,0,1)
> y05<-5in{0.5)+cos(0.5} +rnorm(100000,0,1)
+rnorm(100000,0,1)

density.defaull(x = y)

CANNOT SEE UNDERLYING STRUCTURE.

‘Can we have
QOutliers herg?

i Esamteeriin s T

> y0<-sin{0)}+cos(0)
> y1<-5in(1)+cos{1)
> y05<-5in{0.5)+cos{0.5)

MEASURING MACHINE 2

STRUCTURE IS REVEALED BUT
WE CANNOT DIFFERENTIATE

BETWEEN TWO OF THE UNDERLYING
VALUES

by

Dengn

Now we get a more precise measuring instrument with variance 0.05

+rnorm(100000,0,.05)
+rnorm{100000,0,.05)
+rnerm(100000,0,.05)

denshy.defaulfx 3 y}

0 Bar ekl = BE1EN

22



...30 WE BUY ANOTHER INSTRUMENT WITH VARIANCE 0.001!

> y0<-sin{Q)+cos(0) +rnorm{100000,0,.001)
> y1<-sin{1)+cos(1}) +rnorm(100000,0,.001)
> y05<-gin(0.5)+c0s(0.5) +rnorm(100000,0,.001)
> y<-c(y0.y05.y1)

MEASUREMENT MACHINE 3 density.defatiix =y)

STILL CANNOT DIFFERENTIATE )
BETWEEN THE ! ¥ b

> sin(0.5+cos(0.5) : i
[1] 1.357008 i

> sin(1)+cos(1) b
[1]1.381773 N :

HOWEVER, NON-PARAMETRIC DENSITY ESTIMATES DEPEND ON SOME
BANDWIDTH PARAMETER. BY REDUCING IT, WE CAN SEE THE ENTIRE
STRUCTURE OF THE PROBLEM...

density.default(x = y) density.default(x = y, bw = 0.0(
8 —
8
[
jo
Q |
0 —
o ]
Outlier
< R+
. €
o c
T T T T T T T T T T
1.0 1.2 1.4 1.0 11 1.2 1.3 1.4
N = 300000 Bandwidth = 0.0126 N = 300000 Bandwidth = 0.002

JJ sjove € l‘“t 2 e
Y2 in r! * ‘f:_t:('\ ‘,’I Jooiny

w U e Wy Raza

el |
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FINDING “STRUCTURE” WITH A LINEAR MODEL
{some call this “fearning architecture”)

We are given (x.y) data (n=10,000). Il looks like this and we run a linear regression

yhat= 0.07936+0.24814*x

> cor{x,y)

[1] 0.8064256 .

> cor(y yhat)

[1] 0.8064256

0

- yhat

RESIDUALS DISPLAY
SINUSOIDAL BEHAVICR

TRUE MODEL

> e<-rnarm{10000,0,sgri(39))
> x<-runif{10000,-30,30)

>a<-0.10
> b<-0.25

>y<-a+b*x+sin(x)+cos(x)+e

> model<-Im{y~x+sin(x}+cos(x)}

>Coefficients:
>{Intercept)

> 0.1030 0.2489 0.9518 09433

RESIDUALS LOOK RANDOM

x sin{x)  cos(x) o |

¥ - yhalgoad

24



WE GENERATE A NEW SAMPLE AT THE SAME VALUES OF X

> enew=<-rnorm{10000,0,sqri(9))
>ynew<-a+b*x+sin{x)+cos(x)+enew

CALCULATE PREDICTIVE MEAN SQUARED ERRCR
> msepredbadmodel<-sum{{ynew-yhat)**2/10000)

> msepredbadmodel

[1] 9.725709

> msepredgoodmodel<-sum{{ynew-yhatgood)**2/10000)
> msepredgocdmodel
[1] 8.729272

CALCULATE PREDICTIVE CORRELATIONS

> cor{yhat,ynew) ~
[1] 0.8070097 MSE{Good)/MSE(Bad)=0.8975

> Cor{yhatgood.ynew) MSE(Bad)/MSE(Good)=1.1141
[1]0.828854

Cor(BAD)/Cor(GOOD)=0.9736

> Imiyhat-yhatgeod) ) NOT TRUST CORRELATIONS!

Coefficients:
{Intercept)  yhatgood
0.005653 0.953468

yhatgood
[
1




How one
Wauld m

something like this?

RECALLING COMPLEXITY...

odel

Heal Thyself: Systems Biology Model Reveals;."How erIsAvmd Becoming
Cancerous. ScienceDaily (May 21, 2006)

What to do in genomic-assisted

analysis of complex genetic signals?

Include all markers, model all possible interactions?
Unrealistic...

Select sets of influential markers via mode! selection
=> Huge search space

=> Frequentist methods “err” probabilistically

=> Bayesian model selection (RJMC) difficuit to tune

Use LASSO (least absolute shrinkage and selection
operator): Tibshirani (1996). What about interactions?

Explore model-free techniques that have been used
successfully in many domains

=>» semi-parametric regression
=> machine learning: focus on prediction, learning
mappings from inputs to outputs

26



DEFINITION OF MACHINE
LEARNING
(Wikipedia)

concerned with
{machines)
on data,

Machine learning: subfield of astiii
design and development of ¢
to improve their performant

time (to izam

A major facus of machine Iearmng research is to automatically produce
{(induce) 1 ., such as rules and patiornns, from data. Hence
machlne Iearmng is closeiy related to flelds such asc

: 5, HHOUD 3 o

27



5. Introduction to hon-
parametric curve fitting:
Loess, kernel regression,

reproducing kernel methods,
neural networks

Distinctive aspects of non-parametric
fitting

Objectives: investigate patterns free of strictures
imposed by parametric models
Can produce surprising results

Regression coefficients appear but (typically) do
not have an obvious interpretation

Often have very good predictive performance in
cross-validation

Tuning methods similar to those for parametric
methods




Example: thin-plate splines

1o T i
3 %08 E
T v !
" .
[ [
; ;uu i) -
) [
2 b4
3 :
% ]
£ £
¥ H

S = By + Prxy + Brxi; +ia;[(-"n - X v'i 12)']log[ fl)‘ 2 }_]

J=1

Risk of heart attack after 19 years as a function of cholesterol level and blood pressure
Left: logistic regression model. Right: thin plate spline fit. Wahba (2007)

LOESS REGRESSION:

Non-parameftric exploration

of inbreeding depression for

yield and somatic cell count
in Jersey cattle




AN OVERVIEW OF LOWESS
REGRESSION

1) DATAPOINTS (5, 1) /- 1.0

2) SPANNING PARAMETER 7. ¢ = ¢« |
Ao facdo LARGEST INTEGER - su

3) FOR EACH ... FIND / POINTS :;: “CLOSEST" TO ».,
N{va)= NEIGHBORHOOD OF / POINTS

4) COMPUTE Afrvg) = max, -y, v, = x4

5) TO EACH (v, v/ j; v oo N(v, ) ASSIGN WEIGHT

wilyg ) = R ) .
i ! ﬁi\ L i\.{‘\]: i J

6) FIT BY WEIGHTED LEAST-SQUARES

Z wlea il = fo - fox = fox]y

RETURN ‘i':(.‘.gé ‘5 == I‘{ju F}E“\“f i f}* \",':

7) REPEAT FOR EACH OF THE ¢




ROBUST LOWESS

*STANDARD LOWESS NOT ROBUST

sEORASED ON LEARTSOUARRY WEIGHTS

.BI-SQUARE LOWESS

1) FiT DATA USING STANDARD LOESS

2) CALCULATE LOESS RESIDUALS », - i
3y COMPUTE G medienig - ¥
4) CALCULATE BI-SQUARE ROBUST WEIGHTS

H \l“ — |'
! 0y ;

5) REPEAT LOESS WITH WEIGHTS #;v.{x¢.)

6) REPEAT 2-5 UNTIL LOESS CURVE "CONVERGES”




Example

Birth rate in US population
(U. S. Department of Health, Education and
Welfare)

* n=96

* births per 1000 US population

during 1940-47

Top > Ordinary Least Squares with 15t, 20 & 3rd degree polynomial
Bottom » LOWESS fitwithf= .2, f=4 & f:=6
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h Rar.
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GALTON’S BEND
(Wachsmuth et al. 2003, Am. Stat.)

DiAGRAM nasso oy TABLE 1.

ali fronala Bkt atagewigraed By d G

Lo . .
g BTN TS ADYLY UHILDREN
. e hag . wnd Bevigt sram B busker

b # b ¥

s i i & ]

PR B S e

i

Figurp | Gaffors Bfted regravsnn mofel

A possibility is that
Galton 1gnored

Haight of Mid-Parent in Inches

60} A T T wl
B0 65 70 75
Height of Child in inches

Fronure 2. BSYETAT plor of Gaiton s Data witis iowss fio

Fhe ek vurve i the center ot the plot s a deexs smioosher
Clevelund wd Devlin 1958y The stoother sugpests that the
relaton between parest amd chibd stalue e sol lincar, These
in o bend sathe Curve soraewhere around tie avessgee ey
ol approxinuaely 65 inclws Ton parerts and children. A twe.
stipe precewise Bucar regression {MHinkley 19710 idennties o
breakpoint ol aroonnd 70 a0l Bads w5 Highly sgpificant ¢,
Ay

: - f : : concealed heterogeneity




Does the bend disappear by disaggregation of the sample?
Analysis of data from Pearson and Lee (1903)

Aok 1f -
{

Heighi of Father

0k, PRI | et BEND
m%t' ' " f' ' ] STILL
THERE!

Height of Mathar

%0 GO 7G 80 50 60 70 80
Heigi of Son Height of Daughter

Frpuve 3 Pparson's daia.

Wachsmuth et al. (2003) write:

4

I their search for universal hereditary faws, Gulton and

- Pearson were driven by the lincar model and the normal distsi-

bution beciuse the associated paniimeters had scientific meaning
for them that went bevond mere deseription.




RECALL:FINDING “STRUCTURE" WITH A LINEAR MODEL
{some call this “fearning architecture”)

We were given (x,y} data (n=10,000}. It looked like this and we run a linear regression

yhat= 0.07936+0.24814"x

> cor(x,y)
[1] 0.8064256

> cor(y,yhat)
[1] 0.80642586

¥ - yhat

RESIDUALS DISPLAY
SINUSQOIDAL BEHAVIOR

TRUI: MODEL

> c<-rnorm( 1000§),0,5qrt(9))
= x<-runifi 10000,-30,30)

= a<-0.10

> b<-().25
sy<-atb*xisinix)tcos(x)+te

= model<-lm(y—x+sin(x)+cos(x))
=Cocflicicnis:

> Intereept) X sin{x)  cos(x)
> (.E030 0.2489 09518 09433

RESIDUALS LOOK RANDOM

)

10

y - yhalgood

-10




WE GENERATED A NEW SAMPLE AT THE SAME VALUES OF X

= enew<-rnorm(10000,0,5qrl{9}}
>ynew<-a+b*x+sin{x)+cos{x}+enew

CALCULATED PREDICTIVE MEAN SQUARED ERROR
> msepredbadmodel<-sum{{ynew-yhat)**2/10000)

> msepredbadmodel

[1]19.725709

> msepredgoodmodel<-sum{(ynew-yhatgood)**2/10000)
> msepredgoodmeodel

[1] 8.720272

CALCULATED PREDICTIVE CORRELATIONS

> cor(yhat,ynew)

[1] 0.8570097
> cor(yhatgood,ynew
[1] 0_3(25524 ynew) MSE({Good)/MSE(Bad)=0.8975
MSE({Bad)/MSE{Good)=1.1141
Cor(BADYCor{GO0D)=0.9736
> Im(yhat~yhatgood) FOUND: DO NOT TRUST CORRELATIONS!
Coefficients:

{Intercept) yhatgood
0.005653 ©£.953468

yhatgood
o}
1




NEW TRAINING SAMPLE

c<-rnormi 10000.0.sqri{S )

x<-runifi 1 0000.-30,30)

a=-0.10

b=-0).25

y<-itb*xsin(x JHeos(x)+e
fffHTRAIN LSING PARAMETRIC MODREL
madelgood<-Imiy-x+sing x)+eos(x))
madetgoeod
yhatgood<-fed{imodelgeod }
resgood<-y-yhatgood
modelbad<-Im(y~x)

yhatbad=<-fitied(moedelbad)
resbad<-y-yhatbad

##EETRAIN USING LOESS SPAN 0.50
yloess<-loess(y~x,span={.50.degree=2}
vhatloess<-predict{yloess)
reslocss<-y-yhatloess

HEHETRAIN USING LOESS SPAN 010
vloessl 0<-loess(y~x,span=1{.10,degree=2)
vhatloess 10<-predict{ yloess 1)
resloess 1 0<-y-yhatlaess10

HEEHTRAIN USING LOESS SPAN 0.05
yloess003<-loess(y-%.span=0.05 degree=2)
vhatloess005<-predict(yloess005)
resloessQQ5<-y-yhatloess005
par(mifrow=¢(2,2)}

plot{x,resbad)

plot(x, resioess)

plot{x,resloess10)

plot {x,resloess005)

par(mfrow=c(1,1))

TRAINING SAMPLE RESIDUALS: SINUSOIDAL BEHAVIOR LESS OBVIOUS

IN BOTTOM PLOTS

0 5 10

resbad

-10

&R
T ¥ T T T T T
-30 -0 0 10 20 30

X

resioess10
aQ

=30 S0 0 19 20 30

x

=
4 ]
g
% ©
2
o
Ao o )
T T T T T T T
-30 -0 0 10 26 30
x
n
g
]
0
3
@
4

-30 -10 0 10 20 30

X
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HHGENERATE A NEW SAMPLE AT THE SAME VALUES OF X PROPERLY TUNED LOESS

enew<-rnorm{10000,0,sqrt(9)) HAS ALI\IOST AS (JOOD

ynews-a+h x+sin(xcos(xHenew PERFORMANCLE AS *“TRUE®
MODEL

HEFHRTRAINING MEAN SQUARED ERROR

msebadmodel<-sum((ynew-yhatoad)**2/10000)

msegoodmodel<-sumi{ynew-yhatgood}'*2/10000)

> msebadmodel

mseloess<-sum{{ynaw-yhatloess)**2/10000) [1] 1004631
mseloess10<-sum{(ynew-yhatloess 10)"*2/10000) =
> msegoodimodel
mseloess005<-sum({ynew-yhatloess005)**2/10000) [1]9.069427
=
EHSEVALUATION OF TRAINING PERFORMANCE = mseloess
§¢
msebadmodel [” 10.03659
msegoodmodel > msetocss 10
[119.109832
mseloess -
mseloess10 = mseloess 005
mseloess005 [l] 9111001
par{mfrow=c(2,2))
plot(yhatbad,yhatgood}
plot(yhatloess.yhatgood)
plet(yhatlcess10,yhatgood)
plot{yhatlcess005,yhalgood)
par{mfrow=c(1,1))
w o -
3 3
85 o4 & o
£ £
T T T T T T
=] 0 5 5 4] 5
yhalbad yhalloess
- w3
E .. i
2 2
= 2l
P @
T T T
-5 ) 5 -5 Q 5

yhatleess10 yhalloess005




INBREEDING DEPRESSION

« Examine relationships of yield (milk,

protein, fat) and somatic cell score (SCS)
with inbreeding coefficient (i) using field
data from US Jerseys

- Use REML, BLUP and "local regression”

method (LOESS) for this purpose

% Inbreeding

LEVEL OF INBREEDING IN HOLSTEINS, USA

Hecent Years Based on Calf Begistrations

e e e |
1860 1870 1880 1800 2000 2010

Birth Year

12



* Relationship between mean value of a
quantitative trait and inbreeding
coefficienT (F) expec‘red to be linear

o

R 5% 3
Q” \%tw ] sgihiii‘ %ﬁ L

- Not so if i‘j““'f:x?*"‘ Tic mteraction
between dominance effects BXIST

(Crow & Kimura, 1970)

ONE-LOCUS MODEL

GENOTYPE (1} .4, A Cdedy
FREQUENCY  pi(! /) 201 = Fy pi(l = £) + pal
PHENOTYPE - gD 1A |

EUX) = g+ A{pz = py) = 2pp2l) - 2pypaDE
— g OF
B Fo 1)
= (g 3y = (" ereromgasiiy)

ADDITIVE MODEL WITH 7 (or /7Y AS COVARIATED CONTRADICTORY




TWO (UNLINKED) LOCT.
NO EPISTASIS

Joint frequencies are product of marginal frequencies

GENOTYPE Fod

FREQUENCY  :if - & 2o ld o P iriid o o il
HIE S R T AT TN EF I
£ qy Y f 3 i ) i3 i ! I
RV Y e Ty e end i/ o L i H
.t} Al 4 119 { IH Pl ;

TWO (UNLINKED) LOCT:
EPISTASIS

GENOTYPE | iy A vy
FREQUENCY ! pi(l = 7y pi 7 2pipafl ) pil = Py ol
5.5, IS I‘;.f':'. T ff. -+ - ALy B L i t g B
1;3’ VB ) Dl ) U _f fi) ' NI D 44 [TERC EFPIES ¢ i
B A By g A B p DBl A B ‘

PALLELES AT 4 and B LOCT SAME SURSCRIPTYADD |

(ABDITIVE X ADDITIVE)

SHOMOZYGOUS AT HETEROZYGOUS AT BSUBSTRACT AND ADD K
HIMOZYGOUS AT & HUTERGZYGOUS AT 4=2SUBSTRACT AND ADD &
(ADDITIVE X BOMINANCE)

THETUROZY GOLS AT 4 AND B2ADD J

(DOAMINANCE X ROMINANCE} ] ] _
LI L parameters (d d. freedom
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Mean value under dominance x
dominance epistasis

. 3 H i Y
Yoo Ay PR LT P PR
friiT iy REAST ST ROT B S RO

St

s
-
oy

L4 0 . . - . -
Dominance, additive x donunance, and dominance X dominance mtervene
i linear regression

&, . . - . . . .
Epistasis without dominance does not enter into mean-F relationship

@ . . . . .
Dominance x dominance intervenes in second-order regression

DATA

* First lactation records (herds) on 59,778
(1,142) Jersey cows

* 6 generations of known pedigree

- First calving between 1995 and 2000

15



Distribution of F

- F calculated from all known pedigree
information

* F ranged between O and 34%

« Median F = 6.25%

Histogram of F values

26500 - M
20600 - m

15000

500

F(%)
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Procedures
- Fit linear models without F as covariate

* Compute EBLUP residuals from these
models

* Fit nonparametric regression to EBLUP
residuals in order to obtain nonparametric
lines describing relationship between
performance and inbreeding level

Linear Models

Model

Vi = HYS, +AGEJ. +ﬁl(Dijk ~D)+a, + ek

Vi = somatic cell score (5CS), milk, protein, or fat yield;
HYS, = fixed effect of herd-year-season (/= 1,2,...,12276 for D52; 11168 for D54 or
6406 for DS6, with seasons classes January-April, May-August, September-December);

AGEJ- = fixed effect of age at calving class; j=12,..6
(< 617, 617- 716, 717-816, B17-916, 917-1016, or >1016 days of age);
B, = fixed regression coefficient of performance on days in milk;
Dg‘k = days in milk for animal & in herd-year-season /and age of calving class /
D =263;
@, = random additive genetic effect of animal 4, and

Cijk = random residual.

17



Linear Model Assumptions

Genetic and residual effects assumed mutually

independent, with ¢ ~ N(0.15)and a - N, Ac*.)where A is the
additive relationship matrix (1 + F), in the k' diagonal
position, F\ is the inbreeding coefficient of animal 4)

Nonparametric regression

* Fit LOESS regression to BLUP residuals
with F as covariate

* Vary spanning parameter & degree of local
polynomial

» Plot fitted values of residuals against F

18



LOESS

(Fitting done by locally weighted least
squares)

&; is LOESS fit using only residuals in the
heighborhood of F;, i=1,2,..n

(i=1,2,...nanimals; j=1,...4 traits)

+ Size of neighborhood determined by f -4
q = number of points in neighborhood 7
n = total number of points

"Robust” LOESS

Weights assigned fo £,;:

[t+1] _ [7] [7]
= Wy = Wiy -5y.k
t=12,34
F -F
[1] k i 343
w o =[1— l=1,2,...
D W =l g
& —&.
II) 5[:]1__ — 1_ ifk ik 232
=l (6-med )l

~

med = median of all (£, ~£,)

19



Cowswithat least6 generatiors of known pedigree f=1

“
’ ‘\‘_ h "‘“
residual e R
Y e T
o, ? L e
2 MK
FAT
- ——— PROTAIN
- ACS
a
-
H T T B i T
Q 5 K] 15 b1 25 35

X
OU
2" degree local polynomial F%)

“Robust” original (black) with bootstrap (light blue) LOESS curves of
yields for US Jerscys with at least 6 gencrations of known pedigrec,

based on medians of EBLUP residuals (y-axis = é,, /&)

MILK YIELD FAT YIILD PROTELN YIELD
5 0 - 02 SRS B
3 o 2 3
T i“_/—\\ AR
by e i
202 . 301 S ,_/ FEH el
E ‘\ B = ki e
EREE . e 2 01
9 . h:]
306 %04 306
3 3 i
2 7 2
03 | . 5% o -43
g —
1 w ot [ b [LOPERE S 35 DRI TR 5 i 3
S foo Fo

2m degree local polynomial
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Conclusions

+ LOESS analysis suggested local relationships.

+ Effects of inbreeding seem nil, until for F values
up to ~7%

- Effects of inbreeding not accounted well by
additive models

* Results may be confounded by effects of selection
that are unaccounted for

Kernel Regression

21



vi =g(xy) +ei i=1,2,....n

where:

v 1s the measurement taken on individual §

x;isap x | vector of observed SNP genotypes

g(. ) 1s some unknown function relating genotypes to phenotypes.
Set g(x;)=E(y; | x;)= conditional expectation function

e; ~ (0,6?%) is a random residual

Conditional expectation function

p(x.v)
gx)=|v — v
Coplx)
J‘pr(x‘}-')dr
- »{x) )
> Non-parametric estimator of density of x

i
-~ _ 1 X—Xx
p(X) P 21K< h )
e =

~

“Focal point”

“Kernel’, possibly a probability density function with
some bandwidth parameter

22



We would fike:

Pa ,
o N - XX .
_‘Ap(x) dx = i’ ZZ J. A( i )(Il
J=
Implying - %K(L_x—)(lx =]
i h
......I

= |

plxy) = =4

Recall

o [ 2,

Similarly. can form non-parametric estimator of joint density

ENCONE

g(x) . .
px)
j_r p(x,r)dy  «—--="" ESTIMATE NUMERATOR
B px) e ESTIMATE DENOMINATOR

Xi—X
?

)

23



Estimate numerator

j}'ﬁ(x.j')d}' J’j. ,3]:!’"-1 JX']:A< ,\‘;;:.' )A( x,;;x )”ﬁ"
- s ST I o Jo(352),

I=

Letz = <= so that v = /= and

Vi—V

.}17 _[1}\(——}7—_){]‘ = -}!}‘ J(r, + lrz )Nzl

= JU', + b=y Kz )y

J}‘,K(: Yz + 1 " o = T

_\‘;-JK(:)(!: +hE(Z).

K(.) can be constructed such that:
[K(=)d= = tand E(z) = |zR{z)dz = 0

Then: —}; J1 A(iﬁl)rﬁ =1y

Estimator of numerator is

N
Bl . R AKX
j) p(‘\.] )d}‘ = # § A ;K(T)
=1

24



. »  Forming non-parametric estimator of conditional expectation

~ N {.1‘ PIXHdy
E | X} = g(x) ==

- pix;

E(r | x) = g(x) = -
N7 e X
nh¥ LA\ I )
=1 Nadaraya-Watson estimator
" D weighted average)
T‘A(\,t) ; - {welg ge)
L N— "—"{Z“}(x)_‘} :
XX E :
=1 ;
Lk( ) i' "," It (\) o= (
ECS
Reiationship betwveen B ampesemng ey ey R e
Income and age ? Erohulicn Wegpis ¥ *
{Chu and Marron, 1991) . ]
\ ) - )‘&Q xiﬁym i § .
s 'ﬂﬁw :*i .
S mad " e
éﬁ" K‘K X.x
.,g.‘ T * * » *
N );X L

h=8 |ocal features

0y
4

#
5!
.3

[ > Disappear {dashes)
R h=1 lots of variation
sl nrae J {dots)

iy
¥ 1. Seaqer piot and amocth s for caramg power dets. Kersel
i Ni0 A% wivdew widie are reorarenfed by curica ol the bor
sor. ecid varces & 0 3, St varaw o N doshed ture b %
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Bandwidth can be gauged by, e.g.. cross-validation

17

D D i)’

Clih) = =

1

~Create a grid of h values

~For each value compute the CV mean squared error
(above is leave-one-out, but this may not be best)

~Use the h value which minimizes CV(.)

THE ARCHITECTURE PROBLEM
REVISITED: ANOTHER TRAINING SAMPLE

e<-rnorm{10000,0,sqrt(9)) Kernel regression h=0.5
x<-runif{ 10000,-30,30)

a<-0.10

b<-0.25 .
y<-atb¥*x+sin(x)}+cos(x)e

HHIHTRAIN USING PARAMETRIC MODEL
medelgood<-Im{y—x+sin(x)+cos(x))

vhatkemel(5
S5 0 5

maedelgood
yhatgood <-fitted(muodelgood) -30 -20 -10 0 10 20
modelbad<-Im{y-x)
yhatbad<-fitted{modelbad)

H#HHFTRAIN USING LOESS SPAN 0.10
ylogss10<-loess(y~x,span=0.10,degree=2)
yhatloessl0<-predici{yloess 10)
RHHATRAIN USING LOESS SPAN 0.05

Kernel regression h=0.05

yloess05<-logss(y~x,span=0.05 degree~2)
yhatloessC05<-predici(yloess005)

yhatkeme{005
0

-10

F4TRAIN WITIT KERNEL REGRESSION
ykemel05<-ksmooth{x,y,bandwidth=0.5 kemnel =¢{"normal"))
ykemel005 <-ksmooth(x,y,bandwidth=0.05 kermel=c("normal ")}
par(mfrow=c{2,1))
plot{ykemnel03 xlab="x" ylab="vhatkernel)3",

main="Kemel regression h=0,5")
plot(ykemel003,x1ab="x",ylab="yhatkemel00 5",
main="Kemel regression h=0.05")

par(mfrow=c(1,1)}

-30 -20 -10 0 10 20




PENALIZED METHODS
for functional inference

« The idea of “penalty is ad-hoc
« It does not arise “naturally” in classical inference
+ It appears very naturally in Bayesian inference
= L, penalty: equivalent to
Gaussian prior
=> L, penalty: equivalent to double
exponential prior

The concept of penalized likelihood
(example in the mixed linear model)

y=Xp+Zu+e
yIB,u, R~N(XP + Zu,R)
u~N(0,G)
PYBUR) = —L—exp[ Ly - XB-Zu) Ry - XB - Zw) |
(2m)= R}
pu|G) = I exp[f—%u'G"u]

@2r) 7G|




Assuming known variance components, the log of the joint density of the data and
random effects is termed “penalized likelihood

[:> KBuy.RG) =K~ 1(-XB-Zu) Ry~ Xp—Zn) - Lu'G 'u

20, RG) = K+ (= XB-2u) (o~ XB—Zu) +0'G 'y Penalized S8

t HBUYRG)  XRI(y - XB - Zu)

HBERO _ 7Ry~ XB - Zu) — G'u
Setting the derivatives to 0 yieids

XR7'X  XRIZ | Xrly
ZRIX ZR'Z+ G Z'Ry

¥ The solution to these equations produces the “maximum penalized
likelihood” estimates of [} and 1
»These solutions are also the BLUE(S) and BLUP

&

)

=

8. Reproducing Kernel Hilbert
spaces mixed model

Function of molecular information x {vector of SNP variables)
5

N,
\

b

n 2
SSTe(x), A1 = lvi — wiB — zu — g(x;)] 5 Allg(0)l[ >
=1

Smoothing parameter (A)

“Penalized sum of squares” Some norm under
Hilbert space {H} of
functions

Variational problem: find g(x) over entire space of functions minimizing SS(.)




Solution to variational problem: linear function o )
No. individuals with

e molecular data
>

g() a0+ aK(, %))

Regression coefficient Reproducing kemel

Example of reproducing kernel:

Kh'(X, Xj) = CXp': (x_x.f)h(x_xj) :I

->» Definition of positive-definite kernel (the theory deals with “reproducing
kernels) function

j k(x, )g(x)g(t)p(x, t)dxdt >0

= Positive-definite kernel matrix; symmetric, with kfi.j,h)=k(j.i.h)

[ K(L,Lh) K(L2R) . . . k(,mh) |
K2,L,h) k2,20 . . . k2.nh)
K.ﬁ:
k(n,1,h) k(m2,h) . . . k(mmh)

h= scalar or vector of bandwidth parameters




MEASURES OF DISTANCE
THAT CAN BE USED IN KERNELS

div, yys={la—yll= 05 T — 0¥

Euclidean
Manhattan Ay y) s Z| Xy
L=
. ~ R . A .
Bray-Curtis dy= (el X - x DA xi + X
0=0.25 _ o=7
S| KERMEL GENERATING | Kieg)=expl @k d,) £11 LOCAL KERNEL
. | STRONG COVARIANCES }, s -
% = —x;r
g e } :JI o _—
- 0 [v] [l‘d [ 0

ki

T
oo 02 ) 06 a8

Histogram of evaluations of Gaussian kernel by value of bandwidth parameter




Multivariate-t kernel {Gianola, 2012) for an S x 1 vector

Stv
2

)

(ix) 3 (xiex) B
Vv

kv,Z(xi:-xj) = 1+

27! = Diag(2pigu),
L = Diag(2piqy)

! = R where R is a matrix containing »? from LD
=R

5
LetS=5d= D (ri~x4)

k=1

For Gaussian kernel suppose 8 = ﬁ =1,2,3

For r-kernel v = 2,4,8, Gaussian = exp(—0d)

We will have ()
t = [1 + %] :

exp(—d) BLACK THIN
exp{-2d) BLACK THIN
exp(-3d) BLACK THIN

[1+£7) ReD DASH
[1+27C#) BLUE DASH

1+27 ) GREEN DASH
(1+4

. Lo
Kemel evaluation
09




Mixed model representation {enhancing pedigrees...)

" ,
X~X;) (X—X;
Yi=WB+zu+ E cxp[—(——’)h(—’) ]a_, + e
J=1

Define row vector

t(h) = {exp[—_‘—u'“mh(mi) }}

ti(th)= kifh)
t)(h) T(h)=K{(h)
ty(h
Th) = 2(h)
t.(h)
Then: Bandwidth parameter

y=WB+Zu+T()a +e

G =—
/ A
Do a ~ N(O, T! (h)O'g,) Smoothing
parameter
[ w'w W'z WT(h) 1=
2 B W'y
' ' ,]& '

=)

=
=
ey
o

TOW  T0Z 0T TR %

a

h assumed known here




jfﬁ et ¢}tf¢/7'/7 /f PRAYTE SR 270] okl

THE “ANIMAL MODEL” IS A PARTICULAR CASE OF RKHS
y = Aa+te
a ~ N(0,4 o2
e ~ N(0,JIo2)
= u = Aa ~ N(0,4c?2)

2
(A’A +A9-;—')Ef = Ay

Oy

ol ..
A(A +[;{2:-)(1 = Ay
2 -1
- (A +1"§) ¥
T4
o2\
w Aad = (1+A‘—§-) v = BLUP(additive effects)
g,

Use A as kernel matrix

(=3

Penalized estimation

a=arg min{ (y— Ka)’ (y - Ko)+ la'’Ka }

Bayesian View

y=Ka+g
ple.a)= N0, 102 )v(a]0, K o)

|17 Kimeldorf, (.S, & Wahba, G, (1970,

R

% 'w\

e u(d_

B v

et

boc.



Mo oo Sl e o REH e

@@‘Uf) A U i)) b )
>l }’\”ﬁ )4

GENOMIC BLUP IS A PARTICULAR CASE OF RKHS
y=XX'a+e
a~ N(O,(XX’)_]cf;)
e ~ N(0,Io?)

He Kenw [ e

= =XXa ~ NO,XX'0})

(XXXX+XX‘ 9e )a = XXy
oy

(XA”)(XX’ +1°—§>a — XXy
o}

-1
2
i = (Xx +1"—:) ¥
o
2

B -1
= (1+ (XX*)"G—E) y = "GENOMIC BLUP"

Tp

How to Choose the Reproducing Kernel? [1]

(ﬁ Pedigree-models K=A

= Genomic Models:

A - Marker-based kinship

Modcl-derived Kernel _K=XX
AN

Klt,t,)

[

(

Predictive Approach Explore a wide variety of kernels

=> Cross-validation

=> Bayesian methods

{1] Shawne-Taylor and Cristianini (2004) -




Choosing the RK based on predictive ability

d(xi":): = K(i,j!ﬂ)=E.\'p{ —de(x,,xf) }
(genctic) distance between individuals
Strategies
o
By . | - Grid of Values of o +CV
RN - Fully Bayesian: assign a priorto 8
{computationally demanding)

- Kernel Averaging [1]

K j)= e k(i o )+ (- e K, 16,)

Actually, this means:
Y= Klﬂf] +Kzﬂf2 +e
a;~N{0, inv(K;War(a,))

[1] de los Campos et al. (2010) Genelics Research a;~N(0, inv(Ky)Var(as))

Example 1 of RKHS

d) d]
vy = 12 01000 e
fiy dz
V3 = 113 Bo 00100 e3
= + [4¢) + 78] +
Yy =7 11 B 00010 e
ay dq
ys = 15 00001 es
[£X1 d5
=Xp+Z{a+d)+e f \
Additive Dominance
Henderson (1985) assumed 02 = 5,04 = 4 and o2 = 20
Lo 5 3 3 10000
01 L+ 1o 01000
]
A= + L 1 1 L tandp=| 00 1 L0
]
+ 4L L 00+ 10
i % 0 f % 1 1 00 0 01




Application of BLUP paradigm leads to

E!:[ 5.145 0.241 ]

it
a

[0.045 —0.192 -0.343 0.096 0.242 ]

o~

d

[o ~0.073 —0.365 0.162 0.234 ]

g-a+d :[ 0.045 —0.265 —0.708 0.259 0.477 ]

Next, do RKHS with K=A+D as positive-definite kernel matrix

EREEEN

02 L 1o

K=A+D=| + L 2 2 1

IR

10440
B 1 2 2%%0 a €3
y3=13|:ﬁoj|+%2%% a || e
Va 11 B i 21 €y eq
¥s s 0o+ L2 as es

=XB+Ka+e

10



o, =03+a;=9 > Thisis 1/A

[ Bo=5289 P, =0200 &>=-0.128 & =-0.781 & = 0.487 @s = 0.422 ]

i 0.036

B -0.210

8, |-| 0560 ar

2xa 0.206 g=a+d-[ 0.045 -0.265 ~0.708 0.259 0.477 ]
Z0s 0.382

PREDICTING FUTURE RECORDS UNDER THE SAME ENVIRONMENTAL
CONDITIONS; PARAMETRICALLY

—_ ;] _ _ _ _ _ ;7]
i 12 [4]] T d] |_ 2
_1",_; 1 2 o2 ds eg

;o fo !

i =] 13 g + oas (] dy | H] &
1

J’g I 1 ady d4 eg

| |15 KA J

= Mp8p+ ef,

PREDICTION OF FUTURE RECORDS NON-PARAMETRICALLY

s 12 [0 4 L] ¢ ]
¥ 12 5o 2550 :j &
o= 13 [ﬁ.}r T2 4 r v |t ¢
¥ 11 EEE S | ¢
_J’gJ L3 _0%%2J _"';_

= MgBx +e'.

FOR BOTH APPROACHES THE PREDICTIVE DISTRIBUTION 1S

- -
.Vf] o
2 ) ~
i ’ \;‘_\9‘
fran| 2| dispersion {smoothing} parameters e Y
J Y4 . )‘\
Ya \\C
; s Q -
L s s\
~ IV

N (I’\V’I‘B_,(M‘C_"l\1.’+lf)cr§),

i T AT
-.':) 2 3 S\Y‘T‘ v

W
N




[ 5 674 +6.020
5.364 4 5. 460
5.162 & 5.353
5.646 1 5. 834
6.828 + 6. 115

For the two procedures the mean and SD of the predictive distributions are:

5.754£5.576
5.286 5. 659
4.735+5 561
5.919%5.940
7.061 £6. 157

Example 2 of RKHS

Drawn from
Weibull dislribulion
Orawn from

exponential distribution /
T S : : d :
".i} =, g f} 3,

Elyaiog . g ei,u‘,\_;"‘f_,_‘ , 121
whoere o, {31 e o5 ('f,‘i are elkects of alleles © and o the v {73 locas. The svsten: i noun-
linear on aflelie effeers, as indicsted by the lirst derivadives o the conlditional expectation
funetion with respect to the o's or 3's, For fnstanee

GE G T B :

1)
~ =,y A e e =
i, Vo ad) T A \ 4

12



Arbitrary Gaussian kernel adopted for the RKHS regression
using as covariate a 2 x | veclor: number of alleles at each of the two loci,
e.g., vi4 = 2,x4, = 1 and x,, = 0. For example, the kernel entry 4488 and A4bb is

-2 +(2-0)
(X o X i) = CXP["%] = Cxp[—%],

r AABE AABL AABb AaBB AuBb Aabb aaBB aaBh aabb
L A L 2 s 4 & &

A4ABB 1 e’ ek [ en e [0 en e
L L L 2 _2 _s s _i

AABD 7% 1 e n ¢ x e @ ¢ v e
3 1 5 _2 L 5 s 4

Adbb e s e 1 ¢k er en e eh @
1 2 s 1 i - 2 5

AaBB e ¢ h en 1 e x e’ e e n @
K"’ = 2 _1 : : 1 2 2 2
AaBb e % e e % eh 1 & h e r ern  er

_s 2 L i L s L2 _i

Aabh e e e e w eF 1 @k er e
_a _i & L 2 s 3 _4

aaBl e+ e r e n [cD ek ) I en ek
_: _3 5 _2 L _z _ _1

aalb ek e h ¢h e er et e ] @

_E & 3 _: 2 1 _4 L
aabh ek e n e N ¢ 2N [N e n l

10T
Kemel value
oY T

Kemel value (.,.;#) = exp(-1) agains! e
bandwidth parameter 4. Curves, from
upper to lower, correspend to

§=12,458 Kemel value ' T
out

ﬁ%nd\vj{a(h p%'ramgrcr (hs0

o0&

[
Q5T
04T
03T
0IT

ot

'

————

00 o=y —— i
6.7 B
’ Bsandwidlh pﬂramclgr (hﬁu




h = 1.75 as bandwidth parameter

6 unique entries in the K matrix:

1.0 (diagonal eiements, the two individuals have identical genotypes
0.565 (3 alleles in common in a pair of individuals)

0.319 (2 alleles in common, 1 per locus)

0.102 (2 alleles in common at only one locus)

0.06 (1 allele in common)

0.01 (no alleles shared).

Training set

Residuals were deswn from e nermal distzibetion (0,200, ane] adeded 10 120 1 form
phicnetypes. The resuliine phenotypie distribution s wskoown, beesise g is a non-linear
Panetion of exponentiad swd Weilad] vagintes, plus ol an adiditive norzedly distrilbndod reshi-
nal. There were O dndividbeeds with vevords for cacls of the AABB AADBD AW conotypes:
20 for each of Aad203 AaZ3h and Aabb, aml & of cacly of w30 an D aud webb, Thos, e

were 90 tedividnals with plenaivpie records, in tosal,

Testing set
100

A more hmportant e at lease feom the lllsiw(:iiw' taken iz thiv paper, s Mour
o sample” prediciive abilite. To exeanine thiss 3 new {Independdent b saanples of plens-
types were generated, asssiap the residual distrilmgion N €0,200, a2 before, and with

S individuzsls per genaivpe, Ledo there were 15 subjects | hosanple, The predietive

IMPORTANT ISSUE TO DISCUSS HERE
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df=tr{X(X' X)X
in regression

df=tr{X(X'X + )" 1X)
in ridge regression

df=tr{K(K'K + KA) 1K
=tr{(K + I KY)
in RKHS regression
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e it crer Far fosir stioeieb 00t e predueris e saneede SIS sepres b

Lerned Hitlwrs soeve sogressdon s h Gl bvaged egad banedwidels BT

salae ol e mpee bz poraene: A

Explanation of results

How does ane explaiu the patados tlee a shuple additive anodel had better predictive
prrforimauee when sene action wie non-linenr s ss simndated here? Ticordor o address 1his

cpostion, consider the "one! mean vatne of the 9 ooty pes sinlavesd:

nh nh [
A4 1LO3S Nu0t GULT
Aa D326 2 U1G 2757

e 09FG D3IE 085

The "eorveet]” sim of squares among these means s 12525, A lxed etlecrs analysis
ol varianee of these ®lrne” vadues {assimming gesotvpes were conally freaquentt gives the
following, pagtition of seqnential amy of squares, aparl from rowscding crrors: 1y oadedisive
cileet of bocus 4 0 832850 2) additive olfeet of leens B oalter aceounting for A4 ;0 7065
Sielominnuee elfoces of Lol A sud B2 L2900 and 31 epistasiss 6.3% . Thns, even thongly
(he genetie svstem was nos-linear. most ol the sagiation oy, genntvpie mneats can be
aceounted fur with o Boear iwoded eoadiditive effeets, The additive model bl ihe worst (i
1o the data (even worse than the models that assone dominanee and episiasisi and, et

sl the Dest prediciive abilisv, Tollowsd by RIVHS [or {rouzldyy 0.5 <0 A < 3.

e {
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Example : o
Of RKHS 2 SO

1 A 2
B AR

i i I o 2 s
L R AU !
et Dl - 2
s R ?
L E
4k KRR K

o Plere roaas aeb e caziadadits s am of e e Twon sdies mlekine

serovins o Cheese " adlede ducs ol slieet it vabiges

o Fhere oo sdominonee of oy ot theee Jock i indicital oo aemn

Al betwen Letesma gotes il Uae ivezige ol the Borey wotes

o Flereiovonsiderabde et tw I gt sesae S0 thiere qpane do
mtahee ad vinchoof the A8 nzed 0 ol L And 0 dividuabs. reneving e 0F

whicle s rcasies Thie st with the wppesiie Bedms 1t § bad 00 T e
melivitluade il €7 doras grnors pe s danatetial D e senots pes, odiie

il,imst-n:u

Source DF Anova 55 Mean Square F Value Pr>F

2 0.00000000  0.00000000 0.00 1.0000
2 0.00000000  0.00000000 0.00 1.0000
2 0.00000000  0.00000000 0.00 1.0000
a'b 4 0.00000000  0.00000000 0.00 1.0000
4 0.00000000  0.00000000 0.00 1.0000
4 1333333333  3.33333333 1.00 0.4609

Error (a*b*c) 8 2666666667  3.33333333

Variation between genotypic values is pure interaction
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Training set:
- 27 genotypes,
- 5 replicales per genotype,
- residual variance 1.5

Testing set: 50 MC replicates, each as the training set

Results in training set

— S H=

—&—Fargrietn-Adz e

——— Fararnztrc-Ful

Frarameti . Addiined Joniner: s

DF

o

15

10

—e—RKHS

—&—Parametric-Additive
—+—Parametric. Additve&Dominance

~—— Parametnc-Full

Ab

o2 n4 a6
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Results testing set,

Mean PR35

—s—RKHS

—&— Paramelnc-Additive

—+— Parametnc- Addiived Dorminanc e
l: N == Parametne-Full

T T T T T T

oo 02 G 06 oe 10

EXAMPLE 3: CHICKENDATA

 Average progeny “late mortality” (Imz in low
h‘?/glene environment for 200 sires of (ine29
(12,167 progenies).

— Pre-corrected for hatch, age of dam and dam,
— Standardized log-transformed means

» SNPs: filter and wrapper strate Long et al.,
5007, pp gy (Long

— 24 SNPs selected out of over 5000 genotyped on
sires

19



DATA

P'"”f'l'.’; gL‘r;ﬁ;}gg)dwd ORIGINAL RECORDS STANDARDIZED RECORDS

o —
E
0.95 ¥
“] . “
= —
o
T
=
v
= =3
wo w
T £
i s
N ¢ fi-
=2 T
~ 2 4 2
o 2
0.05 ,
< | o= = od —
- r T T T 1 j i T T T T 1
Ave Dead 1] 4] X E 1 15 1Ll 3 2 1 L 1 2 3
Aopsted averans lsle modaty Atsted sverane kale moratty

N

Distribution of progeny means

MODELS

SNPs

;F‘:metric model L

T

e Parametric A 24SNPs . “BaYESA
Eéa_éT_sG? (linear) method S 1000 SNPs

Non-Parametric ) Regression | RKHS




Dynamic programming algorithms
Similarity between two DNA sequences

Adapted to SNP sequences

K,(x—X,) = exp[- Score (x x.)]

No need to tune h
(Delcher et al., 1999, 2002)

Variance component & parameter
estimates

Parameter Rosterior E-BLUP F-metric RKHS BR {Xu's)
-,.-—._-"h.
o’ ps.d) 24.38 (3.88) 29.72 (3.56) Q? (3@ 20.75 (2.91)
[
HPD {95%,) 16.88-32.04 23.60-37 51 11.76-23.64 15.62-27.09
—————
, W (s.d) .10 {0.08) Q&. (0.79
O'H'
HPD (95%) 0.03-0.24 4 067-195
p(s.d) 0.40 (0.07)
a,
HPD (95%) 0.28-055
T —
p (s.0) Qoz (o@
h?
HPD (95%) 0.004-0.050

Sum of posterior means of variances of the 1000 markers
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+ Spearman (above diagonal) and Pearson
diagonal)

correlations
posterior means of sire effects

(below

between

E-BLUP

F-metric

Kernel

RKHS

BR

E-BLUP

0.52

0.77

0.84

F-metric

Kernel

0.66

0.93

0.76

RKHS

0.84

.79

0.84

BR

{363

0.58

6.80

© E-BLUP & Bayes A very similar.

MODEL FIT

-Compute deviance measurement based on

mean squared errors:

. A)l_ﬁegresswn of adjusted average progeny on sire’s
orE

. B) Re%ressmn of raw average progeny on sire’s PTA

-Lowess regression
(Non-parametric locally weighted regression)

22



MODEL FIT

PTA or EGV

*Regression of adjusted raw progeny LM on sire’s

‘E-BLUP Lirear Regression Keinel Regression RKHS BR
9 9

u o © o i &

L ; [ a 4 i

s - s s a

;

g o o ; o F
A J{.ﬂSE=1D3‘3x]D“ S qweE= e o TapEE e S MET 101 Amezsizan
= = , £ = . c = s 5 o L
H £ g ! £ ' g
& - & X + £ £
> 0 P P - P P
L oo £ s [ Y £ s § o
=3 I o i & H & !
5 g g i s : &
i o =} £ ol ., g i a
I BT b oo gL ba] L te
5 i & . i o ]
. ol i, o t i £

g 8. g 5 4 L

H =7 i 2 el -

- K L
g4, 8. R w 8w 3 i g1
@ T T T © T T e = < T T T <o T
L2022 04 -5 0 3 5 i} 5 16 1
FTA 3 224 B G

MODEL FIT

L ower MSE for kernel regression

Less dispersion in non-parametric models

*Worst for Linear regression (F-metric model)

Still....which model predicts the data best ?
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Predictive ability
+ Cross validation

1. 5 subsets, letting 20% sire means missing
each time at random

2. Calculate correlations between actual and
inferred average progeny, for each method
within subset.

Predictive ability

Subset E-BLUP F-rnetric Kernel RKHS BR

1sl
0.03 0.27 0.05 0.27 0.13

2nd
0.18 0.1% 0.28 0.37 012

ard
0.18 0.08 0.06 -0.01 0.17

F
-0.04 0.07 413 0.28 0.15

T
0.17 -0.12 0.23 .15 0.25
GLOBAL 0.10 0.06 0.14 0.20 0.16

*RKHS showed better predictive ability
—25% higher reliability than Xu's methad
—100% higher reliability than E-BLUP
—233% higher reliability than F-metric (inear regression on markers)
*RKHS better than fixed or random regression on markers and E-BLUP.,
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EXAMPLE 4: CHICKEN DATA

Genomic-assisted prediction of a quantitative trait in parents and

progeny: application to food eonversion rate in chickens

FCR measured on progeny of 333 sires with 3481 SNPs
FCR measured on progeny of 681 birds (sons of the above sires)

-»2- generation data set

BAYES A --all markers

RKHS --all markers

RKHS --400 markers filtered using different INFOGAINS
BLUP (Bayes) —pedigree information

Training set: 333 sires of sons

Predictive set; 61 sons of sires

‘Table ¥: Means, standard deviation f.d.j and 93%% conhdence intervals
(CT) ol the Boetstrap distibution of Spearman cormelations between predicied
and observed phenobypes in the tosting sel (E-BLUP: Bayesian linew model:
Bayes A0 Bayesiun regression on SN2 RKHS: repladucing kemel 1iilhert

spaves |'egn'sﬁi0n1 -

Whole genomie methods

method e sad L1198 !
FE-BLUP (Al 03 -0.13.0.5%) | Note that the confidence bands of
Bages & 0.2 el2 (0.04.0.49 the predictive correlations are wide
RKHS 27 012 (.64, 0.50)
Iaformation gain using 2 classes (400 pre-selected SNEs)
+ RKHS
pereentile mean sal Cl9340)
0.15 0.3) 0.12 0.09.0.36)
020 032 o.11 (0.10.9.53)
0.25 all 10.13,0.57)
0350 [(3%] 012 (003 042)
0.38 0.35 0.1 10.12.0.55)
(K1) 033 0.1 10.10-0.53)
Infomuanon gain using 3 chsses (400 pre-seleclad SNPs)
+ REHS
percentile nwan sl ClP %
als 0.32 ol 10.10.6.54) a.30 0.19 0.2 {-005,0.42)
0.0 024 013 (-01.01. 048) 0.3s 0.20 012 (-0.04, 043
024 011 016 0:5%) 0.40 wle 012 (-C.0%, 8.40)
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Fignre 2. Box plots for the bootstrap distribution of Speannan correlations between prediviad sl ohservad
plenstype i the lesting sel prozeny) ehtained withe RKHS ob 450 pre-selected SNPs usdng 2 or 3 clsses to
classile sires with different percentiles (el and middle panels. respectivelsr md methads using pedigree o all

available SN (Rght pannel 1.

RUHS+P1w salertion of SHF tamyg ¥ <iomus RKHS +Pre-seiccon of SHP unlin 3 chassoe Vitielu garan:a 1oc the ds
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"winner”

EXAMPLE 5: Application to US Jersey data

= US Jersey
- N= 1,762 sires (n=1448, training n=1130 ; tesling, n=316 ).
- Markers: BovineSNP50 BeadChip (50k).
- Traits: PTAs for Milk, Protein Content and Daughter Pregnancy Rate

= Models:
- Linear model K = XX’
- Genomic-based kinship K=G  [1]
- Gaussian Kernel K(r‘,j|9): Exp| fﬂxd(x,,xj) }

- Fixed over a grid of values

- Kernel averaging:

[1] Hayes and Goddard (2008) Journal of Animal Science.
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Application to US Jersey data

PTA-MILK

0%

04

IS
e

.

(MST: of predictive residuals)

Application to US Jersey data

PTA-DPR

PMSE
/ {(MSE of predictive residuals)
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+ =T = -
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Predictive ability of models for genomic sclection in Wheat [1)

Predictive Correlation

Ditference
Environment BL RKHS (%)
El 0.518 0.601 +16%
E2 0.493 0.494 0%
E3 0.403 0.445 +10%
E4 0.457 0.524 +15%

N= 599;
Trait: Grain Yield (4 environments);

Models: RKHS and Bayesian LASSO (BL)

[1] Crossa ef al. (2010) Genetics,

Case study: pigs

*Prediction of litter size in purebred and crossbred pigs

56
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Comparison of methods for predicting litter size
Genus data

Line B

1,604 PB
45,597. 5NPs

Phenotypic data

Average number of piglets born {PB) over parities

Pre-corrected by some environmental effects:
farm*line*parity, farm*year*number of services,
farm type, farm*month, age at first farrowing

Genomic data
Il1lumina PorcineSNP&6@ BeadChip.
SNPs excluded if:
MAF < 9.05
call rate > 9.95
Missing genotypes imputed from average allele frequencies at each locus.

8 methods compared including RKHS and NN (Neural nets) P

Average correlation between
observed and predicted phenotypes in the testing sets,
(10 fold CV)

0.4
!

"5

@

’j

BL BRR GBLUP RKHS RFBNN_G RS8FNN_UD BRNN_G  BRNN_UD
Be- Bayesian Lasso RKHS- single Gaussian kemnel BRNN-Bayesian regularized NN
BRR- Bayesian Ridge regression RFBNN-radial basis function neural net (G-Genomic relationship; UD-P. components}
GBLUP- Genomic BLUP (G-Genomic relationship; UD-P. cemponents}
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RKHS-KERNEL AVERAGING-MODEL AVERAGING

* It is theoretically possible to enhance ANY predictive model by using Bayesian

Model Averaging:

“Predictions oblained by averaging over models are hetter, on average, than

predictions from single mode!, even the “best” "

WELL KNOWN THEORETICAL RESULT IN BAYESIAN MODEL AVERAGING

*Example: with 3 bandwidths for Gaussian kernels, we can have predictions based

on the following models:

1: RKHS with Ks

2. RKHS with K2

3 : RKHS with Ks

4 : RKHS-KA with K1, Kz

5: RKHS-KA with K1, K3

6 : RKHS-KA with Kz, K3

7 ' RKHS- KA with K1, Kz, K3

8 : Average of predictions from models 1 to 7

8*: Weighted average from model 1 to 7 according to harmonic mean of

(See Sorensen & Gianola, 2002.)

"Ol{x;()’lM, )]

Continued...

PIC dataset for line A (litter size): GAUSSIAN KERNEL AT 3 BANDWIDTHS

hon & e A
L LOCAL R GLOBAL |
P KERNEL HER KERNEL [+
E (sharp) i (intermediate)t : .
HE !

Ki

Figure 6: histograms of the entries of K={K{x; x,)}, .

ime 8

GLOBAL
KERNEL
("fat”)

(TR ———

oy
a5
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Continvued...

Predictive ability;
-50 random partitions with 90% of observations in training and 10% in testing and
-Correlations between observed and predicted phenotypes..

line A

e e o

M M2 M3 R4 M5 RS KT MB O MET KET

Figure 6: Distribution of correlations between observed and predicted
phenotypes.

AVERAGING PREDICTIONS NOT WORSE THAN BMA; NOISY DATA
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Neural networks applied to
pedigree or genomic-enabled
prediction

Proposition 1

[t must be true that quantitative traits
are “complex”, in any sense of the
word.

Why?




Areomplex™ wait involves many metabolic pathways: Roche's Chart
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Proposition 2

It must be true that epistasis
IS pervasive

Fxample: the tricarboxylic acid cycle

[t Lal —:p—at‘em e,

o Clpaeteaetg e
fatafie acil C:Y{:fif a~ummmgamd

-q-\ oo, Fo i

oy aey
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For this 10 work: enzymes are needed
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Proposition 3

A phenotype must be the result
of a system involving epistasis and
non-lineariries of all sorts
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CAN ONE WRITE A
MECHANISTIC MODEL FOR
SOMETHING LIKE THAT?

Proposition 4

« Itis unlikely that one could arrive to any
reasonable mechanistic model satisfactory to
understand, explain, learn and predict

outcomes
GENOMICS {aTL)
PROTECGMICS (P-QTL)
METABOLOMICS {BOLC-QTL)
EXPRESSICNCOMICS (E-QTL)
EPIGENOMICS [M-QTL)
METAGENCMICS {(META-QTL)

Need to navigate in an extraordinarily highly dimensional space
to understand “genetic architecture” 111!




Welcome to the world of abstractions!
Coping with complexity

First assumption: there is 2 genctic signal and an environmental signal
Seeand assumption: the joint efTect translates inte a phenotye ¥

Y = f( G, E) FFor some UNKNOWN function /

Y = GE?
Y = ES?

Chaiees? Y=GC+E+GE? ‘ Is an assumption

Y= (G+E)“E?

Y =G+ E? ‘ [s an even a stronger assumption

Further, & is unknown, so has 1o be inferred from phenotypes
and some input set:

Pedigrees

DNA data

RNA data

Pedigrees, DNA, RNA

1111




THL BIGGEST SHOW ON EARTH:

A prevailing view (Hill et al.. 2008 Crow, 2010: Hill, 2010)

* Fisher’s theorem of natural selection
* Interactions are second-order effects; likely
tiny and hard to detect

 Detectable pistasis probably arises with genes
of large effects, unlikely to be observed in
outbred populations

« Epistatic systems generate additive variance
and “release” it, so why worry?

THE BIGGEST SHOW ON EARTH:
POINT-COUNTERPOINT

* Fisher’s theorem of natural selection (Kempthorne, 1978)

AT dgns 3 hase epistematogscat error U she magrer of 1he roje of varsarce, to oy 1hat
whiliive penetie variznee s important “singe Fishor's futdimental $heorem ol natural
selection pradiets . s wide of the mark, and agesin enempltfies anerrar cnrimonty mads i
papulation genetivs. Fishes's theorem, i i cornng, deals with finess, whatever thal is fand

Interactions are second-order effects; likely tiny and hard to detect

....perhaps, but there may be many

* Detectable epistasis probably arises with genes of large effects, unlikely to
be observed in outbred populations

...may be the instruments are not adequate?

+ [Epistatic systems generate additive variance and “release” it, so why
worry?

.. if all we get are straight lines (eve.n‘thuﬁh the world is round) haw
can we learn abaut "genetic architecture” with such lines, if the warld is
truly round?




THE BIGGEST SHOW ON EARTH
(The additive genetic model)

Can “Genome” the lion be tamed?

GENETIC ARCHITECTURE DETECTOR

Another show: “Les 1diots Savants”
(much less popular)

+ If phenotypic prediction is crucial (medicine, precision mating) can
exploitation of interaction have added value?

+ Ideally, search for machine that
--captures additivity (breeding), interaction (medicine)
--has reasonably good predictive ability
--general and flexible with respect to input data
--does not fail if system is linear and non-interacting




THE AGE OF INNOCENCE

Unraveling “genetic architecture”
with statistical models

ARCHITECTURAL
PARADIGM 1

GWAS: search for association
between some marker or genomic
region and a phenotype
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Published Genome-Wide Associations through 06/2011,
1,449 published GWA at ps5x10% for 237 traits
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ENXAMPLES

a b -

GWAS FOR PANCREATIC CANCER .,
{Nature Genebtics)

OR

Kerns SL, Ostrer H, Stock R et al.

Genome-Wide Assaciation Study to Identify Single Nucleotide Polymorphisms (SNPs} Assaciated With the
Development of Erectile Dysfunction in African-American Men After Radiotherapy for Prostate Cancer.
International journai of radiation oncology, biology. physics 2010

THE AGE OF INNOCENCE

(issue)

Unraveling “genetic architecture”
with statistical models
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SINGLE MARKER REGRESSION
WITH ORDINARY LEAST-SQUARES

n (#number of observations <<p (# markers)

“Full model” ‘ v=Af+¢ _
= X]ﬂ] +X2ﬁ') +¢
\ "marked phenotype”

“OLS" is biased If full modlel holds and one fits “smaller” model (e.g.. single marker
Regressions)

yr= ‘Yl/ji + ¢

q EQRIXD) = ()T R

BVRUS R A A Y
B+ (N XL

I

EXTRAQRDINARILY NAIVE, YET ...,

SINGLE MARKER REGRESSION
WITH ORDINARY LEAST-SQUARES

n {#number of observations <<p {# markers)

“Full model” ‘ y=XB+te
\

“marked phenotype”

"0OLS" is biased If full model holds and one fits “smaller” model {e.g., single marker
Regressions)

¥y =X1ﬁ1 + &

‘ E(B X)) = (X)) EQ)

= (X1 X)X B+ XaBa]
=f+ ()"'IXI)_IX’;Xzﬁz

EXTRAORDINARILY NAIVE, YET....

13



10

SINGLE MARKER REGRESSION: A DISASTER

N=100, 1000 binary markers, 5 first are signal. LID-143

RELATIVE MEAN-SQUARED ERROR (ALL MARKERS)Y

RMSE: all markers

@ 15.36 0.01 0.01 0.03 0.00
SMR R-15 R40 MRAD M RA00LS0
Pracadurs
SINGLE MARKER REGRESSION: A DISASTER
N=100, 1000 binary markers, 5 first are signal, LD~1/3
RELATIVE MEAN-SQUARED ERROR (FIRST FIVE MARKERS)
RMSE: first 5 markers
g
o
-
SMR OLS-5 R-16 R4Q MR-4D MR.40 OLE10
Procedira
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Statistical
QTL chaser

SNPs

PEOPLE DO GWAS:

THERE MUST BE ADVANTAGES...
Can make nice colored graphs
Publish in high profile-journals
Produce rapid tests
Patent tests and sell drugs
Probably die before lawsuits catch with you
Make stories about “missing heritability”
Ask for money for measuring more stuff

Generate employment for statisticians

15



ARCHITECTURAL
PARADIGM 2

WGP: search for association between a linear
Sunction of (many) marker covariates and a

phenotype
. BL..CKﬂ............ ..wou- F{j
| - A GOOD PHENOTYPE
Genome  mmmmm * (gal) ifé
8 }gf—
1/ s
BAD PHENOTYPE
ol

50 tmim) 100

‘MARKED GENOTYPE’

A (slightly) less naive form of
approximating G is the whole-genome
linear model;

G = wo + WX + WXz + waxs3 +...+WpX,

Where the x's are either pedigree relationships, or marker genotype codes
or whatever the latest fad in genomic data is

Bayes A
ESTIMATE FROM Bayes B ESTIMATE FROM
LOW DENSITY Bayes C (with or without n) HIGH DENSITY
CHIP Bayesian Lasso CHIP
l : NON-BAYESIAN REGULARIZED: Lasso, Elastic Net

LEADS TO (EXTRAORDINARILY) SHRUNKEN
ESTIMATES OF EFFECTS, BUT GOOD PREDICTIONS

OF “TOTAL SIGNAL" ”

16



[tz on 308 prosens tested Holsrein bulks were provided by the USDA-ARS Animed fngmovonan
Progeams Laboratory (Beftsvilic, MU and cotsprised 30,778 SNP markers fumor sliek ooy,
MAE > 0025y alowg the emtire genome pesotyped with e Thamina BovineSNPR Bead Chip
Alamina Ine San Diegos CN s well as Predieted Transmitome AbilGes (PTA Sor milk nraled
vield.
-BAYESIAN 1,ASSO MODEL WITH N= 4898 p=36778
-SNPS RANKED ACCORDING TO ABSOLUTL VALULES OF;
POSTERIOR MEANS,
STANDARDIZED POSTERIOR MEANS (USING POSTERIOR SD)
CONTRIBUTION TO ADDITIVE GENETIC YARIANCE

Morota el al. (2012)

Tabddic 10 Fhee 30 8NP with 1l |
elfests SXP et ieation, chramietoe

Voabennie posherier ioeals of goletic

ik, il Jabels

Hank 1X] Clrgosome Labad
I ARS-THFGLNGS. [H 1
3 ABS-BIGL-N B4 B
N Hlaprtsphetis ) £
H phalN i i
9 ARSI GT 1 I
0 ARS-BIGE w r
¥ Hapinap BES3E RTA-SSM i 0
X [ RS ST AL “ i
Al Hlasgna a0 Tornid st I~ !
Jii WRE-BFOL-X 14 K
I: Liapusagds = I TA-5T200 25 h
12 NS BGOSR 701 B I
D AR IS Pagere - F A 20085203 a7 i ¢ - .
1 w v [Even if one looks
I Y o At just 30 SNDs with
1% 0 » largest cffects. where
I AL 1 ‘¢ is the region?
i Haprapbita 0 I
IR [NETENS i ~
kal Mg 14 T
23 Alis-1 Ih i
&2 RYILS HEME 17 N
23 Hapuapd 362 THIS 1 £ It "
2t AlS-DBECE titstkl n Ay
2% AHS-DB i x 1
26 15 84- I 4
20 RSB WhTIT T
2 Bl Lt A h
20 ARS-BUGL-NGR-H12 1ix <
20 ARS-BYGL-DAC- 60746 Is o
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AME rmmam

BAYESIAN NETWOK OF LINKAGE DISEQUILIBRIUM (30 SNPs)
Moaorota el at, (2012)

Statistical
QTL chaser

SNPs

18



Reality strilies back: gene structure

DNA Teansoniptss Transaripsiore
sIark sires ntron £ =y Bl St

I

R ]

FRresneetesr ¢ Transcription

Frongential
FEIGEE Ty

Iy
elemants ¢ Splicing

P lrosyacriplion (rociuct

intron sequanoas o : ik Py
re::no-.-eci g Fimghed sranscripton produst
apieny Toontting only @xans

¢ Translation

imitiad transtation -
prredus -
(armino aoid chaing

¢ Posttransintional modilication

Firshead protem

Some genes do not have introns
Same genes are located within introns of ather genes

Arguably, one could do better

than with linear Bayesian
(regularized) linear models!
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A VIEW OF LINEAR MODELS
(as employed in g. genetics)

Mathematicatly, can be viewed as s “local” approximation of a complex process

N L Sy N . i)
Five o fhabd fofuyiy - oabd Tll EETI A TH FEE ) + TH
Lincar approximation
A S/
~
Quadiatic approximation
S A
—
th

n  order approximation

FELIDNAN aml LEWOX TN (1975
CHEVALET (1994)

How good are lincar and quadratic approximations? A Taylor scries provides a local

approximation only...
y=gl)+e

y 14T

121

b Stuand tosme Do

g(x) = sin(x) + cos(x)

%, (riatnany apprevie

I t } ——t |
-5 -4 2 3 4 5
X

20



“TWO-LOCUS” ADDITIVE MODEL STWO-LOCUS™ EPISTASIS MODLEL
X +Xx2

AT T I R

Together

THE ADDITIVE MODEL 1S NATVE AND INFLEXIBLE

Arguably, one can do better than
this

21



A perhaps wore universal learning machine:
Repgularized Neural Networks

Input

ey
Pt e -~

Why and how neural networks
entered as approximators of complex
functions...

(a non-mathematical argument)

22



nucleus 3
Up o 10 cennechons

—
T— 10 pther
—

~_ \ eurons

celf body axen

dendriie
1ynapse

Fio. 28, Schematic diagram of reai neurcn.

from / 0 ULher
uvther s s s

NEUrnHnA
neurans

McCuiroc, W, 8. and Pirrs, W, (1943). A logical calculus of
ideas immanent in nervous activity. Bulletin of Mathematical
Biophysics 5 115-133.

« Brain superior to von Neumann machies in cognifive tasks
* Microchips: nanoseconds, Brain: milliseconds
. 29

=» Brain recognizes familiar objects from unfamiliar angles
=>» Key: not speed but organization of processing

23



Why?

Tasks distributed over 10'> neurons
Interconnected and activated
Massively parallel

Neurons adapt and self-organize
Interconnectivity: up to 10* synaptic
conncctions

Can we attempt to emulate the
brain, mathematically?

24



Kolmogorov’s Theorem

For any continuous function g{x;,x2,...,x,) of p
variables there exists continuous functions 4, in [0, 1]

a continuous function g'in [0, 1] such that

2p+1 P
i, X, nXp) = 2/ Z"“’th'(-’fnef-’fza---,ixp)j'

A

weights
Lingar or on-lincar transformation of inpus

Lincar or nonlincar
transformation

The subscript indicates an evaluation on a given configuration of the input

Comments

» The theorem states that a set of functions
exists

* The set includes the possibility of all
possible JOINT effects (interactions) among
inputs on outputs

* It does not guide on the choice of the
functions or on the weights

« With noisy data the idea is to estimate the
function from inputs and outputs

25



KOLMOGOROV’S THEOREM
CAN BE REPRESENTED AS AN
ARTIFICIALNEURAL NETWORK

wif= connection strengil between inpst §and netren §

Binary classification

Wif= connection strength bernveen
Fiddem newon input | and
oMl REHIDA §

Input Jayer Layer of Layer of

of souce nidden ouiput

nades neurons neurons
Pedigeee, markers, sequences, The / functions The ffunctions
Nuisance variables {4 “neurons™) (2 “*ncurons™}

TRANSFORMATIONS (“ACTIVATION”) FUNCTIONS NO'T SHOWN

26



Continuous output: relationship 10 nen-parametric regression

-4
i
L TN,
:
P
7
%OV
i
]
A of e mnpu of e Budleg leer
Trpat layer Hudden layer Cleiput lage:

# hidden nodes

> B h

J=1

€

[f 4 nodes 1s known (k). the number of parameters is:

I+k+k({1+ # x's)= [ k (4 x's + 2) |:> Can overfit if too many hidden nades

Types of transformation (“activation”) functions

Linear D s

Step mx)

P Stepou 1B ol function

27



L FRIN

Picce-wise hnear : T
o T
: 2

[T
o
Sigmoid (logistic)
R
P

RERTE 3

LRy

v

=

Hypeebolic tangent

*)

(e* —e™)/(e* + e

]

6 1

04 T
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Hustration of a single-neuron model tor elassification with logistic activation function

1) Collected input into neuron

Wo + WX+ Wax: + wix;

X = .

sl /
\. .
k] %
L) K
k ."“--N \
%.__'MM" W
y ¥, Ty Z -I— el
.______ s VT
' ‘ Twd inro#y
«‘/f) :
~ s
2

X, .’/

o{xi,x2,x3) =

2) Activated input
1
[+exp(wyri x| +waxs+wsvs)

3} Classification

o(v1,x2,x3) > ¢ Classify as "1"
o(x1,xz2,x3) £ ¢ Classify as "0)

IMustration of a multi-layer maodel for regression with logistic activation function
before cimission to the output layer

Avirert e ek Ly cullesiod wpal

Identity activation

D—’ Fitted valuc

P

Y

3 more "w” coellicients

Acsiede oo lmeesy enllesied inpat
4 12 “w” coeflicients”
X " . R
-3 “Red There arc 4 intercepts: 3 for each
-3 “Blue” Neurcn in the “hidden” (middle) layer
-3 “Organge and [ in the outer layce

29



Algebraically. the model looks like

y=fo+ [ 1

1+ exp(wgl] + w[]]]xl + w[ ]\7 + H[3 ]x3 +w

[])

]
b i2] (2] [2] (2]

l+exp(w0 +w Xy Wy X2+ Wy +w[2] '4)

1
+ ﬂ:;
1+ exp(w + w[ ] (3] [3] (3]

4 BETASY 15 w's= 19 regressions to eslimate

X+ Wy X+ Wy X3 +W4 X4

)

+ée

RED

BLUE

NEURAL NETWORKS ARE UNIVERSAL APPROXINMATORS
(Follows from Kolmogorov’s Theorem)

50 x values sampied from U[-1,1] and then evaluate fix). Fil a two-layer
NN with 3 hidden nodes and fa#k activation functions and linear output

Figure 5.3 [lilustraton of the ca-
pabiity of a muliitayer percaoiron
ta approximate four Gifierert func-
tions comprisiong {ay Fizl - ¥, {h)
Jiz} = einizl. {8, fay = =,
and {d) fir) = Hixl whom H{x)
13 the Heawmde slep function, In
pach casa, N == 5 data poinis,
showm as Liua dots, have besn sam-
ptad unlfoimly in & gwer the intarval
(=11} and the vorazponding vat-

ues of fix) evaluated, These dala
points ara then used tg frain a twor
Jayer nelwark having 2 fiddan unite

with ‘tanl’ actalion functons ar
fnaar culput units.  The resulin
neteark functions are shuwn by the
rad cutves, and the outpuls of e
ihrop hidden 1mids ara shown By the

Step tuncti

thiee dashed cusves. \ . "' / It

“‘ - "

*, e VR ¥
", £ -
‘ . ! )
/ '_\.:,f’! ; £
e W - ! o e

{e} {d

Output from hidden node
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THE INFINFEESIMAL MODEL AS A REGRESSION
ON RELATIONSHIPS

y=u-+e
u ~ (0,Ac2)
y=AA 'u+e

= Au* +e¢
N
Vi= E agu; +e;
j=1

Lse elements of
A (or (5 as inpuls Reeall

(covariates} in a regression A=CC? (Cholesky)
Moaodel with random effects

The infinitesimal model as a regression on a pedigree

b t=Czo,+e=Cu’ +e u' =z0, ~ (0,Ic%)

" *
L= g(zj:] €yt i+e;, Identity activation

2) (= AA_II.I +e= Au“-+ €, ll** = A_ll.l ~ (O,A—lo_zu)

n &k
= g(ijl a;u J') + €5 tentity activation

3 t=A"Au+e=Au""+ e, u™ = Au~(0,A%0%)

_ n if *“_ {dentity activation
{ = g(zjzla u j)+te,
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The mtimtesimal model as o Hnear neural network

|

=
/

|
i

h
/
/

/
/

,; X Fitted value
_~~
Y

Identity activatien

o

The x’s variables are the additive relationsiips of the animal
phenotved to ALL other individuals in the pedigree

Other than a naive theory (the infinitesimal additive model)
nothing precludes using what might be
a better approximation (Kolmogorov)

“biases™ (Intercepts)

M
t,=g(b+ Zwkg,c(bk + Z:Zlaiju“[k]j) +e, i=12,.,n

/1 k=1

*Overall” activation fuffedion
[linear for quantitalive Jraits]

Neuron-specific activation function

Regression on aciivated emissions

Elements of pedigree
(or genomic} relationships
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Bayesian regularization
(need to cope with p>>n)
p(D|b,w,a’, M) = HN(! | b,w,0°, M)

) \

Likelihood
A nelbwork
Architecture
(number of ncurons
and activation functions)

p(“’ (o )= N(O,Icrz“.)

L aent wssampsiont ot v venicne

Prior

| This assumes shat all & coesierenis e shyunken 1o e sime extean This s probalsis

Conditional posterior
P MYP
P(WIDJ O'H,M) (‘D!‘VO— ) (w'o-\|5
P(D|o’,02,M)

w?

Marginal density of the data (used to assess variance components)

P(D|o?,02,M)= j P(D|w,0%, M)P(w| o2, M)dw

m

M —
3 2
1 Integral not in closed form

1 2
p(D | o’ O'W, M) = [271172 J Zim'wz X/ in non-lingar networks

2
Jexe _%Z[I_b Zwﬂgk(b 2 ] 2;2

aw

Fla,B)= ﬂZ[!—b Z”k&(b +Z a5 J
# va

+ow'w = f0E +ak,

/ -

112G 120w

“penalized” sum of squares




Laplacian approximation yields

Remeniber Smitls and CGraser 1 1986): Graser ot ai. {19875 Tempelman and Gianola ( 1943)

n m |
log[p(D |t B, M)~ K + 2 log(5)+ 7 logla) = BE + AE, | n @s) "3 tog|[H[ (5

m Hessian of

(74 =
new MAP . MAP g7
2(\1’ Wl HMAPJ

-
n—m 2yt e

, " #1’[‘-] . 2
w2y (B, +Z'i:1cr,—ju J)+eiJ
AP

ﬂm’u -

H M
ZZ {I, —b-
=

i=1

1

-1
Effeclive number of parameters y=m- ZGMAPII‘HMAP

Data

(297 Jersey cows)

» Target : Fat Yield Deviation
Milk Yield Deviation
Protein Yield Deviation

» Inputs : Elements of Relationship Matrix
(Pedigree or Genomic, or both)

* Rationale (again)

y=u+e
2

u ~

(0’ AU“ ) Usc clements of
y = AA_llI+ e ‘A[or(]}asinpuls in NN

= Au* +¢
N 35,798 SNPs used to build G

yi= 2 aiju}‘ +e; as in Van Raden (2008)

J=1
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Variable

DATA

Descriptive Statistics

N Blean Std Dev

Yield_devMilk 297
Yield_devFat 297
Yield_devProt 297

e
Nt

Min
-3669
-187
-117

Max
7544
1209

267

Relationhip matriz
ipedigees or getiomuc

~n-;¢;;;-,=

P——

Input Laver

ARCHITECTURES sith

' Warks: from input 15 kdden lavar.

Wiy

tinh.r =

[

{4’.!1 _1

coshxr

o e

e + l

Wy Weizht: from bidden o cotded layer. wl

&

.

I

Far, milk prowein
Yield Dariakise

Hiddes Fayer. § nearens with hrperbalic
activation funcdan

- "
-
-,
-
. -
2,
csndens Oupat layer. 1 neurca with Eavar
" achratisn function

Dnipwnt
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[N SERFASE I ERVIRVE N R R

Fitting the networks (MATLAB)

TRAINING (60%), and TESTING
(20%) sets

Non-linear regression with Gaussian prior assigned to the
weights and Gaussian likelihood

Given variances, find mode of weights using non-linear
optimization method in TRAINING set

Examine performance in the set
Predictive performance assessed in TESTING set

NN with 1 Neuron and linear activation function is “animal
model” with unknown variances

Run 25 times (to gel more stable results) with random partitions

Effective nuinber of parameters

=t=Fatyield  ~B=-Milkyield - Prolanyield
16§ -
160 - . .
15 - Genomic realtionships
- Pedigres realtionships
136

12§

14
112 -
104
[
88 -
80 -

& o & & : & & 5 &

& \‘}o‘ & & & @Q? @\\3 ogﬁ & & & @& & &

N 3 6\\ G\\ & ('}‘ \9 \\ & \}3 Aﬁo ':4\} o '\’P

\\\:‘;"ﬁ‘\%e \N\:‘l*:ﬁ"‘;bﬁ

Eftective number of parameters
(catire data set)

P\‘)U\Lr\ L}ﬁ .'r"byj_i' ){;{_ 1 \) lf/r ‘dj} ( N ) 7 ) l\u " f\
9

L‘Y[l'\;\ \C ‘r}u \*‘ Ve HLL] ‘*)(‘.}u\f, Fvin 'lyc’, i
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===Fatvield =Mk vield Protewn vietd

"
63
60
i
Genomicrealtionships .4
0 # HE
13 ,- j}/
T
16
kN
;& F oo F & & & F oo F &
R S R R G §F & F S
x S - O T‘\‘ ol hY = “;u T\ oF AR W8
N _,\’,\ " 0 o o N, A o N I ‘\ o
Sum of squarcd prediction crrors in testing sct
==&==Fat vield =&MLk vreld s Protein yield
0.6
0.5
A
Pedigree vealiionsdips . . .
B I Genomicrealtionships
0.3
0.2 -
0.1
0 -

) & = = & X 3 & & & < : &
& FFHFFFHF &L N R S S
& N & & £ & ¢ & o Ey & 3 &

Vo @ @ @ @ \;a*) VoS @ 8
b = S S S
EN a a7 W o o N, s n )(\ o W

Correlations in testing set
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I1lustration of more results

 Using pedigree additive relationships only

RESULTS (Testing set correlations)

Linear  1-neuron  2-neurcns  3-nedrons 4-neurons 5-neurons 6-neurons

Fat_deviation 0.1 023 0,22 022 0,20 0.23 0.27
Milk_deviation 0.07 0,10 0.08 013 0,00 0,13 {10
Prot_Deviation 0,02 0,09 0,03 0,10 0,4 0,15 0,11

#.285

G165

LRIES

055

a81%

-

ST /

—

Lnear TAREGD STHE i EgtoF It £ hEdang L oF £ E- iU sns

Resuits are average of 25 runs for each architecture
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MSE (testing data set)

coem Far_destaug =@ ilk_des in Prar_Bevianun

1.25
12 {5\
%,
(B
L]
105 =
1
093 - P -
u-w.h.w_mnm.‘@/
0.4 £ 1 1 e ey
Lincar 1-neuron 2-neurons J-newrans S-neurons, f-neurons,
- - N |
—&— Inlin valida test general i
L - - = :
'
03
o
b
o2
I
Linear Lmewr 2 mewrs  S.mewss  d4.;ewsa 5 news  Gomeurs
CVIDENCE OF OVERFITTING IN TRAINING TEST
[—r=tan T validat | tew general | s [ ¥ R — 1]

Lmear 1-ner Leus

Linear -newr Znews d-pews  dunews  S-pewrs Genews

3nros

Aneus

Snews

beozurs
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Values of weights (regressions) tor the finear and *hest”™ NN

05 o e 1 —— e
Fat-linear . Milk-linear
04- —_— S —

03

0 500 1000 1500 2000 “oso0

4 ——
Prot-inear
0.3, i

REGULARIZATION
Distribution of weights for lincar and “best”™ NN architectures
70 —— e e 100 80: 1
60 ) ;
{ Fal-linear 801 | Milk-linear 50| Prot-inear
50 [
40‘
! 40
30. L
10}
0 J ol
0.6 -1 0.5 0 0.5 1 04 02 0 0.2 0.4
1000, 1200 .
| Milk-5 neurons. ‘ Prot-§ neurens
800 ’ 1000 1
! 800 i
; 600
400!
: 400
200‘ 200
OL- — b 0
02 04 0 0.1 0.2 22 01 0 0.1 02 £z £1 0 o1 02 o3
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“Total™ mtluence of mpurs m neural nevwork

Value of fat
Vaiue of fat yield
yield deviation  Aniw_id  Anim_id deviation
212 264 /ms 282
242 281 194 M1
234 261 278 245
.M 194 208 265 NN output
243 278 214 187 -
251 285 257 LT |
252 158 296 16 |
256 296 211 w7
265 268 255 51
304 21t 281 212
308 215 215 08
318 190 190 318 i
£ Z; ABS(w ) R o TR )
= : o n
ST S ARG e neEUOE

WHTEAT DATA SET: 599 lines {480 training- 119 testing, 50 random repeats)
1279 binary markers

220+2.8

25359 2384355

299+5.5  260+6.1

ENCHMARKS: BAYESIAN LASSO 0.50 4 5VM MODELS 6.50-058

0.48+0.03 0.54=0.03 056x0.02 0.57+0.02 0.59+0.02

0.99+0.04 0.77+0.03 0.74+£0.03 0.7120.02 0.72+0.02

ApPLed

fete©

[,{)1\9) ot al

PN

PN
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ANALYSIS IN PROGRESS BY CROSSA BV AL (CIMMYT)

Maize corn-flowering Data used in Crossa et al. (2010)
Trait-environment M-BL M-RKHS M-RBFNN
55-AS| 0.5425 0.5926 0.5821
SS-FLF 0.7417 0.6132 0.7480
55-FLM 0.7404 0.6453 0.7678
WW-AS| 0.5153 0.5580 0.5365
WW-FLF 0.7268 0.5372 0.7869
WW-FLM 0.7428 0.5743 0.7981
55-GY 0.4743 0.5318 0.5174
WW-GY 0.5634 0.5459 0.5586
Maize
disease -
-GLS --
high
density
55k
Sites M-BL M-RKHS RBFNN
1 0.2188 0.2099 0.2604
2 0.4174 0.4131 0.4308
3 0.5899 0.5691 0.5823
4 0.5215 0.5044 0.5058
5 0.3419 0.3064 0.3442
6 0.2842 0.2535 0.2775

42



Maize under 2 level of drought
-- high density 55k

M- M-
Environment  M-BL RKHS RBFNN

GY-Modrerate

drought 0.6333 0.5591 0.6531
GY-Severe
drought 0.4104 0.3652 0.3910

Wheat traitl

. Sites M-BL  M-RKHS M-RBFNN
0.5969 0.6630 0.6581
0.6861 0.7278  0.7069
0.6224 0.6943  0.6866
0.0673 0.1419  0.1840
0.6481 0.6824 0.6744
0.3798 0.4659  0.4586
0.5984 0.6235 0.6284
0.5493 0.6054 0.6100
0.5374 0.5821 0.5827
0.4775 05024 0.4274
0.7721 0.7422 0.8039

V- I BN I N T, B TU R N




Wheat trait2

Site M-BL M-RKHS  M-RBFNN
1 0.4830 0.5216 0.5149
2 0.6928 0.6753 0.7085
3 0.2285 0.3889 0.3827
4 0.4610 0.5508 0.5557
5 0.7509 0.7147 0.7880
6 0.8101 0.8031 0.8399
7 0.4695 0.5374 0.5285
8 0.8345 0.8261 0.8657

PUNCH LINE:
over 35 trials, the winner is...

M-BL  M-RKHS M-RBFNN
14% 34% 52%
5 12 18

Any concerns about the predictive ability of non-parametric methods,
relative o those that “help to wnderstand geneic architecture”™?
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SUMMARY

Neural networks: universal approximators

Need to arrive at suitable architecture (number of layers,
number of neurons, choice of activation functions)

Neural network must be assessed in predictive ability
Important variables in a network can be detected

Coefficients do not have obvious interpretation (except in
linear networks)

The infinitesimal model is a naive network (“)ir{?)(}; Aeras |

The mechanistic value of the additive mode! is dubious in
the face of complexity of biological systems
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The Art of War

simplitied Chinese: {152 i%;
traditional Chinese: TRF-£i%;
pinyin: Sunzi Bing Fd

Sun Tzu $hE
{722-481 BC)?

“It is said that if you know your enemies and know
yourself, you will not be imperiled in a hundred battles.

If you do not know your enemies but do know yourself,
You will win ane and lose one.

If you do not know your enemies nor yourself, you will
be imperiled in every single battle.”

SOME POSTERIOR THOUGHTS

Cannot understand complexity (“genetic
architecture”) with parametric methods

Prediction is a different ball game from inference

For prediction, non-parametric methods are almost

as good as parametric ones even when assumptions
hold

Do not spend a lot of time inventing priors, or fancy
models. A simple additive model may just do well...

Spend more time in cross-validation and less in
simulation. Now there is data!!




MORE POSTERIOR THOUGHTS

= Markers (and most types of molecular data)
have ascertainment problem (Chikhi, 2008):
simulations give distorted picture

» SNP assisted genetic evaluation is holding
well, and has outperformed {in cross-
validation) pedigree BLUP

= There is no universal prediction machine and
model performance varies with species, trait
and environment

Comparison among methods in plants (Heslot et al., 2012)

Table 2. Accuracy for each trait and model, average non-cross-validated correlation for each moclel, and average MSE for sach model.
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Uit ain't what you don't know that gets vou into trouble.
It what you know for sure that just ain't so.”

{Mark Twain)

Takezawa {2005):

Maedel-free procedures can have better
predictive performance aven if the

‘true” model is used to generate and then
fitted to the data.

ROUSSEAU ON THE ADDITIVE GENETIC
MODEL

“...de nier ce que est, et d’expliquer ce qui n’est pas...”
Rousseau “Nouvelle Heloise”

Geneve 1712- Ermenonville 1778
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"Would you refuse your dinner
because you do not understand
the digestive system?"

guote by British mathematician in
“The emperor of the maladies: a biography

of cancer”,2010, by
Siddhartha Mujkherjee

Conclusions

* Challenges to parametric methods posed by
genomic and post-genomic data

* Future: Shift in paradigm. Semi-parametric and
“machine learning” type technigues?




He puts all of

us to sleep...

4/24/2012
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1. Introduction

The following text (from the R-website www.r-project.org ) briefly describes R:

R is a language and environment for siatistical computing and graphics.

R provides a wide variety of statistical (linear and nonlinear modelling, classical
statistical tests, time-series analysis, classification, clustering, ...) and graphical
technigues, and is highly extensible.

R is available as Free Sofiware under the terms of the Free Software Foundation's
GNU General Public License in source code form. It compiles and runs on a wide
variety of UNIX platforms and similar systems (including FreeBSD and Linux),
Windows and MacOS.

The R-package, its libraries and manuais can be downloaded from: http://www.r-project.org/ .

2. Installing R

The R-package can be downloaded following these steps:

- g0 to www.r-project.org

- in the left side follow link ‘CRAN’

- choose a repository

- In the box 'Download and Installing R' choose your operating system
{Here | follow Windows, to illustrate)

- Follow link 'base’

- Download R from link Download R 2.11.1 for Windows

- Run the executable file, it will guide you through installation



3. The R console

Assignments and simple operations. The following box provides simple examples which
illustrate how to create numeric variables in R and how to perform simple operations with these
variables. The symbol "<-" is an assignment operator, it assigns whatever is at the tail of the arrow to
the variable whose name is provided at the end of the arrow. The symbol "#" is used for commenting
lines.

## Example 3.1 ##

#i## ASSINGMENTS
<=2
y<-3

it # 4 SIMPLE OPERATIONS
z<-y+x # try — * / for subtractien, product and division
z

Numeric vectors. The following example ilfustrate how to create a numeric vector using the
"c{)" function which concatenates elements into a vector. Once you created a vector, you can modify
or access any entry of it by indicating the position you want to access or modify in between square
brackets. Note, NA is used to denote missing values in R.

## Example 3.2 H#

# Creates a vector

x<~c(10,20,30,40,50) # equivalently, try x<=1:5
str (x)

# Accessing elements of a vector

x[2]

x[c(l,4)]

x[-c(l,4}]

# Modifying elements of a vector
x{c(1,3)]1<=-NA
x

# Creating a sequence using seg
x<-seq(from=1,to=10,by=2)
y<-seg(from=20,by=1, length=5)

X

Y

# Operations with vectors
X*2
X+y
x*y




Matrices. The following example shows how to create a matrix by binding columns, cbind (),
or rows, rbind (). The functions dim (), nrow {) and ncol (} give you the dimensions, number of
row s and number of columns of a matrix.

## Example 3.3 ##

# Creates a matrix by binding columns
x1<-1:10

X2<-11:20

x3<-21:30

X<-cbind(xl, x2, x3)

dim (X)

nrow (X)

ncol {X)

# Creates a matrix by binding rows
Z<-rbind{xl, x2,x3)

dim(g)

nrow (Z)

ncol {(Z)

Matrices can also be created using the matrix () function. To create a matrix we need to
provide to matrix() the number of rows, number of columns and a vector containing the data that will be
used to form the matrix. By default, the matrix () function assumes that data is sorted by column. To
obtain more information about this or any other R-function type help (functionname), e.g.,
help{matrix).

## Example 3.4 ##

# Creates a matrix

X<-matrix(nrow=3,nccl=10,data=1:30)
X

Y<-matrix (nrow=3,ncol=10,data=1:30,byrow=TRUE)
Y




Indexing with matrices. We can modify, or extract elements of a matrix using indexing. The
following examples illustrate how to extract/modify single elements, columns, rows and blocks of a

| ## Example 3.5  ##

# Creates a matrix
x1<-1:10
x2<-11:20
x3<-21:30
X<-cbind(x1,x2,x3)

# extracting elements using indexing

X[1,1] # single element
X{1,] ¥ entire row
X[,1] # entire column
Xlc(i,2),c(2,3}Y] # block

# modifying elements of a matrix
X[{c(l,2),c(2,3)]<-NA
X

Operations with matrices. We can use R to perform matrix operations. Cell by cell operations
can be performed using the standard symbols. To perform matrix operations we need to ‘enclose’ the
symbols between “%”. The following example illustrates this.

## Example 3.6 ##

# Creates two matrices

¥<-matrix (nrow=4,ncol=2,data=1:8)
Y<-matrix{nrow=4,ncol=2,data=1:8)
# Element by element operations
X+Y

X*Y

# Transpose

Z<—t (Y}

# Matrix product

XB*%Y




## Example 3.7 i

# Creates an identity matrix
D<-diag (3)

f Adds 0.5 to the off-diagonal
D{l,c(2,3)]«<-0.5
D[lci{Z2,3),1]<-0.5
D[2,3]<-D[3,2]<-0.5

D

# Computes the inverse cf D
DInv<~solve (D)

# Checks properties of the inverse

D%*%DInv
DInvs*%D

4. Variable type

So far we have used real variables only. R has 5 basic types of variables: characters, these are
simply labels; integers; numeric (real); logical (TRUE/FALSE); and factors, these are variables that can
take on a given set of values (the levels of the factor) which may be ordered {e.g., ‘low’, 'medium’,
‘high’) or not {e.g., ‘blue’, ‘green’, ‘red’). The following example iliustrates how to create variables of
each of the above-mentioned types. You could also create matrices of each of these types. The function
str() gives you the structure of an R-object, in this case the variable type and dimensions of the array.

## Example 4.1 ##

f integers
X<=1:10
str(x)

# numeric
y<-x/1.15
str(y)

# logical
z<—X>5

stri{z)
z




## Example 4.2 #4#
# character

w<-c("hello", "myName", "red")
str (w)

# un-ordered factor
w<-factor (x=c{"red","blue","red", "green"))
str{w)

# ordered factor

w<-factor (x=c("low", "medium", "high", "high'"),
ordered=TRUE, levels=c("low", "medium", "high™))

str (w)

levels {w}

is.ordered (w}

# as.factor() as.numeric{), as.integer() ,.. etc.
¥ can be used to coerce variables into a different type.

5. Data frames

One limitaticn of matrices is that all columns and rows must be of the same type. Commonly in
our dataset we may have variables of different types, e.g., some factors {e.g. sex), some integers (e.g.,
0/1/2 to code SNP genatypes), some characters (e.g., name). Data-frames allow you to have variables of
different type within one matrix-type array. The following example creates a data frame.

## Example 5.1 E¥
x<-as.factor(c("low", "high”, "mediun", "low"))
y<-c(l.1, 2.4,3.1,0.5)

myData<-data.frame( treatment=x, cutcome=y)
str (myData)
myData




Indexing can be used in data frames in the same way as in matrices. Additionally, you can access
individual columns using the dollar sign and the variable name. The following example illustrates this.

t# Example 5.2 #4
myDatalc(1,2),]
myData{,i]
myDataStreatment
myDatas$outcome

6. Libraries

Specialized algorithms are provided in R through libraries. Some libraries are included in the
basic installation package, but others need to be downloaded form CRAN. You can load these libraries
into an R-session by using the 1ibrary (} function. Once the library is loaded, all the functions

included on it become available in the environment.

To illustrate, let’s consider the library MASS. This function has a function, ginv (), which
computes generalized inverses of matrices. If youtype help (ginv) in R without loading MASS you
will get the following error message:

## Example 6.1 ##
help (ginv)

No documentatien for 'ginv' in specified packages and libraries:
yvou could try '??ginv’

Now try the following:

## Example 6.2 ##

library (MASS)
help (ginv)

To install libraries avaifable through CRAN go to the main menu and choose: Packages/Set Cran
Mirror and choose one repository (e.g., USA |1A, which is a repository form lowa State University).

Now go to the option Pagackes/Install packages and choose one package {e.g., accuracy) . You
should get the following message:

package 'accuracy' successfully unpacked and MD5 sums checked




7. Listing and removing objects from the environment

You can list the objects available in the working environment using the functions Is{) or
objects(). The function rm(} can be used to remove an object (or a list of objects) from the environment.
You can quit R by closing the console or by typing quit(). Use quit(save="ves'}, quit(save="no"'},
to quit saving or without saving the environment, respectively. The
following example illustrate these functions.

## Example 7.1 #i

ls(} #list the objects in the environment
rm(list=1s(}) # cleans the environment
Is()

# Now let’s create an object
X<=1:10
1s()

quit (save='yes')

# Now open R and type ls{()




8. Reading and Writing ASCII Data

The functions read.table{} and write.table(} can be used to read and write data in table-format.
In the following example we first load a data frame {oats) available in the MASS package and then write
it to the hard drive as an ASCIl file and read the data again back into the R session.

## Example 8.1  ##

rm{list=1s(})

library (MASS)

data (oats)

str(oats) # shows the structure of an object

fix(oats) t displays data (can alsc modify/edit/create variables)

# writing data to hard drive
write.table (x=cats,file="'pats.txt', sep='"') # space-delimited
write.table (x=oats,file="cats,cev', sep=',') # comma-delimited

# reading data
myDataZ<-read.table('cats.txt', sep='"',header=TRUE)
myData3<-read.table('oats.csv', sep=',',header=TRUE)

head (myDataZ?)
head (myData3}

9. Univariate descriptive statistics

We will look at descriptive statistics for variables in the oats data set to illustrate some useful functions
in R. For discrete variables, the table function is useful (S operator references a certain variable in a
data frame). The summary function will also produce descriptive statistics. The output produced by
summary(} depends on the nature of the object, below you have examples of summary{) for vectors
and data frames.

## Example 9.1 ##

takle (cats$B) # look at counts for block variable
table (cats$V) # look at counts for variety variable
summary {cats$V) # can also use summary function
summary (cats)

For continuous variables, we will use the mean, standard deviation (sd), variance (var), quantile, and
histogram functions.

10




## Example 9.2 it
mean {(oats$Y) # mean of yield
sd(ocats$Y) # sd of yield
var (oatssY) # var of yield
quantile (catssY) # quantiles of yield
guantile (oats$Y,probs=c(0,0.05,0.1,0.9,0.95,1)) # specify probs
help(guantile) # use help statement to get function parameters
summary {ocats$Y¥) # summary statement for a continuous wvariable

hist (cats$Y) # histogram
print (hist{cats$Y}) # use print to display numeric features of hist

10. Bi-variate descriptive statistics

In the previous example we described features of the marginal distribution of a random variable (RV).
Now we turn into description of the bi-variate distribution of two RVs. First we iook at an example of

two discrete RVs from the oats dataset.

## Example 10.1 ##
# Contingency tables for two discrete RV ####4#44 4444 HHH4 444 44HES
table (vats$V,o0ats$B) # table for bivariate discrete stats
xtabs {(~o0atssV + ocats$B) # or using xtabs and specifying a formula

highYield <- ocatsS$Y>median (cats$Y) # binary high yield
table (oats$V,highYield) # counts of high-yielding plots by variety

Now we describe the association between two continuous RVs (Gas=gas consumption, and
Temp=Temperature, of the whiteside dataset, also available with the MASS package) using the

covariance, correlation and plot functions.

11




## Example 10.2 #4
# Two continous RVs #d#f##addatddtsaaddaadaadiahoaathtiaddrdddaitdddas
library (MASS)
data{whiteside)
head(whiteside)

# variance-covariance matrix
var {whitesidel[,2:3]}

# correlation matrix
cor{whiteside[,2:3])

# cr scatter plot for visualization
plot { Gas~Temp,data=whiteside)

Naw, let’s logk at an example of one continuous (Gas) and one discrete RV (Ins=insulation) also from the
whiteside dataset. tn this case we describe the joint distribution by first calculating the conditional mean
gas consumption given insulation, and using a box-plot, which provides quantiles of a continuous RV by

level of the discrete RV.

## Example 10.3 #
# One continuous versus cne discrete RV f##f# 44t d43444 55444444444

# Conditional mean
tapply (FUN=mean, X=whiteside$Gas, INDEX=whiteside$Insul) # try FUN=sd

# boxplot, which displays several quantiles
boxplot (Gas~Insul, col="red',data=whiteside}

Finally, let’s use graphical methods to describe features of the joint distribution of two continuous RV
given a third discrete RV. The following code {taken from the documentation available with the
whiteside dataset) generates a scatter plot of gas consumption versus temperature by insulation. To
this end we use the xyplot() function of the R-package lattice.

## Example 10.4 ##
# Scatter of gas consumption versus temperature by insulation
library(lattice) # these commands make a nice plot of the data
xyplot (Gas ~ Temp | Insul, data=swhiteside)

12




11. Ordinary least squares regression: linear model

We will use the whiteside data set to illustrate ordinary least squares using the Im() function of R. We
begin by regressing gas consumption on temperature and insulation, using an additive model.

## Example 11.1 iR
gasHO0<~1lm (Gas~Temp+Insul, data=whiteside)
summary {gasHO})

The scatter plot of gas versus temperature by insulation suggested that the effect of temperature on gas
consumption depended on insulation. This suggests that we should expand the additive model (Gas0)
with inclusion of an interaction between temperature and insulation. This is done in the next exampie.

## Example 11.2 #4
gasHA<-lm(Gas~ Temp+Insul+Temp*Insul-1, data-=whiteside)
summary (gasHA)

We can now compare the above models using the anova() function, which will make an F test between
nested models. The test has only 1-df {the interaction term} and the p-value is small suggesting we
should reject the null hypothesis (the additive medel, in this case) in favor of the alternative.

## Example 11.3 #4#
anova (gasHQ, gasHA)

The following code give examples of how to extract elements of the fitted model and how to obtain
some diagnostics.

$# Example 11.4 i
names (gasHA) # these are attributes available in the 1lm object
gasHAScoef # print out the model coefficients
coef (gasHA) # same thing using extractor function coef

f# diagnostic plots
rplot {(gasHA)

13




12. Generalized Linear Models

The Im function can be used for regression with continuous response variables. Let’s now look at how to

fit a logistic regression to a discrete response using the gim() function. This function fits a generalized

linear model using least squares.

## Example 12.1 ##
# Here we discretize gas consumpticn and append it to whiteside

threshold<- median(whiteside$Gas}
whitesideS$GasHBi <~ 1ifelse({whiteside$Gas <threshold, 0,1)

xtabs (~GasHi+Insul, data=whiteside}
gasHA logReg<- glm(GasHi~Temp+Insul+Temp*Insul-1, data=whiteside,

family="'binomial'}
summary {gasHA logReq)

13. Loops and conditional statements

Loops are used to repeat tasks. For example, the for loop in R can be used to run a task over a pre-
defined index set. Here we have two simple exampies.

## Example 13.1 4
for(i in 1:10 ){
print (i)
}

# note that the index set does not need to be a sequence
tmp<- ¢c('aaa', 'z', 'bye')

for( x in tmp}{
print (x)

}

14




Conditional statement can be used to execute an operation if some variable is equal to TRUE, Let’s look

at an example.

f# Example 13.2 4

conditionl<-c¢ (TRUE, FALSE, TRUE, FALSE)
conditionZ<-c¢ (FALSE, TRUE, FALSE, TRUE)

# AND
conditionlé&condition?

# OR
conditionl |ceoendition?

¥ IF
for(i in 1:4){
if(i<2){
print (i}
lelse{
print({ -i)

# Ex. 1 ifelse{conditicn, action if true, action if false)

ifelse (conditionl, 'a‘', 'b')

f# Example 13.3 4
## Here a more elaborated one.
startTime <- 1
endTime <- 5
curTime <- 2

if ((curTime>startTime) && (curTime<endTime)} |
for (time in curTime:endTime) |
print (paste("Time is ", time," o'clock",sep=""})
}
print {"Time to go home!")
} else {
print ("Not work time")

}

15




14. Monte Carlo Methods

Monte Cario (MC) simulations are commonly used in statistics to estimate features of distributions that
may not have closed form. For instance, it can be used to estimate the power of a test statistics whose
distribution over repeated sampling is unknown.

The base package of R offers functions that can be used to obtain “random” draws from several
distributions. For each distribution there are usually three functions: one, whose name usually starts
with r for “random”, which can be used to obtain random draws, one, whose name usually starts with
d for “density”, that evaluates the density function for a give value of the random variable, one , whose
name usually starts with p for “probability”, that will give the cumulative distribution function (CDF) at
a given quantile and one, whose name usually starts with ¢ for “quantile” that gives the quantile
corresponding to a value of the CDF. Below we have examples of these functions for the normal
density.

## Example 14.1 it
# Random draws
x<-rnorm{n=1000, sd=1,mean=0)
plet{density (x))

# Density
dnorm (x=0, mean=10, sd=4)

# Quantile
qnorm(p=.975, sd=1, mean=0)

# CDF
pnorm{g=1.96, sd=1,mean=0}

There are many other functions that ¢an be used to draw numbers from other distribution with
continuous (e.g., rgamma, rexp, runif) or discrete support (e.g., rbinom, rpoiss).

The function sample(} can be used to draw numbers from a bag of labels with or without replacement.

¥# Example 14.2 LR
# Random draws
sample (x=c("a","b","c","d"),size=10, replace=TRUE)

sample {(x=c ("a","b","c","d"), size=2, replace=FALSE)
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We use computers te mimic random processes. Although the numbers generated by functions such as
sample{} or rnorm{) look like random they are indeed deterministic. You can see this by controlling the
seed of random number generator. The seed is an integer that controls the sequence of number of
generated by the random generator. The following example illustrates this.

## Example 14,3 4
# Controlling the seed
set.seed (1295480)
runif (3)

set.seed(1295490)
runif (3)

set.seed(12954)
runif (3}

Monte Carlo Estimates. Here we have an example of a MC estimate of the mean, standard deviation
and .95 quantile of a normal density using numbers randomly generated from a normal density with
mean zerg and variance equal to one.

## Example 14.3 it %
N<=10000
z<-rnorm{N, sd=1, mean=0)

# estimating the mean
mean{z)

# estimating the sd {should be close to 1)
sd{z)

# estimating the probability of z < 1,96, should be close to .975
mean{z<1l.9¢)

17




In practice, we do not use MC methods to estimate the mean, standard deviation and guantiles of the
standard normal density. These methods are used mostly when the distribution of the random variable
is unknown. To illustrate, suppose X is a RV which is the product of Z1 and Z2, where 71 is a standard
normai random variable and Z2 is a random variable having an exponential density with rate parameter
equal to 1. The density function of X does not have a closed form. However, we can estimate features of
the distribution of X using MC methods. An example is provided below.

## Example 14.4 #4
N<=100000
zl<-rnorm{n=N, sd=1,mean=0)
zZ2<-rexp(n=N,rate=1)
X<~=z21%*22

# estimating the mean
mean (x}

# estimating the variance
var {x)

# estimating the probability of z > 1
mean (z>1)

Here we have a more elaborated example. The code below estimates the power of a t-test under
different scenarios of effect size.

## Example 14.5 #4
nsim <- 1000 # number of Monte Carloc Replicates
eff<- ¢(0.2,0.5,1,1.5,2,3)
result<-matrix (nrow=length(eff},ncol=nsim, NA)

SD<-1
power<-numeric ()
n <- 10
for (i in l:length(eff)} { # loop over effect size
for (j in l:nsim) { # loop over MC replicates
groupl = rnorm{n=n,mean=0,sd=5D}
groupZ2 = rnorm{n=n,mean=eff[i], sd=3D}
model = t.test (greoupl,groupl, "two.sided™)
result[i,j] = as.numeric (modelS$Sp.value<0.05) # did we reject HO?
}
power [i] = mean{result[i,])

}

plot (eff, power,xlab="Effect Size",ylab="Power",main="T Test power vs.
Effect Size for n=10",type="¢",col="red")
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15. Functions

Most of objects in R are functions. A function takes some arguments as input, perform some internal
computations and, usually, returns an object. For instance, the function mean() takes as argument a
numeric vector and returns and integer. You can easily create your own R-functions. This allows you to

automate blocks of code that can be later on used as a black-box. The following example illustrates how

to create a very simple function.

4 Example 15.1 ¢
getPower<-function{ x ,power) {
out<-x"power
return (out)

getPower (x=3,power=2)
getPower (x=c(l,2,3),power=0}

Here are two simple functions for finding and item in a list.

## Example 15.2 #4
IsPresent <- function(myList, item) {
if {length{(myList)==0) return( FALSE }
for {i in l:length{myList)){
if (item==myList[i]){ return(TRUE) }
t
return (FALSE)

}

GetIndex <- function(myList,item) {
for (i in 1l:length(myList)) |{
if (item==myList[i]}{ return(i) }
}

return (0)

myList = ¢ ("a","b","c'","d")
IsPresent {myList, "e")
IsPresent (myList,"c")
GetIndex (myList,"c™)

# OR, using built-in functions
"e"%in%myList

"c"%in%myList

which (myList%in%"c™)
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Consider the following model:
_fJ
) :;1+Z.\‘ﬁﬂ}.+gj i=(l,...,n)
=l

where: y, is the phenotype of the i individual, & is an effect common to all individuals (an
“intercept”), X, are covariates (e.g., marker genotypes), [)"j is the effect of the j covariate and g isa

medel residual. In matrix notation the model is expressed as:

y=Xp+¢ [1]
where: y = { }|s a vector of phenotypes, X = {1 X, P} is an incidence matrix for the vector of
regression coefficients, f§ = (,u By 1») and € {g,} is a vector of model residuals.

The ordinary least squares estimate of [§ is the solution to the following optimization problem;

arg min

ﬁOLS = Z(J’i_zxfjﬂ}}

whereZ(y,. —nyﬂj} is a residual sum of squares. The first order conditions of [2] are satisfied by
i i

O -1

Pows = [xrx] Xy.

The appendix provide alternative ways of deriving OLS estimates in R, including use of the Im(} function,
solution using matrix operatlons and iterative procedures.

MSE - [7( K ée_

1.Z. The ‘Curse’ of Dimensionality (30 min)

A ~ 42
The mean-squared error (MSE) of an estimator is: MSE(9)= E[(B—B) J where @ is the true

value of the parameter and & is the estimator, which is a function of the data (X and y in the regression
example discussed above). The expectation in the MSE formuia is taken with respect to all possible
samples of data. Commonly X is treated as fixed and the expectation is taken only with respect to
possible realizations of y given X.



The MSE can be decomposed in twoe components: MSE( ) [9 E( )] +Var(63) , where
[6’—[;( )J and Var(@)are the bias and variance of the estimator.

The expectation of the OLS estimate of regression coefficients in [1] is:

Ef s X )= [XX] ' Xy ]

=[X'X]"'X'E[Xp +¢]
= [X'X]" X'XB + [X'X] ' X Eé]
=B+ [XX] " XE[e]

When madel [1] holds, E[s]z 0, therefore: Elfiom XJ= f. In words, if the linear model holds, OLS

gives unbiased estimates of regression coefficients. The second term of the MSE formula, Var(é), is a

frequentist measure of uncertainty and reflects variability of the estimator over repeated sampling. The
asymptotic (co)variance matrix of OLS estimates of regression coefficients, given X, is,

Var([})= [X'X]_]O'Z, where is the variance of model residuals. This is also the finite-sample co-
variance matrix of estimates under normality. Therefore, the MSE of the estimate of the jth regression
coefficient is C¥a* where C7 is the jth diagonal entry of the inverse of the matrix of coefficients, that

is C™' = [X’X]_l . This element decreases with sample size. In the following example we study how MSE
of estimates of regression coefficients changes with n and p.

Example 1. Effects of # and p on Mean-Squared Error of OLS estimates

rm{list=1s{))
n<-seq(from=100, to=300,by=10) # vector defining sample size
p<-seq(from=5, tc=80, by=4) # vector defining number of predictors
x<-rbinom(prob=.5, n=max (p) *max (n),size=1) # sample predictors
X<-matrix(nrow=max (n},ncol=max(p),data=x)
VarE<—1>
VAR<-matrix (nrow=length(n),ncol=length (p), NA)
colnames {VAR) <-p
rownames (VAR) <-
for{(i in 1l:lengthin)){ # locp over sample size
for(j in l:length(p)){ # locp cver number of predictors
tmpX<-X[l:n[i],1:p(j]1]

C<-crossprod(tmpX) - > X /?? 4 CX) S ?(,:3'}'&\,5«’ do S\,
CInv<-cholZinv (chel (CY) Shew b Yoo et [«
VAR[i,j}<-mean{diag (CInv))*varE #average variance of estimates

} prse (0 e

}
## plot Variance {ecqual to MSE in this case) Vs. n and o)

persp{2=VAR, x=n, y=p, xlab="Sample Size",
ylab="Number of Predictors”,zlab="MSE(bj}",col=2)

A \,\ \/,)v‘&_u( j L\r(‘)\ ) g—-‘b‘f pade (g e d a, '&\'/\,-.J/\j‘b'\"é



NOTE. When p>n, the OLS estimate is not unique because X'X is singular. Nevertheless,
predictions, y = X[X’X] X'y, are unique; here [X'X]' is a generalized inverse of X'X . The function

ginv(} of likbrary(MASS) can be used to compute a Moore-Penrose generalized inverse. The
function svd () can be used to compute the singular value decomposition of X from where ¥ can also

be computed,

In genomic models p>n, because of this, estimation methods other than OLS are required. In the
following sections we consider alternative methods.

1.3, Confronting the challenges posed by highly dimensional predicrors {45

i}

in this section we discuss two different approaches designed to confront the challenges posed
by ‘large p with small n’ regressions. In the first one (subset selection) we design an algorithm to select k
out of p {k<=p) predictors; our final model will include only these k predictors. Subset selection is a
commonly used practice, and it is based on the idea that ‘highly dimensional predictors are dangerous’;
therefore, the approach seeks to reduce the number of predictors. The second approach (shrinkage
estimation) uses all available predictors and confronts the challenges posed by regressions with p>n by
using shrinkage estimation methods. We illustrate this approach using ridge regression. In both
examples we use a genomic dataset made available with R-package BLR {‘wheat’). This dataset contains
4 phenotypes evaluated in 599 wheat lines that were genotyped for 1,279 markers. In the examples we
use 450 lines for training and evaluate the prediction accuracy of each of the methods on the remaining
149 lines {testing).

Subset selection. The problem of selecting k out of p (k<p) predictors can be viewed as a
model comparison problem. Ideally, we would fit all possible models and select the one that is best
according to some model comparison criterion {e.g., AlC, Akaike Information Criterion, Akaike 1973). In
practice, when p is large fitting all possible models is not feasible. instead model search algorithms are
used. A very simple search algorithm consists of regressing the response in each of the predictors one at
a time {‘single marker regression’). Each of these regressions yields a measure of association between
markers and phenotypes {e.g., a p-value). Then, we can form our final model by using the first k
predictors ranked according to the association measure. This approach is commonly used in Genome
Wide Association Studies {GWAS). The following example fits models with & predictors (k=1,...,300)
chosen based on the marginal association between markers and phenotypes. The examples use the
‘wheat dataset’ of the BLR package of R {G. de los Campos and Pérez 2010; Paulino Pérez et al. 2010).



. Example 2. Subset selection using p-values derived from single-marker regressions

rm(list=1s{))
FH#44 DATA #u#444HtadhfdRattd i adaaiadeststatatthststes
library (BLR)
data (wheat)
objects ()
N<-nrow (X) ; p<-nccl (X)
y<“Y[12]
set.seed(1235)
tst<-sample(l:N,size=150,replace=FALSE)
XTRN<-X[-tst,] ; yTRN<-y[-tst]
XTST<-X[tst,] ; yTIST<-y[tst]
###44#% SINGLE MARKER REGRESSICNS H###44H# 44445443048 444
pValues<-numeric ()
for{i in 1:p){
fm<-1m (yTRN~XTRN[, 1]}
pvalues[i]<-summary (fm) $coef[2, 4]
print(paste('Fitting Marker ',i,'.',sep=""))
}
plot(-log(pValues, base=10),cex=.5,col=2)
$#4#4 444 VARIABLE SELECTION ##&###f# 444344444840 443840444
myRanking<-order {pValues)
sqgqCor<-numeric(}
for{i in 1:300){
tmpIndex<- myRanking[l:1]
Im<-1m{yTRN~XTRN [, tmpIndex])
bHat<-coef (fm) [-1] ; bBat<-ifelse(is.na(bHat),0,bHat)
yHat<-as.matrix (XTST[,tmplndex])%$*%bHat
sqCor(i]<-cocr (yTST, yHat) "2
print (paste('Fitting Model with ',1,' markers!',sep="'"'))
1
plot{sgCor, type='o',col=2, ylab="'Squared Correlation’,
xlab='Number of markers',ylim=c {0, .28))

Shrinkage estimation. We have seen that when n is small and p is large OLS estimates have
high variance, and therefore high MSE. In addition, when p is large relative to n, over-fitting may occur,
yielding poor predictive ability. Penalized estimates of regression coefficients are designed to confront
these problems. The main idea is to reduce MSE by reducing the variance of the estimator, even at the
expense of introducing bias. We will cover penalized estimation procedures in more detail in Lab 2; here
we briefly illustrate their performance using Ridge Regression {Hoerl and Kennard 1970). Recall that in

the linear model of eq. 1
y=Xp+e {1]

the OLS estimates of regression coefficients are the solution to the following systems of equations

[X'X] l}om =Xy (2]



The RR estimates has a very similar form, we simply add a constant to the diagonal of the matrix
of coefficients, that is:

[X'X+AD [B,, = X'y (5]

where A is a constant and D is a diagonal matrix with zero in its first diagonal entry (this, to avoid
shrinking the estimate of the intercept) and ones in the remaining diagonal entries and zeroes
everywhere else. When either A equals zero, the solution to the above problem is OLS. Adding a
constant to the diagonal entries of the coefficient matrix makes it non-singular and shrinks the estimates
of regression coefficients other than the intercept towards zero. This induces bias but reduces the
variance of the estimates; in large-p with small-n problems this may reduce MSE of estimates and may
yield more accurate predictions. The following R-code computes RR estimates.

Example 3. Ridge Regression

MSx<-0

for(i in l:ncol (XTRN}){ MSx<-MSx+mean ((XTRN[,i]-mean (XTRNI,i]}))"2))
h2<-0.5

lambda<-round {(MSx* {1-h2) /h2}

TMP<-chind {1, XTEN)

C<-crossprod (TMP)

rhs<-crossprod (TMP, yTRN)

for(i in 2:ncol(C)}{ C[i,i}<-C[i,i)+lambda } #adds a censtant to diag
CInv<-cholZinv (chel (C))

bHatRR<-crossprod (CInv, rhs)

yHatRR<-cbind (1, XTST) $*%bHatRR

tmp<-cor (yHatRR, yTST) "2

lines {(x=c (0,30}, y=rep (tmp, 2),col=4, lwd=2)

lines (x=c (150, 300),y=rep(tmp, 2), col=4, lwd=2)

text (x=90, y=tmp, label=expression (paste('RR (lambda=',lambda, '}')),col=4 )
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Appendix
AL, Deriving ordinary least-squares {OLS) estimate using Im()
The OLS estimate of f can be obtained using the function Im{(), which fits a linear model by OLS.

Alternatively, we can compute the solution using matrix operations. The code below simulates data for
regression [1], and fits the linear model using Im({}.

Example Al. Deriving Ordinary Least Squares estimates using Im(}

rm(list=1s())

## SIMULATES DATA FOR A LINEAR MODEL
set.seced(12345)

n<-100

p<-6

set.seed (12345}

X<-matrix{nrow=n,nccl=p,

data=rbinom (n=n*p,p=.5,size=1))

beta<-rnorm{p, mean=0¢, sd=2}
ERROR<-rnorm{n=n, sd=1, mean=0)

y<-124 +X%*%beta+tERRCR # note %*% computes matrix product

## FITS THE MODEL USING 1m() ## 4444485044440 58844044
fm<-1m (y~X)

summary (fm)

bHatl<-fm$coeff

# (continues below)
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In the system of equations
[X'X][ims = X'y 2]

we will refer to C = [X'X] as the matrix of coefficients and to rhs = X'y as the right-hand side of the
system. The matrix of coefficients can be computed using C<-t {X)%*%X, or, equivalently,

C<-crossprod (X) . Similarly, the right-hand-side can be computed using rhs<-t (X)%*%y, or,
equivalently, rhs<-crossprod(X,y). crossprod() is usually faster. The system can he

solved using the function solvel(}, as illustrated below.

. Example A2, Deriving Ordinary Least Squares Using Matrix Operations

# (continued from Example 1)

#%# FITS LINEAR MODEL USING MATRIX OQOPERATICNS #######444444444
X2<-cbind{1l,X) ## note a vector of 1ls is added type head(X)
C<-crossprod (X2)
rhs<-crossprod (X2, vy)
bHat2<-solve (C, rhs)

# (continues in Example 3)

The matrix of coefficients is symmetric and positive definite. The cholesky decomposition of this
matrix (U} is an upper-triangular matrix satisfying €=U’U. U can then be used to invert C using
chol?inv () function (see below). This is usually faster than using function solve (). Other
factorizations of C, such as the eigen-value decomposition, eigen (), or the QR decompositions,
gr (}, can also be used to invert € as well. An example using the cholesky decomposition of C is given
below.

' 'Example' A3. Inversion of positive definite matriééé using the Cholesky factorization -

# (continued from Ex. 1 and 2)
X2<-cbind(1,X) # note a vector of 1s is added type head(X)
C<-crossprod(X2)
rhs<-cresspred (X2, y)
U<-chol (C) # computes the Cholesky decomposition
CInv<-chol2inv(U) # obtains the inverse from a Cholesky dececmp.
bHat3<-CInv%*%rhs
# compare bHatl, bHat2, bHat3
round (cbind (bHatl, bHatZ,bHat3),4)

# (continues in example 4)
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In practice, when p is large, the system of equation is solved using some type of iterative methods.
Here is one possible algorithm. Suppose that we know all but the /* regression coefficient, then, from
the data-equation we can write:

¥ = E'r.i.l'/jt T &
k=1

i

¥ = E'tikﬁ# A+

Loy

7
V= E‘\;&_ fi=xp +¢

ke

Viuen =GB +¢ {3]

'[J
where: ;. =Y, Zx&ﬁkis an off-set formed by subtracting from the original phenotypes the

I
REj

I4

contribution to the conditional expectation of all but the /" predictor, that is Zxﬂﬁk . The OLS estimate
k=i

of [,"J in [3] is simply

Z\HJ’:( i)
S “

i}
i

A back-fitting algorithm can then be formed by iterating over regression coefficients using [4].
This is implemented in the following R-code.

¢ Run the code. How do estimates computed using the above-described algorithm compare with
the exact solution?

e (Change nIter {the number of iterations) from 2 to 30 and compare.



- Example A4. Deriving Ordinary Least Squares Using iterativ_e Procedures -

# Computes OLS using a back—fitting algorithm
55x<-colSums {X2"2) # the diagonal elements of X’'X

niter<-2 # number of iterations of the algerithm

bHatd<-rep (0, ncol {X2}} # initialvalues bj=zero

bHat4[1]<-mean (y) # initial values mu=mean (y)

e<-y-mean (y) # initial model residuals

for(i in 1l:nlter){ # loop for iterations of the algorithm
for(j in l:ncol (X2)){ # loop over predictors

yStar<-e+X2[,j]*bHatd[]) # forming off-sets
bHatd[]1<- sum(X2[,j]*yStar) /85x[1)] t eqg. [4]
e<-yStar-XZ[,Jj1*bHat4d[]] # updates residuals

}

# compare bHatl, bHat2, bHat3, bHatA4
round (ckind (bHatl,bHat2,bHat3,bHat4), 4)

10
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Ordinary least squares (OLS) and Maximum likelihood (ML} are examples of estimation methods
in which estimates are derived by maximizing the fitness {as measured by the residual sum of squares or
likelihood function) of the model to the training data. When the number of predictors (p) is large
relative to sample size {n) this is not a good strategy: estimates can have high mean-squared error {MSE}
and over-fitting may occur. Penalized estimates are obtained as the solution to an optimization problem
that balances two components: how well the model fits the data and how-complex the model is. The

general form of the optimization problem is:

B = {L{v.p)+ /() } 1]

arg min
[}

where, L(y,B) is a loss function that measure lack of fit of the model to the data, J([i) is a measure of
model complexity and A > 0 is a regularization parameter controlling the trade-offs between fitness
and model complexity.

Ridge Regression {Hoer| and Kennard 1970) is a particular case of [1] and is obtained by setting

L(y,[i) to be a residual sum of squares L{y,p) Z{y, nyﬂ J and J(B) to be the sum of

square of the regression coefficients; typically, some of the regression coefficients {e.g., the intercept)
are not penalized; therefore, J(B)=">" 4} where S define the set of coefficients to be penalized.
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When A — o the solution is ﬁRR = 0. On the other extreme, as A = 0 the solution is the OLS

estimates of [§. In matrix notation problem [2] can be reprgsented as: s
J
~ ! , ‘ ﬁCh \:.? \

B =, 10-XB) (v-XB)r ABDY) R &

§ =L

je8

2
where: (y -XB) (y - XB)= Z(y, —zxu.[)’j] isaRSSand B'Df = Zﬁf is a sum of squares of the
i J

regression coefficients. Here, D is a diagonal matrix whose entries are 1 for j € § and zero otherwise.
The first order conditions of the above optimization problem are satisfied by the following system of

linear equations:

[XX+AD B, =Xy (3]



Relative to OLS, RR adds a constant (A ) to the diagonal entry corresponding to regression
coefficients that are included in S (i.e., those whose effects are penalized). When either D or 4 equals
zero, the solution to the above preblem is OLS. Adding a constant to the diagonal of the matrix of
coefficients shrink estimates towards zero. This induces bias but reduces the variance of the estimates.
And in large-p small-n regressions this may smaller MSE than those of OLS estimates and better
predictions.

A simplified example. Let us consider a simple example where each subject was assigned to one
of two possible treatments (treatments 1 and 2). The treatment-means parameterization of this model

is: p;, = x,,, + X, 5, + & where y, is the response, x|, is a dummy variable indicator of treatment 1,
X5 = (l - x”) is a dummy variable indictor of treatment 2, 3, and f,the means of treatments 1 and 2,

respectively, and &, is a model residual. The OLS estimates of regression coefficients in this model are:

Z xll Z xl."\"l ﬁ] lefy.'
PIRRRD W VS I D et

Moreover, x> and x,z. equal the number of individuals in treatment 1 and 2 (denoted as #, and
li 2i 1
i i

n, respectively), since x, and x,; are orthogonaIth.xzi =0, and, finally, Zx“yf. and th.yi are
i i i

the sum of the response variable for subjects assigned to treatments 1 and 2, respectively. Therefore,

{nl } A &
0 >y,

ix g =l

, from where we conclude that the OLS estimate of the treatment mean are simply the average of the

> 7

iy = x5 =1

and b=

1 2

phenotypes observed in each treatment, that is B = . Now, considering the

RR estimates, according to [3] these will be will be

|:n]+i 0 }ﬁ] _ Z)’,

iy =1
0 n,+A

2y

i%y=1

D >,

: therefore the RR estimates are 4 = == = 222l Therefore, adding 4 to the diagonal
g oppand T2y
1 2

entries of the matrix of coefficients will shrink estimates towards zero. By how much? This will depend
on the relationship between A and sample size. From here we can also see that with fix 4, the amount




of shrinkage will decrease as sample size increases. Asymptotically, if we fix A and let the number of
individuals in each treatment approach infinity, RR estimates converge to OLS estimates.

Other penalized estimators. Several alternative penalized estimation procedures have
been proposed, and they differ on the choice of penalty function, J(B). As we discussed above, in RR,

the penalty is proporticnal to the sum of squares of the regression coefficients or L2 norm,

_ Zilﬂf . A more general formulation, known as Bridge regression (Frank and Friedman 1993),

3] ¥
uses J(B)z Z;:]“ﬁj H with ¥ > 0. RR is a particular case with y = 2 yielding RR. Subset selection
occurs as a limiting case with ¥ — 0, this penalizes the number of non-zero effects regardless of their

maghitude, J(B) = z;] l(ﬁi # 0) . Another special case, known as LASSO {Least Absclute Angle and

Selection Operator, (Tibshirani 1996} occurs with y =1, yielding the L1 penalty: J ”ﬁ H

Using this penalty induces a solution that may involve zeroing-out some regression coefﬁments and
shrinkage estimates of the remaining effects; therefore combining in features of subset selection with
shrinkage estimation. LASSO has become very popular in several fields of applications. However LASSO
and subset selection approaches have two important limitations. First, by construction, in these
methods the solution admits at most n non-zero estimates of regression coefficients. In GS and with
complex traits, there is no reason to restrict the number of markers with non-zerc effect to be limited
by n {the number of observations). Second, when predictors are correlated, something which occurs in
GS, methods performing variable selection such as the LASSO are usually cutperformed by RR (Hastie,
Tibshirani, and Friedman 2009). Therefore, in an attempt to combine the good features of RR and of
Lasso in a single estimation framework (Zou and Hastie 2005} proposed to use as penalty a weighted

average of the L1 and L2 norm, that is, for 0 S =1 J az Hﬁ ” 1- o Z [5’

termed the method the Elastic Net {(EN), this model involves then two tuning parameters which need to

be specified, the regularization parameter (A) and ¢ .



n the following example we present two ways of computing ridge regression estimates. The
first one implements [3] using matrix operations; the second one uses an iterative procedure. Run this
last algorithm with 10 and 500 iterations.

Example 1. Alternative ways of deriving Ridge-Regression Estimates

m(list=1ls(})
t# Using Cholesky factor ##4##5844438 3500855000000 0400044005
library (BLR) .
data (wheat) DR
X2<-cbind (1, ¥) e
y<YLL2) A
.4 C<-crossprod(XZ) / “
44 rhs<-crossprod{Xz,y) )
MSx<-0 ; for(i in l:ncol(X)){ MSx<-MSx+var(X[,i]}) Ny
h2<-0.5 e R o A i A ey & ’
lambda<-MSx* (1-h2) /h2 =Y
for(i in 2:ncol(C)){ C[i,1]<-C[i,1]+lambda } ¢
CInv<-cholZinv(chol (C)} \ . &fw
bHatRR l<-crossprod(CIlnv, rhs) h\b U
P \9\\}\'\
## Using an iterative procedure #§##4544 444144 FHHESFEREFESSHEES
diagC<-numeric ()
for(i in l:ncol(X2)){diagC[i]<-sum(X2[,1i]"2}+ifelse(i==1,0,lambda)} }
bHatRR_ 2<-rep (0, ncol (X2))
bHatRR 2[1]<-mean{y)
e<-y-mean (y)
nIter<-10
for(i in l:nlter){ L
for(3 in 1l:ncol (X2)) { - )/, p. )Q
tmpY¥<-e+X2[,jl*bHatRR 2[j] .=} Ez‘L
rhs<-sum (X2 [,]j]*tmpY) )
bHatRR 2[J]1<-rhs/diagC[]] - 7 . " h .
e<-tmpY-X2 [, j1*bHatRR_2[7] N y'— . 'J‘(JJ + /k"’J/J
} int (i) J g
print (i e T | . 0¥
} DS @ A+ K (l/ /J;
tmp<-range (c(bHatRR_1[-1},bBatRR_2[-1]))
plot (bHatRR_1{-1],bHatRR 2[-11,ylim=tmp, xlim=tmp,col=2,main="")
## Change nlter, set it equal to 500 and then egqual tc 1000 k ﬁ;L\
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2.3. Effect of regularization on estimates, goodness of fit and model DF

In penalized estimation, the regularization parameter (A) controls the trade-offs between model
goodness of fit and model complexity. This affects parameter estimates (their value, and the statistical
properties of the estimator) model goodness of fit to the training dataset and the ability of the model to
predict un-observed phenotypes.
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Model complexity. The complexity of a linear model can be measured by the degree of freedom
of the model. In RR, predictions are computed as y = X["im(, = X[X'X+ D |'X'y =H,,y where
H =X[ X'X+AD ]"IX' is the Hat matrix. If we set A =0 we obtain the Hat matrix of OLS:

RR
H, = X[ X'X ]_I X'. In linear models degree of freedom are equal to the sum of the diagonal entries
of H. In OLS this just equals the number of predictors (provided that X is full rank). In RR A also affects

DF. The following R-code fits RR over a grid of values of A and evaluates the impact that /£ has on
goodness of fit to the training data, prediction accuracy, and model degree of freedom.

- Example 2. Effects nfiré'g'ulzil_;izéti'oﬁ on goodness of fit él_h_d model DF

rm(list=1s(})

444 DATA #ifddftfdAddadatttdftdftdftdAttdaaditttansns
library (BLR)

data {wheat)

objects ()

N<-nrow(X) ; p<-ncol(X)

y<=Y[, 2]

set.seed(12345)
tst<-sample(1:N,size=150, replace=FALSE)
XTEN<-X[-tst, ]

yTRN<-y[-tst]

XTST<-X[tst, ]

yIST<-y[tst]

## FITTING MODEL OVER A GRID OF VALUES OF lambda
lambda<-c(5,10,50,100,200,500,700,1000, 2000, 5000,20000)
ZTRN<-cbind (1, XTRN) ; ZTST<-cbind(l,XTST)
sqCorTRN<-numeric (); sgCorTST<-numeric(); DF<-numeric(}
BHat<-matrix (nrow=nccl (XTRN) ,nccl=length (lambda), NA}

CO0<-crossprod (ZTRN)
rhs<-crossprod (ZTRN, yTRN)

for{i in 1l:length(lambda)}{ #loop over wvalues of lambda

C<-C0
it adds lambda to the diagonal of C (starts at 2)
fer{j in Z:ncol(C)){ Clj,31<-C[3,j)+1lambdai] ]

CInv<-chol2inv(chol (C)}
scl<-crossprod{CInv, rhs}

BHat [,1i]1<-s0l{-1]

yHat TRN<-ZTRN%*%sol
sgCorTRN[i]<-cor {yTRN, yHatTRN) ~2
yHatTST<-ZTS8T%*%s0l

sqCorTST[i]<- cor{yTST, yHatTST} "2
H<-ZTRN%*3CInv%*%t {(ZTRN)
DFli]l<-sum{diag(H})

print (i}

}
write {sqCorTST, file="sgCorTST.tLxt")
write{lambda, file="lambda.txt")

# (Plots in next page)




Example 2. (from previous page) .-~ .
£#4 PLOT 1: Model Degree of freedom >\/} JX\X
plot (DF~log (lambda}), type="o",col=2, !
xlab= expression({paste(locg{lambda)}),
ylab="DF", ylim=c (0, max (DF}));abline(h=1, 1ty=2}

## PLOT 2: Estimates (shrinkage by marker) \¢ ﬁy;ro

marker<-1 # {chcose a number between 1 and 1279) ’

plot (BHat [marker, ], type="o",co0l=2,
xlab=expression(paste (log (lambda)) )}, ylab="Estimate™)

abline (h=0)

tmp<-range (BHat{,c (1,5)1])

#% PLOT 3: Estimates (shr}n}jage al} Tarkers) \T r,\)\# o

plot (BHat[,5}~BHat[,1],xlim=tmp, ylim=tmp, ]
xlab='Lambgda=5%"', ylab="'Lambda=200"',col=2,cex=.5);

lines (x=c(-10,10),y=c(-10,10))

plot (sqCorTRN~lcg (lambda), type="0",col=2, main="Training data",
xlab=expression(paste (log{lambda))),ylab="Squared Corr."}

## PLOT 4: Goodness of fit to TRN dataset ,\'} EXQT

## PLOT 5 Prediction Accuracy \1\ b
plot (sqCorTST~log (lambda), type="0",col=2,main="Testing data", ACEE
xlab=expression{paste(log{lambda})),ylab="Squared Corr.")
2.4. The Hat Matrix of large-p with small-n genomic regressions as a tocal
smoother
Above we introduce the hat matrix as applied to the training dataset,
. ~ -1 . '
Yoew = XopaBre = an[ Xipy Xy +AD ] XiewY ey = HygyY ey - Similarly, we can defined a hat
. . ~ o -1
matrix for the testing dataset, V.o = X, P = err[ Xy Xpwn + AD ] Xoan¥ = Hi g ¥ ey - In both

cases, predictions are simply weighted sums of phenotypes of the training dataset,

Pravi = thﬂyj and Pro; = thST,ijyj , where £ . is the (i) entry of either H, or H ;.

JeTRN JETRN

The relative absolute value of each entry, |hy.

, indicates, according to the model, how informative the

jth phenotype of the training dataset is for estimating the conditional expectation at the fth point of

either the training or testing dataset. The following code computes the hat matrix a training and

dataset and plots the one of the rows of H,,, and of H ;.

testing



- - Example 3. The Hat Matrix of Ridge Regression

rm{list=1s (})

#H#HFH DATA HHAH 4G a TSR F R RS # R SRR G REH RS F SRS RA S
library (BLR)

data (wheat.)

objects ()

N<-nrow (X} ; p<-nccl (X)

y<=Y[,2]

set.seed(1235)
tst<-sample(1l:N,size=150, replace=FALSE)}
XTRN<-X[-tst, ]

yTRN<-y[-tst]

ATST<-X[tst, ]

yTST<-yltst]

## FITTING THE MODEL

lambda<-200
ZTRN<-cbind (1, XTRN)
ZTST<-chind {1, XTST)

C<-crossprod (ZTRN}

for{j in 2:ncol(C}){ Clj,3]1<-C[j,jl+1lambda)
CInv<-chocl2inv (chol (C})
TMF<-tcrossprod (CInv, 2ZTRN)

HTRN<-ZTRN%*$TMP
HTST<-ZTST%*2TMP
yHat TRN<-HTRN%*%yTRN
yHatTST<-HTST%*%yTRN

## Plot ¢f row 100 of HTRN

rlot {abs {HTRN{100,1),xlab=' 3 (TRN)',
ylab="'h{100 , J}',ccl=2,main='Training dataset');abline (v=100)

## Plot of row 30 of HTST

plot (gbs (HTST[30,]},xlak=" j (TRN)’,
ylab="h{30 , j)',col=2,main="Testing dataset')

2.5, Bayesian View ol Ridge Regression

Most penalized can be viewed as posterior modes in certain class of Bayesian models, For

instance, RR estimates are equivalent to the postericr mede of the vector of regression coefficients in a
Bayesian model with a Gaussian likelihood and a Gaussian prior for the vector of regression coefficients.
To see this, recall that that estimates in RR are obtained as the solution to the following optimization

probliem:

~

Bue = |(v-XP)(y-Xp)+ ApDB

arg min



Multiplying the objective function by -1/2 and switching from minimization to maximization do not
affect the solution; therefore,

!

= 26XV G- x0)- 25 0

arg max 2

=
=

Let ~=—-where, o and o are non-negative constants. Replacing above and dividing the objective

Ty

i

function by O'j maintains the solution unchanged, with this we get:

f

Bre = { lz(y-XB)(}’-XB)—ZIQB’DB}

arg max 20-5 O-ﬁ

Finally, applying the exponential function to the objective function maintains the solution unchanged,
therefore:

. I ' 1
Bra = exp{—2 ~{v-XB) (y - XB)- 2I3'DI3}
arg max O-g ZO'ﬁ
1 ! 1
= exp{—2 - (v-Xp) (y-XB)}GXP[— EB'DDJ
arg max O-I.‘ 20-13

'

|
The first component of the objective function, exp[— S (y - Xp) (y - Xﬁ) }, is proportional to a
O-E

Gaussian likelihood, centered at X and with {co)variance matrix Ioﬁ . The second component,

1 ) . . . ,
exp{— 2 B'DP |, is proportional a Gaussian prior for the regression coefficients, centered at zero
B

and with (co}variance matrix D"Gfi . Therefare, estimates obtained with RR are equivalent to the

posterior mode of regression coefficients in the following Bayesian model.

Likelihood : [y 1B, o’ ]~ N(XB, 1o?)

Prior : [B\Gf;]"‘N(U,D_IJE) [4]

The posterior distribution of B is muitivariate normal with a mean (co-variance matrix) equal to

the solution {inverse of the coefficient matrix) of the following system: [X'X + AD ]ﬁ = X'y ; this is just
the RR equations. This is also the Best Linear Unbiased Predictor (BLUP} of [} giveny.



o . . . . . .
Recall that the ratio —- is equivalent to A in RR. | a fully-Bayesian models we assign priors to

5

Tp

each of these variance parameters, this allow inferring these unknowns from the same training data
that is used to estimate marker effects. The following example fits a Bayesian RR using the R-package
BLR {‘Bayesian Linear Regression’), after you run the model:

- The BLR package returns an list with posterior means and other information, type str{fm)
and inspect what BLR returns

- Check the posterior mean of crf_ and cr;. {fmSvarE and fmSvarBR, respectively), remember

the ratio of these variances is interpretable as A in RR.
- Examine trace plots

- Compare prediction accuracy of the fully-Bayesian method versus RR.

Example 4. Bayesian Ridge Regression Using BLR -

rm(list=1s())
##4#4 DATRA (same as Example 2) #F#4455H4FFRFFFFFFEFFFHEEFFEFAHFIHFEHES
library (BLR)

data (wheat)

objects ()

N<-nrow (X} ; p<-ncol (X)

y<-Y[,2]

set.seed (12345)
tst<-sample{l:N,size=150,replace=FALSE)
XTRN<-X[-tst, )

yTRN<-y[-tst]

XTST<~X[tst, ]

yTST<-y[tst]

## Fits the model
prior<-list(varE=list (df=4,8=1),varBR=1ist {(df=5,5=.01))
fm<-BLR (y=yTRN, XR=XTRN, nIter=12000,burnIn=2000, prior=prior)

## Prediction Accuracy: Bayesian vs grid search
¥<-scan(file="lambda.txt")
y<-scan(file="sgqCorTST.txt"}

plot (y~log(x), type="o",col=2,
xlab=expression{paste(log{lambda))),ylab="Squared Corr.",
ylim=c(0.1,.3))

abline (v= log(fmSvarkE/fmSvarBR),col=4)
abline (h=cor (yTST,XTST%*%fm$bR) ~2, col=4)

t4 trace plots
plot (scan{"varE.dat"), type="0",col=2)
abline (h=fmS$SvarEk, col=4)
abline (v=200,col=4)
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Here we show the equivalence between estimates {posterior modes) derived from model [4]
and the so-called G-BLUP (‘Genomic Best Linear Unbiased Predictor’, e.g., VanRaden, 2008). We show
this, using [4] and properties of the multivariate-normal density that are outlined below.

Properties of Multivariate Normal Density

' 8
Let 0 =(8],0)) be a multivariate normal random vector with expectation E{ l}: {p'} and

B,
9l Ell EIZ
{co)variance matrix Cov = .
e2 EE] EZZ

{1) All marginal densities are also normal densities, specifically:

8, ~ MVN(0,,X,) and 0, ~ MVN(9,,E,,)

The conditional densities are also normal densities, with mean and {co)variance matrices given
by the following:

E[Bllez]: My "'2'122;2I (92 _”2) and E[92|9t]: ", +EZIEI_II (91 —lll) : (5]
Cov[B |0, ]= %, ~Z,Z,IE, and Cov}B, |, |=E,, L, Z,/E,, . 6]

} and B, =L,X;, = {by} are matrix of regression coefficients of the ith

Above, B, =Z, %, =1,

i

on the jth random variable of 6.

The multivariate normal density is closed under linear operations in the sense that linear
combinations of MVN random variables of the form 6 = a + TO are multivariate normal random
variables, with mean vector and {co}variance matrices given by the following:

E[6]=a+TE[B]=a+Tn , [7)
and (co)variance matrix

Cov[d] = TCoV[8IT’ = TZT' [8]

11



Best Linear Unbiased Predictor (BLUP)

We are now ready to derive the conditional expectation of marker effects and of genomic
values. The conditional expectation is the best predictor in the mean-squared error sense. Alsp, as we
show here, in the context of model [4] the conditional expectations of marker effects and of genomic
values are linear functions of data and are un-biased. Therefore, the conditional expectations of
genomic values and of marker effects from model [4] are BLUP {‘Best Linear Unbiased Predictor’).

For ease of notation we omit the intercept and therefore in [4] we set D equal to an identity
matrix. The model is then described by:

Likelihood : [y | B,J§]~ N(XB,IJ,f)
Prior: [B | o‘é]~ N(O,lcrj)

[4b]

From [4b] and using [7] and [8], we obtain that the joint density of y and 3.

r 2 2 2
B} N Oj{xx o5 +10; xgﬁ}

r 2 2
Xo'ﬁ Icrﬁ

(9]

Using [5] we get the BLUP of marker effects:
Eply.ol]= X0l [XX'02 +152 ]y = XXX + A1
Y, 5? - ¥ij ¥ € y= y [10]
[
@y s
which is the posterior mean of . Here, A = U;J; . Because of the equivalence between the posterior

mede of B and the RR estimate, the solution given by [10] is also equivalent to the RR estimate given by

[3]. Importantly, note that computing the solution using [3] requires inverting a pxp matrix. On the other
hand, we can obtain the same solution using [10] with inversion of nxn matrix. Expression [10] is linear

on data and it is unbiased with respect to the prior mean, E(B) = (}, To see this we take expectations in
[10] with respect to y to get E{E[ﬁ | y,af_]}: X'[XX'+/11]_1E[y]. From [9], E[y]: 0; therefore:
E{E[B ly,o? ]} = (). Therefore, {10} gives the BLUP of marker effects.

We now derive the conditional expectation of genomic values given the data.
E[Xp1y,02]=xEpIy.0?]

= XX'[XX'+ Ay

=[1+G['y

[11]
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Where G = XX'. This is the so-called G-BLUP of genomic values. Expression [11] is the best predictor
of genomic value and it is linearly on data. Also, taking expectation with respect to phenotypes

=1 =
E {[H )LG"] y} = [I + ,&G"] E {y} = 0; therefore [11) is the BLUP of genomic values.

The following example computes G-BLUP for the wheat datset, and illustrate the equivalence
with predictions from the RR.

Example 5. Ridge Regression and G-BLUP

rm{list=1s{))
4% DATE #4484 04544 8040040448404 340400ttt
library (BLR)
data (wheat)
for(i in l:ncol (X}){X[,1]<-(X[,i)-mean (X[,1i]}}}
y<-Y[,1]
h2<-0.5
lambda<-ncol (X}
##4# Computing RR estimates and prediction using eqg. [3] #######
C<-crossprod (X)
diag(C)<~diag(C}+lambda
CInv<-chol2inv{chol (C})
rhs<-crossprod (X, y)
sol<-crossprod(CInv, rhs)
yHat 1<-X%*%sol

t## GBLUP
G<-tcrossprod (X)
C<-chol2inv (chol (G) ) *lambda
diag (C)<~diag(C)+1
CInv<-cholZinv{chol (C})
yHat 2<-crossprod(CInv,y)

### Comparison
plot (yHat 2~yHat 1,col=2,xlab='Predicitens frem RR eguations’',
ylab='Predicttions from GBLUP equations')
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HUEL The Bayesian Alphabet

In standard parametric models for genomic selection (GS) phenotypes, 3¢, are regressed

_[J
on marker covariates, {x,}, using a linear model of the form 1, = 1+ Z,\'i},[)‘f +¢,, where

11
=

4 1s an effect common to all subjects (i.e., an “intercept’), -{.\'y } are marker genotypes
(usually coded as 0,1,2) , { 2 } are marker effects and £, is a model residuals. A standard

practice for continuous traits is to assume that model residuals are [ID normal, this yields

the following likelihood function:

!1+Zj:1xii J"GZ)’ [l]

Likelihood: p(y‘,u,[}, o’ ) =1] N(yj
i=l
where, N (1| Ju+z:llil X, [)‘_;,0'2) ts a normal density for the random variable y, centered at

r . . 2
p+ ZFI x,/3, and with variance o~.

With dense panels, the number of markers (p) vastly exceeds the number of data
points (n) and because of this penalized or Bayesian shrinkage estimation methods are
commonly used. In a Bayesian setting, shrinkage of estimates of effects is controlled by
the choice of prior density assigned to marker effects. The joint prior density of the
unknowns is commonly structured as follows:

Prior:

a,s) 2]

p(y,[}, O'z‘df, S, a))oc {ﬁ p(ﬂj \Bﬁj ek )p(ﬂﬂj ‘a))}gg'z (0'2



Above, a flat prior was assigned to the intercept, ["(cr: df. S) is a scaled-imverse Chi-

squared density assigned to the residual variance and with df degree of freedom and scale
equal to S ,p(ﬁ}iﬁﬁ,oz) denotes the prior density of the jth marker effect, 6, is a vector
of parameters indexing the prior density assigned to marker effects, p(ﬂ,_,. 3(0) is the prior
density assigned to8, and @ are parameters indexing this density. The marginal prior

density ~of marker effects is obtaining by integrating 6,  out,

p([‘}_lﬂcf’.w)=fp(ﬁj Bﬁl.()'g)p(ﬂp.f‘ﬂ))ﬁeﬁ'. Note that, a-priori, all marker effects are

assigned the same marginal prior density; therefore, contrary what it is sometimes said, in
all members of the Bayesian alphabet, the prior variances of marker effects are the same

for all markers.

Using Bayes rule, the posterior density of model unknowns given the data is
proportional to the product of the likelihood, given in eq. [1], and the prior density, eq.
[2], that is:

Posterior density:
PlouB, oy, dr,S.o0)oc [ | My ac+ 2% o)
i=1

X{ljp(ﬂf\% ,02)10(9!,;\@)}1-2(02]# sS)_

; 3]

The Bayesian Alphabet. Following the seminal contribution of Meuwissen, Hayes, and
Goddard (2001) several linear Bayesian regression methods have been proposed and

used for simulation and real data analysis. They differed in the choice of prior density



assigned to marker effects. In a Bayesian Ridge regression (BRR), the conditional prior

0,0;) and

assigned of marker effects are IID normal, p(ﬁ,‘ﬁﬁt,al)zN(ﬁi

o)=2>(o3ldr,.5,)

P (9 Yy’

A second group of models, which includes Bayes A (Meuwissen, Hayes, and
Goddard 2001) and the Bayesian LASSO (BL, Park and Casella 2008) use thick tail
prior densities {(t in Bayes A and Double Exponential in the BL). These priors induce a
different type of shrinkage than that induced by the BRR,

A third group of models, which include Bayes B (Meuwissen, Hayes, and
Goddard 2001) and the spike-slab models (Ishwaran and Rao 2005) use priors that are
mixtures of a peak (or a spike) of mass at (in the vicinity of) zero and of a continuocus
density {e.g., t, or normal). Figure 1 shows the densities of a Gaussian and Double
Exponential densities and that of a mixture model with a peak of mass at zero and a

Gaussian slab. The three densities have mean equal to zero and variance equal to one.
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Figure 1. Density of a standard normal random variable (black), of a double-exponential
random variable (blue) and of a random variable following a mixture density with a mass
point at zero (with probability 0.8) and a Gaussian process with probability 0.2. All

variables with zero mean and variance equal to one.

Many of the thick tail distributions, such as the t or the double-exponential
densities can be represented as infinite mixtures of scaled normal densities. For instance,

the t-prior density assigned to marker effects in Bayes A (Meuwissen, Hayes, and



Goddard 2001) can be represented asr(ﬁ}.lcf/;;, \[}: f _\f(/}j‘O, O',;;_‘)['j(o'z_\df;‘-, 5,)50'*

where df, and S, are prior degree of freedom and scale parameters and { o ’c{/};,S‘ﬁ\)

15 a scaled-inverse Chi-squared density.

in the Bayesian LASSO (Park and Casella 2008) the Double-exponential prior

.

2 . 3 A 1
U,a;z'_f)t.\;o(r;iT)c’?of;. In the

density is represented as: DE([%,J/E",Jj):_‘.;\’(Q |

fully-Bayesian LASSO, A° is treated as unknown and is assigned a Gamma prior. This
prior is indexed by two parameters (rate and shape, sce help (rgamma) ) which are
assumed to be known. Alternative priors for the regularization parameter are discussed in
de los Campos et al, (2009).

In Bayes B (Meuwissen, Hayes, and Goddard 2001} marker effects are assumed
to be equal to zero with probability n and with probability (1-7) the effect is assumed to
be a draw form a t-distribution such as the one described in Bayes A. Model Bayes C
(Habier et al. 2011} is similar to Bayes B but uses a Gaussian slab instead of the t-density
used 1n Bayes B.

For infinitesimal traits, zeroing-out marker effects, such as in Bayes B or C, may
harm predictive ability. Therefore, an alternative is to replace the peak of mass at zero
used in Bayes B or C with a continuous density with small variance. This strategy is
commonly used in what it is referred as to Spike-Slab models (Ishwaran and Rao 2005);
for instance one can mix two Gaussian densities, one with very small variance and one
with larger variance.

Choosing hyper-parameters. In the above mentioned models, the parameters

indexing the prior density of marker effects play a central role in controlling the extent of



shrinkage of estimates of markers effect (similar to that of A of the ridge regression.
These parameters can be chosen in several ways, one of which is to select their values

based on heritability-based rules.
Choosing Hyper parameters using heritability based rules. In linear models for

genomic selection, genetic values are represented as regressions on marker covariates,

that is g, = va B, . In these models, marker genotypes are fixed and marker effects are
i

random variables drawn from an 1ID process; therefore:

Var g! ny Var (ﬁ ) J;in
i

where Jf, is the prior variance of marker effects. Summing over individuals and dividing

by n yields
”_IZZ T =

where K =n"" 2215 is the average sum of square of marker genotypes in the dataset,

i g

[4]

q|
LT e ]

1-

and /" is the heritability of the trait. Commonly, the model uses an intercept and we

measure variance at the genomic values as deviations from the center of the sample.

Therefor, a common practice is to compute K after centering genotypes, that is:

K:”%ZZ(*‘};"EQJ) where €. is the frequency of the allele coded as one at the jth

marker. Moreover, if markers are centered and standardized to a unit variance, that is if

x —26
’ - are used as marker codes in the regression, then K equals the number

]
|

B 29_,,(1—9_;)

of markers (p).

We can now use [4] to solve for the values of the parameters controlling

regularization as a function of X _ #° and of the phenotypic variance { 7).
g , p r



Ridge Regression. Recall from the Bayesian standpoint the regularization

parameter of a ridge regression A equals the ratio of the residual variance to the prior

variance of marker effects, 0'50'; . Replacing this in [4] and solving for 4 we get

h’ =4’
e
R P

[3]

Therefore, according to [5] the larger the noise-signal ratio, the strongest
shrinkage of estimates should be. Also, K increases as the number of marker does;
therefore, according to [5] A should be increased as the number of markers does.

Bayesian Ridge Regression. In the Bayesian Ridge regression, instead of

choosing 4 we need to assign a prior to ¢ and to o’ . If these priors are scaled-inverse

]

chi square, the prior expectations are: E(cr I';#’S):% where (.) equals /f or .
] — 2

Typically we choose «f to be a small value, usually greater than 4 to guarantee finite
prior variance. Then, we can solve for § as a function of df, K, O'; and /1, so that the

prior expectation of each of the variance components matches the value we expect

according to cr; , f* and [4],

q’f,S) we get,

specifically, equating o (1 —~ hz) to E(of

n

S . 2
df,S|=—=%— and equating ok’ to KxEl\c.|df,,S, ]| we get
» A p

o’z(l—hl)=E(cr€2 7 2

P

S, =(1-# Yo (df, - 2)

We, . [6]
Sy= a (df;-2)

Bayes A. The above formulas can also be used to define the scale parameters in

Bayves B.



Bayesian Lasso. In this model, as originaily formulated by (Park and Casella

2008), marker effects are assigned 1ID double-exponential priors with rate parameter,

A . : . . : :
— (note, A here is a different parameter than that of the ndge regression). The prior

&

. s v s : o; 2 .
variance of marker effects i1s: I’ar(/j,]/;',(r;)=0'k=2-q-i-; therefore, f :?' Using
g P o 3
this in [4] we get: : miK or
MRS
-4
A= {2 K [7]

For the scale parameter of the residual variance we can use formula [6].
Note. The regularization parameter of the Bayesian Lasso is a function of the
notse-signal ratio, and also of the number of markers. Specifically we expect K at a rate

proportional to the square-root of the number of markers. The same occurs in RR (see

[SD-

A
l—x

T

Bayes B and C. Here, the prior variance of marker effects are o= here

7 1s the proportion of marker effects coming from the zero-state of the mixture and 0';

1s the variance of the ‘slab’ (a Gaussian density in Bayes C and a t in Bayes B); therefore

we can use the following formulas to chose the scale parameters as functions of df, K, (Ti

h* and 7,

(l_h:')o_; /120'_:: 1 [8]

df.-2 " K(df,-2)(-7)

3.2. Ridge Regression Vs Bayesian Ridge Regression

In this section we compare estimates of marker effects derived from a ridge regression

using lambda from eq. [5] with those obtained with a Bayesian Ridge Regression using



hyper-parameters chosen according to [6]. For the BRR we use the BLR package. Here,
the prior 1s provided as a list. There is one component in the list for each of the variance

parameters. In each component you need to provide prior degree of freedom and scale.

For more details refer to help (BLR) or sce { Pérez et al. 2010).

Example 1. Ridge regression Vs Bayesian Ridge Regression

rm(list=1s())
library (BLR)
data {wheat)
y<-Y[,2]
h2<-.2
df0<-5

for(i in 1:ncol (X)) { X[,1]<-(X[,i]-mean (X[,i]))/sd{X[,i1) }

K<-ncol {X) # after standardization, K=%# of markers
lambda<-K* {1-h2) /h2

Se<-(1-h2) *var (y}* (d£f0-2}

Sb<-hz*var (y)* (df0-2} /K

round (Se/8b, 5)==lambda

## Ridge Regression

X2<—-chbind (1, X)

C<-crossprod (X2)

for(i in 2:ncol{C)){ C[i,i]<- C[i,i]+1lambda }
CInv<-cholZinv(chol (C))

rhs<-crossprod (X2, y)

bHat RR<-crossprod(CInv,rhs}

yHat RR<-X2%*%bHat RR

#+ Bayesian Ridge Regression
library (BLR)
pricr<-list (varE=1list (df=df0, $=Se) , wvarBR=list (df=df0, 5=5b)}
fmBRR<-BLR (y=y, XR=X,prior=prior,
nlter=13000,burnIn=3000, saveAt='BRR ')

fmBRRSvarE/fmBRRSvarBR
lambda

tmp<-range(c(bHat RR[-1], fmBRR$bR) )
plot (EmBRRSbR ~bHat RR[-1],xlim=tmp,

ylim=tmp, ,main='Estimates of Marker Effects’,

xlab='Ridge Regressiocn', ylab='Bayesian Ridge Regression'}
lines (x=c(-1,1),y=c(-1,1},col=2}

tmp<-range (c {yHat RR, fmBRR$yHat)}

plot (fmBRR$yHat~yHat RR,xlim=tmp,ylim=tmp,main="'Predictions’',
xlab='Ridge Regression', ylab='Bayesian Ridge Regression')

lines{x=c(-10,10),y=c(-10,10),co0l=2,1wd=2)

#+ Change the prior scale (e.g., double it) and evaluate the

## in inferences

10




2.3, Bayvesian Lassor Heod versos rendom lambda

In this example we fit the Bayesian LLASSO using BLR. The prior for parameter lambda
of the BL has four arguments: type, value, rate and shape.Ilf type='fixed’
lambda is set equal to value and kept fixed. If type='random' lambda is treated as
unknown; in this case a gamma prior is assigned to A°as described in Park and Casella
(2008). For more details type help (BLR) in R or see Pérez et al. (2010). We chose
values of the rate and shape parameters of the gamma prior so that the prior is flat in the
neighborhood of the value of lambda we derive from eq. [4]. The following code displays

the prior, run it and evaluates sensitivity with respect to rate and shape.

Example 2. Displaying prior of lambda of the BL

h2<-0.5

lambdaO<-sgrt (2*K* (1-h2) /h2)

lambda<-seg{from=0, to=250,by=1)
dLambda<-2*lambda*dgamma (x=lambda"2, rate=1le-5, shape=0.53)
plot (dLambda~lambda, type='1l"')

abline (v=lambdal, col=2)

# change rate and shape and evaluate sensitivity of the prior

11
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Now we fit the BL with fix and random lambda.

Example 3. Bayesian Las.sb with fixed and random

rm{list=1s()}
library (BLR)
data (wheat)
¥y<-Y[,2] ; h2<-.5

df0<-5

for(i in I:ncol (X))} { X{,i]<-{X[,il-mean(X[,1i]}}/sd(X[,1)) }

Se<~(1-h2) *var (yy* (df0-2)
lambdaO<-sqrt (2* {(1-h2) /h2*ncol (X))

## Bayesian Lasso fixed lambda HE###4# 58444 4EF4F 400 HFEHHE
prior<-list(varE=list (df=df0, S=Se) ,
lambda=list (value=lambdaO,
type="fixed', rate=1e-5,shape=.53)}

fmBL fixed<-BLR(y=y,XL=X,prior=prior,
nIter=12000,burnIn=2000, saveAt="BL fixed ')

fmBL fixed$lambda
lambda0

tmp<-range (c (bHat RR[-1],fmBL fixed$bl})
plot (fmBL fixed$bL ~bHat RR[-1],xlim=tmp,ylim=tmp)
lines (x=c(-1,1},y=c(~1,1},col=2}

tmp<-range {c (yHat RR, fmBL fixed$yHat))
plot {fmBL fixed$yHat~yHat RR,xlim=tmp,ylim=tmp)
lines (x=c(-10,10},y=c(-10,10),col=2, 1wd=2)

## Now: change the value of lambda (e.g., 30 and 200} and
t# evaluate the impact cn shrinkage of estimates

## Bayesian Lasso random lambda #$E55445H4444 534458 F4F5FH4F4444
prior$lambdas$type='random'

fmBL rand<-BLR({y=y,XL=X,pricr=prior,
nlter=12000, burnin=2000, saveAt="'BL_rand ')

fmBL rand$lambda
lambda0

tmp<-range (fmBL randS$bL, fmBL fixedSbhL)
plot (fmBL rand$bL ~fmBL fixed$bL,xlim=tmp, ylim=tmp)
lines (x=c{-1,1),y=c(-1,1),col=2)

tmp<-range (¢ (fmBL rand$yHat, fmBL fixedSyHat))
plot (£mBL rand$yHat~fmBL fixed$yHat,xlim=tmp,ylim=tmp)
lines (x=c(-10,10),y=c(-10,10),col=2, lwd=2)

12



1.4, Regression using maorkers and pedigree

So far we have regressed phenotypes on markers only. The following code gives an
example of models with and without pedigree. In the wheat dataset, matrix A is an

additive relationship matrix computed from the pedigree.

Example 4. Bayesian Lasso with & without pedigree

#4444 DATA #fH#f4HFHtHafaFadnftdttitdasHaHaddutIiHaaadasd
rm(list())

library (BLR}

data (wheat)

objects ()

y<_Y[12]

set.seed (1235)

tst<-sample(1:599,s5ize=150, replace=FALSE}

yNA<-y

yNA[tst]<-NA

## Markers model
prior<-list(varkE=list (df=df0,S=Se) ,
lambda=1list (value=lambdal, type="random’,
rate=1le-5%, shape=.53})

## Model with only markers
fmM<-BLR (y=yNA, XL=X, prior=prior,
nIter=12000,burnIn=2000, saveAt='BL M ')

priorSvarU=list (df=df(, 5=Se/3)
fmPM<-BLR (y=yNA, XL=X, prior=prior,GF=1list (A=A, ID=1:599),
nIter=12000,burnIn=2000, saveAt="BL_PM ')

fmPMSvarkE/ fmMSvark
fmPMS$1lambda/fmMS1ambda

cor(yltst], fmMSyHat[tst])
cor{yl[tst], fmPMSyHat [tst))

tmp<-range (c (fmMS$bL, fmPMS$bL) )
plot (fmMSbL ~fmPM$LL, xlim=tmp, ylim=tmp)
lines(x=c(-1,1},y=ci(-1,1),col=2}

trp<-range (¢ (fmPMSyHat, fmMSyHat) }
plot (fmPMS$yHat~fmMSyHat, xlim=tmp, ylim=tmp)
lines (x=c(-10,10),y=c(-10,10),ccl=2, 1wd=2)

13
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NOTE: In many examples in this lab we use Bayesian methods. In those examples we
make inferences based on a relatively small number of samples and this is done due to
time constraints. In practice, accurate inferences require much more samples. |
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In a standard regression model, the response, y,, is expressed as the sum of a conditional
expectation function, g(x,), and a model residual, ¢, that is y, = g(x,)+¢ . In

previous labs we have focused on the case where g(x,)is a linear function of marker

genotypes, that 1s g(xf):zj;]x,jﬂj . Departures from the linear model could

theoretically be captured by extending the regression formmula with addition of contrasts

between marker genotypes, for instance dominance (i.e., within-loci interaction of alleles)

could be modeled using dummy variables of the form 4, = 1if x,=1:0 ow'}, and

similar contrasts could be used to model interaction of alleles at different loci (i.e.,
epitasis). However, with large p the number of possible interaction terms needed to
mode! even modest degree of interactions (e.g., ls order epistatic interactions) is
extremely large and the problem becomes intractable.

Alternatively, we could try to capture departures from the linear model using
semi-parametric procedures. This was first suggested in the context of Genomic Selection
(GS) by Gianola, Fernando, and Stella (2006) who propose implementing GS using
various semi-parametric procedures. Since then, several existing semi parametric
procedures have been evaluated in GS. In this lab we focus on Reproducing Kemel

Hiblert Spaces (RKHS). Penalized Neural Networks are introduced in LAB 5.

4.2. Reproducing Kernel Hilbert Spaces (RKHS) regressions



Reproducing kernel Hilbert spaces (RKHS) methods are used for semi-parametric
modeling in different areas of application such as scatter-plot smoothing (e.g., smoothing
spline, Wahba, 1990; spatial smoothing (e.g., Kriging, Cressic 1988); classification
problems (e.g., support vector, Vapnik 1998), just to mention a few. Gianola, Fernando,
and Stclla (2006) suggested using this methodology for semi-parametric genomic enabled
prediction. Since then, several authors have discussed and evaluated this methodology in
a genomic context.

Estimates in RKHS can be motivated as solution to a penalized optimization
problem in a RKHS of real-valued functions or, simply, as posterior modes in certain
class of Bayesian models. Next, we provide an overview of the methodology. Detailed
discussions of RKHS regressions in the context of genome-enabled prediction can be
found in Gianola and van Kaam (2008), de los Campos, Gianola, and Rosa 2009) and de

los Campos et al. (2010).

Penalized Regression in Reproducing Kernel Hilbert Spaces
In RKHS regressions we define the set of functions, or space, in which we
perform the regression by choosing a reproducing kernel (RK). Technically, the RK can

be any positive definite function® mapping from pairs of points in input space onto the

real line, that is K(xi,xj.) : {(x{,,xj.) — ‘Jt}. For reasons that we will discuss later in this

handout you can also think K(xf,x,.,) as a co-variance function. For example, if the input

*For K(Xi,xj.) to be positive semi definite it must satisfy Zzaiai'K(xi’xi' )K(x,.,x,)z 0 for
P

every non-null sequence {a ; } .



space consists of a pedigree additive relationships K(ID}.]L{.) xc‘r(][{,!i%,)constitute a

valid RK.

In RKHS regressions the evaluations of functions are expressed as linear

combinations of the basis functions provided by the reproducing kernel, RK, K(x,,x,),

that is g(x, } = Zl_,K(xi,xi.}:z,.,, and the squared of the norm of the function is given by

lel” =2, 2 Klx,ox Jr

Stacking the evaluations of the function into a vector yields: g=Ka and
lel* = 'K, whereg = {g,}, K = K, = K(x,,x,)} and e = {o,}.

Estimates in RKHS are usually obtained as the solution to the following penalized

residual sum of squares (intercept and non-maker effects omitted for ease of notation):

a = {(Y—Kfl)y(y—Kﬂ.)-f-ﬂ,ﬂ.'KO’. 1 [1]

arg min

above, (y—Ka) (y—Ku) is a residual sum of squares, ¢'Ka is a penalty on model
complexity, which is taken to be the square of the norm of the function and A is a

regularization parameters.

The solution to the above optimization problem can be shown to be:
a=[KK+iK]'KYy. [2]
Predictions are then obtained as follows:
~ t -1y-s -1
Ka=K[KK+K['KYy =1+ 2K '] 'y; [3]

therefore, K[K'K + K| 'K’ =1+ AK™'|" is the Hat matrix of RKHS.



Model specification in RKHS regression is defined by two main elements”: the
choice of the reproducing kernel, this functions provide the basis functions and the inner
product which define the Hilbert Space, and 4 which, as in ridge regression, represents a

shrinkage parameter.

4.3, scatter plot smoothing with a Gaussian kernel

In the following example we will use a RKHS regression to estimate a conditional

expectation function non-parametrically. In the example, there is a single predictor,
xX; € [0,27[] and the true conditional expectation function 1s g(x,. ) =120 +sin(x;) . Data

1D
was generated as y;, =120 +sin(x; ) + &, where g, ~ N(O,l). With this setting,

approximately 1/3™ of the variance of the response is explained by the conditional
expectation function and 2/3" by model residuals.

In this example we use the Gaussian kernel,
K(x;.x; )= expl-hxd(x,,x, )}
where: d(x;,x,) is a distance function which in this example we set to be a squared-
Euclidean distance, d(x;,x,)=(x, —x,)* ,and k is a bandwidth parameter controlling
how fast the kernel decay as the two points, (x,.,x,.r), get further apart. In the example we

evaluate the effects of # (which defines the RK) and of 4.

? A third element pertains to the choice of the function used to measure model goodness/lack of fit to the
training data, Here we focus on the case where lack of fit is measured by the residual sum of squares; other
common choices are the negative of the log-likelihood, this allows modeling continuous, binary and other
types of outcomes. For binary outcomes another popular choice is the hinge function, the support vector
machine (Vapnik 1998) is a special case of RKHS where the loss-function is chosen to be a hinge function
{Wahba 1990).



Run the code with the values of h and A given in the example.

Set h=1/1000, this makes the kernel extremely global, and run the code.

Set h=>50, this makes the kernel extremely local, and run the code.

Now fix h=1 and change lambda, evaluate £=200, then A=1/100, evaluate results.

~ Example 1. Scatter-plot smoothing with a Gaussian kernel

FH# SIMULATION#####F4FE4d444a 444848430 H8 041 ERI1S
set.seed (12345)
N<-200
x<-gseq(from=0, to=2*pi, length=N)
signal<-sin{x)
error<-rncrm(N)
y<-signal+error
h<-1
lambda<-10
##4# DISTANCE FUNCTION AND REPRODUCING KERNEL ####4#4#4#
D<-as.matrix(dist {x,method="ecuclidean™))"2
K<-exp (-h*D)
diag(K)<-diag(K) +.001

#%% FITTING THE MODEL ####f#fafffaddddffhadddadtatss
yStar<-y-mean (y)
KInv<-cholZinv{(chol {K)}
C<-KInv*lambda
diag(C)<-diag(C)+1
H<-chol2inv{chcl (C})} # the Hat matrix
LHat<-H%*% (y-mean (y})

plot (y~x, main=paste{"lambda=", lambda," h=",h,sep=""})
lines (x=x, y=signal, col=2,lwd=2)
lines (x=x, y=uHat+mean (y), col=4, lwd=2}

## want to make the functicn less local? set h=1/1000,
## want to make it extremely local? set h=100
## Now fix h=1 and change lambda = 200 then lambda= 1/100
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From eq. [3] predictions are obtained as 5/:[]+K 1/1]} =Hy , where,

Lo

H :{!zif}:[l+l("/1]_l, therefore, érl:Zh}_!yj . The following code displays the

entries of the hat matrix of Example 1. You can evaluate the impact of the bandwidth

parameter on the weights by changing (in Example 1) 4.

Example 2. Displaying the entries of the Hat matrix in RKHS

$## SIMULATION####44#EE4F 44554100 ERHAEFER ST EH1S
rm(list=1s ()}
set.seed{12345)
N<-200
x<-seq (from=0, to=2*pi, length=N}
signal<-sin (x}
error<-rnorm (N}
y<-signal+error
h<-1
lambda<-10
### DISTANCE FUNCTION AND REPRODUCING KERNEL #######
D<—as.matrix{dist (x,method="euclidean")) "2
K<-exp (-h*D)
diag{K)<-diag(K) +.001

##H# Hat Matrix SHE44F0FdF8Fadadddad444F4FaF45d44F44
yStar<-y-mean {y)
KInv<-cholZ2inv (chol (K)}
C<-KInv*lambda
diag (C)<-diag(C)+1
H<-chol2inv (chol (C)) 4 the Hat matrix
#¥# Plotts the ith row of H #¥¥F¥F44F444¥4 #4445 4543 40#
row<-50
plot (H{row, ]~x, main="",xlab="x{J)",
type="1", ylab="h(i,Jj}",ccl=2)
abline(v=xlrow],col=4) ; abkline (h=0)

4.5. Bayesian view of RIKHS



The solution to the penalized RKHS regression (see eq. [1]) can be shown to be the same

than the posterior mode of the vector of regression coefficients in the following Bayesian

model:

(y=Ko+¢

A

g Io’ 0
0'52,0'; ~ N| 0, :5 I
O-a

[4]

where A =o’c.". The proof of the equivalence between the posterior mode of a in the

Bayesian model described in [4] and the solution given in [2] can be obtained following
the same steps used in section 2.5 of LAB 2.

Further, changing variables in [4] from Ka to g =Ka, and noting from the

properties of the MVN density (see section 2.6 of LAB 2) that g ~ MVN(O,Kng) , where

o’ = o2, we obtain an equivalent representation of [4],
a g q p

(y=g+¢

¥

e

Io’ 0
2
0 Ko,

2 2
c.,0, |~N|0,

[5]

Therefore, from the Bayesian perspective, the evaluations of functions at points in the

input space, g = {g(x,.)} are viewed as realizations from Gaussian process satisfying:



Corlg(x, ).glx, )] = Here, the RK K{x ,x.) is viewed as a

{co)variance function wheih defines a notion of smoothens of the function with respect to

points in the input space (genotypes in our case). A high value of Cor[g(x{.),g(x,.. )]
implies that, a-priori, we expect the function to behave smoothly when we jump from x;
to X, . At the same time, this means y, is informative about g(x, ) and that y, informs

us something about g{x, ).

Special cases. Certain parametric models appear as special cases of RKHS
regression. For instance, 1f our information set consists of a pedigree and K is a matrix
of additive relationship matrix, the model defined by [1] is equivalent to the infinitesimal
additive model, the so-called Animal Model. The Bayesian ridge regression and GBLUP
(see section 2.6 of LAB 2) is another example of a parametric model that can be
represented as a RKHS, this is obtained by setting K = XX'. These are examples where
the RK is chosen so as to represent the types of patterns expected under a parametric
model. Another alternative is to choose kernels based on their performance (e.g.,

predictive ability). In this lab we will focus on this second approach.

. 5 o
Y

4.6. Genomic-Enabled Prediction Using RKHS

In this section we use the Gaussian kernel for genomic-enabled prediction. To this end,

we replace the distance function by a genomic-distance. For instance, we can set






Examplé 3. RKHS for Genomic Predici'ioil o

rm{list=1s()}
setwd ('~/Dropbox/aArmidale/ ")
load ("PROGRAMS /RKHS/RKHS . rda™)
library (BLR)

data (wheat}

### DISTANCE MATRIX #######4RH0 040 H4H440E 14448
D<-as.matrix{dist (X, method="euclidean")) "2
D<-D/mean {D)
h<-c{le-2,.1,.4,.8,1.5,3,5)

### GENERATES TESTING SET ##44##4544f444t¢4455484
set.seed(12345)
tst<-sample(1:599,s5ize=100, replace=FALSE}
y<-Y[,4] L - )
YNA<~y — My L:’_;;v\..) 1{} e \_-(') Lo (,{_)r)- .\Jc"\.R-r\C};ij t} . e \7\,"3 i
yNA[tst]<-NA

f## FITS MODELS #{#44A4FS4R444344HHEHGGTEREFIES
PMSE<-numeric(} ; VARE<-numeric(); VYARU<-numerici() ;
pD<-numeric{); DIC<-numeric/()
fmList<-11ist ()
for(i in 1:length(h)}{

print {paste{'Working with h=',h[i],sep=""))

# CCMPUTES THE KERNEL

K<-exp(-h{i] *D}

# FITS THE MODEL

prefix<= paste(h[i], " ", sep="")

m<~RKHS |y=yNA, K=1ist (1ist (K=K, d£0=5,50=2))

-7 ATter=5000,burnIn=1000,df0=5, S0=2, saveAt=prefix)

o~ EmList{[i]]<-fm

T PMSE[il<-mean{ (y[tst]-fméyHat[tst])"2)

VARE[1]<-fmSvarE
VARU[1]<-fmSK[[1]]SvarU
DIC[i]<-fm$fits$DIC
pD[i]<-fm$fitSpD
}
R2<-1-PMSE/mean ( (y[tst]-mean (y[-tst])}"2)

$44 PLOTS #4##45444 4404444 EAREREREFERSHESH
plot (VARE~h, xlab="Bandwidth", ylab="Residual Variance", type="o",col=4)

plot (I {VARE/VARU)~h, xlab="Bandwidth",
ylab="variance ratio (noise/signal)", type="o",col=4)

plot (pD~h, xlab="Bandwidth", ylab="pD", type="0o",co0l=2)
plot (DIC~h, xlab="Bandwidth", ylab="DIC", type="o",col=2)

plot {RZ~h, xlab="Bandwidth", ylab="R-squared", type="o",col=2)
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4.7 Hernel Averaging

The choice of the RK (its functional form and the values of parameters such as the
bandwidth) constitutes the central element of model specification in RKHS regressions.
There are several ways of choosing a kemel. In parametric models, the RK is chosen to
represent the type of patterns expected under a particular parametric model (e.g., additive
infinitesimal, K=A; linear model, K=XX"). Form a non-parametric perspective one can
choose kernels based on the performance of the model, e.g., predictive ability; an
illustration of this was provided in the previous example where a validation set was used
to evaluate predictive ability of RKHS using a Gaussian kernel, over a grid of values of
the bandwidth parameter.

A third way is by inferring the kernel from the data. For instance, in a Bayesian
context one could assign a prior to the bandwidth parameter and infer this parameter
jointly with other unknowns. While this is appealing, it is computationally demanding for
at least two reasons: (a) the RK must be re-computed every time a new value of the
bandwidth parameter is sampled; (b) mixing may be poor. This occurs because, usually,
variance parameters and the bandwidth parameter are highly correlated at the posterior
distribution. An alternative which we consider here is to offer the algorithm all candidate
kernels jointly. For instance, we can make the conditional expectation to be a sum of

several random effects, {g] s BN, }, each of which has its own (co)variance function, the

model becomes:

12
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It can be shown that, conditional on variance parameters, the above model 1s

equivalent to one with a single random effect, g, whose prior distribution is N(g|0, Koﬁ)

where: K =K o, +K,a, +...+ Ky, ay Isaweighted sum of the candidate kernels with

o

weight given by ¢, = g; and 0'; = Za;* . Variance parameter here can then be seen
o k

g

as weights associated to each kernel which can be inferred from the data. The larger the
variance associated to a given kernel the larger the contribution of that random effect to
the conditional expectation We refer to this approach as kernel averaging (KA, de los
Campos et al., 2010).

The following example illustrates the use of KA; the sequence of kemels was
generated using the Gaussian kernel and the values of the bandwidth parameter used in
our previous example.

Run the code below.

What Kernel gets higher weight?

o s that the Kernel that gave highest predictive ability in our previous
example?

¢ Compare the predictive ability of KA with that of models fitted in our

previous example (i.e., single kernel with fixed bandwidth).

13



Example 4. Kernel Averaging

rm(list=1s()}
setwd{'~/Dropbox/Armidale/'} ; load("PROGRAMS/RKHS/RKHS.rda")

library (BLR)

data (wheat)
D<-as.matrix (dist (X, method="euclidean")) "2
D<-D/mean (D}

h<-c(le-2,.1,.4,.8,1.5,3,5)

### GENERATES TESTING SET ######t#a&4Hd58 a4t 44¢
set.seed(12345)
tst<-sample({l1:599,3i7ze=100, replace=FALSE}
y<=Y[,4]
yNA<-y
yNA[tst]<~NA

#4#¢ FITS MODELS ##ft#a#aidddatbdatirdaasrittadditdds
PMSE<-numeric {}
VARE<~numeric ()
KList<-1list ()
for(i in l:length(h}}) {
KList[[1]]<-list (K=exp(-h{i]*D},df0=5,50=.5)
}

¥+ Displays entries of different kernels
plot (KList {[1]]1$K[100,],ylim=c(0,1),col=2);abline(v=100)

plot (KList([[5]]1SK[100,],ylim=c(0,1),col=2);abline(v=100)

fmKA<-RKHS (y=yNA, K=KList,thin=10,
nlter=25000,burnIn=5000,df0=5,50=1, saveht="KA_")

VARG<-numeric ()
for(i in l:length(KList)){ VARG{i]<-fmKASK[[i]]S%varU }
weights<-round (VARG/sum{VARG),5)

PMSE<-mean {{y[tst]-fmKASyHat[tst])"*2)
R2 KA<-1-PMSE/mean {(y{tst]l-mean{y[-tst]})"2)

# compare with results obtained in the previous example
# take a look at the trace plots of variance parameters

J5e VYO pey Proy Sthegasee g v 1)

A
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The following code compares the entries of a pedigree-based additive relationship matrix
versus that of two marker-based genomic relationships. The first one (XX’ , denoted as
XXt ) 18 the co-variance structure corresponding to a linear regression on marker-
covariates with IID normal marker effects (what we have called the Bayesian Ridge

Regression). The second one (denoted as X)isa Gaussian kemnel.

Example 5, Pedigree Vs marker based relationship matrices

rm(list=1s())
library (BLR)
setwd ('~/Dropbox/Armidale/"') ; load("PROGRAMS/RKHS/RKHS,rda™}

D<-as.matrix (X, method='euclidean’) "2
D<-D/mean (D}

K<—exp (-2*D)
G<-tcrossprod (X) /ncol (X)

## plot of entries of XXt versus A

tmpX<-as.vector (&)

tmpY¥<-as.vector (G)

tmp<-range {c (tmpX, tmpY) }

plot (tmpY~tmpX, xlab="A',ylab="'G',cex=0.3,col=2,xlim=tmp, ylim=tmp)

data(wheat) ; for(i in l:ncol (X))} { X[,1i1}<-(X[,1]-mean{X[,1]))/sd{X[,1])

}

15




- Example 6. RKHS ‘vith'markers and pedigree

rm(list=1s{))

library (BLR)

setwd('~/Dropbox/Armidale/') ; load ("PROGRAMS/RKHS/RKHS.rda")
data(wheat} ; for(i in l:ncol (X)) { X[,11<-(X[,1]-mean(X[,1i]1))/sd({X[,1])

### Generates Testing Sets H4H#F4EHFE4EaHaaEadtss
set.seed(12345)
tst<-sample(1:599%, 51ze=100, replace=FALSE)
v<-Y[,4] ; vNA<-y; yNA[tst]<-NA; KList<-list ()

### First the pedigree-model ###F§4E445F0E4F4ELEH4E
KList[[1]}l<-1list{(K=A,df0=5,80=.2)
fmP<-RKHS (y=yNA, K=KList, thin=10,
nlter=6000, burnIn=1000,df=5,50=1, saveaAt="FP_")
FMSE<- mean( (y[tst]-fmPSyHat[tst])"2)
R2 P<-1-PMSE /mean{{y[tst]-mean(y[-tst]))"2)

### Now Markers ####F#HF#EAF4E4F4EFHRAFESEFEHAESS
G<-tcrossprod (X) /ncel {X)
KList[[1]}<-1ist (K=G,df0=5,50=.2)
fmM<-RKHS (y=yNA, K=KList, thin=10,
nIter=6000, burnIn=1000,df=5, S0=1, saveAt="M "}
PMSE<- mean ({y[tst]-fmMEyHat[tst])"2)
R2 M<-1-PMSE /mean{(y[tst]l-mean(y[-tst]})"2}

### Now Markers and pedigree #####4#4st4dtts4444
KList[[1]]<-1ist{K=A,df0=5,30=.1)
KList[[2]]<-list (K=G,df(0=5,50=.1)

fmPM<-RKHS (y=yNA, K=KList, thin=10,
nlter=6000,burnin=1000,df=5,50=1, saveAt="PM_"}

PMSE<- mean{(y[tst]-fmPMSyHat [tst])}"2)

RZ PM<-1-PMSE /mean{(y[tst]-mean(y[-tst])})"2)

## Now Lets add XXt#xXXt #H44#4#4#E4at4444
KList[[1l]]1<-1list (K=A,df0=5,50=.1)
KList[[2]]1<-list (K=G,df0=5,50=.05)
KList[[3]]<-1list (K=I(G"2},df0=5,50=.05)

fmPM2<-RKHS (y=yNA, K=KList, thin=10,
nlter=15000,burnIin=5000,dft=5, S0=1, saveAt="PMZ ")

PMSE<- mean ({y[tst]-fmPM25yHat [tst])"2)

R2 PM2<-1-PMSE /mean((y[tst]-mean{y[-tst]))"2)

library(graphics)
barplot (height=c(R2 P,R2 M,RZ2 PM,R2 PMZ),
names.arg=c('P', 'M', "PM', "PMZ "}, ylab='R-sq. TRN set',col=2}
## Take a lock at trace plots of variance parameters
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In linear regression models the conditional expectation is represented as a weighted sum of input

~ ' o X . .
variables, IL()-‘!‘X!) = 2 l,\""‘/)’f. Many non-linear patterns can be represented linearly by appropriate

. a u
choice of basis functions: E(-“",‘X.') = E rqi(x{.)wm where, { gb_m (xf,) } are the basis functions, which

w1

map from the input variables onto the real line. An exampie of these are the polynomial basis functions:

M
D= {gpm (x,.):x.'” }m:(]' For instance, if M=2 we have the 2" degree polynomial basis functions,

¢ = {l,xi ,xf }; therefore, E(yi‘x,.): By + Bx,; +,6’2x,.2 . Other common examples of non-linear basis

functions are the power, logarithm and exponential functions, With this types of basis functions each of
the regression coefficients affect the behavior of the conditional expectation in the entire input space, and
this may limit the ability of a model to capture the local behavior of the conditional expectation.

Local basis functions can be used to model a conditional expectation within certain regions of the
input space. Splines represent an example of this. In a spline, polynomial basis functions are used to
represent the regression function within boundaries defined by a set of knots. The Gaussian kernel

2

—h! Xt

discussed in LAB4 is another example of a local basis function, here gpm(x,.,tm,h): e where t, is

a focal point and / is a bandwidth parameter which controls how fast the basis function decay as X, gets
further apart from the focal point. Model specification in this case pertains to the choice of focal points
(how many and where in input space should be placed) and of the bandwidth parameter. In the RKHS

regressions of LAB4, the strategy was to ‘offer’ the model a large set of hasis functions {one per subject in
‘2
|\

n v-hlx‘ —xy
the sample) generated by setting t, = x,,t, =X,,..,.t, =X, ; therefore E(yilxi): ZH“;' xe
. This strategy may induce over-fitting and this was confronted by using shrinkage estimation procedures.
This is approach is alsc used in smoothing spline (Craven and Wahba 1978; Wahba 1991),

Non-linear basis functions such as the ones described above offer great potential for capturing
potentially complex patterns between input and output variables; however, the set of basis functions
needs to be defined a-priori. In Neural Networks {(NN) the basis functions used for regression are inferred
{i.e., are data driven), this gives NN great potential for capturing potentially complex patterns.

One of the simplest NNs is the single hidden layer feed-forward NN. This NN can be thought as
non-linear regressions consisting of two steps {(Hastie, Tibshirani, and Friedman 2009): in the first one {or

hidden layer) the basis functions are inferred, and in the second one {or output layer) the output, V., s

regressed on the basis function inferred in the hidden layer. A graphical representation of such NN is given
in Figure 1. The term feed-forward is used to highlight that in these NNs information flows from inputs

(the x;’s) to output (the y,’s), other NN allow feedbacks.
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Figure 1. Graphical Representation ¢f Single Hidden Layer Feed-Forward Neural Netwaork for a Continuous

Response ( v } and p predictor variables (,\'“.,..._,,\’;,p). The network contains M neurons. At each neuran,

_j_?
linear combinations of the predictors (u = bmo —Z M, } are inferred and subsequently activated
: e

.= ¢5m (u,m.) . These basis functions are then used in the output layer to regress the output variable

. ' AL
using a linear model (v =5, +Z zw

=1

+& ).

1t

. . . . . P
As illustrated in Figure 1, in the hidden layer M basis functions, gpm(bmu+z .\‘wa), are

=

inferred {one at each neuron). Each of these basis functions consist of a linear score,

Rl

}’ - . - . .
u = bmo + E X w -, activated by a non-linear activation function, ¢ ()
J=1 ¥ {f

In the output layer, the outcome, y,, is regressed on the basis functions using an additive model.

The example of Figure 1 is for a continuous response; in many applications with NN the outcome is either
binary or polychotomous. in those cases an additional activation functions are added in the output layer.
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Note that, if the activation function of the hidden and output layers are identity functions (i.e.,

g’ﬂg‘,‘,{um}=um the model of Figure 1 becomes a standard multiple linear regression model. Moreover, if

we set the @ () to be the basis functions of a reproducing kernel {see LAB4), the NN of Figure 1 becomes

the RKHS regression. Therefore, we can view the NN of figure 1 as a general framework that includes the

linear model and the RKHS as special cases.

The activation functions of the hidden layers map from the real line onto the [0,1] interval, and a

1

common choice is to set this to be a sigmoid function. For instance we could use ¢, (z"”.)= IT for
+ e i

some >0,

Architecture of a Neural Network. The elements that define model specification in NN are: (a) the
choice of input variables, (b} the type of network (e.g., feed-forward), {¢) the number of layers, (d) the
number of neurons per layer, and (d) the choice of activation functions. In general the term ‘architecture’
of the network is used to referred to the choices made in (b)-(d).

Penalized Neural Networks. The set of parameters to be estimated in the NN of Figure 1 include:
all the intercepts and regression coefficients at each neurons, the parameters of the activation functions,
and the intercept and regression coefficients of the output layer. With large p, and with several neurons,
the total number of parameters to be estimated can be huge. This, together with the intrinsic flexibility of
the NN, can easily yield over-fitting and poor predictive performance. To prevent this, a common strategy
is to fit the neural network using penalized methods such as those discussed in LAB2. Therefore, in a
penalized NN, parameters are estimated by minimizing an objective function consisting of a lack-of fit
function {e.g., a residual sum of squares} plus a penalty on model complexity. Any of the penalties
discussed in LAB 2 can be used; however, a common choice is to set the penalty to be the of regression
coefficients (usually intercepts are not penalized).

In what remains of the lab we illustrate the use of penalized NN using a beta version of the R-
package trainbr. This package was developed and kindly shared by Paulinc Perez.

5.2, Scatterplot smoothing using a penalized NN



The following example illustrates the use of penalized NN for scatter-plot smoothing,

.- Example 1: Scatter-plot smoothing Using a Neural Network: .

rm(list=1s()};library(trainbr) ; library(splines)
##4 SIMULATION (same as the one used in Ex. 1 of LAB4) #####
set.seed(12345)
N<-200
x<-seqg(from=0, to=2*pi, length=N)
signal<-sin (%)
error<-rnorm(N)
y<-signal+error

# for train-br the cucome variable needs to be standardized te [0, 1]

yStd<-normalize (y) B s LR P A B N R
signalStd<-2*{signal-min(y) )}/ (max(y)-min(y))-1
15¢

t# Variousiparametric models
Iml<-1m(¥~x)
poly3<-Im{yStd~x+I(x"2)+1(x"3)}
## Natural spline with 4 knots
X<-ns (x=x,df=4)
fmNS<-1m (yStd~X}
## Neural Networks with 1,2,3 and 5 nuerons
NNl<-trainbr {y=yStd,X=as.matrix (x),neurons=1})
yHatNN l<-predictions.nn({X=as.matrix(x),theta=NNlStheta, neurons=l)

NNZ<-trainbr (y=yStd, X=as.matrix (x}, neurons=2)
yHatNN 2<-predictions.nn{X=as.matrix(x},theta=NN2Stheta, neurons=2})

NN3<-trainbr (y=yStd,X=as.matrix{x),neurcns=3)
yHatNN 3<-predictions.nn(X=as.matrix(x),theta=NN35theta, neurons=3)

NN4A<-trainbr (y=yStd, X=as.matrix (x},neurcns=4)
yHatNN 4<-predictions.nn{X=as.matrix{x),theta=NN4Stheta, neurons=4)

NNS<-trainbr (y=yStd,X=as.matrix (x),neurons=5)
yHatNN 5<-predictions.nn({X=as.matrix(x),theta=NNbStheta, neurons=5)

# {continues next page)

b

Example 1: Scatter-plot smoothing Using a Neural Network
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# (FROM PREVIOUS PAGE)

## R-Squared ##HHFHAREFESF PSR E R A SRR SR G HE RS AR R R
R2_1m<-1-mean{ (signalStd-predict(Iml))*2) /var(signalStd)
R2 ply3<-1- mean(i{signalStd-predict (poly3))"2)/var{signalstd)
RZ_N5<-1- mean({signalStd-predict (fmNS})"2) /var (signalstd)
RZ NN<-numeric(}
RzZz NN[1l]<-i-mean{(signalStd-yHatNN 1)"2)/var (signalstd)
RZ NN[Z2]<-1-mean({signalStd-yHatNN 2)"2)/var{signalitd)
R2_NN[3]<-1-mean ({signalStd-yHatNN_3)"2)/var(signalsStd)
R2_NN[4]<-1-mean((signalStd-yHatNN 5)"2)/var(signalstd)
RZ_NN[5]<-1-mean((signalStd~-yHatNN 5)"2)/var(signalStd)

## Plots fe#dd et 4444 e adF4 8000 aF 40t a0 E4 4440000084 4FE8RE 0SS
plot{yStd~x, col=1, cex=.5)
lines (x=x, y=signalstd, lwd=2, col=2)
lines (x=x, y=yHatNN_ 3, col=4, lwd=4, 1ty=2)

plot (RZ NN~I(1:5),
xlab="'Number of Neurons', ylab= 'R2(Pred. vs signal', type='c'
, cocl=4})

abline (h=RZ NS, col=4,1lty=2}

Example 1 illustrates the flexibility that NNs have in terms of capturing complex patters: starting from a
single predictor, the NN generated complexity by inferring multiple basis functions which were able to
capture the non-linear patterns between inputs and outputs very well. The example uses a single
predictor, but as illustrated in Figure 1 the method could also be applied to multiple-predictors. However,
with large p and with multiple neurons, the computational requirements increase substantially.
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In Example 2 we first select the top p markers from single marker regressions and subsequently

offer these markers to a NN with 3 neurons.

Examplé 2: Penaii_zéd Neural N'étivm"k'Applied to Pre-selected Markers

rm(list=1s())
##E DATAE HEH4#H#L4AFHHdFRI TSR RE R AT EH SRR O#E

library(BLR) ; library(trainbr) ; data(wheat)
N<-nrow{X}) ; p<-nccl (X)
y<-Y[,4]

y<—-normalize((y)
set.seed{1235)
tst<-sample(1:N,size=150, replace=FALSE)
XTRN<-X[-tst,] ; yTRN<-y[-tst]
XTST<-X[tst,] ; yTST<-y[tst]
### SINGLE MARKER REGRESSTONS ########F¢d4kdddddsddias
pValues<-numeric ()
for(i in l:p)/{
fm<-1m (yTRN~XTRN[,i])
pValues[i]<-summary (fm} Sccef (2, 4]
print (paste ('Fitting Marker ',i,'!"',sep=""})
}
nMarkers<-75
selSNPs<-order (pValues) [l:nMarkers)
XTRN<-XTRN[, sel3NPs]
XTST<-XTST|[, selSNFs]

##% Neural Network ####f##s#b44td444404040AFRERFEFHHY
NN<-trainbr (y=yTRN, X=XTRN, neurons=4, epochs=100)
yHatNN<-predictions.nn (X=XTST,theta=NNS$Stheta, neurcons=4}
cor (yHatlNN, y{tst])

## Change the number of pre-selected markers (line 22) and number of
## Neurcons (lines 28 and 29) and experiment.
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In Example 2 we pre-selected markers, another strategy consist of first mapping the input
information into some basis functions {e.g., using a reproducing kernel or using genomic relationships) and
then applying the NN to these basis functions. For instance, Gianola et al. {2011} suggested using the
additive relationships as basis functions, by so doing we reduce the number of input variables of the NN
from p to n. In Example 3 we illustrate this approach by using as inputs to the NN marker-derived principal

components.

rm{list=1s{())
44 DATA H##addHd b by H AR H A RS REHER AR R4S
library (BLR) ;library(trainbr) ; data(wheat)

for(i in l:ncol (X)) { X[,1i)<-X[,1i]-mean(X[,i]}}
N<-nrow (X) ; p<-ncol (X}

y<-Y1[,4]

y<-normalize(y)

## Pcs

SVD<-svd (X, nu=59%, nv=0)

PC<-5VDSu ; for(i in l:ncol(PC)){ PC[,i]<-BC[,i])*SvDsd[i]
plot (PCf{,1:2],col=4)

set.seed (1235)

tst<-sample (1:N,size=150, replace=FALSE)

yTRN<-y[-tst]

yT5T<-y[tst]

PCTrn<-pC[-tst,]

PCTst<-PC[tst,]

nPC<-300

NN<-trainbr (y=yTRN,X=PCTrn/[,l :nPC],neurons=3, epochs=150)

yHatNN<-predictions.nn({X=PCTst![,1:nPC], theta=NNS$theta,
neurons=c (length (NNStheta)-1))

cor (yHatNN, yTST)

Example 3: Penalized Neural Network Applied to Marker-derived Principal Components -

}
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. NOTE: In many examples in this lab we use Bayesian methods. In those examples we make inferences based |
: on a relatively small number of samples and this is done due to time constraints. In practice, accurate '
inferences require much more samples. |

! Suggestions made by Daniel Gianola are gratefully acknowledged.



Prediction is a central problem in plant and animal breeding and in many other domains. It is natural to
compare models based on their ability to predict future outcomes. Validation methods aim at estimating
the distribution (or features of it, e.g., the variance) of prediction errors.

Prediction error. Let S, :{yi,xl} denote the available training data, M a model (or
algorithm) and {ym,“_, xm,h_} an un-observed data point that we want to predict. The algorithm processes

the training sample and derives a prediction: ﬁ,,l_,“_(xm,".,M, va)- Example: using training data, S,,.,

and a linear model (M) we estimate marker effects and then we use the estimated marker effects and

the genotypes of candidates of selection (X . ) to derive predictions. The prediction error is

Hew'

-~

=1 -y Model performance can then be assessed using features of the distribution of

& .
;oW < aen  mew

Vi . .
7 prediction errors. Can b el .w\)

[ofon €1
fd g Hresice?

(o™t YYValidation methods. Deriving a closed form for the distribution of prediction errors requires
making assumptions about the true data generating process. In practice we do not know such process
and models are, at best, good approximations. However, if we are able to draw a large number of
samples from the desired prediction errors{f}mi}, we can then estimate features of the density of
prediction errors using Monte Carlo methods. For instance, given a large number of sample of prediction
errors we could estimate the proportion of variance of future phenotypes accounted for by predictions

S
using an R-squared type statistic: £ =1—-- ; new

z: (:J:uew,i - -T,nm\ )-

In practice we have only a finite sample of data and most validation methods emulate the
sampling process by sampling data points using some type of resampling method. There are different
types of prediction errors, and the design of the validation scheme will determine what type of
prediction errors are we describing.

Conditional error. Typically, we want to estimate the distribution of the prediction error given
Sm.v)- Here, prediction errors are random variables because they

the training sample, that is, p(ém,
are functions of yet-to-be-observed genotypes and phenotypes. Intuitively, we can obtain draws from
the distribution of conditional errors by first fitting the model (only once) to the available TRN sample
and subsequently evaluating the prediction accuracy of the model we derived by sampling testing

samples.

Marginal prediction errors are obtained by averaging the density of conditional errors over all

Srw )] = I P (élre\1' Stay )p (S TRN )35 TRN

Intuitively we can estimate the marginal distribution of prediction error with re-sampling of both raining
and testing datasets.

possible realizations of the training sample:p(ém,): E[p(&“m,



In most applications, our interest is to estimate the density of conditional errors; however this
density is difficult to estimate and most of the methods we will see estimate P(ém‘) (Hastie, Tibshirani,

and Friedman 2009}.

&2, Afterngtive Vaiitdation Scheames

Training-Testing {TRN-TST) Validation

if sample size is large we can simply assign some individuals for training (TRN)} and some for testing
{TST). We use TRN to fit the model and derive prediction errors from TST. We have done so in previous
labs by partitioning at random the wheat dataset into TRN and TST. If the prediction problem of interest
has certain structure {e.g., ancestors will be used for training with the goal of predicting performance of
progeny) the partition of the data inte TRN and TST should reflect such structure. This has been done,
for instance for validation of methods for genomic selection in dairy cattle. Unfortunately we can’t do
this with the wheat dataset because we lack a pedigree,

Cross-validation {CV]

One disadvantage of the TRN/TST design above described is that individuals are either used for training
or testing. When the total sample size is large this is not a problem; however, with small sample size one
would like to use all individuals both for training and testing CV allows this. In CV individuals are
randomly assigned to disjoint sets using an index, for example, in 2-fold CV each individual is assigned to
either 1" or 2™ fold. Then, a TRN/TST evaluation is done for every fold. In those evaluations, individuals
assigned to that fold are regarded as TST set and the remaining ones as TRN set. The following R-code
implements a 5-fold CV using the wheat dataset.



Example 1: 5-fold CV ..

b4 LOADS DATA #h4ER#btiisbypsiphsbtsbpipls

rm{list=1s()); library(BLR}); data{wheat})
v<-Y[,4]
for(i in l:ncol (X)) { X[,1]1<—{X[,1]-mean(X[,1]}}/sd(X[,1}}) }

h2<-0.5 ; lambda<-(1-hZ2)/hZ2*ncol (X)

##% ASSIGNMENT TC FOLDS (5-fold CV) #######4#44
set.seed (124292)
sets<-sample(l:5,size=nrow{X),replace=TRUE)
yHatCV_RR<-rep (NA, length (y))
yHatCVv_0<- rep(NA, length(y}}
varE<-numeric ()
indexH<-rep{NA, length(y))}
for{(fold in 1:5}{

tst<-which{sets==fcld) # here we partition the data
C<-crossprod (X[-tst,])
for{j in l:ncol(C)){ CIl]j,Jj)l<- Clj,J]l+lambda }

CInv<-chol2inv(chol {C))
H<-X[tst, 1%*3CInvi* st (X[-tst,])
indexH[tst]<-rowSums{abs(H)>.15) # count entries > 0.15 in H
yHatCV_RR[tSt](— H$*Sy[-tst]
yHatCV_0O[tst)<-mean(y[-tst])
print (fold)

}

sgErrorRR<-({y-yHatCV RR)"Z
sqbrror0<- (y-yHatCV_Q) "2

PMSE RR<-tapply{X=sqErrorRR, FUN=mean, INDEX=sets)
PMSE O<-tapply(X=sgError(, FUN=mean, INDEX=sets)
RZ2<-1-PMSE RR/PMSE 0 # compare to cor (y,yHatCVv) "2
sgrt (R2)

#%# Three different ways of computing R2: discuss!
cor(y, yHatCv_RR) "2
l-var(y-yHatCV_RR) /var(y}
l-sum( (y-yHatlV_RR)}"2) /sum({y-yHatCv_0)"2)

## Relationships between entries of hat matrix and pred. errors
tapply (FUN=mean, X=sqErrorRR, INDEX=indexH)

plot (sgqErrorRR~indexH, ylab="'Sg.Error',xlab="Index',col=2,cex=.5)

NOTE 1. While CV is commonly used in statistics and computer science, one needs to be aware that CV is
not always an appropriate validation design. For instance, as previously mentioned, in breeding
applications the prediction problem usually consists of inferring genetic values of candidates to
selection. This prediction problem involves a generational order that is not considered in a standard CV
with random assignment of individuals to folds. This may or may not induce biases, but one needs to be

aware that CV is not the solution to any validation problem.



NOTE 2. The observed the variability in PMSE and R-squared across partitions of the CV refiects
uncertainty associated to the sampling of TRN and TST sets. Evaluating such uncertainty is very
important, especially when the number of records in the TRN and/or TST set is small. Note however,
that ideally we would like to hold the training data fixed and evaluate the uncertainty associated to
sampling of un-observed data (i.e., TST) only.

NOTE 3. We also observed that sq.-error diminishes as ‘local sample size’, measured, for example using
the entries of the hat matrix, increases,

Replicated Training-Testing

In CV the number of folds affects the size of the training and testing datasets and the number of
replicates of estimates of prediction accuracy. For instance, in a 5-fold CV the size of the TRN (TST)
datasets is 80% (20%) of that of the available data and we only obtain 5 estimates of prediction accuracy
{one per fold}, this is a very small number if we wish to construct a confidence interval on estimates of
prediction accuracy. An alternative is to replicate TRN-TST experiments a large number of times, each
time re-assigning at random subjects intc TRN and TST samples. The following R-cade illustrates this
with 30 replicates {example in next page).



Example 3: Replicated TRN-TST partitions

rm{list=1s())
FH4#F DATA #4444 404N a 0 HEFNHFREFES S
library (BLR)

data (wheat)

N<-nrow (X} ; p<-ncol (X)

for(i in l:ncol{X)){ X[,i}<—(X[,i]-mean (X[,1]))/sd(X[,1i]} }
y<=Y[,2]

nTst<-150

nRep<-30

set.seed(1235)

COR<-matrix (nrow=nRep,ncol=3, NA)

colnames (COR)<-c ('lambda=10"', 'lambda=1279', 'lambda=5000"}
lambda<-c (10,1279, 10000}

for(i in 1:nRep) {
print (paste{'TRN-TST Replicate ',i,sep='"))
tst<-sample(l:N, size=nTst, replace=FALSE)
XTRN<-X[~tst, |
yTRN<-y[-tst)
XTST<-X[Lst, ]
yTST<-y[tst]
ZTRN<-cbind (1, XTRN)
2TS8T<-chbind {1, XTST)
rhs<-crossprod (ZTRN, yTRN}
CO<-crossprod (ZTRN)
for(j in 1:3){
C<-C0
fer(k in 2:ncol (Cy){ Clk,kl<~Clk,k]+lambdal[]] }
CInv<-cholZ2inv(chol(C))
scl<- CInv%*%rhs
yHatTST<- ZTST%*%s01
CORI[1i,]J]<-cor (yTST, yHatTST)
}
}
## Plots in next page
### PLOTS (Results from previous page)
## One way of looking at the problem (not gquite correct)
x<-rep{lambda, nRep)
boxplot (as.vector (COR) ~x, xlab=expression {paste (lambda}),
ylab='Correlation'}

## A better way
plot (y=CORI,2],x=CCR[,1],xlim=range (COR), ylim=range (COR),
xlab=expression({paste {(lambda[10]}),
ylab=expression(paste{(lambda[l279]1})),main='Correlation', col=2)
abline(a=0,b=1,col=4) :

pPlot {y=COR[, 3], x=COR[,2],xlim=range {COR), ylim=range (COR},
xlab=expression{paste(lambda[1279])),
ylab=expression(paste (1lambda[10000]))),main="Correlation',col=2)
abline (a=0,b=1,co0l=4)




So far we have assigned lines from training and testing completely at random. In this example we
explore the impacts of training and validating in different subpopulations.

rm{list=1s()}
FH#HE DATE #4448 K484 # 58080 ISR BTN R a L 4e s
library (BLR)

data{wheat) ;

for(i in l:ncol(X)){ X[,11<-(X[,i)-mean(X[,1]))/sd(X[,1i])}

## Clustering based on g principal components
g<-2 # number of PCs used for clustering
for(i in 1l:ncel (X)) {X[,1]<-X[,i]-mean (X[,1])}
SVD<-svd (X, nu=qg, nv=0)
myClusters<-kmeans (x=5VD5u%*%diag{SVDsd![1:9]), centers=2)

## Ploting principal components
tmp<-which (myClustersScluster==1)
plot (x=SVDSultmp, 1], y=SVDSu[tmp, 2], ylim=range{(SVDSul,2]),
xlim=range (SVD$ul[,1]), col=2, xlab='lst PC', ylab='Znd PC" )
points {x=SVDSul-tmp, 1], y=SVDSu(~-tmp, 2], col=4)

## Fitting models
prior=list (varE=list (df=5,5=1),
lambda=1list (type='random',value=20,rate=1e-5, shape=.53)}

groupl<-myClustersS$Scluster==
y<-Y[,4]

yNAL<-y

yNAl[which (groupl) ] <-NA
yNAZ<-y

yNAZ [which{!groupl) ]<-NA

## Training in sub-population 1
fml(—BLR(y=yNA1,XL=X,nIter:7000,burnIn=2000,prior=prior,SaveAt:'l_')

# training in sub-population 2
fm2<—BLR(y=yNA2,XL=X,nIter:7000,burnIn=2000,prior=prior,saveAt='2_')

## Across group prediction
cor (X[which (groupl), 1%*%fml15$bL, y[which (groupl) ]}
cor {(X[which(lgroupl),]1%*%$fm2$bL, v [which(!groupl)])

## Estimates of marker effects
plot (fml$bL~fm23bl, col=2)
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In this example we address the problem of across environment (or trait prediction), this appear, for
example when we want to select individuals based on expected performance in an environment in
which these genotypes have not been evaluated. Most of the models we have discussed so far can be
extended to accommodate multiple traits. Here, we explore the problem of prediction across correlated
environments using single-trait models alone or combined using an ad-hoc procedure. A fully multi-
environment evaluation of genome-enabled prediction methods for this dataset is presented in

Burguefio et al. {2012).

Example 4: Across environment prediction

rm(list=1s())
FH444 DATA H#4#844 484444444044 H4H 44T HFEAFRFRERERAGES
library (BLR)
data{wheat)
for(i in l:ncol (X)) { X[,il<-(X[,i)-mean(X[,1i])}/sd(X[,1]1}}
round{cor{Y),3) #

prior=list{varE=1list (df=5,5=1),
lambda=list (type='random',value=20,rate=le-5, shape=.53))

## Training models in environments 1-4
fm<-1ist ()
for{i in 1:4){
fm[[1]]1<-BLR{y=Y[,1],¥L=X,nIter=7000,burnIn=2000,
prior=prior, saveAt=paste('E_',i,sep=""))

}

## lst strategy
COR<-matrix (nrow=4,ncol=4,NA)
colnames (COR) <-paste ('TRN _',1:4,sep="")
rownames (COR) <-paste('TST ',1:4,sep="'")
for(i in 1:4){ N
for(j in 1:4}{
if{i'=3){ COR[i,]l<-cor(Y[,i],fm[[j]}SyHat) )
}

}
## 2nd strategy (a bit of cheating)

covP<-cov(Y)
W<-matrix(ncol=4,nrow=4,0)
wCor<-rep(NA, 4}
for(i in 1:4){
Wli,-i]l<-covP{i,-1]}%*%solve(covP[-1,-1]}
TMP<-chind(fm[[1]]$yHat, fm{ [2]]$yHat, fm([[3] ]$yHat, fm[[4]]S$yHat)
wCor[il<-cor(Y[,i], TMP%*%WI[i, ])
}
#4 compare COR & wCor




Burguefio, )., G. de los Campos, K. Weigel, and J. Crossa. 2012, “Genomic Prediction of Breeding Values
When Modeling Genotype$S\times$ Environment Interaction Using Pedigree and Dense
Molecular Markers.” Crop Science 52 (2); 707,

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. 2009. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction, Second Edition. 2nd ed. 2009. Corr. 3rd printing 5th Printing.
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