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1 Foreword by AL (it only engages him)
This is an incomplete attempt to write a comprehensive review of principles for genomic predictions.
The framework is proudly parametric and tries to follow classical quantitative genetics and
statistical theory as much as possible. It is incomplete: the wealth of papers being generated
makes impossible to follow all the literature. I express my apologies for the resulting self-centered
bias.

My own knowledge on the topic owes much to dozens of colleagues with whom I have much
worked and discussed. I explicitly thank Ignacy Misztal, Ignacio Aguilar, and all my collaborators
for so much joint work and discussion. Financing for these notes was possible by the INRA
metaprogram SelGen. They were written in May 2014, during a visit to the University of Georgia
(UGA), kindly hosted by Ignacy Misztal; during this visit we taught a course whose material
(slides, exercises, and these notes) can be found at http://nce.ads.uga.edu/wiki . Updated versions
of these notes can be found at http://genoweb.toulouse.inra.fr/~alegarra. I thank Guillermo
Martinez-Boggio, Llibertat Tusell and Paul VanRaden for corrections and comments.

I deeply thank all those people that have produced and made available notes and courses, which
have been so useful for me during the years.

Yo no te buscaba y te vi.

September 2014. A large number of mistakes and typos have been corrected.

February 2, 2015. More corrections and few suggestions by Llibertat Tusell and Paul VanRaden.

May 13 2016. Corrected error in the Bayesian example (thanks Jesús Piedrafita).

Oct 4 2016. Added posterior variance of marker effects from GBLUP.

August 2017. Added backsolving of GBLUP to SNPBLUP when there is tuning of G

November 2017. Slight correction on same topic

April 2018. Large additions for UGA course.

May 2022. Few typos, plus addition of Method LR, Reliabilities using SNP effects from
(ss)GBLUP.

The cover is a drawing of BlackBelly Sheep in Barbados made by José Javier Legarra. Gracias
Tebe !
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2 Main notation
X,b Incidence matrix of fixed effects and fixed effects

a Marker effects

u Polygenic or additive genetic effects

σ2
ai, Variance of the marker effect ai
σ2
a0 Variance of marker effects if all had the same variance

σ2
u Genetic variance

σ2
e Residual variance$

G Genomic relationship matrix

pi Allele frequency at marker i

A Pedigree-based relationship matrix

3 A little bit of history
Based on Lourenco et al., 2017, BIF Conference.

Long before genomics found its way into livestock breeding, most of the excitement pertaining
to research into livestock improvement via selection involved developments in the BLUP mixed
model equations, methods to construct the inverse of the pedigree relationship matrix recursively
(Henderson 1976; Quaas 1976), parameter estimation and development of new, measurable traits
of economic importance. In particular for several decades (1970’s through the early 2000’s), lots
of resources were invested in finding the most useful evaluation model for various traits. Since the
1970’s, the use of pedigree and phenotypic information has been the major contributing factor to
the large amount of genetic progress in the livestock industry.

During the late 1970’s and early 1980’s, geneticists developed techniques that allowed the
investigation of DNA, and they discovered several polymorphic markers in the genome. Soller and
Beckmann (1983) described the possible uses of new discovered polymorphisms, and surprisingly,
their vision of using markers was not much different than how DNA is used today in the genetic
improvement of livestock. They hypothesized that markers would be beneficial in constructing
more precise genetic relationships, followed by parentage determination, and the identification of
quantitative trait loci (QTL). The high cost of genotyping animals for such markers probably
prevented the early widespread use of this technology. However, valuable information came along
with the first draft of the Human genome project in 2001 (Group 2001) : the majority of the
genome sequence variation can be attributed to single nucleotide polymorphisms (SNP).

After all, what are SNPs? The genome is composed of 4 different nucleotides (A, C, T, and
G). If you compare the DNA sequence from 2 individuals, there may be some positions were
the nucleotides differ. The reality is that SNPs have become the bread-and-butter of DNA
sequence variation (Stoneking 2001) and they are now an important tool to determine the genetic
potential of livestock. Even though several other types of DNA markers have been discovered
(e.g., microsatellites, RFLP, AFLP) SNPs have become the main marker used to detect variation
in the DNA. Why is this so? An important reason is that SNPs are abundant, as they are found
throughout the entire genome (Schork, Fallin, and Lanchbury 2000). There are about 3 billion
nucleotides in the bovine genome, and there are over 30 million SNPs or 1 every 100 nucleotides
is a SNP. Another reason is the location in the DNA: they are found in introns, exons, promoters,
enhancers, or intergenic regions. In addition, SNPs are now cheap and easy to genotype in an
automated, high-throughput manner because they are binary.

One of the benefits of marker genotyping is the detection of genes that affect traits of importance.
The main idea of using SNPs in this task is that a SNP found to be associated with a trait
phenotype is a proxy for a nearby gene or causative variant (i.e., a SNP that directly affects the
trait). As many SNPs are present in the genome, the likelihood of having at least 1 SNP linked
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to a causative variant greatly increases, augmenting the chance of finding genes that actually
contribute to genetic variation for the trait. This fact contributed to much initial excitement as
labs and companies sought to develop genetic tests or profiles of DNA that were associated with
genetic differences between animals for important traits. Suddenly, marker assisted selection
(MAS) became popular. The promise of MAS was that since the test or the profile appeared to
contain genes that directly affect the trait, then potentially great genetic improvement could be
realized with the selection of parents that had the desired marker profile. It is not hard to see
this would work very well for traits affected by one or a couple of genes. In fact, several genes
were identified in cattle, including the myostatin gene located on chromosome 2. When 2 copies
of the loss-of-function mutation are present, the excessive muscle hypertrophy is observed in some
breeds, including Belgian Blue, Charolais, and Piedmontese (Andersson 2001). Another example
of that has been shown to have a small, but appreciable effect on beef tenderness pertains to the
Calpain and Calpastatin (Page et al. 2002) and a genetic test was commercialized by Neogen
Genomics (GeneSeek, Lincoln, NE) and Zoetis (Kalamazoo, MI). It is important to notice that
all those achievements were based on few SNPs or microsatellites because of still high genotyping
costs.

Although there were a few applications in cattle breeding, MAS based on a few markers was
not contributing appreciably to livestock improvement simply because most of the traits of
interest are quantitative and complex, meaning phenotypes are determined by thousands of genes
with small effects and influenced by environmental factors. This goes back to the infinitesimal
model assumed by Fisher (1918), where phenotypic variation is backed up by a large number of
Mendelian factors with additive effects. Some lessons were certainly learned from the initial stab
at MAS: some important genes or gene regions (quantitative trait loci or QTL) were detected;
however, the same QTL were not always observed in replicated studies or in other populations,
meaning most of them had small effects on the traits (Meuwissen, Hayes, and Goddard 2016).
In addition, the number of QTL associated with a phenotype is rather subjective and depends
on the threshold size of the effect used for identifying QTL (Andersson 2001). Simply put, it
appears there are only a few genes that contribute more than 1% of the genetic variation observed
between animals for any given polygenic trait.

Initial allure of MAS led to a massive redirecting of grant funds to this type of research, greatly
contributing to the current shortage of qualified quantitative geneticists in animal breeding
(Misztal n.d.). Despite some of the initial setbacks using MAS, in 2001, some researchers
envisioned that genomic information could still help animal breeders to generate more accurate
breeding values, if a dense SNP assay that covers the entire genome became available. Extending
the idea of incorporating marker information into BLUP (using genotypes, phenotypes and
pedigree information), introduced by(Fernando and Grossman 1989), Meuwissen et al. (2001)
proposed some methods for what is now termed genome-wide selection or genomic selection (GS).
This paper used simulation data to show that accuracy of selection was doubled using genomic
selection compared to using only phenotypes and pedigree information. With the promise of large
accuracy gains, this paper generated enormous excitement in the scientific community. Some
conclusions from this study included: 1) using SNP information can help to increase genetic gain
and to reduce the generation interval; 2) the biggest advantage of genomic selection would be
for traits with low heritability; 3) animals can be selected early in life prior to performance or
progeny testing. With all of this potential, genomic selection was an easy sell.

However, it took about 8 years from the publication of the Meuwissen et al. (2001) paper until
the dense SNP assay required for genomic selection became available for cattle. Researchers
from USDA, Illumina, University of Missouri, University of Maryland, and University of Alberta
developed a SNP genotyping assay, allowing the genotyping of 54,001 SNP in the bovine genome
(Illumina Bovine50k v1; Illumina, San Diego, CA). The initial idea of this research was to use
the SNP assay or chip for mapping disease genes and QTLs linked to various traits in cattle
(Matukumalli et al. 2009). In 2009, a report about the first bovine genome entirely sequenced
(Consortium et al. 2009) was published as an output of a project that cost over $50 million and
involved about 300 researchers. With the cattle sequence known, it was possible to estimate
the number of genes in the bovine genome: somewhere around 22,000. Armed with the tools to
generate genomic information, GS became a reality.
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Among all livestock industries in USA, the dairy industry was the first to use genomic selection.
More than 30,000 Holstein cattle had been genotyped for more than 40k SNP by the end of
2009 (https://www.uscdcb.com/Genotype/cur_density.html). In January of 2009, researchers
from AGIL-USDA released the first official genomic evaluation for Holstein and Jersey. Still
in 2009, Angus Genetics Inc. started to run genomic evaluations, but with substantially fewer
genotypes, which was also true for other livestock species. After the first validation exercises, the
real gains in accuracy were far less than those promised in (Meuwissen, Hayes, and Goddard
2001). This brought some uncertainties about the usefulness of GS that were later calmed by
understanding that more animals should be genotyped to reap the full benefits of GS. VanRaden
et al. (2009) showed an increase in accuracy of 20 points when using 3,576 genotyped bulls,
opposed to 6 points when using 1,151 bulls. Now, in 2017, Holstein USA has almost 1.9 million
and the American Angus Association has more than 400,000 genotyped animals.

When GS was first implemented for dairy breeding purposes, all the excitement was around one
specific Holstein bull nicknamed Freddie (Badger-Bluff Fanny Freddie), which had no daughters
with milking records in 2009 but was found to be the best young genotyped bull in the world
(VanRaden, personal communication). In 2012 when his daughters started producing milk, his
superiority was finally confirmed. Freddie’s story is an example of what can be achieved with GS,
as an animal with high genetic merit was identified earlier in life with greater accuracy. With
the release of genomic estimated breeding values (GEBV), the race to genotype more animals
started.

The availability of more genotyped cattle drove the development of new methods to incorporate
genomic information into national cattle evaluations. The first method was called multistep, and
as the name implied, this method required multiple analyses to have the final GEBVs. Distinct
training and validation populations were needed to develop molecular breeding values (MBV) or
direct genomic values (DGV), which were blended with traditional EBVs or included as correlated
traits (Kachman et al. 2013). This multistep model was the first one to be implemented for
genomic selection in the USA. Several studies examining the application of multistep in beef cattle
evaluation have been published (Saatchi et al. 2011 ; Snelling et al. 2011). The main advantage
of this approach is that the traditional BLUP evaluation is kept unchanged and genomic selection
can be carried out by using additional analyses. However, this method has some disadvantages:
a) MBV are only generated for simple models (i.e., single trait, non-maternal models), which
is not the reality of genetic evaluations; b) it requires pseudo-phenotypes (EBVs adjusted for
parent average and accuracy); c) pseudo-phenotypes rely on accuracy obtained via approximated
algorithms, which may generate low quality output; d) only genotyped animals are included
in the model; e) MBV may contain part of parent average, which leads to double counting of
information.

As only a fraction of livestock are genotyped, Misztal et al. (Misztal, Legarra, and Aguilar 2009)
proposed a method that combines phenotypes, pedigree, and genotypes in a single evaluation. This
method is called single-step genomic BLUP (ssGBLUP) and involves altering the relationships
between animals based on the similarity of their genotypes. As an example, full-sibs have an
average of 50% of their DNA in common, but in practice this may range from 20% to 70% (D.
A. Lourenco et al. 2015). The ssGBLUP has some advantages over multistep methods. It can
be used with multi-trait and maternal effect models, it avoids double counting of phenotypic
and pedigree information, it ensures proper weighting of all sources of information, and it can
be used with both small and large populations and with any amount of genotyped animals.
Overall, greater accuracies and less inflation can be expected when using ssGBLUP compared to
multistep methods. Not long after the implementation of GS, single-step was first applied to a
dairy population with more than 6,000 genotyped animals (Aguilar et al. 2010 ; Christensen and
Lund 2010).

An early application of ssGBLUP in beef cattle used simulated data with 1500 genotyped animals
in an evaluation for weaning weight with direct and maternal effects (Lourenco et al. 2013).
Although a small number of genotyped animals was used, gains in accuracy were observed for
both direct and maternal weaning weight. Next ssGBLUP was applied to a real breed association
data set (D. a. L. Lourenco et al. 2015). This study showed a comprehensive genomic evaluation
for nearly 52,000 genotyped Angus cattle, with a considerable gain in accuracy in predicting
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future performance for young genotyped animals. This gain was on average 4.5 points greater
than the traditional evaluations.

4 Quick look at SNP Data
The most abundant polymorphisms at the DNA level are SNPs: Single Nucleotide Polymorphisms.
By the art of biochemistry and the joint effort of industry and academia, it is now possible to
massively (many of them), accurately (the genotype read is the actual genotype) and economically
(the cost is relatively low) read the same set of SNPs across several individuals; the technology
is commonly called SNP chips or SNP genotyping. For more information, you may read, for
instance, https://www.illumina.com/techniques/popular-applications/genotyping.html .

Triallelic SNPs exist in nature but they are not used for SNP chips. Thus, the possible alleles for
SNP loci are all pairwise combinations among (A,C,G,T): A/C, A/G, A/T, C/G, C/T, G/T.

4.1 From crude SNP file to usable genotype file
I (A.L.) do not have much, but I have some, experience in dealing with crude SNP data. These
are, for practical purposes such as national genomic evaluations, handled by experienced teams
and read, stored in databases; for instance, description of such a process is in (Wiggans et
al. 2010; Groeneveld and Lichtenberg 2016). However, it is good to be exposed to the crude
output of genotyping. This is an excerpt from some real analysis; the name of this file was
..._Custom-FinalReport.txt:
[Header]
GSGT Version 1.9.4
Processing Date 3/16/2012 9:11 AM
Content OvineSNP50_B.bpm
Num SNPs 54241
Total SNPs 54241
Num Samples 36
Total Samples 36
[Data]
Sample ID Sample Name SNP Name Allele1 - Top Allele2 - Top GC Score
ES140000270478 PLACA_CIC_12_96 250506CS3900065000002_1238.1 G G 0.8932
ES140000270478 PLACA_CIC_12_96 250506CS3900140500001_312.1 A G 0.7341
ES140000270478 PLACA_CIC_12_96 250506CS3900176800001_906.1 A G 0.7532
ES140000270478 PLACA_CIC_12_96 250506CS3900211600001_1041.1 A A 0.9674
ES140000270478 PLACA_CIC_12_96 250506CS3900218700001_1294.1 G G 0.8178
ES140000270478 PLACA_CIC_12_96 250506CS3900283200001_442.1 C C 0.6684
ES140000270478 PLACA_CIC_12_96 250506CS3900371000001_1255.1 G G 0.4565
ES140000270478 PLACA_CIC_12_96 250506CS3900386000001_696.1 A A 0.4258
ES140000270478 PLACA_CIC_12_96 250506CS3900414400001_1178.1 G G 0.8690
ES140000270478 PLACA_CIC_12_96 250506CS3900435700001_1658.1 A A 0.5153
ES140000270478 PLACA_CIC_12_96 250506CS3900464100001_519.1 A G 0.8116
ES140000270478 PLACA_CIC_12_96 250506CS3900487100001_1521.1 A G 0.7448
ES140000270478 PLACA_CIC_12_96 250506CS3900539000001_471.1 G G 0.5248
ES140000270478 PLACA_CIC_12_96 250506CS3901012300001_913.1 A A 0.7413
ES140000270478 PLACA_CIC_12_96 250506CS3901300500001_1084.1 G G 0.7990
ES140000270478 PLACA_CIC_12_96 CL635241_413.1 A A 0.8176
ES140000270478 PLACA_CIC_12_96 CL635750_128.1 A G 0.7978
ES140000270478 PLACA_CIC_12_96 CL635944_160.1 A G 0.7283

This data contains genotypes for one animal: ES140000270478 for the SNPs that are listed in SNP
Name. The columns Allele1 and Allele2 contain the readings in nucleotide form (Adenine, Guanine,
Citosine and Thymine – A,G,C,T). For instance in SNP Name 250506CS3900065000002\_1238.1,
this animal is homozygous G/G, but for CL635750\_128.1 . the animal is heterozygote A/G.
The Allele1/ Allele2 notation is, for our purposes, arbitrary: we do not know which one came
from the sire and which one came from the dam.

Now, you can see that the same animal ES140000270478 is repeated over and over; there is one
line per marker. The file is constituted by a header, and one line per individual and per marker.
At some point we arrive to the next animal:

ES140000270478 PLACA_CIC_12_96 s76040.1 G G 0.6173
ES140000270478 PLACA_CIC_12_96 s76043.1 A A 0.7965
ES150010016299 PLACA_CIC_10_02 250506CS3900065000002\_1238.1 G G 0.8932
ES150010016299 PLACA_CIC_10_02 250506CS3900140500001\_312.1 A G 0.7341
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ES150010016299 PLACA_CIC_10_02 250506CS3900176800001\_906.1 A G 0.7668

And so on. There is thus a lot of redundancy here.

Another type of files has the final_report format with

[Header]
GSGT Version 1.9.4
Processing Date 01/01/2018 10:11 AM
Content BovineSNP50_v2_C.bpm
Num SNPs 54609
Total SNPs 54609
Num Samples 1
Total Samples 1
[Data]
SNP Name Sample ID Allele1 - Forward Allele2 - Forward Allele1 - Top Allele2 - Top Allele1 - AB Allele2 - AB GC Score X Y
ARS-BFGL-BAC-10172 USA201811 G G G G B B 0.9506 0.012 1.036
ARS-BFGL-BAC-1020 USA201811 G G G G B B 0.9673 0.005 0.652
ARS-BFGL-BAC-10245 USA201811 C C G G B B 0.7579 0.092 1.417
ARS-BFGL-BAC-10345 USA201811 A A A A A A 0.9276 1.143 0.008
ARS-BFGL-BAC-10365 USA201811 G G C C B B 0.5335 0.004 0.862
ARS-BFGL-BAC-10375 USA201811 A G A G A B 0.9567 0.478 0.581
ARS-BFGL-BAC-10591 USA201811 A G A G A B 0.9003 0.386 0.473
ARS-BFGL-BAC-10867 USA201811 G G C C A A 0.9434 0.776 0.004
ARS-BFGL-BAC-10919 USA201811 A A A A A A 0.8526 1.232 0.036
ARS-BFGL-BAC-10951 USA201811 T T A A A A 0.5140 0.539 0.017
ARS-BFGL-BAC-10952 USA201811 A A A A A A 0.9512 0.987 0.030
ARS-BFGL-BAC-10960 USA201811 G G G G B B 0.9528 0.018 0.826
ARS-BFGL-BAC-10972 USA201811 G C C G A B 0.8759 0.917 0.743
ARS-BFGL-BAC-10975 USA201811 A G A G A B 0.8142 0.979 0.739
ARS-BFGL-BAC-10986 USA201811 G G C C B B 0.9309 0.055 0.731
ARS-BFGL-BAC-10993 USA201811 C C G G B B 0.9014 0.023 1.094
ARS-BFGL-BAC-11000 USA201811 T T A A A A 0.9686 0.561 0.013
ARS-BFGL-BAC-11003 USA201811 T T A A A A 0.9215 1.171 0.040
ARS-BFGL-BAC-11007 USA201811 T C A G A B 0.9454 0.884 0.675
ARS-BFGL-BAC-11025 USA201811 G G C C B B 0.9082 0.015 0.740
ARS-BFGL-BAC-11028 USA201811 A G A G A B 0.9678 0.182 0.288
ARS-BFGL-BAC-11034 USA201811 T C A G A B 0.9509 0.566 0.592
ARS-BFGL-BAC-11039 USA201811 C C G G B B 0.9658 0.000 0.889
ARS-BFGL-BAC-11042 USA201811 A G A G A B 0.8506 0.947 0.786
ARS-BFGL-BAC-11044 USA201811 T C A G A B 0.9654 0.726 0.689
ARS-BFGL-BAC-11047 USA201811 T T A A A A 0.9465 0.973 0.015

This format is apparently more confusing but it is explained here: https://www.illumina.com/d
ocuments/products/technotes/technote_topbot.pdf . In short, what we need to look at is the
A/B ’s in the columns. For one marker, A and B may “mean” A and T whereas in another locus
they may “mean” T and A. However, the A/B notation is less ambiguous (or more accurate)
than the A/C/G/T due to the way the chemistry works. Note that the “A” in the A/C/G/T
system is not the same as the “A” in the A/B system.

Anyway, there is a need to gather this information into a more condensed format. This format is
usually comprised of:

• A map file with the names of all markers and (if possible) its position (chromosomes,
physical location in basepairs). The names of all markers can be found in the file that we
just saw, whereas the locations in the genome can be found in the web pages of consortia
such as, in sheep, http://www.sheephapmap.org . Or from a close collaborator.

• The genotype file with the actual nucleotides typically has, in animal breeding, one line by
animal and two columns per SNP marker. It looks like this (6 markers):
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ES1400NAB40571 G G G G A A A C . . A G
ES1400NAB40573 G G G G G G A C G G A G
ES1400NAB40574 A G G G A G A C G G A A
ES1400NAB40159 G G G G A G A C G G A A
ES1400NAB40528 A G A G A G C C A G A A
ES1500VI492705 G G A G G G A C G G A G
ES1500SSA40533 A G G G A G C C G G A A

The . . implies that there is no lecture for this marker and individual: this is a missing
genotype. SNP chips have few missing genotypes, but other technologies like GBS (Genotyping
By Sequence) have very large amounts of missing genotypes. Imputation “fills in” those gaps; it
will be mentioned later. Or, it could be (just making it up)

ES1400NAB40571 B B A A B B A B . . A A
...

We can compact it even further, noting that (1) SNPs are biallelic (2) the paternal/maternal
origin is unknown and (3) you can represent as an integer which represents the number of copies
(gene content: these wording will be used over and over) of a reference allele of the two that are
polymorphic at one SNP marker. This is also known as allele coding. For most practical purposes,
which one is the reference allele is irrelevant. For instance, assume that for ES1400NAB40571
the reference allele is B in all markers. So these are the integer codes:

ES1400NAB40571 2 0 2 1 5 0

Or, in a more compact way (this is what in these notes we call in these notes the “UGA format”),

ES1400NAB40571 202150

It can be seen that the correspondences are:

code genotype
0 AA
1 AB or BA
2 BB
5 missing

The reference allele can vary across loci. For instance, consider the same animal

ES1400NAB40571 G G G G A A A C . . A G

And consider that the reference alleles for each of the 6 markers are (G,G,A,C,G,A). Using these
reference alleles would give

ES1400NAB4057 222151

Which is different from the coding above. Actually, the table of correspondences would be:

Code Marker 1 Marker 2 Marker 3 Marker 4 Marker 5 Marker 6
0 AA AA GG CC AA GG
1 AG or GA AG or GA AG or GA AC or CA AG or GA AG or GA
2 GG GG AA AA GG AA
5 missing missing missing missing missing missing

Note that here we put “Marker 1”, “Marker 2”, etc, but actually the names are more complex,
for instance,

250506CS3900539000001_471.
250506CS3901012300001_913.1
250506CS3901300500001_1084.1
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CL635241_413.1
CL635750_128.1
CL635944_160.1

for this reason, it is essential to keep track of the names of the markers that we use.

For most purposes the coding is irrelevant, but it needs to be coherent for every batch of new
animals. This is why it is mandatory to, either to stick to one of the alleles (say the B) in
Illumina’s A/B system, or (better) to store the whole data base with readings in the formats
A/C/G/T and A/B. It is also mandatory to keep track of the names of the SNP markers in the
files. Joining files with integers and no associated file with SNP names is dangerous.

There is software available to convert from the long format of Illumina output to the compact
format. One example is illumina2preGS Alternatively, a self-written script or software can be
used.

Note that the Plink format is different from the UGA format described here, but there are
converters between formats, or you may program your own.

4.2 Basic checking of marker information
A cool feature of the integer format is that somethings are very easy to get and compute.

4.2.1 Call rates

The call rate is the number of observed genotypes:

• per animal: of the, say, 54K markers in the chip, 50K have been genotyped for a particular
animal, the “call rate animal” is 50K/54K=93%

• per marker: of the, say, 900 animals genotyped for marker CL635944_160.1, how many
have actually been successfully read? Assume that 600 have been read, then the “call rate
marker” is 600/900 = 67%

Measuring call rate reduces to “count” the number of missing (either “. .” or “5”) in the genotype
file per row or per column. Animals that have low call rate (i.e. too many markers not genotyped)
are eliminated. This is often due to bad conservation of the DNA. Markers that have low call
rate (i.e. they have not been read for many animals) are also eliminated. Typically, this is due to
poor biochemistry.

Typical thresholds for quality control of call rates are 90% or 95%. Below this level, either the
marker or the individual is discarded.

4.2.2 Allele frequencies and Minor Allele Frequencies (MAF)

The allele frequency p is simply the frequency of the reference allele. For instance, consider

ES1400NAB40571 G G
ES1400NAB40573 G G
ES1400NAB40574 A G
ES1400NAB40159 G G
ES1400NAB40528 A G
ES1500VI492705 G G
ES1500SSA40533 A A

If the reference allele is G, we have 10G against 4A: p = 10
14 ≈ 0.71, and the frequence of allele A

is q = 1− p ≈ 0.29. The funny thing is, that this is very easy to compute looking at the UGA
format:

ES1400NAB40571 2
ES1400NAB40573 2
ES1400NAB40574 1
ES1400NAB40159 2
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ES1400NAB40528 1
ES1500VI492705 2
ES1500SSA40533 0

From this format, we have (quite obviously) 2 “G”s for each “2”, 1 “G” for each “1” and 0 “G”s
for each 0. So, quite obviously, and skipping the columns with missing information:

p = sum of the column
2× number of lines

For instance, this awk script computes allele frequencies:

#!/bin/awk -f
#
# This script computes allele frequencies from marker file with UGA format
# AA=0, aa=2, Aa=1, aA=1, no missing genotypes)
#
BEGIN{ }
{

nsnp=length($2)
split($2,aux,"")

for (i=1; i<=nsnp; i++){ cnt[i]=cnt[i]+aux[i] }
}
END {

for(i=1; i<=nsnp; i++){print(cnt[i]/(2*(NR))) }
}

The Minor Allele Frequency (MAF) is the lowest of the two allele frequencies: p and q = 1− p
; in Fortran terms, maf=maxval((/p,q/)) . It is used as a measure of the informativity of the
marker. A marker that has p = 1 is said to be monomorphic and does not give much information,
as all individuals are identical for this marker. Therefore, we may ignore it. But accordingly,
we may ignore markers for which almost all individuals have the same genotype; for instance, if
p = 0.9999. Where do we put the limit? A rule of thumb for genomic prediction with SNP chips
is to remove markers with MAF<5%, or MAF<1%. In practice, this does not change much the
results for prediction. But if the objective is to investigate rare variants, then we should not edit
markers by MAF.

4.2.3 Hardy-Weinberg equilibrium

In an unselected population, the distribution of genotypes is expected to follow Hardy-Weinberg
proportions. In practice, most populations are selected, so Hardy-Weinberg equilibrium (HWE)
does not always hold. We can check proportions of observed and expected counts of genotypes.
If n is the total number of animals and n0, n1, n2 are the counts of each genotype:

Genotype 0 1 2
Observed n0 n1 n2
Expected nq2 n2pq np2

From this table, it is possible to make a statistical test to test the hypothesis that the data is
under HWE. The statistic is

χ2 =
∑
0:2

(Observedi − Expectedi)2

Expectedi

where Expected(0 : 2) = n
(
q2, 2pq, p2). Another way of getting the same statistic directly from

the counts (Emigh 1980):
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χ2 = 16n

(
n0n2 − n2

1
4

)2

(2n0 + n1)2 (n1 + 2n2)2

This statistic follows a χ2 distribution with 1 degree of freedom (Emigh 1980). For instance, in
the above example with 7 animals:

χ2 =
(
1− 7× 0.292)2

7× 0.292 + (2− 7× 2× 0.29× 0.71)2

7× 2× 0.29× 0.71 +
(
4− 7× 0.712)2

7× 0.712 = 0.63

Which has a non-significant p-value of 0.43 using, in R:

pchisq(0.63,1,0,lower.tail=FALSE)

You must be very careful if you use HWE statistic to do quality control. In practice, HWE
approximately holds but it never holds exactly. For this reason, with large data sets, the hypothesis
is rejected. In practice, a more sensible approach is to reject the marker if the number of observed
heterozygotes deviates to much from the expectation. In other words, one marker may be rejected
if ∣∣∣n1

n
− 2pq

∣∣∣ > t

For some threshold t. The value used by default in the BLUPF90 suite of programs is 0.15
following (Wiggans et al. 2009).

4.2.4 Genotypic frequencies in crosses

HWE does not hold in crosses, for instance in F1 crosses, so it should not be checked. We can
however present what should be the genotypic frequencies in F1 crosses. If alleles frequencies in
breed A and breed B are pA and pB, then the Expected(0 : 2) = n (qAqB , pAqB + pBqA, pApB).
This may be useful to check your data.

4.2.5 Sex chromosomes and unmapped markers

The sex chromosomes (X and Y in mammals, Z and W in birds) present some complexities for
genomic analysis. Females in mammals carry two alleles at sex chromosomes, but males carry two
alleles only in the pseudo-autosomal part (chromosome Y and its counterpart in X). Therefore,
these chromosomes are almost systematically eliminated from the analysis. Literature presents
methods to deal with sex-linked inheritance, both in the classical pedigree way (Fernando and
Grossman 1990) and in the genomic way (Su et al. 2014).

Maps (physical situation of markers in chromosomes) are typically constructed by consortia
(e.g. http://bovinegenome.org , http://www.sheephapmap.org ). It happens that markers
may be genotyped but the exact situation is unknown and these are markers are assigned to
“chromosome 0”. These markers are typically discarded – they are very few and not knowing the
position makes some analysis difficult.

4.2.6 Mendelian conflicts and assigning parents

Some genotypes might be incompatible with the declared pedigree. The most typical cases are
(1) conflicting genotypes one parent and offspring: a father “AA” can not sire an offspring “aa”,
and (2) conflicting genotypes both parents and offspring: “AA” x “AA” cannot sire “Aa”. If such
an event is found looking at genotype and pedigree data, it may be a single genotyping error –
however, if several of them are found for a couple or trio of individuals, either there is a problem
in the pedigree or a misidentification of the sample.

One of the possibilities, if there is a conflict or the sire/dam is not in the pedigree, is to find
the sire or dam of one individual based on the observed genotypes (Wiggans et al. 2010 ,
@hayes__2011). One such program is seekparentf90.
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4.2.7 Duplicate genotypes

Unless there are clones or monozygotic twins, we do not expect identical genotypes – so, a
very high concordance of genotypes of two animals is suspicious. In most cases, this is due to
mislabeling – two DNA samples from the same animal received two different name tags.

5 A quick tour of Linkage Disequilibrium
The aim of this section is not really to make a full description, which is beyond the scope of these
notes, but to give a few concepts that might be of relevance for practitioners.

In a genome there are many loci and loci have alleles. In a population, there is a certain
distribution of alleles within a locus but also across loci. This distribution can be described
by a regular table. For instance, assume two biallelic loci and that we have 5 individuals, and
therefore 10 gametes in our population:

{AB, AB, ab, aB, ab, ab, Ab, AB, Ab, AB}

You may call this: haplotypes, diplotypes, or genotypes of the gametes.

Consider first allelic frequencies within loci are: for the first locus,

p1 = freq(A) = 0.6

; for the second locus,

p2 = freq(B) = 0.5

However, to consider the joint frequency at the two loci, we need a frequency table of these
diplotypes, as follows:

Table 4: Example of two loci in Linkage disequilibrium

freqs A a
B 0.4 0.2
b 0.1 0.3

The eye sees that allele “A” comes most often associated with “B”. But is this any relevant? Does
the presence of “A” give any clue on the presence of “B”?

Linkage equilibrium is a common assumption. In linkage equilibrium, alleles across loci are
distributed at random. For instance, freq (AB) = freq (A)× freq (B) = 0.30. If these were the
case, the table should be as follows:

Table 5: Frequency table if the two loci were in Linkage equilibrium

A a
B 0.3 0.2
b 0.3 0.2

Linkage disequilibrium (LD) is the event of non-random association of alleles across loci, and it
means that the “observed” table deviates from the “expected” table. The reason why linkage
disequilibrium is formed is because some “chunks” (or segments) of chromosomes are overrep-
resented in the population and never break down, and this is basically due to finite size of the
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population (drift, selection) and also to mutation. For instance, consider a cross of two inbred
lines and successive F1, F2. . . Fn generations. At the end, the chromosomes become a fine-grained
mosaic of grey and black. However, complete mixture is difficult to attain.

Figure 1: Chunks of ancestral chromosomes after cross of pure lines and several generations

Linkage disequilibrium describes not-random association of two loci. Nothing more, so, why is it
useful? In practice, two loci in LD most often are (very) close. This is because LD breaks down
with recombination. Therefore, Linkage disequilibrium of two loci decays on average with the
distance, and it serves to map genes. In other words, one locus is a proxy for the other one, and
this is why association analysis implicitly uses linkage disequilibrium to map genes.

5.1 Within-family and population linkage disequilibrium
If we study the distribution of alleles within a family (say parents and offspring) we will verify
that the linkage disequilibrium is very strong. This is because the chromosomes of the parents
are almost completely conserved, because there are very few recombinations in one generation
time. Consider for instance the following two sires, and a recombination fraction of 0.25 across
the two loci:

Individually considered, the two families have strong within-family linkage disequilibrium. In
family 1, pairs “AB” and “ab” come together, but in family 2 pairs “Ab” and “aB” come together.
Still, the population of 16 offspring seen as a whole does not have linkage disequilibrium.

However, populations are large families. Therefore, there will be linkage disequilibrium across
loci if we look at distances short enough. In general, short-distance linkage disequilibrium reflects
old relationships and large-distance linkage disequilibrium reflects recent relationships (Sved 1971
, @tenesa_recent_2007) .

5.1.1 Why QTL are easier to trace within family

Now imagine that locus A/a was a QTL with effects of, say, {+10,−10} and locus B/b was
a genetic marker. It is very easy to trace the QTL within each family, but the two pieces of
information from each family are contradictory when pooled together. Locus B/b would have
apparent effects of {5,−5} in family one but {−5, 5} in family two. This can be explained as
follows. The four chromosomes carriers of locus B in family one carry three copies of allele A
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Figure 2: Two sires and eight gametes of the progeny, where each family shows linkage disequilib-
rium but there is no population linkage disequilibrium

and one copy of allele a. Therefore, the apparent effect of allele B is equal to (3×10+1×(−10))
4 = 5,

in family one. In family two this is exactly the opposite: (1×10+3×(−10))
4 = −5, and across all

families, Locus B/b would have an effect of
(3×10+1×(−10))+(1×10+3×(−10))

4+4 = 0 . Therefore, allele B is a good predictor both within families
1 and 2, but not across families.

5.2 Quantifying linkage disequilibrium from gametes’ genotypes or
from individuals’ genotypes

There are two classical measures. D measures the deviation from observed distribution to expected
distribution:

D = freq (AB)− freq (A) freq(B)

Hill and Robertson (1968) proposed, for biallelic loci, to assign numerical values based
on gene contents (i.e., {A, a} would be {0, 1} and {B, b} would be {0, 1}) and com-
pute Pearson’s correlation across loci. In the preceding example, genotypes at gametes:
{AB, AB, ab, aB, ab, ab, Ab, AB, Ab, AB} can be written as two variables, one X for “A”,

X = {1, 1, 0, 0, 0, 0, 1, 1, 1, 1}

and one Y for “B”,

Y = {1, 1, 0, 1, 0, 0, 0, 1, 0, 1}

We can get the correlation from R

X=c(1,1,0,0,0,0,1,1,1,1)
Y=c(1,1,0,1,0,0,0,1,0,1)
cor(X,Y)
0.4082483
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and therefore r = 0.41. It can be shown that r = D√
pAqApBqB

where pA = 1− qA = freq(A). It
has the advantage that r2 is related to the variance in locus A explained by locus B, and of being
easier to understand than D. Both D and r depend on the reference allele (e.g. it is not the same
to use as a reference A or a) but r2 is invariant to the reference allele.

We just said that we need genotypes at gametes. This implies that we need to know the phases
of the genotypes. But the phases are not known, although they may be deduced using some
phasing software. We may still use Hill 1968 and compute correlations of gene contents. Our
example was:

{AB, AB, ab, aB, ab, ab, Ab, AB, Ab, AB}

But we actually have 5 individuals, with genotypes (note the semicolon separating individuals):

{AB, AB; ab, aB; ab, ab; Ab, AB; Ab, AB}

If we put this in form of gene content it gives the following table:

X 2 0 0 2 2
Y 2 1 0 1 1

And therefore we get a correlation as

X=c(2,0,0,2,2)
Y=c(2,1,0,1,1)
cor(X,Y)
[1] 0.6454972

In this example, this value of r = 0.65 is not quite the previous estimate of r = 0.41, but in
practice using genotypes instead of phased gametes results in good estimates (Rogers and Huff
2009).

When the effective population size (Ne) is small, the chromosome segments are longer, and LD is
stronger. If we compare beef and dairy cattle populations, LD would be stronger for dairy cattle
because of the smaller Ne. The LD also depends on recent and precious recombination events, as
it is broken down by recombination. In bovines, moderate LD is observed in distances smaller
than 0.1cM and strong values ( r2 = 0.8) are observed in very short distances.

6 Quantitative genetics of markers, or markers as quanti-
tative traits

6.1 Gene content as a quantitative trait
This small chapter wants to put forward an idea that goes often unnoticed and that was highlighted
by (Gengler et al. 2008; Gengler, Mayeres, and Szydlowski 2007). A detailed but terse account is
in (Cockerham 1969). Consider a marker, not necessarily biallelic. An individual is carrier of a
certain number of copies, either 0, 1 or 2. This number of copies is usually called gene content
(sometimes also called individual gene frequencies, a confusing term).

For instant consider the blood groups AB0 (multiallelic) or Rh (biallelic +/-) the following table:

Table 7: Example of gene content for multiallelic blood group

Individual Genotype Gene count for A Gene count for B Gene count for 0
John AB 1 1 0
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Individual Genotype Gene count for A Gene count for B Gene count for 0
Peter A0 1 0 1
Paul 00 0 0 2

Table 8: Example of gene content for biallelic blood group

Genotype at Rh Gene count for + Gene count for -
John ++ 2 0
Peter + - 1 1
Paul - - 0 2

For a biallelic marker, the table is simpler, because the gene content with one reference allele will
be 2 minus the gene content of the other allele.

For this reason, in the next, we will denote the gene content of individual i as zi which will take
values {0,1,2}.

The gene content can thus be “counted”, just as we count milk yield, height, or number of
piglets born. The funny thing is that gene content can also be studied as a quantitative measure
- just like milk yield, height, or number of piglets born-, and it can be therefore studied as a
quantitative trait (although it is not a continuous trait). Therefore, gene content can be treated
by standard quantitative genetics methods. In the following we will deal with gene content of
biallelic markers such as SNPs but many of the results apply to multiallelic markers such as
haplotypes or microsatellites.

6.2 Mean, variance and heritability of gene content
If the alleles are {A, a} in a population, and A is the reference allele, the average gene content
E (z) is equal to the number of occurrences of A, which is twice the allelic frequence: E (z) = 2p.
In Hardy-Weinberg equilibrium, the variance of gene content is calculated as:

Var (z) = E
(
z2)− E (z)2

Table 4. Variance of gene content

Genotype Frequency z2 z

AA p2 4 2
Aa 2pq 1 1
Aa q2 0 0
Average 4p2 + 2pq 2p

The expectation E
(
z2) can be computed by weighting the column z2 with the column Frequency.

Therefore σ2
z = Var (z) = 4p2 + 2pq − (2p)2 = 2pq

The heritability of gene content is the ratio of genetic to environmental variances. Clearly, all
variance is genetic because the gene content is fully determined by transmission from fathers to
offspring, and all the genetic variance is additive because gene content is additive by construction
(if you think on it, the substitution effect is exactly α = 1). Also, there is no residual error as the
gene content is measured (in principle) perfectly. Therefore, the heritability is 1.
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6.3 Covariance of gene content across two individuals.
Let’s write the gene content of two individuals i and j as zi, zj . The covariance is Cov (zi, zj).
Individuals i and j have two copies at the marker. If we draw one copy from i and another
from j, the probability of them being identical (by descent) is Θij = Aij/2, where Θ is known as
Malecot “coefficient de parenté”, kinship, or coancestry and Aij is the additive relationship. This
is just standard theory – two alleles from two individuals are identical if they are IBD. Therefore

Cov (zi, zj) = E (zizj)− E (zi)E (zj)

E (zi) = E (zj) = 2p. E (zi, zj) can be obtained by as follows. There are four ways to sample two
alleles. For each way, the product zizj will be 1 only in two cases. The first one is that the first
individual got the allele A (with probability p) and the second one got A as well because it was
identical by descent (with probability Aij/2), which yields a probability of pAij/2. The second
case is that the first individual got the allele A (with probability p , the second individual was
not identical by descent (with probability 1−Aij/2) , but at the same time by chance the second
individual had the “A” allele with probability p, which yields a probability of p(1 − Aij/2)p.
Summing both probabilities we have pAij/2 + p(1−Aij/2)p = pqAij/2 + p2, and multiplying by
four possible ways gives E (zizj) = Aij2pq + 4p2. Putting all together gives

Cov (zi, zj) = Aij2pq

which means that the covariance between relatives at gene content is a function of their relationship
Aij and the genetic variance of gene content 2pq. In other words, two related individuals will
show similar genotypes at the markers. This result was utilized by (Gengler et al. 2008; Gengler,
Mayeres, and Szydlowski 2007; Habier, Fernando, and Dekkers 2007).

Extending the result above implies that the gene content in a population can be described like
any other trait:

E(z) = 2p

V ar(z) = A2pq

where A is the classical numerator relationship matrix.

6.4 Quality control using heritability of gene content
This was explored by (Forneris et al. 2015). If gene content is a quantitative trait, we can
estimate its heritability. We just need a pedigree file and a data file, although the data is now
gene content. The method simply consists in modelling the genotype z as a quantitative trait:

z = 1µ+ Wu + e

Where W is a matrix of incidence with 1’s for genotyped individuals and 0 otherwise. This is
how the data file looks like:

1 1 533
0 1 1732
2 1 1207
1 1 952
0 1 678
1 1 2299
0 1 2581
1 1 2845
1 1 3123
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(gene content, overall mean, animal id). Then we can use REML to estimate the heritability.1
The result of REML is something like:

Final Estimates
Genetic variance(s) for effect 2
0.34311
Residual variance(s)
0.56669E-04
...
h2 - Function: g_2_2_1_1/(g_2_2_1_1+r_1_1)
Mean: 0.99983

REML can not estimate a heritability of exactly 1, but it should yield almost 1. If not (for
instance if ĥ2 < 0.98 ) we have a problem, either in the genotypes or in the pedigree.

6.5 Gengler’s method to estimate missing genotypes and allelic fre-
quencies at the base population

A common case is a long pedigree where some, typically young, animals have been genotyped for
a major gene (for instance, DGAT1) of interest. It would be useful to have the genotype at the
major gene for all individuals (Kennedy, Quinton, and Van Arendonk 1992). Using expressions
above, (Gengler et al. 2008; Gengler, Mayeres, and Szydlowski 2007) suggested a way to estimate
gene content for all individuals in a pedigree, as well as allele frequencies. The method simply
consists in modeling the genotype z as a quantitative trait (just like in the previous section):

z = 1µ+ Wu + e

where W is a matrix of incidence with 1’s for genotyped individuals and 0 otherwise. A heritability
of 0.99 is used to estimate it through mixed model equations; on exit, û contains estimates of
gene content for all individuals (these are equal to the observed genotype for the genotyped
individuals) and µ̂ actually contains 2p̂.

The method has some defaults, mainly, the estimate of gene content is a regressed estimate and
therefore individuals tend to be more alike at the major gene than what they actually are. For
instance, isolated individuals will have an estimate consisting in 2p̂. However, Gengler method
is very important for two reasons: the first is that it provides an analytical tool to deal with
gene content at missing genotypes (and it was completed by (Christensen and Lund 2010) and
second, it serves to estimate allelic frequencies at the base population when it is not genotyped
(VanRaden 2008). It also forms the bases of the gene content multiple-trait BLUP that is briefly
described next.

6.6 Gene Content Multiple-Trait BLUP
GCMTBLUP can be seen as “Single Step GBLUP for one major gene”. The reader is referred
to (A. Legarra and Vitezica 2015) for details and also for simulated examples. Assume that we
have a “normal” trait (say growth) and also one major gene. The method of “heritability of
gene content” can be expanded to include both the “normal” trait y and the gene content z. For
instance:

y =Xyby+Wyuy + ey

z =Xzbz + Wzuz + ez
1This is an approximation as REML assumes multivariate normality, and gene content has only 3 cases. But

gene content can not be modelled as a threshold model, because then the expression V ar(z) = A2pq is not longer
true.
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With genetic covariance across traits as described above, G0 =
(
σ2
uy σuz,y

σuz,y σ2
uz

)
. The estimated

covariance σuz,y = 2pqa is a function of the effect (a) of the major gene in z on the normal
trait in y. This method is more accurate than Gengler’s method because it estimates gene
content for animals that have not been genotyped based on gene content of relatives but also
on “normal” trait information. It actually comes in two flavors: Gene Content Multiple-Trait
BLUP (GCMTBLUP) uses estimated σuz,y to estimate EBV’s that include the major gene, in an
optimal way. But if the gene effect is not known with certitude, G0 and therefore the effect of
the major gene can be estimated by REML (GCMTREML).

7 Imputation in a nutshell
7.1 Classical imputation
Imputation has become part of the regular toolkit of genomic prediction. In essence, the problem
is the following. Not all animals have the same kind of genomic information. Omitting the case
of sequenced animals, here are the typical cases:

• Animals genotyped with a “medium” chip such as the 50/60K
• Animals genotyped as “low density”, for instance 6K
• Animals genotyped as “very low density”, e.g. 1000 markers

In addition, there is also the problem that for many animals, some (very few) markers are not
genotyped. So that, if there are 50,000 markers in one chip, for a typical animal only 49,800
markers are genotyped. Another more complex cases are Genotyping By Sequence (GBS) and
sequencing, but we will not detail such here.

The theory for imputation in animal breeding is well summarized in (VanRaden et al. 2011 ;
Hickey et al. 2011). Output of the programs is usually exact genotypes (the genotype is assumed
exactly known), fractional genotypes (probabilities of each genotype) or missing (the genotype
of this particular marker and individual is too inaccurate to be imputed). The algorithm for
imputation typically proceeds combining two sources of information:

1. If in one individual, a chunk (short enough to assume that there is no recombination) of a
chromosome (the paternal or the maternal) can be unambiguously identified as coming from
one of the four chromosomes of its parents, then the whole chunk has been transmitted.
This is fast and efficient if there are individuals with genotypes and pedigree.

2. If in one individual, at one chunk of a chromosome, a set of markers form a particular
pattern, that resembles closely patterns that are already known and that are present in
the population, then the “holes” are filled in according to the “known” pattern. This is
linkage-disequilibrium based imputation.

A reminder. What imputation can do:

1. fill in holes from “lower” to “higher” densities (6K to 50K, 50K to 700K, 700K to sequence)

2. fill in missing markers in the genotypes. For instance, for an animal with a call rate of 99%
for a 50K SNP chip, imputation can complete the 500 missing genotypes. This is useful.

Some animals can be imputed without own genotypes using information from genotyped offspring
(around 5 offspring gives a decent imputation). In all other cases, it is very hard to impute
animals that have not been genotyped for any marker.

7.1.1 Quick and dirty imputations

These forms of imputation are not recommended, but it might be useful for quick studies or
prototyping, or if the number of missing genotypes is really small (say, individual and animal
call rates ≈ 0.99 ). One form is just assigning the most frequent genotype (“AA”, or “Aa”,
or whatever). Another form is simply assigning genotypes at random based on drawing the
genotypes from a distribution with probabilities

(
p2, 2pq, q2); in R this would be
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z=sample(c(0,1,2),1,prob=c(pˆ2,2*p*q,qˆ2))

Again, this is not recommended. For instance, it can easily give parent-offspring incompatibilities.

7.1.2 Linear imputation

Gengler’s (2007) method cites above “imputes” “genotypes” using a linear method (BLUP) for
a linear trait (gene content). It ignores all the neighboring markers and it also ignores the
Mendelian nature of inheritance of markers, i.e. the offspring of a couple “AA” x “aa” is forcedly
“Aa”. But the interesting point of Gengler’s method is that it can be described analytically, which
will eventually lead to the development of Single Step GBLUP (Christensen and Lund 2010).
In particular, the usefulness of the method is because it gives a framework for the error in the
imputation. We will see this later.

8 Bayesian inference
Bayesian inference is a form of statistical inference based on Bayes’ theorem. This is a statement
on conditional probability. We know that

p (A,B) = p (A |B) p (B) = p (B|A) p (A)

Bayes’ theorem says that

p (B|A) = p (A|B) p (B)
p (A)

The algebra is valid for either a single-variable A and B or for A and B representing a collection
of things (e.g., A can be thousands of phenotypes and B marker effects and variance components).

Its use in statistical inference is as follows. We want to infer values of B (effects, for instance)
knowing A (observed phenotypes). For every value of B we do the following:

1. We compute p (A|B), which is the probability, or likelihood, of A had we know B.

2. We multiply this probability by the “prior” probability of B, p(B).

3. We cumulate p (A|B) p (B) to form p(A), which is called the marginal density of A.

8.1 Example of Bayesian inference
Assume that we have a collection of quantitative phenotypes y={1, 0,−0.8} with k = 3 records
and a very simple model y = 1µ+ e with V ar (e) = R = Iσ2

e and σ2
e = 1. We will infer µ based

on Bayes’ theorem; actually, we will infer a whole distribution for µ, what is called the posterior
distribution, based on

p (µ|y) = p (y|µ) p (µ)
p (y)

where

p (y|µ) = MVN (µ, I) = 1√
2πk |R|

exp
(
−1

2 (y− 1µ)
′
R−1 (y− 1µ)

)
is the “likelihood” of the data for a given value of µ.

However, it is unclear what p(µ) means. This is usually interpreted as a prior distribution
for µ, which means that we must give probability values to each possible value of µ. These
probabilities may come from previous information or just from mathematical or computational
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convenience, but they must not come from the data y. Prior distributions require a mental
exercise of thinking if µ has been “drawn” from some distribution (e.g., it is a particular farm
among a collection of farms), or if there are biological laws that impose prior information – for
instance, the infinitesimal model suggests normal distribution for genetic values. If this is the
case, such an effect is often called “random” in the jargon.

Finally, p(y) is the probability of the data if we average p (y|µ) across all possible values of µ,
weighted by its probability p (µ).

Consider that there are only two possible values of µ, -1 and 1 with equal a priori probabilities
of 0.5 and 0.5. Then we can create this table:

Table 10: example of Bayesian inference with two a priori values
for µ

p(µ) p(y|µ) p(y|µ)p(µ) p(µ|y) = p(y|µ)p(µ)
p(y)

µ = −1 0.5 0.0051 0.00255 0.40
µ = 1 0.5 0.0076 0.00381 0.60
p(y) 0.00636

So, the final result is that the mean µ has a value of either -1 (with posterior probability 0.40)
or 1 (with posterior probability 0.60). The posterior expectation of the mean is E (µ|y) =
1× 0.60 +−1× 0.40 = 0.20.

If the prior distribution for the mean is continuous, for instance N(0, σ2
µ) (say σ2

µ = 10, then the
final distribution of µ is continuous as well. Therefore, it is impossible to enumerate all cases
as above. In the case that the prior distribution is normal and the likelihood too, the posterior
distribution can be derived analytically (e.g. in (Sorensen and Gianola 2002) and is

p (µ|y) = N
(
µ̂, lhs−1)

where

lhs = 1′1
σ2
e

+ 1
σ2
µ

µ̂ =
(
lhs−1)1

′
yσ2

e

So, µ̂ = 0.064 on average with a standard deviation of 0.57.

8.2 The Gibbs sampler
Things get more complicated when we have several unknowns in our model. For instance, we
might not know the residual variance σ2

e , so we want to evaluate

p
(
µ, σ2

e

∣∣y) =
p
(
y
∣∣µ, σ2

e

)
p (µ) p

(
σ2
e

)
p (y)

Writing down in closed form the posterior distributions is impossible. The Gibbs sampler is a
numerical Monte Carlo technique that allows drawing samples from such a distribution. The
idea is as follows. If we knew µ, then we could derive the posterior distribution of σ2

e . If we knew
σ2
e , then we could derive the posterior distribution of µ. These distributions “pretending that we

know” are known as conditional distributions, and need to be known up to proportionality (this
makes algebra less miserable). In our example they are:
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p(σ2
e |y, µ)

p(µ|y, σ2
e)

If these distributions are known, we can draw successive samples from them and then plug
these samples into the right-hand side of the expressions, “as if” they were true, and iterate the
procedure. So we start with, say, mu = 0 and σ2

e = 1. Then we draw a new µ from

p
(
µ
∣∣y, σ2

e

)
= N

(
µ̂, lhs−1)

Then σ2
e from

p
(
σ2
e

∣∣y,µ) = (y− 1µ)
′
(y− 1µ)χ

−2
k

which is the conditional distribution assuming flat priors for σ2
e . Then we plug in this value into

p
(
µ
∣∣y, σ2

e

)
and we iterate the procedure. After a period, the samples so obtained are from the

posterior distribution. Typically, thousands of iterates are needed, if not more. The following R
code shows a simple simulated example.

set.seed(1234)
# simulated n data with mean 100 and residual variance 20
ndata=10
y=100+rnorm(ndata)*sqrt(20)
# Gibbs sampler
#initial values
mu=-1000
vare=10000
varmu=1000
#place to store samples
mus=c()
vares=c()
#sampling per se
for (i in 1:50){
lhs=ndata/vare+1/varmu
rhs=sum(y)/vare
mu=rnorm(1,rhs/lhs,sqrt(1/lhs))
vare=sum((y-mu)\*\*2)/rchisq(1,ndata)
cat(mu,vare,\"\n")
mus=c(mus,mu)
vares=c(vares,vare)

}

The “beauty” of the system of inference is that we decompose a complex problem in smaller
ones. For instance, variance component estimation proceeds by sampling breeding values (as
in a BLUP “with noise”, Robin Thompson dixit), and then sampling variance components are
estimated as if these EBV’s were true.

8.3 Post Gibbs analysis
A Gibbs sampler is not converging to any final value, like REML, in which each iterate is better
than the precedent. Instead, at the end we have a collection of samples as follows:

Mu vare
38.47288 6832.21
76.12334 323.1892
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85.76835 267.1094
91.08181 120.2974
100.1114 19.85989
98.52846 19.85005
98.03879 14.52127
97.54579 20.33205
98.10108 14.76999
99.39184 6.538137
96.90541 13.92563
...

and these samples define the posterior distribution of our estimator.

The first point is to verify that the chain has converged to the desired posterior distribution.
Informal testing plots are very useful. For instance, plot(vares) in the above example shows that
initial values of σ2

e where out of the desired posterior distribution. We can discard some initial
values and then keep the rest.

We need to report a final estimate, e.g., of σ2
e from this collection of samples. Contrary to REML,

the last sample of σ2
e is not the most exact one, but is all the collection of samples which is

of interest, because they approximate the posterior distribution of the estimator. So, a typical
choice is the posterior mean, which is the average of the samples. In the example above, you can
for instance discard the first 20 iterations as burn-in and then use the posterior mean across the
last 30 samples of the residual variance:

mean(vares[21:50])
[1] 20.28395

which is very close to the simulated value of 20. The post-Gibbs analysis is clumsy but important
and packages such as BOA exist in R to simplify things.

9 Models for genomic prediction
If SNP are just markers located outside genic regions, most of the times, why to use them?
Because they may be linked to QTL or genes, fact that can be explained by an event called
linkage disequilibrium (LD). The LD is based on expected versus observed allele frequencies
and measures the non-random association of alleles across loci. We have seen LD before. The
strength of the association between two loci is measured by the correlation. We assume that, if
neighboring SNPs are tightly correlated, then QTLs that are “in the middle” should be strongly
correlated as well (this might not be true – for instance if all QTLs have very low frequency, but
that seems unlikely).

Instead of talking about association between loci, let’s assume we can use SNP to deduce the
genotype of animals at each unobserved QTL. By having dense SNP panels (e.g., 50,000 SNP),
it is more likely that QTL will be in LD with at least one SNP. If QTL A is linked to SNP B,
depending on the strength of this linkage, once SNP B is observed it will imply QTL A was
inherited together. In this way, genomic selection relies on the LD between SNPs and QTL, and
although we do not observe the QTL, an indirect association between SNP and trait phenotype
can be observed:

Figure 3: Indirect association QTL - markers - phenotype
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The effectiveness of genomic selection can be predicted based on the proportion of variance on
the trait the SNP can explain.

There are mainly two classes of methods for genomic selection:

1) SNP effect-based method

2) Genomic relationship-based method

For most of the livestock populations, the number of SNP is greater than the number of genotyped
animals, which results in the famous “small n big p problem”. As the number of parameters is
greater than the data points used for estimation, a solution is to assume SNP effects are random;
in this way, all effects can be jointly estimated. To present the SNP effect-based method we will
start with a single gene and we will move towards more of them.

9.1 Simple marker model
9.1.1 Multiallelic

Assume there is a marker in complete, or even incomplete, LD with a QTL. For example, the
polymorphism in the halothane gene (HAL) is a predictor of bad meat quality in swine. The
simplest way to fit this into a genetic evaluation is to estimate the effect of the marker by a linear
model and least squares:

y = Xb + marker + e

Where in “marker” we actually introduce a marker with alleles and their effects. More formally,
allele effects are embedded in vector a and their incidence matrix is in matrix Z:

y = Xb + Za + e

For instance, assume that we have a four-allele {A,B,C,D} locus and three individuals with
genotypes {BC,AA,BD}. Then

Za =

0 1 1 0
2 0 0 0
0 1 0 1



aA
aB
aC
aD


Note that we have put a 2 for the genotype “AA”. This means that the effect of a double copy of
“A” is twice that of a single copy. This is an additive model.

And for y = {12, 35, 6} this gives

y = Xb + Za + e

12
35
6

=

1
1
1

µ+

0 1 1 0
2 0 0 0
0 1 0 1



aA
aB
aC
aD

+

e1
e2
e3


9.1.2 Biallelic

Assume now that we do the same with a simple, biallelic marker (say {A,B}). Consider three
individuals with genotypes {BB,AA,BA}:
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Za =

0 2
2 0
1 1

(aA
aB

)

and

12
35
6

=

1
1
1

µ+

0 2
2 0
1 1

(aA
aB

)
+

e1
e2
e3


However, because there is redundancy (if the allele is not A, then it is B) it is mathematically
equivalent to prepare a regression of the trait on the number of copies of a single allele, say

A. Then Z becomes a vector z and the vector
(
aA
aB

)
becomes a scalar aA . So for individuals

{BB,AA,BA} we have that

za=

0
2
1

 aA

and

12
35
6

=

1
1
1

µ+

0
2
1

 aA+

e1
e2
e3


The effect of the marker can be estimated by least squares or another regression method. The
marker should explain a large part of the variance explained by the gene. The model can be
enriched by adding an extra polygenic term u, based on pedigree V ar (u) =Aσ2

u, like for instance
in

y = Xb + za+Wu + e

You may realize that this follows the chapter “Values and means” in (Falconer and Mackay 1996).

9.2 Why markers can’t be well chosen: lack of power and the Beavis
effect

The method above can be potentially extended to more markers explaining the trait. However,
the failure of this method resides in that we do not know which markers are associated to the
trait. This is a very serious problem, because finding out which markers are linked to a trait
generally induces lots of errors – and this because of the nature, and because of the Beavis effect.

Genetic background of complex traits seems to be highly complex and largely infinitesimal: many
genes acting, possibly with interactions among them, to give the genetic determinism of one
trait. Most of them bearing small effects, some may have large effects. Current alternatives for
localization of genes include Genome-wide Association Study (GWAS). This consists in testing,
one at a time, markers for its effect on a trait, mostly with a simple linear model as above. The
procedure selects those markers with a significant effect after a statistical test, for instance a
t-test. This test is usually corrected by Bonferroni to avoid spurious results. However, this way
of proceeding leads to lack of power and bias. This will be shown next.
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9.2.1 Lack of power

This is because a small effect can rarely be detected. The general formulae for power can be
found in, e.g., (Luo 1998) and are implemented in R package ldDesign. A very simple version
of the formulae for power where the causal variant is truly tagged by a marker is (I owe this
expression to Anne Ricard)

power = 1− Φ
(
Z1−α2 − β

√
2pq (n− 2)

)
with Z1−α/2 the rejection threshold, that is ≈ 4.81 after Bonferroni correction for 50,000 markers.
For instance, in a population of n=1000 individuals, a QTL explaining 1% of the variance and
perfectly tagged by a marker will be found 4% of the time. If 100 such QTLs exist in the
population, only 4 of them will be found. The following Figure shows the power of detection of a
QTL perfectly tagged explaining from 0 to 100% of the phenotypic variance.

Figure 4: Power of detection of QTL effects perfectly tagged explaining from zero to 100%
phenotypic variance

9.2.2 The Beavis (or winner’s curse) effect

This comes as follows. We are mapping QTLs. To declare a QTL in a position, we perform a
test (for example a t-test). This test depends on the estimated effect of the QTL, but

estimated effect = real effect + "estimation noise"

By keeping selected QTLs, we often keep large and positive noises. This is negligible if there
were few QTLs with large effects but this is not the case. Large noises will occur in analysis with
many markers, and this biases the estimated QTL effect, making it look much larger than real,
in particular if they are small. The problem is exacerbated with GWAS approaches, because of
testing many markers.

For instance, assume that a marker with allelic frequency p = 0.5 truly explains 5% of the variance.
Using formulae in Xu (2003), the variance explained by this marker will be overestimated and
show up as 5.1% at regular type-I error. This does not change for more strict Bonferroni-like tests,
e.g., α = 0.05/50000. However, for markers explaining 0.5% of the variance, the apparent variance
explained is 0.9% (two times in excess) at α = 0.05 and a formidable 2.7% at α = 0.05/50000
(a 5-fold overestimation of the explained variance). Therefore, collecting 40 such significant
markers may look like capturing all genetic variation whereas in fact they only capture 20% of
the variance. The following R script allows these computations.
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#beavis effect by Xu , 2003, Genetics 165: 2259–2268
bias.beavis<- function(sigma2=1,n,p=.5,alpha,a){

# this function computes real and apparent
#(from QTL detection estimates) variance
#explained by a biallelic QTL with effect a and
# allelic frequency p at alpha risk
#Andres Legarra, 7 March 2014
gamma=2*p*(1-p)
sigma2x=gamma
eps1=-qnorm(1-alpha/2)-sqrt(n*gamma/sigma2)*a
eps2= qnorm(1-alpha/2)-sqrt(n*gamma/sigma2)*a
psi1=dnorm(eps1)/(1+pnorm(eps1)-pnorm(eps2))
psi2=dnorm(eps2)/(1+pnorm(eps1)-pnorm(eps2))
B=gamma*(sigma2/(n*sigma2x))*(1+eps2*psi1-eps1*psi2)
var.explained=gamma*a**2
var.attributed=var.explained+B
att.over.exp=var.attributed/var.explained
rel.var.explained=var.explained/sigma2
rel.var.attributed=var.attributed/sigma2
list(

var.explained=var.explained,
var.attributed=var.attributed,
rel.var.explained=rel.var.explained,

rel.var.attributed=rel.var.attributed,
att.over.exp=att.over.exp

)
}

The following graph shows the true variance explained by the QTL and the variance apparently
explained by the QTL, for QTL effects ranging from 0 to 0.5 standard deviations, i.e. explain up
to 12% of the variance. It can be seen that small effects are systematically exaggerated.

Figure 5: True (straight line) and apparent (dotted line) variance explained by QTL effects going
from zero to 0.5 genetic standard deviations

The two following graphs, from very crude simulations, show both problems. The first one shows
no bias, but the second shows, first, that only 3 out of 100 QTL were found (lack of power), and
those 3 found are largely overestimated (Beavis effect).
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Figure 6: Real (O) and estimated (*) effects after GWAS-like simulations with 10 true QTLs in
5000 markers, 1000 individuals.

Figure 7: Real (O) and estimated (*) effects after GWAS-like simulations with 100 true QTLs in
50000 markers, 1000 individuals
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9.3 Fit all markers
Lande and Thompson (Lande and Thompson 1990) suggested getting the list of associated
markers and their effects from an independent population. Whereas this is typically done -now-
in human genetics, it seems impossible to do in agricultural populations. First, the associations
are random, and therefore markers associated in one population are not necessarily associated in
another one. Second, even the true list of acting genes and QTL will vary across populations due
to drift or selection. One example is the bovine myostatin gene (GDF8), i.e. both the Belgian Blue
and South Devon breeds carry the same GDF8 mutation, but they have different conformation
and double-muscling phenotypes (Smith et al. 2000; Dunner et al. 2003).

These problems plague GWAS and QTL detection analysis. Further, nothing guarantees that
markers with no effect at one stage will have no effect at another one, for instance, because
of interactions. A simple way to avoid both the lack of power and the Beavis effect is not to
use detection thresholds. Therefore, all markers are assumed to be QTL. This simple idea gave
(Meuwissen, Hayes, and Goddard 2001) the key to attack the estimation of whole genetic value
based on markers. First, markers with small effects will be included. Second, no bias will be
induced due to the detection process.

Therefore, one should include all markers in genomic prediction. In a way, this makes sense
because we use all information without discarding anything. But how is this doable? The simplest
is to fit a linear model with the effects of all markers. Note that for this approach to work, you
need to cover all the genome; many markers are needed.

Individual i has a breeding value ui. According to the previous paragraphs, we will try to
predict the breeding value of an individual defined as a sum of marker effects ak (there are m of
them). An individual has genotypes coded in zi, its breeding value is the sum of marker effects
akweighted by the coefficients in zi: ui =

∑
k=1,m zikak =zia. For all individuals this becomes

u = Za.

9.3.1 Multiple marker regression as fixed effects

9.3.1.1 Multiallelic The multiple marker regression is a simple extension of the single marker
regression shown above. First, we construct a model were the phenotype is a function of all
marker effects:

y=Xb+Za+e

For instance, assume that we have a four-allele {A,B,C,D} locus, another locus with alleles
{E,F} and three individuals with genotypes {BC/EE,AA/EF,BD/FF}. Then

Za =


0 1 1 0

... 2 0

2 0 0 0
... 1 1

0 1 0 1
... 0 2





aA
aB
aC
aD
· · ·
aE
aF


9.3.1.2 Biallelic With biallelic markers, we can reduce the number of unknowns to just
one effect per marker – the effect of the reference allele. Assume now that we have just three
individuals with two biallelic markers: a two-allele {A,B} locus, and a two-allele locus with
alleles {E,F} and three individuals with genotypes {BA/EE,AA/EF,BB/FF}. If we fit one
effect per allele the system of equation is:
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Za =


1 1

... 2 0

2 0
... 1 1

0 2
... 0 2



aA
aB
· · ·
aE
aF


And if we reduce the effects to one effect per marker, we get

Za =


1

... 2

2
... 1

0
... 0


aA· · ·
aE



Again, estimation of a can proceed by least squares.

9.3.1.3 Massive number of markers Imagine that we have 20 markers and 3 individuals,
matrix Z looks like:

1 1 2 2 1 0 0 1 0 0 2 0 0 2 0 2 2 0 1 1

0 1 2 1 2 1 0 1 2 2 2 2 0 2 1 0 1 0 0 1

2 0 2 0 0 2 1 0 0 0 1 1 0 2 2 1 0 0 0 1

But SNP chips yield thousands of markers. This poses two kinds of problems. The first one
is practical: we can’t (reliably) estimate 50,000 effects from, say, 1,000 data in y. The second
is conceptual: does it make sense to estimate all these marker effects without imposing any
constraints? In fact, one should not expect that a marker has a large effect; rather, we expect
them to be restricted to plausible values. For instance, a marker should not have an effect of,
say, one phenotypic standard deviation of the trait. In a way, this is an “a priori” information
and there must be a way to introduce this information. But this introduces a very old subject of
genetic evaluation: prediction. After explaining prediction, we will go back to models.

9.4 Bayesian Estimation, or Best Prediction, of marker effects
Marker effects can be considered as the result of random processes, because they are the result
of random buildup of linkage disequilibrium, random generation of alleles at genes, and so on.
Therefore, they have (or may have) an associated distribution (whether you call this a sampling
distribution or a prior distribution is largely a matter of taste). I will generally call this prior
information. It is well known (Casella and Berger 1990) that accurate prediction of random
effects involves integration of all information, prior information and observed information, that
in our case it comes in the form of observed phenotypes.

If we call a the marker effects, and y the data, the Posterior Mean, or Conditional Expectation
of (estimators of) marker effects is given by the expression

â=E (a |y ) =
∫
a p (y | a) p (a) da∫
p (y | a) p (a) da

We have already discussed the Posterior Mean in the introduction to Bayesian inference. This is
often called as Best Prediction, because in a Frequentist context it does minimize, over conceptual
repetitions of the procedure, the distance between “true” a and its estimator, â (Casella and
Berger 1990). On the other hand, this can be seen as a Bayesian estimator as described above.
This estimator has an extraordinary advantage over the regular least squares, because it uses
all available information (Gianola and Fernando 1986). Further, it has been proven that Best
Predictors are optimal for selection (Cochran 1951 ; Fernando and Gianola 1986; Goffinet and
Elsen 1984). The introduction of the prior distribution p (a) has an effect of “regressing” the
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estimators towards the a priori values, a process that is known as shrinkage. Therefore, the Best
Predictors are “shrunken” or “regressed” estimators.

In the context of genomic predictions, the Best Predictor is composed of two parts:

1. The prior distribution of marker effects p (a)

2. The likelihood of the data given the marker effects, p (y | a)

Breeders have a fairly decent idea of how to write the latter, p (y | a). Most often this is written
as a normal likelihood, of the form

p (y | a) = MVN (Xb + Za,R)

where matrix R contains residual covariances. The model may include further linear terms such
as pedigree-based covariances, permanent effects, and so on. However, how to write down the
prior distribution p (a) is far from being clear, and this has been the subject of frantic research
during the last decade. This will be part of the subject of the following sections.

9.4.1 Best Predictions as a regularized estimator

Regularized predictors are much used now in Statistics. They are composed of two parts: a
likelihood, and a regularization function which prevents the estimators from going “too far away”.
For instance, the regular Lasso (Tibshirani 1996) can be understood as an estimator that uses
a likelihood as above, combined with the restriction |a| < λ. Another example is the Ridge
Regression, where there is a penalty function of a2

i – the larger the square of the effect, the
more penalized. The explanation of these estimators is largely practical. However, from the
point of view of a Bayesian or a Frequentist (or an animal breeder), they are Bayesian (or Best
Predictor) estimators with particular sampling or a priori distributions. For instance, the Lasso
assumes that (marker) effects are a priori distributed following a Laplace (double exponential)
distribution, and Ridge Regression assumes that effects are a priori normally distributed. A,
by and large, advantage of this understanding is that it allows the connection between classical
quantitative genetics theory and prior distributions for marker effects.

9.5 The ideal process for genomic prediction
We have prepared the conceptual setup. The process of genomic prediction consists in estimating
marker effects using the Conditional Mean of marker effects as above, which is based on phenotypes
at the trait(s) of interest and the prior distribution of marker effects. This creates a prediction
equation which can be summarized as something like:

Table 11: A form of prediction equation.

Locus Allele Effects estimates
1 A +10
2 E +5

For the i-th individual, the product of its genotype (the i-th row, zi of matrix Z) and the alleles’
effects (in â) gives a genomic estimated breeding value, say ûi = ziâ. This applies equally well
to animals with or without phenotype. The next section of these notes will describe how this can
be accomplished through the so-called Bayesian regressions.

Process of genomic prediction
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Figure 8: Process of genomic prediction (r: references; c: candidates)

10 SNP effect-based methods: SNP-BLUP and Bayesian
regressions

For most of the livestock populations, the number of SNP is greater than the number of genotyped
animals, which results in the famous “small n big p problem”. As the number of parameters is
greater than the data points used for estimation, a solution is to assume SNP effects are random
(or that they have a prior distribution); in this way, all effects can be jointly estimated. Even if
the number of genotyped animals is large, still it makes sense to fit SNPs as random, because the
prior information says that small effects are frequent and large effects are unlikely.

Bayesian regression is another name for the Best Predictor or Conditional Expectation described
above, and it describes the fact that we compute Conditional Expectations (another name for
regressions (Casella and Berger 1990) ) using Bayesian methods. The term was first introduced in
the genomic prediction literature by (Campos et al. 2009) and it is being used since. The Bayesian
regression is, as described above, composed of a likelihood p (y | a) = MVN (Xb + Za,R) and a
prior distribution for markers, p(a). A full and comprehensive account of Bayesians regressions
for genomic prediction is in (Campos et al. 2013). However, before presenting the different
models for Bayesian regressions, we will detail how allele coding should proceed in these methods.

10.1 Allele coding.
Allele coding is the assignment of genotypes to numerical values in matrix Z. Strandén and
Christensen (2011) studied this in some detail. Markers commonly used for genomic prediction
are biallelic markers. Imagine four individuals and two loci, where alleles for the loci are {A, a}
and {B, b}. The genotypes of the four individuals are:
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aa Bb
AA bb
Aa bb
aa bb

This can be coded with one effect by allele:

Za =


0 2

... 1 1

2 0
... 0 2

1 1
... 0 2

0 2
... 0 2




a1A
a1a
· · ·
a2B
a2b


where a2B is the allele “B” of the 2nd loci. So, for n markers we have 2n effects. Classic theory
(e.g. (Falconer and Mackay 1996) shows that this can be reduced to one effect by locus. We code
in an additive way, as a regression of genetic value on gene content. The three classical ways of
coding are:

Table 12: Additive coding for marker effects at locus i with reference
allele A

Genotype 101 Coding 012 Coding Centered coding
aa −ai 0 −2piai
Aa 0 ai (1− 2pi)ai
AA ai 2ai (2− 2pi) ai

where pi is the frequency of the reference allele (“A” in this case) at the i-th locus. In the example
above, we have three possible Z matrices:

101 coding: Za =


−1 0
1 −1
0 −1
−1 −1

(a1
a2

)

012 coding: Za =


0 1
2 0
1 0
0 0

(a1
a2

)

centered coding: Za=


−0.75 0.75
1.25 −0.25
0.25 −0.25
−0.75 −0.25

(a1
a2

)

for the “centered” coding, allelic frequencies where 0.375 and 0.125; it can be verified that each
column of centered Z sums to 0. This will be true if allelic frequencies are computed from
observed data. VanRaden (VanRaden 2008) defined matrix M as Z with 101 coding and then
Z=M−P, where P is a matrix with 2(pi − 0.5) or P = 2p′.

Which allele to pick as a reference is arbitrary. If the other allele is chosen (as in the next Table),
then the numbers in Z are reversed.
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Table 13: Additive coding for marker effects at locus i with reference
allele a.

Genotype 101 Coding 012 Coding Centered coding
aa ai 2ai (2− 2pi) ai
Aa 0 ai (1− 2pi)ai
AA −ai 0 −2piai

As a result, estimates for marker effects ai will change sign but the absolute value will be the
same. Hence, u = Za will be the same regardless of the coding.

10.2 Effect of prior information on marker estimates
Bayesian regressions are affected by the prior distribution that we assign to marker effects. One
of the concerns is to be “fair” about the prior distribution when making predictions. The problem
is that the marker effect can be either too much shrunken (so that its estimate is too small, for
instance if there is a major gene) or too little shrunken, in which case the estimate of the marker
contains too much error and is completely wrong. Consider one marker. We have a likelihood
information for this marker (its effect on the trait) and a prior information from “outside”. What
happens if this prior information is wrong?

The following two examples illustrate this. In both cases we estimate the marker effect as

lhs = 1′1
σ2
e

+ 1
σ2
a

â = lhs−11′y/σ2
e

10.2.1 Marker effect is fixed

Assume that we have 10 records, and the marker has a “true” effect of 0.2, and this effect is
constant across replicates. For instance, DGAT1 is a known gene, and it is hard to think that its
effect would change across different Holstein populations. We assume different prior variances for
the marker, σ2

a = {0.01, 0.1, 1, 10, 100}, and σ2
e = 1. We have simulated 1000 data sets, and

estimated the marker effect for each replicate; then plotted in the next Figure the error (as a
boxplot) against the “no error” (in red), for each assumed marker variance.

It can be seen that when σ2
a is “large” the estimator is unbiased (on average there is no error)

but each individual estimate has very large error (for instance there are errors of 4). When some
shrinkage is used (i.e., for σ2

a = 1) the effect is slightly underestimated but large exaggerations
never happen. Thus, across repetitions, the mean square error (blue stars) is minimized for small
values of assumed σ2

a.

10.2.2 Marker effect is random

In this case, the marker has different effects across populations because it is on feeble LD with
some QTL. Then the “true” effect of the marker may change all the time, because at each
generation LD will be different. Thus, we can say that the marker effect is random and it comes
from some distribution. If the true variance of the marker effect is σ2

a = 1, we obtain the results
on the bottom of the Figure. All methods are unbiased (there is no systematic error) but putting
the right variance give us the minimum error, as seen by the blue stars.

10.3 Genetic variance explained by markers
A population of n individuals has different breeding values u1 . . . un . These individuals have a
certain genetic variance V ar (u) = σ2

u. If markers are genes: which part of the genetic variance is
explained by each marker? This is just basic quantitative genetics. If a marker has an effect of ai
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Figure 9: Distribution (boxplots) of errors in the estimate of one marker effect for different levels
of shrinkage (X axis). No error is the red line. Blue stars indicate the square root of the mean
square error

for each copy of the A allele, we have p2 individuals with a value of u = +2ai, q2 individuals
with a value of u = 0, and 2pq individuals with a value of u = ai . Then the variance explained
by this marker is V ar (u) = E

(
u2)− E (u)2 , which is developed in the following Table

Table 14: Variance explained by one marker

Genotype Frequency u2 u

AA p2 4a2
i 2ai

Aa 2pq a2
i ai

aa q2 0 0
Average 4p2a2

i + 2pqa2
i 2pai

So, finally the variance explained by one marker is 4p2a2
i + 2pqa2

i − (2pai)2 = 2pqa2
i . Markers

with intermediate frequencies will explain most genetic variation. This is one of the reasons to
ignore markers with low allele frequency.
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10.3.1 Total genetic variance explained by markers

These are classic results also. Consider two markers, and consider that we know their effects ai.
The genetic value of an individual with genotype z will be u = z1a1 + z2a2 . Variance in the
population comes from sampling of genotypes (i.e., some individuals have one genotype while
others have another genotype). Then V ar(u) = V ar(z1)a2

1 + V ar(z2)a2
2 + 2Cov(z1, z2)a1a2. The

term V ar (z1) = 2p1q1. The term Cov (z1, z2) turns out to be (z1, z2) = 2r√p1q1p2q2 , where r is
the correlation measuring linkage disequilibrium. The term a1a2 implies that marker effects go in
the same direction. Therefore, for the covariance between loci to enter into the genetic variance,
the two markers need to be on linkage disequilibrium and at the same time their effects need to
point in the same direction. Although Bulmer effect generates, in selected populations, linkage
disequilibrium, we will ignore it here; in this case, on average this term will typically cancel out.

Either assuming linkage equilibrium or assuming that markers are uncorrelated one to each other,
then, V ar (u) = V ar (z1) a2

1 +V ar (z2) a2
2 = 2p1q1a

2
1 + 2p2q2a

2
2, and variances of each marker can

simply be added. If we generalize this result to many markers, we have that

σ2
u = V ar (u) = 2

nsnp∑
i

piqia
2
i

However, in most cases we do not know the marker effects. We may, though, have some prior
information on them, like their a priori variance (the a priori mean is usually taken as zero). If
this is the case, then we can substitute the term a2

i by its a priori expectation, that is, σ2
ai and

therefore: σ2
u = V ar(u) = 2

∑nsnp
i piqiσ

2
ai.

If we assume that all markers have the same variance a priori σ2
ao (say σ2

a1 = σ2
a2 = σ2

a3 = . . . =
σ2
a0, then σ2

u = 2
∑nsnp
i piqiσ

2
0 = 2σ2

0
∑nsnp
i piqi .We can factor out σ2

ao and we have the famous
identity (Gianola et al. 2009; Fernando et al. 2007; VanRaden 2008; Habier, Fernando, and
Dekkers 2007 ):

σ2
a0 = σ2

u

2
∑nsnp
i piqi

This puts the a priori variance of the markers as a function of the genetic variance of the
population. This result is used over and over in these notes and in most applications in genomic
prediction.

10.3.2 Genetic variance explained by markers after fitting the data

This is actually fairly simple. After fitting the model to the data, there is an estimate â for each
marker. We may say that each marker i explains a variance 2piqiâ2

i . Therefore, and contrary to
common assertions, the genetic variance contributed by each marker is NOT the same across
all markers, and this is true for any method. Also, note that 2

∑
piqiâ

2
i underestimates the

total genetic variance, because estimates âi are shrunken towards 0. Better estimators will be
presented later in, among others, GREML and BayesC.

10.4 Prior distributions for marker effects
From previous sections, it is clear that shrinking or, in other words, use of prior distributions
for markers is a good idea. Therefore, we need a prior distribution for marker effects, which is
notoriously difficult to conceive. Complexity comes, first, because markers are not genes per se,
rather, they tag genes. But even the distribution of gene effects is unknown. There is a growing
consensus in that most complex traits are highly polygenic, with hundreds to thousands of causal
genes, most frequently of small effect. So, the prior distribution must include many small and
few large effects. Also, for practical reasons, markers are assumed to be uncorrelated – even if
they are close. For instance, if two markers are in strong linkage disequilibrium, they will likely
show a similar effect after fitting the model, because they will have similar incidence matrices in
Z. But before fitting the model, we cannot say that their effects will be similar or not. This is
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even exaggerated because there is arbitrariness in defining the sense of the coding; naming “A”
or “a” the reference allele will change the sign of the marker effect.

Many priors for marker effects have been proposed in the last years. These priors come more from
practical (ease of computation) than from biological reasons. Each prior originates a method or
family of methods, and we will describe them next, as well as their implications.

1. Normal distribution: Random regression BLUP (RR-BLUP), SNP-BLUP, GBLUP

2. Normal distribution with unknown variances: BayesC, GREML, GGibbs

3. Student (t) distribution : BayesA

4. Mixture of Student (t) distribution and spike at 0: BayesB

5. Mixture of Normal distribution and spike at 0: BayesCPi

6. Double exponential: Bayesian Lasso

7. Mixture of a large and small normal distribution: Stochastic Search Variable Selection
(SSVS)

10.5 RR-BLUP or SNP-BLUP
In these notes, I will keep the name GBLUP for the model using genomic relationship matrices
that will appear later, and the name SNP-BLUP for estimating marker effects.

The SNP-BLUP model for the phenotypes is typically something like:

u = Xb + Za + e

with b fixed effects (i.e., an overall mean), a marker effects, and e residual terms, with V ar (e) = R
and usually R=Iσ2

e . Matrix Z contains genotypes coded in any of the forms that we have described
previously (usually centered, 012 or 101).

The prior for markers can be written as:

p (a) =
∏

i=1,nsnp
p(ai)

where

p (ai) = N
(
0, σ2

a0
)

each marker effect follows a priori a normal distribution with a variance σ2
a0 (that we will term

hereinafter “variance of marker effects”). Note that the “0” implies that this variance is constant
across markers.

From the Figure, it can be remarked that in a normal distribution most effects are concentrated
around 0, whereas few effects will be larger than, say, a value of 3. Therefore, the prior assumption
of normality precludes few markers of having very large effects – unless there is a lot of information
to compensate for this prior information.

We assume that markers are independent one from each other. This can be equivalently written
as:

p(a) = MVN(0,D); V ar(a) = D = Iσ2
a0

where MVN stands for multivariate normal. This formulation including D will be used again
throughout these notes.
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Figure 10: Standard normal distribution

10.5.1 Mixed Model equations for SNP-BLUP

10.5.1.1 Single trait The great advantage of the normal distribution is its algebraic easiness.
Whereas in most cases marker effects are estimated using Gibbs Sampling, as we will see later
on, there are closed formulae for estimators of marker effects. We can use Henderson’s Mixed
Model Equations:

(
X′R−1 X X′R−1Z
Z′R−1X Z′R−1 Z+D−1

)(
b̂
â

)
=
(

X′R−1y
Z′R−1y

)
Note that this is a linear estimator. If V ar(a) = D = Iσ2

a0 and V ar (e) = R = Iσ2
e , then we can

simplify them to

(
X′X X′Z
Z′X Z′Z + Iλ

)(
b̂
â

)
=
(

X′y
Z′y

)
with λ = σ2

e/σ
2
a0 . This expression is also known as Ridge Regression, although the Ridge

Regression literature presents Iλ (or D) merely as a computational device to warrant correct
estimates, and genetics literature presents λ as the ratio of residual to genetic variances. (We
don’t like the name Ridge Regression for this reason). Following traditional notations, we will

talk about lhs (left hand side of the equations) and rhs (right hand side): lhs
(

b̂
â

)
= rhs .

These equations have unusual features compared to regular ones. First, the dimension is
(number of fixed effects + number of markers)2 but does not depend on the number of animals.
Second, they are very little sparse. Matrix Z′Z is completely dense and full.

For instance, assume Za=


−1 0
1 −1
0 −1
−1 −1

(a1
a2

)
(four individuals and two markers), an overall mean

and λ = 0.5. Then

(
X′X X′Z
Z′X Z′Z + Iλ

)
=

 4 −1 −3
−1 3 + 0.5 0
−3 0 3 + 0.5
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10.5.1.2 Multiple trait For a multiple trait model, the equations are as above:

(
X′R−1 X X′R−1Z
Z′R−1X Z′R−1 Z+D−1

)(
b̂
â

)
=
(

X′R−1y
Z′R−1y

)
but R and D include multiple trait covariances, e.g. R=I⊗R0 and D = I⊗ Sa0.

10.5.2 How to set variance components in BLUP-SNP

Henderson’s equations assume that you know the values of two variance components, the variance
of marker effects (σ2

a), and the residual variance (σ2
e). There are two possible strategies. The

most common one is to use the relationship between the genetic variance and the a priori marker
variance and to use

σ2
a0 = σ2

u

2
∑nsnp
i piqi

where σ2
u is an estimate of the genetic variance (e.g., obtained from previous pedigree-based

studies) and p are marker frequencies (q = 1− p). These allelic frequencies should be the ones
in the population where the genetic variance was estimated (e.g., the base population of the
pedigree) and not the current, observed populations. However, p are usually obtained from the
data, so there is some error (although often negligible) and we will come back to this later. Also,
sometimes the genetic variance that is used in the “large” (national) genetic evaluations does not
match well the genetic variance existing in the population with genotypes. But the equation

σ2
a0 = σ2

u

2
∑nsnp

i
piqi

is usually a good guess.

As for the residual variance, it can be taken as well from previous studies.

For the multiple trait case, Sa0 = G0/2
∑nsnp
i piqi where G0 is a matrix with estimates of the

genetic covariances across traits.

10.5.3 Solving for marker effects

Mixed model equations as above can be explicitly setup and solved but this is expensive. For
instance, setting up the equations would have a cost of n2markers times mindividuals, and
inverting them of n3. Alternative strategies exist (Legarra and Misztal 2008; VanRaden 2008;
Strandén and Garrick 2009). They involve working with genotype matrix Z without setting
up explicitely the mixed model equations. This can be done using iterative solving, where new
solutions are based on old ones, and as iteration proceeds they are better and better until we can
stop iterating. Two such procedures are the Gauss Seidel and the Preconditioned Conjugated
Gradients Algorithm or PCG. These were explained in detail by (Legarra and Misztal 2008).

Gauss Seidel proceeds to solve each unknown pretending than the other ones are known. So, if
we deal with the i-th marker at iteration l+ 1, the mixed model equations for that marker reduce
to a single equation:

(
z
′

izi + λ
)
âl+1
i = z

′

i (y−Xb̂−Zâ + ziâli)

This needs n operations for each marker, with a total of n2 operations for each complete round
of the Gibbs Seidel (e.g., 500002 for a 50K chip). However, it is easy to realize that the term
within the parenthesis is the residual term “so far”, êl:

(
z
′

izi + λ
)
âl+1
i = z

′

i

(
êl + ziâli

)
= z

′

iêl + z
′

iziâli

So the operation can be changed to a simpler one with a cost of n. The error term needs to be
corrected after every new solution of the marker effect, using
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êl+1 = êl − zi
(
âl+1
i − âli

)
With a cost of m (number of records) for each marker, and mn for a complete iteration. This
strategy is called Gauss Seidel with Residual Update . A pseudo code in Fortran follows; a working
code in R is at the Appendix:

Double precision:: xpx(neq),y(ndata),e(ndata),X(ndata,neq), &
sol(neq),lambda,lhs,rhs,val
do i=1,neq

xpx(i)=dot_product(X(:,i),X(:,i)) !form diagonal of X'X
enddo
e=y
do until convergence

do i=1,neq
!form lhs X’R-1X + G-1
lhs=xpx(i)/vare+1/vara
! form rhs with y corrected by other effects (formula 1) !X’R-1y
rhs=dot_product(X(:,i),e)/vare +xpx(i) *sol(i)/vare
! do Gauss Seidel
val=rhs/lhs
! MCMC sample solution from its conditional (commented out here)
! val=normal(rhs/lhs,1d0/lhs)
! update e with current estimate (formula 2)
e=e - X(:,i)*(val-sol(i))
!update sol
sol(i)=val

enddo
enddo

PCG is a strategy that uses a generic solver and proceeds by successive computations of the

product
(

X′X X′Z
Z′X Z′Z+Iλ

)(
b̂l
âl
)
. This can be easily done in two steps as

(
X′X X′Z
Z′X Z′Z + Iλ

)(
b̂l
âl
)

=
(

X′

Z′
)((

X Z
)(b̂l

âl
))

+
(

0
Iλâl

)

Again, only matrix Z is used but its cross-product Z′Z is never computed.

Benefits of GSRU and PCG depend on the number of markers, but for large numbers they are
extremely fast. For instance, a Fortran code with PCG can solve for three thousand records
and one million markers in minutes. PCG has a (much) faster convergence than GSRU: see the
graphs below. This makes it attractive for large application. However, GSRU can be converted
with very few changes into a Gibbs Sampler application.

10.6 Estimating variances from marker models: BayesC with Pi=0
Often, estimates of variance components from field data are unreliable, too old, or not directly
available. In this case, it is simpler to estimate those variances from marker data. Although this
is typically done using GREML, it can also be done in marker models. This was the case of (A.
Legarra, Robert-Granié, Manfredi, et al. 2008) in mice, and it has later been used to estimate
genetic variances in wild populations (Sillanpaa 2011). It is very simple to do using Bayesian
inference, and posterior estimates of the variances σ2

a and σ2
e are obtained. One of such programs

is GS3 (Legarra, Ricardi, and Filangi 2011). This method has been described by (Habier et al.
2011) as BayesC with Pi=0 and that is how we will cite it.

The algorithm is fairly simple from a GSRU iteration scheme. Instead of iterating the solution,
we sample it, then we sample the marker variance:
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Figure 11: Convergence time for a large Holstein data set (left, GSRU in black, PCG in red)

Figure 12: Convergence time for a mice data set (right, PCG line with points)
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do j=1,niter
do i=1,neq

!form lhs
lhs=xpx(i)+1/vara
! form rhs with y corrected by other effects (formula 1)
rhs=dot_product(X(:,i),e)/vare +xpx(i) *sol(i)/vare
! MCMC sample solution from its conditional
val=normal(rhs/lhs,1d0/lhs)
! update e with current estimate (formula 2)
e=e - X(:,i)*(val-sol(i))
!update sol
sol(i)=val

enddo
! draw variance components
ss=sum(sol**2)+ Sa
vara=ss/chi(nua+nsnp)
ss=sum(e**2)+ Se
vare=ss/chi(nue+ndata)

enddo

The algorithm requires initial values of variances and also prior information for them. Typical
prior distributions for variance components are inverted-chi squared (χ−2) scaled by constants
(S2
a and S2

e for marker and residual variances) with some degrees of freedom (νa and νe). The
degrees of freedom represent the amount of information put on those variances and therefore
whereas 4 is a small value (and almost “irrelevant”) 10,000 is a very strong prior. Typical values
used in practice can be 4, for instance. On expectation, if we use a priori S2

e and νe then
E
(
σ2
e

∣∣Se, νe) = S2
e/νe. One may use previous estimates and put therefore

S2
e = σ2

eνe

Sa = σ2
a0νa; σ2

a0 = σ2
u

2
∑nsnp
i piqi

NOTE In other parameterizations E
(
σ2
e

∣∣Se, νe) = S2
e and E

(
σ2
a

∣∣Sa, νa) = S2
a and therefore the

Scale factor is in the same scale as the regular variances, and we can use S2
e = σ2

e and S2
a = σ2

a0.
This is the case for GS3 and the blupf90 family (Aguilar et al. 2018).

This is equivalent to what will be discussed in next chapter about GREML and G-Gibbs.

10.7 Transforming marker variance into genetic variance
We can use the previous result to get the genetic variance from the marker variance:

σ2
u = 2σ2

a0

nsnp∑
i

piqi

This is ONE estimate of genetic variance. It does not necessarily agree with other estimates for
several reasons, mainly, different genetic base, different genetic model, and different data sets.
However, published papers in the livestock genetics do NOT show much missing heritability –
estimates of genetic variance with pedigree or markers usually agree up to, say, 10% of difference.

10.7.1 Example with mice data

An example is interesting here. The mice data set of (A. Legarra, Robert-Granié, Manfredi, et al.
2008) produced estimates of genetic variance based on pedigree and of marker variance based on
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markers, which are summarized in the following table. The column σ2
u – markers is obtained

multiplying σ2
a0 by 2

∑
piqi=3782.05.
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Table 15: Variance components in mice data

σ2
u - pedigree σ2

a0 σ2
u - markers

Weight 4.59 3.52× 10−4 1.33
Growth slope (times 10−4) 8.37 1.04× 10−3 3.93
Body length 0.040 9.09× 10−6 0.034
Body Mass Index (times 10−4) 2.49 0.80× 10−3 3.02

Results are sometimes different, why? One reason is that pedigree estimates in this particular
data set are little reliable, because there is a confusion between cage and family. Markers provide
more accurate estimates. Another reason is that the genetic variances estimated with pedigrees or
with markers refer to two slightly different populations. Genetic variance estimated with markers
refers to an ideal population in Hardy-Weinberg equilibrium and with certain allele frequencies;
these are the hypothesis underlying the expression σ2

u = σ2
a0 2

∑
piqi. Genetic variance estimated

with pedigree refers to an ideal population in which founders of the pedigree are unrelated. The
fact that we refer to two different ideal populations is referred to as different genetic bases
(VanRaden 2008; Hayes, Visscher, and Goddard 2009) . There are essentially two methods to
compare estimates from two different bases, presented by (Legarra 2016; Lehermeier et al. 2017),
although they refer more to a GBLUP framework.

It can be shown that if we have a pedigreed population and markers for this population, on
expectation both variances are identical in Hardy-Weinberg and absence of inbreeding. We will
come back to this notion later on the chapter on GBLUP and genomic relationships, and we will
see how to deal with it.

10.8 Differential variances for markers
Real data, shows the presence of large QTLs (or major genes, if you prefer) in the genome. We
have seen before that shrinking markers results in smaller estimates than their “true” value. On
the other hand, this avoids too much error in estimation. So how can one proceed? One way is
to assign shrinkage differentially. Let’s look at the equation for one marker effect:

âi =
z′iỹ
σ2
e

z′
i
zi
σ2
e

+ 1
σ2
a

Where ỹ means “y corrected by all other effects” and σ2
ai is the shrinkage of that marker. In

BLUP-SNP, we assume σ2
ai = σ2

a0 to be constant in all markers.

It would be nice to progressively update σ2
ai in order to get better estimates; intuitively, this

means that the larger âi, the larger σ2
ai. However, this cannot be done easily because we know

that giving too much (or too little) value to σ2
ai results in bad estimates. In turn, this will give

bad estimates of σ2
ai simply because we predict the variance of one marker with the estimate of a

single marker.

10.8.1 REML formula for estimation of single marker variances

From old REML literature (e.g., see Ignacy Misztal notes), the EM formula for marker estimation
should be:

σ̂2
ai = â2

i + C ii

where C ii is the element corresponding to the i-th marker on the inverse of the Mixed Model

Equations
(

X′R−1 X X′R−1 Z
Z′R−1X Z′R−1 Z+D−1

)(
b̂
â

)
=
(

X′R−1y
Z′R−1y

)
.
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This expression has two parts, the first, â2
i , is the marker estimate to the square. However this

estimate is way too shrunken (i.e. if the true effect of the marker is 7, the estimate may be 0.3),
and the second part, C ii, compensates for this lack of information. It is known as the missing
information. This estimate can be obtained from a GBLUP context (Shen et al. 2013). However,
the equation is almost certainly wrong because there is just one marker effect, and even if it was,
the estimate is very inaccurate, because there is only one marker effect to estimate one variance
component.

10.8.2 Bayesian estimation of marker variances

Marker “variances”, can, however, be included within a Bayesian framework. The Bayesian
framework will postulate a non-normal distribution for marker effects, and this non-normal
distribution can be explained as a two-stages (or hierarchical) distribution. In the first stage, we
postulate that each marker has a priori a different variance from each other:

p
(
ai
∣∣σ2

ai
)

= N
(
0, σ2

ai
)

In the second stage, we postulate a prior distribution for the variance themselves:

p
(
σ2

ai
∣∣something

)
= p(. . .)

This prior distribution helps (the estimate of σ2
ai is more accurate, in the sense of lower mean

square error) although it will still be far from reality (e.g. (Gianola et al. 2009)). At any rate,
this way of working is very convenient because the solving algorithm simplifies greatly. Most
Bayesian Regressions are based in this idea.

10.9 BayesA
The simplest idea is to assume that a priori we have some information on the marker variance.
For instance, this can be σ2

a0. Thus, we may attach some importance to this value and use
it as prior information for σ2

ai . A natural way of doing this is using an inverted chi-squared
distribution with S2

a=σ2
a0νa0 scale and νa0 degrees of freedom:

p
(
ai
∣∣σ2

ai
)

= N
(
0, σ2

ai
)

p
(
σ2

ai
∣∣Sa, νa) = Saχ

−2
νa

The value of σ2
a0 should actually be set as

σ2
a0 = ν − 2

ν

σ2
u

2
∑
piqi

Because the variance of a t distribution is ν/(ν − 2).

The whole setting is known as BayesA (Meuwissen, Hayes, and Goddard 2001). It can be shown
that this corresponds to a prior on the marker effects corresponding to a scaled t distribution
(Gianola et al. 2009):

p
(
ai
∣∣σ2
a0, νa

)
= σa0t (0, νa)

which has the property of having “fat tails”. This means that large marker effects are not unlikely
a priori. For instance, having an effect of 4 is 200 times more likely under BayesA with νa = 4
than BLUP-SNP. This can be seen in the Figure below.

48



-5 0 5

0.
0

0.
1

0.
2

0.
3

0.
4

x
dn
or
m
(x
)

Figure 13: A priori distributions for BLUP-SNP (black) and BayesA (red)

Choosing νa is not obvious although small values around 4 are suggested in the literature. High
values give the same results as normal distribution and thus BLUP-SNP. The code for BayesA is
very simple:

do j=1,niter
do i=1,neq

!form lhs
lhs=xpx(i)+1/vara(i)
! form rhs with y corrected by other effects
rhs=dot_product(X(:,i),e)/vare +xpx(i) *sol(i)/vare
! MCMC sample solution from its conditional
val=normal(rhs/lhs,1d0/lhs)
! update e with current estimate (formula 2)
e=e - X(:,i)*(val-sol(i))
!update sol
sol(i)=val

! draw variance components for markers
ss=sol(i)**2+nua*Sa
vara(i)=ss/chi(nua+1)

enddo
! draw variance components for residual
ss=sum(e**2)+nue*Se
vare=ss/chi(nue+ndata)

enddo

10.10 BayesB
A very common thought at the beginning of Genomic Evaluation was that there were not many
QTLs. So a natural thinking is to consider that many markers do not have effect because they
cannot trace QTLs. This originated the method known as BayesB, that simply states that the
individual marker variance σ2

ai is potentially zero, and this can be find out. Note that this cannot
happen for BayesA: the a priori chi-squared distribution prevents any marker variance from being
zero.

This idea corresponds to a more complex prior as follows:

p
(
ai
∣∣σ2

ai
)

= N
(
0, σ2

ai
)

{
p
(
σ2

ai
∣∣Sa, νa) = Saχ

−2
νa with probability 1− π

p
(
σ2

ai
∣∣Sa, νa) = 0 with probability π

Then, when σ2
ai = 0 it follows that ai = 0.
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Intuitively, this prior corresponds to the following figure. The arrow means that there is a fraction
π of markers with zero effect.
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Figure 14: A priori distribution for BayesB

BayesB has a complex algorithm because it does involve the computation of a complex likelihood.
Details on its computation can be found on Rohan Fernando’s notes (http://www.ans.iastate.ed
u/stud/courses/short/2009/B-Day2-3.pdf ; slides 20 and 34; http://taurus.ansci.iastate.edu/wik
i/projects/winterworkshop2013 , Notes, p. 42). and also in (Villanueva et al. 2011).

10.11 BayesC(Pi)
Whereas the premises in BayesB seem interesting, the algorithm is not. Further, experience
shows that it is sensible to prior values of S2

a, νa and π. As explained in (Habier et al. 2011),
this suggests the possibility of a simpler prior scheme where markers having an effect would be
assigned a “common” variance, say σ2

a0. This is simpler to be explained by introducing additional
variables δi which explain if the i-th marker has an effect or not. In turn, these variables δ have
a prior distribution called Bernouilli with a probability π of being 0. Therefore the hierarchy of
priors is:

p (ai|δi) =
{
N
(
0, σ2

ai
)
if δi = 1

0 otherwise

p
(
σ2
a0
∣∣Sa, νa) = Saχ

−2
νa

p (δi = 1) = 1− π

Where Sa can be set to something like S2
a=σ2

a0νa0 with

σ2
a0 = σ2

u

(1− π) 2
∑
piqi

Experience shows that this prior hierarchy is more robust than BayesB, the reason being that, at
the end (after fitting the data), the values of σ2

a0 are little dependent on the prior. Thus the
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model may be correct even if the prior is wrong. Also, the complexity of the algorithm is greatly
simplified, and can be summarized as follows:

do j=1,niter
do i=1,neq
...
! compute loglikelihood for state 1 (i -> in model)
! and 0 (not in model)
! Notes by RLF (2010, Bayesian Methods in
! Genome Association Studies, p 47/67)
v1=xpx(i)*vare+(xpx(i)**2)*vara
v0=xpx(i)*vare
rj=rhs*vare ! because rhs=X’R-1(y corrected)
! prob state delta=0
like2=density_normal((/rj/),v0) !rj = N(0,v0)
! prob state delta=1
like1=density_normal((/rj/),v1) !rj = N(0,v1)
! add prior for delta
like2=like2*pi; like1=like1*(1-pi)
!standardize
like2=like2/(like2+like1); like1=like1/(like2+like1)
delta(i)=sample(states=(/0,1/),prob=(/like2,like1/)
if(delta(i)==1) then
val=normal(rhs/lhs,1d0/lhs)

else
val=0

endif
...
enddo

pi=1- & beta(count(delta==1)+aprioriincluded,
count(delta==0)+apriori_not_included)

ss=sum(sol**2)+nua*Sa
vara=ss/chi(nua+count(delta==1))
...

enddo

10.11.1 Markers associated to the trait

The value of 1 − π (the number of markers having an effect) can be either fixed to a value or
estimated from data. This is achieved in the last lines of the code above. How is this possible?
Intuitively, we look at the number of markers who have (δ = 1) or not (δ = 0) an effect. Then
we add a prior information on π. This comes in the form of a Beta(a, b) distribution, which is a
distribution of fractions between 0 and 1, saying that our fraction is a priori “like if” we had
drawn a black balls and b red balls from an urn to make π = a/(a+ b).

The genetic variance explained by markers in BayesC(Pi) is equal to

σ2
u = σ2

a0 (1− π) 2
∑

piqi

Thus, the same total genetic variance can be achieved with large values of σ2
a0 and small values

of (1− π) or the opposite. This implies that there is a confusion between both, and it is not easy
to find out how many markers should be in the model. For instance, (Colombani et al. 2013)
reported meaningful estimates of π for Holstein but not for Montbeliarde.

Concerning markers, we have indicators of whether a given marker “is” or “is not” in the model,
and these have been used as signals for QTL detection. However this is not often as expected.
The output of BayesC(Pi) will be δ̂i , the posterior mean of δi. This value will NOT be either 0
or 1 but something in between. So BayesCPi cannot be used to select “the set of SNPs controlling
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the trait” because such a thing does not exist: there are many possible sets. The following graph
shows the kind of result that we obtain:

Figure 15: QTL signals from BayesCPi with Pi=0.999

How can we declare significance? There is no such thing as p-values. We may though use the
Bayes Factor (Wakefield 2009 ; Varona 2010) :

BF =
p(SNP in the model|data)

p(SNP not in the model|data)
p(SNP in the model)

p(SNP not in the model)

In our case this is:

BFi = (1− π)
π

p (δi = 1 | y)
1− p (δi = 1 | y)

What thresholds should we use for BF? Some people suggest using permutations → too long. We
can use a scale adapted by (Kass and Raftery 1995) sometimes used in QTL detection (Varona,
García-Cortés, and Pérez-Enciso 2001 ; Vidal et al. 2005):

• BF= 3-20 "suggestive"

• BF= 20-150 "strong "

• BF>150 "very strong"

Something remarkable is that there is no need for multiple testing (Bonferroni) correction
because all SNP were introduced at the same time, and the prior already « penalizes » their
estimates (Wakefield 2009). We compared several strategies for GWAS including BayesCPi and
our conclusion is that all result in similar results (Legarra, Croiseau, et al. 2015).

10.12 Bayesian Lasso
The Bayesian Lasso (Park and Casella 2008 ; Campos et al. 2009 ; A. Legarra, Robert-Granié,
Croiseau, et al. 2011) suggests a different way to model the effect of markers. Instead of setting
a priori some of them to 0, it sets them to very small values, as in the following Figure.

This corresponds in fact to the following a priori distribution of markers:
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Figure 16: Prior distribution of marker effects for the Bayesian Lasso

p (ai|λ) = λ

2σ exp
(
−λ |ai|

σ

)
where the density function is on the absolute value of the marker and not on its square like in the
normal distribution. Coming back to our notion of variance of markers, (Park and Casella 2008 ;
Campos et al. 2009 ) showed that the model is equivalent to a model with individual variances
by marker, that is:

p
(
ai
∣∣σ2

ai
)

= N
(
0, σ2

ai
)

p
(
σ2

ai
∣∣λ) = λ2

2 exp
(
−λ

2

2
σ2

ai
σ2

)
(NOTE: the λ here has nothing to do with the λ in BLUP-SNP). The latter density function is
a prior distribution on the marker variances that is known as exponential. This is very similar
to BayesA, in that a prior distribution is postulated for marker variances. The difference is
the nature of this prior distribution (exponential in Bayesian Lasso and inverted chi-squared
in BayesA), that can be seen in the following Figure. It can be seen that, whereas in Bayesian
Lasso very small variances are a priori likely, this is not the case in BayesA.

Figure 17: Shapes of the prior distribution of marker variances for the Bayesian Lasso (left) and
Bayes A (right)
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In practice, we have found that the Bayesian Lasso has a much better convergence than BayesCPi,
while being as accurate for predictions (Colombani et al. 2013)).

10.12.1 Parameterization of the Bayesian Lasso

The term σ in the parameterization above has been subject to small debate. The original
implementation of (Park and Casella 2008) considered σ2 = σ2

e , the residual variance. (A.
Legarra, Robert-Granié, Croiseau, et al. 2011) objected that it was unnatural to model the
distribution of markers on the distribution of residuals and suggested setting σ2 = 1. In this way,
the interpretation of λ is quite straightforward as a reciprocal of the marker variance, because in
such case V ar (ai|λ) = 2/λ2. In this case, a natural way of fitting the prior value of λ is as

2
λ2 = σ2

u

2
∑
piqi

This is the default in software GS3. The algorithm with this parameterization is rather simple:

do j=1,niter
do i=1,neq
!form lhs
lhs=xpx(i)+1/vara(i)
rhs=dot_product(X(:,i),e)/vare +xpx(i) *sol(i)/vare
val=normal(rhs/lhs,1d0/lhs)
e=e - X(:,i)*(val-sol(i))
sol(i)=val
! draw variance components
ss=sol(i)**2
tau2(i)=1d0/rinvGauss(lambda2/ss,lambda2)

enddo
! draw variance components
ss=sum(e**2)+nue*Se
vare=ss/chi(nue+ndata)
! update lambda
...

enddo

The alternative implementation takes σ2 = σ2
e , and can be found in R package BLR (Pérez et al.

2010). In this case, a natural way of fitting the prior value of λ is as (Pérez et al. 2010)

2
λ2 = σ2

u

σ2
e2
∑
piqi

In this case, λ can be thought of as a ratio between marker variance and residual variance
(signal-to-noise). Both parameterizations are not strictly equivalent depending on the priors used
for λ and the different variances, but they should give very similar results (in spite of Legarra
et al. 2011b()).

10.13 Stochastic Search Variable Selection
Yet another method, it does postulate two kinds of markers: those with a large effect, and those
with a small (but not zero) effect. These are, similarly to BayesC(Pi), reflected in two variances,
one for the large effects (σ2

al) and one for the small effects (σ2
as). The idea was from (George and

McCulloch 1993), and details can be found in e.g. (Verbyla et al. 2009). The advantage of this
method is that it is rather fast and does not require likelihood computations, although choosing
a priori the proportions of “large” and “small” effects might be tricky.
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10.14 Overall recommendations for Bayesian methods
BayesB seems to be little robust. The other methods are reasonably robust. My (AL) personal
suggestion is to start from BLUP-SNP, which is very robust, then progress to other methods.
Meaningful prior information (for instance how to set up λ from genetic variance) is relevant,
if not for anything else, to have correct starting values. Bayesian methods often give similar
precisions than BLUP-SNP, but important exceptions such as fat and protein content in dairy
cattle do exist.

10.15 Empirical single marker variances from marker estimates
In SNP-BLUP (or equivalently, from GBLUP) it is easy to get marker estimates but running a
full Bayesian analysis can be long or impossible. So, people came with ideas to get these weights
(VanRaden 2008 ; Wang et al. 2012 ; Fragomeni et al. 2017)

• Quadratic: σ̂2
ai ∝ â2

i . In (Wang et al. 2012), the weight is actually σ̂2
ai ∝ 2piqiâ2

i , but this
is a mistake as 2piqiâ2

i the variance in the population explained by the marker, and not the
variance of the marker effect itself. This quadratic weight tends to diverge as markers tend
to extreme values.

• FastBayesA (Sun et al. 2012): σ̂2
ai ∝

â2
i+νS

2

ν+1 , where the variance is regressed towards some
prior value S2. This scheme also tends to diverge

• nonlinearA (VanRaden 2008):

σ̂2
ai = σ2

a01.125

∣∣∣ âi

sd(̂a)
−2
∣∣∣

10.16 VanRaden’s NonLinear methods
Gibbs samplers are notoriously slow and this hampers the implementation of Bayesian methods
for genomic predictions. VanRaden (VanRaden 2008) presented NonLinearA and NonLinearB,
iterative methods that do not need samplers and converge in a few iterations. NonLinearA
assumes a certain departure from normality, called “curvature” (say c) that oscillates between 1
(regular BLUP-SNP) and 1.25 (Cole et al. 2009), such that the distribution would resemble more
closely a fat-tailed distribution like Bayesian Lasso or BayesA. In our notation, this means that
the marker variance is updated as

σ2
ai = σ2

a0

c
( ∣∣̂ai∣∣

sd
(̂
a1,... ,̂an

)−2

)
The role of the curvature is similar (but goes in the opposite direction) to the degrees of freedom
in BayesA. The more the curvature, the more large marker effects are allowed. For instance, if
c = 1.25 and a marker estimate is an outlier in the distribution of marker estimates, and has for
instance a standardized value of 2.5, its variance σ2

ai will be increased by 1.250.5 = 1.12. To avoid
numerical problems, for small data sets, it is recommended to use c = 1.12 and to impose a limit
of 5 for |̂ai|

sd(̂a1,... ,̂an) (VanRaden, personal communication). This algorithm is fast, stable and
regularly used for dairy cattle genomic evaluation.

The whole setting is very similar to BayesA or to the Bayesian Lasso, with c playing the role of
λ. The prior density for marker effects departs from normality for marker beyond two standard
deviations, as shown in the next Figure. It can be seen that large marker effects are much more
likely in nonlinearA than in a normal density.

The NonLinearB is akin to BayesC(Pi) (some markers are 0 and other share a common variance),
whereas NonLinearAB is similar to BayesA (some markers are zero and others have a variance
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Figure 18: (Left) Shapes of the prior distribution of marker effects for VanRaden nonlinearA
(red) and normal BLUP-SNP (black). (Right) Ratio of nonlinearA/normal densities.

that might change from marker to marker). NonLinearB uses a mixture distribution, in which
σ2
ai is obtained from a average of variances weighted by the likelihood that the marker has zero

effect or not. However the algorithm will not be further detailed here.

10.17 The effect of allele coding on Bayesian Regressions
We have explained how allele coding should (or can) proceed. [(Strandén et al. 2017) analyzed
the result of allele coding in genomic predictions. One need to distinguish carefully two things
here. What we mean by allele coding is coding of matrix Z for genotypes, not the frequencies
used in σ2

a0 = σ2
u

2
∑nsnp

i
piqi

.

One of their results is that, for any model including a “fixed” effect such as an overall mean µ
or a cross-classified effect (e.g., sex) estimates of marker effects â and estimated genetic values
û=Zâ are invariant to parametrization of Z (centered, 101 or 012 or 210), up to a constant.
This constant will go into the overall mean or fixed effect. Consider for instance the mean. The
mean of the genetic values of the population will be 1′û , and this mean is not invariant to
parameterization, and cannot either be separated from the overall mean of the model, µ. If the
centered coding is used, then 1′ û=1′Zâ = 0. As for the marker variance σ2

a0 estimated by, say,
BayesC, they also proved that it is invariant to parameterization of Z.

In other words, we can use any coding (centered, 101 or 012 or 210) in Z for Bayesian methods.
The estimated û will be the same, the estimated σ2

a0 or π will be the same, and the estimated
genetic variance computed using, for instance, σ2

u = σ2
a02
∑nsnp
i piqi will be the same too.

These results are convenient because they assure us that any allele coding is convenient. However,
this result does not apply to the all features. For instance, the standard deviation (and therefore,
in animal breeding words, the “model-based” reliability) of estimated genetic values û is not
invariant to parameterization, because there will be a part of the overall mean absorbed, or not,
by Zâ. This implies that reports of the posterior variance of û will depend on the allele coding.
The same result applies to GBLUP, as we will see later.

10.18 Reliabilities from marker models
10.18.1 Standard errors from Bayesian methods by MCMC

In these methods, at iteration t, samples of distribution of marker effects is obtained in the form
of samples of these effects (ã(t)). At iteration t, samples of the breeding values can be obtained
as ũ(t) = Zã(t). At the end of the MCMC process, the final estimate of the breeding value for,
say, individual i consist of a posterior mean of all ũ for that animal,

ûi = ũi
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and a posterior variance V ar(ûi) = V ar (ũi). This variance (or rather, its square root: the
standard error) can be used in itself as a descriptor of the incertitude of the breeding value. A
95% confidence interval for the breeding value is roughly ûi ± 2sd (ûi).

10.18.2 Reliabilities

Reliabilities are only well defined for a multivariate normal model – SNP-BLUP with fixed σ2
a0.

The first method uses V ar (ûi) as above (i.e. from MCMC). Reliability can be obtained as

Reli = 1− V ar (ûi)
ziz
′
iσ

2
a0

The second method uses the complete a posteriori distribution of marker effects:

V ar (a|y) = Caa

That can be obtained by MCMC or by inversion of the SNP-BLUP equations. From here we can
derive that:

V ar (u|y) = ZCaaZ
′

And therefore V ar (ûi) = ziCaaz′i. The rest proceeds as before.

Imagine for instance that we have 50K markers and 1 million animals in predictions. Imagine
that we use SNP-BLUP equations and we can obtain by inversion Caa, which is a 50K by 50K
matrix. Then, for each animal, we compute ziCaaz′i (which has high cost) and ziz

′

iσ
2
a0 (which

has negligible cost).

These reliabilities have a problem. We know that both ûi and V ar (ûi) are invariant to parametriza-
tion (coding of Z). But ziz

′

i depends on the parametrization, and therefore we can obtain exactly
the same breeding values but different reliabilities in function of the chosen coding.
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11 Genomic relationships
11.1 Reminder about relationships
Wright (1922) introduced the notion of relationships as correlation between genetic effects of two
individuals. For practical reasons, it is more convenient to use what is often called “numerator
relationship” (Quaas 1976) or simply “relationship” or “additive relationship”. This equals
the standardized covariance (not the correlation) between the additive genetic values of two
individuals. The pedigree relationship is not equal to the correlation if there is inbreeding. There
are several terms used to talk about relationships, and here we will present the classical definitions
according to pedigree:

• Coancestry: θij, also called Malecot “coefficient de parenté” or kinship. This is the
probability that two alleles, one picked at random from each one of two individuals i and j,
are identical (by descent). If the individual is the same, alleles are sampled with replacement

• Inbreeding Fk: probability that the two alleles in individual k are identical by descent. If k
is the offspring of i and j, then Fk = θij. Also, θkk = (1 + Fk)/2.

• Additive relationship, or relationship in short, is equal to twice the coancestry: Aij = 2θij.
Also, Akk = 1 + Fk.

• The genetic covariance between two individuals is Cov (ui, uj) = 2θijσ
2
u = Aijσ

2
u.

All these measures of relatedness are defined with respect to a base population constituted by
founders, which are assumed unrelated and carriers of different alleles at causal QTLs. This
generates, as a byproduct, that relationships estimated using pedigrees are strictly positive.
However, this is not the case when we consider marker or QTL information.

Figure 19: Representation of a pedigree. Continuous lines represent known pedigree links. Dotted
lines represent unknown lineages

11.2 Identity by state and identity by descent of two individuals
The probability of Identity by state (IBS), or “molecular” coancestries (that we will denote fMij
) refers to the numbers of alleles shared by two individuals, and it is equal to the probability
that two alleles picked at random, one by individual, are identical. For the purposes of these
notes we will refer to molecular relationships, which are rMij = 2fMij (to be on the same scale as
Aij). These rMij are sometimes called “similarity index” but also as “total allelic relationship”
(Nejati-Javaremi, Smith, and Gibson 1997)). For the two-allele case, this is summarised in the
following table:

Table 16: Molecular relationships for combinations of different
genotypes

AA Aa aa
AA 2 1 0
Aa 1 1 1
aa 0 1 2
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In fact, the molecular relationship can be obtained in a mathematical form without counting
because (Toro, García-Cortés, and Legarra 2011)

rMij = zizj − zi−zj + 2

Where zi is coded as {0, 1, 2}. This expression, connected with genomic relationships, will show
its utility later on.

The identity by state reflected in the molecular relationship rMij and the identity by descent
(IBD) reflected in the pedigree relationships Aij have a well-known relationship that is periodically
revisited (Li and Horvitz 1953 , 1953 ; Eding and Meuwissen 2001 ; Powell, Visscher, and Goddard
2010 ; Toro, García-Cortés, and Legarra 2011). A formal derivation can be found in (Cockerham
1969) (see also (Toro, García-Cortés, and Legarra 2011) . A simple one is as follows. Consider
one allele sampled from individual i and another allele sampled from individual j. They can be
identical because they were identical by descent (with probability Aij/2), or because they were
not identical by descent (with probability 1−Aij/2) but they were identical just by chance (with
probability p2 + q2). Therefore, fMij = θij + (1− θij)

(
p2 + q2) where θij = Aij/2 is the pedigree

coancestry, and

rMij = Aij + (2−Aij)
(
p2 + q2)

also,

Aij = rMij − 2p2 − 2q2

2pq

Thus, IBS is biased upwards with respect to IBD. Reordering we have that:

(1− fMij) = (1− θij)(1− p2 − q2)

Which is in the form of Wright’s fixation indexes. This means that molecular heterozygosity, or
in other words, “not alikeness” of two individuals, equals “not alikeness” by descendance times
“not alikeness” of markers.

There is another important point. The expression above to get IBD relationships from IBS
relationships is identical to VanRaden’s G that will be detailed later, up to a constant. Therefore,
the results will be identical using IBD or IBS relationships. (We will come back to this later).

11.2.1 Covariance between individuals

What does it mean “covariance between individuals”? The covariance is always computed across
several pairs of things:

a b
[1,] 1 1
[2,] 2 2
[3,] 3 3
[4,] 4 3

Here , Cov (a, b) = 1.17

So, how can we define the covariance the genetic value of two individuals iand j (for instance
bulls ALTACEASAR and BODRUM)? These guys are just two – you can’t compute a covariance
with just one pair. ALTACEASAR and BODRUM have a defined true genetic value, that we
don’t know. So, you cannot calculate a covariance between their true breeding values, because
there is only one repetition of the pair. However, the mental construction is as follows. If I
repeated events (or I simulate) in my cattle pedigree (transmission of QTL from parents to
offspring) many times, individuals ALTACEASAR and BODRUM would have inherited different
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QTLs and therefore show different genetic values at different repetitions. The covariance of these
two hypothetical vectors of genetic values is what we call the covariance between individuals.

11.3 Relationships across individuals for a single QTL
Assume that you are studying one species with a single biallelic quantitative gene. You genotype
the individuals and you are asked, what is the covariance between individuals i and j, for which
the genotype is known? Let express the breeding values as functions of the genetic value (za)
deviated from the population mean, µ = 2pa:

ui = zia− 2pa = (zi − 2p) a

uj = zja− 2pa = (zj − 2p) a

where zi is expressed as {0, 1, 2} copies of the allele of reference of the QTL having the effect ai
(let’s say allele A). If the effect of the QTL has some prior distribution with variance V ar (a) = σ2

a,
and the genetic variance in Hardy-Weinberg equilibrium is 2pqσ2

a. It follows from regular rules
of variances and covariances that

Cov (ui, uj) = (zi − 2p) (zj − 2p)σ2
a

If we define z∗i = zi − 2p, in other words, we use the “centered” coding instead of “012”, then the
covariance between two individuals is equal to z∗i z∗j σ2

a .

Dividing the covariance z∗i z∗j σ2
aby the genetic variance 2pqσ2

a we obtain additive relationships
produced by the QTL. I will call these additive relationships rQij. Two examples for p = 0.5 and
p = 0.25 are shown in the next tables:

Table 17: Relationships rQij between individuals for a single QTL
with p = 0.5

AA Aa aa
AA 2 0 -2
Aa 0 0 0
Aa -2 0 2

Table 18: Relationships rQijbetween individuals for a single QTL
with p = 0.25

AA Aa aa
AA 6 2 2
Aa 2 2/3 -2/3
Aa -2/3 -2/3 2/3

11.3.1 Negative relationships

Now, this is puzzling because we have negative relationships. The reason for this is that we have
imposed the breeding values to refer to the average of the population. However, there is no error.
We need to interpret the values as standardized correlations (VanRaden 2008 ; Powell, Visscher,
and Goddard 2010). This was also frequently done by Wright, who would accept “negative”
inbreedings. The intuitive explanation is that if the average breeding value is to be zero, some
animals will be above zero and some below zero. Animals carrying different genotypes will show
negative covariances.
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These relationships can NOT either be interpreted as probabilities. Correcting negative rela-
tionships (or genomic relationships) to be 0 is a serious conceptual error and this gives lots of
problems, yet it is often done.

11.3.2 Centered relationships and IBS relationships

It can be noted that the Table above with p = 0.5 is equal to the Table 16 of molecular (or IBS)
relationships before, minus a value of 1, times 2:

2

2 1 0
1 1 1
0 1 2

−
1 1 1

1 1 1
1 1 1

 =

 2 0 −2
0 0 0
−2 0 2


This shows that relationships at the QTL can be expressed as IBS at the QTL (Nejati-Javaremi,
Smith, and Gibson 1997), and they can be interpreted as twice a probability, as regular rela-
tionships in A. The constant value of 1 across all IBS relationships will be factored out in the
mean (Strandén and Christensen 2011) and models using either parameterization (and also any
assumed p) will give identical estimates of breeding values in the GBLUP context that we will
see later on.

Therefore, using IBS relationships or genomic relationships gives identical estimates of breeding
values –if associated variance components are comparable.

11.3.3 Inbreeding at a single QTL

Inbreeding would be the value of the self-relationship rQii , minus 1. This is puzzling because we
have negative values for heterozygotes. What this means is that there is less homozygosity than
expected (Falconer and Mackay 1996).

11.4 Genomic relationships: Relationships across individuals for many
markers

These methods use SNP to infer relationships among individuals, quantifying the number of
alleles shared between two individuals. Genomic relationships start from identical by state (IBS)
because they consider the fact that two alleles randomly picked from each individual are identical,
independently of origin. However, they are later modified to conform to Identity by Descent.
Pedigree relationships are identical by descent (IBD) because they consider the shared alleles
come from the same ancestor. However, they are also incorrect for two reasons. First, they
consider that the genome is infinite, whereas the genome is in fact not infinite, and therefore the
pedigree relationships will be correct only on average. Second, the pedigree is not infinite – it is
known for a number of generations (the most that I’ve handled is 40).

11.4.1 VanRaden’s first genomic relationship matrix

We proceed to derive relationships for many markers as we did for one QTL. The derivation is
fairly easy and purely statistical. To refer breeding values to an average value of 0, we adopt the
“centered” coding for genotypes described before and shown below:

Table 19: Additive coding for marker effects at locus i with reference
allele A.

Genotype 101 Coding 012 Coding Centered coding
aa −ai 0 −2piai
Aa 0 ai (1− 2pi)ai
AA ai 2ai (2− 2pi) ai

In theory, to refer the breeding values to the pedigree base population, we should use allelic
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frequencies of the base population but these are rarely available (although Gengler’s method can
be used). Often current observed frequencies are used. At any rate, we have that

u = Za

That is, individuals are a sum over genotypes of markers’ effects. We have shown that marker
effects can be considered to have an a priori distribution, and this a priori distribution has a
variance

V ar (a) = D

With

D=


σ2
a1 0 . . . 0
0 σ2

a2 . . . 0
. . . . . . . . . . . .
0 0 . . . σ2

an


If we fit different variances by marker, but that is usually assumed as D = Iσ2

a0. Then, the
variance-covariance matrix of breeding values is

V ar (u) = ZV ar (a) Z
′
= ZDZ

′
= ZZ

′
σ2
a0

Do not confound V ar (u) (which is a matrix) with V ar(u) (which is a scalar V ar (u) = E
(
u2)−

E (u)2 = σ2
u). Elements in ZZ′σ2

a0 are however NOT relationships. Relationships are standardized
covariances. The variance we need to divide by is the genetic variance or, in other words, the
variance of the breeding values of a set of animals. If we assume our population to be in
Hardy-Weinberg and Linkage equilibrium, then we have shown that

σ2
u = 2

nsnp∑
i=1

piqiσ
2
a0

Therefore, we can now divide V ar (u) above by this variance and this gives the genomic relationship
matrix (VanRaden 2008):

G = ZZ′

2
∑
piqi

When we divide ZZ′ by
∑
pi(1− pi), G becomes analogous to the numerator relationship matrix

(A). Quoting VanRaden: “The genomic inbreeding coefficient for individual j is simply Gjj − 1,
and genomic relationships between individuals j and k, which are analogous to the relationship
coefficients of Wright (1922), are obtained by dividing elements Gjk by square roots of diagonals
Gjj and Gkk.” The G matrix measures the number of homozygous loci for each individual in the
diagonals, and it also measures the number of alleles shared among individuals in the off-diagonals.
These measures are not IBS – they are IBS modified by the centering due to allelic frequencies,
and therefore they become a good approximation of real IBD, and this approximation is better
than the approximation than we obtain of the pedigree. This is one of the reasons why genomic
predictions are better than pedigree prediction.

11.4.2 VanRaden’s second genomic relationship matrix

A second matrix suggested by (VanRaden 2008) but made popular by (and often incorrectly
attributed to) (Yang et al. 2010) weights each marker differentially, using a matrix of weights
Dw. V ar (u) = ZDw Z′σ2

u where genomic relationships are
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G = ZDwZ
′

with

Dw=


1

n 2p1q1
0 . . . 0

0 1
n 2p2q2

. . . 0
. . . . . . . . . . . .
0 0 . . . 1

n 2pnqn


Where n is the number of markers. This matrix can be interpreted as a weighted average of
genomic relationships, one by marker:

G = 1
nsnp

nsnp∑
i=1

Gi = 1
nsnp

nsnp∑
i=1

ziz
′

i

2piqi

where zi is a vector with genotypes for marker i. This corresponds as well to V ar (u) = ZDZ′
where

D =


σ2
u

n 2p1q1
0 . . . 0

0 σ2
u

n 2p2q2
. . . 0

. . . . . . . . . . . .

0 0 . . .
σ2
u

n 2pnqn


This “second” genomic relationship, that is quite used, has several problems. The first is that
is very sensible to small allelic frequencies, that will give high weight to very rare alleles. For
monomorphic alleles (p = 0 or 1) the matrix is undefined, which is not the case in the “first G”

The second problem is that it assumes that the contribution of each marker to the overall G are
identical in terms of variance, which means that markers with small allelic frequencies have large
effects. The genetic variance contributed by marker i is equal to σ2

u/n, irrespectively of its allelic
frequence, and σ2

ai = σ2
u/n2piqi. Consider two loci with different allelic frequencies {0.1, 0.5}

and σ2
u = 1. The first loci will have σ2

a1 = 5.5 and the second σ2
a2 = 2. Therefore, using this

matrix imposes different a priori variances of markers depending on their frequencies. This has
no biological reason, in my opinion (AL).

11.4.3 Allelic frequencies to put in genomic relationships

There is some confusion on the allelic frequencies to use in the construction of G. (Strandén and
Christensen 2011) proved that, if the form is G=ZZ′/2

∑
piqi , the allele frequencies used to

construct Z are irrelevant, and the only change from using different allelic frequencies is that
they shift by a constant that is absorbed by the mean. To obtain unbiased values in the same
scale as regular relationships, one should use base population allelic frequencies.

However, the allelic frequency in the denominator is more important. The expression σ2
u =

2
∑nsnp
i=1 piqiσ

2
a0 puts genetic variance in one population as a function of the allelic frequencies

in the same population. Thus, dividing by the current allelic frequencies implies that we refer
to the current genetic variance. If there are many generations between current genotypes and
pedigree base the genetic variance will reduce. Ways to deal with these will be suggested later.

11.4.4 Properties of G

We will refer here to properties derived for G=ZZ′/2
∑
piqi if “observed” genomic relationships

are used.
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11.4.4.1 The average value of u is 0 The first property is that the average value of u is
0, because Z is centered.

11.4.4.2 The average value of G is 0 The second property is that, the average value of
G is 0. The reason for this is that, by centering the matrix Z, the product 1′Z is equal to a row
vector of 0’s, as each column of Z sums to 0 by its centering. And mean(G) = (1′Z)(Z′1)

m22
∑

piqi
with

m the number of animals.

A related property is that in case of Linkage Equilibrium, terms of Z′Z sum to zero, for the
following. These are the crossproducts of covariables associated with loci i and j. In LE, these
crossproducts occur with frequency (1− pi) (1− pj) for the co-occurrence of alleles “a” in i and
“a” in j, (pi) (1− pj) for “A” and “a”, and so on. Then, by summing in order genotypes at
respective loci i and j “a” and “a”, “a”’ and “A”, “A” and “a”, and “A” and “A”, weighted by
the respective frequencies:

E (z′izj) = (1− pi) (1− pj) (−pi) (−pj) +
(pi) (1− pj) (1− pi) (−pj) +
(1− pi) (pj) (−pi) (1− pj) +
(pi) (pj) (1− pi) (1− pj) = 0

A verbal explanation is that, if the average value of u is if 0, then some animals will be more related
than the average and others less related than the average – hence the 0 average relationship.

11.4.4.3 The average value of the diagonal of G is 1 if there is no inbreeding
This requires Hardy-Weinberg (but not linkage equilibrium). This can be seen by noting that
tr
(
ZZ′

)
= tr

(
Z′Z

)
where tr is the trace operator. The expression tr

(
Z′Z

)
is the sum of

squared covariables corresponding to effects of alleles “a” and “A”, which occur in m animals
with respective frequencies 1− pi and pi in locus i. This is:

z
′

izi = 2m
[
(1− pi) p2

i + pi (1− pi)2
]

= 2mpi (1− pi) = 2mpiqi

Therefore, the diagonal of G has an average of

1
m
tr
(

ZZ′

2
∑
piqi

)
= 2m

∑
piqi

2m
∑
piqi

= 1

If there is inbreeding there is not Hardy-Weinberg, and there is an inbreeding of F then the
genotypes are distributed according to {q2 +pqF, 2pq (1− F ) , p2 +pqF} Falconer and Mackay
1996(). Then we multiply each value of z by its frequency:

z
′

izi = 2m
[
(1− 2pi)

(
q2
i + piqiF

)
+ (1− 2pi) (2piqiF ) + (2− 2pi)

(
p2
i + piqiF

)]
= 2mpi (1− pi) = 2m(1+F )piqi

The diagonal of G has in this case an average of

1
m
tr
(

ZZ′

2
∑
piqi

)
= (1 + F )2m

∑
piqi

2m
∑
piqi

= 1 + F

Note that F here is a within-population inbreeding, and can be negative, indicating excess of
homozygosity (e.g., in an F1 population).
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11.4.4.4 The average value of the off-diagonal of G is almost 0 This is the case if
both Hardy-Weinberg and linkage equilibrium hold. If there are m genotyped animals, we have
that the value of the off-diagonal is:

avoff (G) = 1
m (m− 1) (sum (G)− diag (G)) = m

m (m− 1) = 1
m− 1

which is very close to zero.

11.4.5 Weighted Genomic relationships

We have seen that Bayesian Regressions are an option for genomic selection. Somehow, they
consider that different markers may have different variances. This can be implemented using

V ar (u) = ZV ar (a) Z
′
= ZDZ

′

Alternatively, and mainly for ease of implementation (e.g., in BLUPF90 or AsReml) this can
be obtained factorizing out the genetic variance and using a matrix of weights as in V ar (u) =
ZDw Z′σ2

u with

Dw=


σ2
a1/σ

2
a0 0 . . . 0

0 σ2
a2/σ

2
a0 . . . 0

. . . . . . . . . . . .
0 0 . . . σ2

an/σ
2
a0

 =


w1 0 . . . 0
0 w2 . . . 0
. . . . . . . . . . . .
0 0 . . . wn


Note that if w1 = w2 = . . . = wn = 1 this is regular genomic relationships.

Marker variances or weights can be obtained in several ways. (Zhang et al. 2010) and (A. Legarra,
Robert-Granié, Croiseau, et al. 2011) suggested to obtain them from Bayesian Regressions, with
good results. (Shen et al. 2013) suggested a REML-like strategy that we evoked before, and (Sun
et al. 2012) proposed a simple (but seriously biased) algorithm to get SNP-specific variances.
Another option is to use VanRaden’s nonLinearA (VanRaden 2008) to obtain updates for D.

11.5 Genomic relationships as estimators of realized relationships
The notion of actual or realized relationship is of utmost importance for genomic selection.
Pedigree relationships assume an infinitesimal model with infinite unlinked genes. At one locus,
two full-sibs may share one, two or none alleles. Across all loci, two full sibs share exactly half their
genome in the infinitesimal model. This is no longer true with real chromosomes: chromosomes
tend to be transmitted together and therefore two half-sibs may inherit vary different dotations,
as shown in the Figure below. The paper of VanRaden (VanRaden 2007) makes a very good
review of the subject.

Figure 20: Different transmission of one chromosome from sire to four half-sibs. Different maternal
chromosomes are in black.

In this example, sons 1 and 3 are more alike than sons 2 and 4. Therefore, in prediction of son 3,
son 1 should be given more weight than sons 2 and 4. Based on colors, one would say that the
relationship of these four sons are something like
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R =


1 0 0.5 0.1
0 1 0 0.4

0.5 0 1 0.1
0.1 0.4 0.1 1


These “real” relationships are called realized relationships as opposed to expected relationships.
(Hill and Weir 2011) used the notation Rij to the realized relationship, which we will follow.
Expressions for the difference between expected (Aij) and realized (Rij) relationships were given
by (VanRaden 2007 ; Hill and Weir 2011 ; Garcia-Cortes et al. 2013) .

In theory, one can define realized relationships in the same way as regular relationships, assuming
an unrelated base population, in which case they are identical by descent relationships. In this
case,

E (Rij) = Aij

This important result means that if we simulate meiosis of chromosomes from the sire to the two
half-sibs 1 and 2, at each simulation there will be a realized relationship between the two half
sibs. This realized relationship will vary between 0 and 0.5, but on average across the simulations
it will be 0.25, which is the value of Aij .

These deviations are skewed and the ratio deviation/expectation is high for low related animals.
This means that two third-degree cousins may actually not share any allele. Markers can see these
differences. (Luan et al. 2012) suggested to obtain realized relationships from a pure identity by
descent approach, based on computation of probability transmission from parents to offspring
with the help of pedigree and markers (Fernando and Grossman 1989 ; Meuwissen and Goddard
2010) , which assumes that founders of the pedigree are unrelated. This has two drawbacks. The
first one is that major genes are ignored (because closely associated markers will be ignored).
The second one is that computing becomes rather difficult when genotyped animals do not form
a complete pedigree (Meuwissen and Goddard 2010).

However, Cockerham’s result Cov (zi, zj) = Rij2pq actually involves realized relationships2. Then,
we can reverse the formulae and estimate those realized relationships as R̂ij = Cov (zi, zj) /2pq.
For instance: consider three individuals and 20 markers, matrix Z looks like:

1 1 2 2 1 0 0 1 0 0 2 0 0 2 0 2 2 0 1 1

0 1 2 1 2 1 0 1 2 2 2 2 0 2 1 0 1 0 0 1

2 0 2 0 0 2 1 0 0 0 1 1 0 2 2 1 0 0 0 1

The covariance Cov (zi, zj) of individuals 1 and 2 is Cov (z1, z2) = 0.11. This covariance does
not depend on gene coding or allele frequencies. But now, but what 2pq do we divide? We may
use the “average” 2pq, in other words, 2

m

∑
piqi where m is the number of markers. Imagine

that frequencies are

0.7 0.31 0.54 0.72 0.83 0.95 0.98 0.84 0.75 0.59 0.37

0.93 0.37 0.79 0.32 0.27 0.14 0.53 0.58 0.78

Then 2
m

∑
piqi = 0.354, and therefore

R̂ij = Cov (z1, z2)
2
∑
piqi

= 0.11
0.354 = 0.31

The animals are related (close to “cousins”).

We have just reinvented the wheel. VanRaden’s first G is:
2although we usually assume that “realized” Rij and “expected” Aij are close enough to use Cov (zi, zj) ≈ Aij2pq,

for instance to estimate heritability of gene content.
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G = ZZ′

2
∑
pkqk

For two individuals, this is

zizj
2
∑
pkqk

=
∑
zikzjk

2
∑
pkqk

But, when using “centered” coding, then
∑
zikzjk is simply

∑
zikzjk = mCov (zi, zj). Thus,

VanRaden’s genomic relationships, is an estimator of realized relationship, and an estimator
that uses markers to infer relationships. The duality of VanRaden’s formulation using genomic
relationships is that at the same time it refers to marker effects and to relationships.

If genomic relationships Gij are an unbiased estimator of realized relationships Rij, then

E (G) = R

But also, realized relationships are deviations from expected pedigree relationships, and we have
that

E (R) = A

Therefore

E (G) = A

This raises another question. If realized relationships Rij can be defined as IBD relationships,
then one should not get negative values. Does this mean that we should turn negative values in G
to zero? The answer is NO. For individuals that are suspected to have 0 relationships, (Aij = 0),
this means that Gij can oscillate between positive and negative values. However, if we don’t use
base allelic frequencies, then G is biased with respect to A and underestimates relationships.

All these ideas (and many more) were described in depth by (Toro, García-Cortés, and Legarra
2011 ; Thompson 2013).

11.5.1 Other estimators of (genomic) relationships

We can construct a matrix of rMij, relationships based on IBS coefficients or “coefficients of
similarity” GIBS . The terms in GIBS are usually described in terms of identities or countings:

GIBSij = rMij = 1
n

∑n
m=1 2

∑2
k=1

∑2
l=1

Ikl

4 ,

where Ikl measures the identity (with value 1 or 0) of allele k in individual i with allele l in
individual j, and single-locus identity measures are averaged across k loci. It has a nice feature:
elements in GIBS are probabilities (contrary to other G’s)

In the conservation genetics literature, these are usually called molecular relationships (rMij).

11.5.1.1 Corrected IBS In the conservation genetics literature, a common technique is
to use molecular relationships (rMij) corrected by allelic frequencies, using one of the previous
results:

R̂ij = rMij − 2p2 − 2q2

2pq

There are many variants of this expression (Lynch 1988 ; Toro, García-Cortés, and Legarra 2011
; Ritland 1996) . Extended to several markers (Toro, García-Cortés, and Legarra 2011):
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R̂ij =
(

1
2

) rMij
2 − p

2 − q2 − 2V ar(p)
2 (pq − V ar(p))

How do we compute molecular relationships? Consider the following table that compares two
genotypes at a time:

Table 20: Molecular coancestry (bold) and molecular relationship
rMij (italic) comparing two genotypes

AA Aa aa
AA 1 2 0.5 1 0 0
Aa 0.5 1 0.5 1 0.5 1
aa 0 0 0.5 1 1 2

Values in the left columns table give molecular coancestries – the probability that one allele
sampled at random from each individual is Identical By State to another allele drawn at sample
from the other individual. For instance, two individuals Aa and Aa have a probability of ½ that
if we draw one allele from each, the alleles will be identical. You multiply these coancestries by 2
to get molecular relationships rMij on the right columns.

There is a much faster way to get molecular relationships rMij based on rMij = zizj − zi−zj + 2
where zi, zj are coded as {0, 1, 2}. Then it can be shown that the whole array of rMij can be
computed at once as a matrix GIBS using (Garcia-Baccino et al. 2017)

{rMij} = GIBS = 1
m

(
Z101Z

′

101

)
+ 11′

As a crossproduct of {0, 1, 2} matrices Z101 (we mean by this using coded as {−1, 0, 1} coding),
and where 11′ is a matrix of 1’s. Using the same example as before

1 1 2 2 1 0 0 1 0 0 2 0 0 2 0 2 2 0 1 1

0 1 2 1 2 1 0 1 2 2 2 2 0 2 1 0 1 0 0 1

2 0 2 0 0 2 1 0 0 0 1 1 0 2 2 1 0 0 0 1

with frequencies:

0.7 0.31 0.54 0.72 0.83 0.95 0.98 0.84 0.75 0.59 0.37

0.93 0.37 0.79 0.32 0.27 0.14 0.53 0.58 0.78

Yields rMij = 1.1 and R̂ij = 2
rMij

2 −p
2−q2−2V ar(p)

2(pq−V ar(p)) = −0.50

Quite different from the other estimator (you may check the number). However, if many markers
are used, all estimators tend to be very similar.

Values of R̂ij can also be negative, and some set their values to zero. This is a gross mistake, first
for the arguments above and second, because it greatly compromises numerical computations
(R̂ij corrected like that do not form a positive definite covariance matrix).

11.5.1.2 VanRaden with 0.5 allele frequencies One option is to pretend that all fre-
quencies are pi = 0.5. Then VanRaden’s G is constructed using Z101 (coded as {−1, 0, 1}) and
dividing by 2

∑
piqi = m/2 with m the number of markers:

G05 = Z101Z
′

101
m/2 =2Z101Z

′

101
m

In turn, (Garcia-Baccino et al. 2017) proved that
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GIBS = 1
2G05 + 11

′

So, the GIBS is basically a particular case of VanRaden’s G.

11.5.2 Genomic inbreeding

From all G’s, we have a few estimators of genomic inbreeding. For individual i the genomic
inbreeding can be defined as Gii − 1 and it defines its homozygosity with respect to the assumed
allelic frequencies. The genomic inbreeding has a few funny properties:

• Genomic inbreeding may be negative. These animals are “more heterozygote than what is
expected”.

• Genomic inbreeding usually (but not always) correlate well with pedigree inbreeding.
Remember, pedigree inbreeding is also an approximation to “true” relationships. In general,
if the pedigree is good enough (no missing parents) and the allele frequencies used in G are
close to those of the population, the correlation between genomic and pedigree inbreeding
is > 0.5.

• Genomic inbreeding of GIBS or G05 is directly proportional to observed homozygosity of
the individual, i.e. the number of markers for which the individual is homozygosity.

11.6 Compatibility of genomic and pedigree relationships
VanRaden’s G is dependant on the use of base allelic frequencies. For some populations where
old ancestors are genotyped (e.g., some populations of dairy cattle), this is feasible. However,
this is not the case in many populations. For instance, the Lacaune dairy sheep started recording
pedigree and data in the 60’s, while DNA is stored since the 90’s. This causes two problems
(that are also problems for Bayesian Regressions):

1. The genetic base is no longer the same for pedigree and marker. We have seen that,
by construction, using “centered” coding leads to an imposed average u=0 across your
population. This is contradictory with the pedigree, which imposes u=0 only across the
founders of the pedigree.

For instance, trying to compare pedigree-based EBV’s and genomic-based EBV’s, they will be
a shift in scale. This shift can be accounted for by selecting a group of animals and referring
all EBV’s to their average EBV in both cases. Remember that the result of (Strandén and
Christensen 2011) warrants that there will only be a shift in estimates of u, but the differences
across breeding values will be identical.

2. The genetic variance changes. The pedigree-based genetic variance σ2
u refers to the variance

of the breeding values of the founders of the pedigree. The marker-based genetic variance
2
∑
piqi σ

2
a0 refers to the variance of a population with allelic frequencies pi. These are

typically “current” observed allele frequencies. However, in a pedigree, markers tend to fix
by drift and selection and therefore 2

∑
piqi σ

2
a0 is lower using current frequencies than

base allele frequencies.

Equating σ2
a0 = σ2

u/2
∑
piqi will tend to underestimate σ2

a0 . This can be solved if instead of
using this expression to obtain σ2

a0, one estimates σ2
a0 or marker variances directly, as in BayesC,

Bayesian Lasso, or GREML (see later).

These problems are only relevant if one tries to combine pedigree-based information and genomic-
based information. In the following, we will use the following notation. ubase are the animals
of the genetic base of the pedigree (i.e., the founders). u2 are genotyped animals, and u1 are
ungenotyped animals.
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11.6.1 Use of Gengler’s method

Gengler’s method can be used to estimate base allele frequencies (Gengler, Mayeres, and Szyd-
lowski 2007 ; VanRaden 2008). It has, however, been rarely used; one of the reasons is that
estimate may go out of bounds (e.g. allelic frequencies beyond 0 or 1).

11.6.2 Compatibility of genetic bases

This is detailed in (Vitezica et al. 2011). If base alleles are not available, one may use current
allele frequencies (i.e. frequencies in genotypes of u2). We know that, by construction of G, the
mean of u2 is set to zero: p (u2) = N(0,Gσ2

u). The difference of both means can be modelled as
random : µ = u2 − ubase = u2 = 1

m1′u2 where m is the number of individuals in u2.

In an infinite population with no selection, there would be no difference between u2 and ubase.
However, in a finite population there is selection, drift, or both. In this case we can model
that u2 has an a priori mean p (u2|µ) = N(µ,Gσ2

u). This mean is actually the result of
random factors (selection and drift) and therefore is a random variable with some variance
σ2
µ = aσ2

u (a was called α in (Vitezica et al. 2011). Integrating this mean from the expression
p (u2|µ) p(µ) = N(µ,Gσ2

u)N(0, σ2
µ) we have that

p (u2) = N
(
0,G∗σ2

u

)
where G∗ = (G + 11′a)σ2

u is a “tuned” genomic relationship which takes into account our
ignorance as to the difference between pedigree and genomic genetic bases. The 11′ operator
simply adds the constant a to every element of G. Informally we may write G∗ = a+ G.

To obtain a value for σ2
µ, we know based on pedigree that the V ar (u2) = A22σ

2
u. Therefore

V ar
(

1
m1′u2

)
= 1

m2

(
1′A221σ2

u

)
= A22σ

2
u , where A22 is the pedigree relationship matrix

and the bar means “average over values of A22”. Based on genomics, this variance would be
V ar

(
1
m1′u2

)
= 1

m2

(
1′G1 + 1′11′1a

)
σ2
u =

(
G+a

)
σ2
u. If we equate both variances, we have

that

a = A22−G

It can be noted that in Hardy-Weinberg equilibrium, G=0 and a = A22.

Adding constant a as in G∗=G + 11′a makes, by construction, that both evaluations are in
the same scale. This way of getting a value for a is called method of moments and guarantees
unbiasedness. The genetic interpretation is simple. Constructing G with current allele frequencies
underestimates relationships from the base population. We estimate this underestimation from
the average difference between G and A22. Adding a constant to every element of G ensures
that genomic relationships are, on average, on the same genetic base than pedigree relationships.

11.6.3 Compatibility of genetic variances

In VanRaden’s formulation of G=ZZ′/2
∑
piqi , the divisor comes because of the assumption

that the genetic variance is σ2
u = 2

∑
piqiσ

2
a0 . However, the product 2

∑
piqi will be too low if

we use current allelic frequencies with respect to base allelic frequencies. Therefore, we seek for
an adjustment

G∗ = bG

where b accounts for the ratio of “current” 2
∑
piqi to “base” 2

∑
piqi and is typically lower than

1 (i.e., the genetic variance has reduced).

The reasoning to solve this issue is as follows. Consider the genetic variance of the genotyped
individuals in u2 ; I will call this S2

u2 to stress that this is a variance of a particular population, not
the variance of the genetic base. This is S2

u2 = 1
mu′2u2 − u2

2 . This S2
u2 has a certain distribution
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under either pedigree or genomic modeling. As we did with genetic bases, we will equate, on
expectation, the two S2

u2 .

Under pedigree relationships we have that (Searle 1982) p. 355:

E
(
S2
u2
)

=
(

1
m
tr (A22)−A22

)
σ2
u =

(
1 + F p −A22

)
σ2
u

Under genomic relationships we have that:

E
(
S2
u2
)

=
(

1
m
tr (bG)− bG

)
σ2
u = b

(
1 + F g −G

)
σ2
u

where F p is average pedigree inbreeding and F g is average genomic inbreeding. Equating both
expectations we have that

b =
(
1 + F p −A22

)(
1 + F g −G

)
A close result was showed by (Forni, Aguilar, and Misztal 2011) who had genomic inbreeding. In
Hardy-Weinberg conditions, we have seen that G = 0 and F g = 0 (the average diagonal is 1).
On the other hand, if matings are at random, F p = A22/2. Therefore:

b = 1− F p
2

And in that case, b = 1 − a/2 above. Which results in b < 1. This means that the genetic
variance lowered from the pedigree base to the genotyped population. Thus, the multiplication
by b corrects for the fixation of alleles due to inbreeding.

11.6.4 Compatibility of genetic bases and variances

With the two pieces above, it is easy to see that a compatible matrix G∗ = a + bG can be
obtained by the expressions above for a and b. (Vitezica et al. 2011) based on (Powell, Visscher,
and Goddard 2010) observed that relationships in a “recent” population in an “old” population
scale can be modelled using Wright’s fixation indexes. Translated to our context, this gives
a = A22 and b = 1− a

2 , which is the same result as above if Hardy-Weinberg holds.

Christensen et al. (2012) remarked that the hypothesis of random mating population is not likely
for the group of genotyped animals, since they would born in different years and some being
descendants of others, and suggested to infer a and b from the system of two equations equating
average relationships and average inbreeding: tr(G)

m b + a = tr(A22)
m and a + bG=A22 . This is

basically a development as above. They further noticed that in practice b ≈ 1− a/2 because the
deviation from Hardy-Weinberg was small.

VanRaden (2008) suggested a regression of observed on expected relationships, minimizing the
residuals of a+ bG=A22 + E. This idea was generalized to several breed origins by (Harris and
Johnson 2010). The distribution of E is not homoscedastic and this precluded scholars from
trying this approach because it would be sensible to extreme values (O. Christensen et al. 2012),
e.g., if many far relatives are included, for which the deviations in E can be very large.

Finally, (O. Christensen et al. 2012) argued that relationships in G do not depend on pedigree
depth, and they are exact in some sense. He suggested to take as reference the 101 coding
(i.e., set the frequencies to 0.5) and then “tune” pedigree relationships in A to match genomic
relationships in G. He introduced two extra parameters, γ and s. The γ parameter can be
understood as the overall relationship across the base population such that current genotypes are
most likely, and integrates the fact that the assumption of unrelatedness at the base population
is false in view of genomic results (two animals who share alleles at markers are related even if
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the pedigree is not informative). More precisely, he devised a new pedigree relationship matrix,
A (γ) whose founders have a relationship matrix Abase = γ + I(1− γ/2). Parameter s, used in
G=ZZ′/s can be understood as the counterpart of 2Σpiqi (heterozygosity of the markers) in the
base generation. Both parameters can be deduced from maximum likelihood. This model is the
only one which accounts for all the complexities of pedigrees (former ones are based on average
relationships) but it has not been tested with real data so far.

11.7 Singularity of G
Matrix G might (and usually is) singular. There are two reasons for this. First, if there are
clones or identical twins, two genotypes in Z will be identical and therefore two animals will show
a correlation of exactly 1 in G. Second, if genotypes in Z use “centered” coding with observed
allele frequencies, then the matrix is singular (last row can be predicted from the other ones)
(Strandén and Christensen 2011).

To obtain an invertible G and then use G−1 in the mixed model equations, there are two ways.
The first one is to use a modified Gw= (1− α) G + αI ,with α a small value (typically 0.05 or
0.01). The second option consists in mixing genomic and pedigree relationships. If A22 is the
matrix of genotyped animals, we might use a modified “weighted” Gw= (1− α) G +αA22 . This
is the default in the Blupf90 package, which uses α = 0.05. A more detailed explanation is in the
next section.

11.8 Including residual polygenic effects in G
One may consider that not all genetic variance is captured by markers. This can be shown by
estimating variance assigned to markers and pedigree (A. Legarra, Robert-Granié, Manfredi, et
al. 2008 ; Rodríguez-Ramilo, García-Cortés, and González-Recio 2014 ; Jensen, Su, and Madsen
2012 ; Christensen and Lund 2010) or because some genomic evaluation procedures give better
cross-validation results when an extra polygenic term based exclusively on pedigree relationships
is added (e.g. (G. Su, Madsen, et al. 2012)).

Let us decompose the breeding values of genotyped individuals in a part due to markers and a
residual part due to pedigree, u=um+up with respective variances σ2

u = σ2
u,m + σ2

u,p.

It follows that V ar (u2) = ((1− α) G+αA22)σ2
u where α = σ2

u,p/σ
2
u is the ratio of pedigree-based

variance to total variance.

Therefore, the simplest way to include the residual polygenic effects is to create a modified
genomic relationship matrix Gw (G in (Aguilar et al. 2010); Gw in (VanRaden 2008 ; O.
Christensen et al. 2012) as Gw = (1− α) G+αA22. In practice, the value of α is low and has
negligible effects on predictions.

11.9 Multiallelic genomic relationships
In population genetics there are several methods to estimate (pedigree) relationship matrices
through markers; these methods were proposed basically in conservation genetics (Ritland 1996;
Caballero and Toro 2002). These methods are not very satisfying because they need parameters
such as base population allele frequencies that are elusive.

Thus swe would be happy if we could extend VanRaden’s G to the multiallelic case. We (Marchal
et al. 2016) developed it as an extension of the Multiple marker regression model.

Imagine that each allele at each locus produces an effect. We saw such a model in section 9:

12 GBLUP
12.1 Single trait animal model GBLUP
With genomic relationships well defined in the previous section as (rather generally) V ar (u) =
ZDZ′ = ZDwZ′σ2

u=Gσ2
u (and perhaps after some compatibility “tuning” as before), the con-
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struction of genomic predictions in GBLUP form is straightforward. We have the following linear
model:

y = Xb + Wu + e

where W is a matrix linking phenotypes to individuals. Then V ar (u) = Gσ2
u, V ar (e) = R.

We may also assume multivariate normality. Under these assumptions, Best Predictions, or
Conditional Expectations, of breeding values in u can be obtained by Henderson’s mixed model
equations as:

(
X′R−1X X′R−1W
W′R−1X W′R−1 W+G−1σ−2

u

)(
b̂
û

)
=
(

X′R−1y
W′R−1y

)
If R = Iσ2

e , then the variance components can be factored out and the equations become:

(
X′X X′W
W′X W′W + Iλ

)(
b̂
û

)
=
(

X′y
W′y

)
with λ = σ2

e/σ
2
u .

These equations are identical to regular animal model, with the exception that genomic relation-
ships G are used instead of pedigree relationships. They have some very nice features:

1. Any model that has been developed in BLUP can be immediately translated into GBLUP.
This includes maternal effects model, random regression, competition effect models, multiple
trait, etc.

2. All genotyped individuals can be included, either with phenotype or not. The only difference
is that the corresponding element in W is set to 0.

3. Regular software (blupf90, asreml, wombat. . . ) works if we include a mechanism to include
G−1.

4. Developments including mixed model equations apply to GBLUP as well. Therefore,
GREML and G-Gibbs are simple extensions.

12.2 Multiple trait GBLUP
This is straightforward as well. The multiple trait mixed model equations are:

(
X′R−1X X′R−1W
W′R−1X W′R−1 W+G−1⊗G−1

0

)(
b̂
û

)
=
(

X′R−1y
W′R−1y

)
where G0 is the matrix of genetic covariance across traits, and usually R=I

⊗
R0, where R0 is

the matrix of residual covariances. Note that these equations work perfectly well with missing
traits.

12.2.1 Reliabilities from GBLUP

Nominal, also called model-based, reliabilities (NOT cross-validation reliabilities) can be obtained
from the Mixed Model equations, as:

Reli = 1− C ii

Giiσ2
u

where C ii is the i, i element of the inverse of the mixed model equations in its first form (i.e.,
with explicit σ2

u). However, there is a word of caution. Depending how the coding of Z proceeds,

73



the numerical values of Reli change, although EBV’s only shift by a constant (Strandén and
Christensen 2011). This result is problematic because reporting reliabilities becomes tricky.
Recently, (Tier, Meyer, and Swan 2018) suggested to include the base population as an extra
individual, which automatically sets all reliabilities on the same scale.

12.2.1.1 All Genomic relationships are equal We saw before, in Bayesian Regressions,
that changing the coding of Z to “centered”, 101, 012, 021 gave same results. These results apply,
partly, to GBLUP and they can be summarized as follows. Consider the most frequent

ZZ′

2
∑
piqi

σ2
u= ZZ

′ σ2
u

2
∑
piqi

= Gσ2
u

This matrix G is affected by coding and allele frequencies in two places:

• Centering: how do we define ZZ′ (centering, 101, etc).

• Scaling: what divisor do we put in 2
∑
piqi and what variance do we put in σ2

u.

All ways of centering give the same û, shifted by a constant, provided that σ2
u

2
∑

piqi
is constant.

For instance:

1. If to construct G we use any coding in ZZ′ but we keep 2
∑
piqi the same, then û will be

the same

2. If we construct G05 = Z101Z
′
101

m/2 , but then we use as genetic variance σ2
u

2
∑

piqi

m
2 , then û will

be the same

3. If we estimate genetic variance by REML, then EBVs will be the same but the estimated
genetic variance is not necessarily the same.

These properties of G do not hold for SSGBLUP – we will see that later.

12.3 GBLUP with singular G
If G is singular, one can use alternative mixed model equations (Harville 1976 ; Henderson 1984):

(
X′R−1X X′R−1W

Gσ2
uW

′R−1X Gσ2
uW

′R−1 W + I

)(
b̂
û

)
=
(

X′R−1y
Gσ2

uW
′R−1y

)
Or a symmetric form that fits better into regular algorithms. First, we predict an auxiliary vector
α:

(
X′R−1X X′R−1WGσ2

u

Gσ2
uW

′R−1X Gσ2
uW

′R−1WGσ2
u+Gσ2

u

)(
b̂
α̂

)
=
(

X′R−1y
Gσ2

uW
′R−1y

)
From this, û=Gσ2

uα̂ .

12.4 From GBLUP to marker estimates
Because G is formed from marker effects, the algebra warrants that estimates are the same under
either GBLUP or BLUP-SNP (VanRaden 2008), provided that parameterizations are strictly
identical (same Z, same p’s, same variances, etc). This is up to the numerical error produced
by forcing G to be invertible; this numerical error is most often negligible. More formal proofs
can be found in (Henderson 1973 ; Strandén and Garrick 2009). We present here how to obtain
marker effects.

If breeding values u=Za and V ar (a) = D, then the joint distribution of breeding values u and
marker effects a is (Henderson 1973 ; Strandén and Garrick 2009):
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V ar

(
u
a

)
=
(

ZDZ′ ZD
DZ′ D

)
where, usually, D = Iσ2

u/2Σpiqi. Assuming multivariate normality,

p (u|a) = N(Za,0)

which means that if marker effects are known, then breeding values are exactly known, and their
estimate is simply:

û |â=E (u|a =â) =Z
′
â

(the breeding value is the sum of marker effects).

However, the opposite is not necessarily true and, conditional on breeding values marker effects
can have several possible values:

p (a|u) = N

(
DZ

′
(
ZDZ

′
)−1

u,D−DZ
′
(
ZDZ

′
)−1

ZD
)

Thus, the estimate of marker effects conditional on breeding values has a conditional mean. If(
ZDZ′

)
=Gσ2

u then:

â|û=E (a|u =û) = DZ
′
(
ZDZ

′
)−1

û= D Z
′

G−1 σ−2
u û

or, if, D = Iσ2
u/2Σpiqi:

â|û= 1
2Σpiqi

Z
′

G−1 û

with associated variance

V ar (a|u =û) = D−DZ
′
(
ZDZ

′
)−1

ZD

Note that D−D Z
′
(
ZDZ′

)−1
ZD maybe semipositive definite (not invertible) i.e., if two

markers are in complete LD. This variance ignores that û is an estimate.

12.4.1 When matrix G has been “tuned”

In general, the matrix G has undergone some “tuning” (1) to be invertible, (2) to be on the same
scale as pedigree relationships. Usually this is:

Gtuned= (1− α)
(
11
′
a+ bZDZ

′
)

+αA22

where the coefficient a adds the extra “average relationship” and at the same time models the
difference µ from pedigree base to genomic base (Vitezica et al. 2011 ; Hsu, Garrick, and Fernando
2017) , the coefficient b considers the reduction in variance due to drift, and α is the part of
genetic variance assigned to (pedigree) residual polygenic effects.

In order to extract correctly the marker effects, we need to take that into account. The expression
above can be rewritten as:
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u =um + up

um = 1µ+ u∗m

where up are “pedigree” BVs, um are “marker” breeding values put (shifted) on a pedigree scale
(that of A) and u∗m are “marker” breeding values put (shifted) on a genomic scale. The respective
variances are:

V ar (up) = A22σ
2
uα

V ar (u∗m) = bZDZ
′
(1− α)

which implies that, in fact, we have reduced the variance of marker effects from an a priori
variance of D to another variance of V ar (a) = b (1− α) D.

Finally,

V ar (µ) = a (1− α)σ2
u

From these elements, we retrieve that V ar (u) = V ar (up + u∗m + 1µ) = Gtuned

From here we can derive the covariance structure:

V ar

 µ
up
u∗m
u
a

 =


a (1− α)σ2

u 0 0 a (1− α) 1′σ2
u 0

0 A22σ
2
uα 0 A22σ

2
uα 0

0 0 b (1− α) ZDZ
′

b (1− α) ZDZ
′

b (1− α) ZD
a (1− α) 1σ2

u A22σ
2
uα b (1− α) ZDZ

′
(1− α)

(
11
′
aσ2
u + bZDZ

′)
+αA22σ

2
u b (1− α) ZD

0 0 b (1− α) DZ
′

b (1− α) DZ
′

b (1− α) D


Under the usual assumption D = Iσ2

u/2Σpiqi we put σ2
u as common term:

V ar

(
µ

up
u∗m

u
a

)
=


a (1 − α) σ2

u 0 0 a (1 − α) 1
′
σ2
u 0

0 A22σ2
uα 0 A22σ2

uα 0

0 0 b (1 − α) ZZ
′ 1

2Σpiqi
σ2
u b (1 − α) ZZ

′ 1
2Σpiqi

σ2
u b (1 − α) Z 1

2Σpiqi
σ2
u

a (1 − α) 1σ2
u A22σ2

uα b (1 − α) ZZ
′ 1

2Σpiqi
σ2
u (1 − α)

(
11
′
aσ2
u + bZZ

′ 1
2Σpiqi

σ2
u

)
+αA22σ2

u b (1 − α) Z 1
2Σpiqi

σ2
u

0 0 b (1 − α) Z
′ 1

2Σpiqi
σ2
u b (1 − α) Z

′ 1
2Σpiqi

σ2
u b (1 − α) 1

2Σpiqi
Iσ2
u



V ar

 µ
up
u∗m
u
a

 =


a (1− α) 0 0 a (1− α) 1′ 0

0 A22α 0 A22α 0
0 0 b (1− α) ZZ

′ 1
2Σpiqi

b (1− α) ZZ
′ 1

2Σpiqi
b (1− α) Z 1

2Σpiqi
a (1− α) 1 A22α b (1− α) ZZ

′ 1
2Σpiqi

(1− α)
(

11
′
a+ bZZ

′ 1
2Σpiqi

)
+αA22 b (1− α) Z 1

2Σpiqi
0 0 b (1− α) Z

′ 1
2Σpiqi

b (1− α) Z
′ 1

2Σpiqi
b (1− α) I 1

2Σpiqi

σ
2
u

Let’s call ZZ
′ 1

2Σpiqi
=Guntuned . Also, Gtuned= (1− α)

(
11
′
a+ bZZ

′ 1
2Σpiqi

)
+αA22. Thus:

V ar

 µ
up
u∗m
u
a

 =


a (1− α) 0 0 a (1− α) 1

′
0

0 A22α 0 A22α 0
0 0 b (1− α) Guntuned b (1− α) Guntuned b (1− α) Z 1

2Σpiqi
a (1− α) 1 A22α b (1− α) Guntuned Gtuned b (1− α) Z 1

2Σpiqi
0 0 b (1− α) Z

′ 1
2Σpiqi

b (1− α) Z
′ 1

2Σpiqi
b (1− α) I 1

2Σpiqi

σ
2
u

And from here, we can get the equations for backsolving (the factor σ2
u cancels out):

• Difference between pedigree and genomic bases:
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µ̂|û=E (µ|u =û) =a (1− α) 1′Gtuned−1 û
• Pedigree part of estimated breeding values:

ûp|û=A22αGtuned−1 û
• “marker” estimated breeding values on the genomic base

û∗m|û=b (1− α) GuntunedGtuned−1 û
• SNP effects

â|û=b (1− α) Z′ 1
2Σpiqi

Gtuned−1 û

• indirect predictions from marker effects

û∗m|â= Zâ
which upon substituting â is strictly identical to û∗m above

• Finally, to get the um“marker” estimated breeding values on the pedigree scale:

ûm = µ̂+ û∗m

12.4.1.1 Indirect predictions Imagine that we need to make indirect predictions (e.g. once
a week) and we want to use estimates of SNP effects without going through the whole process of
running GBLUP (or ssGBLUP). We genotype and we obtain a matrix with genotypes Znew. This
matrix needs to be centered by the same allelic frequencies as the original GBLUP or ssGBLUP3.

For indirect predictions of newborn animals, there are two parts: u=um + up. The first part is
obtained as a sum of marker effects, plus the difference between genomic and pedigree bases:

ûm = µ̂+ û∗m=µ̂+ Znewâ

whereas the pedigree part of indirect predictions has to be obtained as the parent average of the
parents’ pedigree part, not of the complete breeding value). Note that this parent average only
accounts for a small α part of the genetic variance. This is, for individual i

ûp,i = 0.5
(
ûp,sire(i) + ûp,dam(i)

)
If the animal has no records indirect predictions are the same as GBLUP predictions. In
SSGBLUP (that we have not described yet), they are the same if both parents are genotyped
and almost the same if not. The reason is that H matrix is slightly different for the ungenotyped
parents if the genotyped animal is included in the SSGBLUP or not.

12.4.1.2 Reliabilities of indirect predictions

1. Note: this section will need reordering
2. In this section all matrices G are what we call “tuned” unless otherwise staten

We may consider the reliability of um (breeding value referred to the base of the pedigree) or the
reliability of u∗m (breeding value referred to the genomic population). These two acuracies are for
a single individual4:

3another reason to use metafounders with allelic frequencies at 0.5
4We made use of the Hendersonian identity V ar(x̂) = V ar(x) − P EV (x). This holds because P EV (x) =

V ar(x − x̂) = V ar(x) − 2Cov(x, x̂) + V ar(x̂) = V ar(x) − V ar(x̂) because Cov(x, x̂) = V ar(x̂) if “Best” properties
of BLUP hold
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• Relbase−pedigree = 1− PEV (ûm)
V ar(um) = V ar(ûm)

V ar(um)

• Relbase−genomic = 1− PEV (û∗m)
V ar(u∗m) = V ar(û∗m)

V ar(u∗m)

The difference between the two is the difference between genomic and pedigree bases, µ, that
although it is not explicitely computed in ssGBLUP, it is there. And in fact, this µ is estimated
with some uncertainty.

For instance, for a single individual we have that

V ar(u∗m) = b(1− α)Guntunedii σ2
u

V ar(um) = V ar(µ+ u∗m) = a(1− α)σ2
u + b(1− α)Guntunedii σ2

u = (1− α)Giiσ2
u

where, for the purposes of indirect prediction, it may be easier to build as (for individual j)

Guntunedjj = z
′
jzj

2
∑

piqi
.

Then we need the V ar(û∗m). This can be obtained as a function of û∗m = Znewâ such that

V ar(û∗m) = ZnewV ar(â)Z
′

new

(note that Z is the matrix for animals in the (SS)GBLUP evaluation, whereas Znew is for animals
in indirect prediction) with

V ar(â) = (1− α)b 1
2Σpiqi

Z
′
G−1(Gσ2

u −Cuu)G−1Z 1
2Σpiqi

(1− α)b

which gives the alternative (and not necessarily better) expression

V ar(û∗m) = (1− α)b 1
2Σpiqi

ZnewZ
′
G−1(Gσ2

u −Cuu)G−1ZZ
′

new

1
2Σpiqi

(1− α)b =

= (1− α)bGuntuned
new,old G−1(Gσ2

u −Cuu)G−1Guntuned
old,new (1− α)b

for Guntuned
new,old = ZnewZ

′

2Σpiqi which makes sense as the variance of a selection index.

A bit trickier is to obtain the scalar V ar(ûm) = V ar(µ̂+ û∗m)

V ar(ûm) = V ar(µ̂+ û∗m) = V ar(µ̂) + V ar(û∗m) + 2Cov(µ̂, û∗m)

or, in matrix form,

V ar(ûm) = V ar(1µ̂+ û∗m) =

= 11′V ar(µ̂) + 1Cov(µ̂, û
′∗
m) + Cov(û∗m, µ̂)1

′
+ V ar(û∗m)

With V ar(û∗m) that we already saw. The V ar(µ̂) is as follows.

V ar(µ̂) = a(1− α)1′G−1(Gσ2
u −Cuu)G−11a(1− α)

which is equal to a2(1 − α)2 times the sum of elements of G−1(Gσ2
u −Cuu)G−1. This is not

difficult.
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Then we need Cov(µ̂, û∗′m). This is a row vector (which multiplied by 1 gives a matrix) whose
interpretation is “how much does the uncertainty in µ affects each animal” (i.e. because its
genomic information is poor). Anyway, this is

Cov(µ̂, û∗
′

m) = a(1− α)1′G−1ZV ar(û)ZZ
′

new

1
2Σpiqi

b(1− α)

which is rather cumbersome and where it appears Guntuned
old,new = ZZ

′
new

2Σpiqi which describes how close
are new to old animals. I (AL) believe this to be a small quantity except in weird cases (a Jersey
cow in a Holstein evaluation), the reason is that Guntuned

old,new generally has an average close to 0.
But this should be checked.

12.4.2 Bayesian distribution of marker effects from GBLUP

Imagine now that, from GBLUP (or GGibbs. . . ), we obtain the posterior distribution of u,
i.e. from inversion of the Mixed Model Equations or from MonteCarlo, as:

p (u|y) = N (û,Cuu)

where V ar (u|y) = Cuu is the posterior covariance matrix (I am using Hendersonian notation here).
To derive the posterior distribution of marker effects, we multiply the conditional distribution
p (a|u) by the posterior distribution p (u|y). This has two parts, first to account for the incertitude
in û contained in Cuu as:

V ar (â|y) = V ar (â|V ar (u|y))

= V ar

(
DZ

′
(
ZDZ

′
)−1

(u− û)
)

= DZ
′
(
ZDZ

′
)−1

Cuu
(
ZDZ

′
)−1

ZD

and second, for the remaining noise

V ar(a−â|y) = D−DZ
′
(
ZDZ

′
)−1

ZD

which gives

V ar (a|y) = D−DZ
′
(
ZDZ

′
)−1

ZD + DZ
′
(
ZDZ

′
)−1

Cuu
(
ZDZ

′
)−1

ZD

which is a Bayesian distribution like the one obtained, e.g. using Gibbs Sampling as in SNP-BLUP.

Putting
(
ZDZ′

)
=Gσ2

u and reordering yields

V ar (a|y) = D + DZ
′
G−1σ−2

u (Cuu −Gσ2
u)G−1σ−2

u ZD

Perhaps is more enlightening to consider the alternative expression

V ar (a|y) = D−DZ
′
G−1σ−2

u (Gσ2
u −Cuu)G−1σ−2

u ZD

which is composed of two terms: first, the a priori variance of marker effects, D. Second,
an a posteriori reduction, given by the data, in their incertitude. This reduction comes from
a reduction in the incertitude of the genomic breeding values (Gσ2

u − Cuu) which is in turn
transferred to the marker effects via the linear operator DZ′ .
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If Cuu ≈ 0 (well known animals such as progeny tested bulls) this yields V ar (a|y)
D−DZ′G−1σ2

uZD.

If D = Iσ2
u/2Σpiqi (the usual assumption where, as discussed in previous sections, ZDZ′=Gσ2

u)
the expressions above become

The estimate of the marker effects is

E (a|y) =â|û= DZ
′
(
ZDZ

′
)−1

û= 1
2Σpiqi

Z
′

G−1 û

with covariance matrix

V ar (a|y) = σ2
u

2Σpiqi
I− 1

2Σpiqi
Z
′
G−1(Gσ2

u −Cuu)G−1Z 1
2Σpiqi

So that the full distribution of marker effects can be deduced from breeding values by backsolving
using the genomic relationship matrix and markers’ incidence matrix.

12.4.3 Frequentist distribution of marker effects from GBLUP.

This is described in (Gualdrón Duarte et al. 2014). The distribution of interest is V ar (â), the
frequentist variance of the estimators integrating over the conceptual distribution of all possible
y’s. Using results in Henderson (Henderson 1975 , 1984) we get that, similar (but not identical)
as above:

V ar(â) = DZ
′
(
ZDZ

′
)−1 (

ZDZ
′
−C

uu)(
ZDZ

′
)−1

ZDa

or

V ar(â) = 1
2Σpiqi

Z
′
G−1(Gσ2

u −Cuu)G−1Z 1
2Σpiqi

The difference is the term D because instead of computing V ar (a|y) they compute V ar (â). In
fact, V ar (â) = V ar (a)− V ar (a|y) .

When matrix G has been “tuned”, the expression is (Aguilar et al. 2019):

V ar(â) = (1− α)b 1
2Σpiqi

Z
′
G−1(Gσ2

u −Cuu)G−1Z 1
2Σpiqi

(1− α)b

12.4.4 Example of marker predictions from GBLUP

Let there be two individuals and three markers and σ2
u = 1:

Z=
(

1 1 1
0 1 0

)
and D=

1 0 0
0 1 0
0 0 1

, both ZDZ′ and D are positive definite, however

D−D Z
′
(
ZDZ′

)−1
ZD is not full rank. The reason is complete LD between markers 1

and 3. Therefore for a given value of u, there will be infinite possible combinations. Say

that û=
(

1
−2

)
. Then there are many possible solutions of a yielding these û, for instance(

0 −2 3
)
or
(
−3 −2 6

)
. However, a has an a priori structure D that makes that the

effects of the first and third SNP have a priori the same size, thus the most likely solution will be
â=DZ′

(
ZDZ′

)−1
û=

(
1.5 −2 1.5

)
so their effect is averaged. The conditional distribution

of a given u has a variance
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V ar (a|u) =D−DZ
′
(
ZDZ

′
)−1

ZD =

 0.5 0 −0.5
0 0 0
−0.5 0 0.5


which shows well that the first and third markers are in LD (and their estimates cannot be
disentangled) whereas the second has a unique solution for a given u. Assume that u are estimated
with a posteriori covariance error (or prediction error covariance)

V ar (u|y) =Cuu=
(

1.5 0
0 0.2

)
Then, the incertitude in the estimation of marker effects is

V ar (a|y) =

 0.925 −0.1 −0.075
−0.1 0.2 −0.1
−0.075 −0.1 0.925


The difference between V ar (a|y) and V ar (a|u) is actually V ar (â|y), and has value

V ar (â|y) =

0.425 −0.1 0.425
−0.1 0.2 −0.1
0.425 −0.1 0.425


It can be seen that this conditional variance does not account for the LD across markers 1 and 3,
or, in other words, it ignores the fact that their sum is the only thing that can be well estimated.

Last, the V ar (â) is

V ar(â) =

0.075 0.1 0.075
0.1 0.8 0.1

0.425 0.1 0.075


12.5 GREML and G-Gibbs
Use of genomic relationships to estimate variance components is trivial, and popular methods
REML and Gibbs sampler have often been used (Christensen and Lund 2010 ; Rodríguez-Ramilo,
García-Cortés, and González-Recio 2014 ; Jensen, Su, and Madsen 2012) . Also, older estimates
using relationships based on markers are common in the conservation genetics literature. Often,
people call GBLUP something that in fact is GREML. The difference is that in GREML variance
components are obtained, whereas in GBLUP these are fixed a priori.

As discussed, the estimates obtained by GREML or G-Gibbs refer to a base population with
the assumed allelic frequencies (usually the observed ones) and in Hardy-Weinberg equilibrium.
Therefore, these estimates are not necessarily comparable to pedigree estimates, that refer to
another base population. Imagine that, for the same data set, you try three different matrices
of relationships. Let’s say that you have genomic, pedigree and kernel with respective matrices
A22 , G and K and variance component estimates σ2

uA , σ
2
uG , σ

2
uK . They do not refer to the same

conceptual base populations. We proposed a method to compare estimates (Legarra 2016). The
method basically says that in order to be comparable, all matrices should have similar statistics
(average of the diagonal and of the matrix itself).

Further, data sets are often different, making comparison unreliable. In particular, heritability
estimates using so-called “unrelated” populations (Yang et al. 2010) have large standard errors
(making comparisons unreliable) and refer to a very particular population, whereas pedigree-based
estimates refer to another population.
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12.6 Complicated things in GBLUP
12.6.1 Variances of pseudo-data, DYD’s, and de-regressed proofs

Often, pseudo-phenotypes are used. These can consist in results of field trials, in progeny
performances (VanRaden and Wiggans 1991), or in own corrected phenotypes. Other type of data
are the deregressed proofs (Garrick, Taylor, and Fernando 2009 ; Ricard, Danvy, and Legarra
2013 ) , that consist in post-processing of pedigree-based genetic evaluations. These pseudo-data
do not come from a regular phenotype and have varying variances. However, they do come with
a measure of uncertainty (i.e., a bull can have 10 or 10,000 daughters). This can be accounted
for in the residual covariance matrix, R, which becomes heterogeneous.

In most software (for instance GS3, blupf90 and the R function lm), this is done using weights.
Weight wi means (informally) the “importance” attached to the i-th record, and (formally) means
that the record i behaves like an average of wi observations, so that

R=

1/w1 0 0
0 1/w2 0
0 0 . . .

σ2
e

More weight means reduced residual variance. There are basically two ways to proceed.

Dairy cattle breeders work with “daughter yield deviations” (DYD). These are the average
phenotypes of daughters for every bull, corrected for the EBV of their dam and environmental
effects. Also, an “equivalent daughter contribution” (edc) is computed for the DYD, which reflects
the number of daughters of that bull. The pseudo-phenotype for each bull is thus modeled as
twice the DYD. If correction was perfect, a 2DYD for bull iwith ni daughters can be decomposed
as:

2DYDi = ui + 2 1
ni

∑
j

φj + 2 1
ni

∑
j

ej = ui + 1
ni

∑
j

εj

That is, the bull EBV (ui), (twice) the average of its daughters’ Mendelian sampling (φj), and
the average of its daughters’ residual deviations (ej). The two latter terms are confounded into a
pseudo-residual ε. Then, V ar (ε) = 4V ar (φ) + 4V ar (e) = 2σ2

u + 4σ2
e , because the variance of

the Mendelian sampling is half the genetic variance. Finally,

V ar (2DYDi) = σ2
u + 1

ni
σ2
ε

Thus, in dairy studies one may use 2DYD as a trait, with the typical genetic variance of σ2
u and

a pseudo-residual variance of σ2
ε = 2σ2

u + 4σ2
e with a weight wi = ni, where ni is the “equivalent

daughter contribution”.

For another kind of data, [(Garrick, Taylor, and Fernando 2009) proposed a rather general
approach for several kinds of pseudodata. They also provide expressions to put the adequate
weights.

12.6.2 Some problems of pseudo-data

Note that the residual covariances of pseudo-data are assumed null. This is wrong. Cows in
the same herd will share errors in estimation of the herd effect, and this generates a residual
covariance; cows born from the same dam will share errors in estimation of the dam effect,
and this also generates a residual covariance; and so on. These errors are ignored. However,
Henderson (Henderson 1978) showed, in a similar context, that using precorrected data may lead
to considerable bias and to loss of accuracy. This is, however, not a problem if pseudorecords used
are from progeny testing, in which case the amount of information is so large that covariances
among pseudo-data are very small.
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13 Non-additive genetic effects in genomic selection
A recent review has been published (Varona et al. 2018), and we refer the reader to it for most
of this section.

13.1 Dominant genomic relationships
Under quantitative genetics theory, the additive or breeding value for an i-th individual (ui)
involves the substitution effects of the genes (α)

α = a+ d(q − p)

which includes the “biological” additive effect a, the “biological” dominant effect d of the genes
and the allele frequencies. So, the breeding values of a set of individuals are u=Zα. With no
dominant effect of the gene (d = 0), α = a and u = Za as was defined in the previous sections.

If we consider one locus with two alleles (A1 and A2), a biological effect for each genotype can
be defined, A1A1 = a, A1A2 = d and A2A2 = −a, for instance as deviations from the midpoint
of the two homozygous as in (Falconer and Mackay 1996). Naturally, a model that fits additive
and dominant genotypic effects of the gene (or marker) can be written as

y = 1µ+ Ta + Xd + e

where “biological” additive effects a and “biological” dominant effects d for a set of individuals
are included for each of the n markers (Toro and Varona 2010). It will be discussed in more
details later in these notes.

This “intuitive” and useful model fits “biological” effect of gene or markers, while traditional
quantitative genetic talks about “statistical” effects (Hill, Goddard, and Visscher 2008). Breeding
values, dominance deviations, epistatic deviations and their variance components are statistical
outcomes defined in a population context.

Thus, a genomic dominant model directly comparable to the classical genetic model (e.g. pedigree-
based BLUP) has to involve breeding values u and dominance deviation v as

y = 1µ+ u + v + e

As in (Falconer and Mackay 1996) (Table 7.3), the breeding value for an individual is uA1A1 =
2qα = (2− 2p)α, uA1A2 = (q − p)α = (1− 2p)α or uA2A2 = (−2p)α, depending on its genotype
and p is the frequency of A1. So, the breeding values of a set of individuals are u = Zα (with Z
coded as in (VanRaden 2008)). The element of Z for an individual i at the marker j is

Zij =

(2− 2pj)
(1− 2pj)
−2pj

for genotypes

A1A1
A1A2
A2A2

Also, the dominant deviation of an individual is vA1A1 = −2q2d, vA1A2 = 2pqd and vA2A2 =
−2p2d. Hence, for a set of individuals, the dominance deviations are v = Wd with the element
of W for an individual i at the marker j equal to

Wij =


−2q2

j

2pjqj
−2p2

j

for genotypes

A1A1
A1A2
A2A2

Note that breeding value (u) involves both “biological” additive and dominant effects of the
markers (a and d); dominance deviation (v) only includes a portion of the biological dominant
effects of the markers (d).
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From this information (also in Table 7.3 in Falconer and Mackay, 1996), the variance of breeding
values and the variance of dominance deviations are obtained. The additive genetic variance
is σ2

u = 2pq [a+ d(q − p)]2 = 2pqα2 with E (u) = 0. Additive variance includes variation due to
the additive and dominant effects of the markers.

Also, like breeding values, the mean of dominance deviation is E (v) = 0,

E (v) = p2 (−2q2d
)

+ 2pq (2pqd) + q2
(
−2p2d

)
= 0

and the dominance genetic variance is equal to σ2
v = E

(
v2)− [E(v)]2 = E

(
v2), so

σ2
v = p2 (−2q2d

)2 + 2pq (2pqd)2 + q2
(
−2p2d

)2 = 4p2q2d2(q2 + 2pq + p2)

σ2
v = [2pqd]2

Dominance deviation variance only include a portion of the biological dominant effect of the
markers.

Extended to several markers, and considering marker effects as random, this gives

σ2
u =

nsnp∑
j=1

(2pjqj)σ2
a0 +

nsnp∑
j=1

(
2pjqj (qj − pj)2

)
σ2
d0

σ2
v =

nsnp∑
j=1

(2pjqj)2
σ2
d0

where σ2
a0 and σ2

d0 are the SNP variances for additive and dominant components, respectively.

The total genetic variance is σ2
g = σ2

u + σ2
v, the first term is the additive genetic variance and

the second term corresponds to the dominance genetic variance or dominance deviation variance.
Note that the “statistical” partition of the variance in statistical components due to additivity,
dominance and epistasis does not reflect the “biological” effects of the genes (Huang and Mackay
2016) though it is useful for prediction and selection decisions. Even when the genes have a
biological or functional dominant action, this variation is mostly captured by the additive genetic
variance (Hill and Mäki-Tanila 2015).

The “statistical” or classical parameterization implies linkage equilibrium and a population in
Hardy-Weinberg equilibrium. Assuming uncorrelated random marker effects (a, d), it can be
extended to multiple loci (VanRaden 2008 ; Gianola et al. 2009) and obtained

V ar (u) = ZZ′

2
∑nsnp
j=1 pjqj

σ2
u = Gσ2

u

as in (Vitezica, Varona, and Legarra 2013) which is the classical additive genomic relationship
matrix G-matrix of GBLUP (VanRaden 2008). Note that the variance component is σ2

u =∑
(2pjqj)σ2

a0 +
∑

2pjqj (qj − pj)2
σ2
d0.

For the dominant deviations v, its variance-covariance matrix is:

V ar (v) = WW′σ2
d0

After dividing by the variance of the dominance deviations which is
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σ2
v =

nsnp∑
j=1

(2pjqj)2
σ2
d0

the dominant genomic relationship matrix, D, is obtained as

V ar (v) = WW′∑nsnp
j=1 (2pjqj)2σ

2
v = Dσ2

v

The dominant genomic matrix has some features as it was presented in a previous section for G.
Remember that in a base population in Hardy-Weinberg equilibrium, the average of the diagonal
of G is one, whereas the average off-diagonal is 0. In the same conditions (base population in
Hardy-Weinberg conditions), it turns out that the diagonal of D sums to

[
p2 (−2q2)2 + 2pq (2pq)2 + q2 (−2p2)2]

(2pq)2

for one locus, which is equal to 1. In addition, the sum of off-diagonal elements of D which can
be written as

(
p2 2pq q2)−2q2

2pq
−2p2

−2q2

2pq
−2p2


′ (
p2 2pq q2)′

(2pq)2

for one locus, sums to 0. Both features correspond to proper definitions of dominant relationships
in a base population.

13.2 Animal model GDBLUP
With dominant genomic relationships defined in the previous section as V ar (v) = Dσ2

v , the use of
this matrix in a mixed model context for genomic predictions in GBLUP form is straightforward.
We have the following linear mixed model:

y = Xb + Hu + Hv + e

where H is an incidence matrix (here it is not the matrix of SSGBLUP) linking individuals to
records (phenotypes). With V ar (u) = Gσ2

u, V ar (e) = R and assuming multivariate normality,
Henderson’s mixed model equations are:

X′R−1X X′R−1H X′R−1H
H′R−1X H′R−1H+G−1σ−2

u H′R−1H
H′R−1X H′R−1H H′R−1H+D−1σ−2

v

 b̂
û
v̂

 =

X′R−1y
H′R−1y
H′R−1y


These equations are identical to regular animal model, with the exception that genomic rela-
tionships in G and D are used instead of pedigree relationships. The breeding values and the
dominance deviations can be predicted from these equations in a population in Hardy Weinberg
and linkage equilibrium.

Note that it is not possible to use progeny records (DYD’s) to predict dominance, because
dominance deviations average to 0 across the progeny.

With the exception of (Aliloo et al. 2016) (for fat yield in Holstein), in most studies, the
inclusion of dominance in GBLUP model did not improve predictive ability of the model (G.
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Su, Christensen, et al. 2012 ; Ertl et al. 2014 ; Xiang et al. 2016 ; Esfandyari et al. 2016 ;
Moghaddar and Werf 2017 ) , whereas inclusion of the effect of inbreeding depression (shown
later) does (Xiang et al. 2016).

13.3 Another parameterization
Now, we come back to the “intuitively” model fitting “biological” effect of markers,

y = 1µ+ Ta + Xd + e

An additive effect aj and a dominant effect dj are included for each of the markers. The covariate
tij is equal to 1, 0, -1, for SNP genotypes A1A1, A1A2 and A2A2, respectively. For the dominant
component, xij is equal to 0, 1, 0 for SNP genotypes A1A1, A1A2 and A2A2, respectively. This
model is based on “observed” genotypes and in particular in heterozygotes, so it can be called a
“genotypic” model.

From this model proposed by (G. Su, Christensen, et al. 2012) , we can define u∗ and v∗ as the
“genotypic” additive and dominant effects. So, we can write for a set of individuals u∗=Ta and
v∗=Xd.

Table 21: Genotypic parameterization

Genotype Frequency Additive value Dominant value u∗ v∗

A1A1 p2 a 0 (2− 2p)a −2pqd
A1A2 2pq 0 d (1− 2p)a (1− 2pq)d
A2A2 q2 −a 0 −2pa −2pqd
Average (p− q)a 2pqd

Note that u∗ is not a breeding value because a is NOT a substitution effect, is the part attributable
to the additive “biological” effect of the marker. The incidence matrix T corresponds to the
incidence matrix Z (used in the classical model defined in terms of breeding values and dominance
deviations). However, the matrix X 6= W (W is used in the classical model for the dominance
deviations).

The variance of the genotypic additive value can be obtained as σ2
u∗ = E

(
u∗2
)
− [E(u∗)]2,

and idem for the variance of the genotypic dominant value σ2
v∗ . Then

σ2
u∗ =

∑
2pjqjσ2

a

and

σ2
v∗ =

∑
2pjqj(1− 2pjqj)σ2

d

Quite different from

σ2
u =

nsnp∑
j=1

(2pjqj)σ2
a0 +

nsnp∑
j=1

(
2pjqj (qj − pj)2

)
σ2
d0

σ2
v =

nsnp∑
j=1

(2pjqj)2
σ2
d0
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that we obtained before. The variances σ2
u∗ and σ2

v∗ estimated under the “genotypic” model as in
Su et al. (2012) are NOT genetic variances. In particular, they do not include dominant effects,
but by definition of breeding value, the reproductive value of an individual contains substitution
effects, which contain dominant effects. Therefore, σ2

u and σ2
v are more useful for selection.

Vitezica et al. (2013) showed that also the dominant relationship matrices (D) are different
between the classical (statistical) and the “genotypic” model. The parameterization is largely a
matter of convenience, both models are able to explain the data (y) but their interpretation is
different. The classical model in terms of breeding values and substitution effects (statistical) is
more adequate for selection (both for ranking animals and for predicting genetic improvement).

The only variance components comparable with pedigree-based estimates are σ2
u and σ2

v obtained
from the statistical genomic model. Using variance components estimated from the “genotypic”
model is misleading because they underestimate the importance of additive variance and overesti-
mate the importance of dominance variance (Vitezica, Varona, and Legarra 2013). From the
total genetic variance σ2

g it can be verified that σ2
u + σ2

v = σ2
u∗ + σ2

v∗ . Thus, it is simple to switch
variance component estimates between “statistical” (σ2

u and σ2
v) and “biological” (σ2

u∗ + σ2
v∗)

models if the distribution of the allelic frequencies is available (Vitezica et al., 2013).

The “statistical” model of Vitezica et al. (2013). This means that introducing new genetic effect
(e.g. additive vs. additive plus dominance) in the model does not change previous estimates. For
instance: going from an additive to an additive + dominant model should not change much
neither the estimates of variance components, nor the estimates of breeding values and dominant
deviations. However, the “genotypic” model of Su et al. (2012) is not orthogonal. Including
dominance may change greatly the estimate of additive values and variances, and in addition,
the estimated additive values are not breeding values – they are “genotypic” additive values.

13.4 Inbreeding depression
Phenomena of inbreeding depression and heterosis may be explained by directional dominance
(Lynch and Walsh 1998). In other words, higher percentage of positive than negative functional
dominant effects d is expected to happen in reality.

With directional dominance, the mean of dominant effect d is different from zero. However,
typically models assume that a and d have zero means. Xiang et al. (2016) show that inclusion
of genomic inbreeding (based on SNPs and included as a covariate) accounts for directional
dominance and inbreeding depression.

Xiang et al. (2016) proposed to write the model including (biological) additive and dominant
effects of the markers as

y = 1µ+ Ta + Xd∗+X1µd+e

where d∗=d−E (d) = d − µd and the matrix X has a value of 1 at heterozygous loci for an
individual and 0 otherwise.

The term X1 defined as h=X1 contains the row sums of X, i.e. individual heterozygosities (how
many markers are heterozygotes for each individual). The genomic inbreeding coefficient f can
be calculated as: f=1−h/N , where N is the number of markers. For instance, f is a vector that
contains the percentage of homozygous loci for each individual. Then,

h = (1− f)N = 1N + f (−N)

and with the mean µd

hµd = (1− f)Nµd = 1Nµd + f (−Nµd)

Thus, the model can be rewritten as
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y = 1µ+ Ta + Xd∗+1Nµd+f(−Nµd) + e

and finally

y = 1µ∗ + Ta + Xd∗+fb+e

where the term 1Nµd is confounded with the overall mean of the model (µ∗), while the f (−Nµd)
models the inbreeding depression and b = (−Nµd) is the inbreeding depression summed over the
marker loci, which is to be estimated.

This important result means that genomic inbreeding can be used to model directional dominance.
This model allows to obtain estimates of inbreeding depression parameter in different populations
(e.g. breeds or lines) and also in crossbred animals (Xiang et al. 2016).

Inclusion of genomic inbreeding must always be done in order to obtain a correct estimation of
genetic dominance variance (σ2

v). Otherwise, the genetic dominance variance is inflated. This
was confirmed in real data by (Xiang et al. 2016 ; Aliloo et al. 2016). This has long been known
for pedigree analysis (e.g. (De Boer and Hoeschele 1993)); even if dominance is not considered,
inbreeding may be considered in genomic evaluations.

13.5 Genomic relationship matrices in absence of HWE
In the classical or “statistical” model that we showed previously, the effects (additive or breeding
values, dominance deviations and epistatic deviations) are all orthogonal in linkage and Hardy-
Weinberg equilibrium (HWE). What does the orthogonal property of the model mean? It
means that the estimation of one genetic (e.g. additive) effect is not affected by the presence or
absence of other genetic effects in the model (e.g. dominance or epistasis).

This property results in orthogonal partition of the variances. Why? because, substitution
effect contributes to the additive genetic variance, the dominance deviation contributes to the
dominance genetic variance, etc. There is no covariance between the genetic effects. In other
words, introducing new genetic effect (e.g. additive vs. additive plus dominance) in the model does
not change previous estimates. For instance: going from an additive to an additive + dominant
model should not change much neither the estimates of variance components, nor the estimates
of breeding values and dominant deviations.

Crossbreeding schemes are widely used in animal breeding (e.g. pigs, chickens) for the purpose of
exploiting the heterosis and breed complementarity that often occur in crosses. Theses crosses
(e.g. F1) or inbred populations are not in Hardy Weinberg equilibrium. Therefore, we need
methods for genomic predictions, preferably including dominance, in these populations.

Additive (G) and dominance deviation (D) relationship matrices can be built removing the
requirement of Hardy Weinberg equilibrium and assuming linkage equilibrium (Vitezica et
al., 2017). This generalization of classical model is based in the NOIA orthogonal approach
(Álvarez-Castro and Carlborg 2007).

So, the breeding values of a set of individuals are u = Zα where α are dominant deviations, and
the element of Z for an individual i at the marker j is

zij =

 −(−pA1A2 − 2pA2A2)
−(1− pA1A2 − 2pA2A2)
−(2− pA1A2 − 2pA2A2)

for genotypes

A1A1
A1A2
A2A2

and the dominance deviation is v = Wd with the element of W for an individual i at the marker
j is
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wij =


− 2pA1A2pA2A2

pA1A1+pA2A2−(pA1A1−pA2A2)2

4pA1A1pA2A2

pA1A1+pA2A2−(pA1A1−pA2A2)2

− 2pA1A1pA1A2

pA1A1+pA2A2−(pA1A1−pA2A2)2

for genotypes

A1A1
A1A2
A2A2

where pA1A1 , pA1A2 and pA2A2 are the genotypic frequencies for the genotypes A1A1, A1A2 and
A2A2. Under the assumption of HWE, the “statistical” model presented before (as in Vitezica et
al., 2013) is a particular case of this model where pA1A1 = p2, pA1A2 = 2pq and pA2A2 = q2,
and the denominator pA1A1 + pA2A2 − (pA1A1 − pA2A2)2 = 2pq.

The additive relationship matrix is as:

V ar (u) = ZZ′

tr(ZZ′)/nσ
2
u = Gσ2

u

where tr is the trace of the matrix and n is the number of individuals. In a Hardy Weinberg
population, tr(ZZ′) corresponds to the heterozygosity of the markers 2

∑
pq.

For the dominance deviations, the relationship matrix is

V ar (v) = WW′

tr(WW′)/n σ2
v = Dσ2

v

The tr(WW′) corresponds to the square of the heterozygosity of the markers 4
∑

(pq)2 in
Hardy-Weinberg equilibrium (Vitezica, Varona, and Legarra 2013).

Now, we know how to build a model that allows the orthogonal decomposition of the variances in
any population in Hardy Weinberg equilibrium or not, and thus the correct estimation of genetic
variance components (equivalent to pedigree-based estimates).

13.6 Epistatic genomic relationships
The traditional definition of epistasis is the interaction of the genes, pairwise or higher-order
interactions. In fact, the number of epistatic effects and accordingly the number of parameters
in the model may be extremely large. Thus, we can define epistatic relationship matrices for
individuals as we do in GBLUP, which is more efficient from the computational point of view.

Following this idea, Cockerham (1954) suggested to use the Hadamard product of the additive
and dominant relationship (pedigree based) matrices to obtain the epistatic relationship matrices.
Remember that the Hadamard product (�) between two matrices (B �C) produces another
matrix (A = B�C, with the same dimension) where each element of A is the product of elements
(aij = bij ∗ cij) of the two original matrices (B and C).

The construction of the epistatic relationship matrices using the Hadamard product depends
on the assumption of Hardy Weinberg equilibrium in other words, non-inbreeding and random
mating (Cockerham 1954). The Hadamard product relies on the orthogonal property of the
model because no covariance exists between main genetic effects (e.g. additive and epistatic
effects). Henderson (Henderson 1985) suggested the use of these matrices in BLUP.

Henderson’s approach was extended to the genomic framework by Xu (2013) for an F2 design
and used for predicting hybrid performance in a rice F2 population (Xu, Zhu, and Zhang 2014).
However, their extension is not general. It is a particular case because genotype frequencies
in the F2 are the Hardy Weinberg frequencies corresponding to the allele frequency in the F1
(Falconer and Mackay 1996).

If we assume a more general situation with or without Hardy Weinberg equilibrium, we need to
check if Hadamard product of genomic matrices is equivalent to the direct estimation of
loci-based epistatic effects.
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We have the following linear model with epistasis:

y = 1µ+ u + v +
∑
i=A,D

∑
j=A,D

gij +
∑
i=A,D

∑
j=A,D

∑
k=A,D

gijk + . . .+ e

where u is the additive or breeding value, v is the dominance deviations, gij is the second order
epistatic effect and gijk the third-order epistatic effect and so on; and e is a residual vector.
The second-order epistatic genetic effects can be partitioned into additive-by-additive (gAA),
additive-by-dominant (gAD) and dominant-by-dominant (gDD). The third-order epistatic genetic
effects can be included in the model, but they are as either negligible (Hill and Mäki-Tanila 2015)
or too difficult to estimate. Note that this genomic model includes “genetic” effects.

For obtaining genetic variance component estimations comparable to pedigree-based variances, a
full orthogonal “statistical” model was proposed by (Varona 2014 ; Vitezica et al. 2017). We
have defined in the previous sections, the breeding values of a set of individuals as u = Zα and
the dominance deviation as v = Wd. From here in the text, we rename Z and W as Ha and
Hd respectively. Thus, u = Haα and v = Hdd. As you see before, the matrix Ha has n rows
(number of individuals) and m columns (number of markers) containing “additive” coefficients,
This matrix can be written as

Ha =

hak
...

han


where hak is a row vector for the k-th individual with m columns. For individual 1, the vector
ha1 is equal to (ha11 , . . . , ha1m).

Álvarez-Castro and Carlborg (2007) proved that the coefficients of the incidence matrix for
second-order epistatic effects between two loci can be computed as the Kronecker products
of the respective incidence matrices for single locus effects. So, for the interactions, such as
additive-by-dominant interaction, the matrix Had can be written using Kronecker products of
each row of the preceding matrices as

Had =


hai ⊗ hdi

hai+1 ⊗ hdi+1

. . .
han ⊗ hdn


For instance, for individual 1 the incidence matrix of additive-by-dominant epistatic effects is
had1 = ha1 ⊗ hd1 . As example, we have 2 individuals and 3 loci,

• for individual 1, the vector ha1 is equal to (ha11 , ha12 , ha13) and hd1 = (hd11 , hd12 , hd13).

• for individual 2, the vector ha2 is equal to (ha21 , ha22 , ha23) and hd1 = (hd21 , hd22 , hd23)
and

Had =

(
ha11hd11 ha11hd12 ha11hd13 ha12hd11 ha12hd12 ha12hd13 ha13hd11 ha13hd12 ha13hd13
ha21hd21 ha21hd22 ha21hd23 ha22hd21 ha22hd22 ha22hd23 ha23hd21 ha23hd22 ha23hd23

)
The matrix Had has as many columns as marker interactions (here, 9) and as many rows as
individuals. This matrix is of very large size (e.g. for a 50K SNP chip and 1000 individuals
the matrix contains 1000 x 500002 elements). In addition, HadH′ad cross-product (that we
need to compute for covariance matrices) is computationally expensive. Hopefully, an algebraic
shortcut was found (Vitezica et al., 2017) that allows easy computation of HadH′ad and the rest
of cross-products for epistatic matrices, even for third and higher orders.

The relationship matrices of epistatic genetic effects can be written as
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V ar (gAA) = HaaH′aa

tr(HaaH′aa)/nσ
2
gAA

= GAAσ
2
gAA

V ar (gAD) = HadH′ad

tr(HadH′ad)/nσ
2
gAD

= GADσ
2
gAD

V ar (gDD) = HddH′dd

tr(HddH′dd)/nσ
2
gDD

= GDDσ
2
gDD

and with the algebraic shortcut as

V ar (gAA) = GA �GA

tr (GA �GA) /nσ
2
gAA

= GAAσ
2
gAA

V ar (gAD) = GA �GD

tr (GA �GD) /nσ
2
gAD

= GADσ
2
gAD

V ar (gDD) = GD �GD

tr (GD �GD) /nσ
2
gDD

= GDDσ
2
gDD

using Hadamard products of additive and dominance genomic orthogonal relationships. A
standardization based on the trace of the relationship matrices is needed. The
normalization factor based on the traces was already used by Xu (2013) but several authors
ignore it (e.g. (Muñoz et al. 2014)). Here the reasoning for pairwise interactions is present but it
extends to third and higher order interactions, (e.g., GAAD = GA�GA�GD

tr(GA�GA�GD)/n ).

Note that this approach only assumes linkage equilibrium. In outbred populations (as animal
populations), substantial LD (linkage disequilibrium) is present only between polymorphisms in
tight linkage (Hill and Mäki-Tanila 2015).

Two other approaches are in the literature to model epistatic interactions. First, a “biological”
non-orthogonal model has been proposed by Martini et al. (2016) but it can only be used for
prediction and not for the estimation of variance components. Second, the RKHS (Reproducing
Kernel Hilbert Space) approach (Gianola, Fernando, and Stella 2006). However, most kernels
consider similarities within loci and not consider joint similarity across loci (Varona et al. 2018).

13.7 Word of caution
It is quite easy to fit dominance, epistasis. . . in a GBLUP context when data sets are not too
large. However, there is very little information, and most estimates of variance components have
high standard errors. Also, the estimates of dominance and epistatic deviations are not of much
accuracy. Thus, the researcher should be cautious when interpreting the results and using them
in practice.

14 Single Step GBLUP
The idea for ssGBLUP came from the fact that only a small portion of the animals, in a given
population, are genotyped. In this way, the best approach to avoid several steps would be to
combine pedigree and genomic relationships and use this matrix as the covariance structure in
the mixed model equations (MME). There are two derivations and both are very similar.
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14.1 SSGBLUP as improved relationships
Legarra et al. (2009) stated that genomic evaluations would be simpler if genomic relationships
were available for all animals in the model. Then, their idea was to look at A as a priori
relationship and to G as an observed relationship; however, G is observed only for some
individuals that have A22 as a priori relationship. Based on that, they showed the genomic
information could be extended to ungenotyped animals based on the joint distribution of breeding
values of ungenotyped (u1) and genotyped (u2) animals:

p(u1,u2) = p (u2) p(u1|u2)

p(u2) = N(0,G)

If we consider that

var (u) = Aσ2
u

In the following, we can just omit σ2
u in the derivations

A =
[
A11 A12
A21 A22

]
The conditional distribution of breeding values for ungenotyped and genotyped animals is

p(u1|u2) = N
(
A12A−1

22 u2,A11 −A12A−1
22 A21

)
This can also be seen as

u1=A12A−1
22 u2 + ε

With V ar (ε) = A11 −A12A−1
22 A21.

Because the animals with subscript 1 have no genotypes, the variance depends on their pedigree
relationships with genotyped animals. The derivation assumes multivariate normality of ε, which
holds because these are overall values resulting from a sum of gene effects.

Using rules, variances and covariances are:

V ar (u1) = var
(
A12A−1

22 u2 + ε
)

= V ar(A12A
−1
22 u2) + V ar(ε)

= A12A−1
22 GA−1

22 A21 + A11 −A12A−1
22 A21

Rearranging:

= A11 + A12A−1
22 GA−1

22 A21 −A12A−1
22 A21

= A11 + A12A−1
22 GA−1

22 A21 −A12A−1
22 IA21

= A11 + A12A−1
22 GA−1

22 A21 −A12A−1
22 A22A−1

22 A21

Therefore,
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V ar (u1) = A11 + A12A
−1
22 (G−A22) A−1

22 A21

V ar (u2) = G

Cov (u1,u2) = Cov
(
A12A−1

22 u2,u2
)

= A12A−1
22 V ar (u2) = A12A−1

22 G

Finally, the matrix that contains the joint relationships of genotyped and ungenotyped animals
is given by (again, assuming for simplicity of presentation σ2

u = 1):

H =
(

var (u1) cov (u1,u2)
cov (u2,u1) var (u2)

)
=
(

A11 + A12A−1
22 (G−A22) A−1

22 A21 A12A−1
22 G

GA−1
22 A21 G

)
=A +

[
A12A−1

22 (G−A22) A−1
22 A21 A12A−1

22 (G−A22)
(G−A22) A−1

22 A21 G−A22

]
Which can be simplified to:

H = A +
[
A12A−1

22 0
0 I

] [
I
I

]
[G−A22]

[
I I

] [A−1
22 A21 0

0 I

]
We usually assume in these notes that u2 = Za, which leads to VanRaden’s G (VanRaden 2008).
The derivation of (Legarra, Aguilar, and Misztal 2009) does not seem to require that G is actually
VanRaden’s G (could potentially be something else), but when they use A to model relationships,
they assume an additive model. So, G should be “additive”, which makes sense for VanRaden’s
G but also for similar matrices like GIBS or “corrected” GIBS. One of the key assumptions of
the methods in (Legarra, Aguilar, and Misztal 2009) is that E (u2) = 0, (animals genotyped have
0 expected breeding value) which is not necessarily true if those animals are selected animals.
We will see ways to deal with that later. Although H is very complicated, H−1 is quite simple
(Aguilar et al. 2010 ; Christensen and Lund 2010).

H−1=A−1+
[
0 0
0 G−1− A−1

22

]

14.2 SSGBLUP as linear imputations
Christensen and Lund (2010) proposed another derivation. They started by inferring the genomic
relationship matrix for all animals using inferred (imputed) genotypes for non-genotyped animals;
we have seen that this can be obtained using Gengler’s (Gengler, Mayeres, and Szydlowski 2007)
method, modelling the genotype z as a quantitative trait: z=1µ+ Wu+e. If µ (= 2p in the base
population) is known, then we can linearly “impute” centered gene content for one marker as
ẑ1 = A12A−1

22 z2 , which extends to multiple markers as Ẑ1 = A12A−1
22 Z2.

This provides the “best guess” of genotypes. We may then construct a “poor man” version of
G using Ĝ = Ẑ1Ẑ

′

1/
∑

2pjqj . This matrix will be incorrect because when we impute, we get a
guess – and the guess has an error. However, the missing data theory states that we need the
joint distribution of these “guessed” genotypes. Assuming that multivariate normality holds for
genotypes (this is an approximation, but very good when many genotypes are considered), the
“best guess” is E (Z1|Z2) = Ẑ1, and the conditional variance expressing the uncertainty about
the “guess” is V ar( Ẑ1 |Z2) = (A11−A12A−1

22 A21)V where V contains 2pkqk in the diagonal.
These two results can be combined to obtain the desired augmented genomic relationships. For
instance, for the non-genotyped animals,
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V ar (u1) = σ2
u

(
Ẑ1Ẑ

′

1
2Σpkqk

+ A11−A12A−1
22 A21

)
,

which equals

V ar (u1) = σ2
u

(
A11−A12A−1

22 A21 + A12A−1
22 GA−1

22 A21
)

Finally, the augmented covariance matrix is

V ar

(
u1
u2

)
= σ2

uH,

where

H =
(

A11−A12A−1
22 A21 + A12A−1

22 GA−1
22 A21 A12A−1

22 G
GA−1

22 A21 G

)
,

is the augmented genomic relationship matrix with inverse

H−1 = A−1+
(

0 0
0 G−1−A−1

22

)
assuming that G is invertible (this will be dealt with later). Therefore, by using an algebraic data
augmentation of missing genotypes, Christensen and Lund (2010) derived a simple expression
for an augmented genomic relationship matrix and its inverse, without the need to explicitly
augment, or “guess”, all genotypes for all non-genotyped animals. The key hypothesis here is
that the base population allele frequencies are known, which is not necessarily true.

14.3 ssGBLUP mixed model equations
Assuming the following animal model:

y = Xb + Wu + e

The MME for ssGBLUP become, for one trait:

(
X′Xσ−2

e X′Wσ−2
e

W′Xσ−2
e W′Wσ−2

e +H−1σ−2
u

)(
b̂
û

)
=
(

X′yσ−2
e

W′yσ−2
e

)
And for multiple traits:

(
X′R−1X X′R−1W
W′R−1X W′R−1 W+H−1⊗G0

)(
b̂
û

)
=
(

X′R−1y
W′R−1y

)
where G0 is the matrix of genetic covariance across traits, and usually R=I

⊗
R0, where R0 is

the matrix of residual covariances. The formulation is as general as pedigree-based BLUP.

Some properties are:

• All models that ran using MME and A-matrix run using H-matrix. This includes, among
others, random regression models, multiple trait models, threshold models, maternal effect
models.

• Existing software can be easily recycled to run SSGBLUP including a mechanism to
introduce elements G−1−A−1

22 , that can be computed externally

• REML and Gibbs sampling algorithm work perfectly well without modifications
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14.4 Some properties of matrix H
Matrix H is full rank (invertible) matrix, because it can be formed as

H = A +
[
A12A−1

22 0
0 I

] [
I
I

]
[G−A22]

[
I I

] [A−1
22 A21 0

0 I

]
which is a full rank matrix. However, for H to be positive definite (which is the requisite for
using its inverse in MME), G −A22 needs to be positive definite. It usually is – maybe after
some adjustments for compatibility that will be used later.

The inverse

H−1 = A−1+
(

0 0
0 G−1−A−1

22

)
is also full rank, but for it to be positive definite, it needs G−1−A−1

22 to be positive definite.
Again, if things are done properly, it usually is.

Construction of H−1 is simple, because it follows four steps:

1. Build A−1 using Henderson’s rules

2. Build G and invert it

3. Build A22 and invert it

The matrix A22 is the relationship matrix of genotyped individuals. This matrix can be
constructed using the tabular method, but this is very costly for large data sets. A better option
is to use either recursions (Aguilar and Misztal 2008) or Colleau (2002) algorithm. Several
strategies were described by Aguilar et al. (2011). We remind also that the A−1

22 is not the
corresponding block of A−1, in other words, it has to be constructed and inverted explicitely.

The diagonal in G−1−A−1
22 is usually positive. This implies (roughly) that there is more

information in G than in A22, because G captures realized relationships.

Matrix H1 is rather sparse. Consider the following two examples:

• Manech Tete Rouse sheep has ~3000 animals (rams) genotyped for a ~500,000 animals
pedigree. Thus, A−1 has 4.5× 106 non-null elements, and G or A22 have 9 ×106non-null
elements. Combined, this results in H−1 with 13.5 ×106non-null elements. Compare this
to what would happen if we could genotype the entire population and do GBLUP (G would
have 250,000 ×106elements !!) or SNP-BLUP (ZZ′ would have 2,500 ×106elements).

• Angus cattle has ~11,000,000 animals in pedigree and ~500,000 animals genotyped. Matrix
A−1 has 100 ×106non-null elements, G or A22 have 250,000 ×106elements, H−1 has 350
×109elements. If we could genotype the entire population and do GBLUP (G would have
121× 1012 elements !!) or SNP-BLUP (Z′Z would have 2,500 ×106elements).

When the number of animals genotyped is very large (larger than the number of markers),
matrix G gets rather big. For this reason, there are other formulations of ssGBLUP that will be
presented later.

Matrix H above can be seen as a modification of regular pedigree relationships to accommodate
genomic relationships. For instance, two seemingly unrelated individuals will appear as related
in H if their descendants are related in G. Accordingly, two descendants of individuals that are
related in G will be related in H, even if the pedigree disagrees. Indeed, it has been suggested to
use H in mating programs to avoid inbreeding (Sun et al. 2013).

Contrary to common intuition from BLUP or GBLUP, genotyped animals without phenotype or
descendants should not be eliminated from matrix H unless both parents are genotyped. The
reason is that (unless both parents are genotyped) these animals potentially modify pedigree
relationship across other animals, possibly notably their parents. For instance, imagine two
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half-sibs, offspring of one sire mated to two non-genotyped, unrelated cows. If these two half sibs
are virtually identical, H will include this information and the cows will be made related (even
identical) in H.

14.4.1 Inbreeding in H

The diagonal elements of A contain inbreeding expressed as Fi = Aii − 1. The diagonal elements
of G contain genomic inbreeding expressed as Fi = Gii− 1. Inbreeding is useful to handle genetic
variability, and also to compute model based reliabilities as reli = 1− PEV

(1+Fi)σ2
u
. Because H uses

all information, the best estimate of inbreeding combining pedigree and genomic information is
actually Fi = Hii − 1. Note that we have efficient methods to obtain H−1 but we do not have
efficient methods to obtain H or its diagonal. Xiang et al. (2017) obtained the diagonal of H by
computing the sparse inverse of H−1 as is programmed in YAMS. Anyway, we do not know -yet-
how to efficiently obtain “H-inbreeding”. Recently, Colleau et al. (2017) proposed a method that
allows to compute overall statistics of H such as total relationship. The method is quite involved
numerically but so far it is the only existing option.

14.5 Mixing G and A: blending and compatibility of pedigree and
genomic relationships.

This is a very important chapter because lots of people (including famous researchers) confuse
“compatibility”, which tries to put G and A in the same scale, and “blending”, which is basically
a technique used to assign part of the genetic variance to pedigree – not markers, and at the
same time used to have an invertible G.

14.5.1 Blending

14.5.1.1 Blending to include the residual polygenic effect In previous chapter for
GBLUP, we saw that we can model the total genetic effect as based, partly, on pedigree, and
partly on genomic relationships. Let us decompose the breeding values of all individuals in a
part due to markers and a residual part due to pedigree, u=um+up with respective variances
σ2
u = σ2

u,m + σ2
u,p. The “marker-based” part will have a relationship matrix H in Single Step,

whereas the “pedigree-based” part will have a relationship matrix A.

It follows that V ar (u) = ((1− α) H+αA)σ2
u where α = σ2

u,m/σ
2
u. In practice, in the SSGBLUP,

it is easier to create a modified genomic relationship matrix Gw (G in (Aguilar et al. 2010); Gw

in (VanRaden 2008 ; O. F. Christensen 2012) ) as Gw = (1− α) G+αA22.

This is known as “blending”. In practice, the value of α is low (values oscillate between 0.05
and 0.7) and has mostly negligible effects on predictions. It has been claimed that blending
reduces bias of predictions, and this results in different optimal α coefficients for different traits
and species. It seems strange to accept that markers would describe one trait up to 95% of its
variance, and for the same animals, only 70%. A more coherent approach is to estimate the
two components in σ2

u = σ2
u,m + σ2

u,p by REML (Christensen and Lund 2010), fitting explicitly
two separate random effects, um+up with respective covariance matrices Hσ2

u,m and Aσ2
u,p, and

estimate explicitly σ2
u,m and σ2

u,p.

14.5.1.2 Blending to make G invertible Matrix G is often not invertible, and therefore
we can come up with “tricks” to make it invertible. The simplest trick is to add a small constant,
say 0.01, to the diagonal of G:

Gw ← G + 0.01I

Which gives Gw nearly identical to G: Gw ≈ G and therefore Gw ≈ ZZ
′∑

(2pjqj)
.

Alternatively, we can use the “blending” with the relationship matrix as above
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Gw ← (1− α) G+αA22

Here, Gw is “less” close to the original G and to ZZ
′∑

(2pjqj)
. This has repercussions for the

backsolving of SNP effects. For this reason, “blending” with the relationship matrix is becoming
more cumbersome for some computational strategies such as APY or SNP-based models.

14.6 Compatibility of G and A
14.6.1 Fitting G to A

Based on the way H is constructed, the central element is G−A22, which implies both matrices
should be compatible (Legarra et al. 2014). VanRaden (2008) stated thatG had to be constructed
with base allele frequencies. However, genomic relationships can be biased if G is constructed
based on allele frequencies other than the ones calculated from the base population (VanRaden
2008). Allele frequencies from the base population are not known because of the recent recording
of pedigrees (i.e., the base population per se is unknown). In some cases, such as dairy cattle,
base allele frequencies can be inferred – in other cases such as pigs or sheep, they can not. In
the typical case, the allele frequencies are observed a few generations after the start of predigree
recording. Allele frequencies p will tend to fixation to the closest extreme (1 or 0) if they are
neutral, and towards the favorable allele if they have effects.

Most commonly, allele frequencies used to constructG are based on the observed population. This
brings two problems. The first one is that the machinery of “linear imputation” of Christensen
and Lund (2010) fails: the expression Ẑ1 = A12A−1

22 Z2 as the mean is not 0.

The second problem is that we assumed in the development that the expectation of breeding
values for genotyped animals is 0. If the population is under selection, recent animals should
have higher genetic values than the base generation. Thus, the assumption u2 ∼ N(0,Gσ2

u) .
A more sensible approach is to posit a mean for these animals: u2 ∼ N(1µ,Gσ2

u) (Vitezica et
al. 2011). In the chapter about genomic relationships, we have seen that if µ is a random effect,
this leads to a genomic relationship matrix: G∗=G + 11′a where a = A22−G; use of a leads
to u2 ∼ N(0,G∗σ2

u) with mean 0. Equivalently, Vitezica et al. (2011) show that a model with
explicit estimate of µ leads to the same solution. The idea has been considered also with µ fit as
a fixed effect (Hsu, Garrick, and Fernando 2017).

In addition, and as shown in the chapter of genomic relationships, there is a decrease in the
genetic variance. This leads to very similar adjustments

G∗ = a+ bG

with a and b inferred from 2 systems of equations:

tr (G)
m

b+ a = tr (A22)
m

a+ bG=A22

This adjustments account for genotyped animals being more related through A22 than G is able
to reflect.

14.6.2 Fitting A to G

A second class of method is also detailed in the same chapter, and leads to modify A22 to resemble
G rather than the opposite. Christensen (2012) argued that using any allele frequency is subject
to uncertainty, and after algebraic integration of allele frequencies he devised a new pedigree
relationship matrix, A (γ) whose founders have a relationship matrix Abase = γ + I(1 − γ/2).
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Parameter s, used in G=ZZ′/s can be understood as the counterpart of 2Σpiqi (heterozygosity
of the markers) in the base generation.

Further developments by Garcia-Baccino et al. (2017) showed that the unknown s reduces to
s = 2

∑
0.52 = m/2, simply the number of markers divided by 2, and γ = 8var (pbase), where

pbase are the (say, 50K) base allele frequencies. It may be argued that we still need to estimate
pbase ; true, but using one inferred parameter γ to modify A instead of using 50,000 inferred
parameters in pbase to construct G seems a safer strategy. Also, γ needs to be estimated only
once and not at each run SSGBLUP when new genotypes are available. Both papers present
methods to estimate γ, but the simpler strategy is to estimate pbase using Gengler’s method and
then compute γ̂ = 8var (p̂base). The method has interesting connections with Wright’s Fst theory
(Garcia-Baccino et al. 2017) and with genetic distances across populations.

14.6.3 Unknown Parent Groups

Imagine that you are in Europe in 1975 and there is a massive introduction of selected US
Holstein bulls into the less-selected European “Friesian” population, as described for instance
here. US data are not available, but you want to fit in your model the fact that some groups
of “parents” are really different from others. What you do – you assign a “pseudo-parent” at
the top of the US pedigree, and a “pseudo-parent” at the top of the European pedigree. These
pseudo-parents are not animals per se; they are conceived as infinite pools of animals to draw
descendants from; their descendants are not inbred nor related.

This is, presented in a caricature, the origin of Genetic Groups or Unknown Parent Groups
(UPGs hereinafter). For more details, go to regular texts on genetic evaluation (e.g.(Mrode and
Thompson 2005)) and to Quaas (1988) and Thompson (1979) classic papers. Application of UPG
goes through a special matrix A∗ that accomplishes the role of “regular” A−1 in BLUP. This
matrix is:

A∗ =
(

Q′A−1Q −Q′A−1

−A−1Q A−1

)
and includes UPG in the upper corner. This matrix has no inverse and therefore the “relationship”
matrix with groups does not exist (this is indeed awkward).

Unknown Parent Groups are used extensively to model:

1. Missing parentship, as in sheep (father is often unknown). Genetic Groups are often defined
by year of birth to model genetic progress.

2. Importations, or introduction of foreign material (as in pig companies). Genetic Groups
are often defined by country of origin.

3. Crosses (e.g. Angus x Gelbvieh). Genetic Groups are often defined by breed.

The key bit for what we want in these notes is to realize that, in the theory of Unknown Parent
Groups,

p (u2) = N
(
Qg,Aσ2

u

)
with g the “breeding value” of the unknown parent group, Q containing fractions of origin, for
instance an animal could have 10% of its genes from “Lacaune France 2002”, 15% of its genes
from “Lacaune 2000”, 25% from “Lacaune 2004”, and 50% of its genes from “Lacaune 1996”.

Our problem now is that, when doing genomic predictions, we assumed

p (u2) = N
(
0,Gσ2

u

)
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Then, why do we need UPG if we have G and G is replacing the pedigree information? How can
we conciliate these two definitions for u2? The developments that lead to SSGBLUP fail because
we assumed that

p(u1|u2) = N
(
A12A−1

22 u2,A11 −A12A−1
22 A21

)
But this is no longer true in presence of Unknown Parent Groups (in part because of the fact
that A∗ cannot be inverted). Some options were reviewed by Misztal et al. (2013). The idea of
metafounders was published by Legarra et al. (2015). We discuss them quickly here. This is still
an open topic for research.

14.6.3.1 Truncate pedigree and data The simpler option is to remove old data as in
(Lourenco et al. 2014). If your UPGs model genetic trend, but you’re only interested in recent
animals, you can remove “old” data and then trace back your pedigree from your data by 3
generations. And you don’t use UPGs. This is simple – yet efficient. In addition, in this case A
and G match almost automatically because the base generation in the (truncated) pedigree is
very close to the genotyped animals.

14.6.3.2 Approximate UPGs The default option in blupf90, when there are UPGs, is to
build a matrix H∗ as follows:

H∗ = A∗ +
(

0 0
0 G−1 −A−1

22

)
Where A22 is constructed as if UPG don’t exist, which is an approximation. This works usually
well unless you have many animals (e.g. cows or sheep) that have some unknown parent. In this
case, there are three other solutions.

14.6.3.3 Fitting UPG as covariates This is simple yet cumbersome. The model fit for
genomic evaluation does not use A∗, but it fits UPG as covariates:

y = Xb + Qg + Zu + e

With a matrix with covariates and using “regular” H−1 = A−1 +
(

0 0
0 G−1 −A−1

22

)
for u. The

final estimate is û∗=û+Qĝ.

This model is not quite right. If G “contains” all needed information, for genotyped animals the
group effect is counted twice: in Q and in G. Taking it to the extreme, in a GBLUP context, it
would make no sense to put covariates.

14.6.3.4 Fitting “exact UPGs” This is equivalent to the previous solution, but the Qg
part is embedded within H∗:

H∗ = A∗ +
(

Q′2
(
G−1 −A−1

22
)
Q2 Q′2

(
G−1 −A−1

22
)(

G−1 −A−1
22
)
Q2 G−1 −A−1

22

)

14.6.3.5 Metafounders Legarra et al. (2015) suggested a different point of view. First, to
apply Christensen (2012) theory to construct G as G05, “pretending” that all allele frequencies
are 0.5. Second, to substitute UPGs by pseudo-animals called metafounders, that have strange

relationship coefficients called Γ. For instance, an example of these coefficients is Γ =
(

0.7 0.4
0.4 0.5

)
.

These coefficients need to “match” observed relationships in G05; for instance, if Landrace and
Yorkshire have an average of 0.4 relationship in G05, then γLandrace,Yorkshire should be 0.4. If
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Yorkshire animals that are unrelated based on pedigree have an average of 0.7 relationship in
G05, then γYorkshire,Yorkshire = 0.7 . Based on this, we create AΓ and then we use

HΓ−1 = AΓ−1 +
(

0 0
0 G−1 −AΓ−1

22

)
We achieve two things here: (1) modelling different means and (2) automatic compatibility
between A and G. This strategy was used by Xiang et al. (2017).
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15 Use of method LR to assess potential bias due to design
of cross-validation analysis.

Andres Legarra, INRAE, 28 Oct 2021.

This project has received funding from the European Unions’ Horizon 2020 Research & Innovation
programme under grant agreement N°772787 -SMARTER.

15.1 Introduction
In genomic selection, use of early genomic proofs can lead to suboptimal selection decisions if
there is bias (see below for description of bias). In sheep and goats, and in particular for traits
expressed in females, there is a lack of good tools to evaluate the presence or absence of bias,
and the methods to evaluate accuracy of genomic selection are suboptimal.

We do we concern about bias? Selection theory establishes that selection is optimal if each
candidate to selection is compared fairly to each other. This means that across individuals,
Estimated Breeding Values (EBV, û) of the selected candidates is equal to the expectation
of the (true) Breeding Values (BV, u). When animals are selected, this is true under two
conditions: ū = ¯̂u and cov(u, û) = var(û), where the means and the covariances apply across the
animals selected in an operation (i.e. at the time of selecting young male lambs). The property
cov(u, û) = var(û) is needed because if the distribution of û of e.g. young animals is too (or not
enough) spread, we will select too many (or too little) young animals. Note that at this point,
these properties are not statistical and therefore are neither “frequentist” nor “Bayesian”.5

These properties can be formalized as

(1) equality of estimated and true means :

1′û = 1′u

or equivalently 1
n

∑
ûi = 1

n

∑
ui or still ¯̂u = ū, and

(2) slope of true on estimated equal to 1

1
n

∑(
û− ûi

)2 = 1
n

∑
[
(
ûi − ¯̂u

)
(ui − ū)]

or equivalently cov(u, û) = var(û).

Henderson (Henderson (1975), Henderson (1982)) established that the two properties above hold,
even if there is selection, on expectation for one animal across repeated conceptual sampling of
its (u, û). Then Legarra and Reverter (2018) proved that the proof applies to sets of EBVs from
groups of animals, so we have that the two properties hold on expectation for many animals
across repeated conceptual sampling. By the Law of Large Numbers, when the number of animals
is large, a number converges to its expectation. This means that, for a large number of animals,
¯̂u = ū must hold empirically.

So the theory says that, without invoking some esoteric statistical framework, genetic evaluations
should be unbiased. But how can we check this? We don’t have u, only û. In dairy cattle, they
compare predictions vs. progeny proofs (or Daughter Yield Deviations) but in other species the
number of offspring of each animal is small.

In addition, we’re interested in finding out the accuracy of genomic prediction, i.e. r(u, û). Again,
it is difficult to obtain this number in small ruminant cases.

5The compensation that NZ farmers got in 2010 for using genomic bulls with biased genomic proofs did not
know about priors or sampling distributions :-)
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15.2 Bias due to using pre-corrected data or De-Regressed Proofs
(DRP)

The following is extracted from Legarra and Reverter (2018). Often we have used precorrected
phenotypes y∗ or deregressed proofs, and compare predictions ŷ with (precorrected) observations
y∗ (this method is sometimes called “predictability”). The estimator of accuracy is e.g. r ≈
cor(y∗, ŷ)/h for h2 the heritability (Legarra et al. 2008). But this ignores that precorrection
generates a covariance structure in y∗, is very sensitive to low values of h2, and it also ignores
that animals used in these studies can be preselected (case for instance of elite males). This leads
to paradoxes:

• r > 1 (observed in chicken)
• rpedigree > rgenomic (observed in dairy cattle for fertility)

15.2.1 Bias due to ignoring the effect of selection on genetic variance

It also ignores that candidates to selection have reduced genetic variance (Bijma (2012)). For
instance, for prospective AI rams in dairy sheep, because they’re highly selected, their genetic
variance is less than the “normal” genetic variance.6

Consider for instance that we made a study on growth in meat sheep in selected rams in a
performance recording station. These rams are selected based on parent average and therefore
their genetic variance, is, say, k = 80% of the populational one, and h2 = 0.3. Through cross-
validation we obtain cor(y∗, ŷ) = 0.4 and we conclude that r ≈ cor(y∗, ŷ)/h = 0.73. However this
is incorrect because these animals were selected, so that in these rams, the heritability is actually
h2∗ = kh2

1−(1−k)h2 ≈ 0.26. Coupling in our equation r ≈ cor(y∗, ŷ)/h∗ = 0.78, quite higher.

15.2.2 Bias due to pre-correction by fixed effects

There is a second, non-negligible source of bias. We use y∗ (precorrected data) as it was “exact”.
This leads to overestimation of accuracies. In Legarra and Reverter (2018)) we worked out that
for a balanced design with ni records per contemporary group, the bias is such that the relative
overestimation of accuracy is of order 1

ni
. For instance:

• Dairy sheep: assume 25 animals / contemporary group. This leads to overestimation of
accuracy by 1/25 = 4%. If r ≈ cor(y∗, ŷ)/h = 0.73, this r was overestimated by 4% so that
the actual accuracy should be r = 0.73(1− 0.04) = 0.70.

• Beef cattle: 5 animals / contemporary group. This leads to overestimation of accuracy of
20%

15.3 Method LR to the rescue
For all these reasons we want better methods to assess biases and accuracies.

Legarra and Reverter (2018), with further proofs by Bermann et al. (2021), extended the
machinery developed by Henderson (1975) and Reverter et al. (1994) to infer biases and
accuracies by splitting the data set. They defined partial (p) and whole (w) data sets, so the
partial data set contains all information until a given date and the whole data set contains all
information available for the analyst until a later date (not necessarily now). The procedure,
called LR from Linear Regression7 is described next.

15.3.1 LR in a nutshell

You have complete (whole) records, pedigree and (perhaps) markers. Consider a cut-off date.
Records before these date make the partial data set: yp whereas all records make the whole data
set: yw. Then you run two genetic evaluation with either the partial data or the whole data,
and you keep the entire pedigree and markers in both. In these manner, you have EBVs for all
animals in both cases, ûp and ûw respectively.

6Note that the genetic variance is recovered when this animals mate to females in the next generation.
7The fact that the initials of the authors are LR is, of course, coincidental :-)
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Then you compare EBVs of animals in partial and whole prediction. You don’t include all
animals; you consider contemporary animals with similar information, in which you have an
interest (for instance, males candidates to selection). We call this focal animals or focal groups.
See below for examples.

The comparison is very simple and it just consist in a series of statistics that can be easily
computed. We propose several criteria. This can be found in F. L. Macedo et al. (2020)
which is the most up-to-date source. Note that in the following, whenever we put something
like cov(ûp, ûw) we mean a scalar (the “observed” covariance) and not a matrix (which is the
sampling or prior distribution of the vector).

15.3.1.1 Bias This is measured using ∆̂p = ¯̂up − ¯̂uw. The expectation is 0 (no bias). A
positive value means that animals with partial information are overevaluated.

15.3.1.2 Slope Also calledr over/underdispersion. This is measured using b̂p = cov(ûp,ûw)
var(ûp) or,

equivalently, computing the slope b1 of the linear regression “whole on partial” ûw ∼ b0 + b1ûp+ ε.
The expectation is 1 (no over- neither under-dispersion), values lower than 1 mean that selected
candidates are overestimated. This is the kind of bias commonly reported in dairy cattle studies.

A very small example with 5 individuals follows:

# these are actually 5 "proven" bulls
EBV2018=c(999,849,831,953,764)
EBV2019=c(973,833,904,963,807)
Delta_p=mean(EBV2018)-mean(EBV2019) # -16.8
b_p=cov(EBV2019,EBV2018)/var(EBV2018) #0.71
aa=lm(EBV2019~EBV2018)
b_p=aa$coefficients[2] # 0.71

15.3.1.3 Accuracies There are two estimators of relative accuracies and two estimators of
absolute accuracies.

• The first statistic is the correlation between partial and whole EBVs: ρ̂wp = cov(ûp,ûw)√
var(ûp)var(ûp)

(or simply cor(u_p,u_w)). This has expected value accp
accw

where acc means accuracy.

So, this estimates a ratio of accuracies and not the absolute accuracy. For instance, Values
close to 1 indicate that “partial evaluation” was “as accurate” as “whole” evaluation, but both
evaluations could be “little accurate”.

A byproduct of ρ̂wp is an estimator of the relative increase in accuracy. In effect, 1
ρ̂wp
− 1

has expected value accw−accp
accp

, which is the relative increase in accuracy from whole to partial .
For instance, boars can be evaluated for carcass traits before or after some full-sibs have been
slaughtered, and 1

ρ̂wp
− 1 gives the relative increase in accuracy.

• The second statistic is ρ̂2
wp = cov(ûp,ûw)

var(ûw) , with expected value acc2p
acc2w

, i.e. the ratio of reliabilities
(squared accuracies).

Note that in fact this statistic ρ̂2
wp is the slope b1 of the regression “partial on whole”: ûp ∼

b0 + b1ûw + ε. A note of caution of this statistic is that the expected value requires that the
evaluation is unbiased (b̂p = 1) something that is not required for ρ̂wp. In principle, the value
obtained for ρ̂2

wp should be the square of the value obtained for ρ̂wp, but this is not true in
practice as it holds only in expectation.

Both statistics are easy to compute:

rho_pw=cor(EBV2018,EBV2019) # 0.9101622
rho2_pw=cov(EBV2019,EBV2018)/var(EBV2019)# 1.15944

note that in this example ρ̂2
wp is not admissible (ρ̂2

wp > 1 would mean that accp > accw) and this
is because in the example b̂p is not even close to 1.
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• The first estimator of absolute reliability is an estimator of “selected” reliability: âcc2p =
cov(ûp,ûw)

σ2
u∗

. The denominator σ2
u∗ is the variance of animals in the focal group (and not

the variance of the base generation σ2
u).

When animals are pre-selected (for instance, prospective AI rams selected based on parent
average) their genetic variance σ2

u∗ is less than the “normal” genetic variance σ2
u. As an example,

in Manech Tete Rousse, σ2
u ≈ 500 but σ2

u∗ ≈ 350 for young selected rams (for milk yield) Macedo,
Christensen, and Legarra (2021). The variance σ2

u∗ can be estimated using Gibbs Sampling
(Sorensen, Fernando, and Gianola (2001),F. L. Macedo et al. (2020)).

So, this equation gives the “selected” reliability (Bijma (2012),Dekkers (1992)), which is the
“ability” to rank within those animals (more difficult when they are selected). However, we can’t
(easily) use this reliability to predict genetic progress, and we can’t compare it with results in
less selected animals, say, females. Also, the numbers do not match with those model-based,
i.e. by Selection Index theory or from the inverse of the MME. The solution to this was given by
Dekkers (1992) and Bijma (2012), and it leads to the last statistic:

• Unselected reliability, r̂elp = 1− σ2
u∗
σ2
u

(1− âcc2p). The mathematical explanation of all this
is quite boring and convoluted, but some detailed exapmles can be found in F. Macedo,
Reverter, and Legarra (2020) and F. L. Macedo et al. (2020).

15.3.2 Examples of interpretation

Just to give a feeling of what these numbers look like and mean. When we did the first cross-
validation approaches in dairy sheep, we used AI rams that after selection based on parent
average, were used in progeny testing. In order to compute if genomic selection is good, we can
evaluate these rams with ssGBLUP at birth, and then after progeny. The first result that we
get is ρ̂wp, but it can’t be used to predict genetic progress of genomic selection. Then we do
better and we compute âcc2p, but we obtain a number that is very small because the animals
are highly selected. What we want is the accuracy of the genomic young rams if they were not
selected, because a genomic selection scheme genotypes a wide basis of animals. To do so, we use
the equation above to transform âcc

2
p into r̂elp, which is the number that we want.

For instance, we obtained the following Table (F. L. Macedo et al. (2020)):

Method âcc
2
p r̂elp ρ̂2

pw

BLUP-MF 0.22 0.53 0.32
SSGBLUP-MF 0.32 0.59 0.45

In the Table, the numbers of âcc2p seems “obviously wrong” because, for instance, for BLUP the
reliability of the Parent Average from progeny-tested sire and phenotyped mother is usually close
to 0.5, much higher than the observed numbers of ∼ 0.25. However, the âcc2p = 0.22 in BLUP
is the reliability within the selected rams, whereas the reliability across all possible rams is in
fact r̂elp, which has a value of 0.53 much closer to what we expect. The value of ρ2

pw is more
complicated to interpret. However, in the three columns it is obvious that SSGBLUP is more
accurate than BLUP.

15.3.3 Practicalities

1. You evaluate the bias and accuracies for a category of animals. We call this focal animals or
focal groups. These are contemporary animals for which the properties above hold, which
are “exchangeable” (in other words, we’re interested in the group, not in each individual
animal) and in which we are interested. For instance young born rams can be a focal group.
1st-lambing females can be a focal group, and rams with first crop of daughters could be
a focal group as well. But it is not a good idea to define a focal group composed of 50%
progeny-tested rams 4 year old and 50% young animals that are 1 year old, because the
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first will be more accurate and the second more shrunken towards the mean. To define the
focal animals, the best way is to do it by analyzing the data: for instance, take all m rams
born in year say 2010, and from them select those n that had offspring with record in 2014,
but not before. Then the number of animals in the focal group is n.

2. Define dates in a way such that the focal individual will have more information in the
whole than in the partial data set. For instance, young rams could have only parents’ (and
genomic) information in the partial data set and offspring information in the whole data set.
First lambing females could have one record for milk yield in the partial and two records in
the whole ; and similar cases. In the example above, the year of partial can be 2010 and
the year of whole can be 2014.

3. The way we do this is using the data set and “looking forward” from each year. For instance,
we take all rams born in 2014 that were used in AI , and few years later (say 2017) we find
out which of these rams have daughters with milk yield. This defines a focal group for
“partial”=2014 and “whole”=2017 We can do the same for 2014 vs. 2018, 2019, etc.

4. In these manner we have many “pairs” of whole and partial. For instance you can do
“partial” at 2010, 2011,. . . and compare each of them vs. “whole” at 2014, 2015. . . . It is
important to do several comparisons because the statistics vary a lot across years. Using
several pairs of whole and partial requires automatic handling of files and data editing, that
we do using automated scripts in R, Unix tools, and R scripting. The genetic evaluations,
themselves, can be run in any software that you like.

5. In practice we delete “records” (milk yield, etc etc) based on the year, and we keep ALL
pedigree and ALL markers. A more refined approach is to keep pedigree and markers only
up to the same date, for instance if “partial”= March 2014 we should keep records, pedigree
and markers up to March 2014 (because pedigree and markers were used to predict the
young rams).

6. In genetic evaluations with Unknown Parent Groups, the EBVs are not estimable functions
So you need to refer all EBVs to a common genetic base in order to infer “bias” or not.
Typically the genetic base is something like “average EBV of all females born in 2010” or
something like that.

All this requires good knowledge of the data sets, the breeding scheme (or the breed), and a good
command of scripting and genetic

15.3.4 The importance of several comparisons

The Figure 1 below shows all the estimates of bpw in F. L. Macedo et al. (2020). For instance, in
the X-axis we see the year of cut-off of partial, and the repeated points correspond to several
whole years: 2010, 2011. . . It is clear that there is a large variation of bpw due to chance, so to
assess the unbiasedness of genetic evaluation one should do several pairs of whole and partial
and not rely on a single study. For instance, year 2008 evaluation was clearly biased (bpw < 1)
whereas the other years were not.

15.3.5 Estimation of genomic accuracies vs pedigree ones

How do I infer if a genomic evaluation is more accurate than a pedigree based one? There are
two manners.

The first approach is to use whole and partial as we have explained so far, and evaluate each run
both BLUP and genomic prediction (e.g. SSGBLUP), which yields a Table like above. This gives
quite complete information as we can compare accuracies across methods and at different times.

The second approach is to consider that the genomic evaluation has “more data” so the pedigree-
based evaluation is partial and the genomic evaluation is whole. The records y are the same. in
both. Then the statistics above describe the ratio, increase, or absolute accuracies. For instance
if we observe ρ̂pw = 1, it means that adding genotypes did not change anything. However, if we
obtain ρ̂pw = 0.9, it means that accuracy increased (relatively) by 1

ρ̂pw
− 1 = 0.11.
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a b s t r a c t

Genomic evaluation methods assume that the reference population is genotyped and
phenotyped. This is most often false and the generation of pseudo-phenotypes is uncertain
and inaccurate. However, markers obey transmission rules and therefore the covariances of
marker genotypes across individuals can be modelled using pedigree relationships. Based
on this, an extension of the genomic relationship matrix can be constructed in which
genomic relationships are propagated to all individuals, resulting in a combined relation-
ship matrix, which can be used in a BLUP procedure called the Single Step Genomic BLUP.
This procedure provides so far the most comprehensive option for genomic evaluation.
Several extensions, options and details are described: compatibility of genomic and
pedigree relationships, Bayesian regressions, multiple trait models, computational aspects,
etc. Many details scattered through a series of papers are put together into this paper.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction: brief excursion into methods
for genomic evaluation

1.1. Marker information

Genetic progress by selection and mating is based on
prediction of the ability of the parents to breed the most
efficient descendants. This process of prediction is called
genetic evaluation or prediction. Genetic evaluation in plants
and livestock has, for the last century, been based on the use
of phenotypes at the traits of interest, together with pedigree.
In most cases, these evaluations ignore the physical base of
heredity, i.e., DNA, and use a simplified conceptual represen-
tation of the transmission of genetic information from parents
to offspring; namely, each parent passes on average half its
genetic constitution, associated with an unknown sampling

known as Mendelian sampling. Recent technical develop-
ments allow stepping further into biology and peeking at
the genome in the form of single nucleotide polymorphisms,
known as SNP markers. These markers depict, in an incom-
plete manner, the differences between DNA inherited by two
individuals. They can be used in multiple ways; in this section
we will present very briefly how they are typically used in
genetic evaluation (or prediction or estimation of breeding
values: EBV hereinafter) in a parametric framework. Most
genomic evaluations follow the principle of estimating the
conditional expectation of the breeding value in view of all
information, which has optimal properties if the assumptions
of the model hold (e.g., Fernando and Gianola, 1986). This
(parametric) paradigm has been extremely fruitful over the
last decades, allowing for the development of BLUP, REML,
Bayesian estimators and giving a coherent framework to solve
many applied problems in animal breeding (e.g., Gianola and
Fernando, 1986).

The notion of prediction or estimation of random effects is
absent in many statistical textbooks (but check, for instance,
Casella and Berger (1990)). However, it has been treated as

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/livsci

Livestock Science

http://dx.doi.org/10.1016/j.livsci.2014.04.029
1871-1413/& 2014 Elsevier B.V. All rights reserved.

n Corresponding author. Tel.:þ33 561285182; fax: þ33 561285353.
E-mail addresses: andres.legarra@toulouse.inra.fr (A. Legarra),

OleF.Christensen@agrsci.dk (O.F. Christensen),
iaguilar@inia.org.uy (I. Aguilar), ignacy@uga.edu (I. Misztal).

Livestock Science ] (]]]]) ]]]–]]]

Please cite this article as: Legarra, A., et al., Single Step, a general approach for genomic selection. Livestock Science
(2014), http://dx.doi.org/10.1016/j.livsci.2014.04.029i



early as Smith (1936) with key references e.g. in Cochran
(1951), Henderson (1973) or Fernando and Gianola (1986).
Based on those authors, the “correct” model of prediction
consists in writing down the statistical association between
phenotypes and breeding values, then derive the EBVs from
the conditional distribution of breeding values given the
phenotypes.

1.2. Bayesian regression

Typically, in genomic predictions, the phenotypes of a
population are considered as a function of the breeding
values, and the breeding value of individuals, u (or part of
it) is decomposed into a sum of marker effects a (e.g.,
Meuwissen et al., 2001; VanRaden, 2008). These marker
effects are summed according to the genotype of the
individual, coded as (0,1,2) for the (AA,Aa,aa) genotypes.
In matrix notation u¼Ma. It follows that one way of
estimating breeding values is to estimate marker effects
and then use û¼Mâ. In order to estimate marker effects,
one needs to assume a prior distribution for them. The
process of estimation of marker effects using the statistical
model for phenotypes p(y|a) and the prior for markers p(a)
is often called Bayesian Regression on markers. A difficult
decision is the choice of the prior for markers. An exten-
sive literature in the subject shows higher accuracy, for
some traits and populations, of using “heavy-tailed” a
priori distributions (e.g., VanRaden et al., 2009).

1.3. RR-BLUP or GBLUP

If multivariate normality is assumed for the effect of
markers, interesting things happen in the algebraic develop-
ments. The first one is that the Bayesian Regression becomes
what is called RR-BLUP (or SNP-BLUP). The second is the
existence of closed forms for the RR-BLUP estimators of
marker effects, in the form of Henderson's Mixed Model
Equations; these estimators greatly simplify computations
and can be easily extended, e.g. for multiple trait situations.
The third is the existence of a so-called equivalent model, in
which breeding values (and not marker effects) are directly
computed by Henderson's Mixed Model Equations using a
covariance matrix Var(u)¼ZDaZ0 (VanRaden, 2008), where
Z¼M�2P and P contains pk, the allelic frequencies of
markers. This is most often called GBLUP. In themost common
case it is assumed that VarðaÞ ¼Da ¼ Is2u=2Σpkqk, where s2u is
the genetic variance, so that that VarðuÞ ¼ s2uG, where G¼ZZ0/
2Σpkqk. The matrix G is called the genomic relationship matrix
and will frequently be referred to later. Properties of G for
populations in Hardy-Weinberg equilibrium are an average
diagonal of 1 and an average off-diagonal of 0. Genomic
evaluation using G (GBLUP) gives the same estimated breed-
ing values as a marker-based RR-BLUP and has the additional
advantage of fitting very well into ancient developments (e.g.,
for multiple trait) and current software. An interesting feature
of the genomic relationship matrix is that it can be seen as an
“improved” estimator of relationships based on markers
instead of pedigrees (VanRaden, 2008; Hayes et al., 2009),
and is closely related to estimators of relationships based on
markers used in conservation genetics (Ritland, 1996; Toro
et al., 2011).

2. The problem of missing genotypes and the use
of pseudo-data

Genotyping an individual is an expensive process that
also requires the availability of a biological sample. There-
fore, in most populations either the most recent or the
most representative animals (e.g., sires in dairy cattle)
have been genotyped. Some individuals are genotyped
with low-density chips that genotype only some markers.
From these, genotypes at all markers can be efficiently
imputed (e.g., VanRaden et al., 2013) and we will consider
these individuals as genotyped. A non-genotyped indivi-
dual is one for which there is no genotype at any loci.
Therefore, the methods for genomic prediction described
above cannot be applied directly, as there is often not
phenotype for the individual genotyped and viceversa;
this is particularly true for sex-limited traits (milk yield,
fertility, prolificacy). Although a sire model could be used,
this ignores selection on the female side, and does not
yield females' EBVs. Therefore, animal breeders have used
pseudo-data or pseudo-phenotypes. A pseudo-phenotype is
a projection of the phenotypes of individuals close to the
genotyped one. In dairy cattle and sheep, pseudo-
phenotypes typically used are corrected daughter perfor-
mances (daughter yield deviations, VanRaden and Wiggans,
1991), whereas in other species de-regressed proofs are
often used, with a variety of ad hoc adjustments (Garrick et
al., 2009; Ricard et al., 2013).

This process is therefore clumsy and we call it multiple
step. A regular genetic evaluation based on pedigree is run
first, and its results are used to create pseudo-performances.
Then, a genomic evaluation model is used. This results in
losses of information, inaccuracies and biases, whose impor-
tance depends on the species and data set. There are several
possible problems:

1. The information of a close relative is ignored in the
genomic prediction, for instance the dam of a bull if
this dam has phenotype but not genotype.

2. The information of a close relative is ignored in the
creation of pseudo-phenotypes, for instance a non-
genotyped parent. This is serious if the progeny of the
genotyped individual is scarce and therefore parental
phenotypes are informative (see Ricard et al. (2013) for
a discussion in a horse application).

3. Unless estimates of environmental effects are perfect,
covariances among pseudo-phenotypes are not cor-
rectly modelled. For instance, the yield deviations of
two unrelated cows in the same herd will be correlated
(e.g., if the herd effect is underestimated both will be
biased upwards). This is ignored in the genomic model,
which acts as if pseudo-phenotypes were perfectly
clean of environmental errors.

4. Many key parameters are difficult to obtain. One of
them is precisions of pseudo-phenotypes, which are in
most cases rough approximations.

5. There is no feedback. An improved estimation of the
breeding value of the genotyped animal should go into
the regular pedigree-based genetic evaluation and improve
its global accuracy.
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6. When genomic selection is applied, animals are selected
as parents based on their known genotype. The implica-
tion is that when phenotypes are obtained from a scheme
that has used genomic selection, evaluation based on
pedigree becomes biased and is no longer appropriate
(Patry and Ducrocq, 2011). Hence, current approaches for
constructing pseudo-phenotypes will also become inap-
propriate due to problems of bias.

7. The process is extremely difficult to generalize. For
instance, the multiple-trait generalization of pseudo-
phenotypes is basically non-existent, and the pseudo-
phenotypes for maternal traits result in much less accurate
multiple step predictions (Lourenco et al., 2013).

Some of these defaults can be palliated. VanRaden et al.
(2009) used a selection index to a posteriori add informa-
tion from non-genotyped dams to bull genomic evalua-
tions. The procedures of creation of pseudo-phenotypes
can be refined over and over, and in dairy cattle they result
in very accurate predictions, as accurate as Single Step
(Aguilar et al., 2010). In other species the adequacy of
multiple step procedures varies more. However, the exis-
tence of these problems calls for a unified procedure for
prediction of genetic value. This paper will describe such a
procedure: the Single Step.

3. Development of the Single Step method for genomic
evaluation

Legarra et al. (2009) and Christensen and Lund (2010)
developed in parallel the basic theory for the Single Step.
They started from two somehow different points of view
that turned out to result in the same formulation, and we
will present both developments, starting with the latter one.

3.1. The Single Step as “imputing” missing genotypes

To some extent, missing genotypes can be deduced
from existing genotypes, for instance a dammated to a sire
AA producing an offspring Aa is necessarily carrier of one
allele a. In statistical theory, a way to deal with missing
information is to augment the model with this missing
information (e.g., Tanner and Wong, 1987). This missing
information needs to be inferred from the other data, and
its joint distribution needs to be considered. This means
that a “best guess” of missing information in view of
observed data, as suggested by Hickey et al. (2012), who
imputed genotypes for the complete nongenotyped popu-
lation, is not correct enough. Even if one considers the
uncertainty of individual “guesses” the across-individual
uncertainty is extremely difficult to ascertain or deal with.

An example may clarify this point. Assume a very long
complex pedigree and the final generation genotyped for
one locus, with allelic frequency p¼ frequency(a). Due to
only having one generation with genotypes and to the long
and complex pedigree, best guesses of genotypes in the
base animals will be nearly identical and equal to 2p, for all
individuals. Therefore, using “best guess” of genotype with-
out taking uncertainty into account, all base population
individuals will be treated by the genomic evaluation as
identical, which will force them to have the same estimated

breeding value, which is paradoxical. For each individual
the uncertainty can be assessed by noting that the distribu-
tion of genotypes in this case is approximately AA (with
probability q2), Aa (with probability 2pq) and aa (with
probability p2), but the joint distribution of genotypes for
individuals in the base population is much more difficult to
characterize. In principle, incorporation of uncertainty can
be done by sampling all possible genotypic configurations
of all individuals, e.g. by a Gibbs sampling procedure (e.g.
Abraham et al., 2007) but this is computationally infeasible
for data of the size used in practical genetic evaluations.

Christensen and Lund (2010), considered the problem as
follows. Their objective was to create an extension of the
genomic relationship matrix to nongenotyped animals. Fol-
lowing an idea of Gengler et al. (2007), they treated the
genotypes as quantitative traits. This makes sense because
genotypes are quantitative (0/1/2) and follow Mendelian
transmissions. Therefore the covariance of the genotypes z
of two individuals i and j is described by their relationship, i.e.
Cov(zi,zj)¼Aij2pq (e.g., Cockerham, 1969). This is less informa-
tive than considering the genotype as a union of two discrete
entities following Mendelian rules (e.g., sometimes we can
exactly deduce a genotype from close relatives) but makes the
problem analytically tractable for all cases.

Christensen and Lund (2010) started by inferring the
genomic relationship matrix for all animals using inferred
(imputed) genotypes for nongenotyped animals; these
can simply be obtained as Ẑ1 ¼ A12A

�1
22 Z2, where 1 and 2

stand for nongenotyped and genotyped animals, respec-
tively. This provides the “best guess” of genotypes. However,
the missing data theory requires the joint distribution of
these “guessed” genotypes. Assuming that multivariate nor-
mality holds for genotypes (this is an approximation, but
very good when many genotypes are considered), the “best
guess” is EðZ1jZ2Þ ¼ Ẑ1, and the conditional variance expres-
sing the uncertainty about the “guess” is VarðẐ1jZ2Þ ¼
ðA11−A12A

−1
22A21ÞV j where V contains 2pkqk (where qk¼

1�pk) in the diagonal. These two results can be combined
to obtain the desired augmented genomic relationships. For
instance, for the nongenotyped animals,

Varðu1Þ ¼ s2u
Ẑ1
bZ0

1

2Σpkqk
þA11�A12A

�1
22 A21

 !
;

which equals

Varðu1Þ ¼ s2uðA11�A12A
�1
22 A21þA12A

�1
22 GA�1

22 A21Þ

Finally, the augmented covariance matrix is

Var
u1

u2

 !
¼ s2uH;

where

H ¼
A11�A12A

�1
22 A21þA12A

�1
22 GA�1

22 A21 A12A
�1
22 G

GA�1
22 A21 G

 !
;

is the augmented genomic relationship matrix with inverse

H�1 ¼ A�1þ
0 0
0 G�1�A�1

22

 !
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assuming that G is invertible (this will be dealt with later).
Therefore, by using an algebraic data augmentation of
missing genotypes, Christensen and Lund (2010) derived a
simple expression for an augmented genomic relationship
matrix and its inverse, without the need to explicitly aug-
ment, or “guess”, all genotypes for all non-genotyped
animals.

3.2. The Single Step as Bayesian updating of the relationship
matrix

Legarra et al. (2009) arrived to the same expressions
that of Christensen and Lund (2010) in a different manner.
They also considered how to construct an extended
relationship matrix. However, instead of dealing with
individual markers, they dealt with overall breeding values
that can be written as u2¼Z2a. They reasoned as follows.
Prior to observation of markers, the joint distribution of
breeding values is multivariate normal

p
u1

u2

 !
¼Nð0; s2uAÞ

with covariance matrix

Var
u1

u2

 !
¼ s2uA¼ s2u

A11 A12

A21 A22

 !
After observing the markers, this covariance matrix will

change. The joint distribution above can be split into the
product of a marginal and a conditional density; i.e.
p(u1,u2)¼p(u1|u2)p(u2), where

pðu1ju2Þ ¼NðA12A
�1
22 u2; s2uðA11�A12A

�1
22 A21ÞÞ:

In other terms, u1 ¼ A12A
−1
22u2þϵ, where ϵ and u2 are

independent, and VarðϵÞ ¼ σ2uðA11−A12A
−1
22A21Þ:

As discussed before, in the presence of marker geno-
types the genomic relationship matrix can be considered
as fully informative about relationships of individuals,
without the need to resort to pedigree or knowledge of
previous, or future, nongenotyped individuals. Therefore,
after observing the marker genotypes

pðu2jmarkersÞ ¼Nð0; s2uGÞ:
Marker genotypes influence the relationships among

nongenotyped individuals and relationships between non-
genotyped and genotyped individuals indirectly. Assuming
that these relationships are only influenced by marker
genotypes through the genomic relationships among gen-
otyped individuals, and assuming that the statistical dis-
tribution is determined by these relationships, one can
write that

pðu1ju2;markersÞ ¼ pðu1ju2Þ
Therefore, the joint distribution of breeding values after

observing the markers is:

pðu1;u2jmarkersÞ ¼ pðu1ju2Þpðu2jmarkersÞ
From these results, expressions for the covariance of

breeding values are immediate. For instance, Varðu1Þ ¼
s2uðA12A

�1
22 GA�1

22 A21þA11�A12A
�1
22 A21Þ where the part

involving G is the variability associated to the conditional
mean of breeding values of nongenotyped individuals

given the genotyped ones; and the second part is the
variability beyond this conditional mean. Finally, the result

Var
u1

u2

 !
¼ s2uH

¼ s2u
A11�A12A

�1
22 A21þA12A

�1
22 GA�1

22 A21 A12A
�1
22 G

GA�1
22 A21 G

 !

is obtained, in full agreement with Christensen and Lund
(2010). The reason for this agreement is that in both cases
a central assumption is that the influence of marker
genotypes on nongenotyped individuals is via relation-
ships determined by the numerator relationship matrix A.

3.3. Genetic properties of the extended relationship matrix

Matrix H above can be seen as a modification of regular
pedigree relationships to accommodate genomic relation-
ships. For instance, two seemingly unrelated individuals
will appear as related in H if their descendants are related
in G. Accordingly, two descendants of individuals that are
related in G will be related in H, even if the pedigree
disagrees. Indeed, it has been suggested (Sun and Van
Raden, 2013) to use H in mating programs to avoid
inbreeding.

Contrary to common intuition from BLUP or GBLUP,
genotyped animals without phenotype or descendants
cannot be eliminated from matrix H. The reason is that
(unless both parents are genotyped) these animals poten-
tially modify pedigree relationship across other animals,
notably their parents. For instance imagine two half-sibs,
offspring of one sire mated to two nongenotyped, unre-
lated cows. If these two half sibs are virtually identical, H
will include this information and the cows will be made
related (even identical) in H.

3.4. Single Step genomic BLUP

Because the Single Step relationship matrix provides an
explicit and rather sparse inverse of the extended relation-
ship matrix H, its application to genomic evaluation is
immediate. A full specification of the Single Step Genomic
BLUP assumes the following model:

y¼ XbþWuþe

VarðuÞ ¼Hs2u; VarðeÞ ¼ Is2e

with H and its inverse as shown above. The logic of BLUP
(Henderson, 1973 and many other publications) holds and
the only change is to use H instead of the numerator
relationship matrix. Genomic predictions estimating
simultaneously all breeding values and using all available
information are, for the single trait case, the solutions to
the mixed model equations (e.g., Aguilar et al., 2010;
Christensen and Lund, 2010):

X'X X'W
W'X W'WþH�1λ

 !
b̂
û

 !
¼

X'y
W'y

 !
where λ¼ s2e=s

2
u.

Note that any formulation using relationship matrix A
can use H instead, and therefore there is also Single Step
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REML and Single Step Gibbs, for instance in Legarra et al.
(2011a) and Forni et al. (2011).

4. Extensions and refinements of the Single Step

As said above, any model that has been fit as BLUP can
be fit as Single Step. We will describe a few of these
extensions that are of interest.

4.1. Pseudo‐Single Step

Also called “blending” (e.g. Su et al., 2012a), this has
been used to include all males of a population with
pseudo-phenotypes, where some are genotyped and some
are not. This is a compromise between using all informa-
tion (which might be complex) and ignoring pseudo-
phenotypes of non-genotyped males, for instance sires of
genotyped males. Accuracy increases, but less than with
true Single Step (Baloche et al., 2014).

4.2. Multiple trait

Extension to deal with multiple traits is immediate. The
mixed model equations are in the usual notation:

X 0R�1X X 0R�1W
W 0R�1X W 0R�1WþH�1 � G0

 !
b̂
û

 !
¼ X 0R�1y

W 0R�1y

 !

whereR¼ I � R0, R0 is the matrix of residual covariances
across traits and G0 is the matrix of genetic covariances
across traits. Extension to random regressions or maternal
effect models is very similar.

4.3. Marker effect estimates

The GBLUP and other models based on genomic rela-
tionship matrices such as the Single Step do not directly
provide estimates of marker effects. These are of interest in
order to spot locations of major genes (or QTL) and also in
order to provide a less computationally demanding eva-
luation of new born animals that are genotyped but do not
have phenotypes. The marker effects can be deduced from
estimated breeding values of the genotyped individuals.
Consider the joint distribution of breeding values u and
marker effects a (Henderson, 1973; Strandén and Garrick,
2009):

Var
u2

a

� �
¼

Z2DaZ0
2 Z2Da

DaZ0
2 Da

 !

where, usually, Da ¼ Is2u=2Σpiqi¼ (this assumption will be
relaxed later). Assuming multivariate normality, û2jâ¼
Z2â (the breeding value is the sum of marker effects) and

âjû2 ¼DaZ0
2ðZ2DaZ0

2Þ�1û2 ¼DaZ0
2G

�1s�2
u û2

where (as discussed in previous sections) Z2DaZ2' ¼ Gs2u, so
that marker effects can be deduced by backsolving using
the genomic relationship matrix and markers' incidence
matrix. This result has been used, e.g., by Wang et al.
(2012), and it will appear later in this paper.

4.4. Extra polygenic effect

It has been often argued that markers do not capture all
genetic variation. This can be shown by estimating var-
iance assigned to markers and pedigree (e.g. Legarra et al.,
2008) or because some genomic evaluation procedures
give better cross-validation results when an extra poly-
genic term based exclusively on pedigree relationships is
added (e.g. Su et al., 2012b). The GBLUP (VanRaden, 2008)
and the derivations in the Single Step can accommodate
this very easily (Aguilar et al., 2010; Christensen and Lund,
2010). Let us decompose the breeding values of genotyped
individuals in a part due to markers and a residual part
due to pedigree, u2¼um,2þup,2 with respective variances
s2u ¼ s2u;mþs2u;p. It follows that Varðu2Þ ¼ ðαGþð1�αÞ A22Þs2u
where α¼ s2u;m=s

2
u. Therefore, the simplest way is to create

a modified genomic relationship matrix Gw (G in Aguilar et
al., 2010; Gw in VanRaden, 2008 and Christensen and Lund,
2010) as Gw¼αGþ(1�α)A22 and to plug this relationship
matrix in all the expressions before. This has the additional
advantage of making Gw invertible, which is not guaran-
teed for G. Equivalently, one can fit two random effects,
one umwith covariance matrix Hs2u;m and another up with
covariance matrix Aσ2u;p.

4.5. Compatibility of genomic and pedigree relationships

This is a key issue in genomic evaluation that has
received small attention beyond Single Step developers even
though, as shown by Vitezica et al. (2011), it also affects
multiple step methods. The derivations above of Single Step
mixed model equations include terms such as G�A22 and
G�1�A�1

22 . This suggests that G and A22, the genomic and
pedigree relationship matrices, need to be compatible.
It has been long known (e.g., Ritland, 1996) that relation-
ships estimated frommarkers need to use allelic frequencies
at the base populations; otherwise a severe bias in the
estimated relationships is observed (VanRaden, 2008; Toro
et al., 2011). However, typically base population frequencies
are unknown because pedigree recording started before
biological sampling of individuals. The two derivations of
the Single Step assume, either implicitly or explicitly, that
the base frequencies are known. In the derivation of
Christensen and Lund (2010) the allele frequencies enter
explicitly. In the derivation of Legarra et al. (2009) the
hypothesis is that the expected breeding value of the
genotyped population is 0. This hypothesis will be wrong
if either there has been selection or drift, which is com-
monly the case; the average breeding value will change, and
the genetic variance will be reduced. These problems were
soon observed by analysis of real life data sets (C.Y. Chen
et al., 2011; Forni et al., 2011; Christensen et al., 2012) and
verified by simulation (Vitezica et al., 2011).

Several proposals exist so far to make pedigree and
genomic relationships compatible. The three first proposals
“tune” matrix G to make it compatible with A22, in the form
G*¼aþbG, where a can be understood as an “overall”
relationship and b as a change in scale (or genetic variance).
VanRaden (2008) suggested a regression of observed on
expected relationships, minimizing the residuals of aþbG¼
A22þE. This reflects the fact that over conceptual repetitions
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of our population (same pedigree but different meiosis and
genotypes) E(G)¼A22 if G is the realized relationship and A22

is the expected relationship (VanRaden, 2008; Hayes et al.,
2009). This idea was generalized to several breed origins by
Harris and Johnson (2010). The distribution of E is not
homoscedastic (Hill and Weir, 2011; Garcia-Cortes et al.,
2013) and this precluded scholars from trying this approach
because it would be sensible to extreme values (Christensen
et al., 2012), e.g., if many far relatives are included, for which
the deviations in E can be very large. A second approach is to
model the distribution of the mean of genotyped individuals,
i.e., to assume a unknown mean μ for genotyped individuals:
p(u2)¼N(1μ,G). This is a random variable: the effect of
selection or drift on the trait will vary from one conceptual
repetition to another. One can equally write p(u2)¼N(0,
Gþ110Var(μ)) with μ integrated out. An unbiased method
forces the distribution of average values of breeding values
(u2) to be identical and therefore, the adjustment uses
G*¼aþbG with b¼1 and a¼ A22�G where the bar implies
average across values of G and A. Although this models
corrects the change due to genetic trend, it does not consider
the fact that there is a reduction in genetic variance from the
base population to the genotyped individuals considered in
A22 but not in G. This problem has been tackled twice. The
first manner is to consider genotyped individuals as a
subpopulation of all individuals in the population and to use
Wright's fixation index theory, which allows putting relation-
ships in any scale (Cockerham, 1969, 1973). Translated to our
context (Powell et al., 2010) this implies a¼ A22�G and
b¼1�a/2 (Vitezica et al., 2011). The value of a can be
understood as an overall within-population relationship
within the genotyped individuals, with respect to an older
population whose genotypes are not observed. This overall
relationship cannot be estimated by G for lack of base allele
frequencies. The value of a/2 can be understood as the “extra”
decrease in genetic variance in a randommating population of
average relationship A22. Christensen et al. (2012) remarked
that the hypothesis of random mating population is not likely
for the group of genotyped animals, since they would be born
in different years and some being descendants of others, and
suggested to infer a and b jointly based on the drift of the
mean of the population (as in Vitezica et al., 2011) and based
on the expected genetic variance, which is encapsulated in the
average inbreeding observed in G and A22. More formally, the
empirical variance of breeding values:S2u2 ¼ u0

2u2=n�ðu2Þ2
has an expectation ððtrðA22ÞÞ=ðnÞ�A22Þs2u or ððtrðGnÞÞ=
ðnÞ�G

nÞs2u where n is the number of individuals. Forcing
unbiasedness implies that a and b should be determined from
the system of two equations: aþb(tr(G))/(n)¼(tr(A22))/(n) and
aþbG¼ A22. In random mating populations in Hardy-
Weinberg equilibrium (for instance in large populations of
dairy cattle and sheep, where Hardy-Weinberg equilibrium
approximately holds), it turns out that b¼1�a/2 as in
Vitezica et al. (2011). If restricting the group of animals for
which compatibility is required to those that are born in a
certain generation, the assumption of random mating among
those genotyped animals is not unreasonable to assume in
many livestock species. All these corrections utilize some
estimate of the allelic frequencies to construct G, and using
observed allele frequencies (either based on all genotyped

animals, or based on a subset born in a certain generation) is
usually done.

Finally, Christensen (2012) suggested the opposite
point of view, to “tune” A22 to G instead of the opposite.
Pedigrees are arbitrary and depend on the start of pedi-
gree, whereas genotypes at the markers are absolute.
Allele frequencies, though, change all the time. He mod-
elled the likelihood of markers given the pedigree as a
quantitative trait and then integrated over the uncertain
allele frequencies. This amounts to fix allele frequencies at
0.5 and introduce two extra parameters, γ and s. The γ
parameter can be understood as the overall relationship
across the base population such that current genotypes are
more likely, and integrates the fact that the assumption of
unrelatedness at the base population is false in view of
genomic results (two animals who share alleles at markers
are related even if the pedigree is not informative). More
precisely, he devised a new pedigree relationship matrix, A
(γ) whose founders have a relationship matrix Abas¼γþI
(1�γ/2). Parameter s, used in G¼ZZ0/s can be understood
as the counterpart of 2Σpq (heterozygosity of the markers)
in the base generation. Both parameters can be deduced
from maximum likelihood. This model is the only one
which introduces all the complexities of pedigrees (former
ones are based on average relationships) but it has not
been tested with real data so far (Christensen, 2012).

4.6. Computational algorithms

The use and development of the Single Step has been
possible through the use of several state of the art algo-
rithms. Construction and inversion of matrix G are cubic
processes, and are much optimized by the use of efficient
algorithms and parallel computations (Aguilar et al., 2011).
Construction of matrix A22 has been possible, for very large
pedigrees, by the algorithm of Colleau (2002) which uses
Henderson's decomposition of A¼TDT0 to devise a “solving”
that allows easy multiplication of w¼Av and computation
of A22 in quadratic time (Aguilar et al., 2011).

Further, the use of the solver known as preconditioned
conjugated gradients (PCG) allows an easy programming
to solve the Single Step mixed model equations. PCG
proceeds by repeated multiplications (LHS)sol where sol
is the vector of unknowns. In practice, this product is split
into a part

X'X X'W
W'X W'WþA−1λ

 !
b̂
û

 !

for which very efficient algorithms already exist (e.g.
Strandén and Lidauer, 1999) and a part

ðG�1�A�1
22 Þλ û2

which can be done very efficiently, in particular using
parallelization.

In addition, some implementations of the Single Step
have used unsymmetric equations to avoid inversion of G
(Misztal et al., 2009; Aguilar et al., 2013), with solution by
the Bi-Conjugate Gradient Stabilized algorithm. Legarra
and Ducrocq (2012) reviewed and suggested implementa-
tions of the Single Step with view towards very large data

Please cite this article as: Legarra, A., et al., Single Step, a general approach for genomic selection. Livestock Science
(2014), http://dx.doi.org/10.1016/j.livsci.2014.04.029i

A. Legarra et al. / Livestock Science ] (]]]]) ]]]–]]]6



sets such as in dairy cattle. Problems of these data sets are
twofold. First, current evaluations use very sophisticated soft-
ware, first for regular BLUP (e.g., random regressions), and
later for genomic evaluations (e.g., Bayesian regressions).
Secondly, the large size of the data sets, which may preclude
inversion (and even construction) of G. They suggested two
main alternatives: a non-symmetric system of equations with
non-inverted A22 and G, and an iterative procedure similar to
the multiple step but in which results from genomic evalua-
tions would be reintroduced in the regular BLUP evaluation,
and results from regular BLUP would be “data” for the
genomic evaluations. The non-symmetric system shows slow
convergence on large data sets (Aguilar et al., 2013), whereas
the iterative method is still untested on large data sets. This is
still an active field of research.

4.7. Bayesian regressions in the Single Step

Bayesian or non-linear regressions with non-normal priors
for marker effects are certainly more efficient for some traits
and species, with the most known example being milk
contents in dairy cattle (VanRaden et al., 2009). This has
inspired the search for its integration into Single Step.

Bayesian regressions can be understood as inferring the
variances associated to eachmarker in the expression Var(a)¼
Da, i.e. the elements s2a;k in the diagonal of Da being k-SNP
specific. Zhang et al. (2010) and Legarra et al. (2011b) checked
that running a full Bayesian regression to estimate breeding
values, or using it to infer variances in Da to use G¼Z2DaZ20 in
a GBLUP gave essentially the same solution. Legarra et al.
(2009) suggested to use such G with precomputed variances
in the Single Step procedures. Makgahlela et al. (2013) picked,
using BayesB, either 750 or 1500 preselected markers to
form¼Z2DaZ20, which resulted in better accuracies for milk
but not for protein, and they concluded that picking the right
number of markers was not obvious. No other attempt has
been done so far. In a similar spirit, Wang et al. (2012)
suggested to compute variances in Da in an iterative manner
within the Single Step. They obtained the marker effects from
the expression âjû2 ¼DaZ0

2ðZ2DaZ0
2Þ�1û2, to later infer the

k-th marker variance as (proportional to) â2k (Sun et al., 2012).
Note that this estimate is severely biased (it ignores the
uncertainty in the estimation of âk) and therefore an empirical
correction needs to be applied, which is not the case in true
Bayesian or maximum likelihood procedures (De los Campos
et al., 2009; Shen et al., 2013). After computation of a new G,
Single Step GBLUP is rerun and markers are re-estimated, and
the procedure is iterated a few times. Their simulation
showed an increased accuracy of this method for traits with
large QTLs.

Legarra and Ducrocq (2012) suggested two ways of
dealing with Bayesian regressions. The first one was to use
an equivalent set of mixed model equations including
marker effects:

In this system of equations, Bayesian Regressions are
accommodated by using different a priori distributions for
Var(a)¼Da (e.g., in Bayesian Lasso the prior distribution of
elements in Da is double exponential). This system of
equations (A1) could then be solved by a Bayesian proce-
dure such as the Gibbs sampler, which solves for Da. In the
second option, an equivalent iterative procedure can
iterate between solutions to regular BLUP and (Bayesian)
genomic predictions; the results of one would be intro-
duced into the other. Because this system does not infer
marker variances per se, it does not suffer from the bias in
variance estimation of Wang et al (2012). Tuning markers
to be in the same scale as pedigree in the previous set of
equations or in the iterative systemwould include an extra
unknown for the parameter μ in Vitezica et al. (2011).

In addition, Fernando et al. (2013) recently presented
another system of equations explicit on marker solutions.
Equations include marker effects for all individuals,
imputed following Gengler's method, and residual
pedigree-based EBV for nongenotyped animals, ϵ. This ϵ
is what remains of the breeding value after we fit
(imputed) SNP effects to nongenotyped individuals. There-
fore total genetic value:

u¼ Ẑ1 Z2
� �

aþ ϵ
0

� �
¼ Ẑaþ ϵ

0

� �
:

Their final Single Step mixed model equations are

X'X X'WẐ X'1W1

Ẑ'W'X Ẑ'W'WẐþIσ
2
e

σ2a
Ẑ'1W'1W1

W'1X1 W'1W1Ẑ1 W'1W1þA11σ2e
σ2u

0BBBB@
1CCCCA

�
b̂
â
ϵ̂

0B@
1CA¼

X'y
Ẑ'W'y
W'1y

0B@
1CA

in which a Gibbs sampler can iterate to obtain Bayesian
estimates. These equations are simpler than previous ones
but at the cost of a very dense and large system of equations.

All these methods for Bayesian regressions in Single
Step are largely untested, and only Wang et al. (2012)
method is efficiently implemented and has been used in
real data sets (Dikmen et al., 2013), for which no alter-
native currently exists.

4.8. Unknown parent groups

Missing genealogy and/or crosses are ubiquitous in
animal breeding. A typical solution consists in fitting
unknown parent groups, which model different means
across groups of founders well identified, i.e. belonging to
different generations or breeds. BLUP equations including
unknown parent groups are created using an expanded
inverse of the relationship matrix A�1 (Quaas, 1988).

X 0X X 0
1W1 Z0

2 W2Z2

W 0
1X W 0

1W
0
1þA11λ A12Z2λ

Z0
2 W2X2 Z0

2 A
12λ Z0

2 W2W2Z2þZ0
2 ðA22�A�1

22 ÞZ2λþD�1
a r2e

0BB@
1CCA b̂

û1

a

0B@
1CA¼

X'y
W 0

1y1
Z0
2 W

0
2y2

0B@
1CA
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Unfortunately, the Single Step Mixed Model equations do
not accommodate this well, because of the additional
matrices ðG�1�A�1

22 Þ. The problem was explained in detail
by Misztal et al. (2013b) who showed that proper equa-
tions would imply complex terms of the form Q 0

2ðG�1

�A�1
22 ÞQ 2, implying matrix Q2 with fractions of each

unknown parent group for each genotyped animal. These
modifications are difficult to compute and program. Cur-
rent alternatives involve ignoring the term (often with
negligible results) or using the original Westell-Robinson
model, which is in the form

y¼ XbþQgþWuþe

(Quaas, 1988) and fitting unknown parent groups g as
covariates. This is satisfactory and involves no approxima-
tions, but cumbersome to implement and of slow
convergence.

4.9. Accuracies

Individual accuracies can be obtained in principle from
the inverse of the Single Step mixed model equations. This
is impossible in practice for medium to large data sets.
Therefore, Misztal et al. (2013a) suggested extending
known approximations in the estimation of accuracy to
the Single Step case. Modifications involve use of known
approximations for the pedigree-based BLUP and add
extra information from ðG�1�A�1

22 Þ to each animal; then
to iterate the procedure. This procedure is accurate in dairy
species, as attested by Misztal et al. (2013a) and in Manech
dairy sheep (Baloche et al., unpublished) where correla-
tions between approximate accuracies and exact accura-
cies from inverse of the Mixed Model Equations were
found to equal 0.95 in both cases.

5. Future developments

Among important possible extensions, we will mention
two: crosses and fit of dominance effects.

5.1. Crosses

Development of the Single Step has been done for
purebred populations, in which heterosis is absent, genetic
variance is assumed constant throughout the generations,
and matings are (close to being) at random. In classical
theory (e.g., Lo et al., 1997) populations involved in cross-
ing are assumed completely unrelated; this is subject to
discussion depending on the genetic architecture of the
trait. For instance, Ibáñez-Escriche et al. (2009) obtained
the same accuracy fitting markers with the same or
different effects across breeds. Recently, Christensen et al.
(2014) presented a Single Step in these lines, where the
value of a crossbred animal is a sum of gametic effects,
each with a different within-pure breed extended relation-
ship matrix. On the other hand, Harris and Johnson (2010,
2013) presented an evaluation system for pure breeds and
their complex crosses which considers different breed
origins but roughly the same effect of markers across
breeds. These aspects need to be further derived. Also,
testing in real data sets is most necessary because

simulations are unreliable for such complex cases. How-
ever, crossbred data sets with genomic information are
scarce so far.

5.2. Dominance

Genomic predictions including dominance (e.g., Toro
and Varona, 2010; Wellmann and Bennewitz, 2012) are
much easier than their pedigree counterparts, which are
notoriously difficult, in particular if inbreeding is involved
(De Boer and Hoeschele, 1993). Dominance versions of
GBLUP have been proposed (Su et al., 2012b; Vitezica et al.,
2013) and real data analysis, done (Su et al., 2012b; Ertl et
al., 2013; Vitezica et al., 2013). However, these methods
need that genotyped animals have a phenotype, which
may be precorrected. For animals that have no phenotype
(i.e., dairy bulls) there are no methods to generate pseudo-
phenotypes including dominance, because all methods to
generate pseudo-data involve additive relationships only.
For instance, computation of DYD's in dairy cattle will
average to zero dominance deviations of the offspring.
Therefore Single Step methods for dominance are highly
relevant, yet a simple combination of pedigree-based and
marker-based methods is difficult because the pedigree-
based method is already difficult.

6. Obscure points and limits

6.1. Treatment of linkage

Markers are physically linked and their co-ocurrence is
correlated. However, most genomic prediction models,
including Bayesian Regressions and the Single Step, assume
markers to be unlinked. In addition, the pedigree-based
matrix A assumes loci as unlinked as well. Meuwissen et al.
(2011) suggested a modified H matrix in which pedigree
relationships would not be included using pedigree rela-
tionships A, but using GFG, the Fernando and Grossman
(1989) covariance matrix using pedigree and markers. The
latter would be computed by means of iterative peeling,
producing relationships for all individuals, genotyped or
not. This procedure provides in principle a more accurate
relationship matrix, and therefore should result in more
accurate Single Step evaluations. However, the extent of this
extra accuracy has not been evaluated in realistic simula-
tions (e.g., with large genomes and large number of
animals) or in real life data sets and it is unknown how
this method scales to large pedigrees.

6.2. Convergence of solvers

The convergence rate with regular Single Step when
solved by PCG iteration depends on species. The rate is
similar to BLUP and poses no problem with complete
pedigree and a uniform base population (e.g., chicken).
The rate is also good with high-accuracy genotyped
animals (dairy bulls). The rate can be poor with complex
models when the pedigree contains many generations of
animals without phenotypes. In such a case, restricting the
pedigree to fewer old animals improves the rate. Poor
convergence rate in some models is due to incompatibility
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between G and A22 when the pedigree has missing animals
across generations (Misztal et al., 2013). When G is scaled for
an average A22, elements of A�1

22 22
�1

due to animals with very
long pedigree are larger. Solutions to this problem include
modifications to A (e.g., as in Christensen, 2012), or pedigree
or even phenotype truncations. Lourenco et al. (in press)
investigated the effect of cutting pedigrees and phenotypes
on accuracy for the youngest generation. Use of data beyond
2 generations of phenotypes and 4 generations of pedigree
did not improve the accuracy while increasing computing
costs.

In large data sets with many genotyped individuals
(e.g., with genotyped cows) there are reports of lack of, or
very slow, convergence (Harris et al., 2013; VanRaden,
personal communication). This raises the question if the
typical form of the mixed model equations for single-Step,
including G and A22 is the most appropriate, or alternative
forms based on marker effects such as those presented by
Legarra and Ducrocq (2012) or Fernando et al. (2013) are
better numerically conditioned. No real data testing of
these approaches has been shown so far. A limit to testing
these approaches is the availability of very general soft-
ware for BLUP. General software (multiple trait, multiple
effects, etc.) does not exist for marker-based methods.

6.3. Computational limits

Computing and inverting G and and A22 is challenging
and of cubic cost, which will eventually preclude its use
for, say, 4100,000 animals, and alternatives have been
suggested (Legarra and Ducrocq, 2012; Fernando et al.,
2013) but not thoroughly tested. These alternatives would
be either highly parallelizable or use indirect representa-
tions avoiding explicit computations. However, so far,
problems of convergence seem more limiting than size.

7. Current state and practical experiences

7.1. Dairy sheep

In France, the Lacaune, Manech and Basco-Bearnaise
genomic evaluations use Single Step in its typical form,
with corrections of G to match A22 and with the fit of
unknown parent groups as covariates. Preliminary
research did not show an added accuracy of Bayesian
Regressions (Duchemin et al., 2012). Single step results in
higher accuracy than GBLUP with pseudo-phenotypes
(Baloche et al., 2014) and in a much simpler implementa-
tion. Single Step will be the method for genomic prediction
in the future Lacaune dairy sheep genomic selection
scheme.

7.2. Dairy goat

In France, the dairy goat population is testing genomic
selection procedures with the Single Step as the evaluation
tool (Carillier et al., 2013) although it is very soon to
establish its impact.

7.3. Pigs

In Denmark, routine genetic evaluation of the three
DanBred breeds Duroc, Landrace and Yorkshire has since
October 2011 been made by Single-Step in its typical form,
with corrections of G to match A22. The implementation of
genomic evaluation via Single-Step was straight-forward
and it has resulted in increased accuracy compared to the
traditional genetic evaluation. Breeding companies PIC and
ToPigs also use Single Step for genomic predictions.

7.4. Dairy cattle

National evaluations are based on multiple step proce-
dures, but most countries are willing to change to Single Step,
and many are experimenting (e.g., VanRaden, unpublished;
Koivula et al., 2012; Harris et al., 2013). The reason for this
change is the conceptual and practical simplicity of the Single
Step, and its ability to account for genomic preselection (Patry
and Ducrocq, 2011). Due to abundance of data and complete-
ness of genotyping, tests show equivalent accuracies of Single
Step and multiple step procedures (e.g., Aguilar et al., 2010).
ssGBLUP was always more accurate than GBLUP for several
milkability traits (Gray et al., 2012), and slightly more
accurate for test-day models (Koivula et al., 2012). Also,
Přibyl et al. (2013) showed higher accuracy of the Single Step
for Check Republic data.

7.5. Beef cattle

There are no studies on the application of Single Step to
real data sets. These data sets are more complex for
genomic evaluation than other species because of missing
relationships, smaller sibships, and the presence of mater-
nal effects. Real data studies are therefore much needed.
However, in a simulation study by Lourenco et al. (2013),
accuracies of genomic predictions with ssGBLUP were
always higher than with BLUP, which was not the case
with BayesC. This was particularly true for maternal traits.

7.6. Chicken

In studies on decay of genomic prediction over genera-
tions (Wolc et al., 2011), BayesB was more accurate than
single-trait GBLUP but less accurate than 2-trait GBLUP; in
that study, GBLUP was applied to a reduced animal model
and was equivalent to ssGBLUP. C. Chen et al. (2011) and
C.Y. Chen et al. (2011b) also showed higher accuracies of
Single Step than with Bayesian regressions.

8. Software

To our knowledge, the only publicly available software
packages which can directly run Single Step evaluations are
the BLUPF90 family of programs (Misztal et al., 2002; http://
nce.ads.uga.edu/wiki ) and software DMU (Madsen and
Jensen, 2000, http://www.dmu.agrsci.dk/) in which it is fully
implemented including regular BLUP, REML, Gibbs samplers
(only BLUPF90), threshold models, generalized linear mixed
models (only DMU) and iteration on data for very large data
sets, and several options (most of them mentioned above).
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Software Mix99 (Vuori et al., 2006) has been modified to
include Single Step, although these modifications are not
publicly available. Public packages such as Wombat (Meyer,
2007; http://didgeridoo.une.edu.au/km/wombat.php) or
ASREML (http://www.vsni.co.uk/software/asreml) can
include covariance matrices computed externally, and
therefore matrix H�1 needs to be computed with an
external tool and then fit into the model.

9. Conclusion: overall benefits and drawbacks of the
single Step

The Single Step provides a simple method to combine
all information in a simple manner, with the additional
advantage of requiring little changes to existing software.
Accuracy is usually as high as, if not greater than, any other
method. Some studies concerning accuracy of the Single
Step have been gathered in Table 1. Beyond its extra
accuracy, it has the following interesting properties:

1. Automatic accounting of all relatives of genotyped
individuals and their performances.

2. Simultaneous fit of genomic information and estimates
of other effects (e.g., contemporary groups). Therefore
not loss of information.

3. Feedback: the extra accuracy in genotyped individuals
is transmitted to all their relatives (e.g. Christensen
et al., 2012).

4. Simple extensions. Because this is a linear BLUP-like
estimator, the extension to more complicated models
(multiple trait, threshold traits, test day records) is
immediate. Any model fit using relationship matrices
can be fit using combined relationship matrices.

5. Analytical framework. The Single Step provides an
analytical framework for further developments. This is
notoriously difficult with pseudo-data.

As drawbacks, one can cite the following:

1. Programming complexity to fit complicated models for
marker effects (Bayesian Regressions, machine learning
algorithms, etc.).

2. Lack of experience on very large data sets.
3. Long computing times with current Single Step algo-

rithms methods, for very large data sets.
4. Lack of an easy and elegant way of considering major

genes in a multiple trait setting, this is a drawback of
multiple step methods as well.
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SUMMARY 

Performance of genomic selection is typically evaluated by cross-validation. In this work we 

review and point out some problems and features of the cross-validation metrics. Then we propose 

a semiparametric alternative using statistics derived from the “Method R”. 

 

INTRODUCTION 

Genomic prediction of breeding values via genomic BLUP (GBLUP) is expensive and requires 

initial and continuous investments in genotyping. State of the art theory so far does not yield 

convincing a priori estimates of the increased accuracy of genomic prediction vs. pedigree-based 

predictions. Thus, cross-validation has been extensively used (e.g. Legarra et al. 2008; VanRaden 

et al. 2009; Mantysaari et al. 2010; Christensen et al. 2012). The theory of cross-validation is 

poorly understood in the context of heavily related and selected data (but see (Gianola and Schön, 

2016)). For instance, how to evaluate accuracy for maternal traits is very unclear. Here we provide 

a brief review of this topic and suggest some options. 

 

CROSS-VALIDATION BIAS AND ACCURACY 

What cross-validation? Forecasters such as pedigree-BLUP and GBLUP may behave differently 

according to what the “forecasted” target is. Breeders have a difficult task, namely, to forecast the 

best reproducers in order to select them. In this, they are different from machine learners, whose 

objective is (from our perspective) to forecast present phenomena. Thus, it is rather obvious that 

for breeders the best method is such that allows taking the best selection decisions, that it is, the 

method that best predicts future performance of an individual knowing its genetic background. 

We will call this forward cross-validation. Its features are three-fold: (1) It needs the definition 

of a cut-off date; (2) It needs the construction of “Full” and “Reduced” data sets (Mantysaari et al. 

2010; Olson et al. 2011); and (3) In its crudest form, it does not provide any form of randomisation 

and therefore a point estimate of goodness of prediction is obtained, without any associated 

measure of uncertainty. 

In contrast, the classical random folding k-fold cross-validation in its most classic form splits 

randomly the data into k distinct sets and predicts one set from the remaining k-1 sets. Its key 

features include: (1) Extremely simple to implement; (2) Provides estimates of standard error of 

metrics of cross-validation; (3) Not realistic in an animal breeding setting and the ranking of 

methods is not suitable for practical purposes; and (4) Tends to overfit (case of leave-one-out) 

Some more esoteric forms of cross-validation exist. Legarra et al. (2008) split folds “across” 

or “within” families, obtaining very different results. But this is undoable (and little useful) for 

regular animal breeding data. The k-means for cross-validation (Saatchi et al. 2011) separates 

individuals into “most distinct” folds, and the i-th fold is predicted from the remaining k-1 folds. 

This does not answer the breeder’s question, which most often wants to predict from close, not 

from far animals.   

 

Which metrics? To assess the predictive ability of the different forecasters, animal breeders are 

highly formatted by Henderson’s BLUP, which in turn was highly dependent upon dairy cattle 



genetic improvement. Metrics commonly used come from linear regression, named in this paper 

predictive abilities, are: 

Bias: 𝑏0 = 𝐸(𝑢 − �̂�);  Slope: 𝑏1 =
𝐶𝑜𝑣(𝑢,𝑢)

𝑉𝑎𝑟(𝑢)
;     Accuracy: 𝑟 =

𝐶𝑜𝑣(𝑢,𝑢)

√𝑉𝑎𝑟(𝑢)𝑉𝑎𝑟(𝑢)
 

Sometimes mean squared error is used (𝑀𝑆𝐸 = 𝑏0
2 + 𝜎𝑢

2(1 + 𝑟2/𝑏1
2 − 2𝑟2/𝑏1)). Properties of 

BLUP in absence of selection are no bias, slope of 1, and maximum accuracy. Henderson defined 

this at the individual level on a 

frequentist basis (over conceptual 

repetitions). Bias=0 and slope=1 

ensure fair comparisons across 

old and young animals. This is 

important if the scheme mixes 

proven and young animals, like 

dairy cattle. It seems less relevant 

in schemes were reproducers are 

culled quickly (pigs, chicken) 

with beef species falling someone 

in the middle, we believe. 

Deviations may exist if there is 

selection, because bias and slope 

are related to genetic gain and 

dispersion (see Figure 1).  

 
What is it meant by classical bias? Animal breeders probably agree to Henderson’s  (1973) 

sentence “most users would, I think, be reluctant deliberately to bias comparisons between 

different groups, for example to underevaluate young sires as compared to older ones”. Here we 

have an operational definition of bias. In formal terms this implies that at a given point in time: 

𝑏0
[𝐻𝑒𝑛𝑑𝑒𝑟𝑠𝑜𝑛]

= (𝟏′�̂�𝑔𝑟𝑜𝑢𝑝1 − 𝟏′�̂�𝑔𝑟𝑜𝑢𝑝2) − (𝟏′𝒖𝑔𝑟𝑜𝑢𝑝1 − 𝟏′𝒖𝑔𝑟𝑜𝑢𝑝2)

= (𝟏′�̂�𝑔𝑟𝑜𝑢𝑝1 − 𝟏′𝒖𝑔𝑟𝑜𝑢𝑝1) − (𝟏′�̂�𝑔𝑟𝑜𝑢𝑝2 − 𝟏′𝒖𝑔𝑟𝑜𝑢𝑝2) 

This definition has practical implications: if the candidates are chosen across groups, selection 

decisions are optimal if there is no bias. Thus, it is expected that 𝑏0
[𝐻𝑒𝑛𝑑𝑒𝑟𝑠𝑜𝑛]

= 0. There may be 

several definitions of groups: (1) Different conditions (grazing vs. indoor fed cattle). This case 

should be addressed by the model used for evaluation; (2) Within country, different amounts of 

information that cumulate in time (progeny-tested vs. genomic bulls). This case is strongly 

affected by within-country genetic trend (see below); (3) Same amount of information, but 

different origins (US vs. FR). This case is most affected by wrong estimates of the difference in 

genetic level across countries (Bonaiti et al. 1993; Powell and Wiggans 1994). 

The Interbull definition. Interbull uses retrospective tests (Boichard et al. 1995; Mantysaari et al. 

2010) that compare EBV’s before and after progeny testing.  

𝑏0
[𝐼𝑛𝑡𝑒𝑟𝑏𝑢𝑙𝑙]

= 𝟏′�̂�𝑡 − 𝟏′�̂�𝑡−1 

If progeny testing gives exact EBVs, then �̂�𝑡 = 𝒖𝑡 and 𝑏0
[𝐼𝑛𝑡𝑒𝑟𝑏𝑢𝑙𝑙]

= 𝟏′𝒖 − 𝟏′�̂�𝑡−1.Note that 

𝑏0
[𝐻𝑒𝑛𝑑𝑒𝑟𝑠𝑜𝑛]

≠ 𝑏0
[𝐼𝑛𝑡𝑒𝑟𝑏𝑢𝑙𝑙]

, but if group1 is “very old” proven bulls and �̂�𝑡 = 𝒖𝑡 and group2 is 

genomic bulls (then becoming proven bulls) then  𝑏0
[𝐻𝑒𝑛𝑑𝑒𝑟𝑠𝑜𝑛]

= 𝑏0
[𝐼𝑛𝑡𝑒𝑟𝑏𝑢𝑙𝑙]

. This may be rather 

obvious, but it only holds for progeny testing data. 
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Figure 1 Typical scenario for retrospective analysis. 



What happens under selection? Assume that we want to compare selection candidates with 

“proven” animals. If there is no selection, then 𝟏′𝒖𝑔𝑟𝑜𝑢𝑝1 = 𝟏′𝒖𝑔𝑟𝑜𝑢𝑝2 and there is actually no 

need to make the test. Alas, if there is selection, then  

𝑏0
[𝐻𝑒𝑛𝑑𝑒𝑟𝑠𝑜𝑛]

= (𝟏′�̂�𝑔𝑟𝑜𝑢𝑝1 − 𝟏′�̂�𝑔𝑟𝑜𝑢𝑝2) − (𝟏′𝒖𝑔𝑟𝑜𝑢𝑝1 − 𝟏′𝒖𝑔𝑟𝑜𝑢𝑝2) = 𝑛(�̂� − 𝛥) 

in other words, unbiasedness requires a correct (unbiased!) estimate of the realized genetic trend.  

 

What is overdispersion, a.k.a {Interbull, genomic} bias? Is it affected by selection? 

Dairy cattle breeders are much concerned by overdispersion of genomic proofs. If there is too 

much dispersion of �̂�𝑔𝑒𝑛𝑜𝑚𝑖𝑐 , the retained candidates will have unfairly high �̂�𝑔𝑒𝑛𝑜𝑚𝑖𝑐 . This could 

be staten more formally as “the mean of the EBVs of the selected candidates should be equal to the 

mean of the TBVs”. If selection is by truncation and under multivariate normality, the true mean 

after selection is 𝜇𝑇 = (𝟏′𝒖)/𝑛 + 𝑖𝑟𝜎𝑢, but this mean is (implicitly) predicted before selection as 

𝜇𝐸 = (𝟏′�̂�)/𝑛 + 𝑖𝜎𝑢. 

For 𝜇𝑇 = 𝜇𝐸 to hold, we need the first unbiasedness condition (𝑏0 above), plus a second 

condition,  𝜎𝑢 = 𝑟𝜎𝑢. But this condition only holds if 𝐶𝑜𝑣(𝑢, �̂�) = 𝑉𝑎𝑟(�̂�), which amounts to the 

regression coefficient to be 1:  

𝑏1 =
𝐶𝑜𝑣(𝑢, �̂�)

𝑉𝑎𝑟(�̂�)
 

This is the Interbull official, and most put forward, test of unbiasedness and nowadays more 

often called as “bias”. It is easy to see why 𝑏1 = 1 may not hold, namely, because selection 

modifies variances in rather unpredictable manners. The expected 𝐶𝑜𝑣(𝑢, �̂�) = 𝑉𝑎𝑟(�̂�) holds 

under quite restrictive conditions (Henderson 1982).  

 

Evaluations can easily be biased. Unbiasedness of current genetic evaluations is more wishful 

thinking than an established fact. Unbiasedness exist only if several conditions hold: 

• The model is correct (linear model, effects, heritabilities…) 

• The selection process is described by the data  

• Multivariate normality 

Thus, there are many reasons why there is wrong estimate of the genetic trend and thus there will 

be bias: 

• Collinearity of contemporary groups and genetic trend (this is the usual case) 

• Genetic groups in the model 

• Heritability is wrong (or changes with time) 

• Analysis are single trait whereas selection is multiple trait 

• Selection decisions not based on data. 

In addition, genetic gain can be estimated one generation forward (but no more) unless an 

explicit selection model is included. In other words, retrospective analysis cannot be done deleting 

two generations of records. This would need explicit introduction of the selection process. 

 

Why some species/traits seem biased where others do not? Basically, if there is no selection 

then automatically 𝑏0 = 0 holds (i.e., all possible sets of candidates have 0 average value), and 

most likely 𝑏1 = 1 holds, because selection does not change variances, and if a decent estimator of 

genetic variance is used, then genetic parameters are such that 𝑏1 =
𝐶𝑜𝑣(𝑢,𝑢)

𝑉𝑎𝑟(𝑢)
= 1 by construction, 

in particular in a BLUP context. So, bias is expected to increase more with higher genetic gains. 

An example is pigs. Christensen et al. (Christensen et al. 2012) found slopes below 1 ( ~0.9) 

for a heritable, selected trait (daily gain), whereas Xiang et al. (Xiang et al. 2016) found 

regressions nearly one for hard-to-select trait litter size.  



In Lacaune dairy sheep (Baloche et al. 2014), we can put together the following. Figure 1 

shows the regression slopes vs. the expected genetic gain or the expected loss of genetic variance 

based on Robertson 

(1977) . In theory, 

the reduction in 

variance is 

accounted for by 

genetic evaluation 

(Bijma 2012). In 

practice, this does 

not seem to be the 

case. A possible 

solution may be to 

reestimate this 

variance in each 

cycle of selection. 

Vitezica et al. 

(2011) compared by 

simulation several 

predictors in 

selected populations in a SSGBLUP context. Statistic 𝑏1 generally indicated bias, that was higher 

with less heritability. High heritability increases the selection differential and reduces variances, 

but it also gives more information. Interestingly, the only method which provided unbiased 𝑏1 =
0.99 resulted in strong bias 𝑏0 = 1.38𝜎𝑢. Thus, both bias should be checked. 

 

What do we mean by accuracy? In animal breeding textbooks, accuracy (𝑟, with reliability 𝑟2) is 

presented twice: first, as a component of 𝛥𝐺 = 𝑖𝑟𝜎𝑢 (so, a populational parameter) and, second, as 

a measure of uncertainty of �̂� (an individual parameter). However, when selecting from real 

populations, EBVs are correlated across individuals, so the individual accuracies may be 

meaningless. In other words: it is pointless to obtain 𝑟𝑖 = 0.70 and 𝑟𝑗 = 0.70 if 𝑟(�̂�𝑖 , �̂�𝑗) = 0.69.  

Cross-validation accuracies are computed as correlations 𝑟2 =
𝐶𝑜𝑣(𝑢,𝑢)

𝑉𝑎𝑟(𝑢)𝑉𝑎𝑟(𝑢)
. They indicate our 

ability to rank individuals within a cohort. The fact that these accuracies are computed regardless 

of the correlated structure of both 𝑢 and �̂� has unclear implications.  In fact, it can be shown that, 

if Hendersonian conditions hold, 𝐸(𝑟)2 = 1 −
(𝑑𝑖𝑎𝑔(𝑪22)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅−𝑪22̅̅ ̅̅ ̅)

(𝑑𝑖𝑎𝑔(𝑮)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ −�̅�)
 is the expectation of the observed 

reliability. This reliability takes into account the “classical” reliability contained in the diagonal 

terms but also the relationships a priori (in 𝑮) and a posteriori (in 𝑪𝟐𝟐) across individuals. If the 

evaluation method cannot rank correctly within the validation sample, then diagonal and off-

diagonal values of 𝑪22 are similar and reliability drops down. This is a desirable behaviour.   

Selection also affects observed cross-validation accuracy (Edel et al., 2012; Bijma 2012). If the 

cross-validation test uses elite animals, accuracies are underestimated. In other words, it is easy to 

rank all animals, but more difficult to rank elite animals. The reduction is such that  

𝑟𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑
2 = 1 − (1 − 𝑟𝑢𝑛𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑

2 )
𝜎𝑢𝑢𝑛𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑

2

𝜎𝑢𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑
2   . 

 

ISSUES OF CROSS-VALIDATION METRICS 

The accuracy of cross-validation metrics. After an experiment has been carried out, the breeder 

wants to know if the genomic accuracy is really different from the parents average accuracy. A 

Figure 2 Slope 𝒃𝟏 vs. expected reduction in genetic variance (left) or 

genetic gain (right) by trait in Lacaune dairy sheep. 
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simple method is to use the theoretical standard error of the estimates; for 𝑏0 and 𝑏1 these are from 

classical regression theory. For the correlation, this is a bit more convoluted, but an option is to use 

Fisher’s z-transform: 𝑧 =
1

2
𝑙𝑛

1+𝑟

1−𝑟
 has approximate s.e. 1/√𝑛 − 3 where 𝑛 is the number of data 

points used. From this a confidence interval can be worked out. For instance, in the Basco-

Bearnaise breed genomic predictions of 87 rams were 0.06 more accurate than parent averages 

(Legarra et al. 2014); this implies a rather symmetric 95% confidence interval of [−0.15,0.27].  
There is a source of bias and two sources of randomness in cross-validation metrics. The 

source of bias is that individuals are related both at the stage of prediction (parent average and 

genomic) and later, at the stage of validation (moment at which they have data; except for the case 

of progeny-tested animals for which proofs can be assumed uncorrelated). This has been discussed 

above. The two sources of randomness are: (1) Sampling of the reference population, (2) Sampling 

of the validation population. Fisher’s z-transform and Hotelling-Williams test include both. 

However, they do not consider that individuals are related, and therefore the accuracy is likely to 

be overestimated. Again, a theoretical equation can be worked out to estimate 𝑉𝑎𝑟(𝑟).  

 

(Re)Sampling of the validation population. A more practical approach involves using 

(re)sampling techniques. In k-fold cross-validation this is immediate but, as discussed before, the 

setting is not realistic. In (Mäntysaari and Koivula 2012; Legarra et al. 2014; Cuyabano et al. 

2015), sampling of the validation population was addressed by bootstrapping, i.e. sampling n 

individuals with replacement from the original n individuals in the validation data set. This method 

main virtue is that it avoids strong influence of outliers in the validation data set. It also allows 

formal comparisons of accuracies. Its main drawback is that it does not addresses the sampling of 

the reference population. 

  

(Re)sampling of the reference population. Recently,  (Mikshowsky et al. 2016) bootstrapped, 

not the validation, but the reference population. This also provides distribution of metrics. 

However, it may be argued that, in a dairy cattle reference population, including a sire twice (what 

the bootstrapping actually does) is like including it once, because the accuracy of the sire pseudo-

phenotype is close to 1 in dairy cattle. Thus, including it twice will not change much the solution 

for the sire – or the contribution of the sire to SNPs solutions. Therefore, randomness comes from 

removing sires more than by overrepresenting sires. In that sense, Mikshowsky et al. (2016) 

bootstrap corresponds to Tukey’s jackknife with 

more than one data point removed.  

 

Superiority of genomic on pedigree predictions is 

a function of family structure of the validation 

data set. Consider a set of two generations, a 

generation of parents and one of descendants: n full-

sib families with k offspring each. Parents have 

information (say, own weight) but there is not 

information for the offspring. We can ask: is it worth 

doing genomic prediction? 

Families can be easily ranked based on parent 

average, but there is not possibility to rank within 

families with pedigree information. However, 

genomic information can rank within family as well 

as across families. Thus, the observed benefit of 

GBLUP by retrospective analysis will be larger in a 
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set composed of few families with a large number of candidates within families. In the limit, if 

there is one big family, pedigree prediction has 0 accuracy, whereas if there are 𝑛 families with 1 

offspring each, pedigree and genomic predictions should behave similarly.  

This is supported by Figure 3 in which we plot the genomic vs pedigree accuracy for milk yield 

for five dairy sheep and two dairy cattle breeds in France, as a function of family size. Clearly, the 

larger the family size, the larger the benefit because genomic selection allows distinguishing sibs. 

This raises several questions: (1) Do comparisons reflect “genetic architecture” or merely data 

structure in the validation? (2) Do selection schemes that select across families get less benefit 

from genomic selection? (3) Is Holstein gaining a lot from genomic selection because it has higher 

LD than other breeds or just as an artefact of its family structure?  

 

Which variables to use on the metrics? In the dairy industry, sires do not have phenotypes, so 

that comparisons are between (G)EBV’s and the “true” progeny proofs or deregressed proofs. In 

other species, it is more common to compare (G)EBV’s to “true” phenotypes, say 𝒚, using an 

approximation 𝑟 = 𝐶𝑜𝑟𝑟(𝐺𝐸𝐵𝑉, 𝑦)/ℎ where ℎ2 is the heritability (Legarra et al. 2008). This is 

unsatisfactory, for conceptual and practical reasons: 

• The equation above for r assumes uncorrelated individuals and GEBV’s 

• Records 𝒚 are typically pre-corrected to 𝒚∗ = 𝒚 − 𝑿�̂�, and the results are sensitive to 

precorrection. It is unclear what happens if there are contemporary groups in 𝒃 that are not 

present in the training data. 

• If the whole data set is used for precorrection, then a relationship structure is fit (e.g. 

pedigree relationships) as 𝒚∗ = (𝑰 − 𝑿(𝑿′(𝒁𝑨𝒁𝜎𝑢
2 + 𝑰𝜎𝑒

2)−1𝑿)−)𝒚 where 𝑨𝜎𝑢
2 is assumed 

to be “correct”. If the assumed relationship is biased or incorrect, so will be �̂� and 𝒚∗, and 

the bias will be toward the assumed relationship. This may explain some puzzling results, 

e.g. poor performance of genomic prediction in low heritable traits such as fertility (Hayes 

et al. 2009).  

• Even after precorrection, there will be a remaining covariance structure across pre-

corrected 𝒚∗. This structure is notoriously hard to model (and rarely modelled). This may 

explain phenomena such as 
𝐶𝑜𝑟𝑟(𝐺𝐸𝐵𝑉,𝒚∗)

ℎ
> 1. 

• Some precorrected 𝒚∗ are too clumsy (Ricard et al. 2013) to be believed or computed in 

practice, for instance maternal effects.  

 

CROSS-VALIDATION ACCURACIES FROM METHOD R  

Description of the method. We propose to use the properties of method R to construct metrics of 

cross-validation. Reverter et al. (1994) observed that the regression of EBVs obtained with 

“whole” (𝑤) data on EBVs estimated with “partial” (𝑝) data, 𝑏𝑤,𝑝 =
𝐶𝑜𝑣(𝑢𝑤,𝑢𝑝)

𝑉𝑎𝑟(𝑢𝑝)
 is 1, and this 

checks bias (in the sense 𝑏1 before). The correlation of partial on whole (eq. 7-9 in their paper) 

𝜌𝑝,𝑤 =
𝐶𝑜𝑣(𝑢𝑝,𝑢𝑤)

√𝑉𝑎𝑟(𝑢𝑤)𝑉𝑎𝑟(𝑢𝑝)
 is a function of respective accuracies. Invoking exchangeability, both 

equations can be extended to multivariate forms, and expectations can be taken in both the 

numerator and the denominator, resulting in: 

𝑏𝑤,𝑝 = �̂�𝑤
′ 𝑲−1�̂�𝑝/�̂�𝑝

′ 𝑲−1�̂�𝑝 

where 𝑲 is a matrix of relationships, 𝑏𝑝,𝑤 with an expected value of 1, and  

𝜌𝑤,𝑝 = �̂�𝑝
′ 𝑲−1�̂�𝑤/√�̂�𝑝

′ 𝑲−1�̂�𝑝�̂�𝑤
′ 𝑲−1�̂�𝑤 



with an expected value 𝐸(𝜌𝑤,𝑝) = √
𝜇

𝑎𝑐𝑐𝑝
2

𝜇
𝑎𝑐𝑐𝑤

2
 that is, proportional to the relative increase in average 

reliabilities. As more data cumulates, �̂� tends towards the true breeding values, thus �̂�𝑤 is more 

accurate than �̂�𝑝. The empirical covariance �̂�𝑤
′ 𝑲−1�̂�𝑝 measures the strength of the association 

between the two, whereas �̂�𝑝
′ 𝑲−1�̂�𝑝 measures the extent of shrinkage due to lack of information. 

In other words, the theoretical prediction error covariances are replaced by empirical ones 

(Thompson 2001). By combining cross-validation and theory from mixed models, we hope to 

retain the best of both worlds: a measure of accuracy that corresponds to reality and that is little 

affected by the existence of related, unbalanced data. Therefore, an algorithm to estimate accuracy 

of (say) PBLUP and GBLUP is: 

 

1. Compute EBV’s with all data (“whole”) using, say, GBLUP (which method should not be 

critical if all animals have data or progeny) 

2. Choose cutoff date 

3. Create “partial” data: Set values after cutoff date to missing  

4. Compute EBVs based on “partial” and GBLUP 

5. Compute statistic 𝑏𝑤,𝑝
𝐺𝐵𝐿𝑈𝑃 =

�̂�𝑝
′ 𝑲−1�̂�𝑤

�̂�𝑝
′ 𝑲−1�̂�𝑝

 

6. Compute statistic 𝜌𝑝,𝑤
𝐺𝐵𝐿𝑈𝑃 =

�̂�𝑝
′ 𝑲−1�̂�𝑤

√�̂�𝑤
′ 𝑲−1�̂�𝑤�̂�𝑝

′ 𝑲−1�̂�𝑝

 

7. Compute EBVs based on “partial” and PBLUP 

8. Compute statistic 𝑏𝑤,𝑝
𝑃𝐵𝐿𝑈𝑃 =

�̂�𝑝
′ 𝑲−1�̂�𝑤

�̂�𝑝
′ 𝑲−1�̂�𝑝

 

9. Compute statistic 𝜌𝑝,𝑤
𝑃𝐵𝐿𝑈𝑃 =

�̂�𝑝
′ 𝑲−1�̂�𝑤

√�̂�𝑤
′ 𝑲−1�̂�𝑤�̂�𝑝

′ 𝑲−1�̂�𝑝

 

 

For forward cross-validation, the statistics should be computed for the focal individuals (i.e., 

candidates to selection). On exit, 𝑏𝑤,𝑝
𝐺𝐵𝐿𝑈𝑃 should be 1 (unbiased method) and is equivalent to 𝑏1 

and 𝜌𝑝,𝑤
𝐺𝐵𝐿𝑈𝑃 and 𝜌𝑝,𝑤

𝑃𝐵𝐿𝑈𝑃 describes the respective accuracies of GBLUP and PBLUP. An extra 

statistic is bias 𝜇𝑤𝑝 = 𝑏0 = (𝟏′𝑲−1�̂�𝑤 − 𝟏′𝑲−1�̂�𝑝)/𝑛 . Matrix 𝐊 should be the “true” relationship 

matrix across individuals but there should be no great difference in using either genomic or 

pedigree relationships as far as they are correct. The procedure has several advantages: is 

completely general (it can be used e.g. for maternal traits or random regression), it is semi-

automatic, and can, at least potentially, provide estimates of the accuracy of the cross-validation 

metric. There are though many points that need to be addressed: robustness to misspecification, the 

role of selection (and how to avoid biases in the estimates of the different 𝑏′𝑠), how to sample 

efficiently, etc. 

 

TEST WITH REAL LIFE DATA SETS 

In beef cattle, we used genetic and phenotypic resources from Brahman cows (N = 995) and 

bulls (N = 1,116) outlined in (Porto-Neto et al. 2015). The phenotype was yearling body weight. A 

procedure “method R” as above was introduced to assess accuracy of GBLUP, and random (1000 

replicates) splits of the data set in training and validation was used, as animals are quite unrelated 

and belong to a single generation. We only present very briefly the results. The statistic 𝑏𝑤,𝑝 =

0.96 ± 0.08 (in the whole population) showed that evaluation was nearly unbiased, whereas 

𝜌𝑝,𝑤 = 0.67 ± 0.02 has a correlation of 0.81 with conventional cross-validation accuracy 



estimated as 
𝐶𝑜𝑟𝑟(𝐺𝐸𝐵𝑉,𝒚∗)

ℎ
. 

In dairy sheep, we used a large data set (Manech Tete Rousse) of 1,700,000 milk yield 

performances, 500,000 animals in pedigree and 2,111 sires with 50K genotypes. Data was split at 

2011 in training and validation. For all individuals, unbiasedness of (SSG)BLUP was checked 

with results 𝜇𝑤,𝑝 = 𝑏0 = 0.2𝜎𝑔 = 5 (liters), 𝑏𝑤,𝑝 = 𝑏1 = 0.996, so genetic evaluation is virtually 

unbiased for 𝑏1 (slope) but not for 𝑏0 (genetic trend), which is unsurprising because the model 

includes Unknown Parent Groups. Later, candidates to selection were compared, with 𝜌𝑤,𝑝
𝑆𝑆𝐺𝐵𝐿𝑈𝑃 =

0.55 vs. 𝜌𝑤,𝑝
𝐵𝐿𝑈𝑃 = 0.39, and both evaluations where notoriously biased (𝑏1

𝑆𝑆𝐺𝐵𝐿𝑈𝑃 = 0.77, 𝑏1
𝐵𝐿𝑈𝑃 =

0.70), possibly due to selection not well accounted for. All these results agree well with previous 

analysis (Legarra et al. 2014). 
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In the last decade, genomic selection has become a standard in the genetic evaluation

of livestock populations. However, most procedures for the implementation of genomic

selection only consider the additive effects associated with SNP (Single Nucleotide

Polymorphism) markers used to calculate the prediction of the breeding values of

candidates for selection. Nevertheless, the availability of estimates of non-additive

effects is of interest because: (i) they contribute to an increase in the accuracy of the

prediction of breeding values and the genetic response; (ii) they allow the definition

of mate allocation procedures between candidates for selection; and (iii) they can be

used to enhance non-additive genetic variation through the definition of appropriate

crossbreeding or purebred breeding schemes. This study presents a review of methods

for the incorporation of non-additive genetic effects into genomic selection procedures

and their potential applications in the prediction of future performance, mate allocation,

crossbreeding, and purebred selection. The work concludes with a brief outline of some

ideas for future lines of that may help the standard inclusion of non-additive effects in

genomic selection.

Keywords: genomic selection, dominance, epistasis, crossbreeding, genetic evaluation

INTRODUCTION

Through his experiments on pea plants, Gregor Mendel (1866) realized that some traits are
dominant over others (for example “round peas” were dominant over “wrinkled peas”). InMendel’s
own words: “As a rule, hybrids do not represent the form exactly intermediate between the parental
strains. . . Those traits that pass into hybrid association entirely or almost entirely unchanged,
thus themselves representing the traits of the hybrid, are termed “dominating,” and those that
become latent in the association, “recessive””. Shortly after the rediscovery of Mendel’s rules, it
was observed that, in some cases, the addition of the individual action of genes could not explain
the mode of inheritance, and Bateson (1909) coined the term “epistasis” to describe the cases in
which the actions of two or more genes interact. A distinction must be drawn between biological
(functional) genetic effects that correspond to theMendelian definition (i.e., dominance means that
the heterozygote value is higher or lower than the mean of homozygous genotypes) and statistical
(population or weighted) effects which depend on allelic frequencies. In the latter, the relevant issue
is the contribution of non-additive effects to genetic variance. Some authors argue that non-additive
genetic effects may be a general phenomenon whose understanding is important for gaining more
knowledge on the nature of quantitative traits, but whose contribution to variance is negligible
(Crow, 2010).
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From the perspective of quantitative genetics, Fisher (1918)
conceived the infinitesimal model which postulates that a
very large number of unlinked genes control the genetic
variation of quantitative traits. He described the resemblance
between relatives in a pure additive model which was quickly
extended to incorporate dominance (Fisher, 1918; Wright,
1921). Resemblance between relatives including epistatic effects
of second and higher order was also described (Cockerham,
1954; Kempthorne, 1954). However, whilst the formulation of
the infinitesimal model in the additive context is evident, its
interpretation is not clear when non-additive effects are included
(Barton et al., 2017).

The main goal of animal or plant breeding is to identify,
select and mate the best individuals of a breeding stock in order
to maximize performance in future generations (Falconer and
McKay, 1996; Bernardo, 2010). The procedure for computing the
breeding values (genetic evaluation) of candidates for selection
plays a crucial role. Traditionally, these methods use phenotypic
and genealogical information, such as the selection index (Hazel,
1943) or the Best Linear Unbiased Predictor (Henderson, 1973)
and rely on the foundations of the infinitesimal model (Fisher,
1918).

Nevertheless, non-additive genetic effects have been ignored
in the genetic evaluation of livestock for several reasons: (i)
the lack of informative pedigrees, such as large full-sib families;
(ii) the calculations involved are more complex; (iii) the fact
that statistical additive variance captures biological dominance
or higher order interaction effects (Hill, 2010); and, (iv) the
difficulty in using dominant values in practice (mate allocation).
As a consequence, estimates of non-additive genetic variances are
scarce in livestock populations (Misztal et al., 1998; Nguyen and
Nagyné-Kiszlinger, 2016).

GENOMIC SELECTION

Since the late 80s and 90s, developments in molecular genetics
resulted in a set of neutral molecular markers, such as
microsatellites, that were commonly used to detect QTL
(Quantitative Trait Loci) in almost all livestock populations. The
objective of those studies was to identify polymorphic markers
or genes associated with phenotypic variation of traits of interest
(www.animalgenome.org/QTL), with the ultimate goal of using
them in Marker or Gene Assisted Selection (Dekkers, 2004).
However, these strategies became obsolete with the advent of
dense genotyping devices (Gunderson et al., 2005) that provided
a very large amount of SNP (Single Nucleotide Polymorphism)
and that allowed the development of genomic selection (GS)
models (Meuwissen et al., 2001).

Genomic selection has become a very successful strategy for
the prediction of the breeding values of candidates for selection
and has revolutionized the field of animal breeding over the past
decade. The basic idea of GS is to develop the following linear
model:

yi = µ +

n
∑

j = 1

tijaj + ei

The model explains the phenotypic data of m individuals
(yi) with i = 1 . . .m (or transformations of data, such as
daughter yield deviations) by the effects associated with a very
large number (n) of SNP (aj) with j = 1 . . . n. Moreover, tij is
the genotypic configuration (coded additively, e.g., Falconer and
McKay, 1996) of the ith individual and for the jth SNP (0, 1, and
2 for A1A1, A1A2, and A2A2 genotypes, respectively), and ei is
the residual. Furthermore, the prediction of individual breeding
values (ûi) of the candidates for selection can be calculated a
posteriori from marker effect estimates as ûi =

∑n
j = 1 tijâj.

A significant limitation for implementation is that most
genomic evaluation models suffer the statistical problem of
a larger number of parameters (n) that must be estimated
from a smaller number of data (m). The most common
method employed for resolving this problem is the use of
some type of regularization of SNP marker effects (Gianola,
2013). Several approaches have been suggested, ranging from a
simple Gaussian regularization (Meuwissen et al., 2001) to more
complex models that involve t shaped (Meuwissen et al., 2001),
double exponential (De los Campos et al., 2009b), mixtures of
distributions (Meuwissen et al., 2001; Habier et al., 2011; Erbe
et al., 2012), or non-parametric or semi-parametric approaches
(Gonzalez-Recio et al., 2014). The predictive ability of all these
approaches depends on the genetic architecture of the traits being
analyzed (Daetwyler et al., 2010), although for polygenic traits, all
approaches offer similar results (Wang et al., 2015).

An interesting property of the assumption of a Gaussian prior
distribution for marker effects (Random Regression BLUP—
RR-BLUP) is that the GS model can be reformulated in
terms of individual (animal) effects, using the equations of the
Henderson’s classic Mixed Model that provide breeding values
for all individuals, including candidates for selection (Genomic
BLUP or GBLUP). The only difference with standard mixed
model equations is that the numerator relationship matrix
(A) is replaced by the genomic relationship matrix (G), as
defined by VanRaden (2008). In addition, this approach can be
extended for the genetic evaluation of non-genotyped individuals
in the Single-Step approach (Aguilar et al., 2010), facilitating
the integration of GS procedures in the genetic evaluation of
candidates for selection in most livestock breeding programmes.
More recently, Fernando et al. (2014) described a Bayesian
procedure that can also simultaneously evaluate genotyped and
non-genotyped individuals and allows the use of alternative
regularization procedures. Nevertheless, computational costs are
markedly higher with the Bayesian model than with the Single-
Step approach.

Despite the regularization procedure, the genomic evaluation
methods are based on the evaluation of marker substitution
effects through the construction of the covariates (tij) or the G

matrix (above). The additive (or breeding) values capture a large
part of dominant and higher-order interaction effects (Hill et al.,
2008; Crow, 2010; Hill, 2010). Substitution effects that capture
dominance and epistatic functional effects are not necessarily
stable across generations or populations due to changes in allelic
frequencies. In any case, only additive values (substitution effects)
contribute to breeding values and are therefore expressed in
the next generation. However, estimates of non-additive genetic
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effects may be of relevance because: (i) they may contribute to
increasing the accuracy of prediction of breeding values and
the response to selection (Toro and Varona, 2010; Aliloo et al.,
2016; Duenk et al., 2017); (ii) they allow the definition of mate
allocation procedures between candidates for selection (Maki-
Tanila, 2007; Toro and Varona, 2010; Aliloo et al., 2017); and (iii)
they can be used to benefit from non-additive genetic variation
through the definition of appropriate crossbreeding or purebred
breeding schemes (Maki-Tanila, 2007; Zeng et al., 2013).

GENOMIC SELECTION MODELS WITH

DOMINANCE

The simplest approach for the inclusion of dominance in
genomic selection models is to extend the basic model with the
inclusion of a dominance effect (Toro and Varona, 2010; Su et al.,
2012) associated to each SNP marker:

yi = µ +

n
∑

j = 1

tijaj +

n
∑

j = 1

cijdj + ei

where yi is the phenotypic value of the ith individual and
µ is the population mean. For each of the n SNP markers,
aj and dj are the additive and dominance effects for the jth
marker, respectively. The covariates tij and cij are 2, 1, and
0 (coded additively) and 0, 1, and 0 (coded in a “biological
dominant” manner) for the genotypes A1A1, A1A2, A2A2 of each
marker, respectively. In some ways, pedigree-based models for
dominance were based on “expected” dominant relationships.
Thus, genomic models are based on “observed” heterozygotes.
However, when using this model it should be noted that that aj
is no longer the marker substitution effect, but the “biological”
additive genotypic effect and individual breeding values are
not predicted. In fact, the partition of variance in statistical
components due to additivity, dominance, and epistasis does
not reflect the “biological” (or “functional”) effect of the genes
although it is useful for prediction and selection (Huang and
Mackay, 2016). The model was reformulated in terms of breeding
values and dominance deviations (Falconer and Mackay, 1996)
by Vitezica et al. (2013) after the assumption of a Hardy-
Weinberg equilibrium within each:

yi = µ +

n
∑

j = 1

wijαj +

n
∑

j = 1

gijdj + ei

where

wij =







(2− 2pj)
(

1− 2pj
)

−2pj

A1A1

A1A2

A2A2

gij =







−2q2j
2pjqj
−2p2j

A1A1

A1A2

A2A2

and αj = aj+dj
(

qj − pj
)

is now the allelic substitution effect and
pj and qj are the allelic frequencies for A1 and A2 for the jth SNP
marker. The genetic variance due to a single locus is:

σ 2
Gj = 2pjqj

[

aj + dj
(

qj − pj
)]2

+
(

2pjqjdj
)2

where the additive variance is σ 2
Aj = 2pjqj

[

aj + dj
(

qj − pj
)]2

=

2pjqjα
2
j and the dominance variance is σ 2

Dj =
(

2pjqjdj
)2

and

the multilocus variances, under linkage equilibrium (LE), are
σ 2
G =

∑n
j = 1 σ 2

Gj, σ
2
A =

∑n
j = 1 σ 2

Aj and σ 2
D =

∑n
j = 1 σ 2

Dj. In fact,

“biological” (in terms of genotypic additive and dominant values)
and “statistical” (in terms of breeding values and dominance
deviations) models are equivalent parameterisations of the same
model (Vitezica et al., 2013), and the following expressions:

σ 2
A =

n
∑

j = 1

(

2pjqj
)

σ 2
a +

n
∑

j = 1

(

2pjqj
(

qj − pj
)2

)

σ 2
d

σ 2
A
∗ =

n
∑

j = 1

(

2pjqj
)

σ 2
a

σ 2
D =

n
∑

j = 1

(

4p2j q
2
j

)

σ 2
d

σ 2
D
∗ =

n
∑

j = 1

(

2pjqj
(

1− 2pjqj
))

σ 2
d

that can be used to switch variance components estimates
between “biological” (σ 2

A∗ and σ 2
D∗ ) and “statistical” (σ 2

A and
σ 2
D) models. It can be verified that σ 2

A + σ 2
D = σ 2

A∗+ σ 2
D∗ . In

addition, if p = q = 0.5, all variances are identical and if d = 0,
σ 2
A = σ 2

A∗ . A further generalization can be also achieved to avoid
the requirements of the Hardy-Weinberg equilibrium (Vitezica
et al., 2017), by following the NOIA model (Alvarez-Castro and
Carlborg, 2007) by replacing wij and gij with:

wij =







−
(

−p12j − 2p22j
)

−
(

1− p12j − 2p22j
)

−
(

2− p12j − 2p22j
)

A1A1

A1A2

A2A2

gij =



































−
2p12jp22j

p11j + p 22j −
(

p11j − p22j
)2

A1A1

4p11jp22j

p11j + p 22j −
(

p11j − p22j
)2

A1A2

−
2p11jp12j

p11j + p 22j −
(

p11j − p22j
)2

A2A2

where, p11j, p12j, and p22j are the genotypic frequencies for A1A1,
A1A2, and A2A2 at the jth SNP marker, respectively.

Note that all these models require a regularization process
for additive and dominance effects. The simplest approach is
to expand the RR-BLUP by the assumption of a prior Gaussian
distribution for the additive and dominance effects. It is feasible
to assume any other kind of prior distribution for the dominance
(as described above) and the additive effects (Acevedo et al.,
2015). However, a major advantage of using a Gaussian prior
distribution is that the model can be easily transformed into
Henderson’s Mixed Model equations by using the definition
of additive (G) and dominance covariance matrices (D), as
suggested by Vitezica et al. (2013).

Genomic selection models with dominance have been tested
in several populations, including dairy cattle (Ertl et al., 2014;
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Aliloo et al., 2016; Jiang et al., 2017), pigs (Esfandyari et al., 2016;
Xiang et al., 2016), sheep (Moghaddar and van der Werf, 2017),
and layers (Heidaritabar et al., 2016) with ambiguous results.
Jiang et al. (2017) found a negligible percentage of variation
explained by dominance effects for productive life in a Holstein
cattle population, although Ertl et al. (2014) suggested that
dominance may suppose up to 39% of the total genetic variation
for Somatic Cell Score in a population of Fleckvieh cattle. In
general, the increase in the accuracy of additive breeding values
by including dominance was scarce, with the exception of Aliloo
et al. (2016).

DOMINANCE AND INBREEDING

DEPRESSION (OR HETEROSIS)

The classical theory of quantitative genetics (Falconer and
Mackay, 1996) postulates that inbreeding depression (or
heterosis) occurs due to directional dominance. However, the
presence of directional dominance (i.e., a higher percentage of
positive than negative dominant effects) is in sharp contrast
to the assumptions of the procedures described above that use
symmetric prior distributions. This drawback can be overcome
by the assumption of a mean of dominant effects that is different
from zero, e.g., E

(

d
)

= µd, as proposed by Xiang et al. (2016).
The standard model can be reformulated as:

yi = µ +

n
∑

j = 1

tijaj +

n
∑

j = 1

cij

[

d
∗

j + µd

]

+ ei

= µ +

n
∑

j = 1

tijaj +

n
∑

j = 1

cijd
∗

j +

n
∑

j = 1

cijµd + ei

where d∗j = dj − µd, then E
(

d∗
)

= 0. It should be noted the

term
∑n

j = 1 cijµd is an average of dominance effects for the ith

individual, because cij has a value of 1 for heterozygous loci and
0 for homozygous. Inbreeding (or full homozygosity) coefficients
fi can be calculated as:

fi = 1−

∑n
j = 1 cij

n

So,
∑n

j = 1 cijµd =
(

1− fi
)

nµd = nµd − finµd. The first term

nµd is absorbed in the overall mean of the model (µ), and the
second (−finµd) corresponds to a covariate b = −nµd associated
with inbreeding (fi). This covariate can be seen as inbreeding
depression (if it has a detrimental effect) caused by genomic
inbreeding. In addition, it can be also implemented in the GBLUP
models described above with the introduction of a covariate
within the mixed model equations.

Nonetheless, it assumes that the expected mean of the
dominance effects is the same for all markers. In the literature,
there are signs that the decrease in performance is associated
heterogeneously within the genomic regions (Pryce et al., 2014;
Howard et al., 2015; Saura et al., 2015). Models that consider
alternative means of dominance effects within genomic regions

may be useful to model inbreeding depression in a more
appropriate way.

An alternative approach to explain the phenomenon of
inbreeding depression (or heterosis) is the consideration of a
possible relationship between additive and dominance biological
effects (Wellmann and Bennewitz, 2011). There is theoretical
proofs (Caballero and Keightley, 1994) and empirical evidence
(Bennewitz and Meuwissen, 2010) that supports this argument.
Wellmann and Bennewitz (2012) expanded the “biological”
model described above with regularization procedures that allows
for this dependence. They defined up to four models (Bayes D0
to D3) based on the Bayes C approach (Verbyla et al., 2009).
The last two models (Bayes D2 and D3) included dependencies
between genotypic additive and dominance effects. In the first
(D2), the dependence was modeled through the prior variance of
the dominance effects (Var

(

d
∣

∣

∣

∣a
∣

∣

)

) and in the second (D3), they
further expanded it to the prior mean (E

(

d
∣

∣

∣

∣a
∣

∣

)

), where
∣

∣a
∣

∣ is
the absolute value of the additive effect. Implementation of these
models is extremely complex and they have not been thoroughly
tested (Bennewitz et al., 2017).

IMPRINTING

Another source of non-additive genetic variation is genomic
imprinting (Reik and Walter, 2001). This involves total or
partial inactivation of paternal and maternal alleles. Following
the quantitative model established by Spencer (2002), Nishio
and Satoh (2015) put forward two alternative genomic selection
models to include imprinting effects. The first extends the
“statistical” model with dominance (in terms of breeding values
and dominance deviations) as:

yi = µ +

n
∑

j = 1

wijαj +

n
∑

j = 1

gijdj +

n
∑

j = 1

rijij + ei

where

wij =















2− 2pj
1− 2pj
1− 2pj
−2pj

A1A1

A1A2

A2A1

A2A2

gij =















−2q2j
2pjqj
2pjqj
−2p2j

A1A1

A1A2

A2A1

A2A2

and rij =















0
1
−1
0

A1A1

A1A2

A2A1

A2A2

and ij is the imprinting effects associated with jth marker.
The second alternative proposed the distribution of the genetic
effects into paternal (pj) and maternal (mj) gametic effects and a
dominance deviation.

yi = µ +

n
∑

j = 1

lijpj +

n
∑

j = 1

jijmj +

n
∑

j = 1

gijdj + ei

where

lij = jij =

{

qj
−

(

1− qj
)

A1

A2
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These models have been implemented in some studies with
livestock data: (Hu et al., 2016) did not find an increase in
predictive ability when imprinting effects were included in the
model. In addition, estimates of the percentage of phenotypic
variation caused by imprinting were small and ranged between
1.3 and 1.4% in pigs (Guo et al., 2016) and from 0.2 to 2.1% in
dairy cattle (Jiang et al., 2017). However, this latter study reported
that imprinting effects supposed more than 20% of the total
genetic variance in some reproductive traits, like pregnancy or
conception rate.

EPISTASIS

The last and most complex source of non-additive genetic
variation is the epistatic interactions between two or more
genes. An immediate approach for genomic evaluation including
epistatic interactions is to define an explicit model by including
pairwise or higher order epistatic effects:

yi = µ +

n
∑

j = 1

tijaj +

n
∑

j = 1

cijdj +

n
∑

j = 1

n
∑

k = 1

tijtikaajk

+

n
∑

j = 1

n
∑

k = 1

tijgikadjk +

n
∑

j = 1

n
∑

k = 1

gijgikddjk

+

n
∑

j = 1

n
∑

k = 1

n
∑

l = 1

tijtiktilaaajkl +

n
∑

j = 1

n
∑

k = 1

n
∑

l = 1

tijtikgilaadjkl

+

n
∑

j = 1

n
∑

k = 1

n
∑

l = 1

tijgikgiladdjkl +

n
∑

j = 1

n
∑

k = 1

n
∑

l = 1

gijgikgildddjkl

+ . . . + ei

where aajk, adjk, and ddjk are second order additive x additive,
additive x dominant and dominant x dominant epistatic effects
between the jth and kth SNP effects and aaajkl, aadjkl, addjkl
and dddjk are third order additive x additive x additive, additive
x additive x dominant, additive x dominant x dominant and
dominant x dominant x dominant epistatic effects. Despite the
method of regularization used, the number of parameters to
estimate is extremely large. Consequently, the computational
requirements are enormous and the amount of information
available, in the statistical sense, for the estimation of each
epistatic effect is very small. Therefore, the most efficient (at
least from a computational point of view) method for including
epistatic interactions in genomic selection models is to define
appropriate covariance matrices between individual effects, in
the same way that the standard GBLUP model uses the genomic
relationship matrix, but, in this case, taking into account the
interactive nature of the genetic effects. There are two main
approaches in the published literature: (1) the definition of
genomic relationshipmatrices that consider epistatic interactions
(Varona et al., 2014; Martini et al., 2016; Vitezica et al., 2017), and
(2) the application of Kernel-based statistical methods (Gianola
et al., 2006; de los Campos et al., 2009a; Morota and Gianola,
2014).

This simplest method for defining genomic relationship
matrices is the extended GBLUP model (EGBLUP), described by
Jiang and Reif (2015) and Martini et al. (2016). These authors
start from a reduced version of the “biological” model:

yi = µ +

n
∑

j = 1

tijaj +

n
∑

j = 1

n
∑

k = 1

tijtikaajk + ei

and they define an equivalent model:

y = 1µ + g1 + g2 + e

where µ is the general mean, y is the vector of phenotypic
data and e is the vector of the residuals. In addition, the model
includes one “biologically” additive (g1) and one epistatic (g2)
multivariate Gaussian term with the following distributions:

g1 ∼ N
(

0,G1σ
2
g1

)

g2 ∼ N
(

0,G2σ
2
g2

)

Where G1 = TT′ and G2 = G1
◦ G1 being:

T =







t11 · · · t1n
...

. . .
...

tk1 · · · tkn







and the Hadamard product. Moreover, n is the number of SNP
markers and k the number of individuals. However, with this
model the additive and epistatic effects are not orthogonal and
dominant effects are not included. Therefore, it can only be
used for prediction of the phenotypes and not for the estimation
of variance components (Martini et al., 2016). To avoid this
inconvenience, Varona et al. (2014) and Vitezica et al. (2017)
developed a full orthogonal model. They start with the expansion
of the individual genotypic effect into additive, dominance and
epistatic effects:

y = 1µ + g+ e = 1µ + gA + gD +
∑

i = A,D

∑

j = A,D

gij

+
∑

i = A,D

∑

j = A,D

∑

k = A,D

gijk + . . .+ e

Where g is the vector of the individual genotypic effects, gA is the
vector of additive effects, gD the vector of individual dominance
effects, gij is the second order epistatic effects, gijk the third
order epistatic effects and so on. For simplicity, each individual
effect is defined by the sum of SNP (or combination of SNP)
effects hwith equal prior Gaussian variability and weighted by an
incidence matrix (H). So, for the additive and dominant effects,
gA =HAa and gD =HDd: :

HA =





hA1
. . .

hAk



 andHD =





hD1
. . .

hDk





Where each h vector is composed by n (number of SNP
markers) elements (hAi =

{

hAi1, hAi2, . . . , hAin
}

and
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hDi =
{

hDi1, hDi2, . . . , hDin
}

) and a and d are the vectors
of the SNP additive and dominant effects. These hAi and
hDivectors can be defined in several ways, depending of the
reference point or the assumption of the Hardy-Weinberg
equilibrium, among others. However, orthogonal partitioning of
variances must follow the NOIA approach (Alvarez-Castro and
Carlborg, 2007):

hAij =







−
(

−p12j − 2p22j
)

A1A1

−
(

1− p12j − 2p22j
)

A1A2

−
(

2− p12j − 2p22j
)

A2A2

hDij =







































−
2p12jp22j

p11j + p22j −
(

p11j − p22j
)2

A1A1

4p11jp22j

p11j + p22j −
(

p11j − p22j
)2

A1A2

−
2p11jp12j

p11j + p22j −
(

p11j − p22j
)2

A2A2

Therefore, and under the assumption that SNP additive or
dominant effects follow a Gaussian distribution, the additive and
dominant “genomic” (co) variance relationship matrices can be
computed as:

Cov
(

gA
)

=
HAH

′

A

tr
(

HAH
′

A

)

/n
σ 2
A Cov

(

gD
)

=
HDH

′

D

tr
(

HDH
′

D

)

/n
σ 2
D

where the division by traces standardizes the variance
components to an ideal infinite “unrelated” population.
For second order epistatic effects (gAA, gAD, and gDD),
Alvarez-Castro and Carlborg (2007) proved that:

hAAij = hAi ⊗ hAj hADij = hAi ⊗ hDj hDDij = hDi ⊗ hDj

and, as a consequence, the matrices HAA, HAD and HDD can be
written as:

HAA =









hA1
⊗

hA1
hA2

⊗

hA2
.

hAn
⊗

hAn









HAD =









hA1
⊗

hD1

hA2
⊗

hD2

.
hAn

⊗

hDn









HDD =









hD1
⊗

hD1

hD2
⊗

hD2

.
hDn

⊗

hDn









and, as before, under the assumption of Gaussian distribution of
second-order epistatic effects, the covariance between them can
be calculated as:

Cov
(

gAA
)

=
HAAH

′

AA

tr
(

HAAH
′

AA

)

/n
σ 2
AA = GAAσ 2

AA

Cov
(

gAD
)

=
HADH

′

AD

tr
(

HADH
′

AD

)

/n
σ 2
AD = GADσ 2

AD

Cov
(

gDD
)

=
HDDH

′

DD

tr
(

HDDH
′

DD

)

/n
σ 2
DD = GDDσ 2

DD

and the covariance between any higher order epistatic effects
must be:

Cov
(

g ijk

)

=
HijkH

′

ijk

tr
(

HijkH
′

ijk

)

/n
σ 2
ijk = Gijkσ

2
ijk

However, Hmatrices are extremely large and calculation of HH′

cross-products is computationally expensive; each H matrix has
as many columns as marker interactions and as many rows
as individuals. Nevertheless, Vitezica et al. (2017) provided an
algebraic shortcut that allows calculation from the additive and
dominance matrices, described above, as:

Cov
(

gAA
)

=
GA ◦ GA

tr (GA ◦ GA)/n
σ 2
AA = GAAσ 2

AA

Cov
(

gAD
)

=
GA ◦ GD

tr (GA ◦ GD)/n
σ 2
AD = GADσ 2

AD

Cov
(

gDD
)

=
GD ◦ GD

tr (GD ◦ GD)/n
σ 2
DD = GDDσ 2

DD

For higher order interactions the results are equivalent. As an
example, the covariance matrix for the AAD epistatic interaction
can be calculated as:

Cov
(

gAAD
)

=
GA ◦ G D ◦ GD

tr (GA ◦ GD ◦ GD)/n
σ 2
ADD = GADDσ 2

ADD

It should be noted that G ◦ G. . . products tend to I

and higher order epistatic effects tend to be confused with
residuals. Nevertheless, this orthogonal approach assumes
linkage equilibrium between SNP molecular markers. Linkage
disequilibrium (LD)modifies the distribution of the variance into
additive, dominance and epistatic components, and orthogonal
partition is not possible (Hill and Maki-Tanila, 2015). In
outbred populations, substantial LD is present only between
polymorphisms in tight linkage (Hill and Maki-Tanila, 2015).
However, whilst the distribution of epistatic effects is still unclear
(Wei et al., 2015, there is evidence of epistatic interactions
between linked loci (Lynch, 1991). Alternative approaches, such
as those of Akdemir and Jannick (2015) and Akdemir et al.
(2017) have been developed to define locally epistatic relationship
matrices. These studies used a RKHS (Reproducing Kernel
Hilbert Space) to define these matrices and average them.

The RKHS approach to model epistatic interactions relies on
the idea that the relationship between phenotypes and genotypes
may not be linear (Gianola et al., 2006; de los Campos et al.,
2009a). The main objective is to predict the performance of
each individual given its marker genotype through a function
that maps the genotypes into phenotypic responses. One of the
simplest methods is to consider that this function is linear and,
consequently, the results are equivalent to the GBLUP approach.
Nevertheless, the power of the Kernel concept relies on the
possibility of using alternative functions of marker genotypes. In
short, RKHS procedures result in some non-parametric functions
g() of a SNP markers set (X):

y = µ + g (X) + e
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and define a cost function to minimize

J =
(

y− g (X)
)′ (

y− g (X)
)

+ λ
∥

∥g (X)
∥

∥

2

H

where the term
∥

∥g (X)
∥

∥

2

H
is a norm under a Hilbert space.

Kimeldorf and Wahba (1971) found that g(X) can be
reformulated as:

g (X) = α0 +

n
∑

i = 1

αiK (x−xi)

where K is a positive semi-definite matrix that meets the
requisites of a Kernel Matrix. It defines the similarity between
individuals and meets the distance requirements in a Hilbert
space (Wootters, 1981). The performance of the method depends
on an adequate choice of K that can be chosen from among a
very large number of options. The easiest RKHS option is to
use the genealogical (A) or genomic (G) relationship matrices
as kernel matrices (Rodríguez-Ramilo et al., 2014), this leads to
the standard BLUP or the GBLUP as particular cases of RKHS.
However, they only are able to capture the additive genetic
variation and if the model tries to accommodate dominance
or epistatic interactions, an alternative Kernel matrix has to
be implemented for a pair of SNP vectors of two individuals
(x and x′). Most kernels proposed so far (Gianola et al., 2006;
Piepho, 2009; Morota et al., 2013; Tusell et al., 2014) consider the
similarity across individuals within loci (i.e., similarities within
loci are summed). Using Taylor series expansions, it can be shown
that kernels of this type are a weighted sum of the additive (G)
and dominance covariance matrices (D), and therefore implicitly
account for dominance (Piepho, 2009). However, these kernels
do not consider joint similarity across loci. A kernel that includes
epistasis should measure similarities simultaneously between
pairs, triplets etc., of loci across individuals, as described in Jiang
and Reif (2015) and Martini et al. (2016).

APPLICATIONS OF GENOMIC SELECTION

WITH NON-ADDITIVE GENETIC EFFECTS

Predictive Performance
The most direct application of the genomic prediction models
is to predict the performance of an individual for continuous
or categorical phenotypes. Here the introduction of non-additive
genetic effects in the procedures of prediction becomes relevant,
as the main objective is to predict performance conditioned on
the genotype of the individual, despite the additive, dominant
or epistatic gene action. In fact, simulation studies show
up to 17% more accurate predictions based on the sum of
additive and dominance effects compared to prediction based
on only additive effects (Wellmann and Bennewitz, 2012; Da
et al., 2014). However, the performance of semi-parametric
or non-parametric approaches such as RKHS methods seems
to be appropriate because they are designed to maximize
predicting ability over a given individual and not to predict the
future performance of the progeny; they are also designed to
capture complex and non-explicit interactions. Moreover, some
new research fields have merged with genomic evaluation for

predicting future performance, examples include: microbiomics
(Ramayo-Caldas et al., 2016; Yang et al., 2017), metabolomics
(Fontanesi, 2016) and precision farming (Banhazi et al., 2012).
Over time they will provide a global picture of the genetic and
environmental circumstances that affect the future performance
of individuals and they will contribute to the development of
more accurate prediction models.

Mate Allocation
In the past, there was a strong belief in “nicking”: pairs of
individuals that, wisely selected, would give rise to very efficient
offspring (Lush, 1943). In terms of quantitative genetics, the
existence of “nicking” would imply that there is large variance
of dominant deviations (or epistasis) compared to the variance
of breeding values, something that finally turned out to be
generally false. Even so, there is room for mate allocation within a
population (Toro and Varona, 2010). Under models that include
dominance effects, the output of the genomic selection procedure
can be used to calculate the prediction of performance of future
mating (Gij) between the ith and jth individual as:

E
(

Gij

)

=

n
∑

k = 1

[

prijk (A1A1) âJ + prijk (A1A2) d̂J

−prijk (A2A2) âJ
]

where prijk(A1A1), prijk(A1A2), and prijk(A2A2) are the
probabilities of the genotypes A1A1, A1A2, and A2A2 for
the combination of the ith and jth individual and the kthmarker,

âk and d̂k are the estimates of the additive and dominance
effects for the same marker and n is the number of markers.
Later, optimisation procedures like linear programming (Jansen
and Wilton, 1985) or heuristic approximations (simulated
annealing, Kirkpatrick et al., 1983) can be used to define a set
of mates that maximize performance in the future generation.
In a simulated example, Toro and Varona (2010) compared
random mating vs. mate selection with a model including
dominance and found advantages that ranged between 6 and
22% of the expected response. Sun et al. (2013), Ertl et al. (2014),
and Aliloo et al. (2017) have confirmed these improvements
with dairy cattle data. However, its implementation in livestock
populations is limited because it must be taken into account that
the accuracy of the prediction of a potential mate will be low
and the advantage will be only relevant when traits have a large
amount of non-additive genetic variance. In addition, it requires
the genotyping of male and females in the population that is
not always available. Moreover, the use of models that include
more complex interactions, such as models with epistatic effects
or non-parametric approaches, is not so immediate. In fact,
the predicted performance of a mate should be calculated after
integrating the predictive performance over all possible future
genotypic configurations of the expected progeny. For epistasis
(but not for dominance) these genotypic configurations also
depend on recombination fractions across the genome.

Selection for Crossbreeding
There is consensus that profit from non-additive genetic effects in
a selection program can be obtained when commercial animals
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are the product of mating with those that do not participate
in the maintenance of a breeding population. The typical way
to proceed is to produce two-way or three-way crosses between
populations maintained and selected separately (i.e., in pigs).
Selection is carried out within lines to benefit from additivity
and, in addition, the value of the cross may increase due to
the heterosis. Some of the most popular livestock production
systems, including pig, poultry, and rabbit production, involve
regular crossbreeding schemes, with the aim of capturing the
complementarity between the performance of the purebred
populations and heterosis. The breeding goal within pure
lines is to select individuals to maximize the response in the
crossbred population. The traditional approach for this objective
was Reciprocal Recurrent Selection—RRS—(Comstock et al.,
1949). RRS postulates the selection of individuals in purebred
populations based on the performance of their crossbred
progeny. If the source of information is the performance of
these crossbred progeny, the main drawback of the practical
application of RRS is the increase of generation intervals
that reduce overall genetic response. In practical terms, the
performance of the pure lines is used, and a high genetic
purebred/crossbred correlation is sought in order to warrant
correct genetic progress (Wei and van der Werf, 1994), however,
this may not be the case because of non-additive effects or
genotype x environment (G x E) interactions.

The use of genomic information can provide a very useful
tool to improve the ability of prediction of breeding values in
purebred populations based on crossbred performance without
the need to wait for recording crossbred progeny. Ibánez-
Escriche et al. (2009) designed a first approach of the use of GS
for crossbred performance under a purely additive model. This
study defined a breed specific genomic selection model as:

yi = µ +

n
∑

j = 1

(

tSijkα
S
jk + tDijlα

D
jl

)

+ ei

where tS
ijk

is the SNP allele at the jth locus from breed k and

received from the sire of the ith individual that can take values
0 or 1, and αS

jk
is the breed-specific substitution effect for the

jth locus and the kth breed. Similarly, tD
ijl

and αD
jl
were defined

for the alleles received from the dam of the lth breed. The
objective of this approach was to estimate allele substitution
effects within breed. Even under the assumption of absence of G x
E interactions, SNP allele substitution effects may differ between
populations due to: (1) Specific population patterns of linkage
disequilibrium with the QTL, or (2) The presence of genotypic
dominance effects. The allelic substitution effects of the A (or B)
population (αA or αB) on performance of A x B depends on the
biological additive (a) and dominance (d) effects, and the allelic
frequencies of B–pB- (or A–pA -) as αA = a +

(

1− 2pB
)

d or
αB = a+

(

1− 2pA
)

d). Under dominance, Kinghorn et al. (2010)
demonstrated a clear advantage of this approach, assuming the
estimation of SNP effects was perfect. This model has been
expanded by Sevillano et al. (2017) to a three-way crossbreeding
scheme, after the evaluation of a procedure to trace the breed-
of-origin of alleles in three-way crossbred animals (Sevillano

et al., 2016). This is an example of the “partial genetic” approach
(substitution effects defined within populations). Stuber and
Cockerham (1966) showed that gene substitution effects can
be defined within populations or across populations, and, if all
the (non-additive) effects are accounted for, both approaches
are equivalent. Christensen et al. (2015) proposed an alternative
model called the “common genetic” approach. Both models were
compared by Xiang et al. (2016, 2017) in the same data set with
very similar results, but more research is still needed.

Crossbreeding implies mating between individuals of parental
populations and a formal description of the additive and
dominance variance in the crossbred population is required to
evaluate the relevance of mate allocation when the crossbreds are
generated. Toosi et al. (2010) and Zeng et al. (2013) extended the
aforementioned model to include additive and dominance effects
and proved (in both cases with simulated data) its superiority
over the strictly additive model if dominance variance is present.
These results were confirmed by Esfandyari et al. (2015),
who proved that the response to selection for crossbreeding
performance is increased by training on crossbred genotypes and
phenotypes, and by tracking the allele line origin when pure lines
are not closely related. Later, Vitezica et al. (2016) described the
substitution effects and dominance deviations within the scope
of an F1 population and showed that the additive and dominant
variance in a crossbred population is:

σ 2
A(A) = 2pAqAα2

A = 2
[

pAqAa
2 + 2pAqA

(

qB − pB
)

ad

+ pAqA
(

qB − pB
)2
d2

]

σ 2
A(A) = 2pAqA

[

a+
(

qB − pB
)

d
]2

σ 2
A(B) = 2pBqBα

2
B = 2

[

pBqBa
2 + 2pBqB

(

qA − pA
)

ad

+ pBqB
(

qA − pA
)2
d2

]

σ 2
A(B) = 2pBqB

[

a+
(

qA − pA
)

d
]2

σ 2
D = 4pAqApBqBd

2

where σ 2
A(A)

and σ 2
A(B)

are the additive variance generated by the

purebred populations A and B, respectively, σ 2
D is the dominance

variance, pA, qA, pB and qB are the allelic frequencies in purebred
populations, and a and d are the additive and dominance effects.

However, all these approaches assume that the additive
and dominance effects have the same magnitude in pure and
crossbred populations and this implies an absence of G x E
interaction. To avoid this restriction, Vitezica et al. (2016) and
Xiang et al. (2016) proposed a multivariate genomic BLUP that is
capable of considering different additive and dominance effects
and their correlations between pure and crossbred populations.

Selection in Purebred Populations
The response to selection in purebred populations depends on
the magnitude of the additive variance and on the prediction of
the additive breeding values for the candidates for reproduction.
It is usually assumed that it is not worth selecting individuals
with the highest dominance values because they will go back to
zero as a result of random mating. However, Toro (1993, 1998)
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proposed twomating strategies that can be used to take advantage
of dominance in a closed population. The first (Toro, 1993),
was a method that basically consists of performing two types of
mating: (a) minimum coancestry mating in order to obtain the
progenies that will constitute the commercial population and will
also be utilized for testing, and (b) maximum coancestry mating
from which the breeding population will be maintained. Toro’s
second strategy (Toro, 1998) advocates the use of the selection of
grandparental combinations. Both strategies are analogous with
reciprocal-recurrent selection (Comstock et al., 1949) in that they
rely on the crucial distinction between commercial and breeding
populations. Nevertheless, they have been exclusively tested by
simulation and with a reduced set of genes with known additive
and dominance effect. Their efficiency has yet to be verified using
a large number of SNP markers.

FINAL REMARKS

Despite huge efforts in the development of statistical models
for the implementation of genomic selection with non-additive
effects, there are still some issues that have to be dealt with before
the use of these models in genomic evaluation becomes standard.
A major obstacle is the lack of serious testing as this requires
extensive data sets with genotypes and phenotypes, and these data
sets are rare. In fact, non-additive genetic variance is expected
to be low for most traits (Crow, 2010; Hill et al., 2010), with the
exception of fitness related traits. Therefore, the inclusion of non-
additive effects in genomic selection models will provide very low
(or negligible) improvement in the genetic response or the ability
of prediction.

Non-additive effects are easily incorporated into GBLUP
procedures (Vitezica et al., 2013, 2017) but efforts must be made
to define a single-step approach (Aguilar et al., 2010) that is
able to use phenotypic data from non-genotyped individuals
and the complete genealogical information of breeding schemes.
The major limitation of the GBLUP or single-step approaches
is the calculation of the inverse of the genomic relationship
matrices (G), the introduction of non-additive effects will involve
the calculation of the inverse of additional matrices related
with dominance or epistatic effects. Nevertheless, this is really
a constraint in populations with a large number of genotyped
individual (i.e., Holstein), while most of the livestock populations
do not suffer for any limitations. In fact, the computational cost
for inverting additive and non-additive genomic relationship
matrices is equivalent. On the other hand, using current
pedigree-based BLUP models based on dominance (de Boer
and Hoeschele, 1993) seems futile because the models are
computationally complicated.

Recent studies (Xiang et al., 2016) have shown that inbreeding
depression can be modeled and included in GS approaches
through a covariate with the average individual heterozygosity.

Nevertheless, this approach only considers the effects of the
dominance in inbreeding depression and the role of epistatic
interactions in inbreeding depression (Minvielle, 1987) has
not yet been studied. However, directional dominance is
not necessary requisite for having a substantial dominance
variance. In fact it would be interesting to know if there
are traits with substantial dominance variance and without
inbreeding depression, because they would be good candidates
for successful strategies of using dominance. In addition, it
should be mentioned that the genetic architecture of non-
additive genetic effects and its relationship with inbreeding
depression and heterosis is a relevant subject of future
research.

The presence of dominance with inbreeding implies the
existence of up to five variance components in pedigree-
based analysis (Smith and Maki-Tanila, 1990; de Boer and
Hoeschele, 1993): additive; dominance between non-inbred;
dominance between inbred; covariance between additive; and,
inbred dominance values and inbreeding depression. As far
as we know, this model has only been used twice with
real data in animal breeding (Shaw and Woolliams, 1999;
Fernández et al., 2017); their equivalence with the variance
components captured by SNP marker effects has to be
clarified.

Finally, the parametric approach for the estimation of epistatic
effects (Vitezica et al., 2017) fails when linkage disequilibrium is
present. A full description of the effect of the genes and their
interactions in populations under linkage disequilibrium and
the definition of predictive effects has not been reformulated
within the scope of genomic selection. It is unclear what we
mean by genetic variances when there is linkage disequilibrium,
particularly because linkage disequilibrium is population specific
and unstable across generations or subpopulations. Nevertheless,
Mäki-Tanila and Hill (2014) showed that when the number of
loci increases, epistatic variance disappears. At the same time,
the proportion of dominance variance stays the same. Thus,
dominance variance is the main non-additive component even
with linkage disequilibrium (Hill and Maki-Tanila, 2015).
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