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Chapter 1
Models

C. R. Henderson

1984 - Guelph

This book is concerned exclusively with the analysis of data arising from an experi-
ment or sampling scheme for which a linear model is assumed to be a suitable approxi-
mation. We should not, however, be so naive as to believe that a linear model is always
correct. The important consideration is whether its use permits predictions to be ac-
complished accurately enough for our purposes. This chapter will deal with a general
formulation that encompasses all linear models that have been used in animal breeding
and related fields. Some suggestions for choosing a model will also be discussed.

All linear models can, I believe, be written as follows with proper definition of the
various elements of the model. Define the observable data vector with n elements as y.
In order for the problem to be amenable to a statistical analysis from which we can draw
inferences concerning the parameters of the model or can predict future observations it is
necessary that the data vector be regarded legitimately as a random sample from some
real or conceptual population with some known or assumed distribution. Because we
seldom know what the true distribution really is, a commonly used method is to assume
as an approximation to the truth that the distribution is multivariate normal. Analyses
based on this approximation often have remarkable power. See, for example, Cochran
(1937). The multivariate normal distribution is defined completely by its mean and by
its central second moments. Consequently we write a linear model for y with elements in
the model that determine these moments. This is

y =XB8+ Zu+e.

X is a known, fixed, n x p matrix with rank = 7 < minimum of (n, p).

B is a fixed, p x 1 vector generally unknown, although in selection index methodology
it is assumed, probably always incorrectly, that it is known.

Z is a known, fixed, n x ¢ matrix.
u is a random, ¢ x 1 vector with null means.

e is a random, n x 1 vector with null means.
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The variance-covariance matrix of u is G, a ¢ X ¢ symmetric matrix that is usually
non-singular. Hereafter for convenience we shall use the notation Var(u) to mean a
variance-covariance matrix of a random vector.

Var(e) = R is an n X n, symmetric, usually non-singular matrix. Cov(u,e’) = 0,
that is, all elements of the covariance matrix for u with e are zero in most but not all
applications.

It must be understood that we have hypothesized a population of u vectors from
which a random sample of one has been drawn into the sample associated with the data
vector, y, and similarly a population of e vectors is assumed, and a sample vector has
been drawn with the first element of the sample vector being associated with the first
element of y, etc.

Generally we do not know the values of the individual elements of G and R. We
usually are willing, however, to make assumptions about the pattern of these values. For
example, it is often assumed that all the diagonal elements of R are equal and that all
off-diagonal elements are zero. That is, the elements of e have equal variances and are
mutually uncorrelated. Given some assumed pattern of values of G and R, it is then
possible to estimate these matrices assuming a suitable design (values of X and Z) and
a suitable sampling scheme, that is, guarantee that the data vector arose in accordance
with u and e being random vectors from their respective populations. With the model
just described

E(y) = meanof y = Xg.
Var(y) = ZGZ +R.

We shall now present a few examples of well known models and show how these can
be formulated by the general model described above. The important advantage to having
one model that includes all cases is that we can thereby present in a condensed manner
the basic methods for estimation, computing sampling variances, testing hypotheses, and
prediction.

1 Simple Regression Model

The simple regression model can be written as follows,

Yi = B+ T + €

This is a scalar model, y; being the i'® of n observations. The fixed elements of the model
are 4 and «, the latter representing the regression coefficient. The concomitant variable
associated with the i** observation is z;, regarded as fixed and measured without error.
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Note that in conceptual repeated sampling the values of z; remain constant from one
sample to another, but in each sample a new set of e; is taken, and consequently the
values of y; change. Now relative to our general model,

Y = (1 y2 - W),

B' = (n a),

< _ |11 ...117and
r1T T2 ... Tp

e = (e1 e ... e)

Zu does not exist in the model. Usually R is assumed to be Io? in regression models.

2 One Way Random Model

Suppose we have a random sample of unrelated sires from some population of sires and
that these are mated to a sample of unrelated dams with one progeny per dam. The
resulting progeny are reared in a common environment, and one record is observed on
each. An appropriate model would seem to be

Yij = 1+ Si + €y,

y;; being the observation on the j progeny of the i'" sire.

Suppose that there are 3 sires with progeny numbers 3, 2, 1 respectively. Then y is a
vector with 6 elements.

y = (Y11 v12 Y13 Y21 Y22 Y31),
xX = (111111,
u = (s; sz s3), and
e = (611 €12 €13 €21 €22 623),
Var(u) = Io?, 33
Var(e) = Io2, ox6

where these two identity matrices are of order 3 and 6, respectively.
Cov(u,e€’) = 0.

Suppose next that the sires in the sample are related, for example, sires 2 and 3 are
half-sib progeny of sire 1, and all 3 are non-inbred. Then under an additive genetic model
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1 1/2 1/2
Var(un) = | 1/2 1 1/4| o2
1/2 1/4 1

2 and 3 are progeny of 1 (half sib)

What if the mates are related? Suppose that the numerator relationship matrix, A,,,
for the 6 mates is

1 1/2 12 0 0 0
0o 1 0 0 1/2 1/2
/2 0 1 1/4 0 0
/2 0 1/4 1 0 0
0 1/2 0 0 1 1/4
0 1/2 0 0 1/4 1

Suppose further that we invoke an additive genetic model with h? = 1/4. Then

10 1/30 1/30 0 0
0 1 0 0 1/30 1/30
Cl130 0o 1 1560 0 0 )
Vare) = | 30 0 1560 1 0 0 | %

0 1/30 0 0 1 1/60
0 1/30 0 0 1/60 1

This result is based on 02 = 07/16, o7 =15 0,/16, and leads to
Var(y) = (25 A, +.751) o), h2is1/4

where A, is the relationship matrix for the 6 progeny.

3 Two Trait Additive Genetic Model

Suppose that we have a random sample of 5 related animals with measurements on 2 cor-
related traits. We assume an additive genetic model. Let A be the numerator relationship
matrix of the 5 animals. Let

g1 912

d12 922
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be the genetic variance-covariance matrix and

1 Ti2
T12 Ta2

be the environmental variance-covariance matrix. Then h? for trait 1 is g11/(g11+711), and
the genetic correlation between the two traits is g12/(g11 ggz)l/ 2. Order the 10 observations,
animals within traits. That is, the first 5 elements of y are the observations on trait 1.
Suppose that traits 1 and 2 have common means p, ps respectively. Then

, (11 00
X‘(oo 11)’

B = (1 p2).

1 11000
000111

and

The first 5 elements of u are breeding values for trait 1 and the last 5 are breeding

values for trait 2. Similarly the errors are partitioned into subvectors with 5 elements
each. Then Z = T and

G = VCLT’(LI) — A g11 A g12 should be decomposed
A g12 A g22 ’  into ul and u2 I think

o . ITH IT12
R = Var (e) = (Iru Ir22>

where each I has order, 5.

4 Two Way Mixed Model

Suppose that we have a random sample of 3 unrelated sires and that they are mated to
unrelated dams. One progeny of each mating is obtained, and the resulting progeny are
assigned at random to two different treatments. The table of subclass numbers is

Treatments

Sires 1 2
1 2 1

2 0 2

3 3 0
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Ordering the data by treatments within sires, sire, trt, count

/

y = (y111 Y112 Y121 Y221 Y222 Y311 Y312 y313)-
sl sl sl

Treatments are regarded as fixed, and variances of sires and errors are considered to
be unaffected by treatments. Then

u = (51 S9 83 Sty; Stia Stoy Stag )

sl

1 001 00O

1 001 00O

1 000100

7 _ 01 0O0O0T1T0O0

01 0O0O0OT10

001 0O0°O0°1
001O00O0O01

001 00O0O071

Var(s) =13 02, Var(st) = I 02, Var(e) = Igo?

e

Cou(s, (st')) = 0.

This is certainly not the only linear model that could be invoked for this design. For
example, one might want to assume that sire and error variances are related to treatments.

5 Equivalent Models

It was stated above that a linear model must describe the mean and the variance-
covariance matrix of y. Given these two, an infinity of models can be written all of
which yield the same first and second moments. These models are called linear equivalent
models.

Let one model be y = X8 + Zu + e with Var(u) = G, Var(e) = R. Let a second
model be y = X, 8, + Z,u, + e,, with Var(u,) = G,, Var(e.) = R,. Then the means
of y under these 2 models are X3 and X, 3, respectively. Var(y) under the 2 models is

7ZGZ + R and Z.G.Z. + R,.

6
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Consequently we state that these 2 models are linearly equivalent if and only if
X3 =X,8, and ZGZ' + R = Z,G.Z. + R..

To illustrate, X8 = X, 3, suppose we have a treatment design with 3 treatments
and 2 observations on each. Suppose we write a model

Yij = 1+t + e,

then

®R
|
o e
OO OO ==
OO = = OO
—_— -0 O O O
~
=

An alternative model is

Yij = Qi + €44,
then
ai

(%)
s

O OO O ==
OO, R, OO
_ -0 O O O

Then if we define oy = pu + t;, it is seen that E(y) is the same in the two models.
To illustrate with two models that give the same Var(y) consider a repeated lactation
model. Suppose we have 3 unrelated, random sample cows with 3, 2, 1 lactation records,
respectively. Invoking a simple repeatability model, that is, the correlation between any
pair of records on the same animal is r, one model ignoring the fixed effects is

Yij = ¢ + €.
C = CoOw
C1 r 0 0
Var(c) = Var| c = 0 r 0 |o?
C3 0 0 r
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Var(e) = Is (1—r) o2,

Y

An alternative for the random part of the model is

Yij = €ij,
where Zu does not exist.
1 r 000
r 1 r 000
B - rr 1 000 2
Var(e) = R = 00010 o,
000 r 10
0 00 0O01
Relating the 2 models,
062 = ag + 03.

Cov(eij, €,) = o2 for j #j.
We shall see that some models are much easier computationally than others. Also
the parameters of one model can always be written as linear functions of the parameters

of any equivalent model. Consequently linear and quadratic estimates under one model
can be converted by these same linear functions to estimates for an equivalent model.

6 Subclass Means Model

With some models it is convenient to write them as models for the ”smallest” subclass
mean. By "smallest” we imply a subclass identified by all of the subscripts in the model
except for the individual observations. For this model to apply, the variance-covariance
matrix of elements of e pertaining to observations in the same smallest subclass must
have the form

no covariates exist, and the covariances between elements of e in different subclasses must
be zero. Then the model can be written
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y=XB8+Zu+e.

y is the vector of ”smallest” subclass means. X and Z relate these means to elements
of B and u. The error vector, €, is the mean of elements of e in the same subclass. Its
variance-covariance matrix is diagonal with the i diagonal element being

(v+m‘7710)0_2

ng ng

where n; is the number of observations in the i*" subclass.

7 Determining Possible Elements In The Model

Henderson(1959) described in detail an algorithm for determining the potential lines of an
ANOVA table and correspondingly the elements of a linear model. First, the experiment
is described in terms of two types of factors, namely main factors and nested factors. By
a main factor is meant a classification, the ”levels” of which are identified by a single
subscript. By a nesting factor is meant one whose levels are not completely identified
except by specifying a main factor or a combination of main factors within which the
nesting factor is nested. Identify each of the main factors by a single unique letter, for
example, B for breeds and T for treatments. Identify nesting factors by a letter followed by
a colon and then the letter or letters describing the main factor or factors within which it is
nested. For example, if sires are nested within breeds, this would be described as S:B. On
the other hand, if a different set of sires is used for each breed by treatment combination,
sires would be identified as S:BT. To determine potential 2 factor interactions combine
the letters to the left of the colon (for a main factor a colon is implied with no letters
following). Then combine the letters without repetition to the right of the colon. If no
letter appears on both the right and left of the colon this is a valid 2 factor interaction.
For example, factors are A,B,C:B. Two way combinations are AB, AC:B, BC:B. The third
does not qualify since B appears to the left and right of the colon. AC:B means A by
C interaction nested within B. Three factor and higher interactions are determined by
taking all possible trios and carrying out the above procedure. For example, factors are
(A, D, B:D, C:D). Two factor possibilities are (AD, AB:D, AC:D, DB:D, DC:D, BC:D).
The 4" and 5 are not valid. Three factor possibilities are (ADB:D, ADC:D, ABC:D,
DBC:D). None of these is valid except ABC:D. The four factor possibility is ADBC:D,
and this is not valid.

Having written the main factors and interactions one uses each of these as a subvector
of either 3 or u. The next question is how to determine which. First consider main factors
and nesting factors. If the levels of the factor in the experiment can be regarded as a
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random sample from some population of levels, the levels would be a subvector of u. With
respect to interactions, if one or more letters to the left of the colon represent a factor in
u, the interaction levels are subvectors of u. Thus interaction of fixed by random factors
is regarded as random, as is the nesting of random within fixed. As a final step we decide
the variance-covariance matrix of each subvector of u, the covariance between subvectors
of u, and the variance- covariance matrix of (u,e). These last decisions are based on
knowledge of the biology and the sampling scheme that produced the data vector.

It seems to me that modelling is the most important and most difficult aspect of
linear models applications. Given the model everything else is essentially computational.

10
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Chapter 2
Linear Unbiased Estimation

C. R. Henderson

1984 - Guelph

We are interested in linear unbiased estimators of 3 or of linear functions of 3, say
k'(3. That is, the estimator has the form, a’y, and E (a'y) = k'8, if possible. It is
not necessarily the case that k'3 can be estimated unbiasedly. If k'3 can be estimated
unbiasedly, it is called estimable. How do we determine estimability?

1 Verifying Estimability

E(a'y) = a'Xg.
Does this equal k'3? It will for any value of 3 if and only if aX = k'

Consequently, if we can find any a such that a’X = k’, then k/@3 is estimable. Let
us illustrate with

— = = =
W = N
(@23 NCRETENE (V]

e Is 3 estimable, that is, (1 0 0) B estimable? Let a’=(2 —1 0 0) then
aX = (100) =K.
Therefore, k'3 is estimable.
e Is (0 1 2) B estimable? Let a’ = (—1 1 0 0) then
aX = (012 =K.
Therefore, it is estimable.
e Is 3 estimable? No, because no a’ exists such that aX = (0 1 0).
Generally it is easier to prove by the above method that an estimable function is in-

deed estimable than to prove that a non-estimable function is non-estimable. Accordingly,
we consider other methods for determining estimability.

1
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1.1 Second Method

Partition X as follows with possible re-ordering of columns.
X = (X; X;L),

where X has r linearly independent columns. Remember that X is n x p with rank = r.
The dimensions of L are r X (p — 7).

Then k'8 is estimable if and only if
K = (k kL),
where k/1 has r elements, and kllL has p — r elements. Consider the previous example.

, and L = (g)

X, =

—_ = = =
W~ N =

e Is(1 0 0) 3 estimable?
/ / 0
k, = (1 0), K,L = (1 0) <2> = 0.

Thus k' = (1 0 0), and the function is estimable.

e Is (0 1 2) 3 estimable?

k; = (0 1), and kL. = (0 1)<g> = 2.

Thus k" = (0 1 2), and the function is estimable.

e Is (0 1 0) 3 estimable?
/ / 0
k, = (0 1), and kL = (0 1)(2> = 2.

Thus (k; k;L). = (0 1 2) # (0 1 0). The function is not estimable.

1.2 Third Method

A third method is to find a matrix, C, of order p X (p — r) and rank, p — r, such that

XC = 0.
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Then k'f3 is estimable if and only if
k'C = 0.

[4) -

e Therefore (1 0 0) @ is estimable because

0

(1 0 0) ( 2) = 0.
~1
0

01 2) ( 2) = 0.
~1

e But (0 1 0) B is not because

0
(0 1 0) ( 2) = 2 #£ 0.
~1

A fourth method is to find some g-inverse of X'X, denoted by (X'X)~. Then k'3 is

estimable if and only if

In the example

— =
W = N =
(@2 \CRRTEN o)
o O OO

e Sois (0 1 2) B because

1.3 Fourth Method

K(X'X)” XX = K.
A definition of and methods for computing a g-inverse are presented in Chapter 3.

4 7 14
X'X = 7 15 30 |,

14 30 60

15 -7
50
0 0

In the example

and a g-inverse is

o O O



(1 0 0)(X'X)” XX = (1 0 0). Therefore (1 0 0) 3 is estimable.

(01 2)(X'X)” XX = (0 1 2). Therefore (0 1 2) 3 is estimable.

(01 0)(X'X)” XX = (0 1 2). Therefore (0 1 0) B is not estimable.

Related to this fourth method any linear function of
(X'X)” X'X3

is estimable.

If rank (X) = p = the number of columns in X, any linear function of 3 is estimable.
In that case the only g-inverse of X'X is (X'X)™!, a regular inverse. Then by the fourth
method
K (X'X)” XX = KXX)'X'X = K1 =K.
Therefore, any k’3 is estimable.

There is an extensive literature on generalized inverses. See for example, Searle
(1971b, 1982), Rao and Mitra (1971) and Harville(199977).



Chapter 3
Best Linear Unbiased Estimation

C. R. Henderson

1984 - Guelph

In Chapter 2 we discussed linear unbiased estimation of k'3, having determined
that it is estimable. Let the estimate be a’y, and if k'3 is estimable, some a exists such
that

E(a'y) =K.

Assuming that more than one a gives an unbiased estimator, which one should be chosen?
The most common criterion for choice is minimum sampling variance. Such an estimator
is called the best linear unbiased estimator (BLUE).

Thus we find a’ such that E(a'y) = k/B and, in the class of such estimators, has
minimum sampling variance. Now

Var(a'y) =a'(Var(y))a = a'Va,
where Var(y) = V, assumed known, for the moment.

For unbiasedness we require a’X = k’. Consequently we find a that minimizes a’Va
subject to a’X = k’. Using a Lagrange multiplier, 8, and applying differential calculus
we need to solve for a in equations

(2 3)()-(0)

This is a consistent set of equations if and only if k’3 is estimable. In that case the
unique solution to a is

VIX(X'VX) k.
A solution to 6 is
—(X'V X))k,
and this is not unique when X and consequently X’V ~1X is not full rank. Nevertheless
the solution to a is invariant to the choice of a g-inverse of X’V~1X. Thus, BLUE of k'3
is
K(X'V1X)"X'Vly.
But let
ﬁo — (){I\ffl)(>f}(/\/71},7



where (3° is any solution to
(X/V_IX),BO _ X/v—ly

known as generalized least squares (GLS) equations, Aitken (1935). Superscript 0 is used
to denote some solution, not a unique solution. Therefore BLUE of k'3 is k/3°.

Let us illustrate with

X:

— = =
W = N
[\ORETEN V)

6
and y’ = (524 3). Suppose Var(y) = Io? Then the GLS equations are

4 7 14 14
o 7 15 30 B =122 |o %
14 30 60 44

A solution is
(B°) = (56 —10 0)/11.

Then BLUE of (0 1 2)3, which has been shown to be estimable, is
(0 1 2)(56 —10 0)/11 = —10/11.

Another solution to 3° is
(56 0 —5)/1L.

Then BLUE of (0 1 2)31is — 10/11, the same as the other solution to 8°.

1 Mixed Model Method For BLUE

One frequent difficulty with GLS equations, particularly in the mixed model, is that
V = ZGZ' + R is large and non-diagonal. Consequently V1 is difficult or impossible to
compute by usual methods. It was proved by Henderson et al. (1959) that

VI=R 'R '"Z(ZR'Z+ G N 'ZR
Now if R7! is easier to compute than V™!, as is often true, if G™! is easy to com-
pute, and (ZR™Z + G~1)7! is easy to compute, this way of computing V~! may have

important advantages. Note that this result can be obtained by writing equations, known
as Henderson’s mixed model equations (1950) as follows,

X'R !X X'R'Z g\ [ XRly
ZR'X ZR'Z+G' J\a ) T | zZRr 'y |-

2
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Note that if we solve for 1 in the second equation and substitute this in the first we
get
X'R'-R'"Z(ZR'Z+ G 'ZR X3’
= XR'-R'Z(ZR'Z+G H 'ZR )y,
or from the result for V!

X'V-IXB° = X'V-ly.

Thus, a solution to 3 in the mixed model equations is a GLS solution. An interpre-
tation of 11 is given in Chapter 5. The mixed model equations are often well suited to an
iterative solution. Let us illustrate the mixed model method for BLUE with

11 10

1 2 10 1 0
X= 11 L= 10 ’G_<0.1>’

1 3 01

and
R=1I y = [543 2]

Then the mixed model equations are

4 7 3 1 14
715 4 3 |(p) | 22
3 413 0\ a 12
1 3 0 11 2

The solution is [286 — 50 2 — 2]’/57. In this case the solution is unique because X has
full column rank.

Now consider a GLS solution.

11 1 1 0
B , | 111 o1 o
V=[ZGZ +Rl=| 1 | 1 4
0 0 0 L1

132 —11 —11 0
1 —11 132 —11 0
T 143 =11 —11 132 0

0 0 0 130

Then X'V~ 1X3° = X'V~'y becomes
1 (460 830 5 1 (1580
143 \ 830 1852 © 143\ 2540 /¢
The solution is (286 — 50)/57 as in the mixed model equations.

3



2 Variance of BLUE

Once having an estimate of k'3 we should like to know its sampling variance. Consider a
set of estimators, K'(3°.

Var(K'8°) = Var[K'(X'V'X)"X'V'y]
K'(X'V'X)"X'V!'VVX(X'V!X) K
= K'(X'V'X)"K provided K'3 is estimable.

The variance is invariant to the choice of a g-inverse provided K’'3 is estimable. We
can also obtain this result from a g-inverse of the coefficient matrix of the mixed model
equations. Let a g-inverse of this matrix be

Cll CIQ
C21 CQQ .

VCW’(KI,BO) = KlCllK-

Then

This result can be proved by noting that

Cn = X'[R'-R'Z(ZR'Z+G ) 'ZRX)"
= (X'VX)".

, (10
K_<01>.

A g-inverse (regular inverse) of the coefficient matrix is

Using the mixed model example, let

926 —415 —86 29
1 | —415 230 25 —25
570 -8 25 56 1
29 —-25 1 56

Then

Var(K'8°) 1 ( 926 —4151'

~ 570 \ —415 230

The same result can be obtained from the inverse of the GLS coefficient matrix

because .
1431 460 830 B L 926 —415
830 1852 570 \ —415 230 |-


Austin Putz



3 (Generalized Inverses and Mixed Model Equations

Earlier in this chapter we found that BLUE of K'3, estimable, is K'3°, where 3° is any
solution to either GLS or mixed model equations. Also the sampling variance requires a g-
inverse of the coefficient matrix of either of these sets of equations. We define (X'V~1X)~
as a g-inverse of X’V ~1X. There are various types of generalized inverses, but the one we
shall use is defined as follows.

A~ is a g-inverse of A provided that
AA A=A
Then if we have a set of consistent equations,
A p=z,

a solution to p is
Az

We shall be concerned, in this chapter, only with g-inverses of singular, symmetric
matrices characteristic of GLS and mixed model equations.

3.1 First type of g-inverse

Let W be a symmetric matrix with order, s, and rank, ¢ < s. Partition W with possible
re-ordering of rows (and the same re-ordering of columns) as

Wll W12
W - /
(Wi W)

—1
where W1, is a non-singular matrix with order ¢. Then W ~— = ( (‘)N“ g > .
It is of interest that for this type of W™ it is true that W—W W™ = W™ as well as
W W™W = W. This is called a reflexive g-inverse. To illustrate, suppose W is a GLS
coefficient matrix,
4 7 8 15
7 15 17 32
8 17 22 39
15 32 39 71

This matrix has rank 3 and the upper 3 x 3 is non-singular with inverse

W =

41 —18 -1
307 —18 24 —12
-1 —-12 11



Therefore a g-inverse is

41 —-18 -1 0
1] —18 24 —12 0
30 -1 —12 11 0
0 0 00
Another g-inverse of this type is

41 —-17 0 -1
—17 59 0 —-23

-1
3 0 00 0
-1 =23 0 11

This was obtained by inverting the full rank submatrix composed of rows (and columns)
1, 2, 4 of W. This type of g-inverse is described in Searle (1971b).

In the mixed model equations a comparable g-inverse is obtained as follows. Partition
X'R~'X with possible re-ordering of rows (and columns) as

( )

so that X;R™'X; has order r and is full rank. Compute

X R'X; X R7'X,
X,R'X; X,R7IX,

X’lR_le X;R_IZ - - COO COQ
ZR'X, ZR'Z+G! “\ Gy Co )
Coo 0 Cpo
Then a g-inverse of the coefficient matrix is 0O 0 O . We illustrate with a
Cyp, 0 Cy
mixed model coefficient matrix as follows.
5 8§ -8 3 2
§ 16 —-16 4 4
-8 —16 16 —4 —4
3 4 -4 8 0
2 4 —4 0 7

where X has 3 columns and Z has 2. Therefore X’R !X is the upper 3 x 3 submatrix.
It has rank 2 because the 3rd column is the negative of the second. Consequently find a
g-inverse by inverting the matrix with the 3rd row and column deleted. This gives

656 —300 0 —96 —16
—-300 185 0 20 —20
56071 0 00 0 0
—96 20 0 96 16
—-16 —-20 0 16 96

6



With this type of g-inverse the solution to 3% is (3] 0)’, where 37 has r elements. Only
the first p rows of the mixed model equations contribute to lack of rank of the mixed
model matrix. The matrix has order p + ¢ and rank r + ¢, where » = rank of X, p =
columns in X, and ¢ = columns in Z.

3.2 Second type of g-inverse

A second type of g-inverse is one which imposes restrictions on the solution to 3°. Let
M’'3 be a set of p—r linearly independent, non-estimable functions of 3. Then a g-inverse

. . X'VIX M\ [ Cpy Cp
for the GLS matrix is obtained as follows < M o ) = ( c , Co |

C1, is areflexive g-inverse of X’V ~'X. This type of solution is described in Kempthorne
(1952). Let us illustrate GLS equations as follows.

11 56 3 8 12
550 2 3 7
606 15| B°=| 5
32130 8
8 350 8 4

This matrix has order 5 but rank only 3. Two independent non-estimable functions are
needed. Among others the following qualify

01100
<00011>ﬂ‘

Therefore we invert

11 56 3 8 0 0
5502310
6 06 1510
3213001 [,
8 3 508 01
01 10000
0001100

which is

28 —1 1 13 —13 —122 —122
-1 24 —-24 -7 7122 0
1 —24 24 7T =7 122 0
2441 13 =7 7 30 —30 0 122
—13 7 -7 =30 30 0 122
—122 122 122 0 0 0 0
—122 0 0 122 122 0
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The upper 5 x 5 submatrix is a g-inverse. This gives a solution
B° = (386 8 —8 262 —262)'/244.
A corresponding g-inverse for the mixed model is as follows
X'RIX X'R'Z M\ ' [Cu Cp Ciy
ZR'X ZR'Z+G' 0 =| C, Cy Cyp |.
M 0 0 Cl; Ca Cas
Cu Cp
Ciy Co
is a g-inverse of the mixed model coefficient matrix. The property of 3° coming from this
type of g-inverse is

Then

M'3° = 0.

3.3 Third type of g-inverse

A third type of g-inverse uses M of the previous section as follows. (X 'V ~!X +
MM')~! = C. Then C is a g-inverse of X’V~!X. In this case C(X'V~!X)C # C. This
is described in Rao and Mitra (1971).

We illustrate with the same GLS matrix as before and

, (01100
M_<00011>

as before.
11 5 6 3 8
56 1 2 3
(X'VIX+MM)=| 6 1 715
321 41
83519

with inverse
150 —62 —60 —48 —74
—62 8 37 -7 7
244711 —60 37 85 7T =7,
—48 -7 7 91 31
—74 7 -7 31 91

which is a g-inverse of the GLS matrix. The resulting solution to 3° is the same as the
previous section.



The corresponding method for finding a g-inverse of the mixed model matrix is
X'R X +MM XR'Z
ZR'X ZR1'Z+ Gt

of the solution to B° is

-1
) = C. Then C is a g-inverse. The property

M'3° = 0.

4 Reparameterization

An entirely different method for dealing with the not full rank X problem is reparameter-
ization. Let K'B be a set of r linearly independent, estimable functions of 3 . Let & be
BLUE of K'B. To find & solve (K'K)7'K'X'VIXK(K'K)'a = (K'K)"'K'X'V-ly.
& has a unique solution, and the regular inverse of the coefficient matrix is Var(é&). This
corresponds to a model

E(y) = X K(K'K) 'a.

This method was suggested to me by Gianola (1980).

From the immediately preceding example we need 3 estimable functions. An inde-
pendent set is
1 1/2 1/2 1/2 1/2
0 1 -1 0 0
0 0 0 1 -1

The corresponding GLS equations are

11 —-.50 —-2.50 12
-5 275 .75 a = 1
=25 .75 275 2

The solution is
a' = (193 8 262)/122.

This is identical to
1 1/2 1/2 1/2 1/2
0 1 -1 0 0 |pB°
0 0 0 1 -1

0 0 o
11)6

from the previous solution in which

011
000

was forced to equal O.



The corresponding set of equations for mixed models is

< (K'K)"'K'XR'XK(K'K)?' (KK)'K'XR'Z )

ZRIXK(KK)™! ZR'Z+G™!
a\ [ (KK 'KXRly
a ) | zrly '

5 Precautions in Solving Equations

Precautions must be observed in the solution to equations, especially if there is some
doubt about the rank of the matrix. If a supposed g-inverse is calculated, it may be
advisable to check that AA~ A = A. Another check is to regenerate the right hand sides
as follows. Let the equations be

Ca=r.

Having computed &, compute Ca and check that it is equal, except for rounding error,
tor.
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Chapter 4
Test of Hypotheses

C. R. Henderson

1984 - Guelph

Much of the statistical literature for many years dealt primarily with tests of hypothe-
ses ( or tests of significance). More recently increased emphasis has been placed, properly
I think, on estimation and prediction. Nevertheless, many research workers and certainly
most editors of scientific journals insist on tests of significance. Most tests involving linear
models can be stated as follows. We wish to test the null hypothesis,

H;]/8 = Cp,

against some alternative hypothesis, most commonly the alternative that 8 can have any
value in the parameter space. Another possibility is the general alternative hypothesis,

In both of these hypotheses there may be elements of 3 that are not determined
by H. These elements are assumed to have any values in the parameter space. Hl) and
H; are assumed to have full row rank with m and a rows respectively. Also r > m > a.
Under the unrestricted hypothesis a = 0.

Two important restrictions are required logically for Hy and H,. First, both HE),B
and H;,B must be estimable. It hardly seems logical that we could test hypotheses about
functions of 3 unless we can estimate these functions. Second, the null hypothesis must
be contained in the alternative hypothesis. That is, if the null is true, the alternative
must be true. For this to be so we require that H; can be written as MH;) and c, as Mcy
for some M.

1 Equivalent Hypotheses

It should be recognized that there are an infinity of hypotheses that are equivalent to
Hgﬂ = c. Let P be an m x m, non-singular matrix. Then PH,3 = Pc is equivalent to

1



Hgﬁ = c. For example, consider a fixed model

Yij = p+titey, = 1,2, 3.

10 -1
( 01 -1 ) £=0
An equivalent hypothesis is
2/3 —-1/3 —1/3 t—0
-1/3  2/3 -1/3 -
To convert the first to the second pre-multiply
1 0 -1 b 2/3 —1/3
01 -1 Yol —13 23 )
As an example of use of H,, consider a type of analysis sometimes recommended for
a two way fixed model without interaction. Let the model be y;;r, = p+ a; + b; + e,

where i = 1, 2, 3and j = 1, 2, 3, 4. The lines of the ANOVA table could be as
follows.

A null hypothesis often tested is

Sum of Squares
Rows ignoring columns (column differences regarded as non-existent),
Columns with rows accounted for,
Residual.

The sum of these 3 sums of squares is equal to (y'y— correction factor). The first
sum of squares is represented as testing the null hypothesis:

010 -1000 0
001 -100¢0 O
000 0100 —-1|pB=0.
000 0010 -1
000 0O0O01 —1

and the alternative hypothesis:

000O0T1O00O0 -1
0000010 -1]pB=0.
000O0O0O01 ~1

The second sum of squares represents testing the null hypothesis:

0000100 —1
0000010 —-1]pB=0.
000O0O0O0T1 -1

and the alternative hypothesis: entire parameter space.

2



2 Test Criteria

2.1 Differences between residuals

Now it is assumed for purposes of testing hypotheses that y has a multivariate normal
distribution. Then it can be proved by the likelihood ratio method of testing hypotheses,
Neyman and Pearson (1933), that under the null hypothesis the following quantity is
distributed as x2.

(y —XB)V iy —XBy) — (y—XB,)V ' (y—-X8,). (1)

B, is a solution to GLS equations subject to the restriction HyB3, = co. B, can be

found by solving
X'V-1X H, By ([ XVly
H, o0 6 ) Co

or by solving the comparable mixed model equations

X'R'X X'R™Z H, Bo X'Rly
ZR'X ZR'Z+Gt 0 U = ZR 'y
Hl) 0 0 00 Co
B, is a solution to GLS or mixed model equations with restrictions, H,3, = c,

rather than Hy8, = co.

In case the alternative hypothesis is unrestricted (8 can have any values), that
is, B, is a solution to the unrestricted GLS or mixed model equations. Under the null
hypothesis (1) is distributed as x? with (m — a) degrees of freedom, m being the number
of rows (independent) in Hy, and a being the number of rows (independent) in H.,. If the
alternative hypothesis is unrestricted, a = 0. Having computed (1) this value is compared
with values of x?,_, for the chosen level of significance.

Let us illustrate with a model

y = pttite;
u,t; fixed, ¢+ = 1,2,3
R = Var(e) =5L

Suppose that the number of observations on the levels of t; are 4, 3, 2, and the
treatment totals are 25, 15, 9 with individual observations, (6, 7, 8, 4, 4, 5, 6, 5, 4). We
wish to test that the levels of t; are equal, which can be expressed as

010 —1
(0 0 1 _1> (bt t2 t3)) = (0 0)"
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We use as the alternative hypothesis the unrestricted hypothesis. The GLS equations
under the restriction are

943 2 0 0 49
440 0 1 0 25
5 [ 303 0 0 1 <ﬂ0>:2 15
‘ 200 2 -1 —1 0, ‘ 9
010 -1 0 0 0
001 -1 0 0 0

A solution is
B, = (49 0 0 0)/9,6, = (29 —12)/9.

The GLS equations with no restrictions are

9 4 3 2 49
4 400 25
2 3030 ( Pa ) = 2 15
200 2 9

A solution is B8, = (0 25 20 18)/4.

(y—Xﬁo)/ = (51423 —-13 —13 -4 5 —4 —13)/9.
(y - XB,/Vly—XB, = 146/45.

(y—Xg3,) = [-1,3,7 -9, —4,0, 4, 2, —2]/4.
(y - X/Ba)/vil<y - X/Ba) = 9/4
The difference is %6 — % = %.

2.2 Differences between reductions

Two easier methods of computation that lead to the same result will now be presented.
The first, described in Searle (1971b), is

B, X'Vly+8.c,—B,XVly—0c,. (2)

The first 2 terms are called reduction in sums of squares under the alternative hypothesis.
The last two terms are the negative of the reduction in sum of squares under the null
hypothesis. In our example

B, X'Vly+80.c, = 1087/20.
B X'V7ly+6c, = 2401/45.

1087 2401 179
— = —— as before.
20 45 180




If the mixed model equations are used, (2) can be computed as
BXR'y+u,ZR 'y +6,c,—B.XR 'y —u,ZR 'y —0.c,. (3)

2.3 Method based on variances of linear functions

A second easier method is

(H,8° —¢,) [H,(X'V'X)"H,] ' (H,6° —c,))
— (H,0° —c,) [H(X'V'X) H,]'(H,0° ~—c.). (4)

If H,3 is unrestricted the second term of (4) is set to 0. Remember that 8° is a solu-
tion in the unrestricted GLS equations. In place of (X’V~'X)~ one can substitute the
corresponding submatrix of a g-inverse of the mixed model coefficient matrix.

This is a convenient point to prove that an equivalent hypothesis, P(H'3 —c¢) = 0
gives the same result as H'3 — ¢, remembering that P is non-singular. The quantity
corresponding to (4) for P (H'3 — c) is

(H'B° — ¢)'P'[PH(X'V'X)"HP'|"'P(H'3 — c)
— (H/IBO _ C)/P/(P,)_l[H/(X/V_IX)_H]_1P_1P(H,,30 _ C)
— (H/Bo o C)/[H/<X/V_1X)H]_1(H/,Bo _ C),
which proves the equality of the two equivalent hypotheses.

Let us illustrate (3) with our example

010 1Y o (010 -1 ,
<001_1>ﬂ—<001_1>(0252018)/4

A g-inverse of X’V~1X is

I
—
[NSREN |
~

~

=~

0 0 0 0
0 15 0 0
0 0 20 O /12.
0 0 0 30



The inverse of this is

20 —12
( —-12 18 > /45-

1 20 —12\ 1 f7\1 179
4(72)(_12 18)45<2>4—180asbef0re.

The d.f. for x? are 2 because HE) has 2 rows and the alternative hypothesis is unrestricted.

Then

2.4 Comparison of reductions under reduced models

Another commonly used method is to compare reductions in sums of squares resulting
from deletions of different subvectors of 3 from the reduction. The difficulty with this
method is the determination of what hypothesis is tested by the difference between a pair
of reductions. It is not true in general, as sometimes thought, that Red(3) — Red(3,)
tests the hypothesis that 3, = 0, where 3’ = (,Bll ﬁ;) In most designs, B, is not
estimable. We need to determine what H’3 imposed on a solution will give the same
reduction in sum of squares as does Red(3,).

In the latter case we solve

(X, VX)) 87 = XiVly

and then
Reduction = (89)'X, V" ly. (5)
Consider a hypothesis, H'3, = 0. We could solve
X\ VX, XVIIX, 0 (8] X\ V-ly
X, V71X, X, VX, H B | =1 X;vly |. (6)
0 H’ 0 0 0
Then
Reduction = (89)X,Vly + (85)X,Vly. (7)

Clearly (7) is equal to (5) if a solution to (6) is 85 = 0, for then
Bl = (X\VIX) X Vly.

Consequently in order to determine what hypothesis is implied when 3, is deleted
from the model, we need to find some H '3, = 0 such that a solution to (6) is 35 = 0.

We illustrate with a two way fixed model with interaction. The numbers of observa-

tions per subclass are
3 21
1 2 5 )



The subclass totals are

N
w O
(G20 \V]
O© N
~

An analysis sometimes suggested is
Red(u,r,c) — Red(, ¢) to test rows.

Red( full model) — Red(u,r,c) to test interaction.

The least squares equations are

14 27
10

17

6
6

0w o o
B o
B O N MO
DO O U~ O
WO O WO ww
MO O OO NN
RO O, OO O K —
—H O OO0 OO~ O M
NO OO ONON
OO0 UTTO O ulO Ut
)
Q
I

O Tt W NN

A solution to these equations is
[0, 0,0,0, 0,0 2, 1, 2, 3, 2.5, 1.8],

which gives a reduction of 55.7, the full model reduction. A solution when interaction
terms are deleted is
[1.9677, —.8065, 0, .8871, .1855, 0]

giving a reduction of 54.3468. This corresponds to an hypothesis,

10 -1 -1 01 0
01 -1 0 -1 1) =%

When this is included as a Lagrange multiplier as in (6), a solution is
[1.9677, —.8065, 0, .8871, .1855, 0, 0, 0, 0, 0, 0, 0, —.1452, —.6935].

Note that (rc)® = 0, proving that dropping rc corresponds to the hypothesis stated
above. The reduction again is 54.3468.

When r and rc are dropped from the equations, a solution is

[0, 2.25, 1.75, 1.8333]
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giving a reduction of 52.6667. This corresponds to an hypothesis
3 311 1 -1 -1 -1 .
0 010 -1 -1 0 1<rc>:0.
001 -1 0 -1 1
When this is added as a Lagrange multiplier, a solution is
[2.25, 0, 0, 0, —.5, —.4167,0, 0, 0, 0, 0, 0, —.6944, —.05556, —.8056].
Note that r° and rc® are null, verifying the hypothesis. The reduction again is 52.6667.

Then the tests are as follows:

Rows assuming rc non-existent = 54.3468 - 52.6667.
Interaction = 55.7 - 54.3468.



Chapter 5
Prediction of Random Variables

C. R. Henderson

1984 - Guelph

We have discussed estimation of 3, regarded as fixed. Now we shall consider a rather
different problem, prediction of random variables, and especially prediction of u. We
can also formulate this problem as estimation of the realized values of random variables.
These realized values are fixed, but they are the realization of values from some known
population. This knowledge enables better estimates (smaller mean squared errors) to
be obtained than if we ignore this information and estimate u by GLS. In genetics the
predictors of u are used as selection criteria. Some basic results concerning selection are
now presented.

Which is the more logical concept, prediction of a random variable or estimation of
the realized value of a random variable? If we have an animal already born, it seems
reasonable to describe the evaluation of its breeding value as an estimation problem. On
the other hand, if we are interested in evaluating the potential breeding value of a mating
between two potential parents, this would be a problem in prediction. If we are interested
in future records, the problem is clearly one of prediction.

1 Best Prediction

Let @ = f(y) be a predictor of the random variable w. Find f(y) such that E (i — w)?
is minimum. Cochran (1951) proved that

fly)=E(w|y). (1)

This requires knowing the joint distribution of w and y, being able to derive the condi-
tional mean, and knowing the values of parameters appearing in the conditional mean.
All of these requirements are seldom possible in practice.

Cochran also proved in his 1951 paper the following important result concerning selec-
tion. Let p individuals regarded as a random sample from some population as candidates
for selection. The realized values of these individuals are w;, ... w,, not observable. We
can observe y;, a vector of records on each. (wj;,y;) are jointly distributed as f(w,y) inde-
pendent of (w;,y;). Some function, say f(y;), is to be used as a selection criterion and the
fraction, «, with highest f(y;) is to be selected. What f will maximize the expectation



of the mean of the associated w;? Cochran proved that E(w | y) accomplishes this goal.
This is a very important result, but note that seldom if ever do the requirements of this
theorem hold in animal breeding. Two obvious deficiencies suggest themselves. First, the
candidates for selection have differing amounts of information (number of elements in y
differ). Second, candidates are related and consequently the y; are not independent and
neither are the w;.

Properties of best predictor

- B(i) = B(wy) @)
2. Var(w;, —w;) =Var(w | y)

averaged over the distribution of y. (3)

3. Maximizes 74, for all functions of y. (4)

2 Best Linear Prediction

Because we seldom know the form of distribution of (y,w), consider a linear predictor
that minimizes the squared prediction error. Find w = a'y + b, where a’ is a vector and
b a scalar such that (i — w)? is minimum. Note that in contrast to BP the form of
distribution of (y,w) is not required. We shall see that the first and second moments are
needed.

Let
Ew) = 7,
Ely) = a,
Cov(y,w) = c, and
Var(y) = V.
Then

E(@y+b—w)’ = a'Va—2ac+aad’a+b’
+2a’'ab — 2a'ay — 2by + Var(w) + %

Differentiating this with respect to a and b and equating to 0
V+ad « a) [ct+ay
o 1 b | ¥ '

a=Vicb=y—-aVie (5)

The solution is

2



Thus
W=7+ Viy—a).

Note that this is F(w | y) when y, w are jointly normally distributed. Note also that BLP
is the selection index of genetics. Sewall Wright (1931) and J.L. Lush (1931) were using
this selection criterion prior to the invention of selection index by Fairfield Smith (1936).
I think they were invoking the conditional mean under normality, but they were not too

clear in this regard.
Other properties of BLP are unbiased, that is
E(w) = E(w).

E(w) = Ey+cVi(y-a)
= y+Vi{a-a)
= v=FEw).

Var(w) = Var(cV'y) =cV!'VVilc=cV'ic

Cov(,w) = 'V Cov(y,w) = 'V c = Var(d)
Var(w —w) = Var(w) — Var(w)
In the class of linear functions of y, BLP maximizes the correlation,
row = a'c/[a’Va Var(w)]®.
Maximize logr.
logr =log a'c — .5 log [a'Va] — .5 log Var(w).
Differentiating with respect to a and equating to 0.

Va c Va — c Var(w)
= — or =Cc—-—.
a’Va a’c Cov(w,w)

The ratio on the right does not affect r. Consequently let it be one. Then a = V~lc.
Also the constant, b, does not affect the correlation. Consequently, BLP maximizes r.

BLP of m'w is m'w, where w is BLP of w. Now w is a vector with F(w) = ~ and
Cov(y,w’) = C. Substitute the scalar, m'w for w in the statement for BLP. Then BLP

of
mw = m~y+m'C'V'iy-a)
= m'[y+CV (y —a)
= mw
because

w=v+CViy-a)
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In the multivariate normal case, BLP maximizes the probability of selecting the better
of two candidates for selection, Henderson (1963). For fixed number selected, it maximizes
the expectation of the mean of the selected w;, Bulmer (1980).

It should be noted that when the distribution of (y,w) is multivariate normal, BLP
is the mean of w given y, that is, the conditional mean, and consequently is BP with its
desirable properties as a selection criterion. Unfortunately, however, we probably never
know the mean of y, which is X3 in our mixed model. We may, however, know V
accurately enough to assume that our estimate is the parameter value. This leads to the
derivation of best linear unbiased prediction (BLUP).

3 Best Linear Unbiased Prediction

Suppose the predictand is the random variable, w, and all we know about it is that it has
mean k'3, variance = v, and its covariance with y’ is ¢’. How should we predict w? One
possibility is to find some linear function of y that has expectation, k'3 (is unbiased), and
in the class of such predictors has minimum variance of prediction errors. This method
is called best linear unbiased prediction (BLUP).

Let the predictor be a'y. The expectation of a'y = a’X3, and we want to choose a
so that the expectation of a’y is k’3. In order for this to be true for any value of 3, it is
seen that a’ must be chosen so that

aX=k. (12)
Now the variance of the prediction error is
Var(a'y —w) =a'Va —2a'c +v. (13)

Consequently, we minimize (13) subject to the condition of (12). The equations to be
solved to accomplish this are

(x 3)(5) - (&) &
Note the similarity to (1) in Chapter 3, the equations for finding BLUE of k'3.
Solving for a in the first equation of (14),
a=-V'X0+V'ic (15)

Substituting this value of a in the second equation of (14)

X'V1X0=-k+XV'ic



Then, if the equations are consistent, and this will be true if and only if k’3 is estimable,
a solution to 0 is

0=-XV'X)k+ XV X)XV
Substituting the solution to @ in (15) we find
a=V I XXV !X)k-VIX(XV!X)" XV 'lc+Vic (16)
Then the predictor is
ay =K (X'VIX)" X'Vly + Vi y - X(X'V'X) X'V ly]. (17)

But because (X'V71X)"X'V~ly = 3° a solution to GLS equations, the predictor can
be written as

kK'B°+cV iy —X3°). (18)
This result was described by Henderson (1963) and a similar result by Goldberger (1962).

Note that if K3 = 0 and if B is known, the predictor would be ¢'V~l(y — X3).
This is the usual selection index method for predicting w. Thus BLUP is BLP with 3°
substituted for 3.

4 Alternative Derivations Of BLUP

4.1 Translation invariance

We want to predict m’'w in the situation with unknown 3. But BLP, the minimum MSE
predictor in the class of linear functions of y, involves 3. Is there a comparable predictor
that is invariant to 37

Let the predictor be
a'y +0,

invariant to the value of 3. For translation invariance we require
ay+b=a(y+Xk)+b
for any value of k. This will be true if and only if a’X = 0. We minimize
E(a'y +b—m'w)? = a’Va — 2a'Cm + b + m'Gm

when a’X = 0 and where G = Var(w). Clearly b must equal 0 because b* is posi-
tive. Minimization of a’Va — 2a’Cm subject to a’X = 0 leads immediately to predictor
m'C’'V-(y — X3°), the BLUP predictor. Under normality BLUP has, in the class of

invariant predictors, the same properties as those stated for BLP.
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4.2 Selection index using functions of y with zero means

An interesting way to compute BLUP of w is the following. Compute 8, = L'y such that

E(XB.) = XB.

Then compute

y. = y—XB,
(I-XL)y=TYy.

Now

Var(y,) = T'VT =V, (19)
and

Cov(y.,w') = T'C=C,, (20)

where C = Cov(y, w’). Then selection index is

w = C.V.y.. (21)
Var(w) = Cou(w,w') =C,V~C,. (22)
Var(w —w) = Var(w)— Var(w). (23)

Now w is invariant to choice of T and to the g-inverse of V, that is computed. V, has
rank = n—r. One choice of 3, is OLS = (X'X)~X'y. In that case T = I-X(X'X)"X".
B, could also be computed as OLS of an appropriate subset of y, with no fewer than r
elements of y.

Under normality,

w = E(w | y.),and (24)
Var(w —w) = Var(w | y.). (25)

5 Variance Of Prediction Errors

We now state some useful variances and covariances. Let a vector of predictands be w.
Let the variance-covariance matrix of the vector be G and its covariance with y be C'.
Then the predictor of w is

w = Kp°+CViy-X39). (26)
Cov(w,w') = KXV 'X)"XV'C+CV'C
~ C'VIX(X'VIX)"X'V'C. (27)

6



Var(w) = K X'V'X)"K+CV~!C
- C'VIX(X'VIX)"X'V'C. (28)
Var(w —w) = Var(w)— Cov(w,w') — Cov(w,W') + Var(w)
= KXV X)) K-K(XV'X)"X'V'C
- CVX(XV'X)"K+G-CV~'C
+ C'VIX(X'V'X)"X'V~'C. (29)

6 Mixed Model Methods

The mixed model equations, (4) of Chapter 3, often provide an easy method to compute
BLUP. Suppose the predictand, w, can be written as

w=K'3+nu, (30)
where u are the variables of the mixed model. Then it can be proved that
BLUP of w = BLUP of K'B+u=K’'3° + 1, (31)

where 3° and u are solutions to the mixed model equations. From the second equation
of the mixed model equations,

u=(ZR'Z+G ) 'ZR ' (y - XB).
But it can be proved that
(ZR1'Z+G H'ZR ' =CV
where C = ZG, and V = ZGZ' + R. Also 3° is a GLS solution. Consequently,
K'3°+CV iy —-Xp°)=Kp +u.
From (24) it can be seen that
BLUP of u = 1. (32)
Proof that (ZR™'Z+ G H)7'ZR™! = C'V~! follows.
cv'!' = Gzv!
= GZR'-R'Z(ZR'Z+ G H'ZR™
= GZR'-ZR1'Z(ZR'Z+ G ) 'ZR
= GZR'-(ZR'Z+G HZR'Z+G H'ZR!
+G Y ZR1'Z+G ) TZRTY
= GZR'-ZR '+ G YZR1'Z+G ) TZRTY
= (ZR'Z+G H)'ZRL
This result was presented by Henderson (1963). The mixed model method of estima-

tion and prediction can be formulated as Bayesian estimation, Dempfle (1977). This is
discussed in Chapter 9.



7 Variances from Mixed Model Equations

A g-inverse of the coefficient matrix of the mixed model equations can be used to find
needed variances and covariances. Let a g-inverse of the matrix of the mixed model
equations be

Ciu Cp
; 33
(a2 (33)

Then

Var(K'8°) = K'C;K. (34)
Cov(K'B°,0') = 0. (35)
CO’U(K/ﬁO, u’) = —chlg. (36)
Cov(K'B°, 0 —u') = K'Cyp. (37)
V(I’l”(fl) = G- CQQ. (38)
OOU(ﬁ, u’) = G- C22. (39)
Var(@—u) = Cap. (40)
) (41)

N
—

= K'CK+K'Cyy+ C LK + Cap.

These results were derived by Henderson (1975a).

8 Prediction Of Errors
The prediction of errors (estimation of the realized values) is simple. First, consider the
model y = X3 + e and the prediction of the entire error vector, e. From (18)
E=CV iy - Xg),
but since C' = Cov(e,y’) = V, the predictor is simply
¢ = VV iy -Xp)
= y—Xpg° (42)

To predict €,,1, not in the model for y, we need to know its covariance with y.
Suppose this is ¢/. Then

en1 = 'V i(y—Xg)
= Ve (43)



Next consider prediction of e from the mixed model. Now Cov(e,y’)

RV~ !(y - Xp)

RR!-R'Z(ZR'Z+ G H'ZR Y (y — XB°),
from the result on V1,

I-Z(ZR'Z+ G H 'ZR Y (y — XB°)
y—XB°-Z(ZR'Z+ G ) 'ZR N (y - X3

y — XB° -

e

To predict ™!

¢’. Then the predictor is

én+1 = C/]R,i1 s

!/
We now define e’ = [e,

errors. Let
©p _ Rg)p Rym
en Rpm R,
Then
=y —XB°—
and
= Rmepp

Some prediction error variances and covariances follow.

Var(e, — e,) = WCW/,

where
C,

W =[X Z],C= <02

where C is the inverse of mixed model
respectively. Additionally,

= R. Then

(44)

, not in the model for y, we need the covariance between it and e, say

(45)

e, ], where e, refers to errors attached to y and e,, to future

(46)

coefficient matrix, and C;, Cy have p,q rows

Coul(é, — ), (B)VK] = ~WCK,
Corl(e, — &), (a—u)] = —WC,,
Covl(é, — €,), (ém — €n)] = WCW'R_ 'R,
Var(én — e,) = Ry — R, RAIWCWR 'R,
Cov[(&n — en), (B°)K] = -R,,R,WCK, and
Cov[(én — en), (W—u)] -R,,,R,JWC,,.



9 Prediction Of Missing u

Three simple methods exist for prediction of a u vector not in the model, say u,.
u, =BV i(y - Xg) (47)
where B’ is the covariance between u,, and y’. Or
a, = C'G'q, (48)

where C' = Cov(u,,u’), G = Var(u), and 0 is BLUP of u. Or write expanded mixed
model equations as follows:

X'R-1X X'R-'Z 0 3° X'R-ly
ZR'X ZR'Z+W,;, Wp u | = | ZR'y [, (49)
0 Wllg Wa, u, 0

where .
Wi Wiy (G C
W, Wy | L C G,

and G = Var(u), C = Cov(u, u,), G, = Var(u,). The solution to (49) gives the
same results as before when u,, is ignored. The proofs of these results are in Henderson
(1977a).

10 Prediction When G Is Singular

The possibility exists that G is singular. This could be true in an additive genetic model
with one or more pairs of identical twins. This poses no problem if one uses the method
u = GZ'V-'(y — X3"), but the mixed model method previously described cannot be
used since G~ is required. A modification of the mixed model equations does permit a
solution to 3° and u. One possibility is to solve the following.

XR1'X XR'Z B8°\ ([ XRly (50)
GZR'X GZR'Z+1 a ~ \ GZR Yy
The coefficient matrix has rank, » + ¢. Then 3° is a GLS solution to 3, and u is BLUP
of u. Note that the coefficient matrix above is not symmetric. Further, a g-inverse of

it does not yield sampling variances. For this we proceed as follows. Compute C, some
g-inverse of the matrix. Then

0

).

has the same properties as the g-inverse in

O

33

—~

10



If we want a symmetric coefficient matrix we can modify the equations of (50) as
follows.

XR1'X XR'ZG B°\ ([ XRly (51)
GZR'X GZR'ZG +G a ~ \ GZRly

This coefficient matrix has rank, r+ rank (G). Solve for 3°; &. Then
u=Ga.

Let C be a g-inverse of the matrix of (51). Then
I O I 0O
loe)eloc)

These results on singular G are due to Harville (1976). These two methods for sin-
gular G can also be used for nonsingular G if one wishes to avoid inverting G, Henderson
(1973).

has the properties of (33).

11 Examples of Prediction Methods

Let us illustrate some of these prediction methods. Suppose
110 00
X’z(}é ;i),Z’: 0010 0],
00011
3

2 1
G = 41|, R=9I,y =(5 3,67 5).
5

1
1

By the basic GLS and BLUP methods

123 2 1 1

122 1 1

V=72ZGZ +R = 13 1 1
14 5

14

Then the GLS equations, X'V1X3° = X'V~ly are

249211 .523659 B = 1.280757
523659 1.583100 o\ 2627792 /¢

11



The inverse of the coefficient matrix is

13.1578 —4.3522
—4.3522  2.0712 )~

and the solution to 3° is [5.4153 — .1314]’. To predict u,

—.2839
—2.1525
y —XB° = 7161 |,
1.9788
1102

1838 1838 .0929 .0284 .0284
GZ'V™' = | 0929 .0929 .2747 .0284 .0284 |,
0284 .0284 .0284 .2587 .2587

o>
|

—.3220
GZV 'y —-XpB°) = 0297 |,
4915
Cov(B°, & —u) = —(X'VX)"X'V'ZG
_ [ —31377 35333 4470\
- 5053 .6936 —1.3633 |’
Var(@—u) = G-GZV'ZG+GZV ' X(X'V X)XV 'ZG
321 1.3456 1.1638  .7445
= 4 1| - 1.5274 7445
5 2.6719
1.1973 1.2432 9182
+ 1.3063  .7943
2.3541

2.8517 2.0794 1.1737
3.7789 1.0498 |.
4.6822

The mixed model method is considerably easier.

e [ 5556 1.2222
AR X = ( 12299 3.4444 )
o 2222 1111 2222
XR7Z = <.3333 1111 7778 )

2222 0 0
7ZR'Z = 11110 ,

2222

12



.8889
Xy - (29590) ey (o |
‘ 1.3333
5135 —.2432 —.0541
G! = 3784 —.0270 |.
.2162
Then the mixed model equations are
.bbh6  1.2222  .2222 111 2222 2.8889
3.4444 .3333 111 7778 3° 6.4444
7357 —.2432 —.0541 <ﬁ )z .8889
4895 —.0270 .6667
4384 1.3333
A g-inverse (regular inverse) is
13.1578 —4.3522 —-3.1377 —-3.5333 4470
2.0712 .5053 .6936 —1.3633
2.8517  2.0794 1.1737
3.7789 1.0498
4.6822

The upper 2 x 2 represents (X’V~!1X)~, the upper 2 x 3

represents Cov(3°, @' — u’),

and the lower 3 x 3 Var(tt — u). These are the same results as before. The solution is

(5.4153, —.1314, —.3220, .0297, .4915) as before.

Now let us illustrate with singular G. Let the data be the same as before except

21 3
3 4
7

G:

Note that the 3rd row of G is the sum of the first 2 rows.

1 2 1 3 3
1 1 3 3
12 4 4

16 7

16

and
—.0115

—.0115
—.0165
0832

.0993 —.0118 .0004
.0993 .0004

.0943

13

Now

)

—.0115
—.0115
—.0165
—.0280

0832



The GLS equations are
2233 .3670 g — 1.0803
1.2409 17749 )

8.7155 —2.5779 )

x7—1 -1 __
XVTX)™ = ( 1.5684

. [ 4.8397
g = (—.0011 )

.1614
1065 .1065 —.0032 .1032 .1032 —1.8375 0582
ua=| —.0032 —.0032 .1516 .1484 .1484 1.1614 [ = [ .5270
1033 1033 1484 2516 .2516 2.1636 5852

1648

Note that uz = 1, + s as a consequence of the linear dependencies in G.

o [ —9491 —.8081 —1.7572
Cou(B", 0 —u) = (—.5564 —.7124 —1.2688)'

1.9309 1.0473 2.9782
Var(i—u) = 2.5628 3.6100 | .

6.5883
By the modified mixed model methods

1.2222 3.1111
GZR'X = | 1.4444 3.7778 |,
2.6667 6.8889

4444 1111 6667
GZR™1'Z = | 2222 3333 8889 |,
6667 4444 1.5556

6.4444
czmy - ( 220 ) Xty - (259
14.6667 '

Then the non-symmetric mixed model equations (50) are

5856 1.2222 2222 1111  .2222 2.8889
1.2222 3.4444 3333 1111 7778 o 6.4444
1.2222 3.1111 1.4444 1111  .6667 ( '[? > = 6.4444
1.4444 37778 2222 1.3333  .8889 v 8.2222
2.6667 6.8889  .6667 .4444 2.5556 14.6667

14



The solution is (4.8397, —.0011, .0582, .5270, .5852) as before. The inverse of the
coefficient matrix is

8.7155 —2.5779 —.8666 —.5922 4587
—2.5779  1.5684 1737 1913 —.3650
—.9491 —.5563  .9673  .0509 —.0182
—.8081 —.7124 1843  .8842 —.0685
—1.7572 —1.2688  .1516 —.0649  .9133

Post multiplying this matrix by ( {) GO ) gives

8.7155 —2.5779 —.9491 —.8081 —1.7572
1.5684 —.5563 —.7124 —1.2688

1.9309 1.0473  2.9782

2.5628  3.6101

6.5883

These yield the same variances and covariances as before. The analogous symmetric
equations (51) are

5556 1.2222 1.2292 1.4444  2.6667 2.8889
3.4444 31111 3.7778  6.8889 ., 6.4444

50 44444  9.4444 (B >: 6.4444

TITTS 12,2222 « 8.2222

21.6667 14.6667

A solution is [4.8397, —.0011, —.2697, 0, .1992]. Premultiplying & by G we obtain
u’ = (.0582, .5270, .5852) as before.

A g-inverse of the matrix is

8.7155 —2.5779 —.2744 0 —.1334
1.5684 —.0176 0 —.1737
1.1530 0 —.4632
0 0
3197

. . . I . i
Pre-and post-multiplying this matrix by ( 0 ) , yields the same matrix as post-

0 G

o . I O
multiplying the non-symmetric inverse by < 0 G ) and consequently we have the

required matrix for variances and covariances.

15



12 Illustration Of Prediction Of Missing u

We illustrate prediction of random variables not in the model for y by a multiple trait
example. Suppose we have 2 traits and 2 animals, the first 2 with measurements on traits
1 and 2, but the third with a record only on trait 1. We assume an additive genetic model
and wish to predict breeding value of both traits on all 3 animals and also to predict the
second trait of animal 3. The numerator relationship matrix for the 3 animals is

1 1/2 1/2
12 1 1/4
12 1/4 1

The additive genetic variance-covariance and error covariance matrices are assumed

to be Gg and Ry = ( ; g ) and ( 11 é >, respectively. The records are ordered

animals in traits and are [6, 8, 7, 9, 5]. Assume
, (11100
x= ( 0001 1)'

If all 6 elements of u are included

100000
010000
Z=100100O0
000100
000010

If the last (missing ug) is not included delete the last column from Z. When all u are
included
G— ( Agin Agip >
Agis Agen )’

where g;; is the i7" element of Gy, the genetic variance-covariance matrix. Numerically
this is

21 1 2 1 1
2 51 2 b5

2 1 5 2
3 1.5 1.5
3 .75

3

If ug is not included, delete the 6" row and column from G.

4 0010

4 0 0 1

R = 4 0 0
5 0

5

16



.2632 0 0 —.0526 0
2632 0 0 —.0526
R'= 25 0 0
2105 0
.2105
G~! for the first 5 elements of u is
2.1667 —1. —.3333 —1.3333  .6667
2. 0 6667  —1.3333
.6667 0 0
1.3333  —.6667
1.3333
Then the mixed model equations for 8° and 4, ..., us are
7763 —.1053  .2632  .2632 .25 —.0526  —.0526 31
4211 —.0526 —.0526 0 .2105 2105 BQ
2.4298 —1. —.3333 —1.3860 .6667 Uy
2.2632 0 .6667  —1.3860 o
9167 0 0 U3
1.5439  —.6667 Uy
1.5439 Us
= (4.70,2.21,1.11,1.84,1.75,1.58, .63)".

The solution is (6.9909, 6.9959, .0545, -.0495, .0223, .2651, -.2601).

To predict ug we can use tyq, ..., us. The solution is

2 11 21
2 5 1 2
ig = [ 5 2 1.5 .75 2 1 5
31
3

— 1276

-1

5

We could have solved directly for ig in mixed model equations as follows.

7763 —.1053 2632 2632 .25 .0526
4211 —.0526 —.0526 O 2105

271632 —-1. —1. —1.7193

22632 0 .6667

2.25 .6667

1.8772

17

—.0526
2105
.6667

—1.3860
0
.6667
1.5439

0
0
.6667
0
—1.3333
—.6667
0
1.3333




(ﬁ) = [4.70, 2.21, 1.11, 1.84, 1.75, 1.58, .63, 0]’

The solution is (6.9909, 6.9959, .0545, -.0495, .0223, .2651, -.2601, .1276), and equals the
previous solution.

The predictor of the record on the second trait on animal 3 is some new 5’2 + Ug + €.
We already have ug. We can predict ég from é; ... és.

B
é1 Y1 1 0100 O0O0 B2 —1.0454
€9 Yo 1 001 00O R 1.0586
es |=1lwys |—1 1 0001 O0O0 Uy | = —.0132
€4 Ya 01 0O0O0T1T0O0 Us 1.7391
és Us 01 0O0O0O01 o —1.7358
s
Thenég = (00100) R (é1...¢é5) = —.0033. The column vector above is Cov [eg, (€1 €3 €3 €4 €4 €5)].

R above is Var|(e; ...és5)"].

Suppose we had the same model as before but we have no data on the second trait.
We want to predict breeding values for both traits in the 3 animals, that is, uq, ..., ug.
We also want to predict records on the second trait, that is, us + e4, us + e5, ug + €. The
mixed model equations are

7525 25 .25 0 0 0 3 5.25
275 —1. —1. —1.6667  .6667  .6667 i 1.50
225 0  .6667 —1.3333 0 iy 2.00

2.25  .6667 0 —1.3333 as | =| 1.75

1.6667 —.6667 —.6667 iy 0

1.3333 0 s 0

1.3333 i 0

The solution is
[7.0345, —.2069, .1881, —.0846, —.2069, . 1881, —.0846].

The last 6 values represent prediction of breeding values.

é1 n ? —.8276

e | =1 v |- (XZ) Zl = 774

€3 Ys3 2 .0502

Uus
Then A L

€4 1 00 4 0 0 €1 —.2069
ées =101 0 040 e | = .1944
€ 0 0 1 0 0 4 €3 .0125



Then predictions of second trait records are

— 2069 —.2069
By + 1881 | + 1944 |,
— 0846 0125

but (5 is unknown.

13 A Singular Submatrix In G

Suppose that G can be partitioned as

o G110
o (0" e

such that Gi; is non-singular and Gy, is singular. A corresponding partition of u’ is
(u} u,). Then two additional methods can be used. First, solve (52)

X'R™1X X'R™1Z, X'R™1Z,

ZR'X Z.R'Z, + G ZR'Z,

G ZoR'X GoZyR7'Z, G ZoR71Zy + 1

/30 X/R—ly
W | =| Z Ry : (52)
ﬁg GQQZ;Rily
Let a g-inverse of this matrix be C. Then the prediction errors come from
I1 00O
cloIoO . (53)
0 0 Go

The symmetric counterpart of these equations is
X'R X X'R'Z, X'R1Z5Gos
Z,R'X Z,R'Z,+ G Z R 'Z,Gy
GQQZ;Rle GQQZIQRilzl GQQZ;R71Z2G22 + G22

/30 X/R—ly
a |=| ZR'y : (54)
Ao Gy ZoR 7y

and ﬁg = GQQCAYQ.

Let C be a g-inverse of the coefficient matrix of (54). Then the variances and covari-
ances come from

I 00
clor1o |. (55)
00 G

I 0O
0I O
0 0 G 22

22

19



14 Prediction Of Future Records

Most applications of genetic evaluation are essentially problems in prediction of future
records, or more precisely, prediction of the relative values of future records, the relativity
arising from the fact that we may have no data available for estimation of future X3, for
example, a year effect for some record in a future year. Let the model for a future record
be

Y =xX,8+zu+e;. (56)

Then if we have available BLUE of x;3 = x,3° and BLUP of u and ¢;, 0 and ¢é;, BLUP
of this future record is
X;3° + z,0 + &;.

Suppose however that we have information on only a subvector of 3 say 3,. Write
the model for a future record as

X108, + X585 + z;u + €.
Then we can assert BLUP for only

4 /
Xo;B + Zou + €;.

But if we have some other record we wish to compare with this one, say y;, with
model,
Yi = X181 + X9;8, + z;u+ ¢,

we can compute BLUP of y; — y; provided that

X1 = Xq5-

It should be remembered that the variance of the error of prediction of a future record
(or linear function of a set of records) should take into account the variance of the error
of prediction of the error (or linear combination of errors) and also its covariance with
B° and 1. See Section 8 for these variances and covariances. An extensive discussion of
prediction of future records is in Henderson (1977b).

15 When Rank of MME Is Greater Than n

In some genetic problems, and in particular individual animal multiple trait models, the
order of the mixed model coefficient matrix can be much greater than n, the number
of observations. In these cases one might wish to consider a method described in this
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section, especially if one can thereby store and invert the coefficient matrix in cases when
the mixed model equations are too large for this to be done. Solve equations (57) for 3°

and s .
(¥ 3)(5)-(6)

Then B° is a GLS solution and
u=GZ's (58)

is BLUP of u. It is easy to see why these are true. Eliminate s from equations (57). This
gives

-(X'VX)B’ = -X'Vy,
which are the GLS equations. Solving for s in (57) we obtain
s=V 'y - Xp).
Then GZ's = GZ'V~1(y — X3°), which we know to be BLUP of u.

Some variances and covariances from a g-inverse of the matrix of (57) are shown

below. Let a g-inverse be
Cu Cp
Cp Cxn /)

Then
Var(K'3°) = —K'CpK. (59)
Var(a) = GZ'C,VCHZG. (60)
Cov(K'B°, ') = K'C,VCHZG =0. (61)
Cov(K'8°,v') = K'C,ZG (62)
Cov(K'B8°, 0 —u') = —K'C,ZG. (63)
Var(h—u) = G —Var(a). (64)

The matrix of (57) will often be too large to invert for purposes of solving s and 3°.
With mixed model equations that are too large we can solve by Gauss-Seidel iteration.
Because this method requires diagonals that are non-zero, we cannot solve (57) by this
method. But if we are interested in u, but not in 8°, an iterative method can be used.

Subsection 4.2 presented a method for BLUP that is
a=C,Vyy,.
Now solve iteratively

V.s =y., (65)
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then
a= C;s. (66)

Remember that V, has rank = n — r. Nevertheless convergence will occur, but not to a
unique solution. V, (and y.) could be reduced to dimension, n — r, so that the reduced
V. would be non-singular.

Suppose that

, (11111
X—<121324»
, (1120 3
C_<20]_12>

93211
81 2 2
V= 9 2 1 |,
7 2
8

y =1[635 28]

First let us compute 3° by GLS and 1 by GZ'V~!(y — X3°).

The GLS equations are
335816 .828030 5 — 1.622884
828030 2.821936 -\ 4.987475 )
(B°) = [1.717054 1.263566].

From this
u = [.817829 1.027132].

By the method of (57) we have equations

9321111 6
81221 2 3
9211 3 5
721 2 (So>: P

s 14 |\B 8

0 0 0

0 0

The solution is (8°)" = same as for GLS,

s’ = (.461240 — .296996 — .076550 — .356589.268895).
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Then u = C’s = same as before. Next let us compute u from different y,. First let 3, be
the solution to OLS using the first two elements of y . This gives

2 1000
5*‘(—1 1000>y’

and

<
*
Il
N O~ OO
|
N
co RO O
o~ ocoo
—_— o oo o
«
Il
]
=

or

’

y. =005 —1 11].

Using the last 3 elements of y, gives

38 11 44
V., = 11 14 ,C;:<;_12>.
72

Then
= C.V: 'y, = same as before.

Another possibility is to compute 3, by OLS using elements 1, 3 of y. This gives
1.5 0 =5 0 0
ﬂ*_<—.50 .500>y’

y,=[0 —250 —3.53.5]

and

Dropping the first and third elements of y.,

95 4.0 6.5
V., = 95 40 |, C, = (_‘12 __12 1?)
25.5 ‘ A

This gives the same value for 1.

Finally we illustrate 3, by GLS.

3 — 780362 .254522 —.142119  .645995 .538760
* | —.242894 —.036176  .136951 —.167959 .310078

y, = (3019380, —1.244186, —507752, —2.244186, 1.228682 ).
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3.268734 —.852713 025840  —2.85713 904393
4.744186 —1.658915 —1.255814 —.062016

V.= 2.656331  —.658915 —3.028424
3.744186  —.062016
2.005168

*

o _ 940568 015504 .090439 —.984496 .165375
~ | 909561 —1.193798 —.297158 —.193798 .599483 |-

Then & = C,V_y,. V, has rank = 3, and one g-inverse is

0 0 0 0
271363 .092077 .107220
211736 .068145
315035

S OO OO

This gives 1 the same as before.

Another g-inverse is

1.372401 0 0 1.035917 —.586957

0 0 0 0
0 0 0
1.049149 —.434783
75000

This gives the same 01 as before.

It can be seen that when B8, = 8°, a GLS solution, C'V~ 'y, = C.V.y,. Thus if V
can be inverted to obtain (3°; this is the easier method. Of course this section is really
concerned with the situation in which V=1 is too difficult to compute, and the mixed
model equations are also intractable.

16 Prediction When R Is Singular

If R is singular, the usual mixed model equations, which require R™!, cannot be used.
Harville (1976) does describe a method using a particular g-inverse of R that can be used.
Finding this g-inverse is not trivial. Consequently, we shall describe methods different
from his that lead to the same results. Different situations exist depending upon whether
X and/or Z are linearly independent of R.
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16.1 X and Z linearly dependent on R

If R has rank ¢ < n, we can write R with possible re-ordering of rows and columns as

R — R, R,L
L'R; L'R4L )’

where R; is t x t, and L is t x (n — t) with rank (n — ¢). Then if X, Z are linearly

dependent upon R,
Xy (74
X_<L’X1>’ Z_<L’Z1>’

Then it can be seen that V is singular, and X is linearly dependent upon V. One could
find B° and 1 by solving these equations

(x %) (5)-(5) o

and 4 = GZ's. See section 14. It should be noted that (67) is not a consistent set of

equations unless
_ [ ¥
y - < L/yl ) .

If X has full column rank, the solution to 3° is unique. If X is not full rank, K’'3°
is unique, given K’@3 is estimable. There is not a unique solution to s but 1 = GZ's is
unique.

Let us illustrate with

X'=(1 2 =3), Z’:(é ? :§>’y’:(5 3 —8),

3 -1 =2
R = 4 =3 |, G=L
)
Then
8§ 3 —11
V=R+ZGZ = 9 —-12 |,
23
which is singular. Then we find some solution to
8 3 —11 1 51 5
3 9 —12 2 sy | 3
-1 —-12 23 -3 s3 | | -8
1 2 -3 0 3° 0



Three different solution vectors are

(14 -7 0 54)/29,
(21 0 7 54)/29,
(0 —21 —14 54)/29.

Each of these gives ' = (0 21)/29 and 8° = 54/29.

We can also obtain a unique solution to K’3° and u by setting up mixed model
equations using y; only or any other linearly independent subset of y. In our example let
us use the first 2 elements of y. The mixed model equations are

1 2 N A 000
L2 | ], o9 1 )T 010
2 1 00 1

These are
20 20 19 3° 51
1=t ] 20 31 19 i | =] 51 | /11
19 19 34 iy 60

The solution is (54, 0, 21)/29 as before.

If we use y1, y3 we get the same equations as above, and also the same if we use s,
Y3

16.2 X linearly independent of V, and Z linearly dependent on
R

In this case V is singular but with X independent of V equations (67) have a unique
solution if X has full column rank. Otherwise K’'3° is unique provided K’3 is estimable.
In contrast to section 15.1, y need not be linearly dependent upon V and R. Let us use
the example of section 14.1 except now X' = (1 2 3), and y’ = (5 3 4). Then the unique
solution is (s B°) = (1104, —588, 24, 4536)/2268.

16.3 Z linearly independent of R

In this case V is non-singular, and X is usually linearly independent of V even though it
may be linearly dependent on R. Consequently s and K’3° are unique as in section 15.2.
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17 Another Example of Prediction Error Variances

We demonstrate variances of prediction errors and predictors by the following example.

nij
Treatment | Animals
1 2
1 2 1
2 1 3
Let
2 1
R=5I G= ( . 3 > )
The mixed model coefficient matrix is
14 6 8 .6 8
6 0 4 2
8 .2 6 1, (68)
1.2 -2
1.2
and a g-inverse of this matrix is
0 0 0 0 0
3.33333 1.66667 —1.66667 —1.66667
3.19820 —1.44144 —-2.1172 |. (69)
1.84685 1.30631
2.38739
1 10
A
Let K —(1 0 1).Then
K/IBO K/ )
Var( du ) = ( L ) [Matrix (69)] (K Io)
3.33333 1.66667 —1.66667 —1.66667
_ 3.19820 —1.44144 —2.1172 (7())
- 1.84685 1.30631
2.38739
3.33333 1.66667 0 0
K'B°\ 3.198198 0 0
V”( a ) - 15315 —.30631 | (71)
.61261
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The upper 2 x 2 is the same as in (70).
Cov(K'B°, i) = 0.
Var(a) =G — Var(d — u).
Let us derive these results from first principles.

33333 33333 33333 0

K'pB°\ .04504  .04504 —.09009  .35135
u n .03604  .03604 —.07207  .08108
—.07207 —.07207  .14414 —.16216

0 0 0
21622 21622 21622

—.02703 —.02703 —.02703 |Y
05405  .05405  .05405

(1) s (52)

!/ Q0
Contribution of R to Var ( 5’6 )

computed by

= [matrix (72)] R [matrix (72)]’
1.6667 0 0 0
1.37935 .10348 —.20696
08278 —.16557
33114

< I<330 ) _ ( ij’i) [matrix (72)] Z

66667  .33333
44144 55856
15315 —.15315
—.30631  .30631

For u in

! Q0
Contribution of G to Var ( Kﬁﬂ )

= [matrix (74)] G [matrix (74)]’
1.6667 1.66662 0 0
1.81885 —.10348  .20696
07037 —.14074
.28143
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Then the sum of matrix (73) and matrix (75) = matrix (71). For variance of prediction
errors we need

0 0 66667  .33333
. 0 0 44144 55856
Matrix (T4) = | o | = | _sa685 —.15315 |° (76)
0 1 —.30631 —.69369
Then contribution of G to prediction error variance is
[matrix (76)] G [Matrix (76)]’,
1.66667 1.66667 —1.66667 —1.66667
B 1.81885 —1.54492 —1.91015 (77)

1.76406  1.47188
2.05624

Then prediction error variance is matrix (73) 4+ matrix (77) = matrix (70).

18 Prediction When u And e Are Correlated

In most applications of BLUE and BLUP it is assumed that Cov(u,€’) = 0. If this is not
the case, the mixed model equations can be modified to account for such covariances. See
Schaeffer and Henderson (1983).

xm«(ﬁ):(? GS> (78)

Var(y) = 2ZGZ' + R+ ZS' + SZ'. (79)

Let an equivalent model be

Let
Then

y=XB+ Tu+e, (80)

var(2) = (§ 8) 1)

and B=R — SG™'S’. Then
Var(y) = Var(Tu+e)
7ZGZ + 7S +S7Z' +SG 'S+ R —-SG'¢
ZGZ + R+ ZS' +SZ'

where T = Z + SG~1,
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as in the original model, thus proving equivalence. Now the mixed model equations are
X'B'X X'B-!'T 3° X'B~ly
m—1 -1 -1 N = -1 ) (82>
TB—X TB'T+G a TB 'y

A g-inverse of this matrix yields the required variances and covariances for estimable
functions of 3°, 1, and u — u.

B can be inverted by a method analogous to
V'=R'-R'Z(ZR'Z+G ") 'ZR!
where V = ZGZ' + R,
B'=R'+R'S(G-SR!S)'SR™. (83)

In fact, it is unnecessary to compute B! if we instead solve (84).

X'R !X XRIT X'R"'S B° X'R-ly
TR'X TR'T+G! TR'S a |=| TRy |. (84)
SR'X SR'T SRIS—-G )\ 6 SRy

This may not be a good set of equations to solve iteratively since (S'"R™!S — G) is negative
definite. Consequently Gauss- Seidel iteration is not guaranteed to converge, Van Norton
(1959).

We illustrate the method of this section by an additive genetic model.

11 1. .5 .25 .25
1 2 1. .25 .25
X = 11 , L=1,,G = . 5 , R =414,
1 4 1.
S=S=091,, y =(56,7,9).
From these parameters
2.88625 .50625 .10125 .10125
B 2.88625 .10125 .10125
- 2.88625 .50625 |’
2.88625
and
2.2375 —.5625 —.1125 —.1125
I 2.2375 —.1125 —.1125
T=T-= 2.2375  .5625
2.2375
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Then the mixed model equations of (84) are

1.112656 2.225313  .403338 403338 .403338 403338
6.864946 —.079365  1.097106 —.660224  2.869187

3.451184 —1.842933 —.261705 —.261705

3.451184 —.261705 —.261705

3.451184 —1.842933

3.451184
39 7.510431
3 17.275150
i || 1.389782
iy | | 2566252
a3 2.290575
iy 4.643516

The solution is (4.78722, .98139, —.21423, —.21009, .31707, .10725).

We could solve this problem by the basic method
,80 — (le—lx)—le—ly’
and
i = Cov (u,y )V~ (y - Xp).
We illustrate that these give the same answers as the mixed model method.
6.8 .5 .25 .25
6.8 .25 .25

6.8 .5
6.8

Var(y) =V =

Then the GLS equations are

012821 1.025641 B . 3.461538
1.025641 2.991992 \ 7.846280 )
and R
B = (4.78722,.98139)
as before.
1.90 .50 .25 .25
N 1.90 25 .25 | , ,
Cov(u,y') = 190 50 =GZ + 5.
1.90
(y — X,B) = (—.768610, —.750000, 1.231390, .287221).
u = (—.21423,—-.21009, .31707,.10725)" = (GZ' + S’)V_l(y — X3
as before.
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19 Direct Solution To / And u +T [

In some problems we wish to predict w = u + T3. The mixed model equations can be
modified to do this. Write the mixed model equations as (85). This can be done since
E(w—-TB)=0.

XR'X XRZ B8’ _ ([ XRly (85)
ZR'X ZR'Z+G! w-T3° ) \ ZR 'y )°
Re-write (85) as
X'R™'X — X'R'ZT X'R'Z B\ [ XRly (56)
ZR'X -M ZR'Z+G™! w | | ZRly

where M = (Z'R7'Z + G™!)T. To obtain symmetry premultiply the second equation
by T” and subtract this product from the first equation. This gives

( XR X -XR'ZT - TZR X +TM XR'Z-M )

ZR'X-M ZR1'Z+G!
ﬂo B XlRfly _ T/lefly
< W - Z/Rfly : (87>
: : Ci Cipp
Let a g-inverse of the matrix of (87) be / . Then
Ci, O

VCLT’(K,,SO) = K,CHK.
VCLT(W-W) = 022.

Henderson’s mixed model equations for a selection model, equation (31), in Biomet-
rics (1975a) can be derived from (86) by making the following substitutions, ( )é > for
X, (0 B) for T, and noting that B = ZB,, + B..

We illustrate (87) with the following example.

W = N =
NSO
O = = DN



The regular mixed model equations are

1.576535 1.651127 1.913753 1.188811 1.584305
2.250194 2.088578  .860140 1.859363
2.763701 1.154009 1.822952

2.024882 1.142462

2.077104

2.651904
3.871018

) = | 3.184149 (88)
1.867133
3.383061

The solution is
(—2.114786, 2.422179, .086576, .757782, .580739).
The equations for solution to 3 and to w = u+ T3 are

65.146040 69.396108 —12.331273 —8.607904 —10.323684
81.185360 —11.428959 —10.938364 —11.699391

2.763701 1.154009 1.822952

2.024882 1.142462

2.077104
/60
W

—17.400932
(—2.115, 2.422, —3.836, 3.795, 6.040).

—18.446775
) = 3.184149 | . (89)
This is the same solution to 3 as in (88), and & + T3 of the previous solution gives w
of this solution. Further,

1.867133
3.383061
I 0 . I 0 .
( T I ) [inverse of (88)] ( T 1 > , = [inverse of (89)]

The solution is

20 Derivation Of MME By Maximizing f(y,w)

This section describes first the method used by Henderson (1950) to derive his mixed
model equations. Then a more general result is described. For the regular mixed model

f(e)=ome(2)=(5 1)
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The density function is
fy,u) =g(y [ ) h(u),
and under normality the log of this is

k[(y — X8 —Zu)R™ ' (y — X8 — Zu) + u'G'u],

where k is a constant. Differentiating with respect to B, u and equating to 0 we obtain
the regular mixed model equations.

Now consider a more general mixed linear model in which
y \_( XB
#(w)- (%)
y\ (V C
(v )= (& 6)
\% c\ [ Cu Cyp
cC G “\C, Cxn /)
Log of f(y,w) is

kl(y —XB)'Culy — XB) + (y — XB)'Cra(w — TS)

+(w —TB)C(y — XB) + (W — TB) Cos(w — TB).

with T3 estimable, and

with

Differentiating with respect to 3 and to w and equating to 0, we obtain

( X'C1 X 4+ X'C1oT + T'C,X + T'Cp,T —(X'Cyy + T'Cy) )

—(X’Clg + T/CQQ), C22
( g’ ) - ( X'Cuy + T'Croy ) (90)
w —Cpy
Eliminating w we obtain
X'(Cp — C},C C12)XB” = X'(Cy, — C1,Cx, Cra)y. (91)

But from partitioned matrix inverse results we know that
Cy —C), CCly =V
Therefore (91) are GLS equations and K'(3° is BLUE of K’ if estimable.
Now solve for w from the second equation of (90).
W= _C2_210112(Y —XpB°) + TpB°.
C'V iy - XB°) + Ta°
BLUP of w because — C,'Cy, = C'V™L.
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To prove that —Cs5,' C}, = C'V~! note that by the definition of an inverse C},V+CagyC’ =
0. Pre-multiply this by C55 and post-multiply by V~! to obtain

C,lCL+CV'1=0 or —Cz;C,=CVL

We illustrate the method with the same example as that of section 18.

46 66 38 74 6 9 13
. , . 118 67 117 _ | 11 18 18
V=2GZ+R= 45 66 |'CTEE=] 6 11 10
149 16 14 21
) \% 7G )
Then from the inverse of ( G7Z G ) , we obtain

229215 —.023310 —.018648 —.052059
188811 —.048951 —.011655

160839 —.009324 |’
140637

Cll =

044289 —.069930 —.236985
—.258741 —.433566 —.247086

Ciz = —.006993 —.146853  .002331 |’
— 477855 —.034965 —.285159
and
2.763701 1.154009 1.822952
Cyy = 2.024882 1.142462

2.077104
Then applying (90) to these results we obtain the same equations as in (89).

The method of this section could have been used to derive the equations of (82) for
Cov(u, €) # 0.
[y, ) = g(y | u) h(w).
E(y |u)=XB+ Tu, Var(y | u) =B.
See section 17 for definition of T and B. Then
log g(y | u) h(u) = k(y — X3 — Tu)B '(y — X3 — Tu) + u'G 'u.

This is maximized by solving (82).
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This method also could be used to derive the result of section 18. Again we make
use of f(y,w) = gly | w) h(w).

E(y|w) = XB+Z(w—TB).
Var(y | w) = R.

Then

log g(y | w) h(w) = k[(y —XB+Zw—ZTB)R (y — XB + Zw — ZTJ)]
+(w—TB)G (w - TB).

This is maximized by solving equations (87).
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Chapter 6
G and R Known to Proportionality

C. R. Henderson

1984 - Guelph

In the preceding chapters it has been assumed that Var(u) = G and Var(e) =
R are known. This is, of course, an unrealistic assumption, but was made in order to
present estimation, prediction, and hypothesis testing methods that are exact and which
may suggest approximations for the situation with unknown G and R. One case does
exist, however, in which BLUE and BLUP exist, and exact tests can be made even when
these variances are unknown. This case is G and R known to proportionality.

Suppose that we know G and R to proportionality, that is
G = G, ¢ (1)
R = R, 03.

G. and R, are known, but o2 is not. For example, suppose that we have a one way mixed
model

Var(a, ay..) = Io2

VCW’(@H €12 )/ = IO’?.

Suppose we know that 02/0? = a. Then

G = Io? = Iao’
R = Io’

Then by the notation of (1)
G, = Io, R, = L

1 BLUE and BLUP

Let us write the GLS equations with the notation of (1).

V = ZGZ +R
(Z2G.Z +R.,)o?
= V,ol

1



Then X'V~ 1X3° = X'V~ly can be written as
o’ X'VIXB° = X'V 'yo. 2 (2)
Multiplying both sides by ¢ we obtain a set of equations that can be written as,
X'V X3 = X'V 'y. (3)
Then BLUE of K’ is K'3°, where 3° is any solution to (3).

Similarly the mixed model equations with each side multiplied by o2 are
X'R;'X X'R;'Z B° B X'R 1y (4)
ZR'X Z'R;'Z+G? a N ZR 'y |-
u is BLUP of u when G, and R, are known.

To find the sampling variance of K’3° we need a g-inverse of the matrix of (2). This
is
(X'V1X)™ o2
Consequently,
Var(K'8°) = K'(X'V;'X) Ko?>. (5)
Also
Var(K'8°) = K'C;1Ko?,

where Cy; is the upper p? submatrix of a g-inverse of the matrix of (4). Similarly all of
the results of (34) to (41) in Chapter 5 are correct if we multiply them by o?.

Of course o2 is unknown, so we can only estimate the variance by substituting some
estimate of o2, say 62, in (5). There are several methods for estimating 2, but the most
frequently used one is the minimum variance, translation invariant, quadratic, unbiased
estimator computed by

'V ly = (B2 X'V 1yl /[n — rank(X)) (6)
or by
YR 'y — (B)X'R.'y — W'Z'R'y]/[n — rank(X)]. (7)

A more detailed account of estimation of variances is presented in Chapters 10, 11, and
12.

Next looking at BLUP of u under model (1), it is readily seen that @ of (4) is BLUP.
Similarly variances and covariances involving @1 and i — u are easily derived from the

results for known G and R. Let
Ci Cypo
Cio Co



be a g-inverse of the matrix of (4). Then

Cov(K'B°, 1’ —vu') = K'Cpo?, (8)
Var() = (G, — Cy)o?, (9)
Var(i—u) = Cgo?. (10)

2 Tests of Hypotheses

In the same way in which G and R known to proportionality pose no problems in
BLUE and BLUP, exact tests of hypotheses regarding 3 can be performed, assuming as
before a multivariate normal distribution. Chapter 4 describes computation of a quadratic,
s, that is distributed as x? with m — a degrees of freedom when the null hypothesis is
true, and m and a are the number of rows in Hy and H,, respectively. Now we compute
these quadratics exactly as in these methods except that V., G,, R, are substituted for
V, G, R. Then when the null hypothesis is true, s/6%(m — a) is distributed as F' with

m — a, and n—rank (X) degrees of freedom, where 62 is computed by (6) or (7).

3 Power Of The Test Of Null Hypotheses

Two different types of errors can be made in tests of hypotheses. First, the null hypothesis
may be rejected when in fact it is true. This is commonly called a Type 1 error. Second,
the null hypothesis may be accepted when it is really not true. This is called a Type 2
error, and the power of the test is defined as 1 minus the probability of a Type 2 error.
The results that follow regarding power assume that G, and R, are known.

The power of the test can be computed only if

1. The true value of B8 for which the power is to be determined is specified. Different
values of 3 give different powers. Let this value be 8,. Of course we do not know
the true value, but we may be interested in the power of the test, usually for some
minimum differences among elements of 3. Logically 3, must be true if the null and
the alternative hypotheses are true. Accordingly a 3, must be chosen that violates
neither Hy3 = ¢y nor H,8 = c,.

2. The probability of the type 1 error must be specified. This is often called the chosen
significance level of the test.

3. The value of 62 must be specified. Because the power should normally be computed
prior to the experiment, this would come from prior research. Define this value as

d.



4. X and Z must be specified.

Then let

A = significance level
Fi = m —a = numerator d.f.
F, = n—rank(X) = denominator d.f.

Compute A = the quadratic, s, but with X3, substituted for y in the computations.

Compute
P = [A(m—a+1)d]'? (11)
and enter Tiku’s table (1967) with A, Fy, F5, P to find the power of the test.
Let us illustrate computation of power by a simple one-way fixed model,
Yij = Wttt ey,
i = 1,2,3.
Var(e) = Io2.

e

Suppose there are 3,2,4 observations respectively on the 3 treatments. We wish to test

H,3 = 0,

/ 010 -1
HO_(OOl—l)’

against the unrestricted hypothesis.

where

Suppose we want the power of the test for ,3; = [10,2,1,-3] and 62 = 12. That
is, d = 12. Then
(X3, = [12, 12, 12, 11, 11, 7, 7, 7, 7).

As we have shown, the reduction under the null hypothesis in this case can be found from
the reduced model E(y) = po. The OLS equations are

93 2 4 86
3300 |(p) |36
2020 |\t ) = |2
400 4 28

A solution is (0, 12, 11, 7), and reduction = 870. The restricted equations are

9u° = 86,



and the reduction is 821.78. Then s = 48.22 = A. Let us choose A = .05 as the
significance level

F, = 2-0=2.
F, = 9-3=6.
48.22

P = 22— 1.157.
3(12)

Entering Tiku’s table we obtain the power of the test.



Chapter 7
Known Functions of Fixed Effects

C. R. Henderson

1984 - Guelph

In previous chapters we have dealt with linear relationships among 3 of the
following types.

1. M’'Bis a set of p-r non-estimable functions of 3 , and a solution to GLS or mixed
model equations is obtained such that M'3° = c.

2. K'Bis a set of r estimable functions. Then we write a set of equations, the solution
to which yields directly BLUE of K'S3.

3. H’'[3is a set of estimable functions that are used in hypothesis testing.

In this chapter we shall be concerned with defined linear relationships of the form,
T3 =c.

All of these are linearly independent. The consequence of these relationships is that
functions of B may become estimable that are not estimable under a model with no
such definitions concerning B . In fact, if T'3 represents p — r linearly independent
non-estimable functions, all linear functions of 3 become estimable.

1 Tests of Estimability

If T'3 represents t < p — r non-estimable functions the following rule can be used to
determine what functions are estimable.

<>T(,>czo, (1)

where C is a p X (r — t) matrix with rank r — ¢. C always exists. Then K’'3 is estimable
if and only if
K'C = 0. (2)



To illustrate, suppose that

DO — W = N
— =N W N
W N U W W
TN O ot

with p =4, and r = 2 becuase

13
1 -1
X| | =0

0 —1

Suppose we define T = (1 2 2 1). This is a non-estimable function because

1 3
(1221) bl = (1 0)#0
-1 0| '
0 -1
Now
1231
2 135 3
X 1340 O
7 |]C=[3257 0| =0
1122 1
2 135
1221

Therefore K’'3 is estimable if and only if K'(3 —1 0 — 1) = 0. If we had defined
, (1221
= ( 211 3 )’

any function of 3 would be estimable because rank ( ;(, ) = 4. This is because p—1r =

4 — 2 non-estimable functions are defined.



2 BLUE when  Subject to T'j3

One method for computing BLUE of K’3, estimable given T'3 = ¢, is K'3°, where 3° is
a solution to either of the following.

(FRN(E)()

XR'X XR'Z T\ /[ X'Rly
ZR'X ZR'Z+G' o ||a |=]| zr'y |. (4)
T 0 0 0 C

If T'3 represents p — r linearly independent non-estimable functions, 3° has a unique
solution. A second method where ¢ = 0 is the following. Partition T', with re-ordering
of columns if necessary, as

T'= [T, Ty,
the re-ordering done, if necessary, so that T is non-singular. This of course implies that
T, is square. Partition X = [X; Xjy], where X, has the same number of columns as T,
and with the same re-ordering of columns as in T’. Let

W =X, — X,(T,)"'T,.
Then solve for 3°, in either of the following two forms.
WVIwWg? = WVly. (5)
WR'W WR'Z B9 W'R™ly
( ZR'W ZR'Z+G! ) ( i ) - ( ZR y ) (6)

In terms of the model with no definitions on the parameters,

EB) = (WV W) WV IXg. (7)
B; = —(T,)'T\B. (8)
E(B3) = —(Ty) 'TiE(BY). (9)

Let us illustrate with the same X used for illustrating estimability when T'3 is
defined. Suppose we define
, (1221 B
T_<2 11 3>,C—0.

then T'B are non-estimable functions. Consequently the following GLS equations have a
unique solution. It is assumed that Var(y) = Is2. The equations are

20 16 36 44 1 2 46
16 20 36 28 2 1 52
L1363 72 7T 21 N s |
Te 44 28 72 104 1 3 0 || s6 |% (10)
1 2 2 100 0
1 1 300 0



andy =[5, 3, 7, 2, 6, 8|.

The solution is [380, —424, 348, —228, 0, 0]/72. If T'3 = 0 is really true, any linear
function of 3 1is estimable.

By the method of (5)

—_

/ 1 2131 2
X1<2132 1)’

33 45 23
1507 25)°

/ 2 1
)= (15)

;L -2 —1.6 2 =22 -6 -16
w _<—1.0 -20 -1.0 -3.0 —-1.0 —2.())'

_ N

then

Equations like (5) are
o (104 136\ ., [ =252\
%\ 136 200 ) Pt T\ 460 ) %
The solution is 3 = (380, -424)/72. By (8)

se (20 () m ()
These are identical to the result by method (3). E(3]) by (7) is
( 0 25 25 -25 ) s
-1.0 -25 =35 =5
It is easy to verify that these are estimable under the restricted model.

At this point it should be noted that the computations under T3 = ¢, where these
represent p—r non-estimable functions are identical with those previously described where
the GLS or mixed model equation solution is restricted to M’3° = c¢. However, all linear
functions of @ are estimable under the restriction regarding parameters whereas they are
not when these restrictions are on the solution, 3°. Restrictions M’'3° = ¢ are used only
for convenience whereas T’(3 = c are used because that is part of the model.

Now let us illustrate with our same example, but with only one restriction, that being

2113)8=0.

4



Then equations like (3) are

20 16 36 44 2 46
16 20 36 28 1 0 52

o2 [ 36 36 72 T2 1 (g ): 98 | 0.2
44 28 72 104 3 86

2 1 1 30 0

These do not have a unique solution, but one solution is (-88, 0, 272, -32, 0)/144. By the
method of (5)

Tl = (2 1 1)7

T2 — 3.
This leads to
68 52 —32 ~102
9o 2| 52 116 128 | B9 = 210 | 97102
—32 128 320 624

These do not have a unique solution but one solution is (-88 0 272)/144 as in the other
method for 3.

3 Sampling Variances

If the method of (3) is used,
V(ZT(K/B()) = chllK7 (11)

where Cy; is the upper p? submatrix of a g-inverse of the coefficient matrix. The same is
true for (4).

If the method of (5) is used

Var(K;82) = K (WVT'W)K,. (12)
Cou(K 3%, 85K,) = —K,(WV'W) T,T;'K,. (13)
Var(Ky83) = Ky(Ty) 'T{ (W VW) T,T;'Ko. (14)

If the method of (6) is used, the upper part of a g-inverse of the coefficient matrix is used
in place of (11).

Let us illustrate with the same example and with one restriction. A g-inverse of the
coefficient matrix is

O 0 0 0 0
oo s 32 16 576
e [0 —32 29 1 —432
6 1 g 16 1 5 144
0 576 —432 144 0

5



Then
9 0 80 —32 -—16

Var(K'8%) = —= K'| 0 —-32 29 1 | K.

576 0 -16 1 5

Using the method of (5) a g-inverse of W/'V~IW is

0 0 0\ >
0 80 32 | =,
0 —32 29

which is the same as the upper 3 x 3 of the matrix above. From (13)

0 0 0 2
0 &80 —32 1 |=-=
0 =32 29 1

—(W'V'wW)T,7,;! = ——
( ) T T; 576

0
1
1

and for (14) (Ty)'T;(W'VI'W)"T,T;' = 5/576, thus verifying that the sampling

variances are the same by the two methods.

4 Hypothesis Testing

As before let Hy3 = ¢ be the null hypothesis and H, 3 = ¢, be the alternative hypothesis,
but now we have defined T’3 = c. Consequently H,3 and H,,3 need be estimable only

when TV@ = c is assumed.

Then the tests proceed as in the unrestricted model except that for the null hypothesis

computations we substitute

(;I,O> B8 — (E()) for HoB3 — co.

and for the alternative hypothesis we substitute
(?ﬂ) 8 — <2a> forH;,B — C,.

To illustrate suppose the unrestrained GLS equations are

6 32 1 9
3712 . |12
2181 |7 |
1219 16

(15)

(16)



Suppose that we define T/ = 0 where TV = (3 1 2 3).
We wish to test HBB = 0, where

/ 1 210
H0_<2101>

against H,3 = 0, where H, = [1 -1 -1 1]. Note that (-1 1) H, = H, and both are
estimable. Therefore these are valid hypotheses. Using the reduction method we solve

6 3 21 1 3 9
3 7 12 —-11 12
2 1 81 -1 2 B.\ _ 15
12 19 13 0, N 16
1 -1 =11 0O 0
3 1 23 00 0

The solution is [-1876, 795, -636, 2035, -20035, 20310]/3643, and the reduction under H,,
is 15676,/3643 = 4.3030. Then solve

6 321123 9
3712211 12
218110 2 15
1219013<go>:16
1210000 0 0
2101000 0
3123000 0

The solution is [-348, 290, -232, 406, 4380, -5302, 5088] /836, and the reduction is 3364 /836
= 4.0239. Then we test 4.3030 - 4.0239 = .2791 entering x? with 1 degree of freedom
coming from the differences between the number of rows in H, and H,.

By the method involving Var(H,3) and Var(H,3) we solve the following equations
and find a g-inverse of the coefficient matrix.

6 3 21 3 9
37121 , 12
21812(5):15
12193 0 16
31230 0

The solution is [-7664, 8075, 5561, 1265, 18040]/4972. The inverse is

624 —-276 —-336 —308 1012
887 23 =35 =352
659 —121 220 | /4972.
407 616
—2024



Now
H,0° = [2.82522 — 1.20434]',

/ 65708 .09735
H()CHHO = ( )7

27031

and

=B

(H/CyHy) ' = (1.60766 —.57895>
ov-11440 -

3.90789 ’
where Cy; is the upper 4 x 4 submatrix of the inverse of the coefficient matrix. Then

[2.82522 — 1.20434] B [2.8522 — 1.20434] = 22.44007.

Similarly computations with H, = (1 -1 -1 1), give H,3, = -4.02957, B = 1.36481, and
(—4.02957)B(—4.02957) = 22.16095. Then 22.44007 - 22.16095 = .2791 as before.



Chapter 8
Unbiased Methods for G and R Unknown

C. R. Henderson

1984 - Guelph

Previous chapters have dealt with known G and R or known proportionality
of these matrices. In these cases BLUE, BLUP, exact sampling variances, and exact tests
of hypotheses exist. In this chapter we shall be concerned with the unsolved problem of
what are "best” estimators and predictors when G and R are unknown even to propor-
tionality. We shall construct many unbiased estimators and predictors and under certain
circumstances compute their variances. Tests of hypotheses pose more serious problems,
for only approximate tests can be made. We shall be concerned with three different

situations regarding estimation and prediction. These are described in Henderson and
Henderson (1979) and in Henderson, Jr. (1982).

1. Methods of estimation and prediction not involving G and R.

2. Methods involving G and R in which assumed values, say G and R are used in the
computations and these are regarded as constants.

3. The same situation as 2, but G and R are regarded more realistically as estimators
from data and consequently are random variables.

1 Unbiased Estimators

Many unbiased estimators of K'3 can be computed. Some of these are much easier
than GLS or mixed models with G and R used. Also some of them are invariant to G
and R. The first, and one of the ecasiest, is ordinary least squares (OLS) ignoring u.

Solve for B° in
X'X3 = X'y. (1)
Then EF(K'B°) = FIK'(X'X) X'y| = K'(X'X)"X'X8 = K'3 if K'3 is estimable. The
variance of K'(3° is
K'(X'X)"X/'(ZGZ' +R)X(X'X) K, (2)

and this can be evaluated easily for chosen G, R, but it is valid only if G and R are
regarded as fixed.



A second estimator is analogous to weighted least squares. Let D be a diagonal
~ / ~
matrix formed from the diagonals of (ZGZ + R). Then solve

X'D'X3° = X'Dly. (3)
K’(3° is an unbiased estimator of K’'3 if estimable.
Var(K'8°) = K/(X'D'X)"X'DY(ZGZ + R) D 'X(X'D'X) K. (4)
A third possibility if R! is easy to compute, but V1 is not easy, is to solve
X'R'X3° = XRly. (5)
Var(K'8°) = K'(X'R'X)"X'R(ZGZ + R R 'X(X'R'X) K. (6)

These methods all would seem to imply that the diagonals of G™! are large relative
to diagonals of R,

Other methods would seem to imply just the opposite, that is, the diagonals of
G~! are small relative to R™!. One of these is OLS regarding u as fixed for purposes of
computation. That is solve

XX XZ\(B8\ (Xy ™
zx 77 )\w ) = \ zy |
Then if K'3 is estimable under a fixed u model, K’'3° is an unbiased estimator of K’'3.

However, if K'3 is estimable under a random u model, but is not estimable under a

fixed u model, K'3° may be biased. To forestall this, find a function K’3 + M'u that is
estimable under a fixed u model. Then K’3° + M'u® is an unbiased estimator of K’'3.

Var(K'8 + Muw®) = [K M]CW'(ZGZ + R)WC ( 5 ) (8)
— (K" M)CW'RWC < 1{2) + MGM, (9)

where C is a g-inverse of the matrix of (7) and W = (X Z).

The method of (9) is simpler than (8) if R has a simple form compared to ZGZ'. In
fact, if R = Io?, the first term of (9) becomes

(K' M')C ( 5 >a§. (10)

Analogous estimators would come from solving

X'R'X X'R'Z B°\ [ XRly ()
ZR'X ZR'Z w )~ \zZR'ly /)



Another one would use D! in place of R™! where D is a diagonal matrix formed
from the diagonals of R. In both of these last two methods K'3° + M'u® would be the
estimator of K'3, and we require that K’3 + M'u be estimable under a fixed u model.

From (11)

Var(K'8° + M'v°) = (K M)CW'RY(ZGZ +R)R'WC < 1\151 )

M
+M'GM. (12)

= (K M’)CW’R‘lRR‘1WC< K )

When D! is substituted for R™* the expression in (12) is altered by making this same
substitution.

Another method which is a compromise between (1) and (11) is to ignore a subvector
of u, say us, then compute by OLS regarding the remaining subvector of u, say u;, as
fixed. The resulting equations are

X'X X'Z, 8%\ ([ Xy (13)
Z.X 7.7, w )\ Zyy )
(Zy Z,) is a partitioning of Z corresponding tou’ = (u) u,). Now to insure unbiasedness
of the estimator of K’'3 we need to find a function,
KI,B + M’ul,
that is estimable under a fixed u; model. Then the unbiased estimator of K'3 is
K'3° + M'uy,

The variance of this estimator is

(K' M')CW'(ZGZ' + R)WC ( 5 ) . (14)

W = (X Z;), and ZGZ' refers to the entire Zu vector, and C is some g-inverse of the
matrix of (13).

Let us illustrate some of these methods with a simple example.

X =[11111]

0
1 , R=15I, G = 2I,
0

O = O
— o O



y = 16875 1.

17 2 0 0 0
17 0 0 O
Var(y) = ZGZ' +R = 17 2 0
17 0
17
B is estimable. By the method of (1) we solve
58° = 33.
3 = 66
1
1
Var(B°) = 2(1 111 1) Var(y)| 1 2 =23.72.
1
1
By the method of (7) the equations to be solved are
5 2 2 1 33
2 0 0 g\ | 14
20 u’ N 12
1 7
A solution is (0, 7, 6, 7). Because 8 is not estimable when u is fixed, we need some
function with k’ = 1 and m’ such that (k' m’) ’ﬁ ) is estimable. A possibility is

(3 1 1 1)/3. The resulting estimate is 20/3 # 6.6, our previous estimate. To find the
variance of the estimator by method (8) we can use a g-inverse.

00 00
500
50
1
00 00
Km)ow = @11yl 00
1
1 1111
11000 1
001 10| = zrii)
00001



Then Var(B8°) = 4 # 3.72 of previous result. By the method of (9) we obtain
3.333 + .667 = 4 also.

BLUE would be obtained by using the mixed model equations with R = 151,
G = 2I if these are the true values of R and G. The resulting equations are

33

2 2 1
95 0 0 g | 1
15 0 950 (u ) = 2|/

—_
=N N Ot

B° = 6.6009.

The upper 1 x 1 of a g-inverse is 3.713, which is less than for any other methods, but
of course depends upon true values of G and R.

2 Unbiased Predictors

The method for prediction of u used by most animal breeders prior to the recent
general acceptance of the mixed model equations was selection index (BLP) with some
estimate of X3 regarded as a parameter value. Denote the estimate of X3 by X/3. Then
the predictor of u is

= GZVl(y-Xp). (15)
G and V are estimated G and V.

This method utilizes the entire data vector and the entire variance-covariance struc-
ture to predict. More commonly a subset of y was chosen for each individual element of
u to be predicted, and (15) involved this reduced set of matrices and vectors.

Now if X/3 is an unbiased estimator of X3, E(21) = 0 = E(u) and is unbiased. Even
if G and R were known, (15) would not represent a predictor with minimum sampling
variance. We have already found that for this 8 should be a GLS solution. Further,
in selection models (discussed in chapter 13), usual estimators for B such as OLS or
estimators ignoring u are biased, so u is no longer an unbiased predictor.

Another unbiased predictor, if computed correctly, is "regressed least squares” first
reported by Henderson (1948). Solve for u° in equations (16).

X'X Xz\ (8) (Xy
(Z’X Z’Z) (u") N (Z’y) (16)



Take a solution for which E(u°) = 0 in a fixed 3 but random u model. This can be
done by ”absorbing” 3° to obtain a set of equations

ZPZ v’ = Z'Py, (17)

where

P = [I-X(X'X)X].

Then any solution to u®, usually not an unique solution, has expectation 0, because
EI-X(X'X) Xy = (X -X(X'X)"X'X)8 = (X—X)3=0. Thus u® is an unbiased
predictor, but not a good one for selection, particularly if the amount of information
differs greatly among individuals.

Let some g-inverse of Z'PZ be defined as C. Then
Var(u®) = CZ'P(ZGZ + R)PZC, (18)

Cov(u,u°) = GZ'PZC. (19)

Let the i'" diagonal of (18) be v;, and the i"* diagonal of (19) be ¢;, both evaluated by
some estimate of G and R. Then the regressed least square prediction of u; is

ciug ;. (20)

This is BLP of u; when the only observation available for prediction is u$. Of course other
data are available, and we could use the entire u® vector for prediction of each u;. That
would give a better predictor because (18) and (19) are not diagonal matrices.

In fact, BLUP of u can be derived from u°. Denote (18) by S and (19) by T. Then
BLUP of u is
TS u’, (21)

provided G and R are known. Otherwise it would be approximate BLUP.

This is a cumbersome method as compared to using the mixed model equations,
but it illustrates the reason why regressed least squares is not optimum. See Henderson
(1978b) for further discussion of this method.

3 Substitution Of Fixed Values For G And R

In the methods presented above it appears that some assumption is made concerning
the relative values of G and R. Consequently it seems logical to use a method that
approaches optimality as G and R approach G and R. This would be to substitute
G and R for the corresponding parameters in the mixed model equations. This is a
procedure which requires no choice among a variety of unbiased methods. Further, it has
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the desirable property that if G and R are fixed, the estimated sampling variance and
prediction error variances are simple to express. Specifically the variances and covariances
estimated for G = G and R = R are precisely the results in (34) to (41) in Chapter 5.

It also is true that the estimators and predictors are unbiased. This is easy to prove
for fixed G and R but for estimated (random) G and R we need to invoke a result by
Kackar and Harville (1981) presented in Section 4. For fixed G and R note that after
"absorbing” u from the mixed model equations we have

X'VX3° = X'Vly.

Then
E(KIIBO> — E(K/(X/V71X)7X/V71y)
= K'(X'VX)"X'V'X3
= K'B.
Also

= (ZR'Z+ G H1ZR Yy — XB°).
But X3° is an unbiased estimator of X3, y — X3° with expectation 0 and consequently
E(d) = 0 and is unbiased.

4 Mixed Model Equations With Estimated G and R

It is not a trivial problem to find the expectations of K'(3° and u from mixed model
equations with estimated G and R. Kackar and Harville (1981) derived a very important
result for this case. They prove that if G and R are estimated by a method having the
following properties and substituted in mixed model equations, the resulting estimators
and predictors are unbiased. This result requires that

1. 1y is symmetrically distributed, that is, f(y) = f(-y).

2. The estimators of G and R are translation invariant.

3. The estimators of G and R are even functions of y.

These are not very restrictive requirements because they include a variety of distributions
of y and most of the presently used methods for estimation of variances and covariances.

An interesting consequence of substituting ML estimates of G and R for the corre-

sponding parameters of mixed model equations is that the resulting K’3° are ML and the
u are ML of (u|y).



5 Tests Of Hypotheses Concerning (3

We have seen that unbiased estimators and predictors can be obtained even though
G and R are unknown. When it comes to testing hypotheses regarding 3 little is known
except that exact tests do not exist apart from a special case that is described below.
The problem is that quadratics in H'8° — ¢ appropriate for exact tests when G and
R are known, do not have a y? or any other tractable distribution when é, R replace
G, R in the computation. What should be done? One possibility is to estimate, if
possible G, R, 3 by ML and then invoke a likelihood ratio test, in which under normality
assumptions and large samples, -2 log likelihood ratio is approximated by x2. This raises
the question of what is a large sample of unbalanced data. Certainly n — o0 is not
a sufficient condition. Consideration needs to be given to the number of levels of each
subvector of u and to the proportion of missing subclasses. Consequently the value of a
x? approximation to the likelihood ratio test is uncertain.

A second and easier approximation is to pretend that G = GandR = R and
proceed to an approximate test using x? as described in Chapter 4 for hypothesis testing
with known G, R and normality assumptions. The validity of this test must surely
depend, as it does in the likelihood ratio approximation, upon the number of levels of u
and the balance and lack of missing subclasses.

One interesting case exists in which exact tests of 3 can be made even when we do
not know G and R to proportionality. The requirements are as follows

1. Var(e) = Io?, and

2. H,3 is estimable under a fixed u model.

Solve for B° in equations (7). Then
Var(HyB8°) = HyCi1Hoo? (22)

where Cy; is the upper p x p submatrix of a g-inverse of the coefficient matrix. Then
under the null hypothesis versus the unrestricted hypothesis

(HyB8%) ' [HoCyy Ho]™' HB°/s6? (23)

is distributed as F with degrees of freedom s, n—rank (X Z). 62 is an estimate of o2
computed by

¥y = (8°) Xy = (u)Z'y)/[n — rank(X Z)], (24)

and s is the number of rows, linearly independent, in Hé.



Chapter 9
Biased Estimation and Prediction
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All methods for estimation and prediction in previous chapters have been unbi-
ased. In this chapter we relax the requirement of unbiasedness and attempt to minimize
the mean squared error of estimation and prediction. Mean squared error refers to the sum
of prediction error variance plus squared bias. In general, biased predictors and estima-
tors exist that have smaller mean squared errors than BLUE and BLUP. Unfortunately,
we never know what are truly minimum mean squared error estimators and predictors
because we do not know some of the parameters required for deriving them. But even
for BLUE and BLUP we must know G and R at least to proportionality. Additionally
for minimum mean squared error we need to know squares and products of 3 at least
proportionally to G and R.

1 Derivation Of BLBE And BLBP

Suppose we want to predict k;3, + k,3, + m’'u by a linear function of y, say a’y,
such that the predictor has expectation kllﬁl plus some function of 3,, and in the class
of such predictors, has minimum mean squared error of prediction, which we shall call
BLBP (best linear biased predictor).

The mean squared error (MSE) is
a'Ra+ (X, — k,)3,8,(Xa — ky) + (2'Z — m')G(Z'a — m). (1)

In order that E(a’y) contains k3, it is necessary that a’X;3, = k;3;, and this will be
true for any 3, if a’X; = k;. Consequently we minimize (1) subject to this condition.
Differentiating (1) with respect to a and to an appropriate Lagrange Multiplier, we have
equations (2) to solve.

( V+X,8,8,X; Xy ) ( a ) _ ( ZGm + Xo3,0,k ) @
X 0 0 k '

a has a unique solution if and only if k|3, is estimable under a model in which E(y)
contains X;/3,. The analogy to GLS of 3, is a solution to (3).

X1 (V + X08,8,X,) ' X187 = X, (V + X8,0,X,) "y (3)

1



Then if K’lﬁl is estimable under a model, E(y) containing X3, K’lﬁ’f is unique and is
the minimum MSE estimator of K;3,. The BLBE of 3, is

ByByXs(V + X23,8,X,) "y — Xu8) (4)

= (35, and this is unique provided K;[3, is estimable when E(y) contains X;3;. The
BLBP of u is

u' = GZ'(V + X,8,8,X,) "y — X187), (5)
and this is unique. Furthermore BLBP of
K.8, + K,3, + M'u is K, 3" + K,3; + M'u*. (6)

We know that BLUE and BLUP can be computed from mixed model equations.
Similarly 37, 35, and u* can be obtained from modified mixed model equations (7), (8),
or (9). Let 8,8, = P. Then with P singular we can solve (7).

X R'X; X R'X, X R'Z
( PX,R'X; PX,R'X,+1 PX,R'Z )
ZR'X, ZR'X, ZR'Z+ G
( B1 ) ( X,Rly )
B | =| PX,RYy (7)
u* ZR 'y

The rank of this coefficient matrix is rank (X;)+ps+¢, where ps = the number of elements
in 3,. The solution to 35 and u* is unique but 37 is not unless X; has full column rank.
Note that the coefficient matrix is non-symmetric. If we prefer a symmetric matrix, we
can use equations (8).

X R1'X; X R'X,P X, R'Z

PX,R'X; PX,R'X,P+P PX,R'Z

ZR'X;, ZR'X,P ZR'Z+ G
B X,Ry
a; | = PX,R 1y (8)
u* ZR 'y

Then B; = Paj. The rank of this coefficient matrix is rank (X;) + rank (P) +q. K3,
B5, and u* are identical to the solution from (7). If P were non-singular we could use
equations (9).

X R'X; X R'X, X R'Z
X,R7'X; XoR7'X, + P71 XoRTIZ
ZR'X, Z'R'X, ZR'Z+ G

B X,Ry
> | =] X3R7ly (9)
11* Z/Rfly

2



The rank of this coefficient matrix is rank (X;) + ps + q.

Usually R, G, and P are unknown, so we need to use guesses or estimates of them,
say R, G, and P. These would be used in place of the parameter values in (2) through

(9).

In all of these except (9) the solution to 35 has a peculiar and seemingly undesirable
property, namely 35 = kBQ, where k is some constant. That is, the elements of 35 are
proportional to the elements of BQ. Also it should be noted that if, as should always be
the case, P is positive definite or positive semi-definite, the elements of 35 are ”shrunken”
(are nearer to 0) compared to the elements of the GLS solution to 3, when X, is full
column rank. This is comparable to the fact that BLUP of elements of u are smaller in
absolute value than are the corresponding GLS computed as though u were fixed. This
last property of course creates bias due to B, but may reduce mean squared errors.

2 Use Of An External Estimate Of (3

We next consider methods for utilizing an external estimate of 3 in order to obtain
a better unbiased estimator from a new data set. For this purpose it will be simplest to
assume that in both the previous experiments and the present one the rank of X is r <p
and that the same linear dependencies among columns of X existed in both cases. With
possible re-ordering the full rank subset is denoted by X; and the corresponding 3 by 3;.
Suppose we have a previous solution to 8, denoted by 8] and E(8]) = 3, + L3, where
X = (X; X3) and Xy = (XyL). Further Var(87) = V;. Assuming logically that the
prior estimator is uncorrelated with the present data vector, y, the GLS equations are

(X, VX, + ViHB, =X Vly + V{18 (10)
Then BLUE of K3, where K’ has the form (K, K|L) is K;3,, and its variance is
K (X, VX, + VT K. (11)
The mixed model equations corresponding to (10) are

X, R!X;, +V;! X,RZ B\ _( XRly+Vig (12)
ZR'X, ZR'Z + G “\ ZRrRly '

A~

u

3 Assumed Pattern Of Values Of (3

The previous methods of this chapter requiring prior values of every element of 3
and resulting estimates with the same proportionality as the prior is rather distasteful.
A possible alternative solution is to assume a pattern of values of B with less than p
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parameters. For example, with two way, fixed, cross-classified factors with interaction we
might assume in some situations that there is no logical pattern of values for interactions.
Defining for convenience that the interactions sum to 0 across each row and each column,
and then considering all possible permutations of the labelling of rows and columns, the
following is true for the average squares and products of these interactions. Define the
interaction for the i cell as ay; and define the number of rows as 7 and the number of
columns as c¢. The average values are as follows.

O‘?j = 7 (13)
oy = —y/(c—1), (14)
oy = —y/(r—1), (15)
agjapy = y/(c—1)(r—1). (16)

Then if we have some prior value of 7 we can proceed to obtain locally minimum
mean squared error estimators and predictors as follows. Let P = estimated average
value of B, B3,. Then solve equations (7), (8) or (9).

4 FEvaluation Of Bias

If we are to consider biased estimation and prediction, we should know how to evaluate
the bias. We do this by looking at expectations. A method applied to (7) is as follows.
Remember that K37 is required to have expectation, K} 3,4 some linear function of 3,.
For this to be true K3, must be estimable under a model with X53, not existing. 3;
and u* are required to have expectation that is some linear function of 3,.

Let some g-inverse of the matrix of (7) be

Cii Cip Cy C,
Co Gy Co3 | =| Gy |. (17)
Cs1 Cz Cs3 Cs
Then
E(Klﬁi) = K1ﬁ1 + chlTﬁ27 (18>
where -
X R1X,
T=| PX,R'X,
ZR'X,
E(B;) = C.TB,. (19)
Eu") = C;Tg,. (20)



Then the biases are as follows.

For K;8}, bias = K,C,TS,. (21)
For 3;, bias = (C,T —1)8,. (22)
For u*, bias = C3Tg,. (23)

If the equations (8) are used, the biases are the same as in (21), (22), and (23) except
that (22) is premultiplied by P, and C refers to a g-inverse of the matrix of (8). If the
equations of (9) are used, the second term of T is X,R Xy, and C refers to the inverse
of the matrix of (9).

5 Evaluation Of Mean Squared Errors

If we are to use biased estimation and prediction, we should know how to estimate
mean squared errors of estimation and prediction. For the method of (7) proceed as

follows. Let
X R™'X,
T=| PX,R'X, |. (24)
ZR'X,
Note the similarity to the second ”column” of the matrix of (7). Let
X, R™'Z
S=| PX,R'Z |. (25)
ZR'Z
Note the similarity to the third ”column” of the matrix of (7). Let
X R
H=| PX,R! |. (26)
Z,f{_l
Note the similarity to the right hand side of (7). Then compute

C,T
C,T—1 | B,6,(T'C, T'C,—1 TCy)
C;T

C,;S
+| C.8 G (s'c, s'c, S'C,-1)
CsS — 1

C,H
+| C;H | R (HC, HC, HC,)
C:;H

5



Bll B12 B13
= B21 BQQ B23 = B. (27)

B31 B32 B33

Then mean squared error of
/ / ! /6?{
(M; M, M) | 55
u* —u

M,
= (M, M, M,) B | M, |. (28)
M3

Of course this cannot be evaluated numerically except for assumed values of 3, G, R.

The result simplifies remarkably if we evaluate at the same values used in (7), namely
B,3, =P, G=G,R=R. Then B is simply

I 0 0O Cn CpP Cy3

Cl O P O | =] Cy CuP Cy|. (29)
0 0 I Cs1 CypP Css

C and C;; are defined in (9.17).

When the method of (8) is used, modify the result for (7) as follows. Let a g-inverse
of the matrix of (8) be

Cii Cip Cy3 C,
Cgl CQQ 023 = Cg = C. (30)
Cs1 Cz Cass

Substitute PCQT —1I for C,T —1, f’CgS for CgS, and ~f’CgH for CoH and proceed as
in (28) using the C; from (29). If P = P, G = G, R = R, B simplifies to

I 00 I 00
oPo|C [oPo]. (31)
0 0 I 0 0 I

If the method of (9) is used, delete P from T, S, and H in (24), (25), and (26), let C
be a g-inverse of the matrix of (9), and then proceed as for method (7). When P = P,
G = G, and R = R, the simple result, B = C can be used.

6 Estimability In Biased Estimation

The traditional understanding of estimability in the linear model is that K'8 is
defined as estimable if some linear function of y exists that has expectation K'3, and

6



thus this linear function is an unbiased estimator. But if we relax the requirement of
unbiasedness, is the above an appropriate definition of estimability? Is any function of 3
now estimable? It seems reasonable to me to restrict estimation to functions that could
be estimated if we had no missing subclasses. Otherwise we could estimate elements of
B3 that have no relevance to the experiment in question. For example, treatments involve
levels of protein in the ration. Just because we invoke biased estimation of treatments
would hardly seem to warrant estimation of some treatment that has nothing to do with
level of protein. Consequently we state these rules for functions that can be estimated
biasedly.

1. We want to estimate K;,Bl + K’Z,BQ, where a prior on 3, is used.

2. IfK,B,+K,3, were estimable with no missing subclasses, this function is a candidate
for estimation.

3. KB, must be estimable under a model in which E(y) = X,3,.

4. KB, +K,B, does not need to be estimable in the sample, but must be estimable in
the filled subclass case.

Then K 3¢ + K35 is invariant to the solution to (7),(8), or (9). Let us illustrate with a
model
Yj =+t +e; , i=1,23.

Suppose that the numbers of observations per treatment are (5, 3, 0). However, we are
willing to assume prior values for squares and products of t;, t5, t3 even though we have
no data on t3. The following functions would be estimable if n3 > 0,

1100 f
1010 tl
100 1 2

t3

Further with 3, being just p, and K| being 1, and X} = (1 1 1), K3, is estimable under
a model E(y,;;) = p.

Suppose in contrast that we want to impose a prior on just t3 . Then Bll = (ut1 t9)
and 3, = t3. Now

110 0
K3 =101 t
100 ta

But the third row represents a non-estimable function. That is, p is not estimable under
the model with 3, = (i t; t5). Consequently y + t5 should not be estimated in this way.



As another example suppose we have a 2 x 3 fixed model with ny3 = 0 and all other
n;; > 0. We want to estimate all six p;; = p + a; + b; + ;5. With no missing subclasses
these are estimable, so they are candidates for estimation. Suppose we use priors on ~.
Then

i

51
a2
by
by
bs
~

By

A

»—-N\

g

N

&

N~—

I
e e e
O OO = ==
_ == O OO
OO R OO
O R OO = O
_— O O = O O
O OO OO
DO OO+ O
O OO = OO
SO = O OO
oORr OO0 oo
_—0 O o oo

Now K3, is estimable under a model, E(yij) = 1+ a; + b;. Consequently we can by
our rules estimate all six y;; . These will have expectations as follows.

E(fu;) = p+ a; + b; + some function of v # pu+ a; +b; + 5.

Now suppose we wish to estimate by using a prior only on v93. Then the last row of
K3 is 1 + ay + b but this is not estimable under a model

Y11 p+ap + by + 1
Y12 p+ay + by + 712

gl Y _ p+ay + by + i3
Y21 p+ ag + by + a1
Y22 o+ as + by + 22
Y23 p+ az + bs

Consequently we should not use a prior on just vo3.

7 Tests Of Hypotheses

Exact tests of hypotheses do not exist when biased estimation is used, but one might
wish to use the following approximate tests that are based on using mean squared error
of K'B? rather than Var(K’'8°).

7.1 Var(e) = Io?
When Var(e) = Io? write (7) as (32) or (8) as (33). Using the notation of Chapter
6, G = G.0? and P = P,o2.

’

XX XX, X\Z B; Xy
P.X,X, P.X,X,+1 P.,X,Z g | =| P.Xy |. (32)
ZX,  Z'X, 77 +G )\ u Z'y

8



The corresponding equations with symmetric coefficient matrix are in (33).

XQX} Xing’* o }NCIZ Bi Xy
P.X,X, P.X,X,P,+P. P.X,Z a | =| P.Xyy (33)
7'X, 7' X, P, Z'7 + Gt u’ Z'y

Then 3; = P.aj.

Let a g-inverse of the matrix of (32) post-multiplied by

p
0
P =Q
0

c o =
- O O

or a g-inverse of the matrix (33) pre-multipled and post-multiplied by Q be denoted by
Cun Cyp
Co Gy )7

where Cy; has order p x p and Cas has order g x g. Then if P, = P,, mean squared error
of KB is K'C1;Ka?. Then

(K'8" — ¢)[K'CiK] {(K'B —c)/s 62
is distributed under the null hypothesis approximately as F with s, ¢ degrees of freedom,

where s = number of rows (linearly independent) in K’, and &2 is estimated unbiasedly
with ¢t degrees of freedom.

72 Var(e)=R

Let g-inverse of (7) post-multiplied by

=Q

oo -
oo
—_—o O

or a g-inverse of (8) pre-multiplied and post-multiplied by Q be denoted by

Cu Cp
Co Ca )’
Then if R = R,G = G, and P = P, K'C;K is the mean squared error of K’8*, and

(K'B* — ¢)(K'C;1K) " }{(K'B* — ¢) is distributed approximately as x? with s degrees of
freedom under the null hypothesis, K'3 = c.

9



8 Estimation of P

If one is to use biased estimation and prediction, one would usually have to estimate
P, ordinarily a singular matrix. If the elements of 3, are thought to have no particular
pattern, permutation theory might be used to derive average values of squares and prod-
ucts of elements of 3,, that is the value of P. We might then formulate this as estimation
of a variance covariance matrix, usually with fewer parameters than ¢(¢ +1)/2, where ¢ is
the order of P. I think I would estimate these parameters by the MIVQUE method for
singular G described in Section 9 of Chapter 11 or by REML of Chapter 12.

9 Illustration

We illustrate biased estimation by a 3-way mixed model. The model is

Ynijk = Th + Ci + Vhi + Uj + €iji,
r, ¢, are fixed, Var(u) =1/10, Var(e) = 21.

The data are as follows:

Levels of j
hi subclasses | 1 2 3| ypn.
11 2 1 0 18
12 0 1 1 13
13 1 0 O 7
21 1 2 1 26
22 0 0 1 9
7. 2% 27 21

We want to estimate using prior values of the squares and products of 7,;. Suppose
this is as follows, ordering ¢ within h, and including ~.3.

d -0 =05 -1 .05 .05
1 =05 05 -1 .05
1 .05 056 =1

1 =05 —.05
1 =05
1
The equations of the form
X;R—lx1 X;R—ng X;R‘lz B, X;R‘ly
X,R1X; X,R'X, X,R'Z B, | = X;Rly
ZR'X, ZR'X, ZTR'Z u ZRly

10



are presented in (34).

38
35
44
22

6 0
5

~ =~ W

W O =N

_ o O O
W OO WO W

18
13

N O ON O ONN
—_ OO = OO O

I

\
—~
w
o~
SN—

N —
= O O O OO k= =0

e o=
J

26

_ OO OO oo+~ O kO
OO OO OO OO o oo
O O, ONRFEOWRFRW

25
27
21

B O OO N O R, PP ORF WD N

WO OO R PR OFR,OONRFDNH-—

Note that 7,3 is included even though no observation on it exists.

Pre-multiplying these equations by

I 0
oP =T
0 0

—_— 0 O

and adding I to the diagonals of equations (6)-(11) and 10I to the diagonals of equations
(12)-(14) we obtain the coefficient matrix to solve for the biased estimators and predictors.
The right hand side vector is

(19,17.5,22,11, 3.5, —.675,.225, .45, .675, —.225, —.45,12.5,13.5,10.5)".

This gives a solution of

*

(3.6899, 4.8607),

* = (1.9328,3.3010,3.3168),

* (.11406, —.11406, 0, —.11406, .11406, 0),
(—.00664, .04282, —.03618).

*

£ 22 a =
I

Note that

Zﬂ:‘] = Ofori = 1, 2, and
Zﬂ;‘j = Oforj =1, 2, 3.
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These are the same relationships that were defined for ~.

Post-multiplying the g-inverse of the coefficient matrix by T we get (35) ... (38) and
the matrix for computing mean squared errors for M'(r*, c*, 4*, u*). The lower 9 x 9
submatrix is symmetric and invariant reflecting the fact that v*, and u* are invariant to
the g-inverse taken.

Upper left 7 x 7

12

26181 —.10042  .02331 O 15599 —.02368  .00368
—.05313  .58747 —.22911 0 54493 07756  .00244
—.05783 —.26296  .41930 0 —.35232 —.02259 —.00741
56640  .61368 —.64753 0 —1.02228  .00080 —.03080 (35)
—.29989 13633  .02243 0  2.07553  .07567  .04433
—.02288  .07836 —.02339 0 07488  .08341 —.03341
—.02712 —.02836  .02339 0 07512 —.03341  .08341
Upper right 7 x 7
02 .02368 —.00368 —.02 —.03780 —.01750 —.00469
—.08 —.07756 —.00244 .08 —.01180 —.01276 —.03544
.03 02259  .00741 —.03 —.01986 —.02631  .00617
.03 —.00080  .03080 —.03  .02588 —.01608 —.04980 (36)
—.12 —.07567 —.04433 .12 —.05563  .01213  .00350
—.05 —.08341 .03341 .05 —.00199  .00317 —.00118
—.05 .03341 —.08341 .05 .00199 —.00317  .00118
Lower left 7 x 7
.05 —.05 0 0 —.15 —.05 —.05
02288 —.07836  .02339 0 —.07488 —.08341  .03341
02712 02836 —.02339 0 —.07512  .03341 —.08341
—.05 .05 0 0 15 .05 .05 (37)
—.01192  .01408 —.04574 0 —.08/51 —.00199  .00199
—.03359 —.02884 —.01023 0  .02821  .00317 —.00317
—.05450 —.08524  .05597 0  .05330 —.00118  .00118
Lower right 7 x 7
10 .05 .05 —.10 0 0 0
.08341 —.03341 —.05 .00199 —.00317  .00118
08341 —.05 —.00199  .00317 —.00118
10 0 0 0 (38)
09343 .00537  .00120
.09008  .00455
.09425



A g-inverse of the coefficient matrix of equations like (8) is in (39)...(41).

This gives a solution (—1.17081, 0, 6.79345, 8.16174, 8.17745, 0, 0, .76038, —1.52076, 0, 0,
—.00664, .04282, —.03618). Premultiplying this solution by T we obtain for 37, (-1.17081,
0, 6.79345, 8.16174, 8.17745), and the same solution as before for 85 and u*; 3, is not
estimable so 3] is not invariant and differs from the previous solution. But estimable
functions of 3, are the same.

Pre and post-multiplying (39) ... (41) by T gives the matrix (42) ... (43). The lower
9 x 9 submatrix is the same as that of (38) associated with the fact that 85 and u* are

unique to whatever g-inverse is obtained.

Upper left 7 x 7

1.00283 0 —.43546
0 0
.51469

—.68788

0
.32450

1.20115

Upper right 7 x 7 and (lower left 7 x 7)’

65838

0
—.30020
—.14427
—1.64509
0

0

Lower right 7 x 7

12.59603

.68324

0
—.39960
—.71147
—.70981
0

0

—5.19206
10.38413

S OO OO oo

e}

OO OO O oo

o O O O

—.026

0
—.03166
.01408
—.06743
0

0

—.01329
02657

0

0

.09343

13

—1.07683
0

51712
72380
3.34426

—.00474

—.03907
—.02884
—.00063

02112
—.04224
0

0

.00537
.09008

S OO O oo

OO OO o oo

.03075

—.02927
—.08524
—.03194

—.00784
01567

.00120
.00455
.09425

(39)

(41)



Upper left 7 x 7

1.00283 0 —.43546 —.68788 —1.07683 —.10124  .00124

0 0 0 0 0 0
51469 32450 51712 .05497 —.00497
1.20115 72380 .07836 —.02836 (42)

3.34426 15324 .04676
08341 —.03341

08341
Upper right 7 x 7 and (lower left 7 x 7)’
1 10124 —.00124 —.1 —.026 —.00474  .03075
0 0 0 0 0 0 0
—.05 —.05497  .00497 .05 —.03166 —.03907 —.02927
—.05 —.07836  .02836 .05 .01408 —.02884 —.08524 (43)

—.2 —.15324 —-.04676 .2 —.06743 —.00063 —.03194
—.05 —.08341 .03341 .05 -.00199  .00317 —.00118
—.05 .03341 —-.08341 .05 .00199 -.00317  .00118

Lower right 7 x 7 is the same as in (38).

Suppose we wish to estimate K’ (5/1 5/2)’ , which is estimable when the r x ¢ subclasses
are all filled, and

K = /6.

W wWw w oo,
W w w o O
O O O NN
S O D NN
S OO NN
S O W o N
S WO O N
w o OO N
S O WO
S W o NN O
W O OO

Pre-multiplying the upper 11x11 submatrix of either (35) to (38) or (42) to (43) by K’
gives identical results shown in (44).

44615 17671 15136 .19665 58628
91010 .08541 .38312 1.16170

32993 .01354  .01168 (44)
76397 09215
2.51814

This represents the estimated mean squared error matrix of these 5 functions of 3.

Next we illustrate with another set of data the relationships of (3), (4), and (5) to
(7). We have a design with 3 treatments and 2 random sires. The subclass numbers are
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Sires

Treatments | 1 2
1 2 1

2 1 2

3 2 0

The model is
Yijk = pb+ti + 85 + 20 + €ijk-
where 3 is a regression and x;;, the associated covariate.
y = (536475438),
Covariates = (1213242 3).

The data are ordered sires in treatments. We shall use a prior on treatments of

2 -1 -1
2 -1
2

Var(e) =51, and Var(s) =L
We first illustrate the equations of (8),
X R'X; XR'X, X|R'Z
X,R'X;, X;R'X, X,R'Z | =
ZR'X, ZR'X, ZR'Z
16 36 6 6 4 10 .6

96 8 18 1.0 22 14
6 0 0 4 2

6 0 2 4 (45)
4 4 0
1.0 0
.6
and
X Ry
X,R 'y | = (8.4 19.0 2.8 3.2 2.4 48 3.6). (46)
Z/Rfly
These are ordered, u, 3, t, s. Premultiplying (45) and (46) by
1 00 0O 00O
1 0 0O 00O
2 -1 -1 0 0
2 -1 0 0
2 00
1 0
1

15



we get

16 36 6 6 4 10 6
36 96 .8 18 10 22 14
2 -12 12 -6 —4 2 0
2 18 —6 12 —4 —4 6 |, (47)
~4 -6 —6 —6 8 2 —6
10 22 4 2 4 10 0
6 14 2 4 0 0 6

and
(84 19.0 0 1.2 —1.2 4.8 3.6)". (48)

The vector (48) is the right hand side of equations like (8). Then the coefficient matrix
is matrix (47) +dg(0 01111 1). The solution is

pt = 5.75832,

3 = —.16357,

(t*) = (—.49697 — .02234 .51931),
(s*) = (—.30146 .30146).

Now we set up equations (3).

D =
o OO
S O = =
SO = OO

V =(ZGZ +R) = (49)

D= O = OO
OO = O ==
— O O = O = =

-1 -1 -1 -1 -1
-1 -1 -1 -1 -1
-1 -1 -1 -1 -1

N DO
N DN DO

2 2

(V + Xo8,8,X) " =

16



15825 —.0475 —.0275 —-.0090 .0111  .0111 —.0005 —.0005
15825 —.0275 —.0090 .0111  .0111 —.0005 —.0005

1444 0214 —-.0067 —.0067  .0119  .0119

1417 —.0280 —.0280 —.0031 —.0031

1542 —.0458  .0093  .0093 (51)
1542 .0093  .0093
1482 —.0518
1482
The equations like (4) are
857878 1.939435 no\ 4.622698 (52)
1.939435 5.328690 8" )\ 10.296260 |-
The solution is (5.75832 - .163572) as in the mixed model equations.
11 —.59474
1 2 —2.43117
11 40526
o 1 3 5.75832 \ | —1.26760
=XiB)=y—=11 ( ~.163572 ) | 156883
1 4 —.10403
1 2 —1.43117
1 3 2.73240

BoBX5(V + X,8,8,X,) L =
.1426 .1426 1471 —.0725 —.0681 —.0681 —.0899 —.0899
—.0501 —.0501 -—.0973 1742 1270 1270 —.0766 .0766).
—.0925 —.0925 —.0497 —.1017 —.0589 —.05&89 .1665 .1665

Then t* = (-.49697 -.02234 .51931)" as before.
GZ/(V + X26,0,X5) ™" =

0949 .0949 -.0097 1174 .0127 .0127 .0923 .0923
—.0053 —.0053  .1309 —.0345 .1017 .1017 .0304 .0304 /-

Then u* = (-.30146 .30146)" as before.

Sections 9 and 10 of Chapter 15 give details concerning use of a diagonal matrix in
place of P.

10 Relationships Among Methods

BLUP, Bayesian estimation, and minimum mean squared error estimation are quite
similar, and in fact are identical under certain assumptions.
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10.1 Bayesian estimation

Let (X Z)=W and (8" u’) =«'. Then the linear model is
y =W~y +e.

Let e have multivariate normal distribution with null means and Var(e) = R. Let
the prior distribution of 4 be multivariate normal with E(v) = u, Var(y) = C, and
Cov(vy,€') = 0. Then for any of the common loss functions, that is, squared loss function,
absolute loss function, or uniform loss function the Bayesian estimator of v is the solution
to (53).

(WR™W +C)4=WRy+C'p (53)

Note that 4 is an unbiased estimator of - if estimable and F(v) = u. See Lindley and
Smith (1972) for a discussion of Bayesian estimation for linear models. Equation (53)
can be derived by maximizing f(y,~) for variations in «. This might be called a MAP
(maximum a posteriori) estimator, Melsa and Cohn (1978).

_ 00
(5 &)

and prior on g = 0. Then (53) becomes the mixed model equations for BLUE and BLUP.

Now suppose that

10.2 Minimum mean squared error estimation

Using the same notation as in Section 10.1, the minimum mean squared error esti-
mator is

(WR™W +Q ')y =WRy, (54)

where Q = C + pp'. Note that if g = 0 this and the Bayesian estimator are identical.
The essential difference is that the Bayesian estimator uses prior E(3), whereas minimum
MSE uses only squares and products of 3.

To convert (54) to the situation with prior on 3, but not on 3y, let

Q_:

o o o

0 0
Pt o0
0 G!

The upper left partition is square with order equal to the number of elements in 3,.

To convert (54) to the BLUP, mixed model equations let

Q_ :<g ?}—1)7
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where the upper left submatix is square with order p, the number of elements in 8. In
the above results P may be singular. In that case use the technique described in previous
sections for singular G and P.

10.3 Invariance property of Bayesian estimator

Under normality and with absolute deviation as the loss function, the Bayesian esti-
mator of f(3, u)is f(8°, ), where (3°, 1) is the Bayesian solution (also the BLUP
solution when the priors are on u only), and f is any function. This was noted by Gianola
(1982) who made use of a result reported by DeGroot (1981). Thus under normality any
function of the BLUP solution is the Bayesian estimator of that function when the loss
function is absolute deviation.

10.4 Maximum likelihood estimation

If the prior distribution on the parameters to be estimated is the uniform distribution
and the mode of the posterior distribution is to be maximized, the resulting estimator is
ML. When Zu + e = € has the multivariate normal distribution the MLE of 3, assumed
estimable, is the maximizing value of k exp[—.5 (y — X83)'V~!(y — X3)]. The maximizing
value of this is the solution to

X'VIX3=XVly,
the GLS equations. Now we know that the conditional mean of u given y is

GZ'V 'y — Xp).

Under fairly general conditions the ML estimator of a function of parameters is that
same function of the ML estimators of those same parameters. Thus ML of the conditional
mean of u under normality is

GZ'V~(y - XB°),

which we recognize as BLUP of u for any distribution.

11 Pattern Of Values Of P

When P has the structure described above and consequently is singular, a simpler
method can be used. A diagonal, non-singular P can be written, which when used in
mixed model equations results in the same estimates and predictions of estimable and
predictable functions. See Chapter 15.
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Chapter 10
Quadratic Estimation of Variances

C. R. Henderson

1984 - Guelph

Estimation of G and R is a crucial part of estimation and tests of significance of
estimable functions of 3 and of prediction of u. Estimators and predictors with known
desirable properties exist when G and R are known, but realistically that is never the case.
Consequently we need to have good estimates of them if we are to obtain estimators and
predictors that approach BLUE and BLUP. This chapter is concerned with a particular
class of estimators namely translation invariant, unbiased, quadratic estimators. First a
model will be described that appears to include all linear models proposed for animal
breeding problems.

1 A General Model For Variances And Covariances

The model with which we have been concerned is

y = XB+Zu+e.
Var(u) = G,Var(e) =R, Cov(u, €)=0.

The dimensions of vectors and matrices are
y:nx1l, Xinxp, B:px1,Z:nxqg, u:gx1l,e:nx1l, G:qgxq, and R:n xn.
Now we characterize u and e in more detail. Let
b
Zu = Zizlziui. (1)

Z; has dimension n X ¢;, and u; is ¢; X 1.

S a o=

Var(w)) = Gygi. (2)
Cov(u,, u;) = Gy (3)
gi; represents a variance and g;; a covariance. Let
e = (e|e,...e,).
Var(e;)) = Ryry. (4)
C’ov(ei,e;.) = Ry (5)



r;; and 7;; represent variances and covariances respectively. With this model Var(y) is

b b ’
V = Zizl ijl 2,G;;Z,g:;; + R,

Giign

Gl
Var(u) =G = | | 12912

G/1b91b

and

Riirn

R, r
Var(e) =R =| . 12712

’
Rlcrlc

Gi2012
G22922

Gl2b922

Riaorio
Roorao

’
RQCTQC

G191
Gangap

Gy gnb

Rlcrlc
RQCTQC

RCCTCC

)

(6)

(8)

We illustrate this general model with two different specific models, first a traditional
mixed model for variance components estimation, and second a two trait model with
missing data. Suppose we have a random sire by fixed treatment model with interaction.

The numbers of observations per subclass are
Sires
Treatment | 1 2 3
1 2 1 2
2 1 3 0

Let the scalar model be

Yijk = 1 + tz‘ + Sj + (ts)ij + €ijk-

The s; have common variance, 02, and are uncorrelated. The (¢s);; have common variance,

2

Yy = X,B+Z1u1 +Z2u2+e.

1 10

1 10

1 10

110 7
XB=1110 t

1 01 to

1 01

1 01

1 01

) Zlul -

S OO OO O

_— =0 OO~k OO
OO OO = EFEOOOo

S1
52
53

o3, and are uncorrelated. The s; and (ts);; are uncorrelated. The e;;; have common
variance, o2, and are uncorrelated. The corresponding vector model, for b = 2, is



10000
10000
01 000 t$11
00100 ts12
ZQUQ = 0 01 0O t813 s
00010 ts91
0 00O0T1 599
0 00O0T1
0 00O0T1

and
Guign =13 037 Go2922 = I5 UtZS-

G12919 does not exist, ¢ = 1, and Ryyryy = Iy 02

For a two trait model suppose that we have the following data on progeny of two
related sires

Trait

Sire | Progeny | 1 | 2
1 1 X | X

1 2 X | X

1 3 X110
2 4 XX
2 ) X110

X represents a record and 0 represents a missing record. Let us assume an additive
genetic sire model. Order the records by columns, that is animals within traits. Let
uy, u, represent sire values for traits 1 and 2 respectively. These are breeding values
divided by 2. Let ey, e; represent "errors” for traits 1 and 2 respectively. Sire 2 is a son
of sire 1, both non-inbred.

n:87 Q1:2> C]2:2

10 00
10 00
10 0 0
01 00
Ziu, = 0 1 u, Zouy = o o0 | U
00 10
00 10
0 0 01
1 1/2\ . I 1/2) .,
Gugn = ( 1/2 { )9117 Gi2g12 = ( 1/2 { >912>



TN
G22g22 - < 1/2 1 ) 9227

( 911 912 )
912 Y952

is the additive genetic variance-covariance matrix divided by 4. Also,

where

* * *
Ry = 157"11, Rooras = 137"22, Rioria = 19,

S OO O
o oo~ O
o= O OO

where
* *
11 T2
* *
T2 T2
is the error variance-covariance matrix for the 2 traits. Then h? = 4 ¢},/(g9, + 1)

Genetic correlation between traits 1 and 2 is g%, /(g% g50)"/%

Another method for writing G and R is the following

G = G911 + G912 + ... + Gygm, (9)
where
0 G, O
N G 0 . / . 00
0 0 O b

Every Gj; has order, ¢, and
R = RT17"11 + RT2T12 + ...+ Ricrcca (1())

where

0 Ry 0
;1:<§118>, c=| R, 0 0], ete
0

and every R}; has order, n.

2 Quadratic Estimators

Many methods commonly used for estimation of variances and covariances are quadratic,
unbiased, and translation invariant. They include among others, ANOVA estimators for
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balanced designs, unweighted means and weighted squares of means estimators for filled
subclass designs, Henderson’s methods 1, 2 and 3 for unequal numbers, MIVQUE, and
MINQUE. Searle (1968, 1971a) describes in detail some of these methods.

A quadratic estimator is defined as y'Qy where for convenience Q can be specified
as a symmetric matrix. If we derive a quadratic with a non-symmetric matrix, say P, we
can convert this to a quadratic with a symmetric matrix by the following identity.

yQy = (yYPy+y'Ply)/2
where Q = (P+P))2

A translation invariant quadratic estimator satisfies

y'Qy = (y+Xk)'Q(y + Xk) for any vector, k.
YQy = y'Qy+2y'QXk + k'X'QXk.

From this it is apparent that for equality it is required that
QX =0. (11)

For unbiasedness we examine the expectation of y'Qy intended to estimate, say ggn.

b b
E(y'Qy) = BX'QXB+Y. Y tr(QZ:G}Z))g;;
i=1 j=1

LS QR

i=1 j=i
We require that the expectation equals gg4,. Now if the estimator is translation invariant,
the first term in the expectation is 0 because QX = 0. Further requirements are that
tr(QZGj;Z') = lifi=gandj=nh
= 0, otherwise and
tr(QR;j;) = 0 for all 4, ;.

3 Variances Of Estimators

Searle(1958) showed that the variance of a quadratic estimator y’Qy, that is unbiased
and translation invariant is

2 tr(QVQV), (12)
and the covariance between two estimators y'Q,y and y'Qay is
2tr(QiVQ2V) (13)

5



where y is multivariate normal, and V is defined in (6). Then it is seen that (12) and
(13) are quadratics in the g;; and r;;, the unknown parameters that are estimated. Conse-
quently the results are in terms of these parameters, or they can be evaluated numerically
for assumed values of g and r. In the latter case it is well to evaluate V numerically for
assumed g and r and then to proceed with the methods of (12) and (13).

4 Solutions Not In The Parameter Space

Unbiased estimators of variances and covariances with only one exception have posi-
tive probabilities of solutions not in the parameter space. The one exception is estimation
of error variance from least squares or mixed model residuals. Otherwise estimates of
variances can be negative, and functions of estimates of covariances and variances can
result in estimated correlations outside the permitted range -1 to 1. In Chapter 12 the
condition required for an estimated variance-covariance matrix to be in the parameter
space is that there be no negative eigenvalues.

An inevitable price to pay for quadratic unbiasedness is non-zero probability that
the estimated variance-covariance matrix will not fall in the parameter space. All such
estimates are obtained by solving a set of linear equations obtained by equating a set
of quadratics to their expectations. We could, if we knew how, impose side conditions
on these equations that would force the solution into the parameter space. Having done
this the solution would no longer yield unbiased estimators. What should be done in
practice? It is sometimes suggested that we estimate unbiasedly, report all such results
and then ultimately we can combine these into a better set of estimates that do fall in the
parameter space. On the other hand, if the purpose of estimation is to provide G and R
for immediate use in mixed model estimation and prediction, it would be very foolish to
use estimates not in the parameter space. For example, suppose that in a sire evaluation
situation we estimate 02/c2 to be negative and use this in mixed model equations. This
would result in predicting a sire with a small number of progeny to be more different from
zero than the adjusted progeny mean if —52/62 is less than the corresponding diagonal
element of the sire. If the absolute value of this ratio is greater than the diagonal element,
the sign of §; is reversed as compared to the adjusted progeny mean. These consequences
are of course contrary to selection index and BLUP principles.

Another problem in estimation should be recognized. The fact that estimated variance-
covariance matrices fall in the parameter space does not necessarily imply that functions
of these have that same property. For example, in an additive genetic sire model it is
often assumed that 462/(62 4 62) is an estimate of h%. But it is entirely possible that this
computed function is greater than one even when 62 and 62 are both greater than 0. Of
course if 62 < 0 and 62 > 0, the estimate of h? would be negative. Side conditions to
solution of 62 and &2 that will insure that 62, 6%, and h? (computed as above) fall in the



parameter space are

62>0, 62>0, and 62/62 < 1/3.
Another point that should be made is that even though 62 and 62 are unbiased, 62/62 is
a biased estimator of 62/c2, and 462 /(62 4 62) is a biased estimator of h?.

5 Form Of Quadratics

Except for MIVQUE and MINQUE most quadratic estimators in models with all
gij = 0 for i # j and with R = Io? can be expressed as linear functions of y'y and of
reductions in sums of squares that will now be defined.

Let OLS equations in B, u be written as
WWa’ =Wy (14)

o’ = < B o ) .
u
Then reduction under the full model is

(@) W'y (15)

where W = (X Z) and

Partition with possible re-ordering of columns

W= (W; W,) (16)

a’ = < X ) .
(8%
a; should always contain B and from 0 to b — 1 of the u;. Solve for o in

W, W, ai = Wy. (17)

and correspondingly

Then reduction under the reduced model is

(@) Wyy. (18)

6 Expectations of Quadratics

Let us derive the expectations of these ANOVA type quadratics.
E(y'y) = trVar(y)+B8XX3 (19)

b
= Z t?”(ZlG“Z;>gzz + TLO'S + B/X,X,B (20)

i=1



In traditional variance components models every G;; = I. Then

b
E(y'y) = Z n gi+n 03 + B X'X3. (21)

=1

It can be seen that (15) and (18) are both quadratics in W'y. Consequently we use
Var(W'y) in deriving expectations. The random part of W'y is

> WZu, + We. (22)

The matrix of the quadratic in W'y for the reduction under the full model is (W/W)~.
Therefore the expectation is

b
S tr(W'W) WZ,GiZ Wy + rank (W)o? + X' W(W'W) " W'X3. (23
=1

When all G;; = 1, (23) reduces to

b
> n gy +r(W)o? + 8X'XB. (24)

i=1

For the reduction due to a;, the matrix of the quadratic in W'y is

( (Wllgvl) 8 ) .

Then the expectation of the reduction is
h
Z r(WiW1) "W, Z:GZ;W1g;; + rank (Wy)o? 4+ 8 X'W (W, W,)"W/X3. (25)

When all G;; = I, (25) and when X is included in W simplifies to
> noga+ Z tr(W,W,)"W,Z,Z,W,g;; +rank (Wy)o? + BX'XB.  (26)

i
where ¢ refers to u; included in o, and j refers to u; not included in ;. If Z; is a linear
function of Wy, the coefficient of g;; is n also.

7 Quadratics in 1 and e

MIVQUE computations can be formulated as we shall see in Chapter 11 as quadratics
in u and €, BLUP of u and e when g = g and r = r. The mixed model equations are

XRI'X X'R'Z B° X'Rly
R-1 m -1 ~—1 0 - R -1 : (27)
ZR'X ZR'Z+G it Z'R 'y

8



Let some quadratic in 1 be @'Qu. The expectation of this is
trQ Var(a). (28)

To find Var(a), define a g-inverse of the coefficient matrix of (27) as

1= C;W'R'y. See (16) for definition of W. Then

Var(t) = Cy [Var(W'R™'y)] C}, (30)

and
Var(WRy) = Y ' WRZG,ZR Wy, (31)
+3 ijl WR™'R;R™ Wiy, (32)

Let some quadratic in € be & Qé. The expectation of this is
trQ Var(é). (33)

But e=y — X3° - Zu=y — Wa’, where (a°) = [(8°) @] and W = (X Z), giving

é=[-WCWR ]y (34)
Therefore, 3 3
Var(é) = (I - WCW'R™) [Var(y)] I - WCW'R™Y, (35)
and
b b /
Var(y) = Zi:l ijl 2,G;;Z;8g; (36)
2o, 2 Rijrir (37)
When
G G,
R = R,
Var() = G —Cy, and (38)
Var(é) = R—WCW'. (39)

(38) and (39) are used for REML and ML methods to be described in Chapter 12.



8 Henderson’s Method 1

We shall now present several methods that have been used extensively for estimation
of variances (and in some cases with modifications for covariances). These are modelled
after balanced ANOVA methods of estimation. The model for these methods is usually

b
y =XB8+ Zi:l Zu; + e, (40)

where Var(u;) = Io?, Cov(u;,u;) = 0 for all i # j, and Var(e) = Io? . However, it is
relatively easy to modify these methods to deal with

Var(w) = Gyo?.
For example, G;; might be A, the numerator relationship matrix.

Method 1, Henderson(1953), requires for unbiased estimation that X’ = [1...1]. The
model is usually called a random model. The following reductions in sums of squares are
computed

(Vyy'1)/n, (42)
and
y'y. (43)

The first b of these are simply uncorrected sums of squares for the various factors
and interactions. The next one is the ”correction factor”, and the last is the uncorrected
sum of squares of the individual observations.

Then these b+ 2 quadratics are equated to their expectations. The quadratics of (41)
are easy to compute and their expectations are simple because Z;Zi is always diagonal.
Advantage should therefore be taken of this fact. Also one should utilize the fact that the
coefficient of o7 is n, as is the coefficient of any 0]2- for which Z; is linearly dependent upon
Z;. That is Z; = Z;K. For example the reduction due to sires x herds has coefficient
n for 02,, 02, o7 in a model with random sires and herds. The coefficient of o2 in the

expectation is the rank of Z;Zi, which is the number of elements in u,.

Because Method 1 is so easy, it is often tempting to use it on a model in which
X’ # (1...1), but to pretend that one or more fixed factors is random. This leads to
biased estimators, but the bias can be evaluated in terms of unknown B3’. In balanced
designs no bias results from using this method.

We illustrate Method 1 with a treatment x sire design in which treatments are
regarded as random. The data are arranged as follows.

10



Number of Observations Sums of Observations
Sires Sires
Treatment | 1 2 3 4 | Sums || Treatment | 1 2 3 4 | Sums

1 &8 3 2 5 18 1 54 21 13 25| 113
2 7T 4 1 0] 12 2 5, 33 8 0 96
3 6 2 0 1 9 3 44 17 0 9 70

Sums 219 3 6| 39 Sums 153 71 21 34| 279

y'y = 2049.

The ordinary least squares equations for these data are useful for envisioning Method
1 as well as some others. The coefficient matrix is in (44). The right hand side vector is

(279, 113, 96, 70, 153, 71, 21, 34, 54

39 18 12
18 0
12

21
8
7
6

21

9
0
0
9

O O N = W o

Red (ts)
Red (t)

Red (s)

C.F.
E[Red (ts)]

, 21, 13, 25, 55, 33, 8, 44, 17, 9)".

(=)

WO OO N W
DO OO = O Ut
o OO OO O o

(44)

W OO WDODOoOOoO WWw

N O OO OO ONDIN

OO OO U1t OO OO ot ot

N O OO OO OO OO

_ O O O OO OO kOO O

_ O OO OO oo OO OO o RO
OO OO OO OO OO Ooo oo

N OO OO OO ODODODIONIODINO ONN

_— O OO OO OO DD OO o OO OO

212 92
4+ = =2037.56.
Tyt
962 702
4 —=92021.83.
2" 9
342

542
8
1132
18

1532
4+ T =2014.49.
21 Tt 6

2797 /39 = 1995.92.
1002 + 39(02 + 07 + 07,) + 39 p*.
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For the expectations of other reductions as well as for the expectations of quadrat-
ics used in other methods including MIVQUE we need certain elements of W’ Z1Z'1VV7
W’ZQZ;W, and W/Z3Z;W, where Z1, Zo, Zs refer to incidence matrices for t, s, and ts,
respectively, and W = [1 Z]. The coefficients of W/Z,Z W are in (45), (46), and (47).

Upper left 9 x 9

049 324 144 81 282 120 48 99 144
324 0 0 144 54 36 90 144

144 0 84 48 12 0 0

81 54 18 0 9 0

149 64 23 46 64 (45)
29 10 17 24
5 10 16
26 40
64

Upper right 9 x 9 and (lower left 9 x 9)’

54 36 90 84 48 12 54 18 9
54 36 90 0 O O O O O
0 0 0 8 48 12 0 0 O
0O 0 0 0 0 054 189
24 16 40 49 28 7 36 12 6 (46)
9 6 15 28 16 4 12 4 2
6 4 10 7 4 1 0 00
1510 25 0 0 0 6 21
24 16 40 0 O O 0 0 O
Lower right 9 x 9
96 15 0 00 0 00
4 10 0 00 0 0O
25 0 00 0 0O
49 287 0 0 0
16 4 0 00 (47)
1 0 00
36 12 6
4 2
1

The coefficients of W'ZsZ;W are in (48), (49), and (50).
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Upper left 9 x 9

209 102 66 41 149
102 0 0 o4

66 0 49

41 36

149

Upper right 9 x 9 and (lower left 9 x 9)’

9 4 25 49 16 1
9425 0 00
00 0 49 16 1
00 0 0 00
00 049 0 O
90 0 016 O
04 0 0 01
0025 0 00
00 0 0 00

Lower right 9 x 9

dg (9,4,25,49,16,1,36,4,1)

36

o

36
36

o O OO

L O O O = Ot

S OO O OO -

N DN

DO

OO O = O Ut

SR O OO+, OOoOH

64
64

64

o

64

The coefficients of W'ZyZoW are in (51), (52), and (53).

Upper left 9 x 9

067 231 186 150 441

102 70 59 168
66 50 147

41 126

441

13

81
27
36
18

81

O OO O wWwWo o

36
30

S OO OO

36

168
64
56
48

168

64

(48)

(49)

(50)

(51)



Upper right 9 x 9 and (lower left 9 x 9)’

27 6 30 147 36 3 126 18 6
9 4 25 56 12 2 48 6 5
12 2 0 49 16 1 42 8 0
6 0 5 42 8 0 3 41
00 0 147 0 0 126 0 O (52)
270 0 0 36 0 0 18 0
06 O 0 0 3 0 00
0 0 30 0 00 0 0 6
00 0O 5 00 48 0 0
Lower right 9 x 9
90 0 012 0 06 0
4 0 0 02 000
250 00 OO0 5
49 0 0 42 0 O
60 080 (53)
1 000
36 0 0
4 0
1
E[Red (t)] = 302+ 3907 + k(02 + 02) + 39 1°.
102 66 41
ky = 13 + B + 9 = 15.7222.

The numerators above are the 2nd, 3rd, and 4th diagonals of (48) and (51). The denomi-
nators are the corresponding diagonals of the least squares coefficient matrix of (44). Also
note that

102 = anj:82+32+22+52,
J
66 = 7447+ 1%
41 = 6*+22 412
E[Red (s)] = 402+ 3902 + ko(of + 07.) + 39 1°.
149 29 5 26
ky = — 4+ =4 -+ = 16.3175.
> = 1 T 93T
E(CF.) = 024 kso? + kyo? + kso? + 39 p>.
209 549 567

ks = =2 =53590, ky = — = 14.0769, ks — — — 14.5385.
3 39 AT AT 0385

14



It turns out that

62 = [y'y — Red (ts)]/(39 — 10)
= (2049 — 2037.56)/29 = .3945.

52 10 0 0 0\ [ o2
R(ts) 10 39 39 39 1 o2
E| R(s) |=]| 4 163175 39 16.3175 1 o2
R(t) 3 15.7222 15.7222 39 1 o2
CF 1 5.3590 14.5385 14.0769 1 392
o7
a-tQS
o2 =
o7
3912
1 0 0 0 0 3945

—.31433  .07302 —.06979 —.06675  .06352 2037.56
.01361 —.03006 06979 02379 —.06352 2014.49
.04981 —.02894 02571 .06675 —.06352 2021.83

—.21453 45306 —1.00251 —.92775 2.47720 1995.92

= [.3945, -.1088, .6660, 1.0216, 1972.05]".

The 5 x 5 matrix just above is the inverse of the expectation matrix.

What if t is fixed but we estimate by Method 1 nevertheless? We can evaluate the

bias in 62 and 62 by noting that

67, =y WQ,W'y — .31433 52

where Q; is a matrix formed from these elements of the inverse just above, (.07302, -
06979, -.06675, 06352) and the matrices of quadratics in right hand sides representing

Red (ts), Red (s), Red (t), C.F.

Q; is dg [.0016, -.0037, -.0056, -.0074, -.0033, -0.0078, -.0233, -.0116, .0091, .0243,
.0365, .0146, .0104, .0183, .0730, .0122, .0365, .0730]. dg refers to the diagonal elements

of a matrix. Then the contribution of tt’ to the expectation of 62 is
tr(Z,WQ,W'Z,) (tt)

where Z; is the incidence matrix for t and W = (1 Z).
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This turns out to be

—.0257  .0261 —.0004
tr —.0004 —.0257 | tt/,
.0261

that is, —.0257 12 + 2(.0261) t; to — 2(.0004) tit3 —.0004 t2 —2(.0257) tot3 + 0261 ¢2.
This is the bias due to regarding t as random. Similarly the quadratic in right hand sides
for estimation of o2 is

dg [-.0016, .0013, .0020, .0026, .0033, .0078, .0233, .0116, -.0038, -.0100, -.0150, -.0060,
-.0043, -.0075, -.0301, -.0050, -.0150, -.0301].

The bias in 62 is
0257 —.0261 .0004

tr 0004 0257 | tt.
—.0261

This is the negative of the bias in 62 .

9 Henderson’s Method 3

Method 3 of Henderson(1953) can be applied to any general mixed model for variance
components. Usually the model assumed is

Var(u;) = Io?, Cov(uwu;) = 0, Var(e) = Io?. In this method b + 1 different quadratics
of the following form are computed.

Red (B with from 0 to b included u;) (55)
Then o2 is estimated usually by

62 = [y'y — Red (B, uy,...,u;)]/[n — rank(W)] (56)

where W = (X Z), and the solution to 3°, u® is OLS.

In some cases it is easier to compute o2 by expanding the model to include all possible
interactions. Then if there is no covariate, 62 is the within ”smallest subclass” mean
square. Then 62 and the b + 1 reductions are equated to their expectations. Method 3
has the unfortunate property that there are often more than b + 1 reductions like (55)
possible. Consequently more than one Method 3 estimator exists, and in unbalanced

designs the estimates will not be invariant to the choice. One would like to select the
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set that will give smallest sampling variance, but this is unknown. Consequently it is
tempting to select the easiest subset. This usually is

Red (B,u1), Red (B, us), ..., Red (8, u), Red (3). For example: Red (3, uy) is com-

puted as follows. Solve
X'X X'Z, B°\ (Xy
Z,X 7,7, ug |\ Zy )

Then reduction = (3°)X'y + (u3)'Z,y. To find the expectation of a reduction let a
g-inverse of the coefficient matrix of the i reduction, (W/W;), be C;. Then
E(i*" reduction) = rank (C;)o? + ijl trC;W,Z;Z2;W,07 + B'X'Xp. (57)

W, = [X Z; for any included u;], and C; is the g-inverse. For example, in Red (3, u;, us),
W - [X Zl Zg]

Certain of the coefficients in (57) are n. These are all 0]2 included in the reduction
and also any o7 for which
Z, = W,L.

A serious computational problem with Method 3 is that it may be impossible with
existing computers to find a g-inverse of some of the W;Wl Partitioned matrix methods
can sometimes be used to advantage. Partition

W,W, W,W,

’ . Wlly

It is advantageous to have W; W, be diagonal or at least of some form that is easy to

and

(85}

WW, WW, \ (a1 _ Wy

Absorb a; by writing equations

invert. Define 3 and included u; as a and partition as ( x1 ) . Then the equations to

solve are

W,PW,a, = W,Py (58)
where P =T — W (W, W,)"W,. Solve for a in (58). Then

reduction = y'W1(W;W;)" W,y + a, W,Py. (59)
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To find the coefficient of 0]2- in the expectation of this reduction, define
(W,PW,)~ = C.
The coefficient of o7 is
tr(W,W,)"W,Z,Z,W, + trCW,PZ,Z,PW,. (60)
Of course if u; is included in the reduction, the coefficient is n.

Let us illustrate Method 3 by the same example used in Method 1 except now we
regard t as fixed. Consequently the o? are o2, o2, and we need 3 reductions, each
including u, t. The only possible reductions are Red (u,t,ts), Red (p,t,s), and Red (p,t).
Consequently in this special case Method 3 is unique. To find the first of these reductions
we can simply take the last 10 rows and columns of the least squares equations. That is,
dg [8, 3,2, 5,7, 4,1,6,2, 1] st = [54, 21, 13, 25, 55, 33, 8, 44, 17, 9]'. The resulting
reduction is 2037.56 with expectation,

1062 + 39(0f, + 02) + B'X'XpB.

For the reduction due to (u,t, s) we can take the subset of OLS equations represented
by rows (and columns) 2-7 inclusive. This gives equations to solve as follows.

18 00 8 3 2 ty 113
12 0 7 41 ty 96
9 6 20 ||t | | 70
21 0 O s || 153 (61)
9 0 S92 71
3 S3 21

We can delete i1 and s4 because the above is a full rank subset of the coefficient matrix
that includes 1 and s4. The inverse of the above matrix is

A717 1602 1417 —.1593 —.1599 —.1678
3074 1989 —.2203 —.2342 —.2093
2913 —.2035 —.2004 —.1608

2399 1963  .1796 |’ (62)
3131 .1847
5150

and this gives a solution vector [5.448, 6.802, 6.760, 1.011, 1.547, 1.100]. The reduction
is 2029.57. The coefficient of 02 in the expectation is 39 since s is included. To find the
coefficient of o2 define as T the submatrix of (51) formed by taking columns and rows
(2-7). Then the coefficient of o2, = trace [matrix (62)] T = 26.7638. The coefficient of o>
is 6. The reduction due to t and its expectation has already been done for Method 1.
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Another way of formulating a reduction and corresponding expectations is to compute

i reduction as follows. Solve

00 0 0% r
0 WW,; 0 ¥ = | =1 (63)
00 0 Y5 r3
r = W'y where W = (X Z)
Red = r'Qr,

where Q; is some g-inverse of the coefficient matrix, (63). Then the coefficient of ¢? in

the expectation is

rank (Q;) = rank (W, W,). (64)
Coefficient of o7 is
tr QW'Z,;Z;W. (65)
Let the entire vector of expectations be
2
o2 i
Red (1) o1
El . =P |:
Red (b+ 1) o
) XX
Then the unbiased estimators are
€ 2
! . | Red (1)
: = P : (66)
% Red (b+ 1)
BXX} )

provided P! exists. If it does not, Method 3 estimators, at least with the chosen b + 1

reductions, do not exist. In our example

&2 10 0 0 o2
5 Red (ts) | | 10 39 39 1 o2,
Red (ts) |~ | 6 26.7638 39 1 o2
Red (t) 3 15.7222 15.7222 1 AX'Xf
52 3945
62 | 5240
52 ~ | 0331 ’
XX 2011.89
1. 0 0 0 3945
| —32690 08172 —.08172 0 2037.56
02618 —.03877  .08172 —.04296 2029.57
1.72791 —.67542 0 1.67542 2021.83

19



These are different from the Method 1 estimates.

10 A Simple Method for General X[

We now present a very simple method for the general X3 model provided an easy
g-inverse of X'X can be obtained. Write the following equations.

7,PZ, Z\PZ, --- Z,PZ, u Z,Py
z,P7Z, 7Z,PZ, --- Z,PZ, u, Z,Py
. =1 (67)
z,PZ, 7Z,PZ, --- Z,PZ, u, Z,Py

P =1-X(X'X)"X'". 8°is absorbed from the least squares equations to obtain (67).
We could then compute b reductions from (67) and this would be Method 3. An easier
method, however, is described next.

Let D; be a diagonal matrix formed from the diagonals of Z;PZ;. Then compute the
following b quadratics,

y'PZ,D;'Z Py. (68)

This computation is simple because D; ! is diagonal. It is simply the sum of squares of

elements of Z;Py divided by the corresponding element of D;. The expectation is also

easy. It is
gio? + ijl tr D;'Z;PZ;Z.PZ;0;. (69)

Because D; ! is diagonal we need to compute only the diagonals of Z;PZjZ;PZi to find
the last term of (69). Then as in Methods 1 and 3 we find some estimate of o2 and equate
62 and the s quadratics of (68) to their expectations.

Let us illustrate the method with our same example, regarding t as fixed.

39 18 12 9
~ 18 0 0
XX = 12 0 |’
9
and a g-inverse is
00 0 0
1871 0 0
1271 0
9—1

The coefficient matrix of equations like (67) is in (70), (71) and (72) and the right
hand side is (.1111, 4.6111, .4444, -5.1667, 3.7778, 2.1667, .4444, -6.3889, -1, 1, 0, -2.6667,
1.4444, 1.2222)".
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Upper left 7 x 7

9.3611 —5.0000 —1.4722 —2.8889  4.4444 —1.3333 —.8889

6.7222 —.6667 —1.0556 —1.3333 2.5 —.3333
2.6944 —5556 —.8889 —.3333 1.7778
45 —22222 —.8333 —.5556 (70)
44444 —1.3333 —.8889
2.5 —.3333
1.7778

Upper right 7 x 7 and (lower left 7 x 7)’

—2.2222  2.9167 —2.3333 —.5833 2.0 —1.3333 —.6667
—.8333 —2.3333 26667 —.3333 —1.3333  1.5556 —.2222
—.5556 —.5833 —.3333 9167 0 0 0
3.6111 0 0 0 —.6667 —.2222 8889 (71)
—2.2222 0 0 0 0 0 0
— 8333 0 0 0 0 0 0
— 5556 0 0 0 0 0 0

Lower right 7 x 7

3.6111 0 0 0 0 0 0
2.9167 —2.3333 —.5833 0 0 0
2.6667 —.3333 0 0 0

9167 0 0 0 (72)
2.0 —1.3333 —.6667
1.5556 —.2222
8889

The diagonals of the variance of the reduced right hand sides are needed in this
method and other elements are needed for approximate MIVQUE in Chapter 11. The
coefficients of o2 in this variance are in (70), ..., (72). The coefficients of ¢ are in (73),
(74) and (75). These are computed by (Cols. 5-14 of 10.70) (same)’.

Upper left 7 x 7

AT77 —=2454 =531 —-1793 27.26 —7.11 —-3.85

2575 .39 —160 —7.11 883 .22

566 —.74 —385 22 437
20.27 —16.30 —1.94 —.74 (73)

27.26 —7.11 —3.85

883 .22

4.37
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Upper right 7 x 7 and (lower left 7 x 7)’

—-16.30  14.29 —-12.83 —-1.46

—1.94 —-12.83 12.67 A7
—.74 —1.46 A7 1.29
18.98 0 0 0

—16.30 0 0 0
—1.94 0 0 0
—.74 0 0 0
Lower right 7 x 7
18.98 0 0 0
14.29 —12.83 —1.46
12.67 A7
1.29

6.22 —4.59
—4.59  4.25
0 0
—1.63 .35
0 0
0 0
0 0
0 0
0 0
0 0
0 0
6.22 —4.59 —
4.25

—1.63
.39

0

1.28

o O OO

1.63
.35
1.28

The coefficients of a2 are in (76), (77), and (78). These are computed by (Cols 1-4

of 10.70) (same)’.

Upper left 7 x 7

123.14 —-76.39 —12.81 —33.95

71.75 1.67 297
10.18 .96
30.02

Upper right 7 x 7 and (lower left 7 x 7)’

—26.25 39.83 —34.69 —5.14
2.07 —29.88  29.81 .06
32 —4.31 76 3.55
23.86 —5.64 411  1.53
—-16.30  16.59 —13.63 —2.96
—-1.94 —-9.53 9.89 —.36
—.74 =285 D9 226

22

56.00
—28.25
—6.81
—20.94
27.26

27.31
—18.26
—1.69
—7.37
12.15
—5.44
—.96

—22.08 —7.67
24.57  1.60
—.14  6.63

—2.35 —=.57
—7.11 —3.85
8.83 22
4.37

—-19.62 —7.70

17.36 90
1.05 .64
1.21  6.16

—7.501 —4.64
5.85 —.41

79 A7

(76)

(77)



Lower right 7 x 7

18.98 —4.21 3.15  1.06 —5.74 86 4.88
1429 —12.83 —1.46 894 —-752 —-1.43
12.67 A7 =822 7.26 .96

1.29 —-.72 .26 .46 (78)
6.22 —4.59 —1.63
4.25 .35
1.28
The reduction for ts is
3.7782 1.2222

— 93.799.
1441 T 889 3799

The expectation is 10 02 + 35.7262 (02 + 02), where 10 is the number of elements in the
ts vector and

27.259 1.284
7262 = SN g e
35.726 4.444 + + .889
The reduction for s is
1112 (—5.167)°

e = 9.170.
9.361 * - 4.5

The expectation is 4 02 + 15.5383 o2, + 34.2770 o2, where

47.773 20.265
15.5383 — .
5:538 o361 T T4
123.144 30.019
4.2 = .
34.2770 9.361 + + 4.5
Thus
&2 1 0 0\ /o2
E| Red(ts) | = 10 35.7262 35.7262 | | o2
Red(s) 4 155383 34.2770 ) \ o2
Then

52 1 0 0 3945 3945
o2 | =1 —.29855  .05120 —.05337 23.7199 | = 6114 | .
o 01864 —.02321  .05337 9.170 —.0557

11 Henderson’s Method 2

Henderson’s Method 2 (1953) is probably of interest from an historical viewpoint
only. It has the disadvantage that random by fixed interactions and random within fixed
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nesting are not permitted. It is a relatively easy method, but usually no easier than
the method described in Sect. 10.10, absorption of 3 , and little if any easier than an
approximate MIVQUE procedure described in Chapter 11.

Method 2 involves correction of the data by a least squares solution to 3 excluding
. Then a Method 1 analysis is carried out under the assumption of a model

y = la + ZiZiui—i-e.

If the solution to 3° is done as described below, the expectations of the Method 1
reductions are identical to those for a truly random model except for an increase in the
coefficients of o2 . Partition

Z = [Za Zb]

such that rank
Then partition

such that
rank (X, Z,) = rank (X Z).
See Henderson, Searle, and Schaeffer (1974). Solve equations (79) for 3,.
X Xo X.Z,\ (B, _( Xy
( 7. X, 7.7, ) ( u, ) - < Zy ) (79)

Let the upper submatrix (pertaining to 3,) of the inverse of the matrix of (79) be denoted
by P. This can be computed as

P=[XX,-X,Z, (Z,2,)"'Z X, . (80)

Now compute
1y* = 1y -1X,3,. (81)
Zy* = Zyy—Z.X,8,i=1,...,b. (82)

Then compute the following quadratics

(1'y*)*/n, and (83)
(Zy*)(Z;Z;) N (Zyy™) fori=1,...,b. (84)
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The expectations of these quadratics are identical to those with y in place of y* except
for an increase in the coefficient of o2 computed as follows. Increase in coefficient of o2
in expectation of (83) by

trP(X/11'X,,)/n. (85)

Increase in the coefficient of o2 in expectation of (84) is
trP (X, Z:(Z,2;) "' Z;X,,). (86)

Note that X Z;(Z;Z;)"'Z;X, is the quantity that would be subtracted from XX, if
we were to “absorb” wu;. o2 can be estimated in a number of ways but usually by the
conventional residual

y'y = (B) X’y — (u°)Z'y]/[n — rank (X Z)].

Sampling variances for Method 2 can be computed by the same procedure as for
Method 1 except that the variance of adjusted right hand sides of 1 and u equations is

/
increased by 1 X, ) P(X/1 X Z) 02 over the unadjusted. As is true for other

7'X,
quadratic estimators, quadratics in the adjusted right hand sides are uncorrelated with
02, the OLS residual mean square.

We illustrate Method 2 with our same data, but now we assume that o2, does not
exist. This 2 way mixed model could be done just as easily by Method 3 as by Method 2,
but it suffices to illustrate the latter. Delete 1 and ¢35 and include all 4 levels of s. First
solve for 3, in these equations.

18 0 8325 113
12 7410 96
21000(@_153

9 0 0 u, || 71

30 21

6 34

The solution is 8, = [-1.31154, .04287]’, u, = (7.7106, 8.30702, 7.86007, 6.75962)". The
adjusted right hand sides are

279 18 12 302.093
153 8 7 163.192
71| -| 3 4 < _1'331;2‘; ) = 74.763
21 2 1 ' 23.580
34 5 0 40.558

Then the sum of squares of adjusted right hand sides for sires is

(163.192)° (40.558)

= 2348.732.
D +-+ G 348.73
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The adjusted C.F. is (302.093)%/39 = 2340.0095. P is the upper 2x2 of the inverse of the
coefficient matrix (79) is

179532 110888
200842 ) °
21 0 0
Vo iy (83 25 9 0
X!\ Z,(Z/Z:) " 2 X, = < -l 5

o O O O
TN W oo
O~ =

_ 9.547619 4.666667
4.444444 |-

The trace of this (86) is 3.642 to be added to the coefficient of o2 in E (sires S.S). The
trace of P times the following matrix

18 -1 8.307692 5.538462
( 12 ) (30)" (812)= ( 3.692308 )'

gives 3.461 to be added to the coefficient of o2 in E(CF). Then

E(Sire SS) = 7.642 02 + 39 02 + a quadratic.

s

E(C.F.) = 4461 02 + 14.538 02 + the same quadratic.

s

Then taking some estimate of 0> one equates these expectations to the computed sums
of squares.

12 An Unweighted Means ANOVA

A simple method for testing hypotheses approximately is the unweighted means anal-
ysis described in Yates (1934). This method is appropriate for the mixed model described
in Section 4 provided that every subclass is filled and there are no covariates. The ”small-
est” subclass means are taken as the observations as in Section 6 in Chapter 1. Then a
conventional analysis of variance for equal subclass numbers (in this case 1) is performed.
The expectations of these mean squares, except for the coefficients of o2 are exactly the
same as they would be had there actually been only one observation per subclass. An
algorithm for finding such expectations is given in Henderson (1959).

The coefficient of ¢? is the same in every mean square. To compute this let s =
the number of “smallest” subclasses, and let n; be the number of observations in the i
subclass. Then the coefficient of o2 is

Zj:1 n;'/s. (87)
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Estimate o2 by
Yy -, vi/nl/(n—s), (83)

where y; is the sum of observations in the i subclass. Henderson (1978a) described a
simple algorithm for computing sampling variances for the unweighted means method.

We illustrate estimation by a two way mixed model,
Yijk = @i + bj + vy + e
b; is fixed.

Var(a) = 103, Var(y) = 102, Var(e) = Io?.

Let the data be

Tij Yij

B B
Al 2 3 1 2 3
115 4 1) 8 10 5
212 10 5 7 8 4
3|1 4 2 6 9 3
412 1 5|10 12 8

The mean squares and their expectation in the unweighted means analysis are

df MS || E(ms)
A |3 98889 | .475 02 + o2 + 3o.
B |2 2275 475 o + o + Q(b)
AB| 6 .3056 | 475 o + o

Suppose 62 estimated as described above is .2132. Then

62 = .3056 — .475(.2132) = .2043,

and

62 = (9.8889 — .3056)/3 = 3.1944.

a

The coefficient of 62 is (571 +471 + ... +571)/12 = 475.
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13 Mean Squares For Testing K'u

Section 2.c in Chapter 4 described a general method for testing the hypothesis, K'3 =
0 against the unrestricted hypothesis. The mean square for this test is

(B°)K(K'CK) 'K'B°/f.

C is a symmetric g-inverse of the GLS equations or is the corresponding partition of a
g-inverse of the mixed model equations and f is the number of rows in K’ chosen to have
full row rank. Now as in other ANOVA based methods of estimation of variances we can
compute as though u is fixed and then take expectations of the resulting mean squares to
estimate variances. The following precaution must be observed. K’u must be estimable
under a fixed u model. Then we compute

() K(K'CK) 'K'u’/f, (89)

where u° is some solution to (90) and f = number of rows in K'.
X'X X7\ [ B X'y
7'X 77 w |- Z'y |- (9O>

The assumption is that Var(e) = Io?. C is the lower ¢ X ¢ submatrix of a g-inverse of
the coefficient matrix in (90). Then the expectation of (89) is

ftr K(K'CK) 'K’ Var(u) + o2. (91)

This method seems particularly appropriate in the filled subclass case for then with in-
teractions it is relatively easy to find estimable functions of u. To illustrate, consider the
two way mixed model of Section 11. Functions for estimating o are

ap + Y. — ag — Y
as + 2. —as — 1. | /3.
az + y3. — a4 — Ya.

Functions for estimating 03 are

[Vij — vis — Y4 + 34)/6; 1=1,2,3; j=1,2.
This is an example of a weighted square of means analysis.

The easiest solution to the OLS equations for the 2 way case is a°, b® = null and
75 = ¥ij- Then the first set of functions can be estimated as 77 — 47 (i = 1,2,3).
Reduce K’ to this same dimension and take C as a 12 x 12 diagonal matrix with diagonal

elements = nfj1
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Chapter 11
MIVQUE of Variances and Covariances

C. R. Henderson

1984 - Guelph

The methods described in Chapter 10 for estimation of variances are quadratic,
translation invariant, and unbiased. For the balanced design where there are equal num-
bers of observations in all subclasses and no covariates, equating the ANOVA mean squares
to their expectations yields translation invariant, quadratic, unbiased estimators with
minimum sampling variance regardless of the form of distribution, Albert (1976), see also
Graybill and Wirtham (1956). Unfortunately, such an estimator cannot be derived in the
unbalanced case unless G and R are known at least to proportionality. It is possible,
however, to derive locally best, translation invariant, quadratic, unbiased estimators un-
der the assumption of multivariate normality. This method is sometimes called MIVQUE
and is due to C.R. Rao (1971). Additional pioneering work in this field was done by La
Motte (1970,1971) and by Townsend and Searle (1971). By "locally best” is meant that
if G =G and R =R, the MIVQUE estimator has minimum sampling variance in the
class of quadratic, unbiased, translation invariant estimators. G and R are prior values
of G and R that are used in computing the estimators. For the models which we have
described in this book MIVQUE based on the mixed model equations is computationally
advantageous. A result due to La Motte (1970) and a suggestion given to me by Harville
have been used in deriving this type of MIVQUE algorithm. The equations to be solved

are in (1).
XR'X X'R'Z B\ _ [ XRly )
ZR'X ZR1'Z+G! u /] \ ZRly

These are mixed model equations based on the model

y=XB8+Zu+e. (2)

We define Var(u), Var(e) and Var(y) as in (2, 3, 4, 5, 6, 7, 8) of Chapter 10.

1 La Motte Result For MIVQUE

La Motte defined .
Var(y)=V =3 Vb, (3)



Then 3 i .

V = Zi:l V.0;, (4)
where GNZ are prior values of ;. The 6#; are unknown parameters and the V; are known
matrices of order n x n. He proved that MIVQUE of 0 is obtained by computing

(y —XB)V IV V iy -XB°, i=1,..., k, (5)

equating these k quadratics to their expectations, and then solving for 8 . 3° is any
solution to equations

X'VIXB° = X'V iy, (6)

These are GLS equations under the assumption that V. = V.

2 Alternatives To La Motte Quadratics

In this section we show that other quadratics in y — X3 exist which yield the same
estimates as the La Motte formulation. This is important because there may be quadratics
easier to compute than those of (5), and their expectations may be easier to compute.

Let the k quadratics of (5) be denoted by q. Let E(q) = BO, where B is k x k. Then
provided B is nonsingular, MIVQUE of 8 is
6 =B q. (7)

Let H be any k£ x k nonsingular matrix. Compute a set of quadratics Hq and equate to
their expectations.
E(Hq) = HE(q) = HB6. (8)

Then an unbiased estimator is
0° = (HB) 'Hq
— B'q=6, (9)
the MIVQUE estimator of La Motte. Therefore, if we derive the La Motte quadratics, q,

for MIVQUE, we can find another set of quadratics which are also MIVQUE, and these
are represented by Hq, where H is nonsingular.

3 Quadratics Equal To La Motte’s

The relationship between La Motte’s model and ours is as follows

Gugn Gigiz Gizgis

G/12912 Gaogoa  Gazgas

V of LaMotte = Z G’13913 G

; !
23923 Gs033 z



Riirin Rigeriz Rasrs
!
R127”12 Rooran R237”23

R/137’13 R/137’23 Rasrss - (10)
=Z7ZGZ +R. (11)
Gi; 00
0 00 --- /
or V10, = Z 0 00 --- Z g1,
0 G2 O
G, 0 0 /
Voo =Z| o o0 o Z'g12, (12)
etc., and
Ri; 00
0 00
Vir10p11 = 0 00 T11,
0 Ry O
R, 0 0
0 T12, (13)

Vb+29b+2 = 0 0

etc. Define the first b(b + 1)/2 of (12) as ZG;;Z" and the last c(c + 1)/2 of (13) as Rj;.
Then for one of the first b(b + 1)/2 of La Motte’s quadratic we have

(y — XB°)V'ZG,Z'V (y — X3). (14)

Write this as ) o o
(y - XB°)V'ZGG'G;,G'GZ'V ' (yX3). (15)

This can be done because CN}~(~}*1 — I. Now note that GZ'V~!(y — X3°) = & = BLUP
of u given G = G and R = R. Consequently (15) can be written as

u'GT'G;G (16)
By the same type of argument the last ¢ quadratics are

¢R'R;R e, (17)
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where é is BLUP of e given that G = G and R = R.. Taking into account that

G/11911 Gi2012
G=| G912 G2gx

the matrices of the quadratics in 1 can be computed easily. Let

Ci Ciz Cy3
- C), Cgpy Cap -
-1 _ 12 L2z Lo -
- 013 C23 C33 = [Cl C, C3 ]
For example,
Ci
Ca2
C:= |
Then
G 'G;G™' = CGuC,. (18)
GilejGil = CiGz’jC;‘ + CjG;jCi for ¢ # j. (19)

The quadratics in & are like (18) and (19) with R~!, R;; substituted for G~!, G;; and
with R™! = [C; C, ...]. For special cases these quadratics simplify considerably. First
consider the case in which all g;; = 0. Then

Giign 0 0
G — 0 Go2022 0 EE
- 0 0 Gasgss -+ |
and
Gign O
1 -1

G! = 0 G2 922

Then the quadratics in 1 become
WGy,
or an alternative is obviously
w,G;; ',



obtained by multiplying these quadratics by
dg(gt1: 9325 - -)- (20)
Similarly if all 7;; = 0, the quadratics in € can be converted to

éR;'e;. (21)

The traditional mixed model for variance components reduces to a particularly simple
form. Because all g;; = 0, for i # 7, all G;; =1, and R = I, the quadratics can be written
as

ww, i=1,..., b, and é&é.

Pre-multiplying these quadratics by

1 0 e 0
0 1 e 0
oifor aifos -1
we obtain )
1,1y

~ NN
e

N o
ee + >, s uu
2

But the last of these quadratics is y'y — y'X3° — y'Zu, or a quantity corresponding to
the least squares residual. This is the algorithm described in Henderson (1973).

One might wish in this model to estimate o by the OLS residual mean square, that
is,
o7 = Yy = (B°)X'y — (u)Zy]/[n - rank(X  Z)],
where 3°, u® are some solution to OLS equations. If this is done, 62 is not MIVQUE and
neither are 67, but they are probably good approximations to MIVQUE.

Another special case is the multiple trait model with additive genetic assumptions
and elements of u for missing observations included. Ordering animals within traits,

/

y = [Y1 Y2---]-

y; is the vector of records on the " trait.

u o= (u; u,...).

u; is the vector of breeding values for the i trait.
e = (e e,...).



Every u; vector has the same number of elements by including missing u. Then

Agn

G

where
g1
GO g12

Ago
Agia Age

= A x Go, (22)

912
922

is the additive genetic variance- covariance matrix for a non-inbred population, and x

denotes the direct product operation.

Al A-lgh?
Gl_| A2 A2

At xGyl (23)

Applying the methods of (16) to (18) and (19) the quadratics in u illustrated for a 3 trait

model are /
ﬁlA_lﬁl
Ay
By By 0, A,
B/12 BQQ ﬁ;AilﬁQ
i, A
A g
gliglt 2411412 2g11g13
B, = 2g11g22 1+ 291212 24112 4 9412413
2911933 + 2913913
g'2g12 241213 gl3g13
B, = | 292g%22 2¢'2¢% +2g'3¢%2 2¢'3¢%
92g12g%  2¢12g% 4 2g13g% 2413433
g2¢2 2g%2¢% g%¢%
B, — 2g22¢% + 2¢%3 g% 24?3 g%
g3 ¢33
B B

Premultiplying these quadratics in 0; by the inverse of (

alent set of quadratics that are

AT A —1 A . o
WA g fori=1,...,3; j=1i,...

; we obtain an equiv-
B, Bx ) a

,3. (24)



Similarly if there are no missing observations,

IT‘H IT12
R = I7”12 ITQQ

. . ~ PN . . .
Then quadratics in € are ¢;¢; fori=1,...,t; j=1,...,t.

4 Computation Of Missing u

In most problems, MIVQUE is easier to compute if missing u are included in 1 rather
than ignoring them. Section 3 illustrates this with A~! being the matrix of all quadratics
in u.

Three methods for prediction of elements of u not in the model for y were described

in Chapter 5. Any of these can be used for MIVQUE. Probably the easiest is to include
the missing ones in the mixed model equations.

5 Quadratics In e With Missing Observations

When there are missing observations the quadratics in € are easier to envision if we
order the data by traits in animals rather than by animals in traits. Then R is block
diagonal with the order of the i*" diagonal block being the number of traits recorded for
the i animal. Now we do not need to store R~ nor even all of the diagonal blocks.
Rather we need to store only one block for each of the combinations of traits observed.
For example, with 3 traits the possible combinations are

Traits
Combinations | 1 2 3
1 X X X
2 X X -
3 X - X
4 - X X
5 X - -
6 - X -
7 - - X

There are 2! — 1 possible combinations for ¢ traits. In the case of sequential culling the
possible types are



Traits
Combinations | 1 2 3
1 X X X
2 X X -
3 X - -

There are t possible combinations for ¢ traits.

The block of R~ for animals with the same traits measured will be identical. Thus
if 50 animals have traits 1 and 2 recorded, there will be 50 identical 2 x 2 blocks in R},
and only one of these needs to be stored.

The same principle applies to the matrices of quadratics in €. All of the quadratics
are of the form &;Qé;, where &; refers to the subvector of & pertaining to the i** animal.
But animals with the same record combinations, will have identical matrices of quadratics
for estimation of a particular variance or covariance. The computation of these matrices
is simple. For a particular set of records let the block in R™* be P, which is symmetric
and with order equal to the number of traits recorded. Label rows and columns by trait
number. For example, suppose traits 1, 3, 7 are recorded. Then the rows (and columns)
of P are understood to have labels 1, 3, 7. Let

P = (pip2pP3--.)

where p; is the i** column vector of P. Then the matrix of the quadratic for estimating
Tii is
PiD;- (25)
The matrix for estimating r;; (i # j) is
pip; + PiD;. (26)

Let us illustrate with an animal having records on traits 2, 4, 7. The block of R corre-
sponding to this type of information is

6 4 3

8 b
7
Then the block corresponding to R~ is the inverse of this, which is

25410 —.10656 —.03279
27049 —.14754

.26230
Then the matrix for estimation of r99 is
.25410
—.10656 (.25410 — .10656 — .03279).
—.03279



The matrix for computing ro7 is

25410
—.10656 | (—.03279 — .14754 — .26230)
—.03279

+ the transpose of this product.

6 Expectations Of Quadratics In u And e

MIVQUE can be computed by equating certain quadratics in &1 and in € to their
expectations. To find the expectations we need a g-inverse of the mixed model coefficient
matrix with G and R, prior values, substituted for G and R. The formulas for these
expectations are in Section 6 of Chapter 10. It is obvious from these descriptions of
expectations that extensive matrix products are required. However, some of the matrices
have special forms such as diagonality, block diagonality, and symmetry. It is essential
that these features be exploited. Also note that the trace of the products of several
matrices can be expressed as the trace of the product of two matrices, say trace (AB).
Because only the sum of the diagonals of the product AB is required, it would be foolish
to compute the off-diagonal elements. Some special computing algorithms are

trace (AB) = Zl Zj a;jbji (27)

when A and B are nonsymmetric.

trace (AB) = Zl a;iby; + QZZ, ZJ,M, a;jbij (28)
when A and B are both symmetric.
r (AB) = Zl iibi; (29)

when either A or B or both are diagonal.

It is particularly important to take advantage of the form of matrices of quadratics
in € in animal models. When the data are ordered by traits within animals the necessary
quadratics have the form ¥, &;Qé;, where Q; is a block of order equal to the number of
traits observed in the i'" animal. Then the expectation of this quadratic is tr Q Var(e&;).
Consequently we do not need to compute all elements of Var(é), but rather only the
elements in blocks down the diagonal corresponding to the various Q. In some cases,
depending upon the form of X3, these blocks may be identical for animals with the same
traits observed.

Many problems are such that the coefficient matrix is too large for computation of a
g-inverse with present computers. Consequently we present in Section 7 an approximate
MIVQUE based on computing an approximate g-inverse.



7 Approximate MIVQUE

MIVQUE for large data sets is prohibitively expensive with 1983 computers because
a g-inverse of a very large coefficient matrix is required. Why not use an approximate g-
inverse that is computationally feasible? This was the idea presented by Henderson(1980).
The method is called ”Diagonal MIVQUE” by some animal breeders. The feasibility of
this method and the more general one presented in this section requires that an approx-

imate g-inverse of X’R !X can be computed easily. First "absorb” 3° from the mixed
model equations.

XR !X XR'Z 3° X'Rly
-1 -1 A1 S = -1 . (3())
ZR'X ZR'Z+G a ZR 'y

[ZPZ+ G a=27ZPy (31)

where P = R~ — RTIX(X’R'X)"X'R~, and (X’R™'X)" is chosen to be symmetric.
From the coefficient matrix of (31) one may see some simple approximate solution to 1,
say u. Corresponding to this solution is a matrix Cy; such that

This gives

i =CZPy (32)
Interpret CH as an approximation to
Cy = [ZPZ+G !
Then given u,

B = (XR'X)” (X'R !y - X'R'Zu).

Thus an approximate g-inverse to the coefficient matrix is

~_( Cow Ca Co
C=| = ~ = ~ . 33
< Cw Cu ) ( C, ) (33)

Coo (X'RIX)” + X'R'X)"X'R'ZCZR'X(X'RX)".
Co = (XRX)"X'R'ZCy.
Cyp = CHZRIX(X'R'X)".

=1}

R-1
This matrix post-multiplied by ( XRy ) equals (

Z’f{_ly > . Note that CH may be non-

symmetric.

10



What are some possibilities for finding an approximate easy solution to u and conse-
quently for writing Cy;? The key to this decision is the pattern of elements of the matrix
of (31). If the diagonal is large relative to off-diagonal elements of the same row for every
row, setting Cy; to the inverse of a diagonal matrix formed from the diagonals of the co-
efficient matrix is a logical choice. Harville suggested that for the two way mixed variance
components model one might solve for the main effect elements of u by using only the
diagonals, but the interaction terms would be solved by adjusting the right hand side for
the previously estimated associated main effects and then dividing by the diagonal. This
would result in a lower triangular Cy;.

The multi-trait equations would tend to exhibit block diagonal dominance if the
elements of u are ordered traits within animals. Then C;; might well take the form

B! 0
0 B!

where B; ! is the inverse of the i** diagonal block, B;. Having solved for @ and B and
having derived C one would then proceed to compute quadratics in @ and é as in regular
MIVQUE. Their expectations can be found as described in Section 7 of Chapter 10 except
that C is substituted for C.

8 MIVQUE (0)

MIVQUE simplifies greatly in the conventional variance components model if the
priors are

Gi)F11 = 067/62=0foralli=1,..., b.

Now
V = 152 B°=(X'X) Xy,
and
(y = XB°) V'Z:GiZV ' (y — XpB)
= y'(I - X(X'X)"X')Z;,Z,(I - X(X'X)"X')y/&". (34)

Note that this, except for the constant, 62, is simply the sum of squares of right hand

sides of the OLS equations pertaining to u$ after absorbing 3°. This is easy to compute,
and the expectations are simple. Further, for estimation of o we derive the quadratic,

y'y — (8°) X'y, (35)

11



and the expectation of this is simple.

This method although simple to compute has been found to have large sampling
variances when o2 /o departs very much from 0, Quaas and Bolgiano(1979). Approximate
MIVQUE involving diagonal Cy; is not much more difficult and gives substantially smaller
variances when o0?/02 > 0.

For the general model with G = 0 the MIVQUE computations are effected as follows.
This is an extension of MIVQUE(0) with R # Io?, and Var (u;) # Ie?. Absorb 8° from

equations
XRIX XR1'Z\ (B )_(XRly (36)
ZR'X ZR'Z w /| \ZR'y /)’
Then compute ) ) ) )
yR'y — (yRT'X)(XR'X)"XR 'y (37)
and r;G;r; i=1,...,b; j=i,..., b, where r; = absorbed right hand side for uj equations.

Estimate r;; from following quadratics

where

9 MIVQUE For Singular G

The formulation of (16) cannot be used if G is singular, neither can (18) if Gy; is
singular, nor (25) if A is singular. A simple modification gets around this problem. Solve
for & in (51) of Chapter 5. Then for (16) substitute

&'Gj;&, where 0= Gé (39)

For (20) substitute
o, G (40)

For (25) substitute
a,Ad; (41)

See Section 16 for expectations of quadratics in .

10 MIVQUE For The Case R = Io?

When R = Io? the mixed model equations can be written as
X'X X'Z B°\ ([ Xy (42)
ZX Z'Z+ o’G™! a ) \Zy )

12



If 3° is absorbed, the equations in u are

(ZPZ + oG Ya = Z'Py, (43)
where
P=1-X(XX)"X.
Let 5
(ZPZ+o2G )t = C. (44)
Then
u = CZ'Py. (45)
u'Qu = y'PZC'Q,CZ'Py
= tr C'Q,CZ'Pyy'PZ. (46)
E(W'Qu) = tr C'Q;,C Var(Z'Py). (47)
b b ’
Var(Z'Py) = 3 . | ijl Z'PZ,Gi;Z,PZLy;
+ Z'PPZo?. (48)

One might wish to obtain an approximate MIVQUE by estimating o2 from the OLS
residual. When this is done, the expectation of the residual is [n — (X Z)] o2 regardless
of the value of G. This method is easier than true MIVQUE and has advantages in
computation of sampling variances because the estimator of ¢ is uncorrelated with the
various w'Qu. This method also is computable with absorption of 3°.

A further simplification based on the ideas of Section 7, would be to look for some
simple approximate solution to u in (44). Call this solution @ and the corresponding
approximate g-inverse of the matrix of (44) C. Then proceed as in (46) ... (48) except
substitute @ for @ and C for C.

11 Sampling Variances

MIVQUE consists of computing @'Q;u, i = 1,...,b, where b = number of elements
of g to be estimated, and €'Q e, j = 1,...,t, where ¢ = number of elements of r to

be estimated. Let a g-inverse of the mixed model matrix be C = < gﬁ ) , and let
W=(X Z).

Then
a C,WR 'y,
Qu = yR'WC,Q,C,WR 'y =y'By, (49)
é (I- WCW'R™ )y,

13



and

&Qe = y[I- WCWR QI - WCW'R 'y =y'F,y. (50)
Let
y'Biy
o :P<g>:P0, Wher60:<g>.
y'Fiy r r

Then MIVQUE of @ is

y'Biy
:1 y'Hiy
Pl = | YHay 51
y'Fiy : (51)
Then
Var(0;) = 2tr[H; Var(y))?. (52)
Cov(6;,6;) = 2trH; [Var(y)] H; [Var(y)]. (53)

These are of course quadratics in unknown elements of g and r. A numerical solution is
easier. Let V = Var(y) for some assumed values of g and r. Then

~

Var(6;) = 2tr(H;V)2 (54)
Cov(6;,6;) = 2tr(H;VH,V). (55)

If approximate MIVQUE is computed using C an approximation to C , the compu-
tations are the same except that C, u, € are used in place of C, 1, e.

11.1 Result when o? estimated from OLS residual

When R = 102, one can estimate o2 by the residual mean square of OLS and an

approximate MIVQUE obtained. The quadratics to be computed in addition to 62 are

only u/Q,u. Let

u'Q;u
9 P f g
E : = .
y 0 1 o?
Oc
Then
~/ ~ u Hlﬁ 81(3'6
~ P f -1 u Qzu ﬁ/Hgﬁ 820'2
g )
(3'2 - 0 1 . = : + (56>
e ~9 .
Ue 0 5.2

14



Then

Var(g) = 2tr[H; Var(0)])? + s Var(6?). (57)
Cov(g;,g;) = 2tr[H; Var(t) H; Var(a)]
+ sis; Var(e2). (58)
where
Var(t) = Cu[Var(r)]C;,

and r equals the right hand sides of mixed model equations.
Var(h) = WRTIZGZR™'W + WRI'RR™'W. (59)

If Var(r)Nis evaluated with the same values of G and R used in the mixed model equations,
namely G and R, then

Var(r) = WRI'ZGZR'W + WR™'W. (60)
Var(6?) = 20?/[n —rank (W)], (61)

where 62 is the OLS residual mean square. This would presumably be evaluated for o2

— 52
= 0.

12 Illustrations Of Approximate MIVQUE

12.1 MIVQUE with 62 = OLS residual

We next illustrate several approximate MIVQUE using as 62 the OLS residual. The
same numerical example of treatments by sires in Chapter 10 is employed. In all of these
we absorb 37 to obtain the equations already presented in (70) to (72) in Chapter 10. We
use prior 02/0? = 10, 02/ = 5 as in Chapter 10. Then the equations in § and ts are
those of (70) to (72) with 10 added to the first 4 diagonals and 5 to the last 10 diagonals.
The inverse of this matrix is in (62), (63) and (64). This gives the solution

§ = [-.02966, .17793, .02693, —.17520].
ts = [.30280, .20042, .05299, —.55621, —.04723,
04635, .00088, —.31489, .10908, .20582].
(ts)'ts = .60183, §'s = .06396.

15



Upper left 7 x 7

0713 .0137 .0064 .0086 —.0248  .0065  .0070
0750 .0051 .0062  .0058 —.0195  .0052
.0848 .0037  .0071  .0048 —.0191

0815  .0118  .0081  .0069 (62)
1331 .0227 0169
1486 .0110
1582

Upper right 7 x 7 and (lower left 7 x 7)’

0112 —-.0178  .0121  .0057 —.0147  .0088  .0060
0085  .0126 —.0177  .0050  .0089 —.0129  .0040
.0071  .0061  .0052 -.0113 -—.0004 .0001  .0003
—.0268 —.0009  .0004 .0006  .0063  .0040 -—.0102 (63)
0273 .0092 —.0066 —.0027  .0081 —.0045 —.0036
0177 —.0058  .0071 —.0014 —.0039  .0054 -—.0015
0138 —-.0025 -.0011  .0036 —.0003  .0004 —.0001

Lower right 7 x 7

1412 —.0009 .0005 .0004 —.0039 —.0013  .0052
1489 .0364 .0147  .0063 —.0054 —.0009
1521 .0115 —-.0057  .0055  .0002

1737 —.0006 —.0001  .0007 (64)
1561 .0274  .0164
1634 .0092
1744

The expectation of (ts)'ts is
E[r'C,Cyr] = trC,Csy Var(r),

where r = right hand sides of the absorbed equations, and Cj is the last 10 rows of the
inverse above.

Var(r) = matrix of (10.73) to (10.75) o7, + matrix of (10.76)
to (10.78) o2 + matrix of (10.70) to (10.72) o2.
CLC, is in (65), (66), and (67). Similarly C|C; is in (68), (69), and (70) where C,, Cy

refer to last 10 rows and last 4 rows of (62) to (64) respectively. This leads to expectations
as follows

E(tsts) = .23851 o2 + .82246 o2, + AT406 02,
2

E(8's) = .03587 02 + .11852 o7, + .27803 o~

16



Using 62 = .3945 leads then to estimates,

Upper left 7 x 7

.01

1657

67, = .6815, &2
—.0769 —.0301 —.0588
1267 —.0167 —.0331
0682 —.0215

1134

Upper right 7 x 7 and (lower left 7 x 7)’

.01

1224
.1065
1018
—.3307
.8063
.5902
4805

Lower right 7 x 7

.01

2.1231

Upper right 7 x 7

.01

5391

—.2567
1577
.1007

—.0017
2207

—.1364

—.0689

—.0153
2.3897

2087
5879

1594
—.2466
.0901
—.0029
—.1480
1821
—.0411

.0071
1.0959
2.4738

1100
.0925
7271

0973
.0889
—.1909
.0046
—.0726
—.0457
1101

.0082
.H144
4303
3.0553

1422 —.
1109
.0705
.6764

17

= —.1114.
—.3165 0958
0987 —.2867
0977 0815
12011094
1.9485 6920
2.3159
—.2418 1380
1368 —.2127
—.0029 .0012
1078 0759
2062 —.1135
—.1033  .1505
—.0059 .0085
—.0970  —.0456
1641 —.1395
—.1465 1450
—.0176  —.0055
2.5572 8795
2.7646

1542 0299

0208 —.1295
0520 0382 —

0814 0613
0840 —.0145 —
0510 —

.0982
0815
—.2809
1012
5532
4018
2.5645

1038
0758
.0041
—.1837
—.0927
—.0473
—.0026

1426
—.0247
.0016
.0231
5633
.3959
3.0808

.0510
.0429
1522
.0583
.0199
.0091
.0488

(65)

(66)

(68)



Upper right 7 x 7 and (lower left 7 x 7)’

.01

0732
0658
.0620
—.2010
—.0496
—.0274
—.0198

Lower right 7 x 7

01

12.2 Approximate MIVQUE using a diagonal g-inverse

.0968

—.1066
0728
.0464

—.0126
.0548

—.0339

—.0183

—.0025
0514

.0656
—.1130
0431
.0043
—.0360
.0450
—.0103

.0014
—.0406
.0485

0411
.0402
—.0896
.0083
—.0187
—.0111
.0286

.0012
—.0108
—.0079

0187

—.0878
.0503
—.0063
.0438
.0488
—.0220
—.0006

—.0261
.0366
—.0335
—.0031
0335

0484
—.0820
.0017
0319
—.0244
.0340
.0020

—.0116
—.0321
.0335
—.0014
—.0219
0258

.0393
0317
.0046
—.0757
—.0244
—.0120
—.0014

0377
—.0045
0
.0045
—.0117
—.0039
0156

(69)

An easy approximate MIVQUE involves solving for 1 in the reduced equations by
dividing the right hand sides by the corresponding diagonal coefficient. Thus the approx-
imate C, denoted by C is diagonal with diagonal elements the reciprocal of the diagonals
of (10.70) to (10.72). This gives

C = dg (.0516, .0598, .0788, .0690, .1059, .1333, .1475, .1161, .1263, .1304, .1690,

1429, .1525,

.1698)

and an approximate solution,

u' = (.0057, .2758, .0350, -.3563, .4000, .2889, .0656, -.7419, -.1263, .1304, 0, -.3810,

2203, .2076).

Then (ts)'ts = 1.06794 with expectation,

4024 02 + 1.5570 (o2, + o2).

Also §’'s = .20426 with expectation,

Now

0871 02 + .3510 02, + .7910 o2.
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C,C, = dg (0, 0, 0, 0, 1.1211, 1.7778, 2.1768, 1.3486, 1.5959, 1.7013, 2.8566, 2.0408,
2.3269, 2.8836) /100,

and
ClC/1 = dg (.2668, .3576, .6205, .4756, 0, 0, 0, 0, 0, 0, 0, 0,, 0, 0, 0, 0, 0, 0)/100.

Consequently one would need to compute only the diagonals of (10.70) to (10.72), if one
were to use this method of estimation.

12.3 Approximate MIVQUE using a block diagonal approxi-
mate g-inverse

Examination of (10.70) to (10.72) shows that a subset of coefficients, namely [s;, tsy;,
ts9j .. .| tends to be dominant. Consequently one might wish to exploit this structure. If
the tAsZ-j were reordered by i within j and the interactions associated with s; placed adjacent
to s;, the matrix would exhibit block diagonal dominance. Consequently we solve for u
in equations with the coefficient matrix zeroed except for coefficients of s; and associated
ts;j, etc. blocks. This matrix is in (71, 72, and 73) below.

Upper left 7 x 7

19.361 0 0 0 4444 0 0
16.722 0 0 0 25 0
12694 0 0 0 1.778
14.5 0 0 0 (71)
9444 0 0
75 0
6.778

Upper right 7 x 7 and (lower left 7 x 7)’

0 2917 0 0 2. 0 0
0 0 2.667 0 0 1.556 0
0 2 0 917 0 O 0
3.611 0 0 0 0 O .889 (72)
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
Lower right 7 x 7
dg (8.611, 7.9167, 7.6667, 5.9167, 7.0, 6.556, 5.889) (73)
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A matrix like (71) to (73) is easy to invert if we visualize the diagonal blocks with re-
ordering. For example,

19.361 4.444 2.917 2.000 \ .0640 —.0301 —-.0236 —.0183
9.444 0 0 B 1201 .0111  .0086

7917 0 n 1350 .0067

7.000 1481

This illustrates that only 4% or 3% order matrices need to be inverted. Also, each of those
has a diagonal submatrix of order either 3 or 2. The resulting solution vector is

(-.0343, .2192, .0271, -.2079, .4162, .2158, .0585, -.6547, -.1137, .0542, -.0042, -.3711,
1683, .2389).

This gives (ts)'ts = .8909 with expectation
32515 02 + 1.22797 o}, + .79344 o2,

and §'s = .0932 with expectation

05120 02 + .18995 o7, + .45675 o2,

12.4 Approximate MIVQUE using a triangular block diagonal
approximate g-inverse

Another possibility for finding an approximate solution is to compute s by dividing
the right hand side by the corresponding diagonal. Then ts are solved by adjusting the
right hand side for the associated s and dividing by the diagonal coefficient. This leads
to a block triangular coefficient matrix when ts are placed adjacent to s. Without such
re-ordering the matrix is as shown in (74), (75), and (76).

Upper left 7 x 7

19.361 0 0 O 0 0 0
0 16722 0 o 0 0 0
0 0 12694 0 0 0 0
0 0 0 145 0 0 0 (74)
4444 0 0 0 9444 0 0
0 2.5 0 0O 0 75 0
0 0 1778 0 0 0 6.778

Upper right 7 x 7 = null matrix
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Lower left 7 x 7

0 0 0 3611 0 0 O

2917 0 0 0O 000

0 2667 0 0 000
0 0O 917 0 0 0 0 (75)

2.0 0 0 0O 000

0 155 0 0 000

0 0 0 889 0 0 0

Lower right 7 x 7

dg (8.611, 7.917, 7.667, 5.917, 7.0, 6.556, 5.889) (76)

This matrix is particularly easy to invert. The inverse has the zero elements in exactly
the same position as the original matrix and one can obtain these by inverting triangular
blocks illustrated by

19.361 0 0 0 0516 0 0 0
4.444 94444 0 0 | —.0243 1059 0O 0
2917 0 7917 0 | =0190 0 1263 0
2.000 0 0  7.000 —.0148 0 0 .1429

This results in the solution

(.0057, 2758, .0350, -.3563, .3973, .1970, .0564, -.5925, -.1284, .0345, -.0054, -.3826, .1549,
2613).

This gives (ts)'ts = .80728 with expectation
30426 0> + 1.1285802 + .60987 o2,

and §'s = .20426 with expectation

08714 0> + .3510407% + .79104 o2,

13 An Algorithm for R = R,0” and Cov (ui,u;) =0

Simplification of MIVQUE computations result if

R = R.o?, Var (w;) = G,;0”; and Cov (ui,u;-) = 0.

e )
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R. and the G,; are known, and we wish to estimate o2 and the o?

: . The mixed model
equations can be written as

X'R;'X X'R;'Z X'R;'Z,
ZR;'X Z\R'Z, +G_ oy ZR'Z,
Z,R;'X Z,R;'Z, ZoR;'Zs + Gy
B° X'R; 'y
w Z,R'y
W | 7| ZRy |- (77)

a; = prior values of 02/0?. A set of quadratics equivalent to La Motte’s are
¢R'e, u,Gla; (i=1,2,...).
But because € R;'é = y'R; 'y - (soln. vector)’ (r.h.s. vector)
A~ N
— Ziaiul-(}*i a;,
an equivalent set of quadratics is

y'R_'y — (soln. vector)’ (r.h.s. vector)

and

14 Illustration Of MIVQUE In Multivariate Model

We illustrate several of the principles regarding MIVQUE with the following design

No. of Progeny
Sires
Treatment |1 2 3
1 1 2 0
2 2 2 2

We assume treatments fixed with means i, t5 respectively. The three sires are a random
sample of unrelated sires from some population. Sire 1 had one progeny on treatment
1, and 2 different progeny on treatment 2, etc. for the other 2 sires. The sire and error
variances are different for the 2 treatments. Further there is a non-zero error covariance
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between treatments. Thus we have to estimate g;; = sire variance for treatment 1, goo
= sire variance for treatment 2, g;o = sire covariance, r1; = error variance for treatment
1, and 799 = error variance for treatment 2. We would expect no error covariance if the
progeny are from unrelated dams as we shall assume. The record vector ordered by sires
in treatments is [2, 3, 5, 7, 5, 9, 6, 8, 3].

We first use the basic La Motte method.

1000 0O0O0OO0ODO

1100 0000

100 0 00O

00 0O0O0O

V, pertaining to g1, = 00 0O00O0
00 00

0 00

0 0

0

000110000

00001100

0001100

00 0O0O0O0

V4 pertaining to gio = 00 0O0O
0000

000

0 0

0

00 00O0O0O0OTO0F

000O0O0O0OTO0O

000O0O0O0O

110 0 00

V3 pertaining to goo = 10 0 00
1100

1 00

11

1

V4 pertaining to ry; = dg |1, 1, 1, 0, 0, 0, 0, 0, 0].
V5 pertaining to 2 = dg [0, 0, 0, 1, 1, 1, 1, 1, 1].
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Use prior values of g11 = 3, g12 = 2, goo = 4, 117 = 30, 195 = 35. Only the proportionality
of these is of concern. Using these values

330 0 2 2 0 0 0 0
333 0 0 2 2 0 0

330 0 2 2 0 0

390 4 0 0 0 0

V= 39 0 0 0 0
30 4 0 0

30 0 0

39 4

39

Computing V-1V, V-1 we obtain the following values for Q; (i=1, ...,5). These are in
the following table (times .001), only non-zero elements are shown.

Element Q. Q Qs Q4 Qs
(1,1) 92872 -.17278  .00804 92872  .00402

(14),(1,5) -.04320 71675 -.06630 -.04320 -.03315
(2,2),(2,3) 78781 -.14657 00682 94946 .00341

(2,6),(2,7) -.07328 .66638 -.06135 -.03664 -.03068
(3.,3) 78781 -.14657 00682 .94946 .00341
(3,6),(3,7) -.07328 .66638 -.06135 -.03664 -.03068
(4,4) 00201 -.06630 .54698 .00201  .68165
(4,5) 00201 -.06630 .54698 .00201 -.13467
(5,5) 00201 -.06630 .54698 .00201 .68165
(6,6) 00682 -.12271 55219 .00341  .68426
(6,7) 00682 -.12271 55219 .00341 -.13207
(7,7) 00682 -.12271 .55219 .00341 .67853
(8,8),(9,9) 0 0 .54083 0 .67858
(8,9) 0 0 .54083 0 -.13775

We need y — X3°, B° being a GLS solution. The GLS equations are
.08661 —.008057 3 = 229319
—.008057  .140289 | .862389 )¢

The solution is [3.2368, 6.3333]. Then
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y - X8 =

Next we need T'V,T (i=1, ...

[—1.2368, —.2368, 1.7632, .6667, —1.3333, 2.6667,
—.3333, 1.6667, —3.3333]'
I-X(X'V X)) X'V y=Tly.

,5) for the variance of y — X3°. These are

Element ™V, T TV, T T'V;T T'V,T TV;T
(1,1) 84017 -.03573 .00182 .63013 .00091
(1,2),(1,3) -45611 -.00817 .00182 -.34208 .00091
(1,4),(1,5) 0 .64814 .00172 0 .00086
(1,6),(1,7) 0 -.64814 .02928 0 .01464
(1.8).(1,9)
(2,8),(2,9) 0 0 -.03101 0 -.01550
(3:8).(3,9)
(2,2),(3,3)  .24761 .01940 .00182 .68571 .00091
(2,3) 24761 .01940 .00182 -.31429 .00091
(2,4),(2,5) 0 -.35186 .00172 0 .00086
(3:4),(3,5)
(2,6),(2.7) 0 .35186 .02028 0 01464
(3,6),(3,7)
(4,4),(5,5),(6,6) 0 0 .66667 0 .83333
(7,7),(8.8),(9.9)
(4,5),(6,7),(8,9) 0 0 .66667 0 -.16667
(4,6),(4,7),(4.8)
(4,9),(5,6),(5,7) 0 0 -.33333 0 -.16667
(5.8),(5.9).(6.8)
(6,9),(7.8),(7.9)

Taking all combinations of tr Q,T'V;T for the expectation matrix and equating to (y —
XB°)'Qi(y — XB3°) we have these equations to solve.

.00156056 —.00029034  .00001350  .00117042 .000006752
00372880 —.00034435 —.00021775 —.00017218

00435858  .00001012  .00217929

.00198893  .00000506

00353862

911 .00270080

J12 00462513

922 = .00423360

11 00424783

T29 01762701
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This gives the solution [.500, 1.496, -2.083, 2.000, 6.333]. Note that the g;; do not fall in
the parameter space, but this is not surprising with such a small set of data.

Next we illustrate with quadratics in 44, ..., %5 and éq,...,é9 using the same priors
as before.
GTl = dg (17 1? 07 07 0);
00100
0010
G, = 0001,
00
0
. = (301 O
G, = dg (0,0, 1, 1, 1), R—( 0 351)
RY; dg (1,1,1,0,0,0,0,0,0),
R;Q = d (707 717171717171)
30200
) 30 20
G = 4 0 0
4 0
4
From these, the 3 matrices of quadratics in G are
25 0 —.125 0 0 -25 0 .25 0 0
25 0 —.125 0 —.25 0 25 0
.0625 0 0 |, —.1875 0 01,
0625 0 —.1875 0
0 0
.0625 0 —.09375 0 0
0625 —.09375 0 0
and 140625 0 0
140625 0
.0625

Similarly matrices of quadratics in € are
dg (.00111111, .00111111, .00111111, 0, 0, 0, 0, 0, 0),
and

dg (0,0,0,1,1,1, 1, 1, 1)*.00081633.
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The mixed model coefficient matrix is

1 0 03333 .06667 0 0 0
17143 0 0 05714 .05714 .05714
53333 0 —.25 0 0
56667 0 —.25 0
43214 0 0
43214 0
30714

The right hand side vector is
[.33333, 1.08571, .06667, .26667, .34286, .42857, .31429]'.
The solution is
[3.2368, 6.3333, -.1344, .2119, -.1218, .2769, -.1550].
Let the last 5 rows of the inverse of the matrix above = C,. Then

V(]ff‘(ﬁ) = CuW/R_IZ(GﬁgH + thlg + G;‘Qggg)Z'f{_lWC;
+C,W'R (R 711 + Riyra) RTIWC,

006179 —.006179  .003574 —.003574 O
006179 —.003574  .003574 0O

= 002068 —.002068 0 | g11
.002068 0
0
009191 —.009191  .012667 —.012667 O
009191 —.012667  .012667 0O

+ 011580 —.011580 0 | gi2
011580 0
0
004860 —.001976  .010329 —.004560 —.005769
.004860 —.004560  .010329 —.005769

+ 021980 —.010443 —.011538 | g22
021980 —.011538
023076
004634 —.004634  .002681 —.002681 O
004634 —.002681  .002681 0

+ .001551 —.001551 O | 7y
.001551 0
0
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002430 —.000988  .005164 —.002280 —.002884
002430 —.002280  .005164 —.002884

+ 010990 —.005221 —.005769 | 7a.
.010990 —.005769
011538

¢ =[—1.1024, —4488, 1.5512, .7885, —1.2115, 2.3898, —.6102, 1.8217, —3.1783).

Let C be a g-inverse of the mixed model coefficient matrix, and T = I — WCW'R L.
Then

VCLT(é) = T(ZGEZ,QH ‘|— ZGTQZ/QH + ZGQQZ/QQQ + RTITH + RZQ’I“QQ)T/

702 =351 =351 —.038 —.038 .031 .038 0 O
Av6 176 019 019 —-.019 —-.019 0 O
A76 019 019 —-.019 —-.019 0 O
002 .002 —-.002 —-.002 0 O
= 002 —.002 —.002 0 O |gu
002 .002 0 O
002 0 O
0 0
0
—.131 .065 .065 489 489 —489 —.489 0 O
—.033 —.033 —.245 —-245 245 245 0 O
—.033 —.245 —.245 245 245 0 O
—.053 —.053 .053 .053 0 O
+ —.053 .03 .033 0 O | g
—.053 —.053 0 O
—-.053 0 0
0 0
0
006 —.003 —.003 —.045 —.045 .045 .045 0 0
002 .002 .023 .023 —-.023 —-.023 0 0
002 023 023 —.023 —.023 0 0
447 447 =226 —.226 —.221 —.221
+ 447 =226 —.226 —.221 —.221 | goo
A47 447 —221 —.221
A47 =221 =221
442 442
442
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D27 =263 —.263 —.029 —.029 029 029 0 O
632 —-369 .014 014 —-.014 —-.014 0 O
632 014 014 —-.014 —-014 0 O
002 002 —.002 —.002 0 O
+ 002 —.002 —.002 0 O |r1
002 002 0 O
002 0 O
0 0
0
.003 —-.002 —-.002 —-.023 —-.023 .023  .023 0 0
.001 .001 .011 .011 —-.011 -—-.011 0 0
.001 .011 .011 —-.011 —-.011 0 0
23 =277 —-113 —-.113 —.110 —.110
+ 723 =113 =113 —.110 —.110 | 7oo.

123 =277 —.110 —.110
7123 =110 —.110

721 =279

721

Taking the traces of products of Q1, Qa, Q3 with Var(a) and of Q4, Qs with Var(é)
we get the same expectations as in the La Motte method. Also the quadratics in i and
é are the same as the La Motte quadratics in (y — X3°).

If ug is included, the same quadratics and expectations are obtained. If g is included
and we compute the following quadratics in 1.

o O O
o O O

Wdg(111000)a, o

O OO = O
S oo~ OO

and ' dg (0, 0, 0, 1, 1, 1) & and equate to expectations we obtain exactly the same
estimates as in the other three methods. We also could have computed the following
quadratics in € rather than the ones used, namely

¢ dg(111000000)éande& dg(000111111)eé.

Also we could have computed an approximate MIVQUE by estimating ry; from within
sires in treatment 1 and ryy from within sires in treatment 2.

In most problems the ”error” variances and covariances contribute markedly to com-
putational labor. If no simplification of this computation can be effected, the La Motte
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quadratics might be used in place of quadratics in e. Remember, however, that \N/'_Nl is
usually a large matrix impossible to compute by conventional methods. But if R™!, G~
and (ZR7'Z + G™1)7! are relatively easy to compute one can employ the results,

V! = R!'-RIZ(ZR'Z+ G H)1ZR L

As already discussed, in most genetic problems simple quadratics in & can be derived
usually of the form
ﬁiﬁj or ﬁiA_lﬁj.
Then these might be used with the La Motte ones for the r;; rather than quadratics in e
for the r;;. The La Motte quadratics are in (y — X3°), the variance of y — X3° being

- XXV X)XV V[I- XXV IX)" X'V

Remember that V. # V in general, and V should be written in terms of Gij, Ti;j for
purposes of taking expectations.

15 Other Types Of MIVQUE

The MIVQUE estimators of this chapter are translation invariant and unbiased. La
Motte also presented other estimators including not translation invariant biased estimators
and translation invariant biased estimators.

15.1 Not translation invariant and biased

The LaMotte estimator of this type is
0 = 0, (y - XB)V 'y - XB)/(n +2),
where 9~, B, and V are priors. This can also be computed as
0 = 0, [y —XB)R™'(y - XB) - WZR™(y — XB)]/(n +2),

where

a=(ZR1'Z+ G H)'ZR(y - XB).
The lower bound on MSE of 6; is 202/(n + 2), when V, B are used as priors.
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15.2 Translation invariant and biased
An estimator of this type is
0 = 0: (y = XB°)V 'y - XB°)/(n —r+2).
This can be written as

0 YRy — (B°)XR 'y —ZR'y]/(n—1+2).

B° and u are solution to mixed model equations with G = G and R = R. The lower
bound on MSE of 6; is 267 /(n—r+2) when V is used as the prior for V. The lower bound
on 6; for the translation invariant, unbiased MIVQUE is 2d;, when d; is the i'* diagonal

of Gy Land the ij™ element of Gy is trWo VW,V for

W=V ! - VIX(X'V X)XV

The estimators of sections 15.1 and 15.2 have the peculiar property that 0; / éj = 0, / HNJ».
Thus the ratios of estimators are exactly proportional to the ratios of the priors used in

the solution.

16 Expectations Of Quadratics In &

Let some g-inverse of (5.51) with priors on G and R be

Cn G\ _[(GC
012 C22 - C2
Then & = Csyr, where r is the right hand vector of (5.51), and

E(&'Qa) = trQ Var(a)
= trQC,[Var(r)|C,.

-1 ~ . -
Var(r) = (é;R_ZlZ>G (ZR'X Z'R'ZG)

X'R! 51 5 1y &
4 ( 7R )R (R™X RZG).

When R = Io? and G = G,0?, & can be obtained from the solution to
X'X  X'ZG. g\ Xy
G.ZX GZ7G.+G. J\a | = \qzy )
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In this case Cs is the last g rows of a g-inverse of (79).

/ ~
Var(r) = < )ézzz ) G (ZX Z7G.)0

N XX  XZG, 2
G.ZX G.77G, | ¢
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Chapter 12
REML and ML Estimation

C. R. Henderson

1984 - Guelph

1 Iterative MIVQUE

The restricted maximum likelihood estimator (REML) of Patterson and Thompson
(1971) can be obtained by iterating on MIVQUE, Harville (1977). Let the prior value of g
and r be denoted by g, and ry. Then compute MIVQUE and denote the estimates by g;
and ry. Next use these as priors in MIVQUE and denote the estimates g, and ry. Continue
this process until gr.1 = g, and ry,; = rp. Several problems must be recognized.

1. Convergence may be prohibitively slow or may not occur at all.
2. If convergence does occur, it may be to a local rather than a global maximum.

3. If convergence does occur, g and r may not fall in the parameter space.

We can check the last by noting that both G, and R, must be positive definite or positive
semidefinite at convergence, where Gy and Ry, are

gin G122 .- 11 T12

g12  §22 T2 T22
g1z 9 and

For positive definitness or positive semidefiniteness all eigenvalues of G and Ry must be
non-negative. Writing a computer program that will guarantee this is not trivial. One
possibility is to check at each round, and if the requirement is not met, new starting
values are chosen. Another possibility is to alter some elements of G or R at each round
in which either G or R is not a valid estimator. (LRS note: Other possibilities are bending
in which eigenvalues are modified to be positive and the covariance matrix is reformed
using the new eigenvalues with the eigenvectors.)

Quadratic, unbiased estimators may lead to solutions not in the parameter space.
This is the price to pay for unbiasedness. If the estimates are modified to force them
into the parameter space, unbiasedness no longer can be claimed. What should be done



in practice? If the purpose of estimation is to accumulate evidence on parameters with
other research, one should report the invalid estimates, for otherwise the average of many
estimates will be biased. On the other hand, if the results of the analysis are to be
used immediately, for example, in BLUP, the estimate should be required to fall in the
parameter space. It would seem illogical for example, to reduce the diagonals of i in
mixed model equations because the diagonals of G™! are negative.

2 An Alternative Algorithm For REML

An alternative algorithm for REML that is considerably easier per round of iteration
than iterative MIVQUE will now be described. There is, however, some evidence that
convergence is slower than in the iterative MIVQUE algorithm. The method is based on
the following principle. At each round of iteration find the expectations of the quadratics
under the pretense that the current solutions to g and r are equal to g and r. This leads
to much simpler expectations. Note, however, that the first iterate under this algorithm
is not MIVQUE. This is the EM (expectation maximization) algorithm, Dempster et al.
(1977).

From Henderson (1975a), when g = gandr = r
Var(t) = G —Cy;. (1)
Var(¢) = R—WCW' =R -S. (2)
The proof of this is
Var(e) = Cov (e,€') = Cov[ly —- WCW'R'y),e] = R— WCW". (3)

A g-inverse of the mixed model coefficient matrix is

Coo Cor
= C.
( Cwo Cn >
Note that if we proceed as in Section 11.5 we will need only diagonal blocks of WCW’
corresponding to the diagonal blocks of R .

Var(a) = > > Gjg; — Cu (4)

1 j>t

See Chapter 11, Section 3 for definition of G*. Let C, S, 1, and € be the values computed
for the k'* round of iteration. Then solve in the k+1 round of iteration for values of g,r
from the following set of equations.

tTQlG = ﬁ/Qlﬁ + tTQ1C11



tTQbG = ﬂ/Qbﬁl -+ t’/’QbCH (5)
trQuiR = €Qué + trQuS

rQR = &Qé + trQ.S.

Note that at each round a set of equations must be solved for all elements of g , and
another set of all elements of r . In some cases, however, Q ’s can be found such that
only one element of g;; (or r;;) appears on the left hand side of each equation of (5). Note
also that if G~ appears in a Q; the value of Q; changes at each round of iteration. The
same applies to R~ appearing in Q; for é. Consequently it is desirable to find Q; that
isolate a single g;; or 7;; in each left hand side of (5) and that are not dependent upon G
and R. This can be done for the g;; in all genetic problems with which I am familiar.

The second algorithm for REML appears to have the property that if positive definite
G and R are chosen for starting values, convergence, if it occurs, will always be to positive
definite G and R. This suggestion has been made by Smith (1982).

3 ML Estimation

A slight change in the second algorithm for REML, presented in Section 2 results
in an EM type ML algorithm. In place of Cy; substitute (Z’R™'Z + G~1)~!. In place
of WCW’ substitute Z(Z'R™'Z + G~1)~'Z’. Using a result reported by Laird and Ware
(1982) substituting ML estimates of G and R for the corresponding parameters in the
mixed model equations yields empirical Bayes estimates of u . As stated in Chapter 8
the u are also ML estimates of the conditional means of u .

If one wishes to use the LaMotte type quadratics for REML and ML, the procedure
is as follows. For REML iterate on

trQ; > Vi = (y-Xp)Q;ly - Xp°) + trQ; X(X'V'X) X"

Q, are the quadratics computed by the LaMotte method described in Chapter 11. Also
this chapter describes the V7. Further, 8° is a GLS solution.

ML is computed in the same way as REML except that
trQ; X(X'V7'X)~X'is deleted.

The EM type algorithm converges slowly if the maximizing value of one or more param-
eters is near the boundary of the parameter space, eg. 62 — 0. The result of Hartley and
Rao (1967) can be derived by this general EM algorithm.



4 Approximate REML

REML by either iterative MIVQUE or by the method of Section 2 is costly because
every round of iteration requires a g-inverse of the mixed model coefficient matrix. The
cost could be reduced markedly by iterating on approximate MIVQUE of Section 11.7.
Further simplification would result in the R = Io? case by using the residual mean square
of OLS as the estimate of o2. Another possibility is to use the method of Section 2, but
with an approximate g-inverse and solution at each round of iteration. The properties of
such an estimation are unknown.

5 A Simple Result For Expectation Of Residual Sum
Of Squares

Section 11.13 shows that in a model with R = R,02, Var(u;) = G,o02, and
Cov(u,, u;) = 0, one of the quadratics that can be used is
y'R;'y — (soln. vector) (r.h.s. vector) (6)

with equations written as (77) in Chapter 11. R, and G,; are known. Thenif a = o02/02,
as is defined in taking expectations for the computations of Section 2, the expectation of
(6) is

[n — rank (X)]o?2. (7)

e

6 Biased Estimation With Few Iterations

What if one has only limited data to estimate a set of variances and covariances,
but prior estimates of these parameters have utilized much more data? In that case it
might be logical to iterate only a few rounds using the EM type algorithm for REML or
ML. Then the estimates would be a compromise between the priors and those that would
be obtained by iterating to convergence. This is similar to the consequences of Bayesian
estimation. If the priors are good, it is likely that the MSE will be smaller than those for
ML or REML. A small simulation trial illustrates this. The model assumed was

yz‘j = 6Xz] + a; + eij.

X' = (3,2,5,1,3,2,3,6,7,2,3,5,3,2).
n, = (3,2,4,5).

Var(e) = 41,

Var(a) = 1,



Cov(a,e’) = 0.

5000 samples were generated under this model and EM type REML was carried out with
starting values of 02/02 = 4, .5, and 100. Average values and MSE were computed for

rounds 1, 2, ...,9 of iteration.

Starting Value 02/02 = 4
5 2
Rounds | Av. MSE | Av. MSE | Av. MSE
1 3.98 237 1.00 22 1 4.18 .81
2 3.93 231 1.04 40 | 444 297
3 3.88 2311 1.10 701475 6.26
4 3.83 234|116 1.08]5.09 10.60
) 3.79 239|122 148|547 1597
6 3.77 2441 1.27 1.86 | 5.86 22.40
7 3.75 248|131 218 ]6.26 29.90
8 3.74 251|134 243 ]6.67 38.49
9 3.73 253|135 262|709 48.17

In this case only one round appears to be best for estimating o2 /02 .

Starting Value 02/02 = .5
O Oa b¢/0a
Rounds | Av. MSE | Av. MSE | Av. MSE
1 3.14 2421321 727|108 870
2 3.30 2371253 479|166 6.27
3 3.40 238220 4.05]222 5.11
4 3.46 241|201 3.77 275 523
5 3.51 243|183 3.64|328 6.60
6 3.55 245|179 358|378 9.20
7 3.57 247|173 354|428 12.99
8 3.60 249 |1.67 35147 1797
9 3.61 2511163 3.50]|5.23 24.11




Starting Value 62/62 = 100
R
Rounds | Av. MSE | Av. MSE | Av. MSE
1 476  4.40 | .05 911 .99 9011
476 439 | .05 90 | .98 8818
476 438 | .05 90 | 97 8638
475 437 .05 90 | .96 8470
475 435 | .05 90| .95 8315
475 4.34 | .05 90| .94 8172
475 432 | .05 90| .92 8042
474 431 | .06 891 91 7923
474  4.28 | .06 .89 | .90 7816

© 00 O T = W N

Convergence with this very high starting value of 02 /0?2 relative to the true value of 4 is
very slow but the estimates were improving with each round.

7 The Problem Of Finding Permissible Estimates

Statisticians and users of statistics have for many years discussed the problem of
"estimates” of variances that are less than zero. Most commonly employed methods
of estimation are quadratic, unbiased, and translation invariant, for example ANOVA
estimators, Methods 1,2, and 3 of Henderson, and MIVQUE. In all of these methods there
is a positive probability that a solution to one or more variances will be negative. Strictly
speaking, these are not really estimates if we define, as some do, that an estimate must
lie in the parameter space. But, in general, we cannot obtain unbiasedness unless we are
prepared to accept such solutions. The argument used is that such ”estimates” should
be reported because eventually there may be other estimates of the same parameters
obtained by unbiased methods, and then these can be averaged to obtain better unbiased
estimates.

Other workers obtain truncated estimates. That is, given estimates 62, ..., &2, with
say 6, < 0, the estimates are taken as 67, ..., 6z_;, 0. Still others revise the model so that
the offending variable is deleted from the model, and new estimates are then obtained of
the remaining variances. If these all turn out to be non-negative, the process stops. If
some new estimate turns negative, then that variance is dropped from the model and a

new set of estimates obtained.

These truncated estimators can no longer be defined as unbiased. Verdooren (1980) in
an interesting review of variance component estimation uses the terms ”permissible” and
"impermissible” to characterize estimators. Permissible estimators are those in which the
solution is guaranteed to fall in the parameter space, that is all estimates of variances are



non-negative. Impermissible estimators are those in which there is a probability greater
than 0 that the solution will be negative.

If one insists on permissible estimators, why not then use some method that guaran-
tees this property while at the same time invoking, if possible, other desirable properties
of estimators such as consistency, minimum mean squared error, etc.? Of course unbiased-
ness cannot, in general, be invoked. For example, an algorithm for ML, Henderson (1973),
guarantees a permissible estimator provided convergence occurs. A simple extension of
this method due to Harville (1977), yields permissible estimators by REML. The problem
of permissible estimators is especially acute in multiple trait models. For example, in a
two trait phenotypic model say

Yij = Hit ey
Yaj M2 1 €2

we need to estimate

Var ( €1y ) = ( cn ) .11 >0, c0 >0, cp1099 > c?z.
Ci2 C22

The last of these criteria insures that the estimated correlation between e;; and ey; falls
in the range -1 to 1. The literature reporting genetic correlation estimates contains many
cases in which the criteria are not met, this in spite of probable lack of reporting of many
other sets of computations with such results. The problem is particularly difficult when
there are more than 2 variates. Now it is not sufficient for all estimates of variances to
be non- negative and all pairs of estimated correlations to fall in the proper range. The
requirement rather is that the estimated variance-covariance matrix be either positive
definite or at worst positive semi-definite. A condition guaranteeing this is that all latent
roots (eigenvalues) be positive for positive definiteness or be non-negative for positive
semidefiteness. Most computing centers have available a good subroutine for computing
eigenvalues. We illustrate with a 3 x 3 matrix in which all correlations are permissible,
but the matrix is negative definite.

3 -3 4
-3 4 4
4 4 6

The eigenvalues for this matrix are (9.563, 6.496, -3.059), proving that the matrix is
negative definite. If this matrix represented an estimated G for use in mixed model
equations, one would add G~! to an appropriate submatrix, of OLS equations, but

—.042 —.139  .147
G! = —.011 126 |,
—.016

so one would add negative quantities to the diagonal elements, and this would make no
sense. If the purpose of variance-covariance estimation is to use the estimates in setting
up mixed model equations, it is essential that permissible estimators be used.

7



Another difficult problem arises when variance estimates are to be used in estimating
h?. For example, in a sire model, an estimate of h? often used is

h* = 463/(67 + &2).

S S

By definition 0 < h? < 1, the requirement that 62 > 0 and 62 > 0 does not insure

that A2 is permissible. For this to be true the permissible range of 62/62 is 0 to 371, This
would suggest using an estimation method that guarantees that the estimated ratio falls
in the appropriate range.

In the multivariate case a method might be derived along these lines. Let some
translation invariant unbiased estimator be the solution to

Cv = q,

where q is a set of quadratics and Cv is E(q). Then solve these equations subject to a set
of inequalities that forces v to fall in the parameter space, as a minimum, all eigenvalues
> 0 where v comprises the elements of the variance-covariance matrix.

8 Method For Singular G

When G is singular we can use a method for EM type REML that is similar to
MIVQUE in Section 11.16. We iterate on &' Gjé, and the expectation is trG; Var(d).
Under the pretense that G = G and R = R

Var(aé) = GTGG™ — Ca.

Cy;, is the lower ¢* submatrix of a g-inverse of the coefficient matrix of (5.51), which has
rank, 7(X) + r(G). Use a g-inverse with g—rank(G) rows (and cols.) zeroed in the last ¢
rows (and cols.). Let G~ be a g-inverse of G with the same ¢—rank(G) rows (and cols.)
zeroed as in Cy,. For ML substitute (GZ'R™ZG)~ for Ca.



Chapter 13
Effects of Selection

C. R. Henderson

1984 - Guelph

1 Introduction

The models and the estimation and prediction methods of the preceding chapters
have not addressed the problem of data arising from a selection program. Note that
the assumption has been that the expected value of every element of u is 0. What if u
represents breeding values of animals that have been produced by a long-time, effective,
selection program? In that case we would expect the breeding values in later generations
to be higher than in the earlier ones. Consequently the expected value of u is not really 0
as assumed in the methods presented earlier. Also it should be noted that, in an additive
genetic model, Ao? is a correct statement of the covariance matrix of breeding values if no
selection has taken place and o2 = additive genetic variance in an unrelated, non-inbred,
unselected population. Following selection this no longer is true. Generally variances are
reduced and the covariances are altered. In fact, there can be non-zero covariances for
pairs of unrelated animals. Further, we often assume for one trait that Var(e) = Io2.
Following selection this is no longer true. Variances are reduced and non-zero covariances
are generated. Another potentially serious consequence of selection is that previously
uncorrelated elements of u and e become correlated with selection. If we know the new
first and second moments of (y,u) we can then derive BLUE and BLUP for that model.
This is exceedingly difficult for two reasons. First, because selection intensity varies from
one herd to another, a different set of parameters would be needed for each herd, but
usually with too few records for good estimates to be obtained. Second, correlation of u
with e complicates the computations. Fortunately, as we shall see later in this chapter,
computations that ignore selection and then use the parameters existing prior to selection
sometimes result in BLUE and BLUP under the selection model. Unfortunately, com-
parable results have not been obtained for variance and covariance estimation, although
there does seem to be some evidence that MIVQUE with good priors. REML, and ML
may have considerable ability to control bias due to selection, Rothschild et al. (1979).
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2 An Example of Selection

We illustrate some effects of selection and the properties of BLUE, BLUP, and OLS
by a progeny test example. The progeny numbers were distributed as follows

Treatments

Sires 1 2
1 10 500

2 10 100

3 10 0

4 10 0

We assume that the sires were ranked from highest to lowest on their progeny averages in
Period 1. If that were true in repeated sampling and if we assume normal distributions,
one can write the expected first and second moments. Assume unrelated sires, 0% = 15,
02 =1 under a model,

Yijk = Si + Pj t Cijk

With no selection

Y11 p1 25 0 0 0 1 0

Yo1 1 25 0 0 0 1

Y31 P1 25 0 0 0
Foll L Var =

i m ar 25 0 0

Y12 D2 1.03 0

Y22 D2 L.15

With ordering of sires according to first records the corresponding moments are

1.628 + p 1.229 614 .395 262 .492 .246
460 + p 901 500 395 .246 .360
—460 + p 901 614 .158 .236
1628 + p | M0 1.229 105 .158
651 + py 827 .08
184 + po 804

Further, with no ordering E(s) = 0,Var(s) = I. With ordering these become

651 797 098 063 .042
184 744094 063
_ 184 | and 744 098
— 651 797

These results are derived from Teicheroew (1956), Sarhan and Greenberg (1956), and
Pearson (1903).
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Suppose p; = 10, po = 12. Then in repeated sampling the expected values of the

6 subclass means would be
11.628 12.651

10.460 12.184
9.540 ——
8372 ——

Applying BLUE and BLUP, ignoring selection, to these expected data the mixed model
equations are

40 0 10 10 10 10 D1 400.00
600 500 100 0O O D2 7543.90
925 0 0 0 51 - 6441.78

125 0 0 59 N 1323.00

25 0 S3 95.40

25 S4 83.72

The solution is [10.000, 12.000, .651, .184, —.184, —.651], thereby demonstrating
unbiasedness of p and 8. The reason for this is discussed in Section 13.5.1.

In contrast the OLS solution gives biased estimators and predictors. Forcing > §; =
0 as in the BLUP solution we obtain as the solution

[10.000, 11.361, 1.297, .790, —.460,—1.628).

Except for p; these are biased. If OLS is applied to only the data of period 2, s7 — s is
an unbiased predictor of s; — so. The equations in this case are

600 500 100 D5 7543.90
500 500 0 57 = | 6325.50
100 0 100 59 1218.40

A solution is [0, 12.651, 12.184]. Then s — s§ = .467 = E(s; — s2) under the selection
model. This result is equivalent to a situation in which the observations on the first period
are not observable and we define selection at that stage as selection on u, in which case
treating u as fixed in the computations leads to unbiased estimators and predictors. Note,
however, that we obtain invariant solutions only for functions that are estimable under a
fixed u model. Consequently p, is not estimable and we can predict only the difference
between s; and ss.

3 Conditional Means And Variances

Pearson (1903) derived results for the multivariate normal distribution that are ex-
tremely useful for studying the selection problem. These are the results that were used in

3
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the example in Section 13.2. We shall employ the notation of Henderson (1975a), similar
to that of Lawley (1943), rather than Pearson’s, which was not in matrix notation. With
no selection [v, v,] have a multivariate normal distribution with means,

’ ’ Vi - Cll Cl2
(ul uQ), and Var<v2>—<c/12 ng)’ (1)

Suppose now in conceptual repeated sampling vy is selected in such a way that it has
mean = o + k and variance = C,. Then Pearson’s result is

E. < A4 ) _ ( 11+ Ci2Ci’k > ' 2)
\& p2 + k
Vi o Cn— Clzcocllg C12C3, C;
Vars ( Vo ) - < C50521012 Cs ) (3)

where Cy = Csy (Cay — C,)Cyy. Henderson (1975) used this result to derive BLUP
and BLUE under a selection model with a multivariate normal distribution of (y,u,e)
assumed. Let w be some vector correlated with (y,u). With no selection

y X3
u 0
E e N o |’ (4)
w d
y \% ZG R B
u GZ G 0 B,
Var o = R 0 R B, |’ (5)
w B B, B L H
and
V = ZGZ +R, B=Z2B, + B..
Now suppose that in repeated sampling w is selected such that E(w) = s # d, and
Var(w) = H,. Then the conditional moments are as follows.
y X3 + Bt
w S
where t = H™ (s —d).
y V-BHB ZG-BHB' BH 'H,
Var | uw | = | GZ -BHB' G-B,H;B, B,H'H, |, (7)
w HH'B H,H'B, H,

where Hy = H'(H - H,)H'.



4 BLUE And BLUP Under Selection Model

To find BLUE of K'3 and BLUP of u under this conditional model, find linear
functions that minimize diagonals of Var(K’'@) and variance of diagonals of (1 — u)
subject to

E(K'B’) = K'8 and E(u) = B,t.

This is accomplished by modifying GLS and mixed model equations as follows.
X'V-1X X'V-'B B° X'V-1iy
N—1 -1 0 = N—1 (8>
B'V—'X B'V'B t B'V-'ly
BLUP of k'3 + m'u is
k'3° +m'B,t° + m'GZ (y — X3° — Bt°).
Modified mixed model equations are
( XR'X XR'Z X'R'B, )

ZR'X ZR1'Z+G! ZR'B.-G !B,
B_R'X B_R'Z'B,G' B_,R'B,+B,G'B,

/60
( u’ ) = ( X'R'y ZR 'y BRly >/. 9)
tO

BLUP of k'8 + m'u is k'3’ + m’u®. In equations (8) and (9) we use u® rather than
because the solution is not always invariant. It is necessary therefore to examine whether
the function is predictable. The sampling and prediction error variances come from a
g-inverse of (8) or (9). Let a g-inverse of the matrix of (8) be

C}l Cl?
Cp Cxn )’

Var(K'8°) = K'CyK. (10)

Let a g-inverse of the matrix of (9) be

C/ll Cl2 013
C12 C22 CZS )

then

Ci; Cy Cu
Then
Var(K'8°) = K'CuK. (11)
Cov(K'B°, 1—u) = K'Cy,. (12)
Var(@—u) = Cap. (13)
Cov(K'B°, W) = K'C;3B,. (14)
Var(d) = G — Cy + CyB, +B,C,; — B,HB,,. (15)

5



Note that (10), ..., (13) are analogous to the results for the no selection model, but (14)
and (15) are more complicated. The problems with the methods of this section are that
w may be difficult to define and the values of B,, and B, may not be known. Special cases
exist that simplify the problem. This is true particularly if selection is on a subvector
of y, and if estimators and predictors can be found that are invariant to the value of 3
associated with the selection functions.

5 Selection On Linear Functions Of y

Suppose that whatever selection has occurred has been a consequence of use of the
record vector or some subvector of y. Let the type of selection be described in terms of
a set of linear functions, say L'y, such that

E(l'y) = L'XB +t,
where t # 0. t would be 0 if there were no selection.
Var(L'y) = Hs.
Let us see how this relates to (9).
B, = GZL, B. = RL, H = L'VL.

Substituting these values in (9) we obtain

XRIX  XR'Z X'L B° X'R-ly
ZR'X ZR'Z+G! 0 a | = zZrly |. (16)
L'X 0 L'VL 6 L'y

5.1 Selection with L'X = 0

An important property of (16) is that if L'X = 0, then u is a solution to the mixed
model equations assuming no selection. Thus we have the extremely important result
that whenever L'X = 0, BLUE and BLUP in the selection model can be computed by
using the mixed model equations ignoring selection. Our example in Section 2 can be
formulated as a problem with L'X = 0. Order the observations by sires within periods.
Let

y = [@lu.a glzl.v y_éln ?3211.7 g/12.7 ?j22.]‘

According to our assumptions of the method of selection

Y11, > Yo1. > Y31, > Ya.



Based on this we can write

L' = 0/10 110 _110 0;510

020 110 _110 0600

where
17, denotes a row vector of 10 one's.
040 denotes a null row vector with 620 elements, etc.
It is easy to see that L'X = 0, and that explains why we obtain unbiased estimators

and predictors from the solution to the mixed model equations.

Let us consider a much more general selection method that insures that L'X = 0.
Suppose in the first cycle of selection that data to be used in selection comprise a subvector
of y, say ys. We know that X3, consisting of such fixed effects as age, sex and season,
causes confusion in making selection decisions, so we adjust the data for some estimate of
X3, say X,3° so the data for selection become y,—X,3°. Suppose that we then evaluate
the it" candidate for selection by the function a;(y, — X,3°). There are ¢ candidates for
selection and s of them are to be selected. Let us order the highest s of the selection
functions with labels 1 for the highest, 2 for the next highest, etc. Leave the lowest ¢ — s
unordered. Then the animals labelled 1, ..., s are selected, and there may, in addition,
be differential usage of them subsequently depending upon their rank. Now express these
selection criteria as a set of differences, of a’(ys — X,3°),

1-2,2-3,(s=1)—s, s—(s+1),..., s—c.

Because X,3° is presumably a linear function of y these differences are a set of linear
functions of y, say L'y. Now suppose 3° is computed in such a way that F(X;3°) = X3
in a no selection model. (It need not be an unbiased estimator under a selection model,
but if it is, that creates no problem). Then L'X will be null, and the mixed model
equations ignoring selection yield BLUE and BLUP for the selection model. This result
is correct if we know G and R to proportionality. Errors in G and R will result in biases
under a selection model, the magnitude of bias depending upon how seriously G and R
depart from G and R and upon the intensity of selection. The result also depends upon
normality. The consequences of departure from this distribution are not known in general,
but depend upon the form of the conditional means.

We can extend this description of selection for succeeding cycles of selection and
still have L'’X = 0. The results above depended upon the validity of the Pearson result
and normality. Now with continued selection we no longer have the multivariate normal
distribution, and consequently the Pearson result may not apply exactly. Nevertheless
with traits of relatively low heritability and with a new set of normally distributed errors
for each new set of records, the conditional distribution of Pearson may well be a suitable
approximation.



6 With Non-Observable Random Factors

The previous section deals with strict truncation selection on a linear function of
records. This is not entirely realistic as there certainly are other factors that influence
the selection decisions, for example, death, infertility, undesirable traits not recorded
as a part of the data vector, y. It even may be the case that the breeder did have
available additional records and used them, but these were not available to the person or
organization attempting to estimate or predict. For these reasons, let us now consider a
different selection model, the functions used for making selection decision now being

a; (y —XB8% + «

where «; is a random variable not observable by the person performing estimation and
prediction, but may be known or partially known by the breeder. This leads to a definition
of w as follows

w = L'y +86.
Cov(y,w') = B =VL+ C, where C = Cov(y, 8"). (17)
Cov(u,w') = B, =GZL+ C,, where C, = Cov(u,8') (18)
Cov(e,w') = B.,=RL+ C,, where C, = Cov(e, 8'). (19)
Var(w) = L'VL+L'C+ CL+ Cy, where Cy = Var(0). (20)
Applying these results to (9) we obtain the modified mixed model equations below)
X'R1X X'R™1Z X'L+XR!C,
ZR'X ZR'Z+G™! ZR'C.-G'C,
L'’X+CR'X CR'Z+C,G" v
ﬁo X/Rfly
a | = | zr Yy , (21)
6 L'y + C.R 'y

where p = L'VL+ C.R7'C, + C,G™'C, + L'C + C'L.

Now if I’X = 0 and if @ is uncorrelated with u and e, these equations reduce
to the regular mixed model equations that ignore selection. Thus the non-observable
variable used in selection causes no difficulty when it is uncorrelated with u and e. If
the correlations are non-zero, one needs the magnitudes of C., C, to obtain BLUE and
BLUP. This could be most difficult to determine. The selection models of Sections 5 and
6 are described in Henderson (1982).



7 Selection On A Subvector Of y

Many situations exist in which selection has occurred on y;, but y, is unselected,
where the model is
yi X168 Zju e
= + + ,
<Y2> <X25> <Z2u> <62>
Var €1 _ Rii Raio
€2 Ri2 Ro |

Presumably y; are data from earlier generations. Suppose that selection which has oc-

curred can be described as
L/y:(M/ 0)(}’1 >
Yo

Then the equations of (16) become

X'R X X'R'Z XM B° X'Rly
ZR'X ZR'Z+G! 0 a = | ZRly (22)
M,X1 0 M’VHM 0 MIY1

Then if M'X; = 0, unmodified mixed model equations yield unbiased estimators and
predictors. Also if selection is on M'y; plus a non-observable variable uncorrelated with
u and e and M'X; = 0, the unmodified equations are appropriate.

Sometimes y; is not available to the person predicting functions of 8 and u. Now if
we assume that Ris = 0,

E(ys | M'y)) = Z,GZ,Mk.
E(u|MYy,) = GZ,Mk,

where
k = MV, M)t

t being the deviation of mean of M'y; from X/1 3. If we solve for 8° and u® in the equations
(23) that regard u as fixed for purposes of computation, then

EK'B°+Tu|=K'B+ E[T'u | M'y,]

provided that K'8 + T'u is estimable under a fixed u model.

)(/;R§21X2 X:2R521Z2 B° _ X:2R521Y2 ‘ (23>
ZoRy Xy ZoRyy 7 u’ Z,R5, y>



This of course does not prove that K'3° + T'u® is BLUP of this function under M'y,
selection and utilizing only ys. Let us examine modified mixed model equations regarding
y2 as the data vector and M'y; = w. We set up equations like (21).

B, = Cov[eg,y/lM] = 0 if we assume R, = 0.
B, = Cov(u,y,M)=GZ M.

Then the modified mixed model equations become

X;5R5) X X,R55 Zo q B° X Ry
7R3 Xy ZoRyy Zo + G ~Z,M w | =| ZRyy, |- (24)
0 ~M'Z, M'Z,GZ,M 0 0

A sufficient set of conditions for the solution to 3% and u° in these equations being equal
to those of (23) is that M’ =T and Z; be non-singular. In that case if we "absorb” 8 we
obtain the equations of (23).

Now it seems implausible that Z; be non-singular. In fact, it would usually have
more rows than columns. A more realistic situation is the following. Let y; be the mean
of smallest subclasses in the y; vector. Then the model for y; is

y1=Xi18+Zju+ey.

See Section 1.6 for a description of such models. Now suppose selection can be described
as Iy;. Then

Be = 0 if R12:0, and
Bu - Zl-

Then a sufficient condition for GLS using y» only and computing as though u is fixed
to be BLUP under the selection model and regarding y, as that data vector is that Z;
be non-singular. This might well be the case in some practical situations. This is the
selection model in our sire example.

8 Selection On u

Cases exist in animal breeding in which the data represent observations associated
with u that have been subject to prior selection, but with the data that were used for such
selection not available. Henderson (1975a) described this as L'u selection. If no selection
on the observable y vector has been effected, BLUE and BLUP come from solution to
equations (25).

XR'X XRZ 0 B’ XRy
ZR'X ZR'Z+G' L w | = | ZR Yy (25)
0 -L L'GL ) \ 6 0

10



These reduce to (26) by ”absorbing” 6.
X'R™'X XR'Z g\ _ ( XRly (26)
ZR'X ZR'Z+ G- L(ILGL)"'LY u’ N ZR 'y
The notation u’ is used rather than i since the solution may not be unique, in which
case we need to consider functions of u°® that are invariant to the solution. It is simple

to prove that K'3° + M'u® is an unbiased predictor of K'3 4+ M'u, where 8° and u® are
some solution to (27) and this is an estimable function under a fixed u model

X'R'X X'R'Z B° X'Rly
-1 -1 o = R -1 : (27>

ZRX ZR 'Z u Z'R'y
A sufficient condition for this to be BLUP is that L = I. The proof comes by substituting
I for L in (26). In sire evaluation L’'u selection can be accounted for by proper grouping.

Henderson (1973) gave an example of this for unrelated sires. Quaas and Pollak (1981)
extended this result for related sires. Let G = Ag?. Write the model for progeny as

y=Xh+ZQg+ZS +e,

where h refers to fixed herd-year-season and g to fixed group effects. Then it was shown
that such grouping is equivalent to no grouping, defining L = G™'Q, and then using (25).
We illustrate this method with the following data.

group | sire | n; | ¥;
1 1 2 110
2 | 3|12
3 1 7
2 4 | 2| 6
5 | 3| 8
3 6 1 3
7T 121 5
8 1 2
9 | 2| 8
10 5 5 0 .25 .25 0 .125
10 0 50 0 25 0
1 25 0 .5 A25 0 .25
10 .125 .5 0 .0625
A = 1 0 0 50
1 0625 0 5
1 0 .03125
1 0
1

11



Assume a model y;jx = p + ¢ + sij + eyp. Let 02 = 1, 02 = 127 then G = 127'A.
The solution to the mixed model equations with y dropped is

g = (4.8664, 2.8674, 2.9467),
§ = (.0946, —.1937, .1930, .0339, —.1350, .1452, —.0346, —.1192, .1816).

The sire evaluations are §; + §;; and these are (4.961, 4.673, 5.059, 2.901, 2.732, 3.092,
2.912, 2.827, 3.128).

111000000
Q = (000110000
000O0O0T1T1T1°1
This gives
12 16 12 -8 -8 -8 0 0 0
L = -8 -8 0 20 20 0 -8 -8 0 |=G'Q,
0 0 -8 -8 -8 12 16 16 8
and
40 —16 -8
L'GL = 40 —16
52

Then the equations like (25) give a solution
©°e = 2.9014,
s® = (2.0597, 1.7714, 2.1581, 0,—.1689, .1905, .0108, —.0739, .2269),
0 = (1.9651, —.0339, .0453).

The sire evaluation is ;1 + s7 and this is the same as when groups were included.

9 Inverse Of Conditional A Matrix

In some applications the base population animals are not a random sample from some
population, but rather have been selected. Consequently the additive genetic variance-
covariance matrix for these animals is not 021, where o2 is the additive genetic variance in
the population from which these animals were were taken. Rather it is Aso2,, where o2,
# o2 in general. If the base population had been a random sample from some population,

the entire A matrix would be
/ ) 28
( Ap A ) (28)
12



The inverse of this can be found easily by the method described by Henderson (1976).
Denote this by

Cu Cyp
, i 29
( Cp Ca (29)
If the Pearson result holds, the A matrix for this conditional population is
A, A (30)
The inverse of this matrix is
Cs CIQ
; : 31
( Cp Ca ) (31
where C, = A;!— Cj,A),, (32)

and Cig, Caqy are the same as in (29)

Note that most of the elements of the inverse of the conditional matrix (31) are the
same as the elements of the inverse of the unconditional matrix (29). Thus the easy
method for A~! can be used, and the only elements of the unconditional A needed are
those of Ajs. Of course this method is not appropriate for the situation in which A; is
singular. We illustrate with

1.0 0 2 3 1

1.0 1 2 2

unconditional A = 1.1 3 5
1.2 2

1.3

The first 2 animals are selected so that

7 -4
As = (—.4 .8)'

Then by (30) the conditional A is

T -4 1 13 —.01
8 0 .04 12
1.07 .25 AT

1.117 151

1.273

The inverse of the unconditional A is

1.103168  .064741 —.136053 —.251947 —.003730
1.062405  .003286 —.170155 —.143513

1.172793 —.191114 —.411712

977683 —.031349

945770

13



The inverse of the conditional A is

2.103168 1.064741 —.136053 —.251947 —.003730
1.812405  .003286 —.170155 —.143513

1.172793 —.191114 —.411712

977683 —.031349

954770
Al _ (20 10 C. _ ( —136053 —.251047 —.003730
s 1.0 175 )0 2T 003286 —.170155 —.143513 )~
2 1
A, = | 3 2],
1 .2

and

1.812405

which checks with the upper 2 x 2 submatrix of the inverse of conditional A.

_ / 2.103168 1.064741
A’S 1 - ClQA.12 - ( > )

10 Minimum Variance Linear Unbiased Predictors

In all previous discussions of prediction in both the no selection and the selection
model we have used as our criteria linear and unbiased with minimum variance of the
prediction error. That is, we use a'y as the predictor of k'3 + m’u and find a that
minimizes F(a'y — k/3 — m'u)? subject to the restriction that E(a’y) = k'8 + E(m'u).
This is a logical criterion for making selection decisions. For other purposes such as
estimating genetic trend one might wish to minimize the variance of the predictor rather
than the variance of the prediction error. Consequently in this section we shall derive a
predictor of k'@ + m'u, say a’y, such that F(a'y) = k'3 + E(m'u) and has minimum
variance. For this purpose we use the L'y type of selection described in Section 5. Let

E(l'y) = L'XB+t, t#£0.
Var(L'y) = H#L'VL.

Then

E(y |Ly) = X8+ VL(L'VL) 't = X3+ VLd.
Eu|Ly) = GZL(L'VL) 't = GZ'Ld.
Var(y | L'y) = V- VL(L'VL) L'V - H,)(L'VL)"'L'V = V..

Then we minimize Var(a'y) subject to E(a'y) = k'3 + m'GZ'Ld. For this expectation
to be true it is required that

X'a = kand L'Va = L'ZGm.

14



Therefore we solve equations (33) for a.

V, X VL a 0
X' 0 0 0 | = k (33)
L'V 0 0 é L'ZGm

Let a g-inverse of the matrix of (33) be
C/11 Ciz Cy
Cp, Cp Cay |. (34)
Ciz Cy Css

Then
a = KC,+m'GZLC,,.

But it can be shown that a g-inverse of the matrix of (35) gives the same values of
Ci1, Cqa, Cy3. These are subject to L'X = 0,

Ch, = VI- VXXV X)XV -LLV1 L.
Cp = VXXV 'X)™? C;=LLVL)'L.

Consequently we can solve for a in (35), a simpler set of equations than (33).

V X VL a 0
X 00 6 | = k . (35)
L'V 0 0 é L'ZGm

By techniques described in Henderson (1975) it can be shown that
ay = kKB3°+m'GZ'Lt°
where 3°, t° are a solution to (36).
XR'X  XRZ 0 3° X'Rly
ZR'X ZR'Z+G' 0 a | = zry |. (36)
0 0 L'VL | \ t° L'y

Thus 3° is a GLS solution ignoring selection, and t° = (L/VL) 'L’y. It was proved in
Henderson (1975a) that

Var(K'8°) = K'(X'V'X)"K = K'C K,
Cov(K'B°, t') = 0, and
Var(t) = (L'VL)'H,(L'VL)™".

Thus the variance of the predictor, K'3° + m’'u, is

K'CuK + M'GZ'L(L'VL) 'H,(L'VL) 'L'ZGM. (37)
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In contrast to BLUP under the L'y (L'X = 0) selection model, minimization of
prediction variance is more difficult than minimization of variance of prediction error
because the former requires writing a specific L matrix, and if the variance of the predictor
is wanted, an estimate of Var(L'y) after selection is needed.

We illustrate with the following example with phenotypic observations in two gener-
ations under an additively genetic model.

Time
1 2
Y11 Y24
Y12 Y25
Y13 Y26

The model is

Yij = ti + a; + ey

1005 5 0
100 0 5

10 0 0

Var(a) = 1 25 0
1 0

1

This implies that animal 1 is a parent of animals 4 and 5, and animal 2 is a parent of
animal 6. Let Var(e) = 2Ig. Thus h* = 1/3. We assume that animal 1 was chosen to have
2 progeny because y11 > y12. Animal 2 was chosen to have 1 progeny and animal 3 none
because 312 > y13. An L matrix describing this type of selection and resulting in L'X = 0

is
1 -1 0000
0 1 -100 0]/

3'(-1 -1 -1111u

Suppose we want to predict

This would be an estimate of the genetic trend in one generation. The mixed model

16



coefficient matrix modified for L'y is

1.5 0 5 5 ) 0 0 0 0 0
1.5 0 0 0 ) ) 5 0 O
2.1667 0 0 —.6667 —.6667 0 0 O

1.8333 0 0 0 —.6667 0 0

1.5 0 0 0 0 0

1.8333 0 0 0 0

1.8333 0 0 0

1.8333 0 0

6 —3

6

!

The right hand sides are ( X'R 'y ZR'y Ly ) . Then solving for functions of y it
is found that BLUP of m'u is

(.05348 .00208 — .05556 .00623 .00623 — .01246)y.
In contrast the predictor with minimum variance is
[.05556 0 —.05556 0 0 0 ]y.

This is a strange result in that only 2 of the 6 records are used. The variances of these
two predictors are .01921 and .01852 respectively. The difference between these depends
upon Hj relative to L'VL. When H, = L'VL, the variance is .01852.

As a matter of interest suppose that t is known and we predict using y — X3. Then
the BLUP predictor is

(—.02703 — .06667 — .11111.08108.08108.08108)(y — X3)

with variance = .09980. Note that the variance is larger than when X/ is unknown. This is
a consequence of the result that in both BLUP and in selection index the more information
available the smaller is prediction error variance and the larger is the variance of the
predictor. In fact, with perfect information the variance of (m't) is equal to Var(m'u)
and the variance of (m'u — m’t) is 0. The minimum variance predictor is the same when
t is known as when it is unknown. Now we verify that the predictors are unbiased in the
selection model described. By the Pearson result for multivariate normality,

12 6 10
-6 6 10
1| =6 -2 | (& 10| ([t
Eod=% | 2 1 <d2>+ 01 <t2>’
2 1 0 1
-1 1 01

17



and

4 2
-2 2
I U R
2 1
—1 1

It is easy to verify that all of the predictors described have this same expectation. If
t = 3 were known, a particularly simple unbiased predictor is

3T (-1-1-1111) (y —XB).

But the variance of this predictor is very much larger than the others. The variance is
1.7222 when H, = L'VL.

18



Chapter 14
Restricted Best Linear Prediction

C. R. Henderson

1984 - Guelph

1 Restricted Selection Index

Kempthorne and Nordskog (1959) derived restricted selection index. The model and
design assumed was that the record on the j* trait for the i animal is

!
Yij = XijIB + Uij + €ij-

Suppose there are n animals and ¢ traits. It is assumed that every animal has observations
on all traits. Consequently there are nt records. Further assumptions follow. Let u; and
e; be the vectors of dimension t x [ pertaining to the i** animal. Then it was assumed
that

Var(w;)) = Goforali=1,...,n,
Var(e;)) = Roforalli=1,... n,
Cov(u;, u;) = 0 for all i#j,
Cov(e;, e;-) = 0 for all i#],
)

= 0 for all i,j.

Further u, e are assumed to have a multivariate normal distribution and 3 is assumed
known. This is the model for which truncation on selection index for m’u; maximizes the
expectation of the mean of selected m'u;, the selection index being the conditional mean
and thus meeting the criteria for Cochran’s (1951) result given in Section 5.1.

Kempthorne and Nordskog were interested in maximizing improvement in m’u; but
at the same time not altering the expected value of Cyu; in the selected individuals, C,
being of dimension sxt and having s linearly independent rows. They proved that such a
restricted selection index is
ay”,

where y* = the deviations of y from their known means and a is the solution to

(& )06) - (%)



This is a nice result but it depends upon knowing B and having unrelated animals and
the same information on each candidate for selection. An extension of this to related
animals, to unequal information, and to more general designs including progeny and sib
tests is presented in the next section.

2 Restricted BLUP

We now return to the general mixed model
y = XB+Zu+e,

where 3 is unknown, Var(u) = G, Var(e) = Rand Cov(u,e’) = 0. We want to predict
k'3 +m’u by a'y where a is chosen so that a’y is invariant to 3, Var(a'y — k'8 —m'u) is
minimum, and the expected value of C'u given a’y = 0. This is accomplished by solving
mixed model equations modified as in (2) and taking as the prediction k'3° + m'u.

X'RX X'R™Z X'R'ZGC

ZR'X ZR1'Z+G! ZR'ZGC
CGZR'X CGZR'Z C'GZR'ZGC

,60 XIR—ly
a | = zRr'y . (2)
0 C'GZ' Ry

It is easy to prove that C'tt = 0. Premultiply the second equation by C'G and subtract
from this the third equation. This gives C'tu = 0.

3 Application

Quaas and Henderson (1977) presented computing algorithms for restricted BLUP
in an additively genetic model and with observations on a set of correlated animals. The
algorithms permit missing data on some or all observations of animals to be evaluated.
Two different algorithms are presented, namely records ordered traits within animals and
records ordered animals within traits. They found that in this model absorption of 6
results in a set of equations with rank less than r 4 ¢, the rank of regular mixed model
equations, where r = rank (X) and ¢ = number of elements in u. The linear dependencies
relate to the coefficients of B8 but not of u. Consequently 0 is unique, but care needs to
be exercised in solving for 8° and in writing K’'3 + m’u, for K’3 must now be estimable
under the augmented mixed model equations.



Chapter 15
Sampling from finite populations

C. R. Henderson

1984 - Guelph

1 Finite e

The populations from which samples have been drawn have been regarded as infinite
in preceding chapters. Thus if a random sample of n is drawn from such a population
with variance o2, the variance-covariance matrix of the sample vector is I,0%. Suppose in
contrast, the population has only ¢ elements and a random sample of n is drawn. Then
the variance-covariance matrix of the sample is

1 —1/(t—-1)
o2 (1)
—-1/(t—1) 1

If t = n, that is, the sample is the entire population, the variance-covariance matrix is

singular. As an example, suppose that the population of observations on a fixed animal
is a single observation on each day of the week. Then the model is

yi = pte (2)
1 —1/6 -~ —1/6

Var(e;) = _15/6 1 _12/6 o’ (3)
~1/6 —1/6 1

Suppose we take n random observations. Then BLUE of p is

~

po=y,
and
7T—n
Var(p) = 2,
w(i) = "o
which equals 0 if n = 7. In general, with a population size, ¢, and a sample of n,
t—n
1% ) = ——— 0°
ar (f1) w1



which goes to 02/n when t goes to infinity, the latter being the usual result for a sample
of n from an infinite population with Var = Io?.

Suppose now that in this same problem we have a random sample of 3 unrelated
animals with 2 observations on each and wish to estimate p and to predict a when the
model is

Yij = Ktait ey,
Var(a) = I,
1 -1/6 0 0 0 0
-1/6 1 0 0 0 0
B 0 0 1 -1/6 0 0
Varle) = 61 0 -1/6 1 0 0
0 0 0 0 1 -1/6
0 0 0 0 —1/6 1
Then
6 1 00 00
16 00 0O
1 006 100
R = 0016 00 /35.
0 00O0G6G1
000O0T1®6
The BLUP equations are
1.2 4 4 4 il y..
4 14 0 0 a; _ o u
4 0 1.4 0 (05} - Y.
A4 0 0 1.4 as Ys.

2 Finite u

We could also have a finite number of breeding values from which a sample is drawn.
If these are unrelated and are drawn at random from a population with £ animals
1 —1/t
Var(a) = o (4)
-1/t 1
If ¢ are chosen not at random, we can either regard the resulting elements of a as fixed
or we may choose to say we have a sample representing the entire population. Then
1 —1/q
Var(a) = ol (5)
—1/q 1



where o2, probably is smaller than o2. Now G is singular, and we need to compute BLUP
by the methods of Section 5.10. We would obtain exactly the same results if we assume
a fixed but with levels that are unpatterned, and we then proceed to biased estimation
as in Chapter 9, regarding the average values of squares and products of elements of a as

1 —1/q
P = o2, (6)
—1/q 1

3 Infinite By Finite Interactions

Much controversy has surrounded the problem of an appropriate model for the inter-
actions in a 2 way mixed model. One commonly assumed model is that the interactions
have Var = T 02. An alternative model is that the interactions in a row (rows being
random and columns fixed) sum to zero. Then variance of interactions, ordered columns
in rows, is

B o --- 0

OB --- 0 )

o | o (7)
0 0 B

where B is ¢ x ¢ with 1’s on the diagonal and —1/(c — 1) on all off- diagonals, where ¢ =
number of columns. We will show in Chapter 17 how with appropriate adjustment of o2
(= variance of rows) we can make them equivalent models. See Section 1.5 for definition
of equivalence of models.

4 Finite By Finite Interactions

Suppose that we have a finite population of r rows and ¢ columns. Then we might as-
sume that the variance-covariance matrix of interactions is the following matrix multiplied
by 03.

All diagonals = 1.

Covariance between interactions in the same row = —o2/(c — 1).

Covariance between interactions in the same column = —o2/(r — 1).

Covariance between interations in neither the same row nor column =
2
ox/(r—1)(c—1).



If the sample involves r rows and ¢ columns both regarded as fixed, and there is no assumed
pattern of values of interactions, estimation biased by interactions can be accomplished by
regarding these as pseudo-random variables and using the above ”variances” for elements
of P, the average value of squares and products of interactions. This methodology was
described in Chapter 9.

5 Finite, Factorial, Mixed Models

In previous chapters dealing with infinite populations from which u is drawn at ran-
dom as well as infinite subpopulations from which subvectors u; are drawn the assumption
has been that the expectations of these vectors is null. In the case of a population with
finite levels we shall assume that the sum of all elements of their population = 0. This re-
sults in a variance- covariance matrix with rank < ¢t—1, where ¢ = the number of elements
in the population. This is because every row (and column) of the variance-covariance ma-
trix sums to 0. If the members of a finite population are mutually unrelated (for example,
a set of unrelated sires), the variance-covariance matrix usually has d for diagonal ele-
ments and —d/(t — 1) for all off-diagonal elements. If the population refers to additive
genetic values of a finite set of related animals, the variance-covariance matrix would be
Ac? but with every row (and column) of A summing to 0 and o2 having some value
different from the infinite model value.

With respect to a factorial design with 2 factors with random and finite levels the
following relationship exists. Let 7;; represent the interaction variables. Then

q1
Z vij = Oforallj=1,...,¢,

i=1
and

q2

Z vij = Oforalli=1,...,q, (8)

j=1
where ¢; and ¢y are the numbers of levels of the first and second factors in the two
populations.

Similarly for 3 factor interactions, 7y,

Q
w

Yijk = Oforallizl,...,ql, jzl,...,QQ,

o
Sl
N

vijk = Oforalli=1,...,¢:, k=1,...,¢q3, and

<.
2l
—

vije = Oforallj=1,...,¢0, k=1,...,¢s. 9)

s
Il
—



This concept can be extended to any number of factors. The same principles regarding
interactions can be applied to nesting factors if we visualize nesting as being a factorial
design with planned disconnectedness. For example, let the first factor be sires and the
second dams with 2 sires and 5 dams in the experiment. In terms of a factorial design
the subclass numbers (numbers per litter, eg.) are

Dams
Sires 1 2 3 4 5
1 5 9 8 0 0
2 0 0 0 7 10

If this were a variance component estimation problem, we could estimate o2 and o2
but not o and ¢2;. We can estimate o + 07, and this would usually be called o7,

6 Covariance Matrices

Consider the model

y =X+ Z Z;u; + possible interactions + e. (10)

The u; represent main effects. The i** factor has ¢; levels in the population. Under the tra-
ditional mixed model for variance components all ¢; — infinity. In that case Var(u;) = Io?
for all ¢, and all interactions have variance-covariance that are I times a scalar. Further,
all subvectors of u; and those subvectors for interactions are mutually uncorrelated.

Now with possible finite ¢;

1 —1/(t; — 1)
Var(uw;) = o7 (11)
—1/(t; — 1) 1
This notation denotes one’s for diagonals and all off-diagonal elements = —1/(¢t; — 1).

Now denote by v, the interactions between levels of u, and u,. Then there are tgt;
interactions in the population and the variance-covariance matrix has the following form,
where i denotes the level of the ¢g*" factor and j the level of the ht* factor. The diagonals
are Var(vg).

All elements ij with ij’ = —Var(y)/(t, — 1).
All elements ij with i'j = —Var(yg)/(t, — 1).
All elements ij with i'j" = —Var(yg)/(t, — 1)(tn — 1). (12)



7" denotes not equal to i, etc.

To illustrate suppose we have two levels of a first factor and 3 levels of a second. The
variance-covariance matrix of

o 1 —1/2 —1/2 -1 1/2 1/2
12 1 —1/2 1/2 -1 1/2
ms | 1 12 12 -1 )
Yo | 1 —1/2 —1/2 | %wn
Yoo 1 —1/2
V23 1

Suppose that ¢, — infinity. Then the four types of elements of the variance-covariance
matrix would be

1, =1/(t, — 1), 0, 0] Var(ys).

This is a model sometimes used for interactions in the two way mixed model with levels
of columns fixed.

Now consider 3 factor interactions, vsgn. Denote by 7, j, k the levels of uy, uy, and
uy, respectively. The elements of the variance-covariance matrix except for the scalar,
Var(vsgn) are as follows.

all diagonals = 1.

ijk with ijk’ = —1/(t, —1).

ijk with ij'k = —1/(t, —1).

ijk with 'jk = —1/(t; —1).

ijk with ij'k" = 1/(ty —1)(tn — 1)

ijk with 'k = 1/(t; —1)(t;, — 1)

ijk with @5’k = 1/(ty — 1)(t, — 1)

ijk with '’k = 1/(t; = 1)(t, — 1) (¢, — 1) (13)

To illustrate, a mixed model with uy, u, fixed and ¢; — infinity, the above become 1,
—1/(th—1), =1/(t,—1),0,k 1/(t,—1)(t,—1), 0,0, 0. If levels of all factors — infinity,
the variance-covariance matrix is IV ar(vysg4).

Finally let us look at 4 factor interactions 7. f4, With levels of u., uy, uy, uy, denoted
by 4, j, k, m, respectively. Except for the scalar Var(.s4) the variance-covariance matrix
has elements like the following.

all diagonals = 1.

ijkm with ijkm’ = —1/(t, — 1), and
ijkm with ijk'm = —1/(t, — 1), and
etc.



ijkm with ijk'm’ = 1/(t, — 1)(t, — 1), and
ijkm with ij'km’ = 1/(ty — 1)(tn — 1)
etc.
ijkm with ij'k'm’ = 1/(t; — 1)(t; — 1)(¢5, — 1) and
ijkm with ¢/5'm" = 1/(t. — 1)(t, — 1)(tn — 1)
etc.
ijk with ¢/5'kK'm" = 1/(te — 1)(ty — 1)(t, — 1)(tn — 1). (14)

Note that for all interactions the numerator is 1, the denominator is the product of the
t — 1 for subscripts differing, and the sign is plus if the number of differing subscripts is
even, and negative if the number of differing subscripts is odd. This set of rules applies
to any interactions among any number of factors.

7 Estimability and Predictability

Previous chapters have emphasized the importance of consideration of estimability
when X does not have full column rank, and this is usually the case in application. Now
if we apply the same rules given in Chapter 2 for checking estimability and find that an
element of 3, eg. u, is estimable, the resulting estimate can be meaningless in sampling
from finite populations. To illustrate suppose we have a model,

Yij = B+ sit ey

Suppose that the s; represent a random sample of 2 from a finite population of 5 correlated
sires. Now X is a column vector of 1’s and consequently u is estimable by our usual rules.
It seems obvious, however, that an estimate of ;1 has no meaning except as we define the
population to which it refers. If we estimate p by GLS does i refer to the mean averaged
over the 2 sires in the sample or averaged over the 5 sires in the population? Looking
at the problem in this manner suggests that we have a problem in prediction. Then the
above question can be formulated as two alternatives, namely prediction of p+ % P s
versus prediction of p + % > | si, where the second alternative involves summing over
the 2 sires in the sample. Of course we could, if we choose, predict p+k’s, where k is any
vector with 5 elements and with k'l = 1. The variance of fi, the GLS estimator or the
solution to p in mixed model equations, is identical to the variance of error of prediction of
p+.2 Z?:l s; and not equal to the variance of error of prediction of p+.5 Z?Zl s;. Let us
illustrate with some data. Suppose there are 20, 5 observations on sires 1, 2 respectively.
Suppose R = 50 I and

4 -1 -1 -1 -1

4 -1 -1 -1

G = 4 -1 -1
4 -1

4



Then the mixed model coefficient matrix (not including ss,s4,5) is

1 15 12 3
0 20 2
11
with inverse
1 36 —21 -6
9 26 1
26
This gives the solution
[ 1 6 3 _
al=51 2 -2 < - )
8 —2 2)\ "

The variance of error of prediction of p + .5(s; + $2) is
(1.5 .5) (Inverse matrix) (1.5 .5)" = 2.5.

This is not equal to 4, the variance of ji from the upper left diagonal of the inverse.

Now let us set up equations for BLUP including all 5 sires. Since G is now singular
we need to use one of the methods of Section 5.10. The non-symmetric set of equations is

5 4 10 0 0 4 1

15 26 —1 0 0 0 1.6 —.1

0 —4 140 0 0 | -4 4w
—5 —4 =1 1.0 0 8 —4 -1 [\ 5
—5 -4 =10 1.0 —4 -1
—5 —4 —10 0 1 —4 -1

Post-multiplying the inverse of this coefficient matrix by

1o
0 G
we get as the prediction error variance matrix the following

36 -21 -6 9 9 9
26 1 -9 -9 -9
26 -9 -9 -9

-1
) 36 -9 -9
36 —9

36



The upper 3 x 3 submatrix is the same as the inverse when only sires 1 and 2 are included.
The solution is

6 3
2 =2
(ﬂ) _g1 | 22 <y1.>
s 0 0 Y2 )
0 O
0 O
§3, §4, §5 == 0

as would be expected because these sires are unrelated to the 2 with progeny relative to
the population of 5 sires. The solution to ji, $;, S5 are the same as before. The prediction
error variance of p+ .2 > s; is

nverse matrix =
(122222)(1 ')(122222)’ 4,

the value of the upper diagonal element of the inverse. By the same reasoning we find
that §; is BLUP of s; —.232%_ s; and not of s; — .5 (s; + sq) for i=1,2. Using the former
function with the inverse of the matrix of the second set of equations we obtain for s;
the value, 2.889. This is also the value of the corresponding diagonal. In contrast the
variance of the error of predition of s; — .5 (s1 + s2) is 1.389. Thus §; is the BLUP of

5

The following rules insure that one does not attempt to predict K’'3 + M’u that is
not predictable.

1. K'B must be estimable in a model in which E(y) = Xz.

2. Pretend that there are no missing classes or subclasses involving all levels of u; in the
population.

3. Then if K'3+ M'u is estimable in such a design with u regarded as fixed, K'G+M'u
is predictable.

Use the rules of Chapter 2 in checking estimability.

For an example suppose we have sire X treatment design with 3 treatments and 2
sires regarded as a random sample from an infinite population of possibly related sires.
Let the model be

Yijk = P+ s+t 4% + eiji.
i, t; are fixed
Var(s) = Io2

s



Var (v) when - are ordered treatments in sires is

0B - 0
0 0 B

where

1 —1/2 —1/2
B = | -1/2 1 -1/2 |c.
-1/2 —1/2 1

Suppose we have progeny on all 6 sire X treatment combinations except (2,3). This
creates no problem in prediction due to rule 1 above. Now we can predict for example

o4+ Y (sityn) — t2 — > di (si+72)

i=1 =1

where

That is, we can predict the difference between treatments 1 and 2 averaged over any sires
in the population, including some not in the sample of 2 sires if we choose to do so. In
fact, as we shall see, BLUE of (t; — t3) is BLUP of treatment 1 averaged equally over all
sires in the population minus treatment 2 averaged equally over all sires in the population.

Suppose we want to predict the merit of sire 1 versus sire 2. By the rules above,
(s1 — s2) is not predictable, but

3 3
st+ Y6 () — s2— D di (t+ )
j=1 j=1

is predictable if 33, ¢; = >3; d; = 1. That is, we can predict sire differences only if we
specify treatments, and obviously only treatments 1, 2, 3. We cannot predict unbiasedly,
from the data, sire differences associated with some other treatment or treatments. But
note that even though subclass (2,3) is missing we can still predict s;+t3+7y13—S2—t3—"23.
In contrast, if sires as well as treatments were fixed, this function could not be estimated
unbiasedly.

8 BLUP When Some u; Are Finite

Calculation of BLUE and BLUP when there are finite levels of random factors must
take into account the fact that there may be singular G. Consider the simple one way

10



case with a population of 4 related sires. Suppose

1. -2 -3 -5
1. =2 -6

1 )

1.6

A_:

Suppose we have progeny numbers on these sires that are 9, 5, 3, 0. Suppose the model
is

Yijk = B+ si+ e
Var(s) = Adc>.
Var(e) = Io2.

e

Then if we wish to include all 4 sires in the mixed model equations we must resort to the
methods of Sect. 5.10 since G is singular. One of those methods is to solve

179 5 3 0 0000 0
- 99 0 0 0 01000
<0A2> 5050002+l 00100
s 300 30 000710
0000 0 0000 1
f Yy
S1 / Y.
10
= (6 A )| | (15
. 5 Ya.
3, 0

1
it is BLUP of pu + 1 Zsi.

1
5;is BLUP of s; — 1 Z S;.
The inverse of the coefficient matrix post-multiplied by

1o
0 Aos?

is the variance-covariance matrix of errors of predictions of these functions.

If we had chosen to include only the 3 sires with progeny, the mixed model equations
would be

-2

wW Ut © I
o O © ©
O Ot O Ot
w oo w
Q
Q)
+
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|
w
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»—lt>
<

Y. -2
= . 16
Yo. 7 ( )

Ys.

> > >
%)
o)

w

This gives the same solution to i, §1, $2, §3 as the solution to (15), and the inverse of the
coefficient matrix gives the same prediction variances. Even though s, is not included, ji
predicts pu + iZ?:rSia and 5; predicts s; — iZlesi. 34 can be computed by

-1

1 -2 -3 3
565 -2 1 -2 39
-3 -2 1 43

As another example suppose we have a sire by treatment model with an infinite
population of sires. The n;; are

1 2
1 0 8
2 9 2
3 6 0

Var (s) = 2I, Var (e) =10 I,

Var (7) including missing subclasses is

0 0
0 0
1

1 -1
1

/2.

— =
_ o O O O
—_0 O O O

If we do not include 7;; and 35 in the solution the only submatrix of G that is singular
is the 2x2 block pertaining to 791, 722. The GLS equations regarding u as fixed are

8 00 0 8 8 000 $1 Y.,

110 9 209 2 0 S9 Yo..

6 6 0 000 6 S3 Ys..

1 15 00906 Lfl Y1, ]

10 10 8 0 2 0 to =\ ya 0 (17)

8 000 12 Y12.

9 00 Aa1 Yo1.

20 Y22 Ya2.

6 Y31 Ysa.

—_
[\



Then we premultiply the 7 and 8" equations of (17) by

(1)

and add to the diagonal coefficients, (.5, .5, .5, 0, 0, 2, 1, 1, 2). The solution to the
resulting equations is BLUP. If we had included 75 and 735, we would premultiply the
last 6 GLS equations (equations for ) by Var () and then add to the diagonals, (.5,
5,.5,0,0,1,1,1, 1, 1, 1). When all elements of a population are included in a BLUP
solution, an interesting property becomes apparent. The same summing to 0’s occurs
in the BLUP solution as is true in the corresponding elements of the finite populations
described in Section 4.

9 An Easier Computational Method

Finite populations complicate computation of BLUE and BLUP because non-diagonal
and singular G matrices exist. But if the model is that of Section 2, that is, finite
populations of unrelated elements with common variance, computations can be carried
out with diagonal submatrices for G. The resulting 1 do not always predict the same
functions predicted by using the actual G matrices, but appropriate linear functions of
them do. We illustrate with a simple one way case.

Yij = ,u+ai+eij. 22172,3

2 -1 -1
Var(a) = | -1 2 -1 |,
-1 -1 2
Var(e) = 101

n; = (57372>ayz = (107876)

Using singular G the nonsymmetric mixed model equations are

1. 5 3 2 fi 2.4
5 2. -3 -2 an | 6
~1 -5 16 —.2 ar | 0 (18)
—4 -5 -3 14 as —6

The solution is [2.4768, -.2861, .0899, .1962]. Note that

> i, = 0.

13



We can obtain the same solution by pretending that Var(a) = 3I. Then the mixed
model equations are

1 5 3 2 i 2.4

5 5431 0 0 a | | 1.0

3 0  343Y 0 i | | 8 (19)
2 0 0 243! s 6

The inverse of (15.19) is different from the inverse of (15.18) post-multiplied by

(&)

The inverse of (19) does not yield prediction error variances. To obtain prediction error
variances of 4+ a. and of a; — a. pre-multiply it by

3 1 1 1
1o 2 -1 -1
310 -1 2 -1

0 -1 -1 2

and post-multiply that product by the transpose of this matrix. This is a consequence of
the fact that the solution to (19) is BLUP of

3 1 1 1 1
1fo 2 -1 —1 s
310 -1 2 -1 S5

0 -1 -1 2 S3

In most cases use of diagonal G does not result in the same solution as using the true G,
and the inverse never yields directly the prediction error variance-covariance matrix.

Rules for deriving diagonal submatrices of G to use in place of singular submatrices
follow. For main effects say of u; with ¢; levels substitute for the G submatrix described
in Section 6, Io2,, where

*19

t; 9 t; 9

T T ) T 2 G ) T

-2 (tio) (1) (the1) (tm1) Oiikm

j7k7m

etc.

for 5 factor, 6 factor interactions. (20)

o2 refers to the scalar part of the variance of the i'" factor, afj refers to 2 factor interactions
involving u;, afjk refers to 3 factor interactions involving u;, etc. Note that the signs
alternate

2 ti tj 2 ti t 2

T )t T T A ) () (ber)

14




tit; 2

+ ;n (ti1)(tj—1) (tk—1) (1) Tiikm €tC. (21)
2k = fi ty U o2 it ty
T T ) (o) () zm: (tim1)(tj—1) (tr—1) (tm-1)
O-Z'ij + etc. (22>

Higher order interactions for o2 follow this same pattern with alternating signs. The
sign is positive when the number of factors in the denominator minus the number in the
numerator is even.

It appears superficially that one needs to estimate the different o2, al-zj, afjk, etc., and

this is difficult because non-diagonal, singular submatrices of G are involved. But if one
plans to use their diagonal representations, one might as well estimate the o2 directly by
any of the standard procedures for the conventional mixed model for variance components
estimation. Then if for pedagogical or other reasons one wishes estimates of o rather
than o2, one can use equations (20), (21), (22) that relate the two to affect the required

linear transformation.

The solution using diagonal G should not be assumed to be the same as would have
been obtained from use of the true G matrix. If we consider predictable functions as
defined in Section 7 and take these same functions of the solution using diagonal G we
do obtain BLUP. Similarly using these functions we can derive prediction error variances
using a g-inverse of the coefficient matrix with diagonal G.

10 Biased Estimation

If we can legitimately assume that there is no expected pattern of values of the levels
of a fixed factor and no expected pattern of values of interactions between levels of fixed
factors, we can pretend that these fixed factors and interactions are populations with finite
levels and proceed to compute biased estimators as though we are computing BLUP of
random variables. Instead of prediction error variance as derived from the g-inverse of
the coefficient matrix we obtain estimated mean squared errors.

15



Chapter 16
The One-Way Classification

C. R. Henderson

1984 - Guelph

This and subsequent chapters will illustrate principles of Chapter 1-15 as applied
to specific designs and classification of data. This chapter is concerned with a model,

Yij = 1+ ai + €. (1)

Thus data can be classified with n; observations on the ¥ class and with the total of
observations in that class = y;. Now (1) is not really a model until we specify what popu-
lation or populations were sampled and what are the properties of these populations. One
possibility is that in conceptual repeated sampling o and a; always have the same values,
and the e;; are random samples from an infinite population of uncorrelated variables with
mean 0, and common variance, o2. That is, the variance of the population of e is Io2,
and the sample vector of n elements has expectation null and variance = Ig2. Note that
Var(e;;) is assumed equal to Var(ey;), i # 7.

1 Estimation and Tests For Fixed a

Estimation and tests of hypothesis are simple under this model. The mixed model
equations are OLS equations since Zu does not exist and since Var(e) = Io?. They are

n. Ny No ... o) Y.

1 n ny 0 ... af Y1 1

I o - - . (2)
o2 | M2 0 no ... as Ya. 02

The X matrix has t + 1 columns, where ¢ = the number of levels of a, but the rank is ¢.
None of the elements of the model is estimable. We can estimate

t
/’L + Z kiaia
=1

where

> k=1,

i



or
t
Z kiaiv
7

if

> ki =0.

For example o + a; is estimable, a; — a; is estimable, and

with

is estimable. The simplest solution to (2) is u® = 0, af = 7, . This solution corresponds
to the following g-inverse.

00 0
0 ny' 0

0 0 ny

Let us illustrate with the following example

(nh na, nS) = (85374>7

(y1., Y2, y3.) = (49,16,13),
y'y = 468.
The OLS equations are
15 8 3 4 Il 78
1 o 1
L 8 00 aé _ 149 1 3)
o? 30 ag 16 | o2
4)\ ag 13

A solution is (0, 49/8, 16/3, 13/4). The corresponding g-inverse of the coefficient matrix
is

0 0 0 0

8710 0 )
3710

4—1

Suppose one wishes to estimate a; — as, a; — as, as — az. Then from the above solution

these would be %9 — ?, %9 — %, 1—3? — %. The variance-covariance matrix of these estimators



18

00 0 0 0 0 0
01 -1 0
0810 0 1 1 0] ,
8é (1):1 00 3'0 ~1 0 1 |% (4)
00 0 47! 0 -1 -1

We do not know o2 but it can be estimated easily by

2 = (Vy - X v n)/(15-3)

= (468 — 427.708)/12
— 3.36.

Then we can substitute this for 02 to obtain estimated sampling variances.

Suppose we want to test the hypothesis that the levels of a; are equal. This can be

expressed as a test that
01 -1 0 ap | (0
01 0 -1 a |\ 0 )~

as

Var(K'8%) = K'(g — inverse)K — ( 45833 125 ) )

125 375 ) e
with
| (24 -8 1
HIVEISE = | ¢ 99333 o2’
K'3° = (79167 2.875)".
Then

numerator S = (.79167 2.875) ( 24 2‘9@ 43 ) ( 729;675; )

= 22.108.

The same numerator can be computed from

2

2
S % Y 497,708 — 405.6 = 22.108.

22.108/2

Then the test that a; are equal is =555

hypothesis.

which is distributed as F5 12 under the null



2 Levels of a Equally Spaced

In some experiments the levels of a (treatments) are chosen to be “equally spaced”.
For example, if treatments are percent protein in the diet, the levels chosen might be 10%,
12%, 14%, 16%, 18%. Suppose we have 5 such treatments with n; = (5,2,1,3,8) and y; =
(10,7,3,8,33). Let the full model be

Yi; = b+ B1m; + Pox? + Bsxd + Bzt + ey (5)

where x; = (1,2,3,4,5). With Var(e) = Io? the OLS equations under the full model are

19 64 270 1240 5886 {l 61

270 1240 2886 28,384 B 230
o886 28,384 138,150 Gy | = 1018 | . (6)

138,150 676,600 By 4784

3,328, 686 B, 23,038

The solution is [-4.20833, 9.60069, -3.95660, .58681, -.02257]. The reduction in SS is
210.958 which is exactly the same as 3=, ¥? /n;. A common set of tests is the following.

f1 = 0 assuming (s, (3, [£4 non-existent.
By = 0 assuming 33, B4 non-existent.

B3 = 0 assuming (4 non-existent.

By =0.

This can be done by computing the following reductions.

~ w
9]
15
(oW
F
=

Then the numerators for tests above are reductions 4-5, 3-4, 2-3, 1-2 respectively.

Red (2) is obtained by dropping the last equation of (6). This gives the solution
(-3.2507, 7.7707, -2.8325, .3147) with reduction = 210.952. The other reductions by
successive dropping of an equation are 207.011, 206.896, 195.842. This leads to mean



squares each with 1 df.

Linear 11.054
Quadratic 115
Cubic 3.941
Quartic .006

The sum of these is equal to the reduction under the full model minus the reduction due
to u alone.

3 Biased Estimation of i + q;

Now we consider biased estimation under the assumption that values of a are un-
patterned. Using the same data as in the previous section we assume for purposes of
illustration that Var(e) = % I, and that the average values of squares and products of the
deviations of a from a are

4 -1 -1 -1 -1

X 4 -1 -1 -1
- 4 -1 -1 | (7)
8 4 —1

4

Then the equations for minimum mean squared error estimation are

228 6.0 24 12 36 96 73.2
9 40 -3 —-15 —-45 —-12 —1.65
—-135 =7 22 —-15 —45 —-1.2 o -3.9
-21 -7 -3 16 —45 —1.2 (B) = —6.9 |’ (8)
-6 =7 -3 —15 28 —-1.2 —3.15
3.15 =7 =3 =15 —45 5.8 15.6

The solution is (3.072, -.847, .257, -.031, -.281, .902). Note that

> a; =0.
The estimates of differences between q; are
2 3 4 5
1]-1.103 -.816 -.566 -1.749
2 288 538 -.645
3 250 -.933
4 -1.183




Contrast these with the corresponding BLUE. These are

2 3 4 )
1]-1.5 -1.0 -.667 -2.125
2 Do 833 -.625
3 333 -1.125
4 -1.458

Generally the absolute differences are larger for BLUE.

The mean squared error of these differences, assuming that o2 and products of devi-
ations of a are correct, are obtained from a g-inverse post-multiplied by

10 o0 0 0 O
4 -1 -1 -1 -1

-1 4 -1 -1 -1

4 -1 -1
-1 -1 -1 4 -1
-1 -1 -1 -1 4

O OO OO
|
—_
|
—_

These are

2 3 4 )

11].388 513 .326 .222
2 613 444 352
3 562 480
4 287
The corresponding values for BLUE are
2 3 4 5

1.7 1.2 5333 .325
2 1.5 833  .625
3 1.333 1.125
4 458

If the priors used are really correct, the MSE for biased estimators of differences are
considerably smaller than BLUE.

The same biased estimators can be obtained by use of a diagonal P, namely .6251,
where

5
1 (.5).
This gives the same solution vector, but the inverse elements are different. However, mean
squared errors of estimable functions such as the @, — a; and i +@ yield the same results
when applied to the inverse.

625 =



4 Model with Linear Trend of Fixed Levels of a

Assume now the same data as section 2 and that the model is
Yij = p+ B + a; + e (9)

where x; = (1,2,3,4,5). Suppose that the levels of a are assumed to have no pattern and
we use a prior value on their squares and products =

2 —.05

—.05 2

Assume as before Var(e) = % I. Then the equations to solve are

228 768 6. 24 12 36 96 f 73.2
76.8 324 6 48 36 144 48 B 276
36 =234 22 —-12 —-06 —.18 —.48 aq —.66
—-54 =264 -3 148 —-06 —.18 —.48 a, | = —1.56 | . (10)
-84 =294 -3 —-12 124 —-18 —.48 as —2.76
-24 =24 -3 —-12 —-06 172 —.48 ay —1.26
1.26 816 -3 —.12 —-06 —.18 2.92 as 6.24

The solution is [1.841, .400, -.145, .322, -.010, -.367, .200]. Note that

We need to observe precautions in interpreting the solution. [ is not estimable and neither
Is ¢+ a; nor a; — a;.

We can only estimate treatment means associated with the particular level of z; in the
experiment. Thus we can estimate u + a; + ;8 where x; = 1,2,3,4,5 for the 5 treatments
respectively. The biased estimates of treatment means are

1. 1.841 + .400 - .145 = 2.096

2. 1.841 + .800 + .322 = 2.963
3. 1.841 + 1.200 - .010 = 3.031
4. 1.841 + 1.600 - .367 = 3.074
5. 1.841 + 2.000 + .200 = 4.041

The corresponding BLUE are the treatment means, (2.0, 3.5, 3.0, 2.667, 4.125).

If the true ratio of squares and products of a; to o are as assumed above, the biased
estimators have minimum mean squared error. Note that E(i + ; + ;) for the biased
estimator is u + z;0+ some function of a (not equal to a;). The BLUE estimator has, of
course, expectation, u + x;3 + a;, that is, it is unbiased.

7



5 The Usual One Way Covariate Model

If, in contrast to x; being constant for every observation on the i*" treatment as in
Section 4, we have the more traditional covariate model,

Yij = b+ By + ai + €4, (11)

we can then estimate p + a; unbiasedly as well as a; — a;. Again, however, if we think the
a; are unpatterned and we have some good prior value of their products, we can obtain
smaller mean squared errors by using the biased method.

Now we need to consider the meaning of an estimator of p + a;. This really is an
estimator of treatment mean in hypothetical repeated sampling in which z; = 0. What if
the range of the x;; is 5 to 21 in the sample? Can we infer from this that the the response
to levels of x is that same linear function for a range of z;; as low as 0?7 Strictly speaking
we can draw inferences only for the values of z in the experiment. With this in mind
we should really estimate pu + a; + k3, where k is some value in the range of x’s in the
experiment. With regard to treatment differences, a; — a;, can be regarded as an estimate
of (u+ a; + kB) — (1 + ay + kB), where k is in the range of the x’s of the experiment.

6 Nonhomogenous Regressions

A still different covariate model is
Yij = B+ Biti; + ai + 5.

Note that in this model [ is different from treatment to treatment. According to the rules
for estimability p + a;, a; — a;, and (; are all estimable. However, it is now obvious that
a; — ay has no practical meaning as an estimate of treatment difference. We must specify
what levels of z we assume to be present for each treatment. In terms of a treatment
mean these are

B+ ai + kif;
and

paj + k;B;
and the difference is

a; + ki3 — a; — k;B;.

Suppose k; = k; = k. Then the treatment difference is
a; — a; + k(3 — ;)

and this is not invariant to the choice of k when ; # ;. In contrast when all 3; = 3, the
treatment difference is invariant to the choice of k.

Let us illustrate with two treatments.



Treatment | n; | y;. | T i T | 225 TigYij
1 8 | 38| 36 220 219
2 5 143 | 25 135 208

This gives least squares equations

80 3 0 i+t 38
5 0 25 fi+t || 43
220 0 B | 219

135 By 208

The solution is (1.0259, 12.1, .8276, -.7). Then the estimated difference, treatment 1
minus treatment 2 for various values for x, the same for each treatment, are as follows

Estimated Difference
-11.07
-8.02
-4.96
-1.91
1.15
4.20
7.26

0 O OR

—_ =
N O

It is obvious from this example that treatment differences are very sensitive to the average
value of z.

7 The Usual One Way Random Model

Next we consider a model

Var(a) Io?2,
Var(e) Io?,
Cov(a,e’) = 0.

In this case it is assumed that the levels of a in the sample are a random sample from an
infinite population with var Ie2, and similarly for the sample of e. The experiment may
have been conducted to do one of several things, estimate y, predict a, or to estimate o>
and o2. We illustrate these with the following data.



Levels of a | n; | y;.
1 511
2 2|7
3 113
4 3|8
5 8 | 33

Let us estimate p and predict a under the assumption that 02?/02 = 10. Then we
need to solve these equations.

19 5 2 1 3 8 i 61

15 0 0 0 0| a 10

12 0 0 0 ffa | | 7
110 0 || as 3 (12)

13 0 || g 8

18 ) \ as 33

The solution is [3.137, -.379, .061, -.012, -.108, .439]. Note that > a; = 0. This could have
been anticipated by noting that the sum of the last 4 equations minus the first equation

10 ¥4, = 0.

The inverse of the coefficient matrix is

gives

0790 —.0263 —.0132 —.0072 —-.0182 —.0351
0754  .0044  .0024 .0061  .0117
0855  .0012  .0030  .0059

0916  .0017  .0032 (13)
0811 .0081
0712

This matrix premultiplied by (01111 1) equals (-1 1111 1)(c?/0?). This is always a
check on the inverse of the coefficient matrix in a model of this kind. From the inverse

Var(i) = .0790 o2,
Var(a; —ay) = .075403.

it is BLUP of 1 4+ the mean of all a in the infinite population. Similarly a; is BLUP of a;
minus the mean of all a; in the infinite population.

Let us estimate o2 by Method 1. For this we need 3; y? /n; and y?/n. and their expec-
tations. These are 210.9583 and 195.8421 with expectations, 1902 +502 and 5.421102 + 0?2
respectively ignoring 19 p? in both.

62 = (y'y —210.9583)/(19 — 5).

10



Suppose this is 2.8. Then 62 = .288.

Let us next compute an approximate MIVQUE estimate using the prior 02 /o2 = 10,
the ratio used in the BLUP solution. We shall use 62 = 2.8 from the least squares

e

residual rather than a MIVQUE estimate. Then we need to compute a’a = .35209 and
its expectation. The expectation is trVar(a). But Var(a) = C,Var(r)C!, where C, is

the last 5 rows of the inverse of the mixed model equations (12), and r is the vector of
right hand sides.

521 38\/52 138
5000050000
02000/ l0o2000

Var®) = | 0 g 1 00lloo100]| %"
00030(|l0oo0o030
0000s8/)\0o000 8
195213 8

5000 0
2000 ,
100 |%

30
8

This gives
E(a'a) = 27163 02 + .06802 o2,

and using 62 = 2.8, we obtain 62 = .595.

8 Finite Levels of a

Suppose now that the five a; in the sample of our example of Section 7 comprise all
of the elements of the population and that they are unrelated. Then

1 —.25
Var(a) = o2
—.25 1

Let us assume that 02 /02 = 12.5. Then the mixed model equations are the OLS equations
premultiplied by
1 0 0 0 0 0
08 —.02 —.02 —.02 —.02
08 —.02 —.02 —.02

08 —.02 —.02 (14)
08 —.02
08

11



5

This gives the same solution as that to (11). This is because ¢2 of the infinite model is 2

times o2 of the finite model. See Section 15.9. Now /i is a predictor of
1
Bt 5 > a
and a; is a predictor of
1
a; — 5 Z a;.

Let us find the Method 1 estimate of 02 in the finite model. Again we compute 3, y? /n;
and y?/n_. Then the coefficient of 62 in each of these is the same as in the infinite model,

that is 5 and 1 respectively. For the coefficients of o2 we need the contribution of 2 to
Var(rhs). This is

52 1 3 8
50000 1 1
02000 4 .
00100 1 (left matrix)
000 30 —1 1
0000 8
385 75 —45 —35 —3.0 42.
250 —2.5 —1.25 —3.75 —10.
40 -5 —15 —4.
- 1. -7 —2. |- (15)
9. —6.
64.

Then the coefficient of 02 in 3, y? /n; is tr[dg(5,2,1,3,8)] ! times the lower 5x 5 submatrix
of (15) = 19.0. The coefficient of o2 in y*/n. = 38.5/19 = 2.0263. Thus we need only
the diagonals of (15). Assuming again that o? = 2.8, we find 62 = .231. Note that in
the infinite model 62 = .288 and that 2(.231) = .288 except for rounding error. This
demonstrates that we could estimate o2 as though we had an infinite model and estimate
w and predict a using 62/62 in mixed model equations for the infinite model. Remember
that the resulting inverse does not yield directly Var(i) and Var(a — a). For this pre-
and post-multiply the inverse by

5 1 1 1 1 1
0 4 -1 —1 -1 —1
1o -1 4 -1 -1 -1
510 -1 -1 4 -1 -1
0 -1 -1 —1 4 —1
0 -1 -1 -1 -1 4

This is in accord with the idea that in the finite model j is BLUP of u + @. and a; is
BLUP of a; —a. .

12



9 One Way Random and Related Sires

We illustrate the use of the numerator
simple one way model,

Yij
Var(s)
Var(e)

Cou(s,€)

oc/o;

relationship matrix in evaluating sires in a

K+ 8i + €ij.
Aaf,
Iag,
0,
10.

Then mixed model equations for estimation of 1 and prediction of s are

n. Ny Na 00 O .
ni. ni 0 0 Al o%/o?
ns. 0 Tl o
il
51 ,
5 | = (Y. v ya o) . (16)
We illustrate with the numerical example of section 7 but now with
1 0.5 5 0
1. 0 0 .5
A = 1. 25 0
1 0
1
The resulting mixed model equations are
19 5 2 1 3 8 il 61
65/3 0 —20/3 —20/3 0 $1 10
46/3 0 0 —20/3 sy | 7 (17)
43/3 0 0 ss | 3
49/3 0 S4 8
64/3 S5 33

The solution is (3.163, -.410, .232, -.202, -.259, .433). Note that >; §; # 0 in contrast to
the case in which A = I. Unbiased estimators of 62 and o2 can be obtained by computing

Method 1 type quadratics, that is

y'y — Zy?,/ni

13



and

ny/nz — C.F.

However, the expectations must take into account the fact that Var(s) # Io?, but rather
Ac?. In a non-inbred population

E(y'y) =n.(o; + 07).
For an inbred population the expectation is

2 2
Z nia;0, +no,,
i

where a;; is the i'" diagonal element of A. The coefficients of o2 in 3" y2 /n; and 3 /n_ are
the same as in an unrelated sample of sires. The coefficients of o2 require the diagonals
of Var(rhs). For our example, these coefficients are

A (left matrix)’

S O O O Ot
O OO NN O NN
SO o= OO
S WO OO W
(ool eniNen RN av RN aniN0 o)

140.5 35. 12. 4.25 17.25 72.
25. 0 25 75 0
4. 0 0 8.

- 1. 75 0| (18)
9. 0
64.

Then the coefficient of o2 in Y, y? /n; is tr(dg(0, 571, 271 1, 371 871)) times the matrix
in (18) = 19. The coefficient of o2 in y*/n, = 140.5/19 = 7.395.

If we wanted an approximate MIVQUE we could compute rather than

vy
;TLZ’ n

of Method 1, the quadratic,

The expectation of this is

tr(A~! Var(s)).
Var(s) = C; Var(rhs) C..

14



C, is the last 5 rows of the inverse of the mixed model coefficient matrix.

Var(rhs) = Matrix (18) 02 4+ (OLS coefficient matrix) oZ2.

e

Then

0788 —.0527  .0443  .0526 —.0836
0425 —.0303 —.0420  .0561

Var(s) = 0285 0283 —.0487 | o2+
0544 —.0671
1014

01284 —.00774  .00603  .00535 —.01006
00982 —.00516 —.00677  .00599
00731 .00159 —.00675 | oZ.
01133 —.00883
.01462

§'A71§ = .36018, with expectation .05568 o2 + .22977 0. &2 for approximate MIVQUE

y'y — ny_/m..

can be computed from

15



Chapter 17
The Two Way Classification

C. R. Henderson

1984 - Guelph

This chapter is concerned with a linear model in which
Yije = ft+ a; + b + 7ij + e (1)

For this to be a model we need to specify whether a is fixed or random, b is fixed or
random, and accordingly whether ~ is fixed or random. In the case of random subvectors
we need to specify the variance-covariance matrix, and that is determined in part by
whether the vector sampled is finite or infinite.

1 The Two Way Fixed Model

We shall be concerned first with a model in which a and b are both fixed, and as a
consequence so is 7. For convenience let

pij = po+ ai + by + ;. (2)

Then it is easy to prove that the only estimable linear functions are linear functions of
pi; that are associated with filled subclasses (n;; > 0). Further notations and definitions
are:

Row mean = ji; . (3)

Its estimate is sometimes called a least squares mean, but I agree with Searle et al. (1980)
that this is not a desirable name.

Column mean = [i;. (4)
Row effect = [; — fi... (5)
Column effect = f; —f.. (6)
General mean = [i_. (7)
Interaction effect = ;5 — fi. — i+ fi... (8)

From the fact that only p;; for filled subclasses are estimable, missing subclasses result in
the parameters of (17.3) ... (17.8) being non-estimable.

fiir. is not estimable if any n;; = 0.
fij is not estimable if any n;;; = 0.
fi.. is not estimable if one or more n;; = 0.

1



All row effects, columns effects, and interaction effects are non-estimable if one or more
n;; = 0. Due to these non-estimability considerations, mimicking of either the balanced
or the filled subclass estimation and tests of hypotheses wanted by many experimenters
present obvious difficulties. We shall present biased methods that are frequently used and
a newer method with smaller mean squared error of estimation given certain assumptions.

2 BLUE For The Filled Subclass Case

Assuming that Var(e) = Io2, it is easy to prove that fi;; = 7;;. Then it follows that
BLUE of the " row mean in the filled subclass case is

l «—c _
- ijl Yij.- (9)
BLUE of j** column mean is

I «—r  _
; Zizl yl.? (1O>

r = number of rows, and

¢ = number of columns.

BLUE of i*" row effect is

_ 1 _
D Ui = 2y 2 Vi (11)
Thus BLUE of any of (17.3), ..., (17.8) is that same function of fi;;, where fi;; = ¥;; .

The variances of any of these functions are simple to compute. Any of them can be
expressed as 3-; >, kij pij with BLUE =

S0 kgt (12)
The variance of this is
0'3 Z’L Z] kfj/nw (13)

The covariance between BLUE’s of linear functions,

Zi Zj kijyi;. and Zl Zj tijYij
is
00 D, 2, kigtig /i (14)
The numbers required for tests of hypotheses are (17.13) and (17.14) and the associated

BLUE’s. Consider a standard ANOVA, that is, mean squares for rows, columns, R x C.
The R x C sum of squares with (r — 1)(¢ — 1) d.f. can be computed by

2
Z. Zj Y. _ Reduction under model with no interaction. (15)
¥ nl]



The last term of (17.15) can be obtained by a solution to

(R ) ()= (%) o

D, = diag (n1, no,...,n;.).

D, = diag (ni, na,...,n.).
N;; = matrix of all n;;.
Vi = Wi,y

’

yj = (y.1.7 cee 7y.c.)-
Then the reduction is
(a%) yi + (b)y;. (17)

Sums of squares for rows and columns can be computed conveniently by the method of
weighted squares of means, due to Yates (1934). For rows compute

1 .
o = E Z] yzj ('l = 1, Ce 77'), and (18>

1
71 _
Then the row S.S. with » — 1 d.f. is

Zi ki af — (Zlklal)Q/szl (19)

The column S.S. with ¢ — 1 d.f. is computed in a similar manner. The “error” mean
square for tests of these mean squares is

'y =22, > ¥ i)/ (.. — o). (20)

An obvious limitation of the weighted squares of means for testing rows is that the test
refers to equal weighting of subclasses across columns. This may not be what is desired
by the experimenter.

1
J nij.

An illustration of a filled subclass 2 way fixed model is a breed by treatment design
with the following n;; and y;;..

Treatments
g Yij.
Breeds |1 2 3|1 2 3
1 5 2 168 29 19
2 4 2 2|55 30 36
3 5 1 4|61 13 61
4 4 5 447 65 75




S0, Y /iy = 8207.5.

Let us test the hypothesis that interaction is negligible. The reduction under a model
with no interaction can be obtained from a solution to equation (17.21).

80 0 0 5 2\ /b 116
8 0 0 4 2| b 121
10 0 5 1 || b | |13

13 4 5 || o |7 187 | (21)
18 0 || & 231
10 ) \ t 137

The solution is (18.5742, 18.5893, 16.3495, 17.4624, -4.8792, -4.0988)". The reduction is
8187.933. Then Rx (C' S.S. = 8207.5 - 8187.923 = 19.567. S. S. for rows can be formulated
as a test of the hypothesis

111000000 1 -1 —1) [/
Kpu=[000111000 -1 -1 -1|[: |=o.
000000111 -1 -1 -1)1\ 4,

The fi;; are (13.6, 14.5, 19.0, 13.75, 15.0, 18.0, 12.2, 13.0, 15.25, 11.75, 13.0, 18.75).

K'ii = (3.63.25 —3.05).
Var(K'p) = K’ [diag (52 ...4)] ' Ko?

24 .71 7
= 1.95 .7 | o2
2.15

0.2 (K'pn) [Var(K'))] ' K'fi = 20.54 =SS for rows.

SS for cols. is a test of

, {10 -110-110-110-1Y) _
K"’_<01—101—101—101—1)“_0'

o ( —19.7
Kp= ( ~15.5 ) ‘
L (29 20
Var(K'py) = ( 49 > o
0.2 (K'in) [Var(K'f)] ' K'fa = 135.12 = SS for Cols.

Next we illustrate weighted squares of means to obtain these same results. Sums of
squares for rows uses the values below



Q; kz
1 15.7 5.29412
2 | 15.5833 7.2
3| 13.4833 | 6.20690
4 14.5 12.85714
> kiof = 6885.014.
(3. ki ai)?/> ki = 6864.478.
Diff. = 20.54 as before.

Sums of squares for columns uses the values below

b; k;
112825 [ 17.7778
2 | 13.875 | 7.2727
31 17.75 8.
> k; by = 6844.712.
O° k) D k; = 6709.590.
Dift. 135.12 as before.

Another interesting method for obtaining estimates and tests involves setting up least
squares equations using Lagrange multipliers to impose the following restrictions

ZZ"}/Z] = OfOI'Z-:L...,T.
Zi’yij = Oforj=1,...,c
p =0

A solution is

b’ (0, —14, —266, —144)/120.
t/ (1645, 1771, 2236)/120.
v = (=13, —31, 44, 19, 43, —62, 85, 55, —140, —91, —67, 158)/120.

Using these values, fi;; are the ¥;;, and the reduction in SS is

Zi Zj yfj/nzg = 8207.5.



Next the SS for rows is this reduction minus the reduction when b? is dropped from
the equations restricted as before. A solution in that case is

t' = (12.8133, 14.1223, 17.3099).
v = (4509, —.4619, .0110, .4358, —.1241, —.3117,
— 0897, 1.4953, —1.4055, —.7970,.9093, 1.7063),

and the reduction is 8186.960. The row sums of squares is
8207.5 — 8186.960 = 20.54 as before.
Now drop t° from the equations. A solution is

b’ = (13.9002, 15.0562, 13.5475, 14.4887).
4 = (.9648, .9390, —1.9039, .2751, .2830, —.5581,
— .0825,.1309, —.0485, —1.1574, —1.3530, 2.5104),

and the reduction is 8072.377, giving the column sums of squares as
8207.5 — 8072.377 = 135.12 as before.

An interesting way to obtain estimates under the sum to 0 restrictions in ~ is to solve

oo (b)) o
XO X()(to >:XOY7

where X is the submatrix of X referring to b, t only, and ¥ is a vector of subclass means.
These equations are

3000111 by 47.1

300111 b 46.75

30111 b 40.45
311 1 by | =1 435 |. (22)

400 t 51.3

40 t 55.5

4 )\ tg 71.0

A solution is

b = (0, —14, —266, —144)/120,
t' = (1645, 1771, 2236)/120.

This is the same as in the restricted least squares solution. Then
Yij = Yig. — b — 15,

which gives the same result as before. More will be said about these alternative methods
in the missing subclass case.



3 The Fixed, Missing Subclass Case

When one or more subclasses is missing, the estimates and tests described in Section 2
cannot be effected. What should be done in this case? There appears to be no agreement
among statisticians. It is of course true that any linear functions of p;; in which n;; > 0
can be estimated by BLUE and can be tested, but these may not be of any particular
interest to the researcher. One method sometimes used, and this is the basis of a SAS
Type 4 analysis, is to select a subset of subclasses, all filled, and then to do a weighted
squares of means analysis on this subset. For example, suppose that in a 3 x 4 design,
subclass (1,2) is missing. Then one could discard all data from the second column, leaving
a 3x 3 design with filled subclasses. This would mean that rows are compared by averaging
over columns 1,3,4 and only columns 1,3,4 are compared, these averaged over the 3 rows.
One could also discard the first row leaving a 2 x 4 design. The columns are compared
by averaging over only rows 2 and 3, and only rows 2 and 3 are compared, averaging over
all 4 columns. Consequently this method is not unique because usually more than one
filled subset can be chosen. Further, most experimenters are not happy with the notion
of discarding data that may have been costly to obtain.

Another possibility is to estimate j;; for missing subclasses by some biased procedure.
For example, one can estimate y;; such that E(j;;) = 1+ a; + b; + some function of the
7i; associated with filled subclasses. One way of doing this is to set up least squares
equations with the following restrictions.

Zj%]’ = OfOYiZl,...,T.

Zi%j = Oforj=1,...,c

This is the method used in Harvey’s computer package. When equations with these
restrictions are solved,

fuij = ke +ai + b7 + v = Tij.
when n;; > 0 and thus is unbiased. A biased estimator for a missing subclass is 1°+af +b7,
and this has expectation p + a; +b; +3>2; >°; kij7i;, where summation in the last term is
over filled subclass and }>; >°; k;; = 1. Harvey’s package does not compute this but does
produce "least squares means” for main effects and some of these are biased.

Thus f1;; is BLUE for filled subclasses and is biased for empty subclasses. In the class
of estimators of j1;; with expectation p + a; 4+ b; + some linear function of p;; associated
with filled subclasses, this method minimizes the contribution of quadratics in v to mean
squared error when the squares and products of the elements of « are in accord with no
particular pattern of values. This minimization might appear to be a desirable property,
but unfortunately the method does not control contributions of o2 to MSE. If one wishes
to minimize the contribution of o2, but not to control on quadratics in -, while still
having E(f1;;) contain p + a; + b;, the way to accomplish this is to solve least squares

7



equations with « dropped. Then the biased estimators in this case for filled as well as
empty subclasses, are
fij = p’ + ag +bj. (23)
A third possibility is to assume some prior values of o2 and squares and products
of 7;; and compute as in Section 9.1. Then all fi;; are biased by 7;; but have in their
expectations i + a; + b;. Finally one could relax the requirement of p + a; + b; in the
expectation of fi;;. In that case one would assume average values of squares and products
of the a; and b; as well as for the v; and use the method described in Section 9.1.

Of these biased methods, I would usually prefer the one in which priors on the -,
but not on a and b are used. In most fixed, 2 way models the number of levels of a and
b are too small to obtain a good estimate of the pseudo-variances of a and b.

We illustrate these methods with a 4 x 3 design with 2 missing subclasses as follows.

7] Yij.

1 2 3 4|1 2 3 4
115 2 3 230 11 13 7
214 2 0 5|21 6 - 9
313 01 412 - 3 15

4 A Method Based On Assumption v;; = 01If n;; =0

First we illustrate estimation under sum to 0 model for v and in addition the as-
sumption that 93 = 732 = 0. The simplest procedure for this set of restrictions is to solve
for a®, b in equations (17.24).

4 19.333

10.05

a0 10.75

( ) =1 1525 |. (24)
8.5

7.333

9.05

0
3

w O O

L = = =

N OO ==

N OO = O =
W OO DO ===

The first right hand side is % + % + 1?3 + % = 19.333, etc. for others. A solution is
(3.964, 2.286, 2.800, 2.067, 1.125, .285, 0). The estimates of p;; are g;;. for filled subclasses
and 2.286 + .285 for fio3 and 2.800 + 1.125 for fize. If 4;; are wanted they are

A1 = 1 — 3.964 — 1.125

etc, for filled subclasses, and 0 for 423 and A3s.

8



The same results can be obtained, but with much heavier computing by solving least
squares equations with restrictions on ~ that are 3°; v;; = 0 for all i, 37, v;; = 0 for all
j, and ;; = 0 for subclasses with n;; = 0. From these equations one can obtain sums of
squares that mimic weighted squares of means. A solution to the restricted equations is

=0,

a® = (3.964, 2.286, 2.800, 2.067)".

b° = (1.125, .285, 0)".

~° = (—.031, 411, .084, —.464, .897, —.411,
0, —.486, —.866, 0, —.084, .950)".

Note that the solution to « conforms to the restrictions imposed. Also note that this
solution is the same as the one previously obtained. Further, fi;; = p°+af +0 +75; = yij.
for filled subclasses.

A test of hypothesis that the main effects are equal, that is i; = ji; for all pairs of i,

i’, can be effected by taking a new solution to the restricted equations with a® dropped.
Then the SS for rows is

(8°) RHS — (B7)" RHS,, (25)

where 37 is a solution to the full set of equations, and this reduction is simply >2; >-; yfj /nij.,
B is a solution with a deleted from the set of equations, and RHS, is the right hand side.
This tests a nontestable hypothesis inasmuch as the main effects are not estimable when
subclasses are missing. The test is valid only if 7,; are truly 0 for all missing subclasses,
and this is not a testable assumption, Henderson and McAllister (1978). If one is to use
a test based on non-estimable functions, as is done in this case, there should be some
attempt to evaluate the numerator with respect to quadratics in fixed effects other than
those being tested and use this in the denominator. That is, a minimum requirement
could seem to be a test of this sort.

E(numerator) = Q:(a)+ @ (fixed effects causing bias in the estimator)

+ linear functions of random variables.

Then the denominator should have the same expectation except that (;(a), the quadratic
in fixed effects being tested, would not be present. In our example the reduction under
the full model with restrictions on - is 579.03, and this is the same as the uncorrected
subclass sum of squares. A solution with - restricted as before and with a dropped is

p =0,

b® = (5.123, 4.250, 4.059, 2.790),

~° = (420, 129, —.119, —.430, .678, —.129,
0, —.549, —1.098, 0, .119, .979)".

This gives a reduction of 566.32. Then the sum of squares with 2 df for the numerator
is 579.03-566.32, but 62 is not an appropriate denominator MS, when 62 is the within

€ &
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subclass mean square, unless 7,3 and 732 are truly equal to zero, and we cannot test this
assumption.

Similarly a solution when b is dropped is

pe =0,

a® = (5.089,3.297,3.741),

(.098, .254, —.355, .003, 1.035, —.254,
0, —.781, —1.133, 0, .355, .778)".

The reduction is 554.81. Then if 753 and 735 = 0, the numerator sum of squares with 3 df
is 579.03-554.81. The sum of squares for interaction with (3-1)(4-1)-2 = 4 df. is 579.03
- reduction with v and the Lagrange multiplier deleted. This latter reduction is 567.81
coming from a solution

p’ =0,
a® = (3.930, 2.296, 2.915)', and
B° = (2.118,1.137,.323,0).

5 Biased Estimation By Ignoring -~

Another biased estimation method sometimes suggested is to ignore «y. That is, least
squares equations with only p°, a°; b? are solved. This is sometimes called the method
of fitting constants, Yates (1934). This method has quite different properties than the
method of Section 17.4. Both obtain estimators of yi;; with expectations p1+a;+0b; + linear
functions of «;;. The method of section 17.4 minimizes the contribution of quadratics in
~ to MSE, but does a poor job of controlling on the contribution of ¢2. In contrast,
the method of fitting constants minimizes the contribution of o2 but does not control
quadratics in 7. The method of the next section is a compromise between these two
extremes.

A solution for our example for the method of this section is
p’ =0,
a’ = (3.930, 2.296, 2.915),
b’ = (2.118, 1.137, .323, 0).
Then if we wish fi;; these are u® + af + 0j.

A test of row effects often suggested is to compute the reduction in SS under the
model with « dropped minus the reduction when a and ~ are dropped, the latter being
simply 3°; 9% /n... Then this is tested against some denominator. If 67 is used, the

10



denominator is too small unless v is 0 . If R x C for MS is used, the denominator
is probably too large. Further, the numerator is not a test of rows averaged in some
logical way across columns, but rather each row is averaged differently depending upon
the pattern of subclass numbers. That is, K'3 is dependent upon the incidence matrix,
an obviously undesirable property.

6 Priors On Squares And Products Of v

The methods of the two preceding sections control in the one case on < and the other

on o2 as contributors to MSE. The method of this section is an attempt to control on

both. The logic of the method depends upon the assumption that there is no pattern of
values of =, such, for example as linear by columns or linear by rows. Then consider the
matrix of squares and products of elements of 7;; for all possible permutations of rows

and columns. The average values are found to be

'yfj = a.
Yijviy = —af(c—1).
Vigyeg = —of(r—1).
Vijvey = af(r—1)(c—1). (26)

Note that if we substitute o2 for «, this is the same matrix as that for Var(y) in the
finite random rows and finite random columns model. Then if we have estimates of o2
and « or an estimate of the relative magnitudes of these parameters, we can proceed to
estimate with a and b regarded as fixed and ~ regarded as a pseudo random variable.

We illustrate with our same numerical example. Assume that 02 = 20 and a =
6. Write the least squares equations that include 93 and 732, the missing subclasses.
Premultiply the last 12 equations by

6 -2 -2 -2 -3 1 1 1 -3 1 1 1
6 -2 -2 1 -3 1 1 1 -3 1 1
6 -2 1 1 -3 1 1 1 -3 1
6 1 1 1 -3 1 1 1 -3
6 -2 -2 -2 -3 1 1 1
6 -2 -2 1 -3 1 1
6 -2 1 1 =3 1 (27)
6 1 1 1 -3
6 -2 -2 =2
6 —2 -2
6 —2
6

Then add 1 to each of the last 12 diagonals. The resulting coefficient matrix is (17.28) ...
(17.31). The right hand side vector is (3.05, 1.8, 1.5, 3.15, .85, .8, 2.6, .4, 1.8, -4.8, .95,
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1.15, -2.25, .15, -3.55, -1.55, .45, 4.65)’ g8 = (ayagasbibabsy'). Thus p and by are deleted,
which is equivalent to obtaining a solution with p° =0, b5 = 0.

Upper left 9 x 9

oo o

Upper right 9 x 9

Lower left 9 x 9

—4
-4
2

0

2
—4
2

0

2

—.45
)
-3
—-1.1
9
—.25
15
.5d
—.45

0
)
0
2 1
1
0 .0
5
)
)
0
2
0
2
0
0
—.6
2
2
-4
-2
4
2
-4
4
-8
-4
.8

0 1
0 1
4 .15 0
) 0
0 2

25

12

) 0 0 .

2 45 -1 =25

4 =15 3 =25
2 =15 -1

00 O 0

A 0 .25 0

00 0 .15

00 0 .15

d 0 0 0

00 O 0

d 0 .25 =45

-3 0 25 .15

1 0 .25 15

—-.15 -1 =25

0 -1 2

0 3 2

0 -1 -6

0 —.1 2

—.45 2 .05

A5 -6 .05

A5 2 =15

A5 .2 .05

S OO OO OO o oo

—.75
25
25
.25

—.75
25
25
25

—.2
1
—.3
1
d
d
-3
1
d

MMM OoO oo oo

-3
15
15

—.45
15
15
15

—.45
15

(28)

(29)



Lower right 9 x 9

16 2 1 0 -7 15 0 .05 —6
1 22 -2 0 -5 —-45 0 .05 .2
1 -4 16 0 -5 .15 0 .05 .2
1 -4 -210 -5 15 0 —15 .2
~3 -4 -2 0 25 15 0 .05 —6 (31)
1 -6 1 0 25 19 0 —1 —4
1 2 -3 0 25 —-310 -1 —4
1 2 1 0 25 -3 0 13 —4
-3 2 1 0 -7 -3 0 -1 22

The solution is

a® = (3.967, 2.312, 2.846)".
b° = (2.068, 1.111, .288, 0)’.

~¢ displayed as a table is

1 2 3 4
11]-.026 .230 .050 -.255
2| .614 -.230 0 -.384
3| -.988 0 -.050 .638

Note that the 7, sum to 0 by rows and columns. Now the fi;; = af + 07 4+ 77;. The same
solution can be obtained more easily by treating « as a random variable with Var = 121
The value 12 comes from 57— 6 = % (6) = 12. The resulting coefficient matrix
(times 60) is in (17.32). The right hand side vector is (3.05, 1.8, 1.5, 3.15, .85, .8, 1.5, .55,

.65, .35, 1.05, .3, 0, .45, .6, 0, .15, .75)". p and by are dropped as before.

36 0 01 6 9156 96 000 0000 0

3 012 6 0 0O0O0O012 6 0 15 0 0 0 O
24 9 0 3 0000 OO0OO0O O0O9O0 3 12 (32)

36 0 01500012 00 0900 O

2 0 06 00 06 0 0O0O0O0 O

2 0090 000 0O0O03 0

diag (20,11,14,11,17,11,5,20,14,5,8,17)

The solution is the same as before. This is clearly an easier procedure than using the
equations of (17.28). The inverse of the matrix of (17.28) post-multiplied by

(op)
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where P = the matrix of (17.27), is not the same as the inverse of the matrix of (17.32)
with diagonal G, but if we pre-multiply each of them by K’ and then post-multiply by
K, where K’ is the representation of p;; in terms of a, b, 7y, we obtain the same matrix,
which is the mean squared error for the fi;; under the priors used, 02 = 20 and a = 6.
Biased estimates of fi;; are in both methods

6.009 5.308 4.305 3.712
4.994 3.192 2.600 1.928
4.327 3.957 3.084 3.484

The estimated MSE matrix of this vector is
Upper left 8 x 8

3.58 32 18 46 .28 —-32 —87 —-.09
834 .15 64 —43 166 —-2.29 —-.32
6.01 38 .02 —-15 416 .04

764 —29 —64 —-1.77 .49

440 43 193 31

834 229 .32

33.72 154

3.63

Upper right 8 x 4

33 =70 =55 =11
04 521 —-45 .08
-33 —-133 197 —-.24
—-37 =147 —-1.14 D7
34 —-1.09 —-.06 —.24
—.04 479 45 —.08
—1.12 —-4.67 751 —-1.04
—-.25 —1.04 —.13 22

Lower right 4 x 4

5.66 2.62 1.00 .50
33.60 4.00 2.03
14.08 .73

4.44

Suppose we wish an approximate test of the hypothesis that fi; are equal. In this
case we could write K’ as

1 1 1 1 -1 -1 -1 =1
(Joionnitiireoos s 3R
01 -10000000 L1 1 1 =l =1 -1 -1

14



Then compute K'CK, where C is either the g-inverse of (17.28) post-multiplied by

(o0

or the g-inverse of the matrix using diagonal G. This 2 X 2 matrix gives the MSE for 02 =
20, o = 6. Finally premultiply the inverse of this matrix by (K’3°)" and post-multiply by
K’(3°. This quantity is distributed approximately as x3 under the null hypothesis.

7 Priors On Squares And Products Of a, b, And 7~

Another possibility for biased estimation is to require only that
E(f1;;) = p + linear functions of a, b, ~.
We do this by assuming prior values of squares and products of a and of b as

=1 =1
1 r—1 1 c—1

2 . 2
o, and = Oy

=1 =1
r—1 1 c—1 1

respectively, where o2 and ¢? are pseudo-variances. The prior on « is the same as in

Section 17.6. Then we apply the method for singular G.

To illustrate in our example, let the priors be a? = 20, a2 = 4, a} =9, ai = 6. Then
we multiply all equations except the first pertaining to u by

P,o2 0 0
0 Pbgg 0 s

0 0 oni

and add 1’s to all diagonals except the first. This yields the equations with coefficient
matrix in (17.33) ... (17.36) and right hand vector = (6.35, 5.60, -1.90, -3.70, 18.75, -8.85,
-9.45, -.45, 2.60, .40, 1.80, -4.80, .95, 1.15, -2.25, .15, -3.55, -1.55, .45, 4.65)".

Upper left 10 x 10
1.55 .6 .55 4 .6 2 .2 .95 .25 1

bH o34 —-11 -8 3.2 D -5 10 4
2 =12 3.2 =8 0o 2 -4 4 =5 =2
-7 -12 -11 26 -3 -4 -1 1 -5 =2

255 1.2 ) 6 64 -6 -6 —-165 225 -3
-225 -6 —-45 -12 —-18 28 -6 —-165 -7 9
—2.25 0O -165 -6 —-18 -6 28 —-165 —.75 —.3

19 -6 135 12 —-18 -6 -6 595 =7 -3

1) 8 =25 =2 45 -1 =25 25 25 =2
A5 -4 15 4 =15 3 =25 25 =5 16
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Upper right 10 x 10

A5 1 2 10 25 .15 0 .05 2
6 4 -4 -2 0 -5 -30 -1 -4
-3 =2 8 40 10 -3 0 -1 —4
-3 -2 -4 -2 0 -5 6 0 2 8
-45 -3 1.8 -3 0 -7 135 0 —-.15 —.6 (34)
—-45 -3 -6 9 0 -7 —45 0 —-.15 —.6
13 -3 -6 -3 0 =7 —45 0 45 —.6
—.45 9 —6 -3 0 225 —45 0 —.15 1.8
-3 -2 -6 .10 25 —45 0 .05 2
-3 =2 2 -3 0 25 15 0 .05 2
Lower left 10 x 10
.75 0 b5 2 —-15 -1 75 25 =5 =2
-125 -4 —-45 -4 —-15 -1 —-25 -7 -5 -2
-1 —4 D =2 0 —.1 2 =2 =75 1
3 2 -3 4 0 .3 2 =2 25 =3
-9 0 —-1.1 2 0O -1 -6 -2 25 1 (35)
T2 9 —4 0 —-.1 2 6 25 1
-25 —4 —-25 4 —45 2 05 —-05 -7 1
-45 2 15 -8 15 —-6 .05 —-05 25 -3
.15 0O b5 -4 15 2 —15 —-05 25 1
b 2 —45 8 15 2 .05 15 .25 1
Lower right 10 x 10
19 -2 2 1 0 25 15 0 -.15 2
-3 16 2 1 0 -7 15 0 .05 —.6
A5 1 22 -2 0 -5 —45 0 .05 2
5 1 -4 16 0 -5 .15 0 .05 2
-45 1 -4 -2 10 -5 .15 0 -.15 2 (36)
A5 -3 -4 -2 0 25 15 0 .05 —.6
5 1 -6 1 0 .25 19 0 -1 -4
A5 1 2 -3 0 2 -3 10 -1 -4
—45 1 2 1 0 25 -3 0 13 —4
A5 -3 2 1 0 -7% -3 0 -1 22

The solution is

i = 4.014,
a = (.650, —467, —.183),
b = (972, 120, —.208, —.885),
( 111 225 —.170 .166)
y = 489 —.276 303 —.515 |.
—599  .051 —.133  .681
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Note that >>; a; = 3, I;j = 0 and the 4;; sum to 0 by rows and columns. A solution
can be obtained by pretending that a, b, « are random variables with Var(a) = 3I,
Var(b) = 8I, Var(y) = 121. The coefficient matrix of these is in (17.37) ... (17.39) and
the right hand side is (6.35, 3.05, 1.8, 1.5, 3.15, .85, .8, 1.55, 1.5, .55, .65, .35, 1.05, .3, 0,
45, .6, 0, .15, .75)". The solution is

o= 4.014,
a = (.325, —.233, —.092),
b = (.648, .080, —.139, —.590),
( 760 590 086 .136)
4 = 580 —.470 0 —1.043 |.
—.367 0 —.294 295

This is a different solution from the one above, but the fi;; are identical for the two. These
are as follows, in table form,

5.747 5.009 4.286 3.613
5.009 3.391 3.642 2.148 |.
4.204 4.003 3.490 3.627

Note that >, a; = Zjl;j = 0, but the 4;; do not sum to 0 by rows and columns.
~ 92 A 2 ~
Zj Yij = oy aifo, =4 a;.
Zi ’%‘j = 0-'27 bj/O'g = 15 bj.

The pseudo variances come from (15.18) and (15.19).

s 3 3 B
Tea = 5 (4) - (‘y§ (6) = 3.
» 4 4 B
Tw = 3 9) - 23 (6) = 8.

ol = gii 6) = 12

Upper left 8 x &
186 72 66 48 72 24 24 66

112 0 0 30 12 18 12

106 0 24 12 0 30

_1 88 18 0 6 24
120 87 0 0 0 (37)

39 0 0

39 0

81

17



Lower left 12 x 8 and (upper right 12 x 8)’

30 30 0 0 30 O O O

12 12 0 0 0 12 0 O

18 18 0 0 0 0 18 O

12 12 0 0 0 0 0 12

24 0 24 0 24 0 0O O

412 0 12 0 0 12 0 O
120 o 0 0 0O o0 0o o0 o0 (38)

30 0 30 0 O O 0 30

18 0 0 18 18 0 0 O

o 0 0 0O o0 o0 o0 O

6 0 0 6 0 0 o6 0

24 0 024 0 0 0 24

Lower 12 x 12

=1207"! diag (40, 22, 28, 22 34, 22, 10, 40, 28, 10, 16, 34) (39)

Approximate tests of hypotheses can be effected as described in the previous section.
K’ for SS Rows is (times .25)

040 4000011110000 -1 -1 -1 -1

004 -4000O0O0O0O0O0O0O0O1TT1T1T1T -1 -1 -1 -1/
K’ for SS columns is

00003003100 -11T00-11T00 -1

00000303010 -1010-1010 -1 /3

0 000O0OO0OD33001-1001 1001 -1

8 The Two Way Mixed Model

The two way mixed model is one in which the elements of the rows (or columns) are a
random sample from some population of rows (or columns), and the levels of columns (or
rows) are fixed. We shall deal with random rows and fixed columns. There is really more
than one type of mixed model, as we shall see, depending upon the variance-covariance
matrices, Var(a) and Var(y), and consequently Var(a), where o = vector of elements,
p+ a; +b; + ;5. The most commonly used model is

C o0 ---0
0C .- 0

Var(a) = | . . .| (40)
0 O C

18



where C is ¢ X ¢, q being the number of columns. There are p such blocks down the
diagonal, where p is the number of rows. C is a matrix with every diagonal = v and every
off-diagonal = c. If the rows were sires and the columns were traits and if Var(e) = Io?,
this would imply that the heritability is the same for every trait, 4 v/(4v + ¢2), and the
genetic correlation between any pair of traits is the same, ¢/v. This set of assumptions
should be questioned in most mixed models. Is it logical to assume that Var(o;;) =
Var(a;j) and that Cov(ayj, o) = Cov(ay;, aum)? Also is it logical to assume that
Var(e; ) = Var(e;)? Further we cannot necessarily assume that o;; is uncorrelated
with ;. This would not be true if the i*" sire is related to the i’ sire. We shall deal more
specifically with these problems in the context of multiple trait evaluation.

Now let us consider what assumptions regarding

(2)

will lead to Var(a) like (17.40). Two models commonly used in statistics accomplish this.
The first is based on the model for unrelated interactions and main effects formulated in
Section 15.4.

Var(a) = Io?,

since the number of levels of a in the population — oo, and

Var(vi;) = O',2y.
Cov(vij, Vig) = —03/(q -1).
Cov(vij, vv;) = —0o-/(one less than population levels of a) = 0.
Cov(vij, vw;) = —02/(q—1) (one less than population levels of a) = 0.

This leads to
P o -
Var(v)=| 0 P - 0 | 42 (41)

where P is a matrix with 1’s in diagonals and —1/(¢ — 1) in all off-diagonals. Under this
model

+ 02
— a2/(g—1). (42)

Var(oi;)

OOU(O{ij, Oéij/> = O

Q
QN QN

An equivalent model often used that is easier from a computational standpoint, but
less logical is

Var(a,) = Io?

*a)

Var(y,) = Io?

*7y )

where 02, = 02 — 02 /(¢ — 1).
where 02 = qo2/(q — 1). (43)

*’y_
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Note that we have re-labelled the row and interaction effects because these are not the
same variables as a and ~.

The results of (17.43) come from principles described in Section 15.9. We illustrate
these two models (and estimation and prediction methods) with our same two way exam-
ple. Let

Var(e) = 20I,Var(a) =4I, and

)

where P is a 4 x 4 matrix with 1’s for diagonals and —1/3 for all off-diagonals. We set up
the least squares equations with p deleted, multiply the first 3 equations by 4 I3 and the
last 12 equations by Var() described above. Then add 1 to the first 4 and the last 12
diagonal coefficients. This yields equations with coefficient matrix in (17.44) ... (17.47).
The right hand side is (12.2, 7.2, 6.0, 3.15, .85, .8, 1.55, 5.9, -1.7, -.9, -3.3, 4.8, -1.2, -3.6,
0, 1.8,-3.0, -1.8, 3.0)".

o o

0
P
0

Mo o

Var(y) = 6(

Upper left 10 x 10

34 0 0 1.0 4 .6 4 1.0 4 .6
0 32 0 .8 4 0 1.0 0 0 0
0 0 26 .6 0 2 8 0 0 0

25 .2 .15 .6 0 0 0 .25 0 0
1 1 0 0 2 0 0 0 1 0

15 0 .05 0 0 2 0 0 0 .15 (44)
1 25 2 0 0 0 .55 0 0 0
8 0O 0 15 -2 -3 -2 25 -2 -3

-4 0 0 =5 6 -3 -2 -5 16 -3
0O 0 0 =5 =2 9 -2 -5 —-2 19

Upper right 10 x 9

4 0 00 O OO0 o0 O
0.8 4010 00 0 O
0o 0 00 O 6 0 2 8
0.2 00 0 .15 0 0 O
O 010 0 00 0 O
0O 0 0O0 0O 00 .05 0 (45)
1 0 00 25 00 0 .2

-2 0 00 0 00 00O

-2 0 00 O 00 0O

-2 0 00 O 00 0O
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Lower left 9 x 10

-4 0 0O -5 -2 -3 6 —-5H -2 =3
0 5 0 1.2 -2 0 —.5 0 0 0
0o -3 0 —4 6 0 -5 0 0 0
0 —1.1 0 —4 -2 0 —.5 0 0 0
0 9 0 —4 -2 0 1.5 0 0 0 (46)
0 0o 4 9 0 -1 —4 0 0 0
0 0 -8 —.3 0 —1 —4 0 0 0
0 0 —4 -3 0 3 —4 0 0 0
0 0 8§ —.3 0 —1 1.2 0 0 0
Lower right 9 x 9
1.6 0 0 0 0 0 O 0 0
0 22 -2 0 =5 0 O 0 0
0 —4 16 0 —.5 0 O 0 0
0 -4 -2 1.0 =5 0 O 0 0
0 -4 -2 0 25 0 O 0 0 (47)
0 0 0 0 0o 19 0 -1 —4
0 0 0 0 0 -3 10 —1 —4
0 0 0 0 0 -3 0 13 —4
0 0 0 0 0 -3 0 —1 22

The solution is

a = (563, —.437, —.126)".
b = (5.140, 4.218, 3.712, 2.967)".
( 104 .163 —.096 .170)
4 = 421 —.226 219 —.414 |.
—524 063 —.122 584

The 4,; sum to 0 by rows and columns.

When we employ the model with Var(a,) = 2I and Var(vy,) = 8I, the coefficient
matrix is in (17.48) ... (17.50) and the right hand side is (3.05, 1.8, 1.5, 3.15, .85, .8, 1.55,
1.5, .55, .65, .35, 1.05, .3, 0, .45, .6, 0, .15, .75)".

Upper left 7 x 7

11 0 0 .25 .1 .15 .1
105 0 2.1 0 .25
9 .15 0 .05 .2
6 0 0 0 (48)
2 0 0
2 0
55
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Lower left 12 x 7 and (upper right 7 x 12)’

20 0 25 0 0 O
dl 0 0 0.1 0 O

50 0 0 0 15 0
dl 0 0 0 0 0 1
o 2 0 2 0 0 0
o 1 0 0.1 0 0
o 0 o0 0 0 0 0 (49)
0 25 0 0 0 0 .25
0O 0 .15 15 0 0 0
o 0 0 0 0 0 0
0O 0 .05 0 0 .05 O
o o0 2 0 0 0 .2

Lower right 12 x 12
= diag (.375, .225, .275, .225, .325, .225, .125, .375, .275, .125, .175, .325).  (50)

The solution is

a = (.282, —.219, —.063)’, different from above.
b = (5.140, 4.218, 3.712, 2.967)", the same as before.
.385 444 185 112
vy o= 202 —.444 0 —.632 |,
—.588 0 —.185 521

different from above. Now the 4 sum to 0 by columns, but not by rows. This sum is
02a;/02, = 4a;.

As we should expect, the predictions of subclass means are identical in the two solutions.

These are
5.807 4.945 4.179 3.360

5.124 3.555 3.493 2.116
4.490 4.155 3.463 3.425

These are all unbiased, including missing subclasses. This is in contrast to the situation
in which both rows and columns are fixed. Note, however, that we should not predict ;;
except for j = 1,2,3,4. We could predict p;; (j=1,2,3,4) for ¢ > 3, that is for rows not in
the sample. BLUP would be Bj. Remember, that Ej is BLUP of b; + the mean of all a; in
the infinite population, and a; is BLUP of a; minus the mean of all a; in the population.

We could, if we choose, obtain biased estimators and predictors by using some prior
on the squares and products of b, say

22



where o7 is a pseudo-variance.

Suppose we want to estimate the variances. In that case the model with
Var(a,) =102, and Var(y,) = Iai7

is obviously easier to deal with than the pedagogically more logical model with Var(vy)
not a diagonal matrix. If we want to use that model, we can estimate o2, and af7 and
then by simple algebra convert those to estimates of o2 and 03 :
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Chapter 18
The Three Way Classification

C. R. Henderson

1984 - Guelph

This chapter deals with a 3 way classification model,
Yijkm = M+ a; + bj + ¢ + abij + acy, + ijk + CLbCijk + €ijkm- (1)

We need to specify the distributional properties of the elements of this model.

1 The Three Way Fixed Model

We first illustrate a fixed model with Var(e) = Is%. A simple way to approach this
model is to write it as

Yijkm = Mijk T €ijkm- (2)
Then BLUE of ju3, is ¥y, provided ngj, > 0. Also BLUE of

ZZZ Dijk Nijkzzzz Dijk Yijk.»
i gk i j k

where summation is over subclasses that are filled. But if subclasses are missing, there
may not be linear functions of interest to the experimenter. Analogous to the two-way
fixed model we have these definitions.

aeffects = @, — @
beffects = . — 1
ceffects = @, —T1

ab interactions = i, —@; — @+,
abc interactions = i — fiy; — flig

— Mk
R e U e o T el T

(3)

None of these is estimable if a single subclass is missing. Consequently, the usual tests of
hypotheses cannot be effected exactly.



2 The Filled Subclass Case

Suppose we wish to test the hypotheses that a effects, b effects, ¢ effects, ab inter-
actions, ac interactions, bc interactions, and abc interactions are all zero where these are
defined as in (18.3). Three different methods will be described. The first two involve
setting up least squares equations reparameterized by

Z a, = Xbj=Xc,=0
> ab; = 0foralli, etc.
J

> aber = 0foralli, ete. (4)
ik

We illustrate this with a 2 x 3 x 4 design with subclass numbers and totals as follows

Nijk
b1 by b
C1 C C3 C4 | C C C3 C4|C Co C3 (4
2 1 4|15 2 1 1
2/7 2 5 1|16 2 4 3|3 4 6 1

—_
w
ot
[\
D
ot

Yijk.
by ba bs
a C1 Co C3 Cy C1 Co C3 Cyq C1 Co C3 Cy
53 110 41 11891 31 9 55|96 31 8 12
20111 43 8 9 [95 26 61 35|52 55 97 10

—_




The first 7 columns of X are

11 1 0 1 0 0
1 1 1 0 O 1 O
11 1 0 0 0 1
11 1 0 -1 -1 -1
1 1 0 1 1 0 O
11 0 1 0 1 0
11 0 1 0 0 1
1 1 0 1 -1 -1 -1
1 1 -1 -1 1 0 O
1 1-1 -1 0 1 O
1 1 -1 -1 0 0 1
1 1 -1 -1 -1 -1 -1
1 -1 1 0 1 0 O
1 -1 1 0 O 1 O
1 -1 1 0 O 0 1
1 -1 1 0 -1 -1 -1
1 -1 0 1 1 0 O
1 -1 0 1 0 1 O
1 -1 0 1 0 0 1
1 -1 0 1 -1 -1 -1
1 -1 -1 -1 1 0 O
1 -1 -1 -1 0 1 0
1 -1 -1 -1 0 0 1
1 -1 -1 -1 -1 -1 -1

The first column pertains to u, the second to a, the next two to b, and the last 3 to c. The
remaining 17 columns are formed by operations on columns 2-7. Column 8 is formed by
taking the products of corresponding elements of columns 2 and 3. Thus these are 1(1),
1(1), 1(1), 1(1), 1(0), ..., -1(-1). The other columns are as follows: 9 =2 x 4, 10 = 2 x 5,
11=2x%x6,12=2x7,13=3x5,14=3x%x6,15=3x7,16=4x25,17 =4 x6,
18=4x7,19=2x13,20=2x14,21=2x15,22=2x16,23=2x 17,24 =2 x 18.



This gives the following for columns 8-16 of X

0O -1 -1 -1 -1 -1 -1

1

1 -1 -1 -1

0

-1 -1 -1 -1

—1

1 -1 -1 -1

1

-1 -1

0




and for columns 17-24 of X,

PP OO R P00 000O0OHHOORHROODOOOO
|

_— O R O OFR OO0 RO OFRFOF,ROOOOoOOo

R O O R OO0 000 RO, OFrRrROFR,ROOoOOooOo
—_—_ OO FPF OO0 HHFEFOOKFMFEFOOOOOoOO

— ) O OO0 00O R P OO R P OO~ FEOO
— OO R P OO R OO0 R OO, PP OO, OoOOoOoOo

—_— OO R OO0 R OO R MHFOOHROODOOoO~,OO -

_—H OFRPR OO OO0 O R OFROFRFOFOOODOoOOoO OO

Then the least squares coefficient matrix is X’NX, where N is a diagonal matrix of n;j.
The right hand sides are X/y., where y. is the vector of subclass totals. The coefficient
matrix of the equations is in (18.5) ... (18.7). The right hand side is (1338, -28, 213, 42,
259, 57, 66, 137, 36, -149, -83, -320, -89, -38, -80, -30, -97, -103, -209, -16, -66, -66, 11,
19)".



Upper left 12 x 12

L0
N~—
M M~ O © 1010 I~ © ©
i _ fr =
_
10— O~ O I~ O <H - O ™M
_ [
S M = H M O O© M AN IO
| — = | [
_
N <t OO0 tH H— N O
[ A0
© o0 FH o A O ™ <t
lr |
_
™M D~ 10 - O © O
— | — — ™
_
— 0 <t D~ O ™M
s
M O MM AN O
—
<t NN O
AN 1O
o0 © <f
0
D~ —
_OO
—
(o 0]
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Upper right 12 x 12 and (lower left 12 x 12)’

—4
-2

-2 -7 =7 =11 O
—4 —4
—4
-2

)

—4

-7
-5
-9

-7
-2
-3

-3 -5
—13

-7

1

—11

2
0

5

)

)
-9

-4 =13 2 =2
-2 0 -3

-7

)

10

Lower right 12 x 12

22

23

28

19

21

22
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The resulting solution is (15.3392, .5761, 2.6596, -1.3142, 2.0092, 1.5358, -.8864, 1.3834,
-.4886, 4311, .2156, -2.5289, -3.2461, 2.2154, 2.0376, .9824, -1.3108, -1.0136, -1.4858,
-1.9251, 1.9193, .6648, .9469, -6836).

One method for finding the numerator sums of squares is to compare reductions,
that is, subtracting the reduction when each factor and interaction is deleted from the
reduction under the full model. For A, equation and unknown 2 is deleted, for B equations
3 and 4 are deleted, ..., for ABC equations 19-24 are deleted. The reduction under the
full model is 22879.49 which is also simply

D000 Yin /M
ik
The sums of squares with their d.f. are as follows.
d.f. SS
A 1 17.88
B 2 |207.44
C 3 1192.20
AB 2 55.79
AC 3 |113.25
BC 6 | 210.45
ABC | 6 92.73

The denominator MS to use is 6% = (y'y - reduction in full model)/(81-24), where 81 is
n, and 24 is the rank of the full model coefficient matrix.

A second method, usually easier, is to compute for the numerator

8S = (87)' (Var(87)) " Bios. (8)

B; is a subvector of the solution, 39 for A; g5, By for B, ..., B, ..., B3, for ABC.
Var(B}) is the corresponding diagonal block of the inverse of the 24 x 24 coefficient

matrix, not shown, multiplied by ¢ . Thus

SS for A = .5761 (.0186) " .5761,

-1
SS for B = (2.6596 —1.3142)( 0344 _-0140) ( 26596) |

—.0140  .0352 —1.3142

etc. The terms inverted are diagonal blocks of the inverse of the coefficient matrix. These
give the same results as by the first method.

The third method is to compute
(K (Var(Kj) ™ K'juo?. (9)

7



K!p = 0 is the hypothesis tested for the i"* SS. {1 is BLUE of p, the vector of p;x, and
this is the vector of ¥, .

K 4 is the 2nd column of X.

K is columns 3 and 4 of X.

K 4pc is the last 6 columns of X.

For example, K5 for SSB is
1 0 -1 1 0 -1
01 -1 -11 —-1)°
where 1 =(1111)and 0= (000 0).

Var(it)/o? = N7,
where N is the diagonal matrix of n;;,. Then
Var(K'p) 'o? = (K'NT'K) ™.

This method leads to the same sums of squares as the other 2 methods.

3 Missing Subclasses In The Fixed Model

When one or more subclasses is missing, the usual estimates and tests of main effects
and interactions cannot be made. If one is satisfied with estimating and testing functions
like K'ps, where p is the vector of p;;, corresponding to filled subclasses, BLUE and exact
tests are straightforward. BLUE of

K'n =K'y, (10)

where ¥. is the vector of means of filled 3 way subclasses. The numerator SS for testing
the hypothesis that K'pu = ¢ is

(K'y. —c) Var(K'y.) Y(K'y. — ¢)o?. (11)

Var(K'y.)/o? = KN 'K, (12)

where N is a diagonal matrix of subclass numbers. The statistic of (18.11) is distributed
as central y?c0? with d.f. equal to the number of linearly independent rows of K’. Then
the corresponding MS divided by 62 is distributed as F' under the null hypothesis.

8



Unfortunately, if many subclasses are missing, the experimenter may have difficulty
in finding functions of interest to estimate and test. Most of them wish correctly or
otherwise to find estimates and tests that mimic the filled subclass case. Clearly this is
possible only if one is prepared to use biased estimators and approximate tests of the
functions whose estimators are biased.

We illustrate some biased methods with the following 2 x 3 x 4 example.

Nijk
b1 by b
C1 C C3 C4 | C C C3 C4|C Co C3 (4
5 2 0 415 2 0 0
7T 2 5 0|6 2 4 3|3 4 6 0

—
w
ot
[\
D

Yijk.
by ba bs
a C1 Co C3 Cyq C1 Co C3 Cyq C1 Co C3 C4
1153 110 41 118191 31 - 55196 31 - ~—
21111 43 8 — 195 26 61 35|52 55 97 -~

Note that 5 of the potential 24 abc subclasses are empty and one of the potential 12 bc
subclasses is empty. All ab and ac subclasses are filled. Some common procedures are
1. Estimate and test main effects pretending that no interactions exist.

2. Estimate and test main effects, ac interactions, and bc interactions pretending that be
and abc interactions do not exist.

3. Estimate and test under a model in which interactions sum to 0 and in which each of

the 5 missing abc and the one missing bc interactions are assumed = 0.

All of these clearly are biased methods, and their “goodness” depends upon the
closeness of the assumptions to the truth. If one is prepared to use biased estimators,
it seems more logical to me to attempt to minimize mean squared errors by using prior
values for average sums of squares and products of interactions. Some possibilities for our
example are:

1. Priors on abc and bc, the interactions associated with missing subclasses.
2. Priors on all interactions.

3. Priors on all interactions and on all main effects.



Obviously there are many other possibilities, e.g. priors on ¢ and all interactions.

The first method above might have the greatest appeal since it results in biases due
only to bc and abc interactions. No method for estimating main effects exists that does
not contain biases due to these. But the first method does avoid biases due to main
effects, ab, and ac interactions. This method will be illustrated. Let u, a, b, ¢, ab, ac
be treated as fixed. Consequently we have much confounding among them. The rank of
the submatrix of X'X pertaining to them is 1 + (2-1) + (3-1) + (4-1) + (2-1)(3-1) +
(2-1)(4-1) = 12. We set up least squares equations with ab, ac, bc, and abc including
missing subclasses for bec and abce. The submatrix for ab and ac has order, 14 and rank,
12. Treating bc and abc as random results in a mixed model coefficient matrix with
order 50, and rank 48. The OLS coefficient matrix is in (18.13) to (18.18). The upper 26
X 26 block is in (18.13) to (18.15), the upper right 26 x 24 block is in (18.16) to (18.17),
and the lower 24 x 24 block is in (18.18).

16 0 0
11 0

- O O O

T O O OO

W oo o oo
LW o OO ot otw

(13)

O O O O O NN Ot
DO O OO OO OoONN
OO OO OO OO =D

—
Y OO OO WO O oo

—
00O OO OO HRRNDNNO OO

GO OO OO OO =t OO

—_

(14)

O OO O OO OO Wo o oo
OO T O OO WO OO oW
OO OO UTTO OO O O
G O DO OO OO Ut O
S OO IIHTDODDD DO oo o™
SO OO OO OO UTO Oy o O ot o
O N O DODONNODONNOOoONO
O O O O O OO koo oo
SO OO OO OO WO OO
OO WO OO Utw oo oto o
O O OO NO OO NOoO o
SO OO OO OO O o oo
SO DD DO DD oo OO0 oo
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0500020002¢0¢00O0
002000O0O0O0O0O0GO0T®O
0006 00040000 0O0
0000O0O0OO0OO0OO0OO0OO0OTO0OT
0000O0OO0OO0OOOOO0OO0O®O
0000O0OO0O0OO0OOOO0OGO 0O
0000O0OO0OO0OO0OOOO0OTO 0O
3300000O0O0OO0O0CO0OGO0T7
050000O0O0O0O0O0GO0O®O
0020000O0O0O0O0O0TO
0006 000O0O0O0O0O0°O
0000500O0O0O0O0OGO0T®O
0000O020O00O0O0GO0G®O
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0000O0OO0OO0OO0OOOO0OTO 0O

(16)

11



000O0O0OO0OO0OO0OO0OO0OO
000O0O0OO0OO0OO0OO®O0OO0
000O0O0OO0OO0OO0OO0O®O0OO0
25000000O0O00
0006 2430000
0000O0O0O0OO0O346¢60
000O0O0OO0OO0OO0OOO0OO
000O0O0OO0OO0OO0OO®O0OO0
000O0O0OO0OOO0OO0O®O0OO0
000O0O0OOOO0OO0O®O0O® O
0006 00O030¢O00O0
20002000400
050004000°©60O0 (17)
0000O0O0O30O0O0O0]"
000O0O0OOOO0OO0OO0O® O
200000O0O0O0O0O0
050000O0O0O0O0O0
000O0O0OO0OO0OO0OO®O0OO0
0006 00O0O0O0O0O0
0000200O0O0O0O0
000O0O0O400O00O0O0O0
000O0O0OO0O30O0O0O0
000O0O0OO0OO0OSJ30O00O0
000O0O0OO0OO0OO0OA4CO0O0
000O0O0OO0OO0OO0OO OGO
0000O0O0OOO0OO0OO0O®O
diag(3,5,2,6,5,2,0,4,5,2,0,0,7,2,5,0,6,2,4,3,3,4,6,0). (18)

The right hand side is

(322, 177, 127, 243, 217, 204, 240, 172, 41, 173, 258,
124, 247, 35, 164, 153, 130, 118, 186, 57, 61, 90,
148, 86, 97, 0, 53, 110, 41, 118, 91, 31, 0,
55, 96, 31, 0, 0, 111, 43, 89, 0, 95, 26,
61, 35 52, 55 97, O]

We use the diagonalization method and assume that the pseudo-variances are o2, = .3
02, 02, = .6 2. Accordingly we add .37! to the 15-26 diagonals and .6~ to the 27-50

abc

diagonals of the OLS equations. This gives the following solution

ab = (20.664, 16.724, 17.812, 0, —3.507, —2.487)'

ac = (.047, —.618, 0, —1.949, 18.268, 17.976, 18.401, 15.441)'

bc = (—1.132, 1.028, —.164, .268, .541, —.366, .093, —.268,
591, —.662, .071, 0)’

12



abc = (—1.229, .694, 0, .535, .666, —.131, 0, —.535, .563,
— 563, 0, 0, —1.034, 1.362, —.328, 0, .416, —.601,
186, 0, .618, —.760, .142, 0)'.

The biased estimator of i, is aby; +acj), +bcjy, 4 abefy,. These are in tabular form ordered
¢ in b in a by rows.

1 0 18.35
1 0 21.77
1 0 20.50
1 0 19.52
0 1 17.98
0 1 15.61
0 1 16.82
0 1 13.97
1 -1 19.01
1 -1 15.97
1 -1 17.88
L -1 -1 A 15.86
K=38 1 o *7| 1610
1 0 20.37
1 0 17.91
1 0 15.71
0 1 15.72
0 1 13.50
0 1 15.17
0 1 11.67
1 -1 16.99
1 -1 14.07
1 -1 16.13
1 -1 12.95

The variance-covariance matrix of these fi;;x is XCX 02, where X is the 24 x 50 incidence
matrix for 7, and C is a g-inverse of the mixed model coefficient matrix. Approximate
tests of hypotheses of K/ = ¢ can be effected by computing

(K'fr — ¢)[K'XCX' K] H(K'fr — ¢)/(rank (K'X)52).
Under the null hypothesis this is distributed approximately as F'.

To illustrate suppose we wish to test that all 77 ; are equal. K’ and g for this test
are shown above and ¢ = 0. K'pi = (2.66966 — 1.05379)'. The pseudo-variances, oz,
and 02, could be estimated quite easily by Method 3. One could estimate 2 by y'y -
reduction under full model, and this is simply

Y'Y =202 D Yk M-

13



Then we divide by n - the number of filled subclasses. Three reductions are needed to
estimate o2, and o2,.. The easiest ones are probably

abe:
Red (full model) described above.
Red (ab,ac,be).
Red (ab,ac).

Partition the OLS coefficient matrix as

(C, C, Cy).

C; represents the first 14 cols., Cq the next 12, and Cj the last 24. Then compute C,Cj,
and C3C5. Let Qy be the g-inverse of the matrix for Red (ab,ac,bc), which is the LS
coefficient matrix with rows (and cols.) 27-50 set to 0. Qg is the g-inverse for Red (ab,ac),
which is the LS coefficient matrix with rows (and cols.) 15-50 set to 0. Then

E[Red (full)] = 1902 + n(op, + 02,) +t,
E[Red (ab,ac,bc)] = 1702 + nog, + trQaCsCho2,, + t,

E[Red (ab,ac) = 1202 + trQszCyChop, + trQsC3Cho2,, + t.

t is a quadratic in the fixed effects. The coefficient of o2 is in each case the rank of the
coefficient matrix used in the reduction.

4 The Three Way Mixed Model

Mixed models could be of two general types, namely one factor fixed and two random
such as a fixed and b and ¢ random, or with two factors fixed and one factor random, e.g.
a and b fixed with ¢ random. In either of these we would need to consider whether the
populations are finite or infinite and whether the elements are related in any way. With
a and b fixed and ¢ random we would have fixed ab interaction and random ac, bc, abc
interactions. With a fixed and b and ¢ random all interactions would be random.

We also need to be careful about what we can estimate and predict. With a fixed
and b and ¢ random we can predict elements of ab,ac, and abc only for the levels of
a in the experiment. With a and b fixed we can predict elements of ac,bc,abc only
for the levels of both a and b in the experiment. For infinite populations of b and c in
the first case and c in the second we can predict for levels of b and ¢ (or ¢) outside the
experiment. BLUP of them is 0. Thus in the case with ¢ random, a and b fixed, BLUP
of the 1,2,20 subclass when the number of levels of ¢ in the experiment <20, is

pe +af + by + abf,.

In contrast, if the number of levels of ¢ in the experiment >19, BLUP is

14



1+ (Z{f + bg + Cog + dCLQO + 602,20 + ab(b + CL[A)Clg’go.

In the case with a,b fixed and ¢ random, we might choose to place a prior on ab,
especially if ab subclasses are missing in the data. The easiest way to do this would be
to treat ab as a pseudo random variable with variance = Io2,, which could be estimated.
We could also use priors on a and b if we choose, and then the mixed model equations

would mimic the 3 way random model.
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Chapter 19
Nested Classifications

C. R. Henderson

1984 - Guelph

The nested classification can be described as cross-classification with disconnected-
ness. For example, we could have a cross-classified design with the main factors being
sires and dams. Often the design is such that a set of dams is mated to sire 1 a second
set to sire 2, etc. Then o3 and o3, dams assumed random, cannot be estimated sepa-
rately, and the sum of these is defined as o3 /- As is the case with cross-classified data,
estimability and methods of analysis depend upon what factors are fixed versus random.
We assume that the only possibilities are random within random, random within fixed,
and fixed within fixed. Fixed within random is regarded as impossible from a sampling
viewpoint.

1 Two Way Fixed Within Fixed

A linear model for fixed effects nested within fixed effects is
Yigk = ti + Qi + €ijk

with ¢; and a;; fixed. The j subscript has no meaning except in association with some 7
subscript. None of the ¢; is estimable nor are differences among the ¢;. So far as the a;;
are concerned
as o ; )
Zj aja;; for Zj a; 0 can be estimated

Thus we can estimate 2a;; — a;2 — a;3. In contrast it is not possible to estimate differences
between a;; and ag, (i # g) or between a;; and agy, (i # g, j # h). Obviously main effects
can be defined only as some averaging over the nested factors. Thus we could define the
mean of the i** main factor as a; = t; + > jkjai; where >-:k; = 1. Then the i main
effect would be defined as «; -&. Tests of hypotheses of estimable linear functions can
be effected in the usual way, that is, by utilizing the variance-covariance matrix of the
estimable functions.

Let us illustrate with the following simple example



S
A

Yij

a Yij.
I 4 20 5
2 5 15 3
213 1 8 8
4 10 70 7
5 2 12 6
36 5 45 9
7 2 16 8
Assume that Var(e) = Io2.
Main effects | &; Var(&;)
1 4 [ o2 (4T 5 /4= 1125 o2
2 7. o2 (14107 +271)/9 = 177 o2
3 85|02 (5 '+271)/4= 175 o2
Test
10 —1
(0 1 —1) =0
10 -1\ . (=35
01 -1) %=\ =5
0.2 Var (&) = dg (.1125,.177...,.175)
i o 2875 175
Var(Kajo, ™ = <.175 35278

with inverse

4.98283 —2.47180
—2.47180  4.06081 /-

Then the numerator MS is

4.98283 —2.47180 —3.5
(735 =) ( ~247180  4.06081 ) ( —5 ) /2= 2670
Estimate 02 as 62 = within subclass mean square. Then the test is numerator MS/5?

with 2,26 d.f. A possible test of differences among a;; could be

1 =100 00 0
0 010 10 0
O 001 -10 of®
0O 000 01 —1



the estimate of which is (22 1 1)’ with

45 0 0 O

0 15 5 0
Var=1"49 5 6 o |

O 0 0 .7

the inverse of which is
2.22222 0 0 0
0 92308 —.76923 0
0 —.76923 2.30769 0
0 0 0 1.42857

This gives the numerator MS = 13.24.

The “usual” ANOVA described in many text books is as follows.

SS.for T = > 42 /i — ¢’ /n..
S.S.for A = ZZZ] yfj/nu - Zz 3/12/7%

In our example,

MST = (1290.759 — 1192.966)/2 = 48.897.
MSA = (1304 — 1290.759)/1 = 13.24.

Note that the latter is the same as in the previous method. They do in fact test the same
hypothesis. But MST is different from the result above which tests treatments averaged
equally over the a nested within it. The second method tests differences among t weighted
over a according to the number of observations. Thus the weights for ¢; are (4,5)/9.

To illustrate this test,

K — 444444 555555 0 0 0 —.71429 —.28572
N 0 0 07692 76923 15385 —.71429 —.28572

142857 219780

6.20690 —4.03448
—4.03448  7.17242

Var(K'gi,)/o? = ( 253968 142857 )

with inverse = (

Then the MS is

(—4.82540 —1.79122) (_4'03448 717242 |\ _1.79122

6.20600 —4.03448 ) ( —4.82540 ) /2 = 48.897

as in the regular ANOVA. Thus ANOVA weights according to the n;;. This does not
appear to be a particularly interesting test.



2 Two Way Random Within Fixed

There are two different sampling schemes that can be envisioned in the random nested
within fixed model. In one case, the random elements associated with every fixed factor
are assumed to be a sample from the same population. A different situation is one in
which the elements within each fixed factor are assumed to be from separate populations.
The first type could involve treatments as the fixed factors and then a random sample of
sires is drawn from a common population to assign to a particular treatment. In contrast,
if the main factors are breeds, then the sires sampled would be from separate populations,
namely the particular breeds. In the first design we can estimate the difference among
treatments, each averaged over the same population of sires. In the second case we would
compare breeds defined as the average of all sires in each of the respective breeds.

2.1 Sires within treatments

We illustrate this design with a simple example

Mg Yij.
Treatments | Treatments
Sires|1 2 3 1 2 3
1 5 0 0 7 - -
2 2 0 0 6 - -
3 0 3 0 -7 -
4 0 8 0 -9 -
5) 0 0 5) - - 8

Let us treat this first as a multiple trait problem with Var(e) = 401,
Si1 3 2 1
Var | s = 2 4 2 |,
Si3 1 25
where s;; refers to the value of the ith sire with respect to the j** treatment. Assume that
the sires are unrelated. The inverse is

-1

3 21 5 —.25 0
2 4 2 = —.25 4375 —.125
1 25 0 =125 .25



Then the mixed model equations are (19.1).

—20

20
—20

—10
20

35
—10

44 =20

—20

0
0

0

—10
20

35
—10

40 —20
—20

0

0

—10

41

40
—20

10

807!

—20

16

—10

o1
—10

20
0
0

—20

40
—20

0

0

—10

35
—10

10

30

22

16

(311, 512, S13, S21, S22, S23, S31, S32, S33,
/
S41, S42, 543,551, S52, Ss3,l1, t2, t3)

= [.175, 0, 0,.15, 0, 0, 0, .175,0,0, .225,

0,0, 0, .2, .325, .4, .2].



The solution is

(—.1412, —.0941, —.0471, .1412, .0941, .0471, .0918, .1835,
0918, —.0918, —.1835,—.0918, 0, 0, 0, 1.9176, 1.5380, 1.600)". (2)

Now if we treat this as a nested model, G = diag (3,3,4,4,5). Then the mixed model
equations are in (19.3).

55 0 0 0 0 15 0 O 51 21

46 0 0 0 6 0 O S9 18

39 0 0 0 9 0 S3 21

1 5 0 0 24 0 S4 o | 27
120 30 0 015 || 4 |70 | 2 (3)

2. 0 O t1 39

33 0 t 48

15 ts 24

The solution is

(—.1412, 1412, 11835, —.1835, 0, 1.9176, 1.5380, 1.6000)’. (4)
Note that §11 = §1, §21 = §2, §32 = §3, <§42 = §4, §53 = §5 from the solution in

(19.2) and (19.4). Also note that t; are equal in the two solutions. The second method
is certainly easier than the first but it does not predict values of sires for treatments in
which they had no progeny.

2.2 Sires within breeds

Now we assume that we have a population of sires unique to each breed. Then the
first model of Section 19.2.1 would be useless. The second method illustrated would be
appropriate if sires were unrelated and o2 = 3,4,5 for the 3 breeds. If o2 were the same
for all breeds G = I502.

3 Random Within Random

Let us illustrate this model by dams within sires. Suppose the model is

Yije = fo+ 8+ dij + €iji.

s Is2 0 0
Var | d | = 0 Is2 O
e 0 0 Io?

€



Let us use the data of Section 19.2.1 but now let t refer to sires and s to dams. Suppose
02/0% =12, 02/02 = 10. Then the mixed model equations are in (19.5).

22 711 5 5 2 3 8 5\ (/M 37
19 0 0 5 2 0 0 0% 13
22 0 0 0 3 8 0[] 16
17 0 0 0 0 5|3 8
15 0 0 0 0ffd [=] 7 (5)
12 0 0 0|/ d 6
13 0 0 ds 7
18 0] d, 9
15 ds 8

The solution is (1.6869, .0725, -.0536, -.0189, -.1198, .2068, .1616, -.2259, -.0227)". Note that
> 3 = 0 and that 10 (Sum of d within i sire)/12 = 3;.



Chapter 20
Analysis of Regression Models

C. R. Henderson

1984 - Guelph

A regression model is one in which Zu does not exist, the first column of X is a vector
of 1’s, and all other elements of X are general (not 0’s and 1’s) as in the classification
model. The elements of X other than the first column are commonly called covariates
or independent variables. The latter is not a desirable description since they are not
variables but rather are constants. In hypothetical repeated sampling the value of X
remains constant. In contrast e is a sample from a multivariate population with mean
= 0 and variance = R, often Io?. Accordingly e varies from one hypothetical sample
to the next. It is usually assumed that the columns of X are linearly independent, that
is, X has full column rank. This should not be taken for granted in all situations, for
it could happen that linear dependencies exist. A more common problem is that near
but not complete dependencies exist. In that case, (X’R™!X)~! can be quite inaccurate,
and the variance of some or all of the elements of [‘3 can be extremely large. Methods for
dealing with this problem are discussed in Section 20.2.

1 Simple Regression Model

The most simple regression model is
Yi = ptwiy+ e,

where

The most simple form of Var(e) = R is Io2. Then the BLUE equations are

(Z ;fw?)(g):(%wzyz) (1)

To illustrate suppose n=>5,

w = (6,5,3,4,2), y = (8,6,5,6,5).

1



The BLUE equations are

1/ 52\ (a) [ 30 /o2
o2 \ 20 90 )\ 5 ) = \ 127 e

The inverse of the coefficient matrix is
1.8 —4\
( —4 1 ) Te:

Var(fi) = 1.8 o2, Var(§) = .1 62, Cov(f1,7) = —.4 o2,

The solution is (3.2, .7).

Some text books describe the model above as
yi = a+ (w—w)y+e;.
The BLUE equations in this case are

(5 sl ) (5) = (B vm ) ®
+

This gives the same solution to 4 as (19.1) but [
of (20.2) in our example are

1 (5 o\(a\ (30 )
w(0w)(5) = (%) m
y o= 7

Var(a) = 202, Var(y) = 102, Cov(&,4) = 0.

It is easy to verify that i = & — w /.. These two alternative models meet the requirements
of linear equivalence, Section 1.5.

BLUP of a future y say yo with w; = wy is
[+ wey + ég or & + (wy — W)Y + €,

where éy is BLUP of ¢y = 0, with prediction error variance, o2. If wy = 3, 1 would
be 5.3 in our example. This result assumes that future p or o) have the same value as in
the population from which the original sample was taken. The prediction error variance

is
18 —4\(1\ - . o ,
(1 3)(_‘4 .1)<3>0'e—|—0'e—1.30'e.

Also using the second model it is

(1 —1)('3 ?)(_1)03—#02:1.302

as in the equivalent model.



2 Multiple Regression Model

In the multiple regression model the first column of X is a vector of 1’s, and there
are 2 or more additional columns of covariates. For example, the second column could
represent age in days and the third column could represent initial weight, while y repre-
sents final weight. Note that in this model the regression on age is asserted to be the same
for every initial weight. Is this a reasonable assumption? Probably it is not. A possible
modification of the model to account for effect of initial weight upon the regression of final
weight on age and for effect of age upon the regression of final weight on initial weight is

Yi = M+ 7w+ yws + y3ws + e,

where w3 = wjws.

This model implies that the regression coefficient for y on w; is a simple linear function
of wy and the regression coefficient for y on w, is a simple linear function of w;. A model
like this sometimes gives trouble because of the relationship between columns 2 and 3
with column 4 of X . We illustrate with

1 6 8 48
159 45
X =15 8 40
1 6 7 42
1 79 63

The elements of column 4 are the products of the corresponding elements of columns 2
and 3. The coefficient matrix is

5 29 41 238
171 238 1406 3
339 1970 |- (3)

11662

The inverse of this is

4780.27 —801.54 —548.45  91.73
135.09 91.91 —15.45 (4)
63.10 —10.55 |~
1.773

Suppose that we wish to predict y for w; = wy, = 5.8, wy = 8.2, wy = 47.56 =
(5.8)(8.2). The variance of the error of prediction is

1
. 5;8 2 2 2
(1 5.8 8.2 47.56)(matrix 20.4) g9 |0 t o= 1.203 o
47.56



Suppose we predict y for wy = 3, ws = 5, wy = 15. Then the variance of the error
of prediction is 215.77 o2, a substantial increase. The variance of the prediction error is

e’

extremely vulnerable to departures of w; from w;.

Suppose we had not included ws in the model. Then the inverse of the coefficient
matrix is

33.974 —1.872 —2.795
359 —.026
399

The variances of the errors of prediction of the two predictors above would then be 1.20
and 7.23, the second of which is much smaller than when ws is included. But if w3 # 0,
the predictor is biased when wjs is not included.

Let us look at the solution when wjs is included and y’ = (6,4,8,7,5). The solution
is
(157.82, —23.64, —17.36, 2.68).
This is a strange solution that is the consequence of the large elements in (X’X)~!. A

better solution might result if a prior is placed on w3. When the prior is 1, we add 1 to
the lower diagonal element of the coefficient matrix. The resulting solution is

(69.10, —8.69, —7.16, .967).

This type of solution is similar to ridge regression, Hoerl and Kennard (1970). There
is an extensive statistics literature on the problem of ill-behaved X’X. Most solutions
to this problem that have been proposed are (1) biased (shrunken estimation) or (2)
dropping one or more elements of 3 from the model with either backward or forward
type of elimination, Draper and Smith (1966). See for example a paper by Dempster et
al. (1977) with an extensive list of references. Also Hocking (1976) has many references.

Another type of covariate is involved in fitting polynomials, for example
yi = A+ aiy + adys + ain + e

As in the case when covariates involve products, the sampling variances of predictors are
large when x; departs far from z. The numerator mean square with 1 d.f. can be computed
easily. For the i ~; it is

Fileth
where ¢! is the i+1 diagonal of the inverse of the coefficient matrix. The numerator
can also be computed by reduction under the full model minus the reduction when ~; is
dropped from the solution.



Chapter 21
Analysis of Covariance Model

C. R. Henderson

1984 - Guelph

A covariance model is one in which X has columns referring to levels of factors or
interactions and one or more columns of covariates. The model may or may not contain
Zu. It usually does not in text book discussions of covariance models, but in animal
breeding applications there would be, or at least should be, a u vector, usually referring
to breeding values.

1 Two Way Fixed Model With Two Covariates

Consider a model
Yijk = Ti + Cj + Vij + Wigjr0n + Waijr0i2 + Cyjk.

All elements of the model are fixed except for e, which is assumed to have variance, Io2.
The 1k, Yijk., Wiijk., and wa; i, are as follows

Nijk Yijk. W1ijk. W2ijik.

1 2 3 1 2 311 2 3 1 2 3
113 2 1120 9 4|8 7T 212 11 4
211 3 4 3 20 246 10 11 5 15 14
312 1 2|13 7T 8|7 2 4 9 2 7

and the necessary sums of squares and crossproducts are

Z- Z Z w%ijk = 209,
ZZZ Z wiijpwaie = 264,
Z Z wQZj,c = 373,

g WhigkYigk = 321,

)
Zk W2iikYijk = 433.

.

2.
2.2,
2.2,

J



Then the matrix of coefficients of OLS equations are in (21.1). The right hand side vector
is (33, 47, 28, 36, 36, 36, 20, 9, 4, 3, 20, 24, 13, 7, 8, 321, 433)’.

600321321000000 17 27
80134000134000 27 34
5212000000212 13 18
600300100200 21 26
60020030010 19 28
7001004002 17 25
300000000 8 12
20000000 7 11
1000000 2 4 (1)
100000 6 5
30000 10 15
4000 11 14
200 7 9
10 2 2
2 4 7
209 264
373

A g-inverse of the coefficient matrix can be obtained by taking a regular inverse with the
first 6 rows and columns set to 0. The lower 11 x 11 submatrix of the g-inverse is in
(21.2).

8685 7311 5162 7449 6690 4802 6163
15009 7135 9843 9139 6507 8357
15313 5849 6452 4422 5694

107* 25714 9312 7519 9581
11695 6002 7704

6938 5686

12286

2866 4588 —285 —1148
3832 6309 —264 —1652
2430 4592 226 —1441
5325 5718 2401  —262
3582 5735 —356 —1435
2780 4012 —-569 —821 (2)
3551 5158 —704 —1072
11869 2290 —-654 —281
9016 6 —1151

767  —440

280




This gives a solution vector (0, 0, 0, 0, 0, 0, 7.9873, 6.4294, 5.7748, 2.8341, 8.3174, 6.8717,
7.6451, 7.2061, 5.3826, .6813, -.7843). One can test an hypothesis concerning interactions
by subtracting from the reduction under the full model the reduction when -~ is dropped
from the model. This tests that all ;; —4;. —7,; +7.. are 0. The reduction under the full
model is 652.441. A solution with « dropped is

(6.5808, 7.2026, 6.5141, 1.4134, 1.4386, 0, .1393, —.5915).

This gives a reduction = 629.353. Then the numerator SS with 4 d.f. is 652.441 - 629.353.

The usual test of hypothesis concerning rows is that all r; 4+ ¢ + ;. are equal. This is
comparable to the test effected by weighted squares of means when there are no covariates.
We could define the test as all r; + ¢. 4+ ;. + ajwig + aswsy are equal, where wyg, woy can
have any values. This is not valid, as shown in Section 16.6, when the regressions are not
homogeneous. To find the numerator SS with 2 d.f. for rows take the matrix

W o (Tt -1 -1 -1 0 0 0
~ 111 0 0o 0 -1 -1 -1/

. 21683
Ky = (—.0424)’

where 4 is the solution under the full model with r°, c® set to 0. Next compute K’ [first
9 rows and columns of (21.2)] K as

4.5929 2.2362
2.2362 4.3730 )

Then

-1
numerator SS = (2.1683 — .0424) < gggég ig?gg > ( _23222 >

= 1.3908.

If we wish to test w;, compute as the numerator SS, with 1 d.f., .6813 (.0767)! .6813,
where
&, = .6813, Var(a,) = .0767 o2.

2 Two Way Fixed Model With Missing Subclasses

We found in Section 17.3 that the two way fixed model with interaction and with one
or more missing subclasses precludes obtaining the usual estimates and tests of main
effects and interactions. This is true also, of course, in the covariance model with missing
subclasses for fixed by fixed classifications. We illustrate with the same example as before

3



except that the (3,3) subclass is missing. The OLS equations are in (21.3). The right
hand side vector is (33, 47, 20, 36, 36, 28, 20, 9, 4, 3, 20, 24, 13, 7, 0, 307, 406)". Note
that the equation for =33 is included even though the subclass is missing.

6 0 3
8

w o O

1
2
6

YO =W

L O O O =~

321000000 17 27

000134000 27 34

000000210 9 II

300100200 21 26

0200300710 19 28

001004000 13 18

300000000 8 12

20000000 7 11
1000000 2 4 (3)

100000 6 5

30000 10 15

4000 11 14

200 7 9

10 2 2

0 0 0

199 249

348

We use these equations to estimate a pseudo-variance, a?Y to use in biased estimation with
priors on . We use Method 3. Reductions and expectations are

y'y

Red (full)
Red (r,c,7)
q

Solving we get 62 = 2.26985, 57

638, E(y'y) =17 02 +17 02 + q.
622.111, E() =10 07 + 17 0 +q.
599.534, E() =7 02 +12.6121 07 +¢.

a quadratic in r, c, a.

= 3.59328 or a ratio of .632. Then we add .632 to each

of the diagonal coefficients corresponding to v equations in (21.3). A resulting solution is

(6.6338, 6.1454, 7.3150, —.3217, .6457, 0, 1.3247, —.7287, —.5960,
—1.7830, 1.1870, .5960, .4583, —.4583, 0, .6179, —.7242)

The resulting biased estimates of r; + ¢; + ;5 given w; = wy = 0 are

7.6368 6.5509 6.0378

7.4516 7.5024 7.3150

4.0407 7.9781 6.7414) (4)

The matrix of estimated mean squared errors obtained by pre and post multiplying



a g-inverse of the coefficient matrix by

1 001001O0O0O0O0O0OUOSOOOGQ 0
L = : :
001 0010O0O0O0OO0OOOO0OT1TO0OTF®

is in (21.5).

8778 7287 5196 8100 6720 4895 6151 3290 2045
13449 6769 8908 8661 6017 7210 4733 2788

13215 4831 5606 4509 4931 2927 7191

22170 9676 7524 9408 4825 1080

10,000~ 11201 6007 7090 4505 2540 (5)
6846 5423 3214 3885
11244 4681 5675

10880 6514

45120

To test that all r; + ¢, + 7;. are equal, use the matrix

(111—1—1—1 0O 0 0

111 0 0 0 —1 —1 _1> with (21.4) and (21.5).

Then the numerator SS is

-1
4.4081 1.6404 1.4652
(1.4652 — 2.0434) ( 9.9400 ) ( 90434

) = 1.2636.

The test is approximate because the MSE depends upon 62/62 = o3 /o?. Further, the
numerator is not distributed as 2.

3 Covariates All Equal At The Same Level Of A Fac-
tor

In some applications every w;; = w; in a one-way covariate model,
Yij = p+ 1t + w7y + ey

with all w;; = w;. For example, ¢; might represent an animal in which there are several
observations, y;;, but the covariate is measured only once. This idea can be extended to
multiple classifications. When the factor associated with the constant covariate is fixed,
estimability problems exist, Henderson and Henderson (1979). In the one way case t; — ¢,
is not estimable and neither is 7.



We illustrate with a one-way case in which n; = (3,2,4), w; = (2,4,5), 7;. = (6,5,10).
The OLS equations are

932 4 34\ [u 68

330 0 6| n 18

202 0 8|t |=] 10]. (6)
400 4 2 || ts 40
34 6 8 20 144 ) \ 4 276

Note that equations 2,3,4 sum to equation 1 and also (2 4 5) times these equations gives
the last equation. Accordingly the coefficient matrix has rank only 3, the same as if there
were no covariate. A solution is (0,6,5,10,0).

If t is random, there is no problem of estimability for then we need only to look at

the rank of
9 34
34 144 )’

and that is 2. Consequently o and vy are both estimable, and of course t is predictable. Let
us estimate o? and o2 by Method 3 under the assumption Var(t) = Io? , Var(e) = Io2.
For this we need y’y, reduction under the full model, and Red (i, ).

yy = 601, E(y'y)=9c>+9 02 +q.
Red (full) = 558, E() =3 0>+ 90’ +q.
Red (i1,7) = 537.257, E() =202 +6.6 0} +q.

q is a quadratic in p,v. This gives estimates 62 = 7.167, 62 = 5.657 or a ratio of 1.27.

Let us use 1 as a prior value of ¢%/0? and estimate o7 by MIVQUE given that o2
= 7.167. We solve for ¢ having added 1 to the diagonal coefficients of equations 2,3,4 of
(21.6). This gives an inverse,

4.24370 —1.63866 —.08403  .72269 —1.02941
94958 15126 —.10084 35294

54622 30252  —.05882 |. (7)
79832 —.29412
27941

The solution is (3.02521, .55462, -1.66387, 1.10924, 1.11765). From this t't = 4.30648.
To find its expectation we compute

01483 —.04449 02966
tr(C, [matrix (21.6)] C;) = tr 13347 —.08898 | = .20761,
05932



which is the coefficient of ¢2 in E(t't). C, is the submatrix composed of rows 2-4 of
(21.7).

03559 —.10677  .07118
tr(C,W'Z,Z,WC,) = tr 32032 —.21354 | = .49827,
14236

the coefficient of ¢ in E(t't). W'Z, is the submatrix composed of cols. 2-4 of (21.6).
This gives 67 = 5.657 or 62/67 = 1.27. If we do another MIVQUE estimation of o7, given
02 = 7.167 using the ratio, 1.27, the same estimate of o7 is obtained. Accordingly we
have REML of o7, given ¢Z2. Notice also that this is the Method 3 estimate.

If t were actually fixed, but we use a pseudo-variance in the mixed model equations
we obtain biased estimators. Using 62/67 = 1.27,

fi+t; = (3.53, 1.48, 4.04).
[+t +wd = (5.78, 5.98, 9.67).

Contrast this last with the corresponding OLS estimates of (6,5,10).

4 Random Regressions

It is reasonable to assume that regression coefficients are random in some models. For
example, suppose we have a model,

Yij = 1+ ¢+ w7 + ey,

where y;; is a yield observation on the ;™ day for the i*" cow, w;; is the day, and v; is a
regression coefficient, linear slope of yield on time. Linearity is a reasonable assumption
for a relatively short period following peak production. Further, it is obvious that ~; is
different from cow to cow, and if cows are random, ~; is also random. Consequently we
should make use of this assumption. The following example illustrates the method. We
have 4 random cows with 3,5,6,4 observations respectively. The OLS equations are in
(21.8).

18 356 4 10 30 19 26 90
300010 0 0 0 14
500 0 3 0 0 18
60 0 019 0|/p 26
40 0 0 2 || |=] 32 (8)
38°. 0 0 0 |\~° 51
190 0 0 117
67 0 90
182 216



10 = w1,
30 wsq., etc.
_ 2
38 = ijij, etc.
51 = ijijyij, etc.

First let us estimate o7, 02, 02 by Method 3. The necessary reductions and their expec-
tations are

vy 18 18 477 1
0_2
Red (full) | | 8 18 477 : 1 ,
E1 Red (u.t) 4 18 1425 || % RN G
Red (11,7) 5 16.9031 477 g 1

The reductions are (538, 524.4485, 498.8, 519.6894). This gives estimates 62 = 1.3552,
62 = .6324, 62 = .5863. Using the resulting ratios, 67/57 = 2.143 and 67 /62 = 2.311, the
mixed model solution is

(2.02339, .11180, —.36513, —.09307,
34639, .73548, .34970, .76934, .83764).

Covariance models are discussed also in Chapter 16.



Chapter 22
Animal Model, Single Records

C. R. Henderson

1984 - Guelph

We shall describe a number of different genetic models and present methods for
BLUE, BLUP, and estimation of variance and covariance components. The simplest
situation is one in which we have only one trait of concern, we assume an additive genetic
model, and no animal has more than a single record on this trait. The scalar model, that
is, the model for an individual record, is

yi = x,8+zu+ a; + e;.
3 represents fixed effects with x; relating the record on the ¥ animal to this vector.
u represents random effects other than breeding values and z; relates this vector to ;.
a; is the additive genetic value of the i** animal.

e; 1s a random error associated with the individual record.

The vector representation of the entire set of records is
y=XB+Zu+Z,a+e. (1)

If a represents only those animals with records, Z, = I. Otherwise it is an identity matrix
with rows deleted that correspond to animals without records.

Var(u) G.

Var(a) Ao?.

Var(e) R, usually Io?2.
Cov(u,a’) 0,
Cov(u,€) 0,
Cov(a,€) 0.

If Z, # I, the mixed model equations are
X'R'X X'R'Z X'R'Z,
ZR'X ZR1'Z+G! ZR'Z,
Z.R'X ZR'Z Z.R'Z,+A1/o?

,60 X/R—ly
a | =|2zZRry | 2)
a ZR'y



If Z, =1, (22.2) simplifies to

X'R'X X'R'Z X'R! 3° X'Ry
ZR'X ZR'Z+G' ZR! a |=| zZRrRy (3)
R'X R'Z R +A1/o2 a Ry
If R = Io? (22.3) simplifies further to
X'X X'Z X! B° X'y
ZX 7Z'7Z+G'o? VA a |[=| Zy |. (4)
X Z I+A1o2/0? a y

If the number of animals is large, one should, of course, use Henderson’s method (1976) for
computing A~!. Because this method requires using a “base” population of non-inbred,
unrelated animals, some of these probably do not have records. Also we may wish to
evaluate some progeny that have not yet made a record. Both of these circumstances will
result in Z, # I, but a will contain predicted breeding values of these animals without
records.

1 Example With Dam-Daughter Pairs

We illustrate the model above with 5 pairs of dams and daughters, the dams’ records being
made in period 1 and the daughters’ in period 2. Ordering the records within periods and
with record 1 being made by the dam of the individual making record 6, etc.

X,:<1111100000>
0000O0OT11111)
Z, = 1,

y = [5,4,3,2,6,6,7,3,5,4].

(I 5L
IR ) P A

_ 2
= ]:1006.

&~ P



The sires and dams are all unrelated. We write the mixed model equations with o2 /o>
assumed to be 5. These equations are

501 1 11 1 00000 20
050 0 0O 0O 1 1111 25
10 I =2 I; 5
10 4
10 o 3
¥ AR
0 1 a 6
0 1 7
0 1 =2 I N 3
0 1 5
0 1 4

The inverse of the coeflicient matrix is

.24 .02 —-04 —-04 —-04 —-04 —-04 —-02 —-02 —-02 —-.02 —-.02

02 24 —.02 —02 —.02 —.02 —.02 —.04 —.04 —.04 —04 —.04
—.04 —.02

—.04 —.02

—.04 —.02 P Q

—.04 —.02

—.04 —.02 (6)
—.02 —.04

—.02 —.04

—.02 —.04 Q P

—.02 —.04

—02 —.04

P is a 5 x 5 matrix with .16867 in diagonals and .00783 in all off-diagonals. Q isa 5 x5
matrix with .07594 in diagonals and .00601 in off-diagonals. The solution is (4, 5, .23077,
13986, -.30070, -.32168, .25175, .23077, .32168, -.39161, -.13986, -.20298).

Let us estimate 02,02 by MIVQUE using the prior on 02/ = 5 as we did in

er-a

computing BLUP. The quadratics needed are

Al A

é'é and A’A'a.

Q> T

e=y—(X Za)< > = (.76923, —.13986, —.69930, —1.67832, 1.74825,

.76923,1.67832, —1.60839, .13986, —.97902)".
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e'e = 13.94689.

(e) (I-WCW')(I-WCW') o2

+ (I - WCW)A(I - WCW/) o2
W = (X Z),

C = matrix of (22.6).

e

E(&é) = tr(Var(e)) = 5.67265 o2 + 5.20319 o2
a C.W'y,
where C, = last 10 rows of C.

Var(a) = C,W'WC, o2+ C,WAWC, 2.
E(@A1'a) = tr(A7! Var(a)) = .20813 o2 + .24608 o2,
aA'a = .53929.

Using these quadratics and solving for 62,62 we obtain 62 = 2.00, 62 = .50.

The same estimates are obtained for any prior used for 0%/02. This is a consequence
of the fact that we have a balanced design. Therefore the estimates are truly BQUE and
also are REML. Further the traditional method, daughter-dam regression, gives the same
estimates. These are

= 2 times regression of daughter on dam.
2

a*

Q>
LECESEN

= within period mean square — &

Q>

For unbalanced data MIVQUE is not invariant to the prior used, and daughter-dam
regression is neither MIVQUE nor REML. We illustrate by assuming that y;9 was not
observed. With ¢2/02 assumed equal to 2 we obtain

e'e = 11.99524 with expectation = 3.37891 o2 + 2.90355 2.
-1

a'A'a’ = 279712 with expectation = .758125 o2 + .791316 o2
This gives
62 = .75619,
62 = 2.90022.

When ¢2/02 is assumed equal to 5, the results are

e'é = 16.83398 with expectation 4.9865 o2 + 4.6311 o2,
a’A'a’ = 66973 with expectation .191075 o2 + .214215 2.
Then
62 = 67132,
62 = 2.7524.



Chapter 23
Sire Model, Single Records

C. R. Henderson
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A simple sire model is one in which sires, possibly related, are mated to a random
sample of unrelated dams, no dam has more than one progeny with a record, and each
progeny produces one record. A scalar model for this is

yij = x;jﬂ+si+z;u+eij. (1)

3 represents fixed effects with x;; relating the j™ progeny of the i" sire to these effects.
s; represents the sire effect on the progeny record.
u represents other random factors with z;; relating these to the 4 4t progeny record.

e;; is a random “error”.

The vector representation is
y = XB+Z,ss+ Zu+e. (2)

Var(s) = Ac?, where A is the numerator relationship of the sires, and o2 is the sire
variance in the “base” population. If the sires comprise a random sample from this
population 02 = i additive genetic variance. Some columns of Z, will be null if s contains
sires with no progeny, as will usually be the case if the simple method for computation of

A~! requiring base population animals, is used.

Var(u) = G, Cou(s,u’) =0.
Var(e) = R,usually = Io”.

e

Cov(s,e’) = 0,Cov(u,€)=0.
If sires and dams are truly random,

Io? = .75I (additive genetic variance)

+ I (environmental variance).



With this model the mixed model equations are

X'R X X'R1'Z, X'R'Z B3°
ZR'X ZR'Z,+A 07?2 ZR'Z s | =
ZR'X Z'R'Z, ZR'Z+G™! u
X'Rly
ZR 'y (3)
Z/Rfly
If R = Io2, (23.3) simplifies to (23.4)
X'X X'Z, X'Z 3° X'y
Z.X Z.Z.+ A 0%/ Z.7Z s |=|2Zy |. (4)
Z'X 77, Z'7+ o*G™! a Z'y
We illustrate this model with the following data.
N;j Yij.
Herds Herds
Sires|1 2 3 4, 1 2 3 4
1 |3 5 0 020 34 - -~
2 |0 8 4 0 - 7T 31 -
3 14 2 6 8[23 11 43 73
The model assumed is
Yijk = Si+hj+ ey
Var(s) = Acd?/12,
Var(e) = Io2.
1.0 5 5
A = 1.0 .25
1.0
h is fixed.
The ordinary LS equations are
8 0 03 5 00 59
12 00 8 40 105
20 4 2 6 8 5 150
7 0 00 < i ) = 48 | . (5)
15 0 0 119
10 0 74
8 73




The mixed model equations are

28 -8 -8 3 5 0 0 59
28 00 8 40 105
36 4 2 68, 150
70 00 (h> = | 48 |. (6)
15 0 0 119
10 0 74
8 73

The inverse of the matrix of (23.6) is

0764  .0436  .0432 —.0574 —.0545 —.0434 —.0432
0436 .0712  .0320 —.0370 —.0568 —.0477 —.0320
0432 .0320 .0714 —-.0593 —.0410 —.0556 —.0714
—.0574 —.0370 —-.0593  .2014  .0468  .0504  .0593 |. (7)
—.0545 —.0568 —.0410 .0468  .1206  .0473  .0410
—.0434 —.0477 —.0556  .0504  .0473  .1524  .0556
—.0432 —.0320 —.0714 .0593 .0410  .0556  .1964

The solution is

§ = (-.036661,.453353, —.435022),
h' = (7.121439,7.761769, 7.479672,9.560022).

Let us estimate o2 from the residual mean square using OLS reduction, and ¢? by
MIVQUE type computations. A solution to the OLS equations is

[10.14097, 11.51238, 9.12500, —2.70328, —2.80359, —2.67995, 0]
This gives a reduction in SS of 2514.166.
yy = 2922.
Then 62 = (2922 - 2514.166)/(40-6) = 11.995. MIVQUE requires computation of §'A~'§

and equating to its expectation.

. 5 —2 -2
At = 2| =2 4 0|.
3\ 9 0 4

§AT's = .529500.
Var (RHS of mixed model equations) = [Matrix (23.5)] o2 +
8 0 0
0 12 0
0 0 20 8 0 03 5 00
3 0 4[A[012 008 40| o2
5 8 2 0 0 20 4 2 6 8
0 4 6
0 0 8




The second term of this is

64 48 80 40 80 40 32
144 60 30 132 66 24
400 110 130 140 160

37 56 43 44 | o2 (8)
151 83 5
64 56
64

Var(s) = C, [matrix (23.8)] C, 02 + C, [matrix (23.5)] C, o2,
where C; = first 3 rows of (23.7).

Var(§) = 007677 —.006952

.007599
(.017338 —.005622 —.003047)
o

(.005492 —.001451 .001295)
0-6

053481 —.050670
052193

+ 2. (9)

Then E(S'A7'8) = tr(A~! [matrix (23.9)]) = .033184 2 + .181355 o2. With these results
we solve for 62 and this is .7249 using estimated 62 as 11.995. This is an approximate

MIVQUE solution because 6% was computed from the residual of ordinary least squares
reduction rather than by MIVQUE.



Chapter 24
Animal Model, Repeated Records
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In this chapter we deal with a one trait, repeated records model that has been ex-
tensively used in animal breeding, and particularly in lactation studies with dairy cattle.
The assumptions of this model are not entirely realistic, but may be an adequate approx-
imation. The scalar model is

Yij = X;jﬁ + z;ju + C; + €ij- (1)
3 represents fixed effects, and X;j relates the j™ record of the i* animal to elements of
8 .
u represents other random effects, and z;-j relates the record to them.

c; is a “cow” effect. It represents both genetic merit for production and permanent
environmental effects.

e;; is a random “error” associated with the individual record.

The vector representation is

y=XB+Zu+Z.+e. (2)

Var(u) = G,

Var(c) = 107 if cows are unrelated, with o7 = o7 + o

= Acdi+1 0'; it cows are related,

where 0127 is the variance of permanent environmental effects, and if there are non-additive
genetic effects, it also includes their variances. In that case I ag is only approximate.

Var(e) =102
Cov(u,a’), Cov(u,€'), and Cov(a,€’) are all null. For the related cow model let

Z.c=17Z.a+7Z.pp. (3)



It is advantageous to use this latter model in setting up the mixed model equations, for
then the simple method for computing A~! can be used. There appears to be no simple
method for computing directly the inverse of Var(c).

X'X X'7 X'Z, X'Z, 3 X'y
ZX Z'7+ o2G! 7'Z, 7'Z, o 7'y
Z.X 7.7 Z.Z.+ A% 7.7, a | T | zy (4)
7.X 7.7 7.7, Z.Z.+1% ) \ P Z.y

These equations are easy to write provided G~ is easy to compute, G being diagonal, e.g.
as is usually the case. A~! can be computed by the easy method. Further Z,Z + Io? /o2
is diagonal, so p can be “absorbed” easily. In fact, one would not need to write the p
equations. See Henderson (1975b). Also Z'Z+0>G™! is sometimes diagonal and therefore
1 can be absorbed easily. If predictions of breeding values are of primary interest, a is
what is wanted. If, in addition, predictions of real producing abilities are wanted, one
needs p. Note that by subtracting the 4 equation of (24.4) from the 3" we obtain

A*1<0§/02) é—I(O’S/O’i) p = 0.

Consequently

p = (op/l) A, (5)
and predictions of real producing abilities are

(T+(02/02) A7) & (6)

Note that under the model used in this chapter

Var(y;) = Var(yw), j # k.

Cov(yi;, yir) 1s identical for all pairs of j # k. This is not necessarily a realistic model. If
we wish a more general model, probably the most logical and easiest one to analyze is that
which treats different lactations as separate traits, the methods for which are described
in Chapter 26.

We illustrate the simple repeatability model with the following example. Four animals
produced records as follows in treatments 1,2,3. The model is

Yij = tz + a; —i—pj + €ij-

Animals
Treatment |1 2 3 4
1 5 3 - 4
2 6 5 7 -
3 8 - 9 -




The relationship matrix of the 4 animals is

1 5 5 5
1 .25 125
1 .5
1
Var(a) = .25 Ao,
Var(p) = 210,
Io? = 5510,

These values correspond to h? = .25 and r = .45, where 7 denotes repeatability. The OLS
equations are

12
18
17
19
t 8
16 |. (7)
P 4
19
8
16
4

w O

N OO

W~ = =

N OO ==

OO == O

— O OO oo
WO W ==

N OO OO O - =
N O OO OO - O

e I == IR =T S o B e R e Rl e B i
Q
I

Note that the last 4 equations are identical to equations 4-7. Thus a and p are confounded
in a fixed model. Now we add 2.2 A~! to the 4-7 diagonal block of coefficients and 2.75
I to the 8-11 diagonal block of coefficients. The resulting coefficient matrix is in (24.8).
2.2 = .55/.25, and 2.75 = .55/.2.

30 0 0 1.0 1.0 0 10 10 1.0 0 10
30 0 1.0 1.0 1.0 0 1.0 1.0 1.0 0
20 1.0 0 1.0 0 10 0 1.0 0
72581 —1.7032 —.9935 —14194 30 0 0 O
50280 —.1892 5677 0 20 0 0

53118 —1.1355 0 0 20 0 (8)
44065 0 0 0 10
575 0 0 0
47 0 0
475 0
3.75




The inverse of (24.8) (times 1000) is

693 325 313 —280 —231

709 384 —288 —246
943 —-306 —205
414 227
390
The solution is
{:/

Q>
~ <

o>

—217
—266
—-303
236
153
410

—247
—195
—215
225
107
211
406

—85
—96

—126
—64

0
14

261

= (4.123 5.952 8.133),
= (.065, —.263, .280, .113),
= (.104, —.326, .285, —.063).

—117
—114

—60
24
—64
37
48
38
286

—43
—118
—152

26
31
—53

41
21
290

—119
—34
—26

15
33

—42
24
18
12

310

We next estimate o7, 0, o2, by MIVQUE with the priors that were used in the above
mixed model solution. The Z_ W submatrix for both a and p is

=
O ==
O = O =
O OO W

The variance of the right hand

are in (24.7).

S O NN O
o NN OO

sides

0.25 488 3.25 6.0 3.25 2.5

5.5 3.7 6.0 3.5 3.5

3.0 45 15 30
9.0 3.0 3.0

4.0 1.0

4.0

— o O O
S OO W
S o N O

of the

1.65
1.13
1.0
1.5
.25
1.0
1.0

SN OO

_— o O O

(10)

mixed model equations contains
W'Z.AZ.W ¢2%, where W = (X Z Z. Z.). The matrix of coefficients of o2 is in (24.11).
Var(r) also contains W'Z.Z,W o2 and this matrix is in (24.12). The coefficients of o2

6.0
6.0
4.5
9.0
3.0
3.0
1.5
9.0

3.25 2.5
3.5 3.5
1.5 3.0
3.0 3.0
4.0 1.0
1.0 4.0
25 1.0
3.0 3.0
40 1.0

4.0

1.63
1.13
1.0
1.5
25
1.0
1.0
1.5
25
1.0
1.0

(11)
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_— o O O o o
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= O O O O O NN
= O O O k= O oD N O

_— O OO, OO o oo

(12)

Now Var(a) contains C,(Var(r))C,o2, where C, is the matrix formed by rows 4-9 of the

a’a’

matrix in (24.9). Then C,(Var(r))C, is

0168 .0012 —-.0061  .0012
0423 —.0266 —.0323 2

0236 .0160 | e
0274
0421 —.0019 —.0099 0050
0460 —.0298 —.0342 |
* 0331 0136 | %
0310

0172 .0001 —.0022 —.0004
0289 —.0161 —.0234 2
0219  .0042 )

.0252

We need a’A~1a’ = .2067. The expectation of this is

trA~! [matrix (24.13) + matrix (24.14) + matrix (24.15)]
= 1336 07 + .1423 0. + 2216 0.

To find Var(p) we use C,, the last 6 rows of (24.9).

0429 —.0135 —.0223 —.0071
0455 —.0154 —.0166 |
0337 .0040 | %@

0197

1078 —.0423 —.0466 —.0189
0625 —.0106 —.0096 2
0586 —.0014 P

.0298

Var(p) =

(13)

(14)

(15)

(16)

(17)



We need p'’p =

.0

441

.2024 with expectation

—.0167

0342

—.0139
—.0101

0374

—.0135
—.0074
—.0133

.0341

(LI )

tr[matrix (24.16) + matrix (24.17) + matrix (24.18)]
1498 02 + 1419 07 + 2588 0.

We need é’e.

é = [[- WCW'y,
where C = matrix (24.9), and T — WCW' is
4911 —.2690 —.2221 —.1217 1183  .0034
4548 —.1858 1113 —.1649  .0536
4079 .0104  .0466 —.0570
D122 —.25648 —.2574
4620 —.2073
4647
Then
& = [7078, —.5341, —.1736, —.1205, —.3624, .4829, —.3017, .3017].
ée = 1.3774.
Var(é) = (I—WCW') Var(y) (I- WCW'),
Var(y) = Z.AZ,o*+Z.Z, o2 +10..
1 5 .5 1. .5 H 1.5
1. 125 5 1. 25 .5 .25
1. DS 1255 5 5
B 1.5 5 1 5
- 1. 25 5 .25
1 S 1.
1. .5
1.
10010010
1001000
100 000
10010 2 2
+ 100 0 o, +1o;.
1 01
10
1

D

—.0626
.0289
0337

—.1152

—.0238
1390
3729

.0626
—.0289
—.0337

1152

.0238
—.1390
—.3729

3729

(18)

(19)



Then the diagonals of Var(e) are

(.0651, .1047, .1491, .0493, .0918, .0916, .0475, .0475) o>
+ (L1705, .1358, .2257, .1167, .1498, .1462, .0940, .0940) o>
+ [diagonals of (24.19)] o2

Then E(é€'é) is the sum of these diagonals

= .6465 0, + 1.1327 0, + 3.5385 0.



Chapter 25
Sire Model, Repeated Records

C. R. Henderson

1984 - Guelph

This chapter is a combination of those of Chapters 23 and 24. That is, we are
concerned with progeny testing of sires, but some progeny have more than one record.
The scalar model is

/ /
Yijk = XypB + Zigp + si + pi + ek

u represents random factors other than s and p. It is assumed that all dams are unrelated
and all progeny are non-inbred. Under an additive genetic model the covariance between
any record on one progeny and any record on another progeny of the same sire is 02 =

i h? ‘7; if sires are a random sample from the population. The covariance between

any pair of records on the same progeny is o2 + 012) = raZ. If sires are unselected,
2 _ 1722 2 _ 2 2 _ 1722
o) = (r—gzh*)o,, o = (1—-r)o,, of = 3h%0,.

In vector notation the model is

y = X8 + Zu + Zs + Z,p + e
Var(s) = Ao2, Var(p) = Lo, Var(e) = 1o

With field data one might eliminate progeny that do not have a first record in order to
reduce bias due to culling, which is usually more intense on first than on later records.
Further, if a cow changes herds, the records only in the first herd might be used. In this
case useful computing strategies can be employed. The data can be entered by herds, and
p easily absorbed because Z;)Zp + Io?%/ 012, is diagonal. Once this has been done, fixed
effects pertinent to that particular herd can be absorbed. These methods are described in
detail in Ufford et al. (1979). They are illustrated also in a simple example which follows.

We have a model in which the fixed effects are herd-years. The observations are
displayed in the following table.
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Herd - years
Sires | Progeny | 11 12 13 |21 22 23 24
1 1 5 6 4
2 5 8 -
3 -9 4
4 5 6 7 3
) 4 5 - -
6 - 4 3
7 - - 2 8
2 8 7T 6 -
9 - 5 4
10 -9 -
11 - - 4
12 3 7 6
13 - 5 6 8
14 - - 5 4
We assume o7 /0 = 88, o2/o. = 1.41935. These correspond to unselected sires,

h? = 25,1 = .45. Further, we assume that A for the 2 sires is

1 .25
25 1 '
Ordering the solution vector hy, s, p the matrix of coefficients of OLS equations is in

(25.1), and the right hand side vector is (17, 43, 16, 12, 27, 29, 23, 83, 79, 15, 13, 13, 21,
9,7, 10, 13,9, 9, 4, 16, 19, 9)".

X'X = diag (3,6,4,3,5,6,4)
7.7, = diag (17,14)
Z,Z, = diag(3,2,2,4,2,2,2,2,2,1,1,3,3,2)

Z;X—<2322332>

1 3212 3 2
77 3224222000000 0
sTP 0000O0O0OO0ODZ221T133 2
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1110000
1100000
0110000
0001111
0001100
0000110
/ 000O0O0T1T1
Z,X = 1100000 (1)
01 10000
01 00O0O0O0
0010000
0001110
0000111
000O0O0T1T1
Modifying these by adding 8.8 A~! and 1.41935 I to appropriate submatrices of the

coefficient matrix, the BLUP solution is

o~

hy [5.83397,7.14937, 4.18706, 3.76589, 5.29825, 4.83644, 5.64274],
§ = [-.06397,.06397],
p = [-.44769,.04229, 52394, .31601,.01866, —.87933, —.10272,

—.03255, —.72072, .73848, —.10376, .43162, .68577, —.47001]".

If one absorbs p in the mixed model equations, we obtain

2.189 —.811 —.226 0 0 0 0 736 415
4191 —.811 0 0 0 0 1.151  1.417
2.775 0 0 0 0 736 1.002

2297 =703 —411 —.184 677 321
3.778 —.930 —.411 1.092 .642

4486 —.996 1.092  1.057

3.004 677 736

15.549 —2.347

14.978

6.002
21.848
4518
_ 1.872

( hy ) — | 10.526
9.602

9.269

31.902
31.735
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The solution for }/IS’ and 8§ are the same as before.

If one chooses, and this would be mandatory in large sets of data, hy can be absorbed
herd by herd. Note that the coefficients of hy are in block diagonal form. When hy is
absorbed, the equations obtained are

12.26353 —5.222353 s\ ([ —1.1870
—5.22353  12.26353 S | 1.1870 |-

The solution is approximately the same for sires as before, the approximation being due
to rounding errors.
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Chapter 26

Animal Model, Multiple Traits

C. R. Henderson

1984 - Guelph

1 No Missing Data

In this chapter we deal with the same model as in Chapter 22 except now there are 2 or
more traits. First we shall discuss the simple situation in which every trait is observed
on every animal. There are n animals and t traits. Therefore the record vector has nt

elements, which we denote by
Y = vyl

v} is the vector of n records on trait 1, etc. Let the model be

Y: X1 0 ... 0 ,81
Yo . 0 X2 0 ,82
v 0 0 ... X B8,

I 0 ...0 a

0 I 0 s

. . . -

Accordingly the model for records on the first trait is

y1 = X8, +a; + ey, etc.

€
€2

(2)

Every X; has n rows and p; columns, the latter corresponding to 3, with p; elements.

Every I has order n x n, and every e; has n elements.

ap Agn Agiz ... Agu

as Agia Age ... Agy
Var| . | = . . .

ay Ag Agy ... Agy

=G.



gi; represents the elements of the additive genetic variance-covariance matrix in a non-
inbred population.

(S5} IT’H IT’12 . Irlt
Var 9.2 _ 17".12 17“.22 ce I7T2t "R (4)
€; ITlt Irgt Ce Irtt

r;; represents the elements of the environmental variance-covariance matrix. Then

A—lgll L A—lglt
Gfl — . . (5)

Af'lglt o Af.lgtt
g% are the elements of the inverse of the additive genetic variance covariance matrix.

Irtt . Irt
R =| Lo (6)

ri are the elements of the inverse of the environmental variance-covariance matrix. Now
the GLS equations regarding a fixed are

X/1X1T11 e X,lxtTlt XllTn e XllT’lt ,8(1)

X/tX1T1t e X/tXtTtt X/trlt . X/trtt ?

Xt o Xt Irit o Irtt a

X, it o Xt Irtt oIt ay

Xhyirtt + 0+ Xyt

_ Xyrtt + 0 4+ Xyt (7)

le’ll + ...+ ytT’lt

yirit + ...+ oyt

The mixed model equations are formed by adding (26.5) to the lower ¢* blocks of (26.7).

If we wish to estimate the g;; and r;; by MIVQUE we take prior values of g;; and 7;;
for the mixed model equations and solve. We find that quadratics in a and e needed for
MIVQUE are

alAtajfori=1, ...t j=14, ..., t (8)

eejfori=1,....,t j5=1, ..., t 9)

2



To obtain the expectations of (26.8) we first compute the variance-covariance matrix of
the right hand sides of (26.7). This will consist of ¢(t — 1)/2 matrices each of the same
order as the matrix of (26.7) multiplied by an element of g;;. It will also consist of the
same number of matrices with the same order multiplied by an element of r;;. The matrix
for gpp is

XGZAX etk X AX Rt X At XY Ayt
X/tAxl'I"tkT'lk . X/tAXt'I"tkT'tk X,tATtkT’lk . X,tATtthk (1())
AX ittt o AXrthpth Aplthylk . Artkptk
AXrtrtt S AX Rt Apthytk .. Apthptk

The 45 sub-block of the upper left set of ¢ x ¢ blocks is X/; AX,;r*ri*. The sub-block of
the upper right set of ¢t x ¢ blocks is X’;Ar*#*r7¥ . The sub-block of the lower right set of
t x t blocks is Artrik,

The matrix for g, is

(5 1)

where
2X'  AX rthptm o XGAX (Rt 4 plmpth)
P = : : ;
X AX (rtkptm goplmptky 09X AXrtRptm
2X', Arthplm coo X A (ptRptm g plmpth)
T = : : )
X/ A (rtkptm goplmpthy 09X Agpthptm
and
2Arkplm o Atk plmythy
S = : :
A(rthptm 4oplmptky 9 Apthptm

The 75" sub-block of the upper left set of ¢ x ¢ blocks is
X/ AX (rFpdm 4 pimpdky), (12)
The ij" sub-block of the upper right set is
XA (rFpdm 4 pimypiky, (13)
The ij'" sub-block of the lower right set is

A(rikrjm + Timrjk). (14)

3



The matrix for ry is the same as (26.10) except that I replaces A. Thus the 3 types
of sub-blocks are X/;X;r*rik X';rikrik and Ir**ri% The matrix for rg, is the same as
(26.11) except that I replaces A. Thus the 3 types of blocks are X/; X (ri*rim + pimyik)
X/ (rikpim o pimpik) “and I(rikpim 4 pimydk),

Now define the p+1, ..., p+n rows of a g-inverse of mixed model coefficient matrix
as Ci, the next n rows as C,, etc., with the last n rows being C;. Then

Var(a;) = C;[Var(r)|C,, (15)

where Var(r) = variance of right hand sides expressed as matrices multiplied by the g;;
and 7; as described above.

Cov(a;, &) = Cy[Var(r)|C. (16)

Then
BE(a;A'a) =trA~! Var(a). (17)
E(éiAilé;) =trA~! Cov(a, a}). (18)

To find the quadratics of (26.9) and their expectations we first compute
I- WCW'R™, (19)
where W = (X Z) and C = g-inverse of mixed model coefficient matrix. Then
¢ = (I-WCW'R)y. (20)
Let the first n rows of (26.19) be denoted By, the next n rows Bsy, etc. Also let
B, =By By ... By). (21)

Each By; has dimension n x n and is symmetric. Also T — WCW'R™! is symmetric and
as a consequence B;; = Bj;. Use can be made of these facts to reduce computing labor.
Now

& = Byy(i=1,...,1). (22)
Var(é;) = B[Var(y)]B.. (23)
Cov(e;, ;) = B;i[Var(y)|B). (24)
By virtue of the form of Var(y),
Var(é;) Z B + Z Z 2BiBinim
k=1 m—k+1
-1t

+ Z szAszgkk + Z Z 2szABzmgkm~ (25>

k=1 m=k+1



t
Cov(é;,&;) = > BuBuru

k=1

t—1 t
+ > Y (BaBjmBimBjr)Tkm

k=1 m=k+1

t
+ > By ABjigix
k=1

t—1 t
+ Y. Y (BiyABj, + By ABji) G- (26)

k=1 m=k+1
E(ee;) = trVar(é;). (27)
E(eje;) = trCov(e;,€)). (28)

Note that only the diagonals of the matrices of (26.25) and (26.26) are needed.

2 Missing Data

When data are missing on some traits of some of the animals, the computations are more
difficult. An attempt is made in this section to present algorithms that are efficient for
computing, including strategies for minimizing data storage requirements. Henderson and
Quaas (1976) discuss BLUP techniques for this situation.

The computations for the missing data problem are more easily described and carried
out if we order the records, traits within animals. It also is convenient to include missing
data as a dummy value = 0. Then y has nt elements as follows:

Y = (Y1Ys - Yn)s

where y; is the vector of records on the ¢ traits for the i"* animal. With no missing data



the model for the nt records is

!
Y11 X11 0 0 a1 €11
/
Y12 0 X19 0 12 €12
/
Y1t 0 0 X1y ar €1t
/
Yo21 x5 0 0 3 21 €21
!
Y22 0 x5 0 1 (22 €22
: : : : Be
/ :
Yot 0 0 Xot Q24 €24
: : : : B, :
/
Yn1 an O 0 an1 €nl
/
Yn2 0 Xn2 0 Apn2 €n2
!
Ynt O O Xnt Apy Ent

i; 18 a row vector relating the record on the 4t trait of the i** animal to B;, the fixed

effects for the j* trait. B; has p; elements and 3_; p; = p. When a record is missing,
it is set to 0 and so are the elements of the model for that record. Thus, whether data
are missing or not, the incidence matrix has dimension, nt by (p + nt). Now R has block
diagonal form as follows.

X

R, 0 ... 0
0 Ry ... 0

R=| . . , (29)
0 0 ... R,

For an animal with no missing data, R; is the ¢ X ¢ environmental covariance matrix. For
an animal with missing data the rows (and columns) of R; pertaining to missing data are
set to zero. Then in place of R™! ordinarily used in the mixed model equations, we use
R~ which is

Ry 0

Ry
(30)

0 R,
R is the zeroed type of g-inverse described in Section 3.3. It should be noted that R; is
the same for every animal that has the same missing data. There are at most t> — 1 such
unique matrices, and in the case of sequential culling only ¢ such matrices corresponding
to trait 1 only, traits 1 and 2 only, ..., all traits. Thus we do not need to store R and
R~ but only the unique types of R; .



Var(a) has a simple form, which is

(leG() (ZlgG() Ce alnGo
a12Go  a20Go ... a9, G

V(L?"(a) _ 12‘ 0 22' 0 2 0 7 (31)
CLlnGQ CLQnGQ R a,mGO

where Gy is the ¢t x t covariance matrix of additive effects in an unselected non-inbred
population. Then

alngl alngl o alnGal
Var(@] ™ =| | T (32)
CLlnGal a2nG61 o annGal

a’ are the elements of the inverse of A. Note that all nt of the a;; are included in the
mixed model equations even though there are missing data.

We illustrate prediction by the following example that includes 4 animals and 3 traits
with the B, vector having 2, 1, 2 elements respectively.

Trait
Animal | 1 2 3
1 5 3 6
2 2 5 7
3 - 3 4
4 2 - -
1 2
Xforg,=1]1 3 |,
( 1 4
1
forB, =1 1|,
1
1 3
and for B3 =| 1 4
1 2



Then, with missing records included, the incidence matrix is

(33)

120001000O0O0O0O0O0O0O0®O
060010001O0OO0O0OO0OO0O0OO0O®O0®O
060001300100O0O0O0O0O0O00QO0

130000001O0O0O0O0O0O0OO0O®O
001000O0OO0OO0O1O0O0OO0OO0OO0OO0O
000140000O01O0O0O0O0O0O0
0000O0O0OO0OO0OO0OOO0OOOOO0O®O0OO0
060010000O0OO0OO0OO0OO0O1TO0O0®O0®O0
000120000O0O0O0O01O0O00O0

14000000O0O0OO0OO0OO0OCO0OT1O0O
0000O0O0OO0OO0OO0OOOOOO0OO0OO0O0
0000O0O0OO0OO0OO0OOOOOOO0OO0O0

We assume that the environmental covariance matrix is

— <t D=

[anlINe}

Then R~ for animals 1 and 2 is

)

0706
—.2000
2471

—.2000
4000

( 3059

)

S 0 O
B®  —
— O
_ : o O O
o O
[esBNaN|
2 2
(&)
. ~
o
N~
75} wn
= o=
o <
E E
e o=
a
= 3
— —
S 2
| o
R =]
<

Suppose that

and



Var(a) is

Q>

20 1.0 1.0

3.0 2.0

4.0

0
0

0
0
0 0

0
0
0

3.0 2.0
4.0

0

)

)
20 1.0 1.0 1.0 .5

)

)

0

1

2

. 5
D 1.5
b5 1.0
1.5
1.0
1.0
3.0

D
1.0
2.0

)
1.0
2.0
1.0
2.0
4.0

o O O
o O O

DD
1.5 1.0
1.0 2.0
25 .25
75D

S5 1.0
1.0 1.0
3.0 2.0

4.0

Using the incidence matrix, R™, G™!, and y we get the coefficient matrix of mixed
model equations in (26.35) ...(26.37). The right hand side vector is (1.8588, 4.6235, -
6077, 2.5674, 8.1113, 1.3529, -1.0000, 1.2353, .1059, .2000, .8706, 0, .1923, .4615, .4000,
0, 0)’. The solution vector is (8.2451, -1.7723, 3.9145, 3.4054, .8066, .1301, -.4723, .0154,
~.2817, .3965, -.0011, -.1459, -.2132, -.2480, .0865, .3119, .0681)".

Upper left 8 x 8 (times 1000)

812 2329
7176

—400
—1000
1069

141
353

—554

725

—1708

494
1271

2191
7100

306
612

—200

71
212
1229

Upper right 8 x 9 and (lower left 9 x 8) (times 1000)

306
918
—200
71
282
308
-7
—38

—200
—600
400
—200
—800
-7
269
—115

71
212
—200
247
988
—38
—115
192

o O OO

—615
154

7

0

0

269
—154
—-308
154
—538
231

0

0
—154
231
462
7
231
—385

—200
—400
400
—200
—600
—431
1208

200
800

OO OO oo

71
141
—200
247
741
—045
—546
824

OO OO O o oo
OO OO oo oo

(35)

(36)



Lower right 9 x 9 (times 1000)

1434 —482 —70 —615 154 77 —410 103 51
1387 —623 154 —538 231 103 —359 154

952 77 231 —385 51 154 —256

1231 —308 —154 0 0 0

1346 —615 0 0 0. (37)

1000 0 0 0

1020 —205 —103

718 —308

513

3 EM Algorithm

In spite of its possible slow convergence I tend to favor the EM algorithm for REML
to estimate variances and covariances. The reason for this preference is its simplicity
as compared to iterated MIVQUE and, above all, because the solution remains in the
parameter space at each round of iteration.

If the data were stored animals in traits and a; = BLUP for the n breeding values
on the ™" trait, g;; would be estimated by iterating on

gij = (éiAilflj —+ trAflcij)/n, (38)
where C;; is the submatrix pertaining to Cov(a; — a;, d;- — a;-) in a g-inverse of the mixed

model coefficient matrix. These same computations can be effected from the solution with
ordering traits in animals. The following FORTRAN routine accomplishes this.

10



REAL *8 A(C ), C( ), UC), S
INTEGER T

NT=N*T

DO 7 I=1, T

DO 7 J=I, T

S=0. DO

DO 6 K=1, N

DO 6 L=1, N
6  S=S+A(IHMSSF(K,L,N))*U(T*K-T+I)*U(T*L-T+J)
7 Store S

DO 8 K=1, N

DO 8 L=1, N
8 S=S+A (IHMSSF(K,L,N) ) *C(IHMSSF (T*K-T+I,T*L-T+J,NT))
9 Store S

A is a one dimensional array with N(N+1)/2 elements containing A~*. C is a one
dimensional array with NT(NT+1)/2 elements containing the lower (NT)? submatrix of
a g-inverse of the coefficient matrix. This also is half-stored. U is the solution vector for
a’. THMSSF is a half-stored matrix subscripting function. The #(t + 1)/2 values of S in
statement 7 are the values of a/A~'a,. The values of S in statement 9 are the values of
trA~1Cy;.

In our example these are the following for the first round. (.1750, -.1141, .0916,
4589, .0475, .1141), for a,A'a;, and (7.4733, 3.5484, 3.4788, 10.5101, 7.0264, 14.4243)
for tr A='C;;. This gives us as the first estimate of Gy the following,

1.912  .859 .893
2.742 1.768
3.635

Note that the matrix of the quadratics in a remain the same for all rounds of iteration,
that is, A7L.

In constrast, the quadratics in € change with each round of iteration. However, they

11



have a simple form since they are all of the type,
i=1

where €; is the vector of BLUP of errors for the t traits in the i** animal. The e are
computed as follows

€ij = Yij — X;‘j ; — Qy (39)
when y;; is observed. ¢;; is set to 0 for y;; = 0. This is not BLUP, but suffices for
subsequent computations. At each round we iterate on

tTQin = (é/QZ]é + t’f‘Q”WCW/) 1= 1, ceey tijy ] = i, ceey t. (40)
This gives at each round a set of equations of the form
Ti = q, (41)

where T is a symmetric ¢ X ¢t matrix, r = (r1; 112 ... 74)’, and q is a t x 1 vector of
numbers. Advantage can be taken of the symmetry of T, so that only #(t+1)/2 coefficients
need be computed rather than ¢2.

Advantage can be taken of the block diagonal form of all Q;;. Each of them has the
following form
Blij 0
By
Qi; = T - (42)
0 Bm‘j

There are at most t* — 1 unique By, for any Q,;, these corresponding to the same number
of unique R;,. The B can be computed easily as follows. Let

Ju fiz o Sfu
_ fiz fao oo f2
R, =|"" " D=t f).
flt f2t s ftt
Then
Buij = (£if]) + (£if}) for i # j. (44)

In computing trQ;;R remember that Q and R have the same block diagonal form. This
computation is very easy for each of the n products. Let

bll b12 e blt

big bao ... by
Bug = . . :

biy by ... by

12



Then the coefficient of r;; contributed by the £ animal in the trace is b;. The coefficient

of Tij is 2()1]

Finally note that we need only the n blocks of order ¢t x ¢t down the diagonals of
WCW' for trQ;;WCW'. Partition C as

C., Cy ... C
c. C, ... Cm

Then the block of WCW/’ for the it animal is
X;C.. X 4+ X,;C,; + (XiCyy) + Cy; (45)

and then zeroed for missing rows and columns, although this is not really necessary since
the Qy; are correspondingly zeroed. X; is the submatrix of X pertaining to the i animal.
This submatrix has order ¢ x p.

We illustrate some of these computations for r. First, consider computation of Q;;.
Let us look at Boqq, that is, the block for the second animal in Q1.

Then

B211 =

.3059
—.2000

3059 —.2000  .0706

R, = | —.2000  .4000 —.2000
0706 —.2000  .2471
0936 —.0612  .0216
(.3059 —.2000 .0706) = .0400 —.0141
.0050

.0706

Look at Bsos, that is, the block for the third animal in Qa3.

Then

0 0 0

R; =10 .2692 —.1538

0

.2692

—.1538
0 0
0 —.0414
0 .0237
0 0
0 —.0828
0 .0858

0 —.1538  .2308

(0 —.1538 .2308) + transpose of this product

0
0621 | + ()
—.03500

0
0858
—.0710

13



Next we compute trQ;;R. Consider the contribution of the first animal to trQi.R.

—.1224 1624 —.0753
—.0282

Then this animal contributes

—.1224 11 + 2(1624) 19 — 2(0753) 13 — .1600 To9 + 2(0682) 23 — .0282 T33.

Finally we illustrate computing a block of WCW’ by (26.45). We use the third

animal.
X3 = ( ) .

29.4578 —9.2266 3.059 27324 —.3894
3.1506 —.6444 —.5254 0750

o O O
o O O
O = O
_ o O
N O O

[y

Co = 3.5851  2.3081 .0305
30.8055 —8.5380
2.7720

—1.7046 —1.2370 —1.0037

2759 2264 .1692

Cus = —.6174 —1.9083 —1.2645
—.8627 —1.2434 —4.7111

0755  —.0107 .7006

1.9642 9196 .9374
Css = 2.7786 1.8497 | .
3.8518
Then the computations of (26.45) give
1.9642 .3022  .2257

2.5471 1.6895
4.9735

Since the first trait was missing on animal 3, the block of WCW’ becomes

0 0 0
25471 1.6895 | .

4.9735
Combining these results, r for the first round is the solution to

227128 —.244706 086367  .080000 —.056471  .009965
649412 —.301176 —.320000  .272941 —.056471
322215 .160000 —.254118  .069758 | .
392485 —.402840  .103669
726892  —.268653
175331

14



= (.137802, —.263298, .084767, .161811, —.101820, .029331)’
+ (.613393, —.656211, .263861, .713786, —.895139, .571375)".

R 3.727 1295 311
R = 3.419 2.270 | .

This gives the solution

4.965

15



Chapter 27
Sire Model, Multiple Traits

C. R. Henderson

1984 - Guelph

1 Only One Trait Observed On A Progeny

This section deals with a rather simple model in which there are ¢ traits measured on the
progeny of a set of sires. But the design is such that only one trait is measured on any
progeny. This results in R being diagonal. It is assumed that each dam has only one
recorded progeny, and the dams are non-inbred and unrelated. An additive genetic model
is assumed. Order the observations by progeny within traits. There are ¢ traits and k
sires. Then the model is

Yo B 0 X2 . 0 ﬂQ
Yt 0 0 Xt By
Z1 o ... 0 S1 €1
0 Z2 R 0 So €2
+ : : : : + : (1>
0 0 Zt St (SF

yi represents n; progeny records on trait ¢, 8, is the vector of fixed effects influencing the
records on the it trait, X; relates 3, to elements of y;, and s; is the vector of sire effects
for the " trait. It has k has a null column corresponding to such a sire.

S1 Abn Ab12 e Ablt
S Abis Abyy ... AD

Var ,2 =| . " 22, 2% = G. (2)
S¢ Ablt Abzt e Abtt

A is the k x k numerator relationship matrix for the sires. If the sires were unselected,
bij = gij/4, where g;; is the additive genetic covariance between traits ¢ and j.

(S5} Idl 0o ... 0
€9 0 Idg Ce 0

Var : =1 . : = R. (3)
€ 0 0o ... Idt



Under the assumption of unselected sires
di = .75 gii + 1,

where 7; is the i** diagonal of the error covariance matrix of the usual multiple trait
model. Then the GLS equations for fixed s are

di'XN X, .. 0 di'X"Z, ... 0
0 o dTIX X, 0 S <V A
di'Z\ X, ... 0 ‘27, ... 0
0 L d7'7Z X, 0 ... d7'7,7,
By di ' X1y,
o dflxl y
t t tyYt
=1t 4
S1 dy 1Z'13"1 (4)
St dl_lz,t}’t

The mixed model equations are formed by adding G™! to the lower right (kt)? submatrix
of (27.4), where

Attt ATt
G = : L (5)
A-ptt 0 AT
and b7 is the ij'" element of the inverse of
by ... by
bie . byt
With this model it seems logical to estimate d; by
v'iyi = (B7) X'y — (07)' 23y /[ni — rank(X; Z;)]. (6)
B7 and u? are some solution to (27.7)
XX, XZ; 5? _ X'iyi (7)
7' X; 717 w )\ Zy; '

Then using these cfi, estimate the b;; by quadratics in 8, the solution to (27.4). The
quadratics needed are

SAT'S; di=1, ...t j=i, ..., L
These are computed and equated to their expectations. We illustrate this section with a

small example. The observations on progeny of three sires and two traits are

2



Sire | Trait | Progeny Records
1 1 5,3,6
2 1 7,4
3 1 5,3,8,6
1 2 5,7
2 2 9,8,6,5

Suppose X} = [1 ... 1] with 9 elements, and X} = [1 ... 1] with 6 elements.

100
100 100
1 00
1 00
010 010
Z,=1010 |, Zy= 01 0
001
010
0 01 010
0 01
0 01

Suppose that

and

Then

G= 2. 1. 1. |
2. 5
2.
10 -4 -4 -5 2 2
8 0 2 —4 0
1 8§ 2 0 -4 |1
G = 15 -6 -6 |15
12 0
12



45 01510 20 0 0 0
3 0 0 012 24 0
15 0 0 0 00
X'R-! | 100 0 00
(Z’R—1>(X 2)= 150 20 0 00 (®)
120 0
24 0
0

Adding G™! to the lower 6 x 6 submatrix of (27.8) gives the mixed model coefficient
matrix. The right hand sides are [1.5667, 1.6, .4667, .3667, .7333, .48, 1.12, 0]. The
inverse of the mixed model coefficient matrix is

5.210  0.566 —1.981 —1.545 —-1.964 —0.654 —0.521 —0.652

0.566  5.706 —0.660 —0.785 —0.384 —1.344 —-1.638 —0.690
—-1.981 -0.660 2.858 1.515 1.556 0.934 0.523  0.510
—1.545 —0.785 1.515 2.803 0939 0522 0917 0.322 ()
—-1.964 —-0.384 1556 0.939 2783 0510 0322  0.923
—0.6564 —1.344 0934 0.522 0.510 1939 1.047 0.984
—-0.521 —-1.638 0.523 0917 0322 1.047 1.933 0.544
—-0.652 —0.690  0.510 0.322 0.923 0984 0.544 1.965

The solution to the MME is (5.2380, 6.6589, -.0950, .0236, .0239, -.0709, .0471, -.0116).

2 Multiple Traits Recorded On A Progeny

When multiple traits are observed on individual progeny, R is no longer diagonal. The
linear model can still be written as (27.1). Now, however, the y; do not have the same
number of elements, and X; and Z; have varying numbers of rows. Further,

I ry Piorig ... Pury
/
P127“12 I T29 Ce PQtT'Qt
R=| . , . . (10)
/ /
Pltrlt P2tT2t e I Ttt

The I matrices have order equal to the number of progeny with that trait recorded.

is the error variance-covariance matrix. We can use the same strategy as in Chapter 25
for missing data. That is, each y; is the same length with 0’s inserted for missing data.

4



Accordingly, all X; and Z; have the same number of rows with rows pertaining to missing
observations set to 0. Further, R is the same as for no missing data except that rows
corresponding to missing observations are set to 0. Then the zeroed type of g-inverse of

R is

Dy Dy ... Dy
p12 P22 . P2t (1)
Dy Dy ... Dy
Each of the D;; is diagonal with order, n. Now the GLS equations for fixed s are
XD X, ... X4/DyX; X'DyZ, ... X'\D.Z B9
XDy X; ... X/ DyX; X'.DyZ, ... X' DyuZ, By _
7Z DX, ... Z/DyX; Z D Z, ... Z'DZ $1
Z,.DX, ... Z,DuX, Z'/DuZ, ... Z'.DuZ, Sy
X' Dnuy: + ... + X' Duy,
X/tDltYI + ... + X/tDtth (12>
Z'\Duy: + ... + Z'Duyy;
Z'\Dyy, + ... + Z'Dyy,

With G™! added to the lower part of (27.12) we have the mixed model equations.

We illustrate with the following example.

Trait

Sire | Progeny | 1 2

1 1 6 5

2 3 5

3 -7

4 8 -

2 ) 4 6

6 -7

7 3 -

3 8 5 4
9 8

We assume the same G as in the illustration of Section 27.1, and

rin T2 \ _ ( 30 10
12 T929 o 10 25 '



We assume that the only fixed effects are p; and o .

length 13, ordered progeny in sire in trait,

and

0w OO0 OO

30

o O O

s oo R, O OO
—_ 0O O O OO

o O OO

30

=(1111111),

35 8),

S OO OO

30

N
no
I

—_

OO OO oo

30

O OO O o oo

[\

O OO =
O = = O OO

—_
T O O O O O o OO
OO OO OO o oo

[\}
[N}
ot

Then the GLS coefficient matrix for fixed s is in (27.13).

0.254
—0.061
0.110
0.072
0.071
—0.031
—0.015
—0.015

—0.061
0.265
—0.031
—0.015
—0.015
0.132
0.086
0.046

0.110
—0.031
0.110
0.0
0.0
—0.031
0.0
0.0

0.072
—0.015
0.0

0.072
0.0
0.0
—0.015
0.0

0.072
—0.015
0.0
0.0

0.072

0.0

0.0
—0.015

—0.031
0.132

—0.031
0.0
0.0
0.132
0.0
0.0

_ o O O O O

X,=(111111),

yo=(5 576 7 4),

—_

L O OO OO O oo oo

[\}
GO O OO DODO O oo oo

[\]

—0.015
0.086
0.0

—0.015
0.0
0.0
0.086
0.0

—_

GO O DODDOD DO OO o oo

(\]

—0.015
0.046
0.0
0.0

—0.015
0.0
0.0
0.046

Then using the data vector with

(13)

G ! is added to the lower 6 x 6 submatrix to form the mixed model coefficient matrix.
The right hand sides are (1.0179, 1.2062, .4590, .1615, .3974, .6031, .4954, .1077). The



inverse of the coefficient matrix is

6.0656 1.607 —2.111 -1.735 —-1.709 —0.702 —0.603 —0.546
1.607  5.323 —-0.711 -0.625 —-0.519 —-1.472 —-1.246 -1.017
—-2.111 -0.711 2880 1.533 1527 0.953  0.517  0.506
—-1.735 —0.625 1.533 2.841 0.893 0.517 0.938  0.303 (14)
—-1.709 —-0.519 1.527 0.893 2844 0.506 0.303  0.944
—0.702 —1.472 0953 0.517 0506 1.939 1.028 1.003
—0.602 —1.246 0.517 0938 0303 1.028 1.924  0.562
—-0.546 —1.017 0.506  0.303 0943 1.002 0.562 1.936

The solution is [5.4038, 5.8080, .0547, -.1941, .1668, .0184, .0264, -.0356].
If we use the technique of including in y, X, Z, R, G the missing data we have

X, =(110110111), X,=(111011010),

1 00 1 00
1 00 1 00
000 1 00
1 00 000
Zi=|1 010 |, Zy=]0 10
0 00 010
010 000
0 01 001
001 000
y/l - (67 37 07 87 47 07 37 57 8)7
and
yo=(5,5,7,0,6,7 0,4,0).
Dy diag[.0385, .0385, 0, .0333, .0385, 0, .0333, .0385, .0333]
D, = diag[—.0154, —.0154, 0, 0, —.0154, 0, 0, —.0154, 0]
Dy, = diag[.0462, .0462, .04, 0, .0462, .04, 0, .0462, 0].

This leads to the same set of equations and solution as when y has 13 elements.

3 Relationship To Sire Model With Repeated Records
On Progeny

The methods of Section 27.2 could be used for sire evaluation using progeny with repeated
records (lactations, e.g.), but we do not wish to invoke the simple repeatability model.
Then lactation 1 is trait 1, lactation 2 is trait 2, etc.



Chapter 28
Joint Cow and Sire Evaluation

C. R. Henderson

1984 - Guelph

At the present time, (1984), agencies evaluating dairy sires and dairy females have
designed separate programs for each. Sires usually have been evaluated solely on the
production records of their progeny. With the development of an easy method for com-
puting A~' this matrix has been incorporated by some agencies, and that results in the
evaluation being a combination of the progeny test of the individual in question as well
as progeny tests of his relatives, eg., sire and paternal brothers. In addition, the method
also takes into account the predictions of the merits of the sires of the mates of the bulls
being evaluated. This is an approximation to the merits of the mates without using their
records.

In theory one could utilize all records available in a production testing program
and could compute A~! for all animals that have produced these records as well as
additional related animals without records that are to be evaluated. Then these could be
incorporated into a single set of prediction equations. This, of course, could result in a set
of equations that would be much too large to solve with existing computers. Nevertheless,
if we are willing to sacrifice some accuracy by ignoring the fact that animals change herds,
we can set up equations that are block diagonal in form that may be feasible to solve.

1 Block Diagonality Of Mixed Model Equations

Henderson (1976) presented a method for rapid calculation of A~ without computing A.
A remarkable property of A~! is that the only non-zero off-diagonal elements are those
pertaining to a pair of mates, and those pertaining to parent - progeny pairs. These
non-zero elements can be built up by entering the data in any order, with each piece of
data incorporating the individual identification number, the sire number, and the dam
number. At the same time one could enter with this information the production record
and elements of the incidence matrix of the individual. Now when the dam and her
progeny are in different herds, we pretend that we do not know the dam of the progeny
and if, when a natural service sire has progeny in more than one herd, we treat him
as a different sire in each herd, there are no non-zero elements of A~! between herds.
This strategy, along with the fact that most if not all elements of 3 are peculiar to the
individual herd, results in the mixed model coefficient matrix having a block diagonal
form. The elements of the model are ordered as follows



B,: a subvector of B8 common to all elements of y.
ag: a subvector of a, additive genetic values, pertaining to sires used in several herds.

B; (i =1,..., number of herds): a subvector of 3 pertaining only to records in the i‘"

herd.

a;: a subvector of a pertaining to animals in the i** herd. a; can represent cows with
records, or dams and non-Al sires of the cows with records. In computing A~! for
the animals in the i herd the dam is assumed unknown if it is in a different herd.
When Sectiom 28.3 method is used (multiple records) no records of a cow should be
used in a herd unless the first lactation record is available. This restriction prevents
using records of a cow that moves to another herd subsequent to first lactation. With
this ordering and with these restrictions in computing A~! the BLUP equations have
the following form

CQO Coi Cp2 -+ Cy Yo Io
002 0 Cy -+ 0 Yo = Iro
C;)k 0 0 s Ckk Yk ry

70 = (/6;) a/;))a
v = (B &)

Then with this form of the equations the herd unknowns can be “absorbed” into the 3,
and aj equations provided the C;; blocks can be readily inverted. Otherwise one would
need to solve iteratively. For example, one might first solve iteratively for 3, and ay sires
ignoring 3;, a;. Then with these values one would solve iteratively for the herd values.
Having obtained these one would re-solve for 3, and the ay values, adjusting the right
hand sides for the previously estimated herd values.

The Al sire equations would also contain values for the “base population” sires. A
base population dam with records would be included with the herd in which its records
were made. Any base population dam that has no records, has only one Al son, and has
no female progeny can be ignored without changing the solution.

2 Single Record On Single Trait

The simplest example of joint cow and sire evaluation with multiple herds involves a single
trait and with only one record per tested animal. We illustrate this with the following
example.



Base population animals
1 male
2 female with record in herd 1
3 female with record in herd 2
Al Sires
4 with parents 1 and 2
5 with parents 1 and 3
Other Females With Records
6 with unknown parents, record in herd 1
7 with unknown parents, record in herd 2
8 with parents 4 and 6, record in herd 1
9 with parents 4 and 3, record in herd 2
10 with parents 5 and 7, record in herd 2
11 with parents 5 and 2, record in herd 1
Ordering these animals (1,4,5,2,6,8,11,3,7,9,10) the A matrix is in (28.1).

15 5 0 0 25 .25 0 0 .25 .25
1 2550 &5 37 0 0 .5 125
1 00 125 5 5 0 .37 5
1 0 .25 ) 0 0 .25 0
1 .5 0 0 0 0 0
1 1875 0 0 .25 .0625 (1)
1 25 0 3125 .25
1 0 5 .25
1 0 )
1 1875
1
A~! shown in (28.2)
2 -1 -1 50 0 0 50 0 0
3 0-15 -1 0 50 -1 0
3 5 0 0 -1 -1 .5 0 -1
20 0 -1 00 0 0
15 =1 0 00 0 0
2 0 00 0 0 (2)
2 00 0 0
20 -1 0
1.5 0 -1
2 0
2

Note that the lower 8 x 8 submatrix is block diagonal with two blocks of order 4 x 4 down
the diagonal and 4 x 4 null off-diagonal blocks. The model assumed for our illustration is

Yij = fi + aij + €45,

3



where ¢ refers to herd and j to individual within herd. Then with ordering

(Clb a4, a5, [1, A2 A, ag, a11, M2, A3 a7, Qg, alo)

the incidence matrix is as shown in (28.3). Note that 3° does not exist.

000110O0O0O0O0O0TO0G®O
000101O0O0O0O0OO0OTO0O®O
00010O01TO0O0O0O0OO0O
000100O01O0O0O0O0O (3)
0000O0OO0OO0OO0OTI1TT1TO0QO0®O0
0000O0OO0OO0OO0OT1TO0OT1QO0®O0
0000O0OO0OO0OO0OT1TO0OO0OT1®O0
0000O0OO0OO0OO0OT1TO0OO0®O01

Suppose y’ = [3,2,5,6,7,9,2,3] corresponding to animals 2,6,8,11,3,7,9,10. We assume that
h* = .25 which implies ¢?/02 = 3. Then adding 3 A~! to appropriate elements of the
OLS equations we obtain mixed model equations displayed in (28.4).
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Note that the lower 10 x 10 block of the coefficient matrix is block diagonal with 5 x 5
blocks down the diagonal and 5 x 5 null blocks off-diagonal. The solution to (28.4) is

[-.1738, -.3120, -.0824, 4.1568, -.1793, -.4102, -.1890, .1512, 5.2135, .0857, .6776, -
5560, -.0611].

Note that the solution to (a;, a4, as) could be found by absorbing the other equations as
follows.

6 -3 -3 015 0 0 O
9 0|-(0 -3 15 =3 0 5.5 —
9 015 0 0 =3

-1

BN

O =

N Ww O
N O O W



0 0 0 41 1 1 1
15 -3 1.5 015 0 0 0 70 -3 0
0 15 0 [—=[0 15 0 —3 0 55 0 —3
0 -3 0 0 -3 15 0 -3 70
0 0 -3 7
0 0 0
15 1.5 —3 a 0 015 0 0 0
0 0 15 a |=]0]l=]0 =315 =3 0
0 -3 0 as 0 015 0 0 —3
0 0 -3
41 1 1 1\ '/16
70 0 -3 3 015 0 0 0
55 -3 0 21-]l015 0 -3 0
70 5 0 -3 15 0 —3
7 6
41 1 1 1\ ' /21
70 -3 0 7
55 0 —3 9
70 9

Iterations on these equations were carried out by two different methods. First, the herd
equations were iterated 5 rounds with Al sire values fixed. Then the Al sire equations were
iterated 5 rounds with the herd values fixed and so on. It required 17 cycles (85 rounds)
to converge to the direct solution previously reported. Regular Gauss-Seidel iteration
produced conversion in 33 rounds. The latter procedure would require more retrieval of
data from external storage devices.

3 Simple Repeatability Model

As our next example we use the same animals as before but now we have records as
follows.

Herd 1 Herd 2

Years Years
Cow |1l 2 3| Cow |1 2 3
2 5 6 - 3 g8 - -
6 4 5 3 7 9 8 7
8 - 7 6 9 - 8 8
1 |- - 8 10 |- - 7




We assume a model,
Yijk = Mij T Qi + Dike + €455k
i refers to herd, j to year, and k to cow. It is assumed that h? = .25, r = .45. Then

Var(a) = A 02/2.2.
Var(p) = 102/2.75.
o?jor = 2.2, 03/05 =2.75

The diagonal coefficients of the p equations of OLS have added to them 2.75. Then p
can be absorbed easily. This can be done without writing the complete equations by

weighting each observation by -

Nk + 0'3/275

where n;; is the number of records on the ik cow. These weights are .733, .579, .478
for 1,2,3 records respectively. Once these equations are derived, we then add 2.2 A~! to
appropriate coefficients to obtain the mixed model equations. The coefficient matrix is
in (28.5) ... (28.7), and the right hand side vector is (0, 0, 0, 4.807, 9.917, 10.772, 6.369,
5.736, 7.527, 5.864, 10.166, 8.456, 13.109, 5.864, 11.472, 9.264, 5.131)’. The unknowns are

in this order (a1, as, as, p11, paa, f13, G2, Gg, G, A11, Mo, f22, Ha3, A3, A7, Ag, G19). Note
that block diagonality has been retained. The solution is

(1956, .3217, .2214, 4.6512, 6.127, 5.9586, .2660, -.5509, .0045, .5004, 8.3515, 7.8439,
7.1948, .0377, .0516, .2424, .0892].

Upper 8 x 8
44 —-22 =2.2 0 0 0 1.1 0
6.6 0 0 0 0 =22 1.1
6.6 0 0 0 1.1 0
1.057 0 0 D79 478 (5)
1.636 0 D79 478
1.79 0 478
5.558 0
4.734
Upper right 8 x 9 and (lower left 9 x 8)’
0 0O 00O0 11 O 0 0
—2.2 0 000 1.1 0 —-2.2 0
0 —-22 0 0 0 =22 1.1 0 —2.2
0 0O 000 O 0 0 0 (6)
079 0O 000 O 0 0 0
D79 733 0 0 0 0 0 0 0
0 —-22 0 0 0 O 0 0 0
—-22 0 000 O 0 0 0




Lower right 9 x 9

5558 0 0 o 0 0 0 0 0
5133 0 0o 0 0 0 0 0
1211 0 0 733 478 0 0
1067 0 0 478 579 0
1.79 0 478 579 733 (7)
5133 0  -22 0
4734 0 —22
5558 0
5.133

4 Multiple Traits

As a final example of joint cow and sire evaluation we evaluate on two traits. Using the
same animals as before the records are as follows.

Herd 1 Herd 2
Trait Trait
Cow |1l 2 |[[Cow |1 2
2 6 8 3 -
6 4 6 7 -2
8 9 - 9 - 8
1 |- 3 10 |6 9

We assume a model,

Yijk = Mij T Qijk + Cijk,
where i refers to herd, j to trait, and k to cow. We assume that the error variance-
covariance matrix for a cow and the additive genetic variance-covariance matrix for a

non-inbred individual are
5 2 q 2 1
2 8 ) M1 3 )



respectively. Then R is

co N

o O O

co N OO

OO O OO

o OO o oo
OO OO oo o
OO OO o oo

0O ODO OO oo oo

L O OO OO oo oo
0N OO O OO oo oo

Ordering traits within animals, G is composed of 2 x 2 blocks as follows

2 azj CLZ‘j
aij 3 Clij '
The right hand sides of the mixed model equations are (0, 0,

0,0,0
8889, .7778, .5556, .6111, 1.8, 0, 0, .375, 2.3333, 2.1167, 1.4, 0, 0,
corresponding to ordering of equations,

0, 0, 3.244, 1.7639,

? 07
25,0, 1., .8333, .9167)

[Gn, 12, G41, A42, A51, A52, K11, K12, 21, G422, A61, A62, A81, A82, A11,1, (11,2, M21, H22, A31, 432,
ari, Ar2, Gg1, Ag92, 10,1, a10,2}-

The coefficient matrix is block diagonal with two 10 x 10 blocks in the lower diagonal
and with two 10 x 10 null blocks off-diagonal. The solution is

(.2087, .1766, .4469, .4665, .1661, .1912, 5.9188, 5.9184, .1351, .3356, -.1843, .1314, .6230,
5448, -.0168, -.2390, 6.0830, 6.5215, .2563, .2734, -.4158, -.9170, .4099, .5450, -.0900,
0718).

5 Summary Of Methods

The model to be used contains the following elements.

1. X8, : pertaining to all records
2. X,0, : pertaining to records only on the i** herd.

3. Zpag : additive genetic values of sires used in several herds, Al sires in particular, but
could include natural service sires used in several herds.



4. Z,;a; : additive genetic values of all females that have made records in the i** herd.
Some of these may be dams of Al sires. Others will be daughters of Al sires, and
some will be both dams and daughters of different Al sires. Z;a; will also contain
any sire with daughters only in the i** herd or with daughters in so few other herds
that this is ignored, and he is regarded as a different sire in each of the other herds.
One will need to decide how to handle such sires, that is, how many to include with
Al sires and how many to treat as a separate sire in each of the herds in which he
has progeny.

5. A~!should be computed by Henderson’s simple method, possibly ignoring inbreeding
in large data sets, since this reduces computations markedly. In order to generate
block diagonality in the mixed model equations the elements of A~! for animals in
Z;a; should be derived only from sires in ay and from dams and sires in a; (same
herd). This insures that there will be no non-zero elements of A~! between any pair
of herds, provided ordering is done according to the following

(1) XO/BO
(2) Zpay
(3) XiBy
(4) Z1a1
(5) X2,
(6) ZQ&Q
etc.

6 (Gametic Model To Reduce The Number Of Equa-
tions

Quaas and Pollak (1980) described a gametic additive genetic model that reduces the
number of equations needed for computing BLUP. The only breeding values appearing
in the equations are those of animals having tested progeny. Then individuals with no
progeny can be evaluated by taking appropriate linear functions of the solution vector.
The paper cited above dealt with multiple traits. We shall consider two situations, (1)
single traits with one or no record per trait and (2) single traits with multiple records and
the usual repeatability model assumed. If one does not choose to assume the repeatability
model, the different records in a trait can be regarded as multiple traits and the Quaas
and Pollak method used.

10



6.1 Single record model

Let the model be
y = X3 + Z,a + other possible random factors + e.

There are b animals with tested progeny, and ¢ < b of these parents are tested. There
are d tested animals with no progeny. Thus y has ¢ + d elements. In the regular mixed
model a has b + d elements. Z, is formed from an identity matrix of order b+ d and then
deleting b — ¢ rows corresponding to parents with no record.

Var(a) = Aod?,
Var(e) = Io2,
Cov(a,e’) = 0.

Now in the gametic model, which is linearly equivalent to the model above, a has
only b elements corresponding to the animals with tested progeny. As before y has ¢+ d
elements, and is ordered such that records of animals with progeny appear first.

(%)

P is a ¢ X b matrix formed from an identity matrix of order, b, by deleting b — ¢ rows
corresponding to parents without a record. Q is a d x b matrix with all null elements
except the following. For the " individual .5 is inserted in the " row of Q in columns
corresponding to its parents in the a vector. Thus if both parents are present, the row
contains two “.5’s”. If only one parent is present, the row contains one “.5”. If neither
parent is present, the row is null. Now, of course, A has order, b, referring to those animals
with tested progeny. Var(e) is no longer Io2. Tt is diagonal with diagonal elements as
follows for noninbred animals.

(1
2

2

2 for parents.

2
e

+ .5 02 for progeny with both parents in a.

2

2 4+ .75 0% for progeny with one parents in a.

) o
(2) o
3) o
(4) o

2

2 + o2 for progeny with no parent in a.

This model results in d less equations than in the usual model and a possible large
reduction in time required for a solution to the mixed model equations.

Computation of a;, BLUP of a tested individual not in the solution for a but providing
data in y, is simple.

A~

€ =Y — X;ﬂo — z;ﬁ — .5 (Sum of parental a).

11



X, is the incidence matrix for the i** animal with respect to 3.

z, is the incidence matrix for the " animal with respect to 1, other random factors
in the model. Then

a; = .5 (sum of parental a) + k;é;,
where k; = .5 02/(.5 02+ 0?) if both parents known,
= .75 02/(.75 02 + ¢2) if one parent known,

= 02/(02 + o?) if neither parent known.

The solution for an animal with no record and no progeny is .5 (sum of parental a),
provided these parents, if known, are included in the b elements of a in the solution.

A simple sire model for single traits can be considered a special case of this model.
The incidence matrix for sires is the same as in Chapter 23 except that it is multipled
by .5. The “error” variance is I(c? + .75 ¢2). The G submatrix for sires is Ac? rather
than .25 02A. Then the evaluations from this model for sires are exactly twice those of
Chapter 23.

A sire model containing sires of the mates but not the mates’ records can be for-
mulated by the gametic model. Then a would include both sires and grandsires. The
incidence matrix for a progeny would contain elements .5 associated with sire and .25
associated with grandsire. Then the “error” variance would contain o2 + .6875 02, 02 +
75 02, or 02 + .9375 o2 for progeny with both sire and grandsire, sire only, or grandsire
only respectively.

We illustrate the methods of this section with a very simple example. Animals 1,...,4
have records (5,3,2,8). X" = (1 21 3). Animals 1 and 2 are the parents of 3, and animal
1 is the parent of 4. The error variance is 02 = 10 and 62 = 4. We first treat this as an
individual animal model where

1 0 .5 5
1 50
A= 1 .25
1
The mixed model equations are
15 1 2 1 3 3 3.7
558333 125 —.25 —.166667 Uy 5
A75  —.25 0 Uy | = 3 (8)
.6 0 Us 2
433333 o .8

The solution is

12



(2.40096, .73264, -.57212, .00006, .46574).

Now in the gametic model the incidence matrix is

10
0 1 4 0
s ,G_<O 4>,R_ dg (10,10,12,13).
50

W = N =

12 = 10 + .5(4), 13 = 10 + .75(4).

Then the mixed model equations are

1.275641 .257051 .241667 B 3.112821
390064 .020833 u | = .891026 | . 9)
370833 Us 383333

The solution is
(2.40096, .73264, —.57212). (10)

This is the same as the first 3 elements of (28.8).

&3 = 2—2.40096 — .5(.73264 — 57212) = —.48122.
43 = .5(.73264 — 57212) + 2(—.48122)/12 = .00006.
64 = 8—3(2.40096) — .5(.73264) = .43080.

4y = .5(.73264) + 3(.43080)/13 = .46574.

Us, Uy are the same as in (28.8).

6.2 Repeated records model

This section is concerned with multiple records in a single trait and under the assumption
that

Yil 1 r r
Yio r 1 r )
Var =l r r1 Ty

Yi3

where y has been adjusted for random factors other than producing ability and random
error. The subscript i refers to a particular animal. The model is

y=XB+Z,a+Z,p + possibly other random factors + e.

13



In an unselected population o2 = hzaz, 012) =(r— h2)a§, o2 =(1- T)OZ, after adjusting y
for other random factors. As before b animals have progeny; ¢ < b of these have records.
These records number n;. Also as before d animals with records have no progeny. The

number of records made by these animals is ns.

First we state the model as described in Chapter 24. X, Z,, Z; all have nq + ny rows.
The number of elements in a is b + d. The Z, matrix is the same as in the conventional
model of Section 28.6.1 except that the row pertaining to an individual with records is
repeated as many times as there are records on that animal. The number of elements in p
is ¢+ d corresponding to these animals with records. Z, would be an identity matrix with
order ¢ + d if the ¢ + d animals with records had made only one record each. Then the
row of this matrix corresponding to an animal is repeated as many times as the number
of records in that animal. Since Z;,Z;D + (Io2)~! is diagonal, p can be “absorbed” easily to
reduce the number of equations to b+ d plus the number of elements in 3. The predicted
real producing ability of the i animal is a; + p;, with p; = 0 for animals with no records.

Now we state the gametic model for repeated records. As for single records, a now
has b elements corresponding to the b animals with progeny. Z, is exactly the same as
in the gametic model for single records except that the row pertaining to an animal is
repeated as many times as the number of records for that animal. As in the conventional
method for repeated records, p has ¢ 4 d elements and Z, is the same as in that model.

Now Mendelian sampling is taken care of in this model by altering Var(p) rather
than Var(e) as was done in the single record gametic model. For the parents Var(p)
remains diagonal with the first ¢ diagonals being ag. The remaining d have the following
possible values.

(1) o} + .507 if both parents are in a,

(2) o) + .7507 if one parent is in a,

(3) o} + o7 if no parent is in a.

Again we can absorb “p” to obtain a set of equations numbering b plus the number of

elements in 3, a reduction of ¢ from the conventional equations. The computation of a
for the d animals with no progeny is simple.

a; = .5(sum of parental &) + k;p;.
where k; = 502/ (crf) + .502) for animals with 2 parents in a.
= 7502 /(0% + .7507) for those with one parent in a.

= 0./(02 4 02) for those with no parent in a.

14



These two methods for repeated records are illustrated with the same animals as in
Section 28.8 except now there are repeated records. The 4 animals have 2,3,1,2 records
respectively. These are (5,3,4,2,3,6,7,8). X' =(12312232). Let

ol = .25,
o2 = .20,
ol = .55.

Then the regular mixed model equations are in (28.11).

65.455 5.455 10.909 3.636 9.091 5.455 10.909 3.636 9.091

10970 2.0 —4.0 -2.667 3.636 0 0 0
11455 —4.0 0 0 5455 0 0
9.818 0 0 0 1818 0
8.970 0 0 0  3.636
8.636 0 0 0
10.455 0 0
6.818 0
8.636

145.455

14.546

16.364

3 10.909

a|=| 27273 |. (11)

p 14.546

16.364

10.909

27.273

Note that the right hand sides for a and p are identical. The solution is

(1.9467, 8158, —.1972, .5660, 1.0377, .1113, —.3632, .4108, .6718). (12)

Next the solution for the gametic model is illustrated with the same data. The
incidence matrix is

1 1. 01000
21 0100O0
3010100
1 010100
2 0 1 0100
25 50010
3.5 00001
25 00001

—_
(S



corresponding to 3, ay, as, p1, P2, P3, Pa-

Var(e) = .551,

Var(a) — (%5 §5>

Var(p) = diag (.2, .2, .325, .3875).
Then the mixed model equations are

65.454 11.818 12.727 5.454 10.909 3.636 9.091
9.0 454 3.636 0 909 1.818

9909 O 5.454  .909 0

8.636 0 0 0

10454 0 0

4.895 0
6.217
3 145.454
a 33.636
s 21.818
p | =] 14546
D2 16.364
D3 10.909
Da 27.273

Note that the coefficient submatrix for p is diagonal. The solution is
(1.9467, .8158, —.1972, .1113, —.3632, .6676, 1.3017).
Note that 3, ay, as, p1, P2 are the same as in (28.12). Now

a; = .5(.8158 — .1972) +.125 (.6676)/.325 = .5660.
i, = .5(.8158) + .1875(1.3017)/.3875 = 1.0377.

These are the same results for a; and as as (28.12).
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Chapter 29
Non-Additive Genetic Merit

C. R. Henderson

1984 - Guelph

1 Model for GGenetic Components

All of the applications in previous chapters have been concerned entirely with additive
genetic models. This may be a suitable approximation, but theory exists that enables
consideration to be given to more complicated genetic models. This theory is simple for
non-inbred populations, for then we can formulate genetic merit of the animals in a sample

as
g = Zgz

g is the vector of total genetic values for the animals in the sample. g; is a vector
describing values for a specific type of genetic merit. For example, g; represents additive
values, g, dominance values, g3 additive x additive, g, additive by dominance, etc. In a
non-inbred, unselected population and ignoring linkage

Cov(g;, g;) =0
for all pairs of 7 # j.
Var(additive) = Ac?,
Var(dominance) = Do?2,

aa?’

(
Var(additive x additive) = A#Ac?
Var(additive x dominance) = A#Do?,,
(

Var(additive x additive x dominance) = A#A#Do?2 . etc.

aad)

The # operation on A and D is described below. These results are due mostly to Cock-
erham (1954). D is computed as follows. All diagonals are 1. d,,(k # m) is computed
from certain elements of A. Let the parents of k and m be g, h and i, j respectively. Then

dkm/::.25(agﬂuwl+—agjah0. (1)

In a non-inbred population only one at most of the products in this expression can be
greater than 0. To illustrate suppose k and m are full sibs. Then ¢ = 7 and h = J.

1



Consequently
dgm = -25[(1)(1) 4+ 0] = .25.

Suppose k and m are double first cousins. Then
dim = .25[(.5)(.5) + 0] = .0625.
For non-inbred paternal sibs from unrelated dams is
dim = -25[1(0) 4+ 0(0)] = 0,

and for parent-progeny dg,, = 0.

The # operation on two matrices means that the new matrix is formed from the
products of the corresponding elements of the 2 matrices. Thus the ij* element of A#A
2

is aj;, and the ij'" element of A#D is a;;d;;. These are called Hadamard products.

Accordingly, we see that all matrices for Var(g;) are derived from A.

2 Single Record on Every Animal

We shall describe BLUP procedures and estimation of variances in this and subsequent
sections of Chapter 29 by a model with additive and dominance components. The ex-
tension to more components is straightforward. The model for y with no data missing

1S
B
y=(XII| a |+e.
d

yisnx1l, Xisnxp, bothTarenxn,andeisnx1, Bispx1,aandd aren x 1.

Var(a) = Ao?

Var(d) = Do,
Var(e) = Io2.

Cov(a,d), Cov(a,€’), and Cov(d,€’) are all n x n null matrices. Now the mixed model
equations are

X'X X! X/ B° X'y
X I+A16%/02 I a | = y ) (2)
X I I+D 'o%/c3 d y

Note that if a,d were regarded as fixed, the last n equations would be identical to the
p+1, ..., p+ n equations, and we could estimate only differences among elements of



a+d. An interesting relationship exists between a and d. Subtracting the third equation
of (29.2) from the second,

A% /0?4 —D 0% /o2d = 0.
Therefore X
d = DA o3 /02A. (3)
This identity can be used to reduce (29.2) to
X'X  X/(I+DA '03/0?) B\ ([ Xy n
X I+A7'0?/0?+ DA '0%/0? a) \vy '

Note that the coefficient matrix of (29.4) is not symmetric. Having solved for a in (29.4)
compute d by (29.3).

02, 03, 02 can be estimated by MIVQUE. Quadratics needed to be computed and
equated to their expectations are

a’A~'a, d’D'd, and &e. (5)

To obtain expectations of the first two of these we need Var(r), where r is the vector of
right hand sides of (29.2). This is

AX A A DX D D

X'AX X'A X'A X'DX X'D X'D
ol + oy
AX A A DX D D

+ | x 1 1 |02, (6)
X I I

~

From (29.6) we can compute Var(a), Var(d) as follows. Let some g-inverse of the matrix

of (29.2) be
Cs
cC=| C, |.
Cq

C, and C,; each have n rows. Then

a=C,r,
and R
d= Cdr.
Var(a) = C, Var(r)C., (7)
and )
Var(d) = Cy4 Var(r)C),. (8)

3



E(EAT'a) = trA~! Var(a). (9)
E(d'D™'d) = trD! Var(d). (10)

For the expectation of &'é we compute tr(Var(e)). Note that

X/
: - (I(XIDC(I))Y
I

== (I - XCHX/ - X012 - C/HX/ - X013 - 0113X/
—Cap — Co3 — C,23 — Cx)y

= Ty (11)
where
Cii G2 Cus
C = C,12 CQQ C23 . (12)
Cly Cy Css
Then
Var(e) =T Var(y)T' (13)
Var(y) = Ao + Doj + Io2. (14)

REML by the EM type algorithm is quite simple to state. At each round of iteration

~

we need the same quadratics as in (29.5). Now we pretend that Var(a), Var(d), Var(e)
are represented by the mixed model result with true variance ratios employed. These are

Var(a) = Ao?— Cy.
Var(d) = Do2 — Cs;.
Var(e) = Io? - WCW'

Cay, Cs3, C are defined in (29.12).

W= (X 1ITI).

WCW’ can be written as I — T = XC1; X’ + XCys+ etc. From these “variances”
we 1terate on

52 — (AA'a+ trA"'Cy,)/n, (15)
62 = (d'D'd+ trD'Cs3) /n, (16)

and
62 = (e + trWCW') /n. (17)

This algorithm guarantees that at each round of iteration all estimates are non-negative
provided the starting values of 02/02, 02 /02 are positive.

4



3 Single or No Record on Each Animal

In this section we use the same model as in Section 29.2, except now some animals have
no record but we wish to evaluate them in the mixed model solution. Let us order the
animals by the set of animals with no record followed by the set with records.

y=XO0IO0I)| a, |+e. (18)

The subscript, m, denotes animals with no record, and the subscript, p, denotes animals
with a record. Let there be n, animals with a record and n,, animals with no record.
Then y is n, x 1, X is n, x p, the 0 submatrices are both n, x n,,, and the I submatrices
are both n, x n,. The OLS equations are

XX 0 X 0 X B° X'y
0 0 0 0 O am 0
X 01 0 I a =] ¥y (19)
0 0 0 0 O d,, 0
X 0 I 0 I d, y

The mixed model equations are formed by adding A~'0?/02 and D~'0? /03 to the appro-
priate submatrices of matrix (29.19).

We illustrate these equations with a simple example. We have 10 animals with animals
1,3,5,7 not having records. 1,2,3,4 are unrelated, non-inbred animals. The parents of 5
and 6 are 1,2. The parents of 7 and 8 are 3,4. The parents of 9 are 6,7. The parents of
10 are 5,8. This gives

1000 5 5 0 0 .25 .25
100 5 5 0 0 .25 .25

10 0 0 5 5 .25 .25

10 0 .5 5 .25 .25

15 0 0 25 5

A= 1 0 0 .5 .25
1 5 5 .25

1 .25 5

1 .25

1

D = matrix with all 1’s in diagonal,

d56 = d65 = d78 = d87 = 257

5



d9710 - dlo’g - 0625,

and all other elements = 0.
y' =16,9,6,7,4,6].

X' =(111111).
Assuming that 02 /% = 2.25 and 02 /03 = 5, the mixed model coefficient matrix with

animals ordered as in the A and D matrices is in (29.20) ...(29.22). The right hand side
vector is [38, 0, 6,0,9,0,6,0,7,4,6,0,6,0,9,0,6,0, 7,4, 6]'. The solution is

B° = 6.400,

a' = [—.203, —.256, —.141, .600, —.259, —.403, .056, .262, —.521, —.058],

and

~

d' = (0, —.024, 0, .333, 0, 0, .014, .056, —.316, —.073).
Upper left 11 x 11

6. O 1. 0 1. 0 1. 0 1. 1. 1

45 225 0 0 —2.25 =225 0 0 0 0

55 0 0 —225 —-2.25 0 0 0 0

4.5 2.25 0 0 —225 =225 0 0

5.5 0 0 —225 -2.25 0 0

5.625 0 0 1.125 0 —225 | . (20)

6.625 1.125 0 —2.25 0

5.625 0 —2.25 0

6.625 0 —2.25

5.5 0

5.5

Upper right 10 x 10 and (lower left 10 x 11)’
0101010111
0000O0OO0OO0OTO0OTO 0«
01 00O0O0OO0O0OO0OO
0000O0O0OO0OO0OTO0¢
0001O0O0O0O0OO0O
000000000 O (21)

0000O0O1O0O0TO0O
0000O0O0OO0OO0OO0OO0
0000O0O0OO0OT1TGO0® O
0000O0O0OO0OO0OT1F®
0000O0OO0OO0DO0OTU 071




Lower right 10 x 10

50 0 0 0 0 0 0 0 0 0
6.0 0 O 0 0 0 0 0 0
2.0 0 0 0 0 0 0 0
6.0 0 0 0 0 0 0
5.333 —1.333 0 0 0 0
6.333 0 0 0 0 (22)
5.333 —1.333 0 0
6.333 0 0
6.02 —.314
6.02

If we wish EM type estimation of variances we iterate on

'y - y'XB° - y'a, — y'd,)/[n — rank (X)],
(A’Ara +tr62Cu,)/n,

Q>

Q>
SECEUEN)

and ) )
(3‘3 = (d/D_ld + tr&?Cdd)/n,
for
A= (&), &),
d' =(d, d),
and n = number of animals. A g-inverse of (29.19) is
me Cxa de
C;;a Caa Cad
Cii Chy Cua

Remember that in these computations Var(e) = Io? and the equations are set up with

scaling, Var(e) =1, Var(a) = Ac?/o?, Var(d) = Do3/o?.

4 A Reduced Set of Equations

When there are several genetic components in the model, a much more efficient computing
strategy can be employed than that of Section 29.3. Let m be total genetic value of the
members of a population, and this is

m:Zgla

7



where g; is the merit for a particular type of genetic component, additive for example.
Then in a non-inbred population and ignoring linkage

Var(m) = Z Var(g;)

since
Cov(g;, g;) =0
for all 7 # 7. Then a model is

y=XB8+Z,m+e. (23)

We could, if we choose, add a term for other random components. Now mixed model
equations for BLUE and BLUP are

X'R'X X'R'Z,, B\ [ XRly (24)
Z R'X Z R'Z, +[Var(m)|™! m) \ZR'ly |’

If we are interested in BLUP of certain genetic components this is simply
g = Var(g)[Var(m)| 'm. (25)
This method is illustrated by the example of Section 29.2. Except for scaling
Var(e) =1,

Var(a) = 2257 A,
Var(d) = 5'D.

Then
Var(m) =2.25"'A+5"'D

.6444 0 0 0 .2222 .2222 0 0 .1111 .1111
.6444 0 0 .2222 .2222 0 0 .1111 .1111

.6444 0 0 0 .2222 .2222 1111 .1111

.6444 0 0 .2222 .2222 1111 .1111

.6444 2722 0 0 1111 .2222

.6444 0 0 .2222 1111

6444 2722 2222 1111

6444 1111 .2222

.6444 1236

.6444

Adding the inverse of this to the lower 10 x 10 block of the OLS equations of (29.27) we
obtain the mixed model equations. The OLS equations including animals with missing




records are

o O

_— O =

o O O O

_— o o O
S OO o oo
&

(27)

_—o OO o o
S OO OO o oo
_ o O O o oo o -
_— O O OO o oo o

_ O OO OO DD OO o
-~
E>7;>
~_—
I
DR J OO OO

The resulting solution is
it = 6.400 as before, and

m = [—.203, —.280, —.141, .933, —.259, —.402, .070, .319, —.837, —.131]".

From r and using the method of (29.25) we obtain the same solution to a4 and d as
before.

To obtain REML estimates identical to those of Section 29.4 compute the same
quantities except 62 can be computed by

o; = (¥'y —y'Xp° — y'Z,m)/[n — rank (X)].
Then & and d are computed from m as described in this section. With the scaling done
G = Ac2/o? + Doj;/o?,
Caa = (02/0)A = (02/02) AG™H(G — Cyoin) G A(07 /7).
Cai = (03/02)D = (03/02)DG ™G — Cyun) G™'D(0/7),

where a g-inverse of the reduced coefficient matrix is

Cxa: sz
Con Coum )~

In our example C,, for both the extended and the reduced equations is

4179 —.0001 .0042 .0224 2057 .1856 .0112 .0196 .0942 .1062
3651 0224  .0571 .1847 .1802 .0428 .0590 .1176 .1264

4179 —.0001 .0112 .0196 .2057 .1856 .1062 .0942

3651 .0428 .0590 .1847 .1802 .1264 .1176

4100 .1862 .0287 .0365 .1108 .2084

3653 .0365 .0618 .1953 .1305

4100 .1862 .2084 .1108

3653 1305 .1953

3859 1304

.3859




Similarly Cgq is

2 0 0 0 0 0 0 0 0 0
1786 0 .0034 .0016 .0064 O .0030 .0045 .0047

2 0 0 0 0 0 0 0

1786 .0008 .0030 0 .0064 .0047 .0045

1986 .0444 0 .0007 .0016 .0011

A778 0 .0027 .0062 .0045

2 0 0 0

1778 .0047 .0062

1778 .0136

778

C.. and Cyy have rather large rounding errors.

5 Multiple or No Records

Next consider a model with repeated records and the traditional repeatability model.
That is, all records have the same variance and all pairs of records on the same animal
have the same covariance. Ordering the animals with no records first the model is

y=[X0Z0ZZ(B:a,:a,:d,:d, t) +e. (28)

yisnx 1, Xis n x p, the null matrices are n x n,,, Z is n x n,. n is the number of records,
Ny, the number of animals with no record, and n, the number of animals with 1 or more
records. a,,, a, refer to a for animals with no records and with records respectively, and
similarly for d,, and d,. t refers to permanent environmental effects for animals with
records.

Var(d) = Do,
Var(t) = Io?,
Var(e) = Io2.

These 4 vectors are uncorrelated. The OLS equations are

X'X 0 X'Z 0 X'Z X7Z B’ X'y
0 0 0 0 0O © an, 0
ZX 0 7ZZ7Z 0 77 7'Z a, | _| 2y (20)
0 0 0 0 0 O d,, 0
ZX 0 ZZ 0 77 7% d, Z'y
ZX 0 7ZZ 0 77 7'Z " Z'y

10



The mixed model equations are formed by adding A~'0?/02, D102 /02, and 102 /0? to
appropriate blocks in (29.29).

We illustrate with the same 10 animals as in the preceding section, but now there are
multiple records as follows.

Records

Animals | 1 2 3
1 X X X
2 6 5 4
3 X X X
4 9 8 X
5 X X X
6 6 5 6
7 X X X
8 7 3 X
9 4 5 X
10 6 X X

X denotes no record. We assume that the first records have a common mean (;, the
second a common mean (5, and the third a common mean 3. It is assumed that o2 /c?
= 1.8, 02/0% = 4, = 6%/0? = 4. Then the mixed model coefficient matrix is in (29.30)
...(29.32). The right hand side vector is (38, 26, 10, 0, 15, 0, 17, 0, 17, 0, 10, 9, 6, 0, 15,
0,17,0, 17,0, 10, 9, 6, 15, 17, 17, 10, 9, 6)’. The solution is

B° = (6.398, 5.226, 5.287),
a = (—.067, —.295, —.364, .726, —.201, —.228, .048, —.051,

— 355, —.166),

d = (0, —.103, 0, .491, .019, .077, —.048, —.190, —.241,
—.051),

t = (—.103, .491, .077, —.190, —.239, —.036).

t refers to the six animals with records. BLUP of the others is O.

11



Upper left 13 x 13

(30)

1.0

1.0
1.0

1.0
1.0

1.0
1.0
1.0
—1.8
—1.8

1.0
1.0

1.0
1.0
1.0

3.6 1.8

6.0

5.0

2.0

—-1.8
—-1.8

0
0

0
0
3.6 1.8

6.6

—-1.8
—-1.8

—-1.8
—1.8

0
0

0
0

4.5

0
—1.8

5.6

—1.8
—1.8

7.5

4.5

0 —1.8

5.6

6.5

0
4.6

Upper right 13 x 16 and (lower left 16 x 13)’

010101011111 11T171

(=

mU\
S OO OO O OO oo o
— O OO OO OO o oA o
— O OO OO OO oo o
—— O O O OO MmO o oo
— O O O O NO oo o oo
— O N OO OO oo oo
O OO O OO OO oo o
— o O OO OO oo oA o
—_ o O O OO O oo Ao o
O OO OO O oo oo oo
—— O O O OO MmO o oo
S OO OO O OO oo oo
— O O O O NO O oo oo
O O O OO OO oo oo oo
—— O N OO OO oo oo
O OO O OO OO oo oo
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Lower right 16 x 16

4 00
70
4

o O O O

o O O

0
4.267

o O O

0

—1.067

7.267

OO O OO

0

4.267

O O O OO

0

—1.067

6.267

OO O OO oo

6.016

OO O oo oo

—.251
5.016

N O OO OO OO o wo

DO OO OO OO NO OO

O OO DO DODDOD OO OO oo

DO OO OO NODODODO OO OO

DO O DODDODONODOO OO o oo

GO O O OO P OO OO OO o oo

(32)

6 A Reduced Set of Equations for Multiple Records

As in Section 29.4 we can reduce the equations by now letting

where g; have the same meaning as before, and t is permanent environmental effect with
Var(t) = Io?. Then the mixed model equations are like those of (29.24) and from 1 one
can compute g; and t.

Using the same example as in Section 29.5 the OLS equations are

6

0
)

N OO
o O OO

W O = =
OO oo oo

N OO OO =

SO DD DO o oo

W ODDODDODOO - = =

DD DD DD DO OO oo
N OO OO0 O -

13

N OO OO OO OO =
_— O OO OO oo oo oo oo

251
K2
H3

38
26
10
0
15
0
17
0
17
0
10
9
6




Now with scaling Var(e) = L.
Var(m) = 1.87 A + .25D + .251

608 0 0 0 160 160 0 0 &8 &0

608 0 0 160 160 0 0 .80 80

608 0 0 0 160 160 80 80

608 0 0 160 160 80 80

1 608 196 0 0 80 160
" 576 608 0 0 160 80
608 196 160 S0

608 80 160

608 89

608

Adding the inverse of this to the lower 10 x 10 block of the OLS equations we obtain the
mixed model equations. The solution is

(jir, fia, is) = (6.398, 5.226, 5.287),
the same as before, and

m = (—.067, —.500, —.364, 1.707, —.182, —.073, .001,
— 431, —.835, —.253)".

Then
ar(a)[Var(m)]'m = same as before.

Q>
||

Q.
||

)
(d)[Var( )] "' = same as before.
ar(t)

recognizing that #; for an animal with no record is 0.

[Var(m)] 'm = same as before

To compute EM type REML iterate on
= [y'y — (soln. vector)'rhs]/[n — rank(X)].

Compute C,,, Cguq, Ci as in Section 29.4. Now, however, C;; will have dimension, 10,
rather than 6 in order that the matrix of the quadratic in t at each round of iteration will
be I. If we did not include missing ¢;, a new matrix would need to be computed at each
round of iteration.
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Chapter 30
Line Cross and Breed Cross Analyses

C. R. Henderson

1984 - Guelph

This chapter is concerned with a genetic model for line crosses, BLUP of crosses, and
estimation of variances. It is assumed that a set of unselected inbred lines is derived from
some base population. Therefore the lines are assumed to be uncorrelated.

1 Genetic Model

We make the assumption that the total genetic variance of a population can be parti-
tioned into additive + dominance + (additive x additive) 4+ (additive x dominance),
etc. Further, in a non-inbred population these different sets of effects are mutually un-
correlated, e.g., Cov (additive, dominance) = 0. The covariance among sets of effects can
be computed from the A matrix. Methods for computing A are well known. D can be
computed as described in Chapter 29.

Var(additive effects) = Ac?.
Var(dominance effects) = Do3.
Var(additive x dominance) = A#Da?,.
Var(additive x additive x dominance) = A#A#Dad?_,, etc.

aad’

# denotes the operation of taking the product of corresponding elements of 2 matrices.
Thus the 5" element of A#D is a;;d;;.

2 Covariances Between Crosses

If lines are unrelated, the progeny resulting from line crosses are non-inbred and conse-
quently the covariance matrices for the different genetic components can be computed for
the progeny. Then one can calculate BLUP for these individual animals by the method
described in Chapter 29. With animals as contrasted to plants it would seem wise to
include a maternal influence of line of dam in the model as described below. Now in order
to reduce computational labor we shall make some simplifying assumptions as follows.



1. All members of all lines have inbreeding coefficient = f.
2. The lines are large enough that two random individuals from the same line are unre-

lated except for the fact that they are members of the same line.

Consequently, the A matrix for members of the same line is

1+ f 2f

of 14 f

From this result we can calculate the covariance between any random pair of individuals
from the same cross or a random individual of one cross with a random individual of
another cross. We illustrate first with single crosses. Consider line cross, 1 x 2, line 1
being used as the sire line. Two random progeny pedigrees can be visualized as

la 1b
N\ N
pa pb
/! /!
2a 2b
Therefore
A1g,16 = 2020 = 2f.
Qpa.pb = 25<2f + 2f) = f

dpas = -25[2f(2f) +0(0)] = f2

Then the genetic covariance between 2 random members of any single cross is equal to
the genetic variance of single cross means

= fog +f2(7§ + fQO'za + fgazd + etc.

Note that if f = 1, this simplifies to the total genetic variance of individuals in the
population from which the lines were derived.

Next consider the covariance between crosses with one common parental line, say 1
X 2 with 1 x 3.

la 1b

N\ N\
Pa Do

/ /
2a 3b



As before, a14,15 = 2f, but all other relationships among parental pairs are zero. Then

Apapy = -25(2f) = .5f.
dpapp = 0

Covariance = .5fo> + .25f%02 + ... etc.

Next we consider 3 way crosses. Represent 2 random members of a 3 way cross (1 X
2) x 3 by

la 1b
N N

za zb

/ N / N\
2a pa 2b pb

/! /
3a 3b

Non-zero additive relationships are
(la,1b) = (2a,2b) = (3a,3b) =2f, and
(za,xb) = f,
(pa,pb) = 25(f+2f)=.75f,

and the dominance relationship is

(pa, pb) = .25[f(2f) + 0(0)] = .5f.
Thus the genetic variance of 3 way crosses is

3.9, 1 59 3 .3, 9 9 9
—fo,+=jflog+=fo+— [0, + ... etc.
4 f a 2 f d 8 ad 16 f aa
The covariance between a single cross and a 3 way cross depends upon the way the
crosses are made.

Fora(l x 2) x 3 with 1 x 2 is f/2,and disO.

Fora (1 x 2) x 3 with 1 x 3 is .75f, and d is .5f2.

The variance of 4 way crosses is .5 fo? + .25 f?02 + ...etc. The variance of top
crosses with an inbred line as a parent is .5 fo? + (0)o7 + etc.

If we know the magnitude of the various components of genetic variance, we can
derive the variance of any line cross or the covariance between any pair of line crosses.
Then these can be used to set up mixed model equations. One must be alert to the
possibility that some of the variance-covariance matrices of genetic components may be
singular.



3 Reciprocal Crosses Assumed Equal

This section is concerned with a model in which the cross, line ¢ X line j, is assumed the
same as the cross, line j x line 7. The model is

Yijk = X8 + Cij + €3
Var(c) has this form
Var(c;) = for+ ffoi+ flo2,+ etc.
= Cou(cy, ¢ji).

Cov(cij,ciyr) = Cov(cij, cju) = .5 for + .25 f2o2, + ... etc.

COU(Cij,Ci/j/> = 0.

We illustrate BLUP with single crosses among 4 lines with f = .6, 02 = 4, 03 = .3,
02 = 1. All other genetic covariances are ignored. 3 = p. The number of observations
per cross and g,;, are

Njj Yij.

X 5 3 2/X 6 4 7
4 X 6 3|5 X 3 8
4 2 X 516 7 X 3
2 3 9 X|5 6 4 X

X denotes no observation. The OLS equations are in (30.1). Note that a;; is combined
with a;; to form the variable a;; and similarly for d.

48 97 4861497486 14 1 235
90000 090000 0] ap 50
7000 007000 0[] as 36

400 000400 0]/ au 24

80 000080 0] ax 32

6 000006 0| an 42
1400000 14 || au | =] 51 (1)

90000 0[] do 50

7000 0[] dy 36

400 0|/ duy 24

80 0 || du 32

6 0 || do 42

14 ) \ ds 51



24 12 12 12 12 0
24 12 12 0 .12

24 0 12 12

Var(a) = , Var(d) = .108 L.

24 12 12
24 12
24

Var(a) is singular. Consequently we pre-multiply equation (30.1) by

1 0 0
0 Var(a) O
0 0 I
and add
0 0 0
01 0
0 0 [Var(d)]™*

to the resulting coefficient matrix. The solution to these equations is

i = 5.1100,
4 = (5528, —.4229, 4702, —.4702, .4229, —.5528),
d’ (—.0528, .1962, .1266, —.2965, 5769, —.5504).

Note that d = 0. Now the predicted future progeny average of the i jth and jith Cross
18 R

p+ aij + dig,
where p* is the fixed part of the model for future progeny.

If we want to predict the future progeny mean of a cross between ¢ X k or between
k x 1, where k is not in the sample, we can do this by selection index methods using a, d
as the “data” with variances and covariances applying to a+d rather than a. See Section
5.9. For example the prediction of the 1 x 5 cross is

348 12 12 12 12 0
348 12 12 0 .12
348 0 .12 .12 A

(12 .12 .12 0 0 0) s 19 19 (a+d). (2)
348 12
348

If we were interested only in prediction of crosses among the lines 1 2, 3, 4, we could
reduce the mixed model equations to solve for a + d jointly. Then there would be only 7
equations. The 6 x 6 matrix of (30.2) would be G™! to add to the lower 6 x 6 submatrix
of the least squares coefficient matrix.



4 Reciprocal Crosses With Maternal Effects

In most animal breeding models one would assume that because of maternal effects the
ij'" cross would be different from the ji*". Now the genetic model for maternal effects
involves the genetic merit with respect to maternal of the female line in a single cross.
This complicates statements of the variances and covariances contributed by different
genetic components since the lines are inbred. The statement of o2 is possible but not
the others. The contribution of o2 is

Covariance between 2 progeny of the same cross = 2fo? |

Covariance between progeny of i X j with k x j = .5f02,

where the second subscript denotes the female line. Consequently if we ignore other
components, we need only to add m; to the model with Var(m) = Is2 . We illustrate
with the same data as in Section 30.3 with Var(m) = .5 1. The OLS equations now are
in (30.3). Now we pre-multiply these equations by

<<
QL
D
S~—
O = O© O
- O© O

00 0 0
0 I 0 0
0 0 [Var(d)]™! 0
00 0 [Var(m)]™!
The resulting solution is
i = 5.1999,
a = (12988, —.2413, .3217, —.3217, .2413, —.2988),
d’ (—.1737, .2307, .1136, —.1759, .4479, —.4426),

and

m' = (.0560, .6920, —.8954, .1475).



48 9 7 4 8 6 14 9 7 4 8 6 14 10 10 18 10
90000 090000 0 4 5 0 0
7000 007000 0 4 0 3 0
400 000400 0 2 0 0 2
S0 000080 0 0 2 6 0
6 000006 0 0 3 0 3
140000014 0 0 9 5 )
90000 0 4 5 0 0 H
7000 0 4 0 3 0 3
400 0 2 0 0 2 o
S0 0 0 2 6 0
6 0 0 3 0 3
14 0 0 9 5
10 0 0 0
10 0 0
18 0
10
= (235, 50, 36, 24, 32, 42, 51, 50, 36, 24, 32, 42, 51, 54, 62, 66, 53)’. (3)

5 Single Crosses As The Maternal Parent

If single crosses are used as the maternal parent in crossing, we can utilize various compo-
nents of genetic variation with respect to maternal effects, for then the maternal parents
are non-inbred.

6 Breed Crosses

If one set of breeds is used as males and a second different set is used as females in a
breed cross, the problem is the same as for any two way fixed cross-classified design with
interaction and possible missing subclasses. If there is no missing subclass, the weighted
squares of means analysis would seem appropriate, but with small numbers of progeny
per cross, J;; may not be the optimum criterion for choosing the best cross. Rather, we
might choose to treat the interaction vector as a pseudo-random variable and proceed
to a biased estimation that might well have smaller mean squared error than the ;. If
subclasses are missing, this biased procedure enables finding a biased estimator of such
crosses.



7 Same Breeds Used As Sires And Dams

If the same breeds are used as sires and as dams and with progeny of some or all of the
pure breeds included in the design, the analysis can be more complicated. Again one
possibility is to evaluate a cross or pure line simply by the subclass mean. However,
most breeders have attempted a more complicated analysis involving, for example, the
following model for j;; the true mean of the cross between the i*" sire breed and the ;%
dam breed.

pij = p+si+di+y+pif i=j
ptsi+d;+yy it i # g

From the standpoint of ranking crosses by BLUE, this model is of no particular value,
for even with filled subclasses the rank of the coefficient matrix is only b, where b is the
number of breeds. A solution to the OLS equations is

Vij = Yij-

Thus BLUE of a breed cross is simply 7,;, provided n;; > 0. The extended model provides
no estimate of a missing cross since that is not estimable. In contrast, if one is prepared
to use biased estimation, a variety of estimates of missing crosses can be derived, and
these same biased estimators may, in fact, be better estimators of filled subclasses than
;- Let us restrict ourselves to estimators of y;; that have expectation, pu + s; + d; + p
+ linear function of v if ¢ = j, or u + s; + d; + linear function of «y if ¢ # j. Assume that
the 7;; are different from the 7;; (i # j). Accordingly, let us assume for convenience that

Ofori=1,...,b,

M-
2
<.

I

.
Il
—

0forj=1,...,b, and

.Mv
=
<.
I

s
Il
R

M-
I
o

I
—

7

Next permute all labelling of breeds and compute the average squares and products of
the 7;;. These have the following form:

Av.(vi)? = d.
Av.(yy)? = e
AV.(ii v55) = —d/(b—1).



AV.(vi k) = AV.(vi5 k) = (Zl_16)<b_2)
) = —=d/(b—1).
Av Yii ’Y]z‘) = _d/<b - 1)'
Av.(yijvii) = T
v-(yii vie) = 2d/(b—1)(b—2).
( )

Av. (%’i Yij
(

S

)

d—rb-1)
(b—1)(b—2)
(c+r)(b—1)—4d
b—1)(b—-2)(b—3)
AV.(vij k) = AV(Yij hi)-

A
Av. Yig Vki

AV-(%’j ’Ykz) =

These squares and products comprise a singular P matrix which could then be used in
pseudo-mixed model equations. This would, of course, require estimating d, ¢, r from the
data. Solving the resulting mixed model type equations,

flii = p° A4 S7+df + Y+ p°
flig = p° sy +di + %,

when i # j.

A simpler method is to pretend that the model for j;; is
pij = pt i+ dj i+ 76g),

when ¢ # 7, and
pii = p+ i +dj + Vi + p.

r has b(b—1)/2 elements and (ij) denotes ¢ < j. Thus the element of r for y;; is the same
as for pj;. Then partition « into the v;; elements and the «;; elements and pretend that
~ and r are random variables with

711 Y12
Var | 722 | = 10?2, Var | M3 | = Io3, Var(r) = Ios.

The covariances between these three vectors are all null. Then set up and solve the mixed
model equations. With proper choices of values of ¢, o3, o2 relative to b, d, ¢, r the
estimates of the breed crosses are identical to the previous method using singular P. The
latter method is easier to compute and it is also much easier to estimate o2, 03, 0% than
the parameters of P. For example, we could use Method 3 by computing appropriate

reductions and equating to their expectations.

We illustrate these two methods with a 4 breed cross. The n;; and y;;. were as follows.



Yij.

B o B Ot
l\DO"[\D[\D§
w oo w|
B 00 ~1
O O 00 O
o B W W
o J Ut N
o W o

Assume that P is the following matrix, (30.4) ... (30.6). Var(e) = I. Then we premultiply
the OLS equations by
I 0
o 7)

and add I to the last 16 diagonal coefficients.

Upper 8 x 8

1.8 —.6 —.6 -6 -6 —.6 .6 .6
448 —-194 —-194 8 -6 —-.14 -—-14
448 —-194 —-14 6 —-194 148

448 —14 6 148 —194

448 —6 —194 —-194 (4)
1.8 —.6 —.6
448 —1.94
4.48
Upper right 8 x 8 and (lower left 8 x 8)’
—.6 6 —.6 .6 —.6 .6 6 —.6

-14 -194 6 148 —-14 —-194 148 6
88 —-14 -6 —-14 =14 148 —-194 6
—-14 148 6 —-1.94 88 =14 =14 -6 (5)
-194 -14 6 148 —-194 —-14 148 6
.6 -6 —.6 .6 .6 —.6 6 —.6
—.14 88 —6 —-14 148 —-14 —-194 6
148 —-14 6 —-194 —14 88 =14 -6

Lower right 8 x 8

448 —-194 -6 —-194 —-194 148 —-14 6

448 —6 —-194 148 —-194 —-14 6
1.8 —.6 .6 .6 -6 —.6
448 —-14 —-.14 88 —.6 (6)
448 —-194 —-194 -6
448 —-194 -6
448 —.6
1.8

10



A solution to these equations is

pe =0,

s = (2.923, 1.713, 2.311, 2.329)’,
d° = (—.652, —.636, —.423, 0,
p° = .007.

4 in tabular form is
—1.035 —.754 —-1.749  3.538
898 377 —.434 —.841
1.286 —.836  1.453 —1.902
—1.149 1.214 729 —.795

The resulting fi;; are
1.243 1.533 .752 6.462
1.959 1.461 .857 .872
2945 839 3.349  .409
528 2,908 2.635 1.541

Note that these fi;; # ¥;; but are not markedly different from them. The same fi;; can be
obtained by using

Var(v,;) = —2.881,
Var(v,) = 721,
Var(r) = 2.64L

The solution to these mixed model equations is different from before, but the resulting
ft;; are identical. Ordinarily one would not accept a negative “variance”. The reason for
this in our example was a bad choice of the parameters of P. The OLS coefficient matrix
for this solution is in (30.7) ... (30.9). The right hand sides are (18, 22, 23, 22, 25, 16,
22,22, 6,3,2,7,8 3,5,6,9,4,7,3,2,6,8, 6,11, 11, 9, 9, 12, 11). u° and dj are
deleted giving a solution of 0 for them. The OLS equations for the preceding method are
the same as these except the last 6 equations and unknowns are deleted. The solution is

p =0,

s = (1.460, 1.379, 2.838, 1.058)’,

d° (—.844, .301, 1.375, 0),

p° = .007,

r’ = (.253, —.239, 1.125, —.888, .220, —.471)".
621  —.481 —1.844 3.877
1.172  —.226 —-1.009 —.727

1.191 —-1.412 —-.872 —1.958
—.810  1.328 673 ATT

This solution gives the same result for fi;; as before.

4 in tabular form =

11



Upper left 15 x 15
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Lower right 15 x 15
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The method just preceding is convenient for missing subclasses. In that case v;;
associated with n;; = 0 are included in the mixed model equations.
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Chapter 31
Maternal Effects

C. R. Henderson

1984 - Guelph

Many traits are influenced by the environment contributed by the dam. This is
particularly true for traits measured early in life and for species in which the dam nurses
the young for several weeks or months. Examples are 3 month weights of pigs, 180 day
weights of beef calves, and weaning weights of lambs. In fact, genetic merit for maternal
ability can be an important trait for which to select. This chapter is concerned with some
models for maternal effects and with BLUP of them.

1 Model For Maternal Effects

Maternal effects can be estimated only through the progeny performance of a female or the
progeny performance of a related female when direct and maternal effects are uncorrelated.
If they are correlated, maternal effects can be evaluated whenever direct can be. Because
the maternal ability is actually a phenotypic manifestation, it can be regarded as the sum
of a genetic effect and an environmental effect. The genetic effect can be partitioned at
least conceptually into additive, dominance, additive x additive, etc. components. The
environmental part can be partitioned, as is often done for lactation yield in dairy cows,
into temporary and permanent environmental effects. Some workers have suggested that
the permanent effects can be attributed in part to the maternal contribution of the dam
of the dam whose maternal effects are under consideration.

Obviously if one is to evaluate individuals for maternal abilities, estimates of the
underlying variances and covariances are needed. This is a difficult problem in part due
to much confounding between maternal and direct genetic effects. BLUP solutions are
probably quite sensitive to errors in estimates of the parameters used in the prediction
equations. We will illustrate these principles with some examples.



2 Pedigrees Used In Example

Individual
No. Sex Sire Dam Record
1 Male Unknown | Unknown 6
2 Female | Unknown | Unknown 9
3 Female 1 2 4
4 Female 1 2 7
5 Male Unknown | Unknown 8
6 Male Unknown | Unknown 3
7 Male 6 3 6
8 Male 5 4 8
This gives an A matrix as follows:
1 0 5 5 00 25 .25
1 5 5 00 .25 .25
1 500 5 .25
1 0 0 .25 D
10 0 )
1 5 0
1 .125
1

The corresponding dominance relationship matrix is a matrix with 1’s in the diagonals,
and the only non-zero off-diagonal element is that for d3, = .25.

For our first example we assume a model with both additive direct and additive
maternal effects. We assume that 02 = 1, 62 (direct) = .5, 02 (maternal) = .4, covariance
direct with maternal = .2. We assume X3 = 1u. In all of our examples we have
assumed that the permanent environmental contribution to maternal effects is negligible.
If one does not wish to make this assumption, a vector of such effects can be included.
Its variance is Iaz, and is assumed to be uncorrelated with any other variables. Then
permanent environmental effects can be predicted only for those animals with recorded
progeny. Then the incidence matrix excluding p is

0 0

el e e e
O OO OO oo
OO OO O oo
O =R O OO oo o
_ OO OO o o oo
O = OO OO oo
_ o OO oo oo
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—
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Cols. 2-9 represent a and cols 10-17 represent m. This gives the following OLS equations.
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5A 2A
G = ( 2A 4A ) '

Adding the inverse of G to the lower 16 x 16 submatrix of (31.2) gives the mixed model
equations, the solution to which is

i = 6.386,
a = (—.241, 541, —.269, .400, .658, —1.072, —.585, .709)’,
m = (.074, —.136, —.144, .184, .263, —.429, —.252, .296)".

In contrast, if covariance (a, m’) = 0, the maternal predictions of 5 and 6 are 0. With
02 =5 0% = 4,02, =0 the solution is

= 6.400,
a = (—.280, .720, —.214, 440, .659, —1.099, —.602, .742)’,
m = (.198, —.344, —.029, .081, 0, 0, —.014, .040)".

=>

Note now that 5 and 6 cannot be evaluated for m since they are males and have no female
relatives with progeny.



3 Additive And Dominance Maternal And Direct Ef-
fects

If we assume that additive and dominance affect both direct and maternal merit, the
incidence matrix of (31.1) is augmented on the right by the last 16 columns of (31.1)
giving an 8 x 33 matrix. Assume the same additive direct and maternal parameters as
before and let the dominance parameters be .3 for direct variance, .2 for maternal, and .1
for their covariance. Then

DA 2A 0 0
2A  4A 0 0
0 0 3D .1D
0 0 .1ID 2D

G =

The solution is

i = 6.405,
adirect = (—.210, 478, —.217, .350, .545, —.904, —.503, .588)',
amaternal = (.043, —.083, —.123, .156, .218, —.362, —.220, .243)’,
d direct = (—.045, .392, —.419, .049, .242, —.577, .069, .169)’,
d maternal = (—.015, —.078, —.078, .119, .081, —.192, .023, .056)".

Quadratics to compute to estimate variances and covariances by MIVQUE would be

(direct)’ A~'a(direct),
(direct)’ A~'a(maternal),
(maternal)/A’l a(maternal),
(direct) D™ 1d(durect)
(direct)’ D~ 1d(maternal)
(maternal)’ D~ 'd(maternal),

0o 00D B W

/

(‘D>

Of course the data of our example would be quite inadequate to estimate these variances
and covariances.



Chapter 32
Three Way Mixed Model
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Some of the principles of preceding chapters are illustrated in this chapter using an
unbalanced 3 way mixed model. The method used here is one of several alternatives that
appeals to me at this time. However, I would make no claims that it is “best”.

1 The Example

Suppose we have a 3 way classification with factors denoted by A, B, C. The levels of A
are random and those of B and C are fixed. Accordingly a traditional mixed model would
contain factors and interactions as follows, a, b, ¢, ab, ac, bc, abe with b, ¢, and be fixed, and
the others random. The subclass numbers are as follows.

BC(C subclasses
11 12 13 21 22 23 31 32 33
5 2 3 6 0 3 2 5 0
1 2 4 0 5 2 3 6 0
0 4 8 2 3 5 7 0 0

A
1
2
3

The associated ABC subclass means are

3 52 4 -89 2 —
5 6 7 — 8 5 2 6 —
- 984 3 75 — —

Because there are no observations on bcss, estimates and tests of b, ¢, and b X ¢ that mimic
the filled subclass case cannot be accomplished using unbiased estimators. Accordingly,
we might use some prior on squares and products of bcj, and obtain biased estimators.
Let us assume the following prior values, 02/02 = 2, 02 /02, = 3, 02 /02, = 4, 02 /pseudo

2 2 2
Ope = 67 Ue/aabc = 9.



2 Estimation And Prediction

The OLS equations that include missing observations have 63 unknowns as follows

a 1—3 ac 19 -—27
b 4-—6 bc 28 —36
c 7-9 abc 37 — 63
ab 10 — 18

W is a 20 x 63 matrix with 1’s in the following columns of the 20 rows. The other
elements are 0.

Levels of
b

@)

Cols. with 1
1,4,7,10,19,28,37
1,4,8,10,20,29,38
1,4,9,10,21,30,39
1,5,7,11,19,31,40
1,5,9,11,21,33,42
1,6,7,12,19,34,43
1,6,8,12,20,35,44
2,4.7,13,22,28.,46
2,4,8,13,23,29,47
2,4,9,13,24,30,48
2,5.,8,14,23,32,50
2,5,9,14,24,33,51
2,6,7,15,22,34.52
2,6,8,15,23,35,53
3,4,8,16,26,29,56
3,4,9,16,27,30,57
3,5,7,17,25,31,58
3,5,8,17,26,32,59
3,5,9,17,27,33,60
3,6,7,18,25,34,61

W W W W W WM DMNDNDNDNDNDN = = e e e =D
WNNDNNNNRFRP, R WWNNDNDRFRE P RFP WWNNRFE R~
— W N WRNDNREFE WN WN RN RFE WR W -

Let N be a 20 x 20 diagonal matrix with filled subclass numbers in the diagonal, that is
N = diag(5,2,...,5,7). Then the OLS coefficient matris is W NW, and the right hand
side vector is W/Ny, where y = (3 5 ... 7 5)". The right hand side vector is (107, 137,
187, 176, 150, 105, 111, 153, 167, 31, 48, 28, 45, 50, 42, 100, 52, 35, 57, 20, 30, 11, 88, 38,
43, 45, 99, 20, 58, 98, 32, 49, 69, 59, 46, 0, 15, 10, 6, 24, 0, 24, 18, 10, 0, 5, 12, 28, 0, 40,
10, 6, 36, 0, 0, 36, 64, 8, 9, 35, 35, 0, 0).

Now we add the following diagonal matrix to the coefficient matrix, (2, 2,

2,2,0,0,0,
0,0,0,3,33,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,5,5,5,5,5, 5,

2



5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5 5 5 5 5 5). A resulting mixed model solution is

a =
b —
CcC =

ab =

(—.54801, .10555, .44246)’.
(6.45206, 6.13224, 5.77884)".
(—1.64229, —.67094, 0)'.
(—1.21520, .46354, .38632, .14669, .29571, —.37204,

1.06850, —.75924, —.01428)".

ac =

02552, —.14653, .34225)".

bc =

42444, —.42444, 0)'.

abc =

(.60807, —.70385, —.17822, —.63358, .85039, —.16403,
(—.12431, .47539, —.35108, —.30013, —.05095, .35108,

(—.26516, .34587, —.80984, —.38914, 0, .66726, 1.14075,

—.90896, 0, .11598, —.38832, .36036, 0, .66901, —.49158,
— 62285, .39963, 0, 0, .61292, .02819, .02898, —.73014,
24561, —.00857, 0, 0)".

From these results the biased prediction of subclass means are in (32.1).

B,
Ch Cy Cs

By
Cy Cy Cs

Bs
Cy Cy Cs

4.420 6.971 6.550
6.222 8.234 7.982

A
113265 4.135 3.350
2
3

4.324 4.622 6.888
3.957 7.331 6.229
3.928 4.217 6.754

6.148 2.909 5.439
3.038 5.667 5.348
5.006 4.965 6.549

(1)

Note that these are different from the ;;, for filled subclasses, the latter being BLUE.
Also subclass means are predicted for those cases with no observations.

3 Tests Of Hypotheses

Suppose we wish to test the following hypotheses regarding b, c, and bc. Let

Hik = ,U"‘bj + Ck +ijk.

We test fz; are equal, [ are equal, and that all 7z, - @i, - 7, + 7 are equal. Of course
these functions are not estimable if any jk subclass is missing as is true in our example.
Consequently we must resort to biased estimation and accompanying approximate tests
based on estimated MSE rather than sampling variances. We assume that our priors are
the correct values and proceed for the first test.

. (111000 -1 —
Kﬁ_<000111—1—

0 -1 -1
1 -1 -1



where 3 is the vector of ji;;, ordered k in j in 4. From (32.1) the estimate of these functions
is (6.05893, 3.18058). To find the mean squared errors of this function we first compute
the mean squared errors of the fi;;. This is WCW' = P, where W is the matrix relating
17k subclass means to the 63 elements of our model. C is a g-inverse of the mixed model
coefficient matrix. Then the mean squared error of K'A3 is

K'PK — < 17.49718 13.13739 ) '

16.92104

Then
B K'(K'PK) 'K'3° = 2.364,
and this is distributed approximately as y? with 2 d.f. under the null hypothesis.

To test C we use

< - (!

K’'3° = (—14.78060, —6.03849)",
with
14.13424

This gives the test criterion = 13.431, distributed approximately as x? with 2 d.f. under
the null hypothesis.

MSE — ( 17.25559 10.00658 )

For B x C interaction we use

10 -100 0-1 0110 -100
K3 — 0601 -1ro0o0 0O O0-1101-100
oo o010 -1 -1 0100 010
oo o001 -1 0-1100 001
0O -1 o110-100 0-1 01
o 060 -1101-100 0 0-11 3
-1 -1 0100 O10 -1 -1 01 '
-1 0 -11 00 OO0O1 -1 0 -11
This gives

K'3° = (—.83026, 5.25381, —4.51772, .09417)’,
with
6.37074 4.31788 4.56453 3.64685
6.09614 3.77847 4.70751
6.32592 4.23108
6.31457

MSE =



The test criterion is 21.044 distributed approximately as y? with 4 d.f. under the null
hypothesis.

Note that in these examples of hypothesis testing the priors used were quite arbitrary.
The tests are of little value unless one has good prior estimates. This of course is true for
any unbalanced mixed model design.

4 REML Estimation By EM Method

We next illustrate one round of estimation of variances by the EM algorithm. We treat
o2, as a variance. The first round of estimation is obtained from the mixed model solution

of Section 32.2. For 62 we compute
[y'y — soln. vector (r.h.s. vector)]/[n — rank (X)].

y'y = 2802.
Red = 2674.47.
62 = (2802 — 2674.47) /(78 — 5) = 1.747.

28568 .10673 .10759

52 = |aa 4 tr 1.747 28645 .10683 | | /3 = .669
28558
2346
62, = |abab + tr 1.747 " /9 = .847.
26826
19027
62, = |acd'ae + tr 1.747 P /9 = .580.
18846
14138 :
62, = |b&'be + tr1.747 Do /9 = .357.
16607
16505 .
6%,. = |abé¢’abe + tr 1.747 Do /127 = .534.
20000

The solution for four rounds follows.



1 2 3 4

o |[1.747 1470 1.185 915
o2 | 169 468 330 231
o2 | 847 999 1.090 1.102
o2 | 580 632 .638 58T

ac

o2 | 357 370 362 .327
534 743 1.062 1.506

2
Oabe

It appears that 62 and 62,. may be highly confounded, and convergence will be slow. Note

that 62 + 62, does not change much.



Chapter 33
Selection When Variances are Unequal
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The mixed model equations for BLUP are well adapted to deal with variances that
differ from one subpopulation to another. These unequal variances can apply to either e
or to u or a subvector of u. For example, cows are to be selected from several herds, but
the variances differ from one herd to another. Some possibilities are the following.

1. o2, additive genetic variance, is the same in all herds but the within herd o2 differ.

a )

2. 02 is constant from one herd to another but intra-herd o2 differ.

3. Both 02 and o2 differ from herd to herd, but 02/0? is constant. That is, intra-herd h?
is the same in all herds, but the phenotypic variance is different.

I

. Both ¢? and o2 differ among herds and so does o2 /02

1 Sire Evaluation With Unequal Variances

As an example, Al sires are sometimes evaluated across herds using

Yijk = Si+hj+eij.
Var(s) = Ao?,
Var(e) = Io?,

Cov(a,e’) = 0.

h is fixed. Suppose, however, that we assume, probably correctly, that within herd o
varies from herd to herd, probably related to the level of production. Suppose also that o
is influenced by the herd. That is, in the population of sires o2 is different when sires are
used in herd 1 as compared to o2 when these same sires are used in herd 2. Suppose further
that 02/0? is the same for every herd. This may be a somewhat unrealistic assumption,
but it may be an adequate approximation. We can treat this as a multiple trait problem,
trait 1 being progeny values in herd 1, trait 2 being progeny values in herd 2, etc. For
purposes of illustration let us assume that all additive genetic correlations between pairs
of traits are 1. In that case if the true rankings of sires for herd 1 were known, then these
would be the true rankings in herd 2.

2
e
2
s



Let us order the progeny data by sire within herd. Then

Iv; 0 ... O
. O Tv, .. | |
0 ... .. Iy
where there are ¢ herds.
Awyp Awpy ... Awy
. Az.ulg At'u22 o Az'UQt |
Aw, Awy  Aw,
where v;/w;; is the same for all ¢ = 1,...,¢. Further w;; = (wiiwjj)f’. This is, of course,

an oversimplified model since it does not take into account season and year of freshening.
It would apply to a situation in which all data are from one year and season.

We illustrate this model with a small set of data.

Tij Yij

Sires |1 2 3|1 2 3
1 5 8 06 12 -
2 34 7/5 8 9
3 0 5 9- 10 12

1 5 .5

A= 1 .25

1

o2 for the 3 herds is 48, 108, 192, respectively. Var(s) for the 3 herds is

4A 6A 8A
9A 12A
16A

Note that 6 = [4(9)]®, 8 = [4(16)]®, and 12 = [9(16)]®. Accordingly G is singular and

we need to use the method described in Chapter 5 for singular G. Now the GLS coefficient

matrix for fixed sisin (33.1) ... (33.3). This corresponds to ordering (s11, Sa1, S31, S12, S22, S32, S13, S23, S:
The first subscript on s refers to sire number and the second to herd number. The right

hand side vector is (.1250, .1042, 0, .1111, .0741, .0926, 0, .0469, .0625, .2292, .2778,

1094)".

The upper diagonal element of (33.1) to (33.3) is 5/48, 5 being the number of progeny
of sire 1 in herd 1, and 48 being o2 for herd 1. The lower diagonal is 16/192. The first
element of the right hand side is 6/48, and the last is 21/192.

2



Upper left 6 x 6
diag(.10417, .06250, 0, .07407, .03704, .04630). (1)

Upper right 6 x 6 and (lower left 6 x 6)’

0 0 0 .10417 0 0
0 0 0 .06250 0 0
0 00 0 0 0 (2)
0 00 0 .07407 0
0 00 0 .03704 0
000 0 04630 0
Lower right 6 x 6
0 0 0 0 0 0
.03646 0 0 0 .03646
.04687 0 0 .04687 (3)
16667 0 0
15741 0
.08333

Now we multiply these equations by

4A 6A B8A 0

9A 12A 0
16A 0 |~

I3

and add 1 to each of the first 9 diagonal elements. Solving these equations the solution
is (-.0720, .0249, .0111, -.1080, .0373, .0166, -.1439, .0498, .0222, 1.4106, 1.8018, 1.2782)".
Note that 8;1/82 = 2/3, 8i1/8i3s = 1/2, 8i2/8;3 = 3/4. These are in the proportion
(2:3:4) which is (4:5:95:16°). Because of this relationship we can reduce the mixed model
equations to a set involving s;; and h; by premultiplying the equations by

.0 015 0 02 0 0 0 0 O
0 1. 0 015 00 2.0 0 0 O
0o 0 1. 0 0150 0 2.0 0 O (4)
0 0 0 0O 0 00 0 0 1. 0 O
0 0 O 0O 0 00 0 0 0 1.0
0 0 0 o 0 00 0 0 0 0 1

Then the resulting coefficient matrix is post-multiplied by the transpose of matrix (33.4).



This gives equation (33.5).

15.104
3.927
3.927
0.104
0.111
0.0

4.229
15.708
2.115
0.062
0.056
0.073

4.229 3.927
2.115 3.323
15.708 1.964
0.0 0.167
0.069 0.0
0.094 0.0

5.035
3.726
4.028
0.0
0.157
0.0

2417
2.794
3.247

0.0
0.0

0.083

16.766
15.104
14.122
229
278
109

The solution is (-.0720, .0249, .0111, 1.4016, 1.8018, 1.2782)". These are the same as

before.

How would one report sire predictions in a problem like this? Probably the logical
thing to do is to report them for a herd with average o . Then it should be pointed out
that sires are expected to differ more than this in herds with large o2 and to differ less in
herds with small o2, A simpler method is to set up equations at once involving only s;
or any other chosen s;; (j fixed). We illustrate with s;;. The W matrix for our example
with subclass means ordered sires in herds is

This corresponds to §;5 = 1.5 §;1, and §;3 = 2 §;1.

diag(5,3,8,4,5,7,9) [dg(48, 48,108, 108, 108, 192, 192)] !

Co oo Uto R

—
SN O Ot O+ O

0
0

—_
O ot o O

OO O OO ==
OO R R, P, OO

_—_0 O O OO

Now compute the diagonal matrix

= D.

Then the GLS coefficient matrix is W DW and the right hand side is W' Dy, where ¥ is

the subclass mean vector. This gives

2708

0
2917

0 .1042
0 .0625

2017

0

1667

A111
.0556
.0694

0

1574

0729
0937
0
0
0833

2917
.3090
2639
2292
2778
1094

Then add (4A)~" to the upper 3 x 3 submatrix of (33.6) to obtain mixed model equations.
Remember 4A is the variance of the sires in herd 1. The solution to these equation is as
before, (-.0720, .0249, .0111, 1.4106, 1.8018, 1.2782)".



2 Cow Evaluation With Unequal Variances

Next we illustrate inter-herd joint cow and sire when herd variances are unequal. We
assume a simple model
Yij = hi + a; + e;5.

h is fixed, a is additive genetic merit with

Agin Agia ... Agy

A A ... A
Var (a) _ 912 L.QQQ TQZt

Agiy Agy Agy

A is the numerator relationship for all animals. There are t herds, and we treat production
as a different trait in each herd. We assume genetic correlations of 1. Therefore g;; =
(9:194;)°-
Iv, 0
I’UQ

Var(e) =
0 Ivt

First we assume o2/0? is the same for all herds. Therefore g;;/v; is the same for all herds.

As an example suppose that we have 2 herds with cows 2, 3 making records in herd
1 and cows 4, 5 making records in herd 2. These animals are out of unrelated dams, and
the sire of 2 and 4 is 1. The records are 3, 2, 5, 6.

1 .5
1

A_:

T = e

N .
_ o Ot
_o o oo

Ordering the data by cow number and the unknowns by hq, ho, a in herd 1, a in herd 2
the incidence matrix is

100100O0O0O0O0GO0®O
10001O0O0O0O0O0O0®O
01 0000O0OO0OO0OO0OT1Q0
01 000O0O0O0OO0O0®O0T1

Suppose that

1A SA
G:(SA 16A>’ R

121 0
0 481 | °



Then 02/0? = 3 in each herd, implying that h? = .25. Note that G is singular so the
method for singular G is used. With these parameters the mixed model solution is

~

h = (2.508, 5.468).
Ainherd 1 = (.030, .110, —.127, —.035, .066).
ainherd2 = (.061, .221, —.254, —.069, .133).

Note that @; in herd 2 = 2 @; in herd 1 corresponding to (16/4)° = 2.

A simpler method is to use an incidence matrix as follows.

1 001000
1000100
0100020
010000 2

This corresponds to unknowns hi, hs, a in herd 1. Now G = 4A and R is the same as
before. The resulting solution is the same as before for h and a in herd 1. Then a in herd
2 is 2 times a in herd 1.

Now suppose that G is the same as before but 02 = 12,24 respectively. Then h? is
higher in herd 2 than in herd 1. This leads again to the a in herd 2 being twice a in herd
1, but the a for cows making records in herd 2 are relatively more variable, and if we were
selecting a single cow, say for planned mating, the chance that she would come from herd
2 is increased. The actual solution in this example is

~

h = (2513, 5.468).
ainherd 1 = (011, .102, —.128, —.074, .106).

ain herd 2 = twice those in herd 1.

The only reason we can compare cows in different herds is the use of sires across herds.

A problem with the methods of this chapter is that the individual intra-herd variances
must be estimated with limited data. It would seem, therefore, that it might be advis-
able to take as the estimate for an individual herd, the estimate coming from that herd
regressed toward the mean of variances of all herds, the amount of regression depending
upon the number of observations. This would imply, perhaps properly, that intra- herd
variances are a sample of some population of variances. I have not derived a method
comparable to BLUP for this case.
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