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Chapter 1

Distributions

1.1 Random Variables

A random wvaeriable is a real-valued function which exists within the domain of a defined
sample space. A random variable is conventionally designated by a capital letter, say Y,
and the value of Y is denoted by a small letter, say y. The sample space is the range of
values that y can be assigned. The small letter ¥ is used in these notes for ¥ and y.

Random variables can be either discrete or continuous. A discrete random variable
can assume only a finite number of distinet values, such as zero or one, for example. A
continuous random variable can assume any value within the range of the sample space.

Random variables usually follow a distribution function or probability density which
can be described mathematically in most cases. The distribution could have a number
of parameters associated with it, such as a mean and variance, and all parameters will
generally be designated collectively as a vector 6. The goal of statistical analysis is usually
to estimate clements of @ from the observed random variables, y.

If y represents a random variable from some distribution, then the expectation of y is
denoted by
E(y) = u
where E() means expected value. The expected value of y depends on its distribution and
range of allowahle values. The expected value is known as the mean, or the first moment
of the distribution. Also of importance is the variance of y that could be expected with
that distribution. The variance of a scalar random variable, y, is defined as

Var(y) = E(y*) - EW)E(y) = E(y — E(y))*

and is commonly represented as 03. Variances are known as the second moment of the
distribution. Variances are always greater than zero.
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1.2 Discrete Random Variables

In the gencral discrete case, the probability that ¥ takes the value y, is defined as the sum
of the probabilitics of all sample points that are assigned the value y. That is,

P(Y = y) = ply).

The probebility distribution of ¥ lists the probabilities for each value of y. Suppose Y can
take on four values with the following probabilities:

y ply)
0 1/8
1 1/4
2 1/4
3 3/8

Any other values of y are assumed to have zero probability, and the sum of all proba-
bilities is 1, as required of a valid distribution function.

Various kinds of probabilities may be calculated from this table.

Pr(Y =0) = p(0)=
PrY —0or Y =2) = p(0)+p(2) = %
PrY =1or¥ =2) = p()+p(@2) =
The cumulative distribution function is
F(y) = Pr{Y <y),
for example,
F0) = p(0),
FO) = p(0)+p) = 3,
FE) = p(0)+p()+p) = 3.
F3) = p0)+p(1)+p(2)+p3) = 1

Also, if y) < yo, then F(y1) < F(y2). Finally,

Prijm<Y <) = Pr(Y <y)-PriY sun)
= Fy2) - Fln).



1.2. DISCRETE RANDOM VARIABLES

The expected value of a discrete random variable is defined as
E(y) =y nly).
v
For the example above,
E(y) =(001/8) +1(1/4) + 2(1/4) + 3(3/8)) = 1.875.
Similarly, the expected value of a function of Y7, say (V) is given by

Elgy) =>_ aly) p(y).

y
Suppose y(y) = 3%, then

E(y*) = (0(1/8) + 1(1/4) + 4(1/4) + 9(3/8)) = 4.625.

The variance of discrete random variable Y is
Var(y) = Ely ~ B(y))* = E(y") — [BW))*.
For the example,

Var(y) = (—L875)%(1/8) + (—.875)2(1/4) + (.125)%(1/4) + (1.125)%(3/8)
= 4.625 — (1.875)
1.109375

1.2.1 Binomial Distribution

11

A cominon discrete distribution is the dinemial distribution. A binomial event can take on
only two possible outecomes, success or failure, zero or one, heads or tails, diseased or not
diseased, and so on. The probability of one outcome is ¢ and the probability of the other
outcome is 1 —g. Trials, or a succession of binomial events, are assumed to be independent.
The random variable Y is the number of suceesses. The probability distribution is given

by
ply) = ( v ) (1 —g)" ¥,

fory =0, 1, 2, ..,nand 0 < ¢ < 1. The number of trials is n. The expected value and

variance of the binomial distribution are

E(y) = ng
Varly) = nq(1—q).
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1.2.2 Poisson Distribution

A Poisson probability distribution provides a good model for the probability distribution
of the number Y of rare events that oceur in a given space, time, volume, or any other
dimension, and A is the average value of Y. In dairy cattle breeding, for example, the
number of quality embryos produced by a cow during superovulation can range from 0 to
20 (or more), but the average might be only 3 or 4. The Poisson probability distribution
is given by
AV
ply) = o P =2,
fory=0, 1, 2, ... and A > 0. Also,
Ely} = A
Var(y) = A

The mean and the variance are equal.

1.3 General Matrix Results

Extending results from scalar random variables to vectors of random variables, also called
a random vector variable, then the following genecral results apply. Vectors are denoted
by boldfaced small letters.

1.3.1 Expectations

Let y, and y2 be two random vector variables, then for i =1 or 2, then
i1
iz
Ely)=m=| . ,
Hin
for a vector of length n. If ¢ is a scalar constant, then
E(cy:) = cpy
Similarly, if C is a matrix of constants, then
E(Cy;) = Cp.
Finally,
E(yi+y2) = En)+E(yz2)
Myt .
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1.3.2 Variance-Covariance Matrices

Let ¥ be a random vector variable of length n, then the variance-covariance matrix of y
is as follows:

Var(y) = Elyy')— E{y)E(y')

2
T Twya 7 Typin
B Tyryz T T Ty
O’ - ‘2
nyn Uyeyn Uy”

=V

A variance-covariance (VCV) matrix of a random vector contains variances on the diago-
nals and covariances in the off-diagonals. A VOV matrix is square, symunetric and should
always be positive definite or positive semi-definite, i.e. all of the eigenvalues must be
positive. Another name for VCV matrix is dispersion matrix or (co)variance matrix.

Let C be a matrix of constants conformable for multiplication with the vector y, then

Var(Cy) = E(Cyy'C’)— E(Cy)E(y'C’)
= CE(yy")C' - CE(y)E(y")C'
C(E(yy") - E)E(Y)) C'
= CVar{y)C' = CVC'.

If there are two sets of functions of y, say Ciy and Cay, then
Cov(C,y,Cay) = CVCi.

Similarly, if y and z represent two different random vectors, possibly of different orders,
and if the (co)variance matrix between these two vectors is W, then

Cov{C1y, Coz}) = CIWC,,.

1.4 Continuous Distributions

Coungider measuring the amount of milk given by a dairy cow al a particular milking.
Even if a tnachine of perfect accuracy was used, the amount of milk would he a unique
point on a continuum of possible values, such as 32.35769842.... kg of milk. As such it
is matliematically iimpossible to assign a nonzero probability to all of the infinite possible
points in the continuum. Thus, a different method of describing a probability distribution
of a continuous random variable must be used. The sum of the probabilities (if they
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could be assigned) through the continuum is still assumed to sum to 1. The cumulative
distribution function of a random variable is

F{y) = P(Y <y),

for —oo < y < co. As y approaches —oo, then F{y) approaches 0. As y approaches oo,
then F(y) approaches 1. Thus, F'(y) is said to be a nondecreasing function of y. lfa < b,
then F(e) < F(b).

If F(y) is the cumulative distribution function of Y, then the probability density function
of Y is given by

dF{y)

ply) = oy F'{y),

wherever the derivative exists. Always for p{y) being a probability density function,

]w ply)dy =1.

[s.2]

Conversely,
y
Fly) = f_ meyat.

The expected value of a continuous random variable y is

E(y) = ]m yply) By

-0

provided that the integral exists. If g(y) is a function of y, then

provided that the integral exists. Finally,

Var(y) = E@*) — [E)*.

1.4.1 Uniform Distribution

The Uniform Distribution is one of the basic distributions in statistics. The primary
application is in the generation of random numbers from other distributions.

y o~ U(a,b)
ply) = Ulylab)

where b is greater than a. In a uniform distribution, every value between a and b has
an equal probability of existing, i.e. p(y) = 1/(b —a). Usually b =1 and a = 0 so that
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the observed y are between 0 and 1, representing probabilities. The expected value and
variance of this distribution are

E(y) = f:yp(y)ay
= [ oy
= S/ a)
= %bQ/(b—a) - %aQ/(b—a}

= L)
= {(a+b)/2,

b
EyY) = /aygp(y)ay

il

b
fa y*/(b— a)By
= S -a)l
1 3
= g(b —a’}/(b—a)
= %[(a+ h)? — ab).
Then
Var{y) = E(y°) - E(y)

= (4](a+b)? — ab] — 3{a+b)*}/12
(b—a)?/12.

Uniform Random Number Generators

George Marsaglia of Florida State University developed a uniforin random number gener-
ator that has passed 18 different tests, and which has a long cycle time (i.e. the number
of calls to the subroutine before the sequence of random numbers begins to repeat itself).
The strategy utilized is a multiply-with-carry scheme. To give an idea of how this scheine
works, start with z,_1 = 123456, which is called the seed. The next number would be
generated by
T, = 672%[za_1 — (xy—1/1000) % 1000)] + x,—1/1000
= 672« [456] + 123
= 306555

This would be followed by
z, = 672 % 555 + 306 = 373266.
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The number 672 is carefully chosen, and there is a process for doing this. The cycle time,
or period, of the above generator is 336,000, Thus, after 336,000 operations, the numbers
begin again in the same sequence. This is an example of how multiply-with-carry works.

Marsaglia's proposcd generator makes use of 8 numbers at a time rather than just the
previous random number, as well as two sequences of munbers rather than just one. The
period for this generator is 22°° which is a very, very large number. The two sequences are

2z, = 12013z,-g + 1066x,_7 + 12152, + 1492z, 5
+1776xy—4 + 18120, -3 + 1860z,—2 + 1941z, ; +

carry mod 2%,

Tn = 9272x,-g + TT77x,—7 + 6666, + 5000T,—5
44444z, 4 + 333323 + 2222z, o+ 111z, +

carry mod 216,

The coefficients were carcfully chosen. Each sequence provides a 16 bit integer number,
and therefore, combining the two (by concatenation) gives a 32-bit random integer.

Example Usage

The uniform distribution random number generator can be used to simulate a discrete
random variable (such as that given earlier - Section 1.2}. The steps of a simple program
to assign y a value based upon the probabilities given earlier, would be as follows:

call uniform{p)
y=20

if (p.gt.0.125)y=1
if(p.gt.0.375)y=2
if(p.gt.0.625)y=3

1.4.2 Normal Distribution

The normal distributiou has been the most commonly assumed distribution in animal
breeding and statistical genetics. The properties of the distribution are well known; com-
putations for estimators are relatively easy; and normal distributions suffice for a majority
of situations.

A scalar random variable ¥ has a normal probability distribution if and only if

p(y) = (2m) S0~ exp(—5ly — w0 %)
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for —co < z < 400, where ¢? is the variance of y and p is the expected value of 3.

For a random vector variable, y, the multivariate normal density function is

p(y) = 2m)7% | V| exp(~.5(y — )’V 'y — )

denoted as y ~ N{p, V) where V is the variance-covariance inatrix of y. Note that the
determinant of V must be positive, otherwise the density function is undefined.

Random Normal Deviates

There have been several ways to generate randomn variables from a normal distribution.
Let 71 and 72 be values from a uniform distribution generator, between 0 and 1, then two
raidom normal deviates can be computed as

Y = (=2In7)° cos 21y,

and
yo = (—2In7()” sin 277y,

The quality of the results depend on the quality of the uniform distribution generator.

Another algorithm again uses two values from a uniform distribution generator, say
and 73, then

n = 1 +r—10, and
vy = r24 19— 1.0,
g = uv1*v; + va*uy,

if ¢ is less than 1 and greater than 0, then

f = (~2Ing/q)®
y1 = v1*f,

Y2 = upxf.

1.4.3 Beta Distribution

Beta distributions may be assumed for random variables such as heritability, probability,
or gene froquency all of which are limited to a value between zero and 1.

p(y | U,b} _ Cyu—-l(l . y)b—l,
for y € [0, 1], where the constant of integration is

C =T(a+b}/(T'(a)L (b)),
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and a and b are greater than 0. The gamma function, T'(:} is

o0
T{a) = / 3 Lexp ¥ dy,
0
for & > 0. When a = 1, then T'(1}) = 1. For a being an integer and greater than 1, then
I'a)=(a— 1T (a-1)={a—-1)

The expectation of a beta variable is

Ew|awr=0L24wf%1—w“1a%

which simplifies to

. a
E(yla,b) = ——.

The variance of a beta variable is

ab
(a+b)2(a+b+1)

Var(y| a,b) =

1.4.4 Gamma Distribution

The Gamina Distribution has the following forny;
b = O a—1 —by
ply | a,b) = Cy" exp™™,
for y being greater than 0. Variance components are always supposed to be greater than
0, thus a gamma distribution may be appropriate. The constant of integration is

-
- I(a)’

and hoth @ and & are greater than zero. The mean of the distribution is
a
E(y | a, b) = B,
and the variance of the distribution is

a
Var(y | a,b) = i
The coefficient of variation (standard deviation divided by the mean) is equal to a8,

The gamma distrihution is the ”parent” distribution for two special cases. When a = 1,
then the gammma distribution becomes the Exponential Distribution, i.e.,

ply | b) = bexp ™,
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for y greater than zero. The other case is when a = v/2 and b = 0.5, where v is commonly
known as the degrees of freedom and is greater than zero. Then

ply | v) = Cy/D 1 expv/2,

and p
(e
“= Ty

This is the Central Chi-square distribution.

1.4.5 Chi-Square Distribution

In the estimation of variance components, quadratic forms of y are needed. If y ~ N(0,1),
then y'y ~ x2, where x2 is a central chi-square distribution with n degrees of freedom
and n is the length of the random vector variable y. The mean of the centra! chi-square
distribution is n, and the variance is 2n. The probability distribution function of s = ¥’y
is

p(s | n) = ()0 T exp —0.55/[2%°7T(0.5n)),
for 4 > 0.

Ify ~ N(g,I), then y'y ~ X?L.r\\ where A is the noncentrality parameter which is equal
to .54, The mean of a noncentral chi-square distribution is = + 2X and the variance is
2n + 8,

If y ~ N(g, V), then y'Qy has a noncentral chi-square distribution only if QV is
idempotent, i.c. QVQV = QV. The noucentrality paramcter is A = .5p'QVQu and the
mean and variance of the distribution are tr(QV) + 2A and 2tr(QV) + 8, respectively.

If there are two quadratic forms of ¥, say ¥'Qy and y'Py, and both quadratic forms
have chi-square distributions, then the two guadratic forms are independent if QVP =
0. Independence of quadratic forms is necessary for the construction of valid tests of
hypotheses. This property is not required for estimation of variances and covariances.

Random Chi-Square Generator

One way to generate a central Chi-square variate with n degrees of freedom is to generate
a vector of length »n of random normal deviates, then sumn the squares of these deviates.
Thus, a very good random normal deviate generator would be necessary. Also, the com-
puting time to generate one Chi-square variate would depend on n, the number of random
normal deviates to be generated.

In order to save time for large n, a Chi-square variate is generated using a random
gamma distribution variate, which requires two uniform variates, r; and r9, then
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1 call uniform(ri)
call uniform(r2)
Vi=rl+rl -1
V2 =12 + 12 - 1
f = VikVl + V2xV2
if ( f.gt.1.0)go to 1
if (Vi.eq.0.0)then
c=0.0
else
c=V2/Vi
endif
anm = n/2 - 1
s = dsqrt(anm+anm+1.0)
y = s*c + anm
if(y.1le.0.0)go to 1
temp = anm*dlog(y/anm)-s*c
if(dabs(temp).gt.85)then
go to 1
else
e = (1.0+c*c)*dexp(temp)
call uniform(r3)
if{r3.gt.e)go to 1
endif
¢ at this point y is the gamma variate
return

The Chi-square variate with n degrees of freedom is then derived as

If(n is even) then
call gamma(iseed,n,gam)
chi = gam + gam
else {(n is odd)
m = n-1
call gamma(iseed,m,gam)
chi = gam + gam
call normal{znorm)
chi = chi + znorm*znorm
endif

Chi-square variates are needed in Gibbs sampling to obtain new sample values of a
variance component.
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1.4.6 The Wishart Distribution

The Wishart Distribution is akin to a multivariate Chi-square Distribution. An entire
matrix is envisioned of which the diagonals have a Chi-square distribution, and the off-
diagonals have a built-in correlation structure. The resulting matrix is positive definite.

1. To gencrate a matrix having a Wishart distribution, let U equal a matrix with g
rows and m columns (and ¢ > m), then W = U'U is an m by m positive definite
matrix.

2. Perform a Cholesky decomposition of W, so that
W =TT,
and T is a lower triangular matrix.

3. Fill an m by m matrix, 7, with random normal deviates, and fill a vector, V, of
length m with the square roots of random Cli-square variates, such that the first
element has ¢ — 1 degrees of freedom, the second has ¢ — 2 df, and so on, and the
last element has ¢ —m df.

4, Now form a matrix B such that the diagonals are
Bii = v+,

fori=1landfori>1
i-1
Bis": = U R + Z Zi’j * ziv}'
J=1

The offdiagonals of B are
Bij=Bj; = ;% v,
for j=2tomandi=1,and for i >1
i—1
By =Bja= 2y % vi+ D i % 2
k=1

forj=2tomandi=2,(-1).

5. Finally, calculate 8 = TBT".

The matrix S is a random Wishart malrix based upon the relationships in W. Note that
the off-diagonals in B should be close to zero, on average.
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1.4.7 The t-Distribution

The t-distribution is based on the ratio of two independent random variables. The first
randem variable follows a univariate normal distribution, and the second random variable
follows a central chi-square distribution. Let y ~ N(0,1) and s ~ x2 with y and s heing
independent, then
Y

L~y

(s/m)®
The mean of a t-distribution is the mean of the y variable, and the variance is n/(n—2}, and
n is the degrees of freedom of the distribution. As n becomes larger, the t-distribution
becomes very similar to the normal distribution in shape. A t-distribution with small
degrees of freedom would allow morc observations to oceur in the tails of the distribution,
and therefore would look like a squashed normal distribution.

1.4.8 The F-distribution

A common distribution used in the testing of hypotheses is the F-distribution. A central
F-distribution is based on the ratio of two independent central chi-square variables. Let
5~ x5 and v ~ x2, with s and v being independent, then

(s/n) Foo

(v/m)
The mean of the F-distribution is m/(m — 2) and the variance is

2m(n +m —2)
n(m —2)%(m —4)’

Tables of F-values have been constructed for various probability levels as criteria to test if
the numerator chi-square variable has a noncentral chi-square distribution. If the calcu-
lated F-value is greater than the value in the tables, then s is implied to have a noncentral
chi-squarc distribution, otherwise s has a central chi-square distribution. The square of a
{-distribution variable gives a variable that has an F-distribution with 1 and n degrees of
freedom.

Noncentral F-distributions exist depending on whether the numerator or denominator
variables have noncentral chi-square distributions. Tables for noncentral F-distributions
generally do not exist because of the difficulty in predicting the noncentrality parameters.
However, using random chi-square generators it is possible to mumerically calculate an
expected noncentral F value for specific situations. When both the numerator and de-
nominator chi-square variables are from noncentral distributions, then their ratio follows
a doubly noncentral F-distribution.
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1.5 Quadratic Forms

A guadratic form is a weighted sum of squares of elements of a random vector variable. The
general form is y'Qy, where y is a random vector variable, and Q is a regulator matrix.
The regulator matrix can take on various forms and values depending on the situation.
Usually Q is a symmetric matrix, but not neccssarily positive definite. Examnples of
different QQ matrices are as follows:

1. Q =1, then y'Qy = y'y which is a total sum of squares of the elements in y.

2. Q = J(1/n), then y'Qy = y'Jy(1/n) where n is the length of y. Note that J = 11/,
so that y'Jy = (y¥'1)('y) and (1'y) is the sum of the clements in y.

3. Q= (I-J(1/n))/(n ~ 1), then y'Qy gives the variance of the elements in y, o2,

The expected value of a quadratic form is

E(y'Qy) = E(tr(y'Qy)) = E(tr(Qyy")) = tr(QE(yy")).

However,

Var(y) = E{yy') - E(y)E(yY')
so that

Blyy') = Var(y) + E(y) E{Y'),
then

E(y'Qy) = tr(Q(Var(y) + E{y)E(y)))
If we let Var(y) =V and FE(y) = u, then

E(y'Qy) = tr(Q(V +pup))
tr(QV) + tr(Qup’)
= r(QV)+u'Qp.

The expectation of a quadratic form does not depend on the distribution of y. However, the
variance of a quadratic form requires that y follows a multivariate normal distribution.
Without showing the derivation, the variance of a quadratic formn, assuming y has a
multivariate normal distribution, is

Var(y'Qy) = 2tr(QVQV) +44/'QVQp.

The quadratic form, y'Qy, has a chi-square distribution if
(QVQV) = tr(QV), and 1'QVQp = 1'Qp,
or the single condition that QV is idempotent. Then if

m = tr{QV) and A = 5u'Qqu,
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the expected value of y'Qy is m + 2\ and the variance is 2m + 8, which are the usual
results for a noncentral chi-square variable.

The covariance between two quadratic forms, say y'Qy and y'Py, is

Covly'Qy,y'Py) = 2tr(QVPV) + 44/QVPp.

The covariance is zero if QVP = 0, then the two quadratic forms are said to be indepen-
dent.



Chapter 2

Building Blocks

2.1 Basic Blocks

In order to derive Maximum Likelihood and Residual Maximum Likelihood, a number
of results about derivatives of determinants and ather quantities needs to be reviewed.
These will be called Building Blocks or BB for short, because they are not theorems or
conjectures.

BB-1. The (co)variance matrix of y is

fl

8
vV ZZ;GZZ;JE +RO'{2)
i=1
= ZGZ'+R.

Usually, each G; is assumed to be I for most random factors, but for animal models
G; might be equal to A, the additive genetic relationship matrix. Thus, G; does not
always have to be diagonal, and will not be an identity in animal model analyses.

BB-2. The inverse of V is
VIi=R''-RIZZRIZ+ G HIZRL
To prove, show that VV™! = 1. Let T = Z’R7'Z + G}, then

vv! (ZGZ +R)R™ —R7'ZT1ZR™

- Z2GZR!'-ZGZ'R'ZT'ZR!
+I-ZT'Z'R!

25
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= 1+|2GT-2GZR'Z-Z|(T'ZR )
= I+ [ZG(ZR'Z+G™Y) - ZGZR'Z - Z(T'ZR™")
= 1+[ZGZR™'Z+2Z-2GZR'Z - Z)(T'Z'R™")
= I+ [0/(T7'ZR)
L

BB-3. If k is a scalar constant and A is any square matrix of order m, then

|Ak|= k™| A].

BB-4. For general square matrices, say M and U, of the same order then

IMU|=[M||U]J.

BB-5. For the general matrix below with A and ID being square and non-singular (i.e.
the inverse of each exists), then

A B - -
‘Q b |Z1AIID+QAT'B|=|D || A +BDT'Q].
Then if A =TI and D = I, then | I |= 1, so that
[1+QB| = [I+BQ]
- 14 RQ|
— 11+QB|.

BB-6. Using the results in (BB-4) and (BB-5), then

V| = |R+2ZGZ'|
IRI+R'2GZ)) |
|R||I+RZGZ |

= |R||I+ZR ZG|
R||(GT'+ZR'Z)G |
IR| |G+ ZR'Z||G].

If

I
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BB-7. The mixed model coefficient matrix of Henderson can be denoted by
C - XR'X X'R-'Z
T VZRT'X ZRT'Z4+ G
then the determinant of C can be derived as
|C| = | XRIX|

x |G+ Z(R ! -RIX(XR X)) XR DHZ |
|ZR'Z+ G|

x | X'(R'-R7IZ(ZR1Z+ G HIZR X |.

I

Nowiet S = R -R'X(X'R 'X)"X'R ! then
1€l

| X'RIX| |G 1+2Z'87]
|ZR1'Z+ G| X'VIX .

il

BB-8. A projection matrix, P, is defined as
P=V71_VvIXXVvIX)"xXv"
Properties of P:

PX = 0,
Py V"l(y—Xf)), where
b = (X'VIX)"X'V7ly.

Therefore,

yPZ,G.ZPy = (y — Xb)YV1Z,G,ZV ! (y — Xb).

BB-9. Derivative of V™! is
oVl 0V

2 2
da; do;

Vfl

BB-10. Derivative of In | V | is

v o (V__lav)

3 3
dou; do;
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BB-11. Derivative of P is

or av
- pllp
da? da?
BB-12. Derivative of V is av
s = G2,

BB-13. Derivative of In | X'V7!1X | is

tr(X’V’IX)”X’V"la—VV”IX.

oln | X'V7IX |
N do?

a2

3

2.2 Basic Model

The following simpie model will be assumed. The general linear model is described as

Yy = Xb - Zu + e,
where E{y} = Xb,
E(u) 0,
and E(e) = 0.
Often u is partitioned into s factors as
w = (u] uy...uy).
The (co}variance matrices are defined as
118 ] (:lcl'irz 0 0
us 0 GQU% 0
G =Var(u)=Var = . .
u, 0 0 G,o?
and
R = Var(e) = Lo7.
Then

Var(y) =V = ZGZ' + R,
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and if Z is partitioned corresponding to u, as
Z = [Zy 27 ... Z; ), then
5
ZGZ = 5 2,GZisl.
i=1

Let Vz = ZIG?Z: and
Vo = 1, then

V = ivlcr?
=0

29

Covariances between random factors in the model will be allowed later, such as in a
maternal effects model where there are covariances between direct and maternal effects,
or random regression models with covariances between the random regression coefficients,

or multiple trait models.

2.3 Mixed Model Equations

Henderson’s mixed model equations (MME) are written as

X'RIX X'R'ZE, X'R™'2Z, X'R'Z,
ZiR'X ZIR7'Z, + Glle? ZiR™'Z, Z.RZ,
ZoRTX Z:R71Z, ZERT'Z, + Gy logt L ZiRVZ,
ZIRT'X Z.R"1Z, ZR-1Z, . ZRTYZ, + Gl
X’R_ly
ZiR 'y
_ | Z:R'y
Z'R 7y

Quadratic forms from solutions to these equations are

u; Gy,
where
u=G,Z;Py,
and for the residual variance,
&'e,

where
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2.4 Unbiased Estimation of Variances

Unbiased estimation is no longer practiced in animal breeding, but the history of the
development from unbiased to likelihood based methods is important to understand. The
best way to describe unbiased methods of estimation is to give a small example with only
three observations. Assume that all G; arc equal to I for this example, so that Z;G;Z;
simplifics to Z;Z;. Let

1 1 0
X = 1 |1,Z,=}§ 1 0 [,
1 01
1 0 29
Zn = 0 1 ]|,andy=1| 53 |,
01 44
Then
1 10
Vi=2Z' =110},
1
and
1 0
Vo=Z2Z5=]0 1 1
011
and Vy=1.

In this example, there are 3 unknown variances to be estimated, and consequently,
at least threc quadratic forms are needed in order to estimate the variances. The Q-
matrices are the ’weights’ of the observations in the quadratic forms. These matrices
differ depending on the method of estimation that is chosen. Below are tliree arbitrary
Q-matrices that were chosen snch that Q,X = 0. They do not necessarily correspond to
any known method of estimation, but are for illustration of the calculations. Let

1 -1 0
Q = | -1 2 -1,
0 -1 1
1 0 1
Qs = 0 1 —-14{,
-1 -1 2
2 -1 -1
and sy = —1 2 -1
-1 -1 2

The numeric values of the quadratic forms are

yQy = 657,
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y'Qey = 306,
and y'Qsy = 882
For example,

1 1 0 29
y’Qly:(QQ 53 44) 1 2 1 53 | = 657.

0 -1 1 44
The expectations of the quadratic forms are
E(y'Qiy) = 8QiVeal + trQVio? + trQiVaos
= 40(2) + 20% + 20%
E(y'Quy) = do2 + 46? + 203,
E(y'Quy) = 60} + 4012 + 4ol

Now equate the values of the quadratic forms to their corresponding expectations, which
gives a system of equations to be solved, such as Fo = w. In this case, the equations
would be

4 2 2 at 657.
4 4 2 ot | =1 306 [,
6 4 4 a3 882.
which gives the solution as & = F~!w, or
58 216.0
a7 | =] —175.5
&3 72.0

Note that one of the estimates is negative, which is not appropriate for a variance compo-
nent. The estimate is said to be out of the parameter space.

2.5 Variances of Quadratic Forms

The variance of a quadratic form is given by
Var(y'Qy) = 2trQVQV +4b’X'QVQXb.

Only translation invariant quadratic forms are typically considered in variance component
estimation, that means b’X’'QVQXb = 0. Thus, only 2(rQVQV needs to be calculated.
Remember that V' can be written as the sum of s + 1 matrices, Viaf, then

k) s
QY Vel QY V0§
i=o i=o0

g &
Z Z ir QV,QV; cr? gf.

i=0 j=u

trQvaQv

1l
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For example, if s = 2, then
trQVQV = trQV,QVooi + 2trQV,QV,0la}
+ 2rQV,QV,oios + trQV,QV, 0}
+ 2trQV,QV,oio2 + trQV,QV,on.

The exact sampling variances require the true, unknown components of variance. The
magnitude of the sampling variances depends on

1. The true magnitude of the individual components,
2. The matrix Q which depends an the method of estimation and the model, and

3. The structure and amecunt of the data through X and Z.

Normally, the variance-covariance matrix of the estimates, commonly known as the
samnpling variances of the estimates, were never actually computed during the days of un-
biased methods due to their computational complexity. However, with today’s computers
their calculation can still be very challenging and usually impossible. For small examples,
the calculations can be easily demonstrated. In this case,

Var(F'w) = F'War(w)F~ 1,
a function of the variance-covariance matrix of the quadratic forms.

Using the small example of the previous scction, the Var(w) is a 3x3 matrix. The (1,1}
element is the variance of y'Q,y which is

VG,T(Y’Q]Y) = 2trQ1VQ1V
= 2rQ1VoQ1Vooh + 4trQiVoQ:V,oéo}
+4t?‘Q1V0Q1V20(‘Z)Jg + ZtT‘lelQIV]O';l
+4t?'Q1V1Q1V20’%O’§ + 2t7‘Q1V2Q1V20’%
= 2005 + 16080? + 160[2)03 + 877 + 00%03 + 8o

The (1,2) element is the covariance between the first and second quadratic forms,

Cov(y' Quy,y'Quy) = 2trQ1VQ,V,

and similarly for the other terms. All of the results are summarized in the table below.

Forms of aloi ojos o] ojo; o3
Var(w) 20 16 16 8 0 8
Cov(w,wa} | 14 24 8 16 0 8
COU(’E_U],’LU;}) 24 24 24 16 0 16
Var{ws) 20 48 16 32 16 8
Cov(un, ws) | 24 48 24 32 16 16
Var(wsg) 36 48 48 32 16 32
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To get numeric values for these variances, the true components need to be known.
Assume that the true values are of = 250, o? = 10, and o3 = 80, then the variance of w;
is

Var(w) = 20(250)% 4 16(250)(10) + 16(250)(80)
+8(10)% + 0(10)(80) + 8(80)*
= 1,662,000.

The complete variance- covariance matrix of the quadratic forms is

(0 1,662,000 1,147,800 2,144,000
Var| wo | = | 1,147,800 1,757,200 2,218,400
3 2,144,000 2,218,400 3,550,800

The variance-covariance matrix of the estimated variaices (assuming the abave true val-
ues) would be

Var(s) = F "Var{w)FV
405,700 —275,700 240,700

_975,700 280,900 141,950 | =C.
—940,700 141,950 293,500

2.6 Variance of A Ratio of Variance Estimates

Otften estimates of ratios of functions of the variances are needed for animal breeding work,
such as heritabilities, repeatabilities, and variance ratios. Let such a ratio be denoted as
a/c where

a=0=(0 0 )5 =72
and . ) X
c=o3+od+05=(11 1)& = 288.

(NOTE: the negative estimate for 57 was set to zero before calculating c.

From Osborne and Patterson (1952) and Rao (1968) an approximation to the variance
of a ratio is given by

Var(a/e) = (*Var(a) + a*Var(c) — 2ac Cov(a, e))/¢c.
Now note that

Var(a) = (0 0 1)C(0 0 1Y = 293,500,
Var(c) = (1 1 1DC(1 1 1) = 231,200,
Cov(a,e,) = (0 0 DC(1 1 1) =194,750.
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Then

Var(aje) = [(288)%(293,500) + (72)%(231, 200)
—2(72)(288)(194, 750)} / (288)"
= 2.53876

This result is very large, but could be expected from only 3 observations. Thus, (a/c) =
.25 with a standard deviation of 1.5933.

Another approximation method assummes that the denominator has been estimated
accurately, so that it is considered Lo be a constant, such as the estimate of 6"3. Then,

Var{aje} = Var(a)/c*.
For the example problem, this gives
Var(a/c) = 293,500/{288)% = 3.53853,

which is slightly larger than the previous approximation. The second approximation would
not be suitable for a ratio of the residual variance to the variance of one of the other
components. Suppose a = &g = 216,and ¢ = g5 = 72, then (a/c) = 3.0, and

Var(ajc) = [(72)%(405,700) + (216)%(293, 500)
—2(72)(216)(—240, 700)) /(72)*
= 866.3966,

with the first method, and
Var(a/c) = 405,700/(72)* = 78.26,

with the second method. The first method is probably more realistic in this situation, but
both are very large.



Chapter 3

Likelihood Methods

3.1 The Likelihood Function

The normal distribution likelihood function is commenly assumed in animal breeding, and
is used in REML and related methods of estimation. Use will be made of the building
blocks of the previous chapter. The multivariate normal distribution likelihood function
is

L{y) = (2m)™*% | V I exp(=5{y — Xb)'V "} {y —Xb)).
The log of the likelihood, say L, is
Ly = =05 NIn(27) +In | V | +(y — Xb)'V 1(y — Xb)].
The term N In(2r) is a constant that does not involve any of the imknown variances or

effects in the model, and therefore, it is commonly omitted during maximization compu-
tations. Maximizing the log likelihood maximizes the original likelihood function.

In the previous chapter,
|VI=IR||ZR'Z+G || G,

and thercfore,
m|V]i=h|R|[+In|G|+In|ZRT'Z+G].

If R =1Io2, then

m|R| = In|ls}|
= (@)™ [T
= Nlnoi(1).

35



36 CHAPTER 3. LIKELIHOOD METHODS

Similarly, if G = ¥ F Iaf, where 1 = 1 to s, then
S
Z n { Io? |
i=1
k]
= Z gilno?
i=1

n

In| G|

Except, that in animal models one of the G; is equal to Aof. In that case,
In| Ac? |=In(a?)% | A |

which is
In{Ac?|=qgIne? |Al= glno?+In|A].

Recall that

C— XRIX X'R-'Z
TV ZRTIX ZRZ4GT
and
|Cl=|ZR'Z+ G| XVIX]|
so that

m|Ci=hn|ZRIZ+G ! |+In| XV IX].

3.2 Maximum Likelihood

Hartley and Rao (1967) described the maximum likelihood approach for the estimation of
variance components. Let Ly be equivalent to L) except for the constant involving .

Ly=—05[n| V| +(y — Xb)V~!(y — Xb)i.

The derivatives of La with respect to b and to ¢ for i = 0,1, ... s are
aL,y _ -
=2 _XV'Xb- X'V
ab Y
and
Lo - 9
.7 = tr{V=1aV /80})]

+ .5(y — Xb)'V HaV /B )V (y — Xb)
= —5tr[VIV]+ .5y - Xb)VIV,V~!(y — Xb)

Equating tlie derivatives to zero gives

b={X'V IX)"X'Vly,
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and
tr]V7IVy] = (y = XbYV~IV,V~l{y — Xb).
Recall that R
Py = V~'(y — Xb),

where P is the projection matrix, and that V, = Z;Z!, then
tr[V~12,2!] = y'PV,Py.
In usual mixed model theory, the solution vector for a random factor may be written as

u; = G,Z;Py,

so that
y"PViPy = y"PZi;GI-G;2G1‘Z;Py
= fliG;zﬁ;
= /ol
Also,
VTV = R -RTZ(ZR'Z G ) IZRZZ)
Let
T = (ZR'Z+G Y,
R = 108,
+ o
and G = Zlaf,
then

trlV7IV,| = tr(ZZi)ay ? — tr(ZVZT 2 Es)oy ",

If T can be partitioned into submatrices for each random factor, then

+
Toy 2(Z'Z+Y In;) = 1,
and
+

TZ'Zoy? = 1-T(> Io[?),

TZ'Ziog? = 1 Tuo;?,
which yields

tr(Z,ZTZ'Z)ay" = tr(Zi2)05? — tr(1 — Tyo; Yo, 2.

Finally,

t’r‘[VﬁlV.i} = tr(I— Tﬁafz)a-*z

T
= rfJ"Iaf,L-"2 - ti"ThG;LI

= qo; % — trTuo L
My i
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Combining results gives
67 = (i + rTudd) /0
for1=1,2, ... ,s, and for 1 = 0 gives

65 =(y'y ~b'X'y - 0'Z'y)/ N.

3.2.1 The EM Algorithm

EM stands for Expectation Maximization. From Searle, Casella, and McCulloch (1992) the
following explanation is given. The procedure alternates between calculating conditional
expected values and maximizing simplified likelihoods. The actual data y are called the
incomplete data in the EM algorithm, and the complete data are considered to bhe y and
the unobservable random effects, u;. If the realized values of the unchservable random
effects were known, then their variance would be the average of their squared values, ie.,

i ui“z‘/(h'-

However, in real life the realized values of the random cffects are unknown.

The steps of the EM algorithm are as follows:

Step 0. Decide on starting values for the variances and set i = 0.

Step 1.(E-step) Calculate the conditional expectation of the sufficient statistics, condi-
tional on the incomplete data.

E(Wu |y) = oMy pimz,zptmy
+r{o2 ™ — oMMz (VI 7))
t"(m)

1
Step 2.(M-step) Maximize the likelihood of the complete data,

g?(mﬂ) _ fgm)/(ﬁ, i=0,1,2,...,5

Step 3. If convergence is reached, set & = o™t otherwise increase m by one and
return to Step 1.

This is equivalent to constructing and solving the mixed model equations with a given set
of variances, (™, and then

G_g(m.-}vl) _ (yly - fofy — ﬁ’zfy)/Ns

and 02(m+l) _ (ﬁ;ﬁi+O'g(m+l)t?'Tii)/Qi-

H
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3.3 Restricted Maximum Likelihood

Restricted (or Residual) maximum likelihood (REML), was first suggested by Thompson
(1962}, and was described formally by Patterson and Thompson (1971). The procedure
requires that y have a multivariate normal distribution. The method is translation in-
variant. The maximum likelihood approach antomatically keeps the estimator within the
allowable parameter space(i.e. zero to plus infinity), and therefore, REML is a biased
procedure. REML was proposed as an improvement to ML in order to account for the
degrees of freedom lost in estimating fixed effects.

The likelihood function used in REML is that for a set of error contrasts (i.e. residuals)
that are assumed to have a nultivariate normal distribution. The multivariate normal
distribution likelihood function for the residual contrasts, K'y, where KX = 0, and K’
has rank cqual to N — r(X), is

L{K'y) = (2m) %0 | K'VK [~ exp(—5(K'y) (K'VK) "} (K'y)).
The natural log of the likelihood function is
Ly = —5(N —r(X))In(27) - 5In | K'VK | -5y K(K'VK)"'K'y.

Notice that —.5(N — r(X})In{27) is a constant that does not depend on the unknown
variance components or factors in the model, and thercfore, can be ignored to give Ly.
Searle (1979) showed that

m{KVK{=mhi{V|+h|XVX]|
and ) i
YK(K'VK) 'K’y = y'Py = {y - Xb)'V {y — Xb)
for any K’ such that K’X = 0. Hence, L4 can be written as

Li= -5 |V]|-5ln|X'VIX|-5y—-XbYV !y - Xb).
REML can be calculated a number of different ways.

1. Derivative Free approach is a search technique to find the parameters that max-
imize the log likelihood function. Two techiniques will be described here.

2. First Derivatives and EM is where the first derivatives of the log likelihood are
determined and set to zero in order to maximize the likelihood function. Solutions
need to be obtained by iteration because the resulting equations are non linear.

3. Second Derivatives are generally more computationally demanding. Gradient
methods are used to find the paiameters that make the first derivatives equal to zero.
Newton-Raphson {involves the observed information matrix) and Fishers Method of
Scoring (involves the vxpected information matrix) have been used. Lately, the
"average information” algorithmn (averages the observed and expected information
matrices) has been used to reduce the computational time.
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All of the approaches attempt to iaximize the log likelihood function of the error contrasts.
To illustrate the methods, consider a single trait model with three factors (F, A, B), of
which A and B arc random factors. There were a total of 90 observations, and the total
sum of squares was 356,000. The least sqnares cquations for this small example are shown
below.

5 0 5 15 30 &5 10 20 15 Fy 3200
0 40 5 15 20 5 10 20 5 Fy 2380
5 5 10 0 0 2 3 1 Ay 580

5 15 03 0 5 7 11 7 Az 1860

30 20 0 0 50 3 10 256 12 Az = 3140
5 5 2 58 310 0 0 0O B 700

010 3 7 10 0 20 O O By 1320

20 20 4 11 25 0 0 40 O By 2400

5 5 1 7 12 0 0 0 20 By 1160

3.3.1 Derivative Free REML

Derivative Free REML was proposed by Smith and Graser{1986) and Graser, Sinith and
Tier(1987) and has been expanded upon by Meyer (1987,91) who has developed a set of
programs for computing estimates of variance components for a whole range of univariate
and multivariate models. The description given below is a very simplified version of the
method for basic understanding of the technique.

Imagine an s dimensional array containing the values of the likelihood function for
every possible set of values of the ratios of the components to the residual variance. The
technique is to search this array and find the set of ratios for which the likelihood function
is maximized. Therc is more than one way to conduct this search. Care must be taken to
find the ’global’ maximum rather than one of possibly many 'local’ maxima. At the same
time the number of likelihcod evaluations to be computed must also be minimized.

Various alternative forms of Ly can be derived. Note that
In|V]|=In|R|+In|G|+In] G '+ ZRZ|

and that
In|XV'Xj=ln|C|-Wm|ZR'Z+G ]

and that combining these results gives
Li= — 5| R{-5In|G|-.5In|C|—.5y'Py.
Now note that

m|R| = Inj|lof|
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= Nlnag,
g
n|G| = Zqﬂncf?,
i=1
and In{C| = In|X'R7'X | +In|Z'SZ+ G|
where Inl X'R7'X| = In| X'Xo;?|

= In(ez?)"® | X'X |
= In|X'X | r(X}naf,
and Z'SZ+G7! = o;*Z'MZ+ G}
= o HZ'MZ+ G 1ad).
Then
In|Cl=In| XX | —r(X)IneZ —glnel +In| ZMZ + G lo? |,
and finally, the log-likelihood fuuction becomes
Ly = —5(N—7(X)—¢q)lnot -5 Z(ﬁ n o?

i=1
—5ln{ C*{ —5y'Py,
where
Cr = X'X X'Z
- Z'X Z'EH+ G—la,% '
Note that

glno? = glnolja

= qi(in 0[2) —lnay)

so that

Ly = ~5{(N-r(X))noi-> qlne+In| C* | +yPy].

1=1

The quantity y'Py is y'(y - Xb — Zi)/o2. The computations are achieved by con-
structing the following matrix,

XX X'Z X'y \ ,
2K AL+Glo} Zy | = (C,w VYY)
y.'x ylz yfy Y Yy

then by Gaussian elimination of one row at a time, the sum of the log of the non-zero
pivots {usiug the same ordering for each evaluation of the likelihood) gives log | C* | and
vy — Xb — Za). Gaussian elimination, using sparse matrix techniques, requires less
computing time than inverting the coefficient matrix of the mixed model cquations. The
ordering of factors within the equations could be critical to the computational process and
some experimentation may be neccessary to determine the best ordering. The likelihood
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function can be evaluated without the calculation of solutions to the mixed model equa-
tions, without inverting the coefficient matrix of the mixed model equations, and without
computing any of the ¢?. The formulations for more general models and multiple trait
models are more complex, but follow the same ideas.

Searching the array of likelihood values for various values of «y; can be done in several
different ways. One method is to fix the values of all but one of the s ¢, and then evaluate
Lo for four or more different values of the «; that were not fixed. Then one can use a
quadratic regression analysis to determine the value of that one ratio which maximizes
Ly given that the other ratios are fixed. This is repeated for each of the s ratios, and
the process is repeated until a maximum likelihood is obtained. The calculations are
demonstrated in the example that follows.

Begin by fixing the value of ap = 10 and letting the value of a4 take on the values of
(5, 10, 20, 30, 40). Using L4 to evatuate the likelihood, then the results were as follows:

¥ 4 L,

9 | -251.4442
10 | -251.1504
20 | -250.9822
30 | -250.9274
40 ¢ -250.9019

For example, the likelihoad value for a4 = 40, would be

1 , .
Ly= _5[(N ~r(X) ot —gilnos—gelnag+1n| C* | +y'(y — Xb - Zi)/0]]

where
In | C*| = 32.052454,
y'Py = 8483.176/05 = 88,
galnay = 11.0666385,
gplhap = 9.2103404,
oi = 96.399728,
Inog = 4.5685034,
(N —r(X)) = 88,
then

Ly = —0.5[88(4.5685) — 11.0666 — 9.2103 + 32.0525 -+ (8483.176/96.3997)]
—250.9019.

li
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To find the value of a4 that maximizes L4 for g = 10, let

1 5 25 —251.4442
1 10 100 —251.1504
Q=1 20 400 | and Y = | —250.9822
1 30 900 ~250.9274
1 40 1600 —250.9019
then
-251.6016
B=(QQ7'QY = | .0448877
—.000698

TFrom this a prediction equation for L4 can be written as
Ly = — 251.6016 4 .04489%a 4 — .000698a%.

This equation can be differentiated with respect to a4 and then equated to zero to find
the value of the ratio that maximizes the prediction equation. This gives

a4 = .04489/(2(.000698)) = 32.1546.

Now keep a4 = 32.1546 and try a number ol values of ap from 2 to 10, which give the
following results.

Ly
-250.2722
-250.1954
-250.2379
-250.32956
-250.4419
-250.5624
-250.6843
-250.8042
-250.9204

2
sl

O W 0o~ S O LoD

—

Applying the quadratic regression to these points gives

ag = 1.2625.

The next step would be to fix ag = 1.2625 and to try new values for a,, such as 25
to 40 by units of 1. The range of values becomes finer and finer. To insure that one
has found the global maximum, the entire process could be started with vastly different
starting values for the ratios, such as op = 50 and let values for a4 be 40, 50, 60, and
70. The more components there are to estimate, the more evaluations of the likelihood
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that are going to be needed, and the more probable that convergence might be to a local
maximum rather than to the global maximum.

Please refer to the literature for specification of the log likelihood function for particular
models and situations. Also, refer to work by Boldman and Van Vleck {1993) which found
a simplification of Meyer’s algorithins which reduced computational time by several orders
of magnitude. Even so, DFREML has been applied to fairly small data sets and can take
considerable time to find estimates for these. The available software may not be able to
handle particular models, and so the user should be aware of these possible problems.

The Simplex Method

The Simplex Method (Nelder and Mead, 1965) is a procedure for finding the minimum of a
function (i.e. the minimum of —2L4 or the maximum of L4} with respect to the unknown
variances and covariances. The best way to describe the method is using the example data
from the previous sections. Begin by constructing a set of 'points’ for which L, is to be
evaluated. A ’point’ is a vector of values for the unknowns ( aa, ap), for example,

0 =( 121 3.8),

then form two more points by changing one unknown at a time. Let the three points be
as shown in the following table,

No. da G

1 121 38
2 13.1 3.8
3 12.1 43

Now calenlate Ly for each point and arrange from largest to lowest value.

No. x4 Gp L4
2 13.v 3.8 -250.3047
1 121 3.8 -250.3197
3 12,1 4.3 -250.3662

The idea now is to find another point to replace the last one(lowest L), This is done
by a process called reflection. Compute the mean of all points excluding the one with the
lowest Lj.

b = ( 126 3.8 )

then the reflection step is
94 - Bm. +r=* (Brn - giast)s
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where 7 is recommended by Nelder and Mead (1965) to be 1, giving

= ( 13.1 3.3 )

45

The corresponding Ls for this point was -250.2722. Compared to those in the table it has

the largest value, and therefore, is a better point than the other three.

No. o4 «ag Ly
4 13.1 3.3 -250.2722
2 13.1 3.8 -250.3047
1 12.1 3.8 -250.3197

Given this success, the Simplex method calls for an expansion step, i.e.

bigger change. Thus,

85 =0+ L+ (04 - gm):

where E is suggested to be equal to 2. Hence

05 = ( 13.6 2.8 )

to make a

Then Ly = —250.2546, and the expanded point is better yet. Now drop 8 from the table

and put #5 at the top.

No. dyq  Gn L4
5 13.6 2.8 -250.2546
4 13.1 33 -250.2722
2 13.1 3.8 -250.3047

This completes one iteration. Begin the next iteration by computing the mean of all points

excluding the point with the lowest Lg.

8, = ( 13.35 3.05 )

Anotlier reflection step gives

B = B +rx (Dm - 6&151)’

= ( 13.6 2.3 ) .
However, this gives Ly = —250.2761, which is betwecn 03 and 84, and can push out
from the table.
No. a4 og Ly
5 13.6 2.8 -2560.2546
4 13.1 3.3 -250.2722
6 13.6 2.3 -250.2761
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Instead of an expansion step, a contraction step is needed because fg did not give a
greater Ly than the first two. Thus,
B7 = O + c* (05 ~ 6),
where ¢ = 0.5 is recommended. Hence,
6: = (13475 3.05 ).

Then Ly = —250.2586 is better than that given by 8,, but not by 05, thus the new table
becomes as follows:

No. A &g L_-;
] 13.6 2.8 -250.2546
7 13.475 3.05 -250.2586
4 13.1 3.3 -250.2722

The following steps were taken in the next iteration.

1. The mean of the top two Ly is

By = ( 13.5375 2.925 )

2. A reflection step gives

s = On+r+ (gm - glast)a
= (13975 255 )

which gave Ly = —250.2563, which is better than §7.
3. Add 85 to the table and drop 8.

No. &4 ag L4
5 13.6 2.8 -250.2546
8 13.975 2.556 -250.2563
7 13.475 3.05 -250.2586

4. Because L4 for f was not larger than L4 for 5 or smaller than Ly for 7, then no
expansion or contraction step is necessary. Begin the next iteration.

The Simplex method continues in this manner until all point entries in the table are
equal. The constants recommended by Nelder and Mead (1965) for reflection, expansion,
and contraction could be adjusted for a particular data set. This method may converge to
a local maximum, and so different starting values are needed to sce if it converges to the
sanic point. The Simplex niethod does not work well with a large number of parameters
to be estimated.



3.3. RESTRICTED MAXIMUM [IKELIHOOD 47

3.3.2 First Derivatives and EM Algorithm

To derive formulas for estimating the variance components take the derivatives of Lq with
respect to the unknown components.

gﬁz‘?’ = ~5trV! 8:2 — .5m-(x’v1X)“x’v—‘%V"lx
+.5(y - XB)’V_I%V_I()/ —Xb)
Combine the two terms involving the traces and note that
v~y - Xb) = Py,
then OLi o vt otv vty DY OV
Bo? ==0tr{V™ - VT X(XVX) X'V )acrf + .5y P&T?Py
= —.5trPZ,Z; + 5y'PZ,Z;Py
fori=1,...,50r

= —.5trP + .5y'PPy
for i = 0 for the residual component. Using P and the fact that
V=R !'-RIZEZRI'Z+ G ) R
then
trPZZ] = qi/o? —trCyobja}
and

trP = (N —r(X))og — ¥ iy /a7,
i=1

The other terms, y'PZ;Z/Py and y'PPy, were simplified by Henderson (1973) to show
that they could be calculated from the Mixed Model Equations. Note that Henderson
{1973) showed

Py = V7l(y—Xb),
b = (X'VIX)xX'vly,
W = G,Z/Py,

then

VYPZ,ZPy = y'PZi{G,G]'G/'G]ZPy
= (yPZ;G)G G, ZPy)

- WO
= G, “uy

which when G; = Io? gives
l o 4
u; ui/U,i B
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Similarly for the residual component, Henderson showed that

&
y'PPy = [y'y — b'X'y = > (0} Z}y + 4}d;0;)) /a3,

i=1
where o; = of/o?.
Equate the derivatives to zero incorporating the above simplifications and obtain

82 = (W + trCuod) /g,
a2 = yPy/(N-r(X)).

As with ML, solutions using the EM algorithm must be computed iteratively. Convergence
is usually very slow, if it occurs, and the process may also diverge.

Notice the differences between REML and ML. The denominator for 43 is N — r(X)
rather than N, and in &3 is trCy; rather than tr'Ty;. The quadratic forms, however, are
identical in REML and ML. Accounting for the degrees of freedom to estimate b has
resulted in the REML algorithm.

A major computing problem with the EM algorithm is the calculation of trC;;, which is
the corresponding inverse elements of the mixed model equations for the i random factor.
With most applications in animal brecding, the order of the mixed model equations are
too large to be inverted, and solutions to the equations are obtained by Gauss-Seidel
iterations. However, there have been several attempts to approximate trC;;, but these

have not been totally suitable.

To demoustrate the EM algorithm let exy = 10 and ag = 5 be the starting values of
the ratios for factors A and B, respectively. There were N = 90 total observations, and
r{X) = 2. The solution vector is

F 64.6313
Iy 59.4225
Aq —2.1363
An 4955
Az = 1.6368
3 5.1064
By 2.6402
Bj —2.6433
By —5.1034

Then
y' (Xb + Za) = 347,871.2661

and from the inverse of the coefficient matrix,

trCaq = .16493, and trCpzp = 3309886
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which give rise to the foliowing estimates,

a5 = (356,000 — 347,871.2661)/88
92.371976,
&4 (7.4925463 + .16493(92.371976)) /3
= 7.575855,
65 = (66.0771576 -+ .3309886(92.371976))/4
24.16280774.

New ratios are formed as

a4 = 92.371976/7.575850 = 12.192944,
and

ag = 92.371976/24.16280774 = 3.822899

and these are used to form the mixed model equations again, new solutions and traces
are calculated, and so on, until the estimated ratios and the prior values of the ratios are
cqual. The estimates converge to

G2 91.8639,
6% = 2.5692,
&% = 30.5190.

or
a4 = 35.7558, and ap = 3.0101.

3.3.3 Second Derivatives, Average Information

Second derivatives of ihe log likelihood lead to the expectations of the quadratic forms.
One technique, MIVQUE {Minimum Variance Quadratic Unbiased Estimation} equates
the quadratic forms to their expectations. The estimates are unbiased and if all variances
remain positive, then convergence will be to the REML estimates, However, due to a
shortage of data or an inappropriate model, the estimates derived in this manncr can be
negative, Computing the expectations of the quadratic forms requires the inverse of the
mnixed model equations coefficient matrix, and then products and crossproducts of various
parts of the inverse.

A pradient method using first and second derivatives can be used (Hofer, 1998). The
gradient, d { the vector of first derivatives of the log likelihood), is used to determine the
direction towards the parameters that give the maximum of the log likelihood, such that

gD = g0 L g

where d®) are the first derivatives evaluated at & = A% and M® in the Newton-
Raphson(NR) algorithm is the obgerved information matrix, and in the Fisher Method
of Scoring(FS) it is the expected information matrix.
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50
The first derivatives are as follows (from earlier in these notes)
oL
aa; = — 5t PZZ, + 5y'PZZPy =0
fori=1,...,s0r
oL
= 5P+ 5yPPy =0
dog

for the residual component. Then from earlier result
trPZZ, = qi/af —tT‘CﬁO'(Z)/Uf,
yPZ.ZPy = Qi /o)

which combined give
0.5(&}0;/0] — qi/o} + trCuaf /o) =0,

fori=1,...,5, and
35
P = (N -—r(X))ag — ﬁ:ﬁi/af
i=1
) :
yPPy = |y'y -b'Xy- Z(u Zhy + Git0)| fol
i=1
which combined give
0.5([y'y — b'X'y — >_(&jZ]y + djda;)|/of — (N —r( Nad + Z ala;/a?)
i=1
which simplifies to
5(y'y — b'X'y — Z Gl Zly)/og — (N — T(X))J?}) =0.
i=

The second derivatives give a matrix of quantities. The elements of the observed infor-

mation matrix {Gilmour et al. 1993) are

%L, ,
2 = 05y'PZZ. 4
80?803 0-5y iPy/ao,
9?L,
+y'PZ,ZPZZ Py /of — 0.5y'PLZ[Py /a3,
and
2
L
0L _ y'Py /ol —0.5(N —r(X))/eg.

" Boldo? 200f
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The elements of the expected information matrix (Gilmour et al. 19953) are

&L .
- ()028;2] = 0.5tr(PZ,Z})/a?,
L,
552 3;2] 0.5¢r (P2, ZP2;25),
and
9°L,
El- 552 5o = 05N = (X)) /op.
0

As the name Average Information implies, average the observed and ezpected information
matrices to give the following matrix of elements.

I[Ug 2] — O,SyIPZ;‘Z;P}'/Oﬁ’

Io},0}) = Y'PLLPLZLPy/,
and

Ilod, 03} = 0.5y'Py/og.

The first derivatives form the vector, d(¥, and
MY = Ig,0]7

The rest of this method is computational detail to simplify the requirements for inverse
elements and solutions to MME. The calculations can not be illustrated very easily for the
example data because the y-vector is not available.

3.3.4 Animal Models

The model commonly applied to estimation of variance components in livestock genetics
since 1989 has been an animal model. The animal model assumes a large, random mating
population, an infinite number of loci each with a small and equal effect on the trait, only
additive genetic effects, and all relationships among animals are known and tracible to an
unselected base population {somewhere in the past). Animals may bave more than one
record eacll. The equation of the model is

vy = Xb+ Za-+Zp+e

where a is the vector of animal additive genetic effects (one per animal), and p is a vector
of permanent envirommental {p.e.) effects associated with each animal.

E(y) = Xb,
a Ac: 0 0
Var | p = 0 Is2 o

e 0 0 IO’E
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The matrix A is called the numerator relationship matrix. Wright deflined relationships
among animals as correlations, but A is essentially relationships defined as covariances
(the numerators of the correlation coefficients). Also, these only represent the additive
genetic relationships between animals.

The MME for this modcl are

X'X X'Z X'z b X'y
X 77+ Ak, AV S al=| 2y
7'X VAV 27 + 1k, p 2'y

Note that k, is the ratio of residual to additive genetic variances, and k, is the ratio of
residual to permanent environmental variances. Also, in MME the inverse of A is required.

The EM-REML procedure gives

62 = (y'y -b'X'y-a'Zy—p'Zy)/(N-r(X)),
68 = (AATTA+trATICoud?)/n,
&;2; = (13’13 + trcp,‘}d'g)/”a

where 7 is the total number of animals, N is the total nunber of records, and Cg, are
the inverse elements of the MME for the animal additive genetic effects, and C,,, are the
inverse elements of the MME for the animal permanent environmental effects. An example
of this model will be given in later notes.

Quadratic Forms in an Animal Model

A necessary quadratic form in an animal model is a'A'a, and this can be computed very
easily. Note that the inverse of A may be written as

Afl — T—ID—QTI—I’

where T~! is an upper triangular matrix, and diagonal matrix D2 lLias elements equal
to 1, 2, or 4/3 in noninbred situations, and values greater than 2 in inbred situations. In
Henderson {1975), this inverse was shown to be composed of just three numbers, i.e. 0,
1’s on the diagonals, and -.5 corresponding to the parents of an animal. For example,

1 0 D0
SR
—.0 0 o1
Then
T 'a = m

= (& — 0.5(ds +aa));
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for the i** animat, and @, and @4 are the sire and dam estimated breeding values, respec-
tively. Consequently,

FA"'a = AT D2 la

= m'D %m
q

— 2 i

= Zm,id ,
i=l

where d arc the diagonal elements of D72, and g is the number of animals.
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Chapter 4

Bayesian Methods

These notes are based on a course given by Daniel Sorensen in 1998 at Armidale, NSW,
Australia. Subsequently, a book has been published in 2002 by Sorensen and Gianola en-
titled " Likelihood, Bayesian, and MCMC Methods in Quantitative Genetics”. A Bayesian
approach to estimation problems, in general, seems intuitively appealing to animal breed-
ers. Every element of a model is a random variable derived from a distribution function.
A fixed factor becomes a random variable with possibly a uniform distribution going from
a lower limit to an upper limit. A comnponent of variance is a random variable liaving a
Gamma or Chi-square distribution with z degrees of freedom. In addition, the researcher
may have information from previous experiments that strongly indicate the value that a
variance comnponent may have, and the Bayes approach allows the apriori inforwmation to
be included in the analysis.

The Bayesian process is to specify distributions for each random variable of the model.
These are combined to form the joint posterior distribution. Finding estimators via dif-
ferentiation of the joint posterior distribution may be difficult to achieve. Gibbs Sampling
ts a tool for deriving estimates of parameters {rom the joint posterior distribution without
the differentiations. By determining conditional marginal distributions for each random
variable of the model, then generating random samples from these distributions eventually
converge to random samples from the joint posterior distribution. Computationally, any
program that calculates solutions to Henderson’s mixed model equations can he modifted
to implement Gibbs Sampling. Very good random number generatots and a substautial
amount of computer time are needed for large data sets in animal breeding to apply Gibbs
Sampling.
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4.1 The Joint Posterior Distribution

Begin with the simple single trait animal model. That is,
y =Xb+ Za+e.

The Bayesian approach is to derive the joint posterior distribution by application of Bayes
theorem. If # is a vector of random variables and y is the data vector, then

p(b,y)

i

p(6) p(y | 0)
= ply) p(0 ]|y}

Re-arranging gives

~ p(@)ply | 8)
ploly) = o)

= (prior for ij(p};‘l;g)

= posterior probability function of 8

In terms of the simple animal model, 4 includes b, a, a2, and ¢2. The conditional distri-
bution of y given 8 is
y | b,a,¢%,6% ~ N(Xb + Za,157),
and
p(y | b,a,02,62) x (o7 1M exp [—(y —Xb —Za)'(y - Xb - Za)/?crs] .

!

Prior distributions need to be assigned to the components in 8, and these need to be
multiplied together and times the conditional distribution of y given #. For the fixed
effects vector, b, there is little prior knowledge about the values that elements in that
veetor might have. This is represented by assuming

p(b) o constant.

For a, the vector of additive genetic values, quantitative genctics theory suggests that
they follow a normal distribution, i.e.

aj A,Jg ~ N(D,AG’S)

and
pla) o« (02)79D exp [ a'A” a/20a] .

where ¢ is the length of a. A natural estimator of o2 is a’ A" 'a/q, call it 57, where

~X205/4.
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Multiply both sides by g and divid by xg to give

ol ~ qSZ/x}
which is a scaled, inverted Chi-square distribution, written as

2 2 23 (Y% +1) Va 52
p(aa | v, Sa) o (Ua) 2 exp 55
gﬂi

where v, and S? are hyperparameters with S2 being a prior guess about the value of a?
and v, being the degrees of belief in that prior value. Usually ¢ is much larger than v,
and therefore, the data provide nearly all of the information about 2. Similarly, for the
residual variance,

2y, G2 2y — (L +1) “_'”i‘i?
p{ae i Ve e) x (ae) 2 EXP 2 0_2 .

Now form the joint posterior distribution as

p(b,a,a2,07 | ¥) o p(b)p(a | o2)p(aliplol)ply | b,a,02,a2)

which can be written as

o (02) 2D eyp [—

2;2 ((y — Xb— Za)'{y — Xb - Za) + UeSg)}

tug 1
(627 D exp [—p(a'A"]a + UQS(E)] .

4.2 Fully Conditional Posterior Distributions

Ir order to implement, Gibhs sampling, all of the fully conditional posterior distributions
(one for each component of # ) need to be derived from the above joint posterior distribu-
tion. The conditional posterior distribntion is derived from the joint posterior distribution
by picking out the parts that involve the unknown parameter in question. Let

w = (X Z),
'BI — (bl af)’
0 0
B ( 0 A%k )
C = Henderson's Mixed Model Equations
= WWiz

Cj = Wy
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A new notation is introduced, let
ﬁ’ = (B‘L Bii}u

where J; is a scalar reprosenting iust onc element of the vector 3, and J_; is a vector
representing all of the other elements except J;. Similarly, C and W can be partitioned
in the same manner as

W o= (W W_))
_ Cii  Ci-s
€= ( C_i; C_i ) '

In general terms, the conditional posterior distribution of 3 is a normal distribution,

ﬁi I B—i&agaag?vy ~ N(ﬁi,(;:ilorg)

where )
Ciifl = (Wiy — Ci i),
Then
bi | b_;.;,a., Uga Ug, y ~ N(bia Cijilo‘gg)\
for
Ci,z‘ = x;xi.
Also,

2 2 s =12
a; | ba_y, 00,00,y ~ N{a;, Cjop),
where C;; = {z}z; + A¥k), for k = a2/oZ.
The conditional posterior distributions for the variances are inverted Chi-square distri-

butions,
2 2 - E2, -2
oy | bya,or,y ~ PaS;x5,

for ¥g = q + vg, and 52 = (a’A"Ya +v,S2)/T,, and
o2 |b,a,oly ~ aeéfx;f

for 7. = N + v, and 87 = (€'e + v,52) /U, and e =y — Xb — Za.

4.3 Computational Scheme

Gibbs sampling is much like Gauss-Seidel iteration. When a new sotution is calculated
in the Mixed Model Equations for a level of a fixed or random factor, a random amount
is added to the solution based upon its conditional posterior distribution variance before
proceeding to the next level of that factor or the next factor. After all equations have
been processed, new values of the variances are calculated and a new variance ratio is
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determined prior to beginning the next round. The following MME for five animals will
be used to illustrate the Gibbs sampling scheme:

5 1 1 1 1 1 I 238.2
1 29 7 -7 14 0 a 38.5
1 730 —14 8 —16 g 48.9
1 -7 —14 36 =14 0 ag | 64.3 |’
1 —14 8 —14 37 —16 g 50.5
1 0 —16 0 —16 33 as 36.0

where k = 02/02 = 14, and

28 7 -7 —14 0
. 7 29 -4 g —16
Al=2 -7 —14 35 —14 0
41 14 8 —14 36 —16

0 16 0 —-16 32

The starting values for 7 = ( 000000 ), and for v, = v, = 10, and 52 = 93%

and S? = 6%, so that k = 14. Let RN D represent a random normal deviate from a random
normal deviate generator, and let CHI(idf) represent a random Chi-square variate from
a random Chi-Square variate generator with idf degrees of freedom, To begin, let o? = §?
and o2 = 2. Below are descriptions of calculations in the first two rounds.

4.3.1 Round 1

Process each factor in the model, one cquation at a time.

Overall mean

o = (2382—a; —ay—ag—aq—as)/5
= 47.64

i = fi+RND{o2/5)°
= 47.64 + (~1.21) x (4.32)
= 4241

Animal 1

g, = (38.5—p—Tas+7ag + 14ai)/29
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Animal 2

Animal 3

Animal 4

aj

ty =

ajs

gy =
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= —.1349

= a1+ RND = (02 /29)°

= 1349 + (1.138)(1.794)
1.9067

(48.9 — p — Tay + 14a3 — Baq + 16as5)/30
—G.8501/30 = —.2286

d2 + RND * (62 /30)°

—.2286 + (.0047)(1.7638)

—.2203

= (64.3 — p 4 Tay + lda; + 14a4)/36
= .8931

= 43+ RND=* (02/36)°

= 8931+ (—1.1061)(1.6102)

= —.8879

(50.5 — p 4 1da; — 8ay + lday + 16as) /37
6518

iy + RND » (a2/37)°

6518 4+ (—1.2293)(1.5882)

-1.3006
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Animal 5

e
<
|

(36.0 — & + 1Gag + 16aq)/33
= —.9316
as = a5+ RND=x(c2/33)°
= —.9316 + (—.6472)(1.6817)
= —2.0200

Residual Variance

Now calculate the residuals and their sum of squares in order to obtain a new residual
variance.

e; = 38.5—-4241 - 1.9067 = —5.8167

eg = 48.9 4241+ .2203 = 6.7103

es = 04.3—42.414 8879 = 22.7779
eq = B50.5—42.41+ 1.3006 = 9.3906
e = 36.0—42.41 + 2.0200 = —4.3900

e'e = 7051503

A new sample value of the residual variance is

ol (e'e + 152/ CHI(15)
(705.1503 + (10)(93.3333))/17.1321
= 95.6382.

t

Additive Genetic Variance

The additive genetic variance requires calculation of a’A~1a using the a-values obtained
above, which gives
a’A™'a = 19.85586.

Then
= (a'A'a+uv,5%)/CHI(15)

(19.85586 + (10)(6.66667))/10.7341
= 8.0605.

3
2w

1l
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A new sample value of the variance ratio becomes

k = 95.6382/8.0605 = 11.8650.

4.3.2 Round 2

Round 2 begins by re-forming the MME using the new variance ratio. The equations
change to

5 1 1 t 1 1 i 238.2
1 2473 593 —5.93 —11.86 0 a] 38.5
1 593 2558 —11.86 6.78 —13.56 ay | 48.9
1 =593 -—-11.86  30.66 —11.86 0 ay | 64.3
1 —11.86 6.78 —11.86 31.51 —13.56 aq 50.5
1 0 —13.56 0 —13.56  28.12 as 36.0

The process is repeated using the last values of p and a and o?.

g = (2382 -—-a —a2—az—aq—as)/5
= 48.14

u = p+RNDx(02/5)°

= 48.14 + (.7465) * {4.3735)

51.41
4y = (38.5—pu —5.93a2 +5.93a3 + 11.864)/24.73
= —1.3059
a1 = a1+ RNDx*(02/24.73)°
= —1.3059 4 (~.0478)(1.9665)
= —1.3999
dy = (48.9 — 1 —593a; + 11.86ay — 6.78a4 + 13.56a5)/25.58
= —.9113

ag = dg+ RND+(07/25.58)°
— —.9113 4 (.8386)(1.9336)
= 7102
43 = —2.41355/30.66
= —.0787
as = a3+ RND *{(02/30.66)°
— —.0787 4 (—1.8414)(1.7662)

—3.3309
4y = —89.2236/31.51 = -2.8316
ay = =—28316 + (—1.2549)(1.7422)

= -5.0179
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a5 = —73.8224/28.12 = —2.6253
as = —2.6253 4 (.8184)(1.8442)
= —1.1160

The residuals and their sum of squares are

ey = 38.5—051.41 +1.3999 = —11.5101
48.9 — 51.41 — .7102 = —3.2202
e3 64.3 — 51.41 + 3.3309 = 16.2209
es = 50.5—51.41 4+ 5.0179 = 4.1079
es = 36.0—51.41 4+ 1.1160 = —14.2940
ee = 627.1630

f

€32

The new sample value of the residual variance is

o2 = (et v.S)/CHI(15)
= (627.1630 + (10)(93.3333))/20.4957
= 76.1377.

The new sample value of the additive genetic variance is

o2 = (@A 'a+ v, SH)/CHI(15)
(36.8306 + (10)(6.66667))/16.6012
= 6.2343.

The new variance ratio becomes
k =76.1377/6.2343 = 12.2127.

Continue taking samples for thousands of rounds.

4.3.3 Burn-In Periods and Estimates

The samples do not immediately represent samples from the joint posterior distribution.
Generally, this takes anywhere from 100 to 10,000 sampies depending on the model. This
period is known as the burn-in period. Samples from the burn-in period are discarded.
The length of the burn-in period (i.c. number of samples) is usually judged by visually
inspecting a plot of sample values across rounds.

A less subjective approach to determine convergence to the joint posterior distribution
is to run two chains at the same time, bolh beginning with the same random number
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seed. However, the starting values (in variances) for each chain are usually greatly dif-
ferent, e.g. one set is greatly above the expected outcome and the other set is greatly
below the expected outcome. When the two chains essentially become one chain, i.e. the
squared difference between variance estimates is less than a specified value (like 1073),
then convergence to the joint posterior distribution has occurred. All previous samples
are considered to be part of the burn-in period and are discarded.

After burn-in, each round of Gibbs sampling is dependent on the results of the previ-
ous round. Depending on the total number of observations and parameters, one round
may be positively correlated with the next twenty to three hundred rounds. The user
can determine the effective number of samples by calculating lag correlations, ie. the
corrclation of estimates between rounds, between every other round, between cvery third
round, etc. Suppose a total of 12,000 samples (after removing the burn-in rounds) gave
an effective number of samples equal Lo 500. This implies that samples that are 24 rounds
apart should be uncorrelated.

An overall estimate of a parameter can be obtained by averaging all of the 12,000 sam-
ples {after the burn-in). However, to derive a confidence interval or to plot the distribution
of the samples or to calculate the standard deviation of the sample values, the variance of
the 500 independent samples should be used.

The final estimates are therefore, an average of the sample estimates. Some research
has shown that the mode of the estimates might be a better estimate, which indicates that
the distribution of sample estimates is skewed. One could report both the mean and mode
of the samples, however, the mode should be based on the independent samples anly.

4.3.4 Influence of the Priors

In the small example, v, = ve = 10 whereas N was ouly 5. Thus, the prior values of the
variances received more weight than information coming from the data. This is probably
appropriate for this small example, but if N were 5,000,000, then the influence of the
priors would be next to nothing. The amount of influence of the priors is not dircctly
determined by the ratio of v; to N. In the small example, even though ve /{N +v,) = %,
the influence of 52 could be greater than £, (Schenkel, 1998)

4.3.5 Long Chain or Many Chains?

Early papers on MCMC (Monte Carlo Markov Chain) methods recommended running
many chains of samples and then averaging the final values from each chain. This was
to insure independence of the saniples. Another philosophy recommends one single long
chain. For animal breeding applications this could mean 100,000 samples or more. If
a month is needed to run 50,000 samples, then miaybe three chains of 50,000 would be
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preferable. If only an hour is needed for 50,000 samples, then 1,000,000 samples would
not be difficult to run.

Two chains that utilize the same sequence of random numbers, but which use differ-
ent starting variances, are recommended for determining the bwrn-in period, after which
enough samples need to be run to generate a sufficient number of independent samples for
obtaining standard deviations of the samples. A sufficient number of independent samples
may be 100 or more depending on the amount of time nceded to generate samples.
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Chapter 5

Data Readiness

Prior to any analysis, data and pedigree files need to be prepared as input to a general
program. General programs expect the pedigree to be arranged in a particular manner
and the data file might also have to be re-arranged and sorted. Data preparation and
validation are probably the most tiine consuming stages of any analysis.

5.1 Pedigree Files

The requisite information in a pedigree file is the animal ID, the sire ID, the dam ID, and
possibly the vear or date of birth. Additional information might be if the animal was a
clone of anotlier animal, or was the result of embryo transfer or embryo splitting. The
surrogate dam should not be recorded as the biological dam of such animals, but should be
in the pedigree file to account for maternal effects provided by the surrogate dam. Below
is an example of a pedigree file that will be used in these notes.

Animal Sire Dam Birth Year
348097 351604 351342 19381
349876 352516 350873 1981
350010 348097 349876 1981

350873 0 ¢ 1980
351011 353118 351342 1982
351342 0 ¢ 1980
351604 350121 ¢ 1980

352012 352229 3560873 1982
352229 352515 3561342 1981
352515 0 0 1980
353013 3563118 350010 1982
353118 350873 3561604 1981

67
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354018 353013 352012 1983
354317 348097 351011 1983
354516 351604 351342 1983
354715 352515 351011 1983
354914 351604 349876 1982

There are 17 animals in the list sorted by animal registration number. The following
features can be identified about this file.

1. The registration numbers cannot be used to order parents before their progeny. The
sire ID of the first animal is greater than the animal's ID, which would not have
occwrred if animals were registered at birth in a consecutive manuer.

2. Some of the pedigrees have tiissing information on sire and/or dain,

3. Animal 350121 appears as a sire, but does not have its own record in the file. Thus,
there should be 18 animals in the file.

4. Animals 350873 and 351604 appear as both sire and dam in the fle.

The requirements for a pedigree file are

1. All animals should be numbered consecutively, and

2. Parent ID numbers should be smaller than the smallest progeny ID.

An additional requireinent might be that an animal ID can appear only as a sire or a dam,
but not both. Sometines sire and dam IDs may be entered in the wrong fields, and if they
have several progeny then they could appear as both a sire and a dam. In most cases this
is not a problem, but if the genetic model includes maternal genetic effects, then sire IDs
should obviously not be in the file as a dam 1D.

Finally, all animals that appear as a sire ID or dam ID should be in the pedigree file
in the animal ID column including their sire and dam IDs, if known. They should be
assigned unknown parents and the earliest birth year.

5.1.1 Achieving Chronological Order

The first step is to assign generation numbers to each animal, and this is done in an
iterative manner until the generation numbers no longer need altering. Every animal
begins with a generation number equal to one. Parenls are given gencration numbers
that are at least one greater than the generation number of their offspring. Below are the
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animals and the generation numbers assigned by iteration. Five iterations were needed
with this small pedigree to correctly assign generation numbers. A code of 0 is given to
animals without progeny, 1 if the animal appears as a sire, 2 if the animal appears as a
dam, and 3 if the animal appears as both a sire and a dam. The animals that appear as
both sire and dam can be corrected later, if necessary.

Animal Sire Dam 1st 2nd 3rd 4th 5th Code
348097 351604 351342 1 2 3 4 4 1
349876 352515 350873 1 2 3 4 4 2
350010 348097 349876 1 2 3 3 3 2
350121 ¢ 0 1 2 4 5 6 1
350873 0 0 1 3 3 4 5 3
351011 353118 351342 1 2 2 2 2 2
351342 0 0 i 3 4 4 5 2
351604 3560121 0 1 3 3 4 5 3
352012 362229 350873 1 2 2 2 2 2
352229 352515 351342 1 2 3 3 3 1
352515 0 0 1 3 4 4 5 1
353013 353118 350010 1 2 2 2 2 1
353118 350873 351804 1 2 3 3 3 1
354018 353013 352012 1 1 1 1 1 0
354317 348097 351011 1 1 1 i 1 0
354516 351604 351342 1 1 1 1 1 0
354715 352515 351011 1 1 1 1 1 0
354914 351604 349876 1 1 1 1 1 0

An output file with the gencration numbers from the 5th iteration can be written, and
this file must be sorted by the generation numbers to give the following file.

Gen. No. Animal Sire Dam Code Birth Year
6 350121 0 0 1 1980
5 350873 0 0 3 1980
5 351342 0 0 2 1980
5 362615 0 0 1 1980
5 351604 350121 0 3 1980
4 349876 352615 350873 2 1981
4 348097 351604 351342 1 1981
3 352229 352515 351342 1 1981
3 353118 350873 351604 1 1981
3 350010 348097 349876 2 1981
2 353013 353118 350010 1 1982
2 352012 352229 350873 2 1982
2 351011 353118 351342 2 1982
1 354914 351694 349876 0 1982
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i 354715 352515 351011 0 1983
1 354317 348097 351011 0 1983
1 354516 351604 351342 0 1983
1 354018 353013 352012 0 1983

The second step is to renumber the animals consecutively from 1 to 18, and to replace
the original registration numbers with the consecutive numbers for animals, sires, and
dams. Parents will have smaller numbers than their progeny. The code for indicating sires
or dams have been dropped. The sorted output file is as follows;

Animal BirthYr Sire Dam Original ID

1 1980 c 0 350121
2 1980 o 0 350873
3 1980 c 0 351342
4 1980 o 0 352515
5 1980 1 0 351604
6 1981 4 2 349876
7 1981 5 3 348097
8 1981 4 3 352229
9 1981 2 5 353118
10 1981 7 6 350010
11 1982 9 10 353013
12 1982 8 2 352012
13 1982 9 3 351011
14 1982 5 & 354914
15 1983 4 13 354715
16 1933 7 13 354317
17 1983 5 3 354516
18 1983 11 12 354018

5.1.2 Inbreeding Calculations

The next step is to compute the inbreeding coefficients for each animal according to the
Meuwissen and Luo {1997) algorithm. These are needed to compute the diagonals of D2
in A~! = T-1D=?T"-!, which are, in turn, nceded to construct elements of A~! following
Henderson’s rules (1975). The diagonals of D™ for the above animals were equal to 1 for
animals 1 to 4, 1.3333 for animal 5, 2.13333 for animal 18, and 2 for all other animals (6
to 17}.

Programs that prepare the pedigree file in the above manner are available.

pedf01.f Assigns generation numbers to cach animal and fills in the pedigree file. Animal
IDs are assumned to be numeric only.
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msort Sort routine to sort animals from high to low generation numbers, so that parents
appear before their progeny.

pedf02.f Re-numbers animals consecutively, including sire and dam IDs.
msort Sort the output in consecutive number order.

inbrd.f Compute inbreeding coefficients and diagonals of D2 for use in other programs.

5.2 Data File

The software packages available to estimate variances and covariances generally require
data to be prepared in specific formats. Any factor which might be included in a model
should be created and present in the data file. For example, Age-of-Dam and Sex-of-Calf
might be in the data. If the model will include an interaction between Age-of-Dam and
Sex-of-Calf, then a code for the interaction effect, Age-X-Sex, should be included in the
data file too. Most of the software packages do not manipulate items in the data to [orn
interaction effects, except SAS.

Unfortunately, software packages differ in the exact requirements for data files. The
following generic format will be recommended. Data come as integer values and real values
(with decimal places). Some, but not all programs require the y variables to be real values,
even if they are integer in nature. Kvery variable in the data should be separated from
the next by at least one blank space. No character data are allowed in these data files. A
record in the data file should be arranged as follows:

1. Animal ID. The animal ID should be the same as that in the pedigree file. Thus,
if the animals in the pedigree file have been re-numbered consecutively, then the
animal IDs in the data should be numbered in the same manner. Consequently, the
data file should not include any aniinals that did not appear in the pedigree file.
However, the pedigree file may contain many more animals than those that have
records.

2. Integer Values. The next variables in the record should be any number of integer
values. These indicate levels of factors that may be in the model, such as days in
milk, age, herd 1D, dain ID (consecutive numbers as in pedigree file), month, diet,
year, etc.

3. Real Values. All covariates and observed traits are included in the real values,
with or without a decimal in the number. If the model will be a random regression
model, then the appropriate covariates need to be created and stored in the data
file. If the ohservations will be weighted by the inverse of a residual variance, then
the weights should be included in the data file.
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The specific formats for each software package will be given later, but the above arrange-
ment should be generally suitable.

5.3 Control Files

Each software package requires at least one control file that does the following (not neces-
sarily in this order):

1. Identifies the pedigree and data files and the path to find them.
2. Names the variables that arc integer and that are real, and a format (sometimes).

3. Model specification. How many iraits; what are the fixed factors, covariates, and
random factors of the model; weighting factors, if any.

4. Type of analysis. REML EM, DF REML, Al REML, or Bayesian methodology. Not
all methods are available in cach software package.

5. Starting values for parameters, degrees of belief.

6. Other optional choices, dependent on the software package. These might include
choice of output features, choice of level of optimization, choice of Jacobi or Gauss-
Seidel iteration strategies, choice of sparse matrix packages, degree of convergence
desired, etc.

Each software package has a different name for this control file, e.g. parameter file, driver
file. Some control files are very casy to set up, and some control files are very tedious.
However, a program can be written to convert pedigree and data files (in the above generic
formats) into the appropriate format for a specific software package, but none has been
written.

Each software package creates a number of different files for its own use. Thesce files
are generally written in binary format to save space and to speed up their reading during
the analysis phase of the program. Such files are not readable by the user in mosl cases.
Some of these files are important, for example, if a Gibbs sampling chain is interrupted
and then must be re-started {(without starting from scratch). Some of the files will be
output from the analysis, and these may require further processing for interpretation.
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Software Packages

Three software packages are described in this chapter. This does not mean that these
packages are recommended or are the best available. The packages are 1) VCE by Groen-
eveld; 2) DMU by Jensen and Madsen; and 3) MTDFREML by Boldman and others. The
paclkage ASREML by Gilmour is not described because this software has been commer-
cialized and is very expensive per copy. Also, the three packages cover all of the REML
methods including Al REML. VCE is free. MTDFREML only uses DF REML. Users
should try to learn how to usc each package, as one package may not be suitable for all
models and analyses. Because of the general nature of these programs to handle many
different models and miethods, the memnory requircinents can be substantial, thereby lim-
iting either the amount of data that can be accommodated or the model being applied.
If the model las to be compromised, then the user may wish to use another software
package. The more traits there arc and the more parameters to be estimated, the more
memory and computing time that will be nceded to get estimates, Iinally, be cautious
with results obtained from any of these programs. Just because results were obtained, the
prograin may not have handled the model correctly, or the way you intended. Correct use
of any package is the user’s responsibility. If possible, use two software packages or two
methodologies and see if the results agree.

6.1 DMU-Jensen and Madsen

DMU was written by Per Madsen and Just Jensen at the Danish Institute of Agricultural
Sciences (DIAS), the Research Centre Foulum. The programs are in Fortran 90 or 95.
The DMU package consists of modules.

DMU1 This module must always be used. This program reads the control file, and does
preliminary massaging of the pedigree and data files for use in the other modules.
Pedigree information can be specified in different ways.

73
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DMU4 This module is for solving the mixed model equations in order to obtain estimated
breeding values. Standard errors of prediction can be obtained. Several methods of
solving the equations can be used. They are

Jacobi Conjugate Gradient (JCG),

Jacobi Semi-Iteration (JSI),

Successive Overrelaxation (SOR),

= e

Symmetric SOR Conjugate Gradient,
Symnetric SOR Semi-Iteration,
Reduced system Conjugate Gradient,

Reduced system Semi-Iteration,

@ =@ o

FSPAK, speed optimized or memory optimized.
DMUAI Module for estimation of covariance components using AI REML or EM REML.

DMUGib Module for estimation of covariance components via Gibbs Sampling and
Bayesian methodology.

There is complete docuientation available for this package from the source. The best
way to explain the program is to describe the creation of the control files for different
kinds of models. If something does not work from these notes, then please consult the
docuinentation.

6.1.1 Control File

The control file in DMU is called a driver file. The driver file is organized into sections
and contains keywords, some of which are mandatory.




DMU-JENSEN AND MADSEN

Single Trait Animal Model

$COMMENT

Example driver file for a SINGLE TRAIT, Animal Model
Trait for analysis is T1

Fixed factors are RC RAS

Random Factors are HRC ID

$ANALYSE 1 1 0 O

$DATA ASCII (6,8,-99) /u/name/test/dairy.d
$VARIABLE

ID RC RAS HRC HS DAM

ROUND LP1 LP2 LP3 LP4 LPS

T1 T2

$MODEL
1

042341
12

o QO N ~NO

$VAR_STR 2 PED 1 ASCII /u/name/test/ped.d

Keywords begin with $ and have a specific syntax for what follows it.

$ANALYSE is followed by four numbers.

e The first number specifies the task and is cither a 1 or 11.

75

$COMMENT Up to 10 lines may follow this keyword. All lines are repeated on the
output files to identify the type of analysis. The user can input anything they want
to identify the analysis.

A 1 indicates

that REML estimation is to he conducted using DMUAIL An 11 indicates that

DMU4 is to be used.

¢ The second number indicates the method to be used. If the first nunber was
a 1, then the method can be 1 - AI REML; 2 - EM REML based on Robin
Thompson’s algorithm; 3 - EM REML based on Esa Mantysaari's algorithin;
and 4 - AI REML using step halving if an update goes outside the parameter
space. If the first number was 11, then the method can be one of 10 possible

methods.
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e The third number refers to scaling the data to a residual variance of unity. A
1 indicates yes to do scaling, and a 0 is for no scaling.

¢ The fourth number refers to the amount of printout to be generated. A 0 stands
for standard output. Values of 1 or 2 ask for more output, but the volume of
output could be very large.

Thus, in this example, variances arc to be estimated using Al REML, no scaling of
the data, and only standard output.

item[$DATA| keyword is followed by the format of the data, either ASCI! or BI-
NARY, followed by (number of integer values, number of real values, value below
which real values are assumed missing), followed by the file name and the fnll path-
way to the file. In this example, the file is in ASCII format, the first 6 numbers are
integers and the next 8 are real values. Any real values below -99 are considered to
be missing. The location and name of the data file is given.

$VARIABLE keyword is used to give names to the integer and real values in a record.
A name may be up to 8 characters in length. Thus, ID RC RAS HRC HS DAM are the
six integer values and the following 8 are real values. This keyword is not mnandatory,
but it helps in understanding the next section of the driver file.

$MODEL keyword is for describing the traits and models for each trait.

¢ TRAITS. The first line indicates the number of traits in this analysis. In this
case, only 1 trait.

s+ ABSORB. Intended for future releases of DMU. For now there should be one
0 for cach trait to be analyzed, each on a separate line. In this example there
is only one trait and therefore only one line with 0 in it.

¢ MODEL.

the seventh real value is ¥y,

no weighting of observations,

number of class variables (fixed and randem),

second integer value (RC - Round-classifier subclasses),
third int value {RAS - Round-age-season),

fourth int value (HRC - Herd-round-classifier),

1 first int value (animal ID).

= W B O =T

The model equation could be written as

T1=RC+ RAS+HRC +1D + ¢

e RANDOM. Indicates how many factors in the model are random facters, and
a numbering of those factors. Factors with the same number have a correlation
structure between them, while factors with different numbers are independent
of each other. The cxample says there are 2 random factors (assumed to be
the last 2 specified in the MODEL, i.e. HRC and ID), and that these arc
independent, HRC has structure 1 and ID has structure 2, to be defined in a
later keyword.
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+ REGRES. For indicating number of covariates in a model with one line per
trait. In this example, no covariates are in the model.

s NOCOV. Number of covariances among residual effects. In this example, no
covariances exist.

$VAR STR. is used to specify the covariance structures of the random variables. If this

keyword is omitted, then the assumed variance structure of all random variables is
assumed to be IO’?. However, in this example, an animal model is being employed,
therefore, the structure is Ao?. The ID variable was coded as number 2 in the
RANDOM section of the previous keyword, and thus the first 2 in this keyword
command. This is followed by PED to indicate the relationship matrix is to he used.
There are six options for the type of relationship matrix to be constructed.

Sires and dams, inbred situation,
Sires and dams, non-inbred situation,
Sires and MGS, inbred,

Sires and MGS, non-inbred,

Not used,

Same as 2 but with phantom groups.

S Do W

This code is followed by ASCITI or BINARY and the full path and name of the pedigree
file.

Others . There are three more keywords which can be used to 1) specify prior or starting

values of the variances and covariances; 2) indicate optional input to DMU4; and
3) indicate optional input to DMUAI These options expect filenames for the files
wlere the additional information is stored. There are fixed formats for the addi-
tional information too. These are for fine-tuning an analysis, or possibly for saving
information in case of a system malfunection, so that the analysis may be re-started
with the same or different information.
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Multiple Traits, Maternal Effects

The following driver file is for running two traits, the second trait has a maternal genetic
effect.

$COMMENT

Example driver file for a MULTIPLE TRAIT, Animal Model

Two traits and including maternal effects for second trait
Traits for analysis are T1 T2

Fixed factors are RC RAS

Random Factors for T1 HRC ID

Random factors for T2 HRC DAM ID

$ANALYSE 1 1 0 O

$DATA ASCII (6,8,-99) /u/name/test/dairy.d
$VARIABLE

ID RC RAS HRC HS DAM

ROUND LP1 LP2 LP3 LP4 LP5S

T1 T2

$MODEL

= o= OO

I T
B N
w ow
s
[« I
jury

C OO WK ©~NOOoN
o]

$VAR_STR 2 PED 1 ASCII /u/name/test/ped.d

This driver file is very similar to that in the previous section. The only differences
occur in the $MODEL statements, The model for the first trait js given by 7 0 4 2 3 4 1
which is similar to the first example, and the model for the second traitis8 0 5 2 3 4 6
1 , where the 6 indicates the DAM ID of the animal. The first mode] has 2 random factors,
coded as 1 and 2 for HRC and ID, respectively. The second model has 3 random factors
namely, HRC, DAM, and ID, coded as 1, 2, and 2, respectively. Thus HRC have a covariance
between traits, ID has a covariance betwecn (raits, and ID and DAM have a covariance
between them within trait 2. The structure of the covariances for those coded as 2 is the
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additive genetic relationship matrix given in the $VAR_STR keyword.

Single trait model with covariates

$COMMENT

Example driver file for a SINGLE TRAIT, Animal Model
With a fixed covariate nested within a fixed factor
Trait for analysis is T1

Fixed factors are RC
Random Factors are HRC ID
Covariate is AGE nested within RC

$ANALYSE 1 1 0 0
$DATA ASCII (6,9,-899) /u/name/test/dairy.d

$VARIABLE

ID RC RAS HRC HS DAM

ROUND AGE LP1 LP2 LP3 LP4 LPG
T1 T2

$MODEL
1
0
703241
212
1 2¢0)
0
#
#

(1) refers to factor 1 of the model (RC)
and () refer to nested

$VAR_STR 2 PED 1 ASCII /u/name/test/ped.d

A new variable, AGE, was added to the data, which was the second real variable. Note
that comments may be added to the driver file. Any lines starting with # and blank lines
arc ignored.
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Random regression model

$COMMENT

Example driver file for a SINGLE TRAIT, Animal Model
Using longitudinal data, random regression model
Trait for analysis is Ti

Legendre polynomials are LP1 LP2 LP3 LP4 LP5

Fixed factors are RC RAS

Random Factors are HRC ID

$ANALYSE 1 1 0 O
$DATA ASCII (6,8,-99) /u/name/test/dairy.d
$VARIABLE

ID RC RAS HRC HS DaM
ROUND LPi LP2 LP3 LP4 LPS

T1 T2

$MODEL

!

0

7042341
212

3 2(4) 3(4) 4(4)
0

0

$VAR_STR 2 PED 1 ASCII /u/name/test/ped.d

Thus, LP1,LP2, and LP3 are nested within levels of factor 4 of the model which is the
animal ID. Because the animal ID factor is designated to have the additive relationship
matrix covariance structure, then that structure is also applied to the covariates nested
within the animal 1D, as well as covariances between the covariates.

6.1.2 Comments on DMU

The driver files are not very complicated to construct, but the user may get confused by
the number codes, and the manuoal will likely need to be utilized every time a new driver
file is made, in order to remember what the codes represent. The driver file should have
been made to be more explicit in itself. However, if DMU is used often, then the user may
memorize the options and coding procedures so that they become second nature.



6.2. VCE - GROENEVELD 81

6.2 VCE - Groeneveld

The control files for VCE are called parameter files or pfiles. pfiles are organized into
sections which must be in a certain order. VCE is keyword oriented, and therefore, the user
must not use these keywords to describe data or other variables. There is an online manual
available to assist in understanding the use of VCE. VCE is capable of performing Al
REML coded as (AG) in methods, Monte Carlo EM REML, coded as (AE), and Bayesian
methods via Gibbs Sampling, coded as (GI). VCE is capable of handling dominance genetic
effects and random regression models.

6.2.1 pfile

The parameter file for VCE is made up of sections identified by the following keywords in
this order.

COMMENT Optional

DATA Mandatory
MODEL Mandatory
COVARIANCE Mandatory
SYSTEM Optional
ouTPUT Optional
END Optional

Each section will be described separately, and then some examples will be given for
particular models. VCE does not distinguish between capital or small letters. Thus,
ANIMAL and animal are the samc.

6.2.2 COMMENT

COMMENT job = iowastate

The job name will appear on every page of the printout.
An unlimited number of lines can follow.

This section is for describing the analysis that the
user 1s running.

Care must be taken not to use another keyword in the comments section.
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6.2.3 DATA

There are three types of data sets. An example DATA section follows.

DATA

datfile = ’dairy.d’
format = *{4f12.0,818.0)°
dep = AFS NRF NRC CTFS
indep = ANIMAL YS YSH MF SS AP AF PE
group_by = variable
header =0
crossbreeding = .false.

pedfile = ’'ped.d’
format = 7(4i10)’
link = ANIMAL
dominance = fANIMAL
indep =
header =0

ranfile = *'rfile.d’
format = )
link =
indep =
header =0

A format is not needed. If omitted, then the default option is free format. That
is, a space must be inserted between each variable. If a format is given for the data
file, a typical FORTRAN format is used, and all variables must be read with the 'F”’
indicator even if the variables are integer.

Note that the rccords in the data file must be arranged so that the observations
or traits appear before any of the classification variables that may be used in the
models. Or a format has to be given that uses the "I specifier for specific columns
in which a variable is located to order the variables. Thus, dep refers to traits or
dependent variables, and indep refers to independent variables.

The header indicates the number of records that should be skipped in the data file
before records on animals begin. Usually the header is equal to 0, but if the data file
is an Excel file, for example with headings on the colummns, then the headings must
be skipped. This statement allows the user to skip a certain number of records.

The crossbreeding keyword is used to indicate if crossbred animals appear in the
data,
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e The group_by keyword is to identify a variable in the data such that the residual
variance could be different for each level of that variable, such as by herd-year-
seasons, for example.

« Note the semicolon after each file deseription.

e There can be several data files. If the first data file is sorted by YSH, for example,
then subsequent data files should be sorted in the same sequence.

e The default option for the pedigree file assumes that the file contains animal, sire,
and dam. If other information is on the file, such as breed codes, litter codes, or
birthdates, then indep can be used to specify these variables.

e The link keyword is usually equated to animal in order to have additive genetic
effects in the model.

e Dominance genetic relationships will be calculated if dominance = fanimal.

e The ranfile is a file that identifies levels of heterogenecus variances for a random
factor. An example will be given later.

6.2.4 MODEL

A typical simple specification for four traits, each with a different model is shown below.

MODEL
AFS = Y8 YSH ANIMAL;
NRF = YS MF YSH 55 ANTMAL;
NRC = YS AF YSH S5 ANIMAL PE;

CTFS = YS AP YSH ANIMAL PE;

If NRF and NRC have the same model, then this could be written as

NRF NRC = YS MF AF YSH SS ANIMAL;

o The ANIMAL effect should not be the first effect in the model equation.

o The ANIMAL effect should appear in the model before the maternal effect, if included
in the data.

e Note that PE is the same as ANIMAL, because a variable should only appear once in
the cquation.
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e Covariates are designated as p2(age), for example, which means to include age and
age-squared.

& To deviate covariates from their means then use pa2(age). This is generally a good
idea to avoid rounding problems.

e If the covariates are nested within year for example, then [1, p2(age)]year would
be used to include an intercept, age, and age-squared within years,

¢ For a random regression model, this could be specified by [p5(dim)]animal, which
is a polynomial of dim, {(days in milk), to the power 5 nested within animals.

o If the user wanted to use Legendre polynomials, then [plg5(dim)]animal.

6.2.5 COVARIANCE

This section is for describing the structure of covariance matrices of the random variables.

COVARIANCE
ANIMAL ;

YSH ;

SS: NRF NRC;
PE: NRC CTFS;

The ANIMAL covariances are applicd to all traits, as with YSH. Because the pedigree file
was given in the DATA section and linked to ANIMAL, then the additive genetic relationship
matrix will be employed. For YSH, the assumption is that the covariance structure is
diagonal for a single trait and between traits. 88 and PE are applied only to two traits
each. There are options for specifving heterogeneous variances. The residual covariance
structure, if not stated, is assumed to be diagonal within and between traits.

Starting values for parameters can be determined by the program. Covariances are
initially assumed to be close to zero. However, the user may specify starting values in a
file, or values from a previous analyvsis may be used as input. Please consult the manual
for details.

6.2.6 SYSTEM

This section describes the analysis that the user wishes to conduct, and how to proceed.
There are keywords for iterative methods, such as for Gibbs sampling. There are keywords
for constructing the additive genetic relationship matrix, and there are keywords for in-
dicating missing data or observations that the user might want to skip. Some examples,
but not all possibilities are shown below.
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SYSTEM

method = 'GI’
mc_seed = 56437281
burn_max = 5000
burn_stop = .0001
restart = .true.
inbreeding = .true.
missing_value = -99
non_zero = 1000000

non_zero is the number of nonzero elements in the MME. The other variables should
be obvious. The burn-in period would be limited to 5000 samples or to the level of
0.0001 difference between the two chains. With Gibbs sampling, VCE uses two chains,
with different starting paramecters, but the same random number sequence. When the
agreement between the two chains reaches the minimum desired, then burn-in has been
achieved and only samples from this point are used as samples from the joint posterior
distribution.

6.2.7 OUTPUT

This section is for creating the desired output files.

OUTPUT
covfile = 'filename’ format='( )’ next = 1;
inbreeding = ’'filename’ format='( )’ next = 0;
gibbs_log = ‘filename’;

Thus, the covfile will contain the estimated parameters from each Gibbs sample, after
buru-in. Inbreeding coefficients of each animal can be saved. There are other options for
getting exactly what you want or need. Please consuit the manual.

6.2.8 END

The END statement terminates input to the program. Any lines that come after this are
totally ignored. Thus, the user may put additional comments about the analysis after this
statement.

The manual for VCE Version 5.1 from December 2003 contains a lot of information,
but some of the explanations are not very clear. Thus, the manual can be difficult to
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follow and to get what is really needed. Assistance fromn the authors is not always readily
at hand. However, VCE seems to be a very useful program if you understand the options
and features. There is slightly more flexibility in modeling than in DMU. No comparisons
have been made as to speed or memiory requirements.

6.3 MTDFREML

These notes are based on the latest documentation which was April 1995. The authors
were K. Boldman, L. Kriese, L. D. Van Vleck, C. P. Van Tassell, and 5. D. Kachman.
The programs were originally designed to run on personal computers interactively. The
user would answer questions interactively with the program. If one of the answers was
unacceptable or in error, then the program would abott and the user would need to begin
again. With over 30 questions to be answered, this method of providing information to
the program was slow, tedious, and subject to errors. The user can now create a file that
has the answers to those questions. The MTDFREML package uses the Simplex nmiethod
to locate the parameters that maximize the log likelihood function. The package also
utilizes SPARSPAK routines for sparse matrix manipulations. The package consists of
several programs. MTDFNRM is used to prepare the additive genetic relationship matrix
inverse and recode animals. MTDFPREP uses output from MTDEFNRM to recode the
data file, recode levels of fixed and random factors and to create new data files for the next
program, including information on the dimensions of vectors and arrays. MTDEFRUN is
the program that searches for the maximun of the log likelihood function.

MTDFNRM prepares 4 files; MTDFPREP prepares another 6 files, and MTDFRUN

creates 10 files, of which 4 are necessary to continue from the last search. All pedigree
and data input files from the user are assuned to be readable in free format.

6.3.1 MTDFNRM

This program computes the inverse of the additive genctic numerator relationship matrix,
A1 The information required is given in the table below.
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1 Animal model{0) or Sire-MGS model(1) 0
2  Largest animal ID in pedigree file 99939999
3 Smallest animal ID in pedigree file 0
4 Name of pedigree file ped.d
5 Original IDs and inbreeding values wanted yes
6 Number of integer fields in file 6
7  Which one is Animal ID 1
8 Which one is Sire ID 2
9 Which one is Dam ID 3

10 Number of genctic groups ]

The following data files are created.

MTDF11

MTDF13

MTDF44

MTDF56

6.3.2 MTDFPRED

Number of animals, list of animals by original ID
with recoded ID, in ascending order.

Recoded pedigree, original pedigree, and
inbreeding coefficients.

Value of 0.5 ln | A |, followed by
non zero inverse elements in binary format.

Summary information from the run.

The data file must be prepared as for DMU with integer variables first [ollowed by real
variables. A PARAM.DAT file must be prepared and included during the compilation of
the program. The file indicates the maximum values possible for this particular analysis.
The variables that can be changed in that file arc as follows:
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MAXTRT
MAXINTR
MAXRS
MAXANIM
MAXCOV
MAXNFR
MAXFIX
MAXNFL
MAXCONS
MAXRAN
MAXNRL
MAXINV
MAXORDS
MAXNZE
NHASH

CHAPTER 6. SOFTWARE PACKAGES

Number of traits

Number of integer variables

Number of real variables

Number of animals{with records and ancestors and groups)
Number of covariates per trait

Number of regression coefficients per trait
Number of fixed effects per trait

Number of levels for a fixed effect

Nuinber of constraints

Number of uncorrelated random effects per trait
Number of levels for uncorrelated random effects
Order of submatrix to be inverted

Used by SPARSPAK

Used by FSPAK

Used by FSPAK for Hashing function

The following information is needed, in this order.
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—

Name of data file

Up to 6 lines, description of analysis, ended by in
column 1 after last commment line

Number of integer variables

Number of real variables

Number of traits

For each trait the following must be known
Name of trait

Position of trait in list of real variables
Missing value designation

Number of covariates in model for this trait
For each covariate with this trait

1 Name of covariate

3]

2 Position of covariate in real variables

Type of covariate, linear, quadratic,

Number of fixed effects in model for this trait
For each fixed effect

1 Name of fixed effect

Position of fixed effect

3 Write levels to MTDF667 1=yes

Position of animal ID in list of integers
Number of animals in relationship matrix

Is there a maternal effect? 1 = yes

1 1If yes, Name of effect, i.e. maternal

I yes, Position of Maternal 1D

Number of uncorrelated random cffects

For each random effect

Name of random effect

Position of random effect in integer list

Write levels to MTDF667 1=yes

Save labels for covariates and fixed effects? 1=yes
Save labels for random effects? 1=yes

=0g 0% 00 08 e D QOO B R0 T
[wF%]

s Gt Gmer s

o e e
==

= =B
—

oo-qc:c:csc:c:mm@@mmmmm@mmmammm@mmymw
[It]

Six data files are created by this program that are used as input to the analysis program.
The same file names are generated each time the program is run. Therefore, information
from the previous run will be lost or overwritten. Re-name the files if you think they
might be used again at a later time before running this program.

6.3.3 MTDFRUN

Several options are possible.

TYPE OF ANALYSIS . Enter 0 if this is a coinpletely new run, Enter 1 if this is a
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continuation of a previous run.
OPTIONS .

1. Estimate variance components.

2. Solve MME only.

3. Calculate sampling variances only.

4. Solve MME, then sampling variances.

Beginning a New Analysis

Because SPARSPAK is used in MTDFRUN, the MME must be full rank. Only the input
needed for OPTION 1, estimation of variance components, will be presented here. There
are different inputs to the other OPTIONS. The program will ask the following questions.

1 Up to 6 lines to describe the analysis with in the first column alter the last comment line.
2 Is this a continuation? yes=1
3 OPTION number = 1
4 Number of constraints, put 0
5 Does file MTDIFS8 exist? yes=1
6 Input of prior values for animal (and maternal)
genetic effects according to model
7 Verification of the priors.
8 Nutnber of parameters to hold constant.
8 a DPosition of parameters to hold constant.
9 Input of prior values for other random factors.
10 Verification of the priors.
11 Number of parameters to hold constant.
11 a Position of parameters to hold constant.
12 Input of priors for residual covariances.
13 Verification of the priors.
14 Number of parameters to hold constant.
14 a Position of parameters to hold constant.
15 Write solutions for covariates and fixed effects? 1=yes, 2=no.
16 If yes, Merge labels with solutions? l=yes, 2=no.
17 Write animal (and maternal) solutions? 1=yes, 2=no.
18 Write solutions to other random effects? 1=yes, 2=no.
19 If yes, Merge labels with solutions? 1=yes, 2=no.
20 Convergence criterion, 1.e-6 or 1.e-8.
21 Number of Simplex rounds.

The number of Simplex rounds should be at least one greater than the number of
parameters to be estimated. Depending on the number of parameters and complexity of
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8

the model, the number of rounds required could be 1000 or more. If the user enters a 1
for number of Simplex rounds, then the programn will give a timing per round, from which
the user can determine the number of rounds to perform. However, if the method reaches
convergence before the specified number of rounds, then the program will terminate.

If the user wants to restart, then the questions are the saine except that the input of
the priors is skipped {items 4 through 14}. Thenanual is filled with exawmples [or different
kinds of models which are useful to understand the program.



92

CHAPTER 6. SOFTWARE PACKAGES



Chapter 7

Maternal Effects Models

7.1 Introduction

In some species of livestock, such as beef cattle, sheep or swine, the female provides an
environment for its offspring to survive and grow. Females vary in their ability to provide a
good environment for their offspring, and this variability has a genetic basis. The offspring
inherit directly an ability to grow (or survive) from both parents, and environmentally do
better or poorer depending on their dam's maternal ability. Maternal ability is a genetic
trait and is transmitted, as usual, from both parents, but maternal ability is only expressed
by females when they have a calf (i.e. much like milk yield in dairy cows).

A model to account for maternal ability is
y = Xb + Zia+ Zom + Zsp 1€,

where y is the growth trait of a young animal, b is a vector of fixed factors influencing
growth, such as contemporary group, scx of the offspring, or age of dam, a is a vector of
random additive genetic effects (i.e. direct genctic effects) of the animals, m is a vector
of random maternal genetic (dam) effects, and p, in this model, is a vector of maternal
permanent environmental effects (because dams may have more than one offspring in the
data).

The expectations of the random vectors, a, m, p, and e are all null vectors in a model
without selection, and the variance-covariance structure is

a Aag Aoy O 0

| m | | Aoem Ack 0 0
Varl o | = 0 0 T2 o |

e 0 0 0 Is?

where JE is the additive genctic variance, o2, is the maternal genetic variance, dqrm, is
the additive genetic by maternal genectic covariance, and a;‘; is the maternal permancnt

93
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environmental variance. Also,

where
2
G — s Yam
= 2
Tam Ty '
and
[1,02 ~ N(0,102)
p 1o-p ~ ( T Up i
and

e ~ N(0,1Ic?).

In this mode!, a female animal, 1, could have its own growth record for estimating
4;. The same fenale could later have offspring of its own for estimating 7; and $;, and
the offspring would also contribute towards é;. The maternal effects model can be more
complicated if, for example, embryo transfer is practiced. Recipient dams would have
maternal effects, but would not have direct genetic effects on that calf, see Schaeffer and
Kennedy (1989).

7.2 Simulation of Records

To better understand this model, think about how records might be sampled in reality.

For example, let
2
gr o 49 -7
G’ — a am — .
( Oum  Omy -7 26

Any positive definite matrix can be partitioned into the product of a matrix times its
transpose (i.e. Cholesky decomposition), or

G = LI
70
L = (—15)‘

Let 03 = 9 and o2 = 81. Both the additive genetic and maternal genetic effects need to

be sampled simultaneously because these effects are genctically correlated.

Consider three animals, 4, B, and C, where C is an offspring of sirc A and dan
B. First, sample additive genetic values for the parents, and then gencrate the additive
genetic effects of their progeny, animal C. For animal A, generate a vector of two randomn
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normal deviates from a distribution with mean zero and variance unity, which will be pre-
multiplied by L. Animals A and I3 are base population animals unrelated to each other.
Let the vector of random normal deviates be w' = (2.533 —.299), then for animal A

( a/l ) — LW
ma
_ 70 2.533
N -1 5 —.299
17.731
—4.028 |
Similarly for animal B, generate another vector of random norinal deviates, say w' =
(—1.141 .235), then
ap \ _ 70 ~1.141
mp - -1 5 .235
B —T7.987
o 2316 /-

The additive genetic value of animal € take the average of the parents’ true breeding
values and add a random Mendelian sampling term. Generate another vector or random
normal deviates, w' = (.275 .402), then

ac 1{ aa+ag 5
( me ) 2 ( ma+mg ) + (bit) "Lw
1 17.731 — 7.987 1., 275
- 5( —4.028 + 2.316 ) +3) L( 402 )
- 6.233
N 371 )
where by; comes from factoring the additive genetic relationship matrix as A = TBT’, for
T being lower triangular and B being a diagonal matrix. Hence b;; is a diagonal clement

of B. For non-inbred animals with both parents known then b; = 0.5, otherwise it can be
less than 0.5, depending on the amount of inbreeding.

Maternal permanent environmental effects must be generated for each dam with progeny.
In this case only animal B is a dam. Multiply a new random normal deviate by o, = 3,

suppose the result is —4.491. An record for animal C is created by following the model
equation,

y = ptac+mp+pg+oex RND
= 140 +6.233 4 2.316 - (—4.491) 4 {9)(1.074)
153.724.

where p was arbitrarily sct to 140, and RN D refers to a new randoin normal deviate.
The record on animal ' consists of the direct genetic effect of animal ¢ plus the maternal
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genetic effect of the dam (B) plus the maternal permanent environmental effect of the
dam (B) plus a residual. Records in real life are probably measured to the nearest whole
unit, so y == 154 for animal '

7.3 Mixed Model Equations

To illustrate the mixed model equations, assume the data as given in the table below.

Animal Sire Dam CG  Weight
5 1 3 1 156
6 2 3 1 124
7 1 4 1 135
] 2 q 2 163
9 1 3 2 149
10 2 4 2 138

where CG stands for contemporary group, the only fixed effect in this example. Assume
that the appropriate variaiuce parameters were those used in the simulation in the previous
section. Based on the matrix formulation of the model, the MME are

X'X X'Z, X' 7o X'Z, b X'y
Z’1X Z’IZI +Aﬁ1k11 ZIIZQ+A—1A‘12 ZQZ;; a _ Z"]y
X ZLZq + A ke ZhZo+ Ay ZhZ, m Zhy |’
ZEX ZEZL ZEZQ Zgzs + Tksa P ZS_Y

where
2 -1
ki kiz _ 0t Oam 2
- 2 ge'
k12 k22 Tam UTn
-1
49 -7
- ( —7 2 ) (81),
_ 1.7192  .4628
- 4628 3.2400 )7
Finally, ksg = 02 /05 = 81/9=9.

The matrices for the examnple data are

1 0
1
1
0
0
0

. f 415
’Xy*(450 :

e = =]
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7
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The other two right hand side matrices can be easily obtained from y and Z4y. The order
of the MME is 24. The inverse of the relationship matrix is

AT =

B | R

\
DN O N =R O G

|
()
=

0 -2

The solutions to the MME are

=>E3
i

5
1
2
0 -2
2
0
2

2
1
5

0

-2

0
0

-2

0

0 ( 137.8469

150.4864

2.3295

—2.3295
1280
—.1280
5.1085
—4.1143
2375
2.0161
.5447

—3.7896

b

0

—2
-2

e e T e I o T~ B e

1 -2
2 0
0 -2
5 0
0 4
0 0
2 0
2 0
0 o
2 0
) -
and m =

-2 0
0 -2

|
O
|
[ =g

O O RO D

0655
—.0658
—.3328

3328

1646
—.1646
—.6379

.6792
—.1204
—.3795

0136

.4499

-2

[i=N e I o B o B o B T \U
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7.4 Estimation of Covariances

Let the inverse of the coefficient matrix of the MME be represented as

Cir Co1 Crz Cyug
Ci. Cn Cip Cyz
Cor Co Co Coy
Cir Cy Gz Cy

The quadratic forms required for REML or Bayesian estimation arc

Al “a—1a S A =12
(Z},)A_l(érh) (aAa aAm),

m'A-'a m'Alm
B 95.7075 —13.6257
= | —13e257  2.0067 /-

0.008668,
ée = 463.56943.

ol
It

7.4.1 EM-REML

For EM-REML estimation,
be = (y'y — BW'Y)/(N — (X)),
where W = (X Z; 2y Z3) and £ = (b’ a’ m’ p’). In the example, N = 6, »(X) = 2, and
G, = (125,751 — 125,128.93)/4 = 155.51863.
The genetic components are given by
72 Gam aAA~'a a'A'm o tr(ATIC) tr(ATICH2)
( Gam 02 ) - [( m'A~la m'A"'m ) + e ( tr(A"1Cy) tr(A~1Cag) )] /a.

For the example, these are
aAla aA7'm B 95.7075 —13.6257
m'A~la mA"'m - —13.6257 2.0067 |’

tr(ATYC) tr(ATIC1) Y} 54036 —0.8391
tr(A"1Cy) tr(A71Cq) - —0.8391  3.1199 /'

62 bam \ _ 93.6068 —14.4124
Gam G2, - —14.4124  48.7213
Finally, the estimate of the maternal permanent environmental component would be

&t = (p'p + 62trCa3) /2,

where p'p = 0.0086681, {rCjs3 = 0.2097853, and ‘3?1 = 3.2634. The new estimates should
be used to reconstruct the MME to get new solutions and new estimates of variances and
covariances, and this is repeated until convergence is achieved.
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7.4.2 Bayesian Estimation

For Bayesian estimation using Gibbs sampling, the MME would be solved and new samples
generated for @ = (b” a’ m’ p’) as usual. For the genetics components, the necessary
quadratic forms for the " sample arc given by

G‘ — H;A_lai a;A_lmi
! m)A la, miA lm; /'

This matrix follows an inverted Wishart distribution. To sample a new G,

1. Invert the it" sampie matrix, G;.
2. Compute the Cholesky decomposition of this inverse,
T = Chol(G]1),
where T is a lower triangular matrix.

3. Generate a new sample for G;rll from a Wishart distribution based on ¢ degrees of
freedom, where g is the number of animals, in this case ¢ = 10.

4. Invert the previous matrix to give Gy ;.

For the residual and maternal permanent environmental effects, a new sample value for
the residual variance is given by
2 _ a2
o, = €e/xy,

atd a new sample value for the maternal permanent environmental variance is given by
2 atag2
C’rp =P p/Xp1

where p is the number of dams with progeny. Many samples may need to be drawn. The
€ and p are not estimates in the usual sense, but represent the current sample values in
the Gibbs sampling chain.

7.5 Warnings

The influence of the correlation between direct and maternal effects on the relationship
between solutions for direct and maternal effects can be a matter of concern. If the
genetic correlation between direct and maternal true breeding values is negative (-0.1), for
example, and if an animal has a high, positive direct EBV based on its own growth record,
then the maternal EBV could be very negative due to the correlation alone. Thus, if few
of the animals with growth records have progeny, then the relationship between direct
and maternal EBVs will be strongly negative {like -0.8)(reflecting the assumed negative
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correlation amongst true breeding values). However, if the data are complete and animals
have hoth their own records and those of several progeny, then the correlation between
direct and maternal EBVs should more closely follow the assumed genetic correlation.

The data structure can affect the correct estimation of the genetic correlation between
direct and maternal effects. Estimates of this correlation in beef cattle have ranged from
-0.5 to +0.5, and this mostly reflects the differences in quality (completeness) of data used.
In experimental station herds with several generations of animals and fairly complete data
on pedigrees, the estimates of the genetic correlation have tended to be zero or slightly
positive between direct and maternal effects. On the other hand, in field data with almost
no ties between growth of calves with performance of offspring as a dam, the estimates of
the genetic correlation have tended to be negative. To determine if your data are complete,
create a file that has an animal’s own record plus the average growth record of its dam.
If you have 3 million records, but only 100 dam-offspring pairs, then the reliability of the
estimated correlation between direct and maternal effects will be low. One can also look
at the number of female progeny of each sire that have their own progeny as a percentage
of all female progeny. If that percentage is low (i.e. less than 20% }, then the reliability of
the estimated genetic correlation could be low. With poor data structure, the possibility
of a strong negative genetic correlation is very likely if the estimation process is started
with a negative genetic correlation,



Chapter 8

Random Regression Models

8.1 Introduction

All livestock grow and perform over their lifetime. Traits that are measured at various
times during that life are known as longitudinal data. Examples are body weights, body
lengths, milk production, feed intake, fat deposition, and egg production. On a biological
basis there could be different genes that turn on or turn off as an animal ages causing
changes in physiology and performance. Also, an animal’s age can be recorded in years,
months, weeks, days, hours, minutes, or seconds, so that, in effect, there could be a
continuum or continuous range of points in time when an animal could be observed for a
trait. These traits have also been called infinitely dimensional traits.

Take body weight on gilts over 60 davs on test as an example.

Animal Days on Test
10 20 30 40 &0 60
42 53 60 T2 83 94
30 50 S8 68 76 8D
38 44 51 60 70 77
SD 1.6 3.7 39 50

IV VS

=2}
(%]
(s ]
[=2]

The differences among the three animals increase with days on test as the gilts become
heavier. As tlie mean weight increases, so also the standard deviation of weights increases.
The weights over time could be modeled as a mean plus covariates of days on test and days
on test squared. Dependiug on the species and trait, perhaps a cubic or spline function
would fit the data better. The point is that the means can be fit by a linear model with
a certain number of parameters.

1M
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8.2 Multiple Trait Approach

The data presented in the previous table have typically been analyzed such that the weights
at each day on test are different traits. If ¢ is the day on test, i.e. 10, 20, 30, 40, 50, or
60, then a model for any one of the weights could be

ye=Xby 42, + e,

which is just a simple, single record, animal model. Analyses are usually done so that
the genetic and residual variances and covariances are estimated among the six weights.
Suppose that an estimaie of the genetic variances and covariances was

25 49 46 46 43 4.0
4.9 13.5 121 123 11.9 107
46 12.1 152 145 146 125
46 123 14.5 200 190 16.9
43 11.9 146 19.0 25.0 20.3
4.0 107 125 169 203 30.0

Let the residual covariance matrix be

38 74 69 68 64 60
7.4 203 182 184 179 16.1
69 18.2 228 21.8 219 1838
6.8 184 21.8 30.0 285 254
6.4 17.9 21.9 285 375 305
6.0 16.1 188 254 305 45.0

Assuming a model with only an intercept, and that the three animals are unrelated, then

1100
X Z)={1010 |al,
1001

o = O

where the identity is of order 6 and @ is the direct product operator. The observations
would be ordered by days on test within animals, i.e.,

y'=(42 53 60 72 83 94 .. 60 70 7).

The resulting MME would be of order 24 by 24, and the solutions would be as follows.

Days on
Test Mean Animall Animal 2 Animal 3
10 36.67 2.10 -2.61 0.51
20 49.00 1.57 0.45 -2,02
30 56.33 1.48 0.64 -2.12
40 66.67 2.21 0.39 -2.60
30 76.33 2.72 -0.24 -2.48
60 85.33 3.48 -0.16 -3.32
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Animal 1 clearly grew faster than the other two animals and its superiority grew larger
with time. Animals 2 and 3 switched rankings after the first 10 days, and Animal 3 was
clearly the slower growing animal. The estimates for the mean give an average growth
curve for the 3 animals.

A multiple trait approach may be appropriate here because every animal was weighed
on exactly the same number of days on test throughout the trial. However, suppose the
animals were of different ages at the start of test, and suppose that instead of days on
test, the ages for each weight were given. Assume at start of test that Animal 1 was 18
days old, Animal 2 was 22, and Animal 3 was 25. The multiple trait model could include
a factor (classification or covariable) to account for different starting ages. The differences
observed at any point in time could be due to the ages of the animals rather than just on
the number of days on test. The analysis shown above would have an implied assumption
that all animals began the test at the same age.

8.3 Covariance Functions and Orthogonal Polynomials

Let the example data be as shown below, allowing for the different ages at each test. Note
that the ages range from 28 days to 85 days, and that none of the animals were ever
weighed at exactly the same age.

Animal 1 | Animal 2 | Animal 3
Age Wi | Age Wt | Age Wt
28 42 32 30 35 38
38 53 | 42 50 | 45 44
48 60 | 52 58 | 55 51
58 T2 | 62 68 | 65 60
68 83 | 72 76| 7Hh 70
TR 94 | 82 85 | B 77

Kirkpatrick et al.(1991) proposed the use of covariance functions for longitudinal data
of this kind. A covariance function (CF) is a way to model the variances and covariances
of a longitudinal trait. Orthogonal polynomials are used in this model and the user must
decide the order of fit that is best. Legendre polynomials are the easiest to apply. They
were first published around 1797.

To caleulate Legendre polynomials, first define

1, and
Pl(l) = &I
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then, in gencral, the n 4+ 1 polynomial is described by the following recursive equation:
Pari(g) = ——= (2 + 2Py (z) - nPaci(c})
1 =i n P (x) —nPao1(z)).

These quantities are "normalized” using

out@) = (Z2) Rugo).

This gives the following series,

go() (%) = 7071
o - ('
= 1.2247z
Pia) = é(sm( ) - 1Ry(a)
5
aw = (3) G- 3

= —.7906 + 2.3717x2,

and so on. The first six can be put into a matrix, A, as

7071 0 0 0 0 0

0 1.2247 0 0 0 0

A —.7906 0 23717 0 0 0
0 —2.8062 0 4.6771 0 0

7955 0 —7.9550 0 9.2808 0

0 4.3973 0 —20.5206 0 18.4685

Now define another matrix, M, as a matrix containing the polynomials of standardized
time values. Legendre polynomials are defined within the range of values from -1 to +1.
Thus, ages or time periods have to be standardized (converted) to the interval between -1

to +1. The formula is
te — Lo
1 ea (),
tmar - tmz‘n

Let the minimum starting age for pigs on test be 15 days and the maximum starting age
be 28 days, then the maximum age at cnd of test was 88 days. Thus, tmm = 25 = (15410)
and tpar = 88 = (28 + 60).

The matrix G was based on weights taken on pigs that were all 21 days of age at start
of test. The table below shows the ages and standardized time values for the six weigh
dates.
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Dayson Age Standardized

Test Value

10 31 -1.000

20 41 -,600

30 51 -.200

40 61 .200

a0 71 .600

60 81 1.000

Therefore,
1 —1 1 —1 1 -1
1 —.600 .360 --.216 .130 -—.078
M — 1 —.200 .040 -.008 .002 —.000
1 200 .040  .008 .002  .000
1 600 .360 216,130 078
1 1 1 1 1 1
This gives
& = MA,

071 —1.2247  1.5811 —1.8708 21213 —2.3452
7071 —.7348 0632 .6735 —.BGOS 3580
7071 —.2449  —.6957 5238 4921 —.7212
7071 2449 —.6957 —.5238 4921 7212
1071 7348 0632 —.6735 —.8655 —.3080
7071 1.2247 1.5811 1.8708 2.1213  2.3452

which can be used to specify the elements of G as

G = oHY
= M{AHA)M’
- MTM'

Note that &, M, and A are matrices defined by the Legendre polynomial functions and
by the standardized time values and do not depend on the data or values in the matrix
G. Therefore, it is possible to estimate either H or T,

H = »7'G& T,
27.60 529 —1.95 005 —117 0.52
529 499 042 —0.25 —0.30 —0.75
195 042 151 020 —0.33 -0.07
0.05 —-0.25 0.20 1.19 0.06 —-0.71 ’
~1.17 —0.30 -033 006 058 0.15
0.52 0.7 —-007 -0.71 0.156 1.12

and

T = MM 7T
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16.44 6.48 ~593 -11.49 -0.93 10.02
6.48 49.87 -2.00 —155.34 144  111.23
—5.93 —-2.06 57.71 28.62 —b0.06 —25.73
—11.49 -—-155.34 28.62 63549 -2691 —486.90
—0.93 1.44 —50.06 —26.91 49.80 26.49
10,02 111.23 -25.73 —486.90 2649  382.79

Why orthogonal polynomials? Convert T and H to correlation matrices.

1.00 23 —-19 —-11 —-.03 .13

23 1.00 —.04 —87 .03 .81
T - —19 —04 100 .15 —.93 -—-.17
cor— | —11 —.87 .15 1.00 —.15 —.99 |’

-03 03 —-93 —-.15 100 .19
13 81 —17 —-.99 19 1.00
and
1.00 45 —30 .01 —29 .09
45 100 15 -.10 —.17 -.32
Ho = -30 .15 100 .15 —.36 —.05
cor 01 —10 .15 100 .07 —.62
~29 —17 —.36 .07 100 .19

09 -32 —-05 —-.62 .19 1.00

The largest ahsolute correlation in T was .99, while the largest absclute correlation in
H was only .62. Orthogonal polynomials tend to reduce the correlations between esti-
mated regression coefficients. This is advantageous when trying to estimate H by REML
or Bayesian methods, because the estimates would converge faster to the maximum or
appropriate posterior distribution than trying to estimate T. The matrix T actually had
four correlations greater than 0.80 in absolute value, while H had none. There are other
kinds of orthogonal polynomials, but Legendre polynomials are probably the easiest to
calculate and utilize.

H can be used to calculate the covariance between any two days on test between 10
and 60 days. To compute the covariance between days 25 and 55, calculate the Legendre
polynomial covariates as in calculating a row of ®. The standardized time values for days
25 and 55 are -0.4 and 0.8, respectively. The Legendre polynomials (stored in L are

L — 071 —.4809 — 4111 8232 —.2307 —.6347
TV 7071 9798 7273 1497 —.4943 -—.9370 [}’

Then the variances and covariance for those two ages are

,_ { 14.4226 13.7370
LHL = ( 137370 28.9395 )

Thus, the genetic correlation between days 25 and 55 is 0.67. The same calculations could
be repeated for the residilal variance-covariance matrix. Let

§ = & 'R® T,
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41.57 794 2.9 0.11 -1.76 0.76
7.94 745 062 —-041 -044 -1.07

-291 062 220 031 -0.52 -0.12
0.11 -0.41 0.31 .76 0.08 -1.04 |’

-1.76 -044 -0.52 008 0.88 0.24
076 —-1.07 —-0.12 -—-1.04 0.24 1.64

then the residual variances and covariances for days 25 and 55 would be

r _{ 21.6645 20.6166
LSL = ( 20.6166 43.3442 ) )

8.3.1 Reduced Orders of Fit

Although the order of G in the previous example was six and polynomials of standardized
ages to the fifth power were used to derive the covariance functions, perhaps only squared
or cubed powers are needed to adequately describe the elements of G. That is, find ¢~
such that it is rectangular and H* has a smaller order, m < k, but still

G=9¢Hd".
To determine H*, first pre-multiply G by &* and post-multiply that by ©* as
PGP = & (H PP
(@' &*)H* (0 3*).
Now pre- and post- multiply by the inverse of (*I’*"I’*) =P to determine H",

H =P oY GoP L.

To illustrate, let m = 3, then

071 —1.2247  1.5811
071 —.7348  .0632
071 --.2449  —.6957
7071 2449 — 6957 |’
7071 7348 0632
7071 1.2247 1.5811

‘I)*

I

and

3.0000 0.0000 1.3415
Y Pp* = 0.0000 4.1997 0.0000
1.3415 0.0000 5.9758

3705 .0000 —.0832
(%) = 0000 2381 .0000
—.0832 .0000  .1860
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Also,
220.2958 TR.0080 61.4449

Y G = 78.0080 67.5670 44.9707
61.4449 44.9707 50.5819
The matrix H* is then
26.8082 5.9919 —2.9122
5.9919 3.8309 4468
—2.9122 4468 1.3730

What order of reduced fit is sufficient to explain the variances and covariances in G7
Kirkpatrick et al.(1990) suggested looking at the eigenvalues of the matrix H from a full
rank fit. Below are the values. The sum of all the eigenvalues was , and also shown is the
percentage of that total.

H
Eigenvalue TPercentage
29.0357 7831
4.2922 1158
1.8161 .0490
1.3558 0366
.5445 0147
.0355 .0010

The majority of change in elements in G is explained by a constant, and by a linear
increment. Both suggest that a quadratic function of the polynomials is probably sufficient.
Is there a way to statistically test the reduced orders of fit to determine which is sufficient?
A goodness of fit statistic is &’é where

é=g—§g
and g is a vector of the half-stored elements of the matrix G, i.e.,

8’2(911 fiz - e g2 - 9'66)-

A half-stored matrix of order & has k(k + 1)/2 clements. For k = 6 there are 21 values.
Likewise, g is a vector of haif stored elements of the matrix ®*IT*®* . Although this matrix
also has 21 values, because M has only m < k columns, the number of independent values
is m(m + 1)/2. For m = 3 this number is 6.

The test statistic, €'&, has a Chi-square distribution with k(k + 1)/2 — m(m + 1)/2

degrees of freedom. In the example with m = 3,

3.9622 47467 52006 53239 51165 4.5786

4.7467 89493 11.4068 12.1162 11.0804 8.2986

5.2006 11.4058 15.2402 16.7038 15.7966 12.5186

5.3239 121162 16.7038 19.0868 19.2650 17.2386 |’

5.1165 11.0804 15.7966 19.2650 21.4857 22.4586

4.5786  B.2986 12.5186 17.2386 22.4586 28.1786

H O =
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and the residuals (differences from the original G} are

—1.4622 .1533 —.6006 —.7239 -.8165 —.5786
1533 4.5007 6942 1838 8196 2.4014
—.6006 .6942 —.0402 -2.2038 -1.1966 —.0186
—.7239 1838 -—-2.2038 9132 —.2650 —.3386 |°
—.8165 .B196 ~1.1966 —.2650  3.3143 --2.1586
—.5786 2.4014 —.0186 —.3386 21586 1.8214

so that the goodness of fit statistic is
&'é = 59.3476,

with 21-6=15 degrees of freedom.

Is a fit of order 3 poorer than a fit of order 57 An F-statistic is possible by taking the
difference in the goodness of fit statistics, divided by an estimate of the residual variance.
The residual variance is estimated from a fit of order £ — 1 or in this case of order 5. The
goodness of fit statistie for order 5 was 7.2139 with 21-15=6 degrees of freedom. Hemnce
the residual variance is

o =7.2139/6 = 1.2023.

The F-statistic to test if a fit of order 3 is different from a fit of order 5 is

o (Ben— — &ens)/(15 )

0—2
(59.3476 — 7.2139)/9
o 1.2023

5.7926/1.2023 = 4.8180,

with {9,6) degrees of freedom. The table F-value at the (P = .05) level is 4.10. Thus, the
difference is significant, and a fit of order 5 is better than a fit of order 3.

8.4 Basic Structure of RRM

Randoein regression models hiave a basic structure that is similar in most applications. A
simplified RRM for a single trait can be written as

Yijknt = Fi+ _f}(t)j + T'((L,l‘, NLI)-‘: + T(Peaﬂ:a 7”'2)‘6 + Eijhn:ts

where

Yijknt 15 the nt" observation on the & animal at time ¢ belonging to the i** fixed factor

and the ;" group;
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I} is a fixed effect that is independent of the time scale for the observations, such as a
cage effect, a location effect or a herd-test date effect;

¢(t); is a function or functions that account for the phenotypic trajectory of the average
observations across all animals belonging to the j** group;

r{a,z,ml)x = Y72 GkeTiji:e is the notation adopted for a random regression function. In
this case, @ denotes the additive genetic effects of the k' animal, z is the vector of
time covariates, and ml is the order of the regression function. So that z;j;.., are
the covariables related to time £, and a4, are the animal additive genetic regression
coefficients to be estimated;

r(pe,x,m2)k = 3.1 Preijiee s a similar random regression function for the permanent
environmental (pe) effects of the &** animal; and

€ijkn:¢ 15 a random residual effect with mean null and with possibly different variances for
each t or functions of {.

The function, g{¢};, can be either linear or nonlinear in t. Such a function is necessary
in a RRM to account for the phenotypic relationship between y and the time covariables
(or other types of covariables that could be used in a RRM). In a test day model, g(t);
accounts for different lactation curve shapes for groups of animals defined by years of
birth, parity number, and age and season of calving within parities, for example. With
growth data, g(t); accounts for the growth curve of males or females of breed X or breed
Y from young or old dams.

If the shape of the phenotypic relationship is not known or is nonlinear, then g(t); could
be a set of classification variables. Classification variables take up more degrees of freedom
and requirc a large number of observations per level, but they do not force the user to
explicitly define the shape of the trajectory. A mathematical function, on the other hand,
does not use many degrees of freedom and gives a smooth trajectory over time regardless of
the number of observations. The choice of classification variables or mathematical function
is up to the researcher. If data are very nuinerous, and the mathematical function fits the
data well, then either approach will generally lead to the same results. The phenotypic
relationships, g{t};, are important to a RRM analysis and deserve care and effort in their
correct specification.

The random regressions are intended to model the deviations around the phenotypic
trajectories. The pattern of variation may be very different in shape or appearance from
the phenotypic relationships, and may be more simple than g(t);. Orthogonal polynomials
of standardized units of time have been recommended as covariables (Kirkpatrick et al.,
1990). Orthogonal polynomials have computational advantages. The primary general
advantage is the reduced correlations among the estimated coefficients. A standardized
unit of time, w, ranges from -1 to +1, and is derived as

_ 2% (t - tmin)

(tmar - tmin)

_]_’
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where t,;, is the earliest date {or the youngest age) and f,; is the latest date (or oldest
age) represented in the data. The order of the orthogonal polynomials would be m) and
ma, i.e. the highest power of polynomial. Note that my and ms do not need to be equal,
but often (for simplicity of computing) they are chosen to be the same. Meyer(2000)
and Pool et al. (2000}, for example, compared many RRM modeis with different orders
of orthogonal polynomials for the genetic and pe effects. Several types of orthogonal
polynomials are available, but Legendre polynomials have heen utilized (Kirkpatrick et
al., 1990).

The residual variance should not be assumed to be constant from ton t0 tmez. The
residual effect is also known as a temporary environmental effect. Changes in residual
variance might be predictable depending on the trajectory of the phenotypic data. For
example, if RRM were being applied to growth data, weights may increase linearly with
age, and the variance of weights may increase quadratically with age. Thus, the residual
variance would be expected to increase in a similar manner as the phenotyvpic variance.
Residual variances can be fit with a function of ¢, or assumed to have an autoregressive
siructure, or can be grouped into intervals having equal variance within the intervals.
Research in this area is needed.

In matrix notation the RRM is

y =Xb+Zia+ Zsp +e,

where b contains F; and g(t); cffects, a contains m; + 1 additive genetic regression coeffi-
cients for each animal, p contains ma + 1 permanent environmental regression coefficients
for each animal with data, and e contains the temporary environmental effects. Also,

a AxG 0 0
Var | p | = 0 IeP 0 |,
e 0 0 R

where G is the variance-covariance matrix of the additive genetic random regression coeffi-
cients of order m2; +1; P is the variance-covariance matrix of the permanent environmental
random regression coefficients of order m; + 1; and R is a diagonal matrix of temporary
environmental variances which could vary depending on £, or R could be block diagonal
with an autocorrelation structure for each animal’s records. The mixed model equations
{MME) arc represented as

X'R !X X'R-'7Z, X'R1Z, b X'R-ly
ZZR'X ZIR'Z; +AT'@ G ZRZy al=| zZR1y
ZLRTIX ZLRTZ, R 'Z; + I P! p Ry

Assumptions about the distributions of y and other randem variables are not necessary to
derive best linear unbiased predictors (BLUP)(Goldberger, 1962; Henderson, 1984) or the
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MME, but when y is normally distributed then BLUP is also BLP if the model is correct
and variances and covariances are known. In order to estimate the elements of G, P, and
R via Bayesian methods or restricted maximum likelihood, then normality of the random
variables must be assumed (See for example Jamrozik and Schaeffer, 1997).

8.4.1 Example Data Analysis By RRM

Below are the data structure and pedigrees of four dairy cows. Given is the age at which
they were observed for a trait during four visits to one herd.

- Age; Obs. at Visit
Cow Sire Dam Visit1l Visit2 Visit3 Visit 4

1 7 5 22224 34;236 47,239
2 7 6 30,244 42,247 55241 66;244
3 8 5 28,224 40;242

4 8 1 20:220  33;234 44;228

The model equation might be

Uik = Vy+bo+bi(A)+ ba{AY?
+{aw0z0 + a1z + aiz2)
+(piozo + pirz1 + piaza) + ikt

where

V: is a random contemporary group effect which is assumed to follow a normal distri-
J Y Brouf
bution with mean 0 and variance, ¢? = 4.

bo, by, and by are fixed regression coefficients on {A)} = age and age squared which
describes the general relationship between age and the observations,

a0, @31, and a;o are random regression coefficients for animal 1 additive genctic effects,
assumed to follow a multivariate normal distribution with mean vector null and
variance-covariance matrix, G,

Pios Pi1, and pyo are random regression coefficients for animal ¢ permanent environmental
effects, assumed to follow a multivariate normal distribution with mean vector null
and variance-covariance matrix, P,

20, 21, and zy are the Legendre polynomials based on standardized ages and derived as
indicated earlier. The minimum age was set at 18 and the maximuin age was set at
68 for calculating the Legendre polynomials.
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and ¢y is a temporary residual error term assumed to follow a normal distribution with
mean 0 and variance, o2 = 9. In this example, the residual variance is assumed to
be constant across ages.

The model in matrix notation is

y=Xb+Wv+ZaitZp+e,

where

1 22 484 224 1 0 0 0

1 30 900 244 1 0 0 0

1 28 784 224 1 0 0 0

1 34 1156 236 01 0 0

1 42 1764 247 01 0 0

1 40 1600 242 01 00

X=1192 a0 | Y| 22 W=l0o100

1 47 2209 239 00 10

1 55 3025 241 0 010

1 33 10889 234 0O 01 0

1 66 4356 244 0 0 01

1 44 1936 228 00 01

and

7071 —1.0288 8529 0 0 0 0 0 0 0 0 o
0 0 0 7071 —.6369 —.1493 0 0 0 0 0 0
0 0 0 0 0 0 7071 —.7345 0632 0 0 0
7071 -.4409 —.4B32 0 0 0 0 0 0 0 0 0
0 0 0 7071 —.0480 —.7868 0 0 0 0 0 0
7 - 0 0 0 0 0 0 7071 —.1470 —.7564 0 0 0
= 0 0 0 0 0 0 0 0 07071 —1.1268  1.2168
7071 1960  —-.7299 0 0 0 0 0 0 0 0 0
0 0 0 7071 5879 —.2441 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 T0T1  —.4880 4111
0 0 0 7071 11268 1.2168 0 0 0 0 0 0
0 0 o 0 0 0 0 0 0 .7071 0490 --.7868

In order to reduce rounding errors the covariates of age for the fixed regressions can be
forced to have a mean of approximately zero by subtracting 38 from all ages and 1642
from all ages squared. Then

1 —16 —1158
1 -8 742
1 —-10 —858
1 —4 —486
14 122
12 42
X=11 _18 —1242
1 9 567
1 17 1383
1 -5 —553
1 28 2714
1 6 204




114

CHAPTER 8. RANDOM REGRESSION MODELS

The mixed model equations that need to be constructed to provide estimated breeding
values are as follows;

XX X'w

WX WW+Ik
ZX Zw

0 0

Z’X ZI'W

where k) = a2 /02.

X'Z 0
W'Z 0
ZZ+A" QG e A" @G el
Ab"@'G_ng Ahb®G_lU§
27 0

X'Z
W'Z
Z'Z
0

ZZ+ 1P ‘a2

X'y
W'y
Z'y
0
Z'y

The entire MME can not be presented (order 43), but parts of the MME are given

below.

X'X

3000
o | 04 00
WW=109030]
000 2
3 —34 —2758
W | 4 —16 —1648
WX=13 a1 1307 |
2 34 3008
12 5 -1
=1 5 1995 166,883 |,
~1 166,883 14,415,319

Z'Z is composed of the following four blocks of order 3, for the four animals with

records;

Animal 1

Animal 2

Animal 3

Animal 4

1.5
—.90086
—.2335

2

1
—.6235
—.4902

1.5
—1.1085
0134

—.9006 —.2335
1.2912 —.8383
—.8383 1.5457

275 0269

—.6235
.b615
0648

—1.1085
1.5121
—1.2082

7275 2.0233 1.3612 |,
0259 13612 2.1815

—.4902
0648
H761

0134
—1.2082
2.2687

]

1
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and Z'X is
21213 —=7.7781  —761.5467
—1.2737 19.9884 1516.7598
—.3302 -—18.7627 -1201.416
2.8284 28.9911 2458.5867
1.0288 46.4439 4337.8027
7'X — 0366 27.9679 2979.5959
1.4142 —-5.6568 —636.3900
— 8818 7.0540 636.6324
—.6932 —2.1448 --22.4568
21213 —12.0207 —1061.3570
—1.5677 23.0259 1684.8063

0189 245677 —1515.2470
The right hand sides of the MME are

2823
X'y = 2070 |,
68, 064

692
945
714 {°
472 F
and
494.2629
—287.6596
—-90.7117
690.1296
249.1165
7.3023
329.5086
—200.1692
—168.8920
482.2422
—351.3606
—7.8918

Z'y =

The assumed variance-covariance matrices of the additive and permanent environmental
effects need to be known for BLUP. Let

94.0000 —3.8500 .03098
G = —-3.8500 15000 -.0144 |,
.03098 -—.0144  .0014

63.0000 —2.1263 0447
P=1 21263 5058 00486 |,
0447 —.00486 0005
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and o2 = 4, and o2 = 9. The solutions to MME are

b = ( 234.4349 15957 —.01600 )

e’:( ~ 8213 15179 0770 —.7736 )

Let the solutions for the animal additive genetic random regression coeflicients be pre-
sented as follows, where each row represents the coefficients for one animal (i.e. for the
intercept, linear, and quadratic regressions).

~1.747298 124789 —.001223
5774393 —.553G689  .005612
—~2.809020 475908 —.004998
—4.926784 159792 —.001347
—2.002508  .301390 --.003149
3285314 —.297302  .002097
1.692846 —-.215472  .002232
—2.975451  .211306 —.002080

o>
i

Similarly, the solutions for the animal permanent environmental random regression coef-
ficients can be given as

370066 059735 --.000696
| asos127 250192 004002
P=1 _ 404304 145076 —.001497

—3.513555 045355 —.001899

The problem is to rank the animals for selection purposes. If animals are ranked on
the basis of ag, (the intercepts) then animal 2 would be the highest (if that was desirable).
If ranked on the basis of a; {the linear regression coefficient), then animal 3 would be the
highest, and if ranked on the basis of a2 (the quadratic coefficient), then animal 2 would be
the highest. To properly rank the animals, an EBV at different ages should be calculated,
and then these could be combined with appropriate economic weights. Suppose EBVs for
24, 36, and 48 mo of age are of particular interest, and the economic weights for these
ages might be 2, 1, and .5, respectively. A Total Economic Value can be calculated as

TEV = 2 + EBV(24) + 1 * EBV(36) + .5 + EBV(48).

The Legendre polynomials for ages 24, 36, and 48 mo are given in the rows of the following
matrix L,
7071 —.8328 L3061
L= .7071 —.3429 —.6046
J071 0 .2449  —.6957

The results are shown in the following table.
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Animal EBV(24) EBV(36) EBV(48) TEV
1 -1.34 -1.28 -1.20 -4.56
2 4.55 4.27 3.94 1533
3 -2.45 -2.21 -1.93 -807
4 -3.62 -3.54 -3.44 -12.49
5 -1.67 -1.52 -1.34  -5.52
6 2.57 2.42 2.25 8.69
7 1.38 1.27 1.14 4.60
8 -2.28 -2.18 -2.05  -7.76

The animal with the highest TEV was animal 2. All animals ranked rather similarly at
cach age on their EBVs. Rankings of animals could change with age. Thus, the pattern
of growth could be changed to one that is desirable.

8.5 Estimation of Parameters

8.5.1 EM-REML

Estimation of the coionmon residual variance is
87 =(y'y - b'X'y - &W'y —a, M'y — p'M'y) /(N — r(X)},
where

y'y = 665,035,

F'W'y = 664877.89),
N-r(X) = 12-3=49,
&2 = 17.4570.

Let C represent the inverse of the MME cocfficient matrix, and let C,, and C,p Tep-
resent the submatrices of C corresponding to animal additive genctic effects and animal
permanent environmental effects, respectively. Note that Cg, is of order 24, and C,;, has
order 12. Because the coefficients are ordered within animals, then both Cye and C,yp can
be partitioned into submatrices each of order 3 by animals. The submatrix C,. represents
the inverse elements for the visit effects.

The variance due to visit effects is estimated as usual in EM-REML as

where
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tr(Ceey = 1.2890,
62 = (3.5828 + (1.2890)17.4570)/4,
= 6.5214.

To estimate G, first calculate A’A~14 using the a given in the previous section, which
gives
66.679755 —4.925545  .048641
a’Ala=| —4.925545 557022 —.005720
.048641  —.005720  .00005%

The tricky part is calculating the appropriate traces. They arc

68.347139 —2.689821  .021540
tra((ATP @ 13)Cua) = | —2.689821  1.284185 —.012359
021540  —.012359  .001240

1

where the trace is the sum of the 3 by 3 diagonal blocks of the matrix product indicated.
Theses are combined to estiinate G as
G = (AA'a+try((A7 ®13)Can)d2)/8,
157.476730 —6.485209  .053082
—6.485209  2.871876 —.027685
053082 —.027685  .002714

Similarly, the estimate of P is also a 3 by 3 matrix.

31.222084 —1.320890  .025192

PP = | —1.320890  .089268 —.001369 |,
025192 —.001369  .000023
18.467546 -.590303  .012875

tr3(C,p) = | ~—.590303 209410 -—.001880 |,

012875 --.001880  .000217

P = (p'p+tr3(Cpp)ol)/4,

88.402374 —2.906448 062487

—2.906448 936231 —.008547
062487  —.008547 000952

The new parameter estimates would be used to re-construct the MME and to solve
them again. Then repeat the estimation of parameters and continue iterating these steps
until convergence has been achieved, which will be when the global maximum has been
attained.
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8.5.2 Bayesian Estimation

Using Gibbs sampling, as with other models, the MME would be solved and new samples
generated for the fixed regressions, visit effects, animal additive genetic and animal per-
manent environmental effects by processing one equation at a time. Better performance
can be achieved by using blocks of 3 by 3 matrices for the 3 random regression coefficients
for animal additive genetic and animal permanent envirommental effects. To illustrate,
suppose the diagonal block for animal ¢ additive genetic effects from the MME was

) L7675 —.2017 10346
(ZiZ, + 0" Gy 'ol2 ) = Qi = | —.2017  19.7604 173.6637 |,
1.0346  173.6637 17839.79

and that the current ‘solution’ for animal ¢ was a;,

—1.7473
a; = 1248 1,
—.0012

and the current sample value of o2 was 17.4570. To generate a new set of sample additive
genetic effects for animal 7 then

L. Invert Q;, and multiply by the current sample value of o2 which gives

9.8906  .115912 —.001720
Q;lol = 115912 967441 —.009424
—.001720 —.009424  .001070

2. Apply a Cholesky decomposition to the previous matrix,

3.144938 0 0
Chol(Q;'02) = 036857 982895 0 | =L.
—.000541 —.009568 031282

3. Generate a vector of three random normal deviates, suppose they are

£ = ( 1.0673 —.5802 —.90814 )

4. The new sample values for animal ¢ additive genetic random regression coefficients

is then
a; = éq—i-Lf,
—1.7473 3.144938 0 0 1.0673
= d248 ) + 036857 082895 0 —.h892 1,
—~.0012 —.000541 —.009568 .031282 —.0814
1.6093
= —.4150

—.0269
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The animal permanent envirenmental regression coeflicients would be handled in the
saine way as the animal additive genetic coefficients. After new sample values for all effects
in the MME have been obtained, then the following quadratic forms are calculated, for
example,

cde = 4.11,

64.71 —-4.15 0532
aAA la = —4.15 51 —.0049 |,
0532 —.004¢ .000054
= Gy,

37.22  —1.25  .0247
pp = —1.25  .0873 -.0011 {,
0247 —.0011 .000022

= Py,
e = yiwﬁ)
ee = 74.8851.

The forms ¢’c aud e'e follow inverted Chi-square distributions while the other two follow
inverted Wishart distributions. New sample values for the variances would be given by
the following:

;o= de/xg
: o= ee/xh
T = Chol(G."),
Gal = Wishart(T, 8),
S = Chol(Py"),
P! = Wishart(S,4),

and these give new sample values for G and P.



Chapter 9

Multiple Trait Models

9.1 Introduction

Animals are commonly observed for more than one trait because many traits affect overall
profitability. A multiple trait (MT) model is one in which two or more traits are ana-
lyzed simultancously in order to take advantage of genetic and environmental correlations
between traits.

Reasons for using a multiple trait analysis are as follows.

1. Low Heritability Traits. MT models are useful for traits where the difference
between genetic and residnal correlations are large (e.g. greater than .5 difference)
or where one trait has a much higher heritability than the other trait. Traits with
low heritability tend to gain in accuracy when analyzed with high heritability traits,
although all traits benefit to some degree from the simultaneous analysis.

9. Culling. Traits that occur at different times in the life of the animal, such that
culling of animals may occur between measurements, are suitable for M'T analyses.
Consequently, animals which have observations later in life tend to be selected based
on their perforinance for earlier traits. Thus, analysis of later life traits by themselves
could suffer from the effects of culling bias, and the resulting EBV could lead to
errors in selecting future parents. An MT analysis that includes all observations on
an animal upon which culling decisions have been based, has been shown to account
for the selection that has taken place, and thercfore gives unbiased cstimates of
breeding values for all traits.

3. Missing Traits. Some traits may be difficult to record on animals, and therefore,
relatively few animals are actually measured for a trait. However, because this
trait is genetically correlated to the more easily recorded traits, then a multiple
trait analysis could help the accuracy of the less recorded trait. An example in dairy

121
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cattle could be a newly introduced conformation trait for which only the more recent
animals have been scored.

For cases where heritabilities of traits are similar in magnitude, or where both genetic
and residual correlations are relatively the same, or where every animal is measured for all
traits, the benefits of a MT analysis will be almost unnoticeable. However, if culling bias
exists, then an M'T analysis should be performed even if the heritabilities and correlations
are similar among traits.

The accuracy of the assumed genetic and residual correlations are critical to the success
of a multiple trait analysis. If the parameter estimates are greatly different from the
unknown true values, then an MT analysis could do as much harm as it might do good.

Lastly, multiple trait analyses can be very costly and time consuming to execute. MT
programs are more complicated than single trait programs, more memory and disk storage
are usually needed, and verification of results might be more comnplicated. These have to
be balanced against the benefits of an MT analysis. If culling bias is the main concern,
then an MT model mnust be used regardless of the costs or no analysis should be done at
all, except for the traits not affected by culling bias.

9.2 Models

Consider two traits with a single observation per trait on animals. A model should be
specified separately for each trait. Usually, the same model is assumed for each trait,
and this can greatly simplify the computational aspects, but such an assuinption may be
unrealistic in many situations.

Let the model equation for trait 1 be
ti; = Bu +ay + ey,

where By, is a fixed effect with pp levels, ay; is a random, animal additive genetic effect for
trait 1, and eqy; is a random residual environmental effect for trait 1. The model equation
for trait 2 might be

y2i; = Coi + ag; + eaij,

where Cy; is a fixed effect (different from By; for trait 1) with po levels, ay; is a random,
animal additive genetic effect for trait 2, and es; is a random residual environmental cifect
for trait 2.

For example, 3145 could be a trait like birthweight, so that By; could identify animals
born in the same season. Irait 2 could be yearling weights and C%; could identify con-
temporary groups of animals of the same sex, same herd, and same rearing unit within
herd.
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Because the two traits will be analyzed simultaneously, the variances and covariances
need to be specified for the traits together. For example, the additive genetic variance-
covariance (VCV) matrix could be written as

g1 g12 12
G _ _— )
( g12 g2 ) ( 2 15 )
and the residual environmental VOV matrix as
- ™11 Ti2 _ 10 5
R_(?‘lg TQQ)_( 5 100).

The genetic and residual correlations are, respectively,

pg = 2/(15)° = 516,
pr = 5/(1000)° = 158

with

angd

For all data, then
A A
Var ay _ g1 g12 .
ap Agiz Agn
The structure of the residual VCV matrix over all observations can be written several

ways depending on whether allowance is made for missing observations on either trait for
some animals. If all animals were observed for both traits, then

23] - IT“ IT]Q
Var( eg ) B ( Iriz Troo ) '
9.3 Example Data

The following data were available following the previous models. Note that some of the
trait 2 observations arve missing, and therefore, possible culling bias is a reason to use a
multiple trait analysis.
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Animal Sire Dam B-level C-level Trait1 Trait 2
1 0 0 1 1 2.3
2 0 0 1 2 2.6
3 0 0 1 3 9.8 53
4 0 0 1 1 4.7 4
5 0 0 1 2 5.5 63
6 1 3 2 3 2.0
7 1 4 2 2 8.4 39
8 1 9 2 3 8.2 41
9 2 3 2 1 9.0 27
10 2 4 2 1 7.8 32
i1 2 5 2 2 2.8
12 6 10 2 3 7.4 67

9.3.1 The MIME

Organize the data by traits within animals. The residual covariance matrix is given by iU

below.
10 5
R= (0 )

Two computing algorithims will be employed in order to simplify the multiple trait
analysis.

1. Assume that there is a common model for all traits. In this case the common model
is
Yight = By + Co + oy + egija.

There are 2 levels of factor B, three levels of factor C, and 12 animals. Previously,
factor B was only associated with trait 1. Therefore, during the analysis (by iteration
on data, for example), the solutions for the B3 factor for trait 2 must always be kept
at zero. Similarly, the C factor was only for trait 2, so that the sotutions for the C
factor pertaining to trait 1 must always be kept at zero.

2. Assume that all animals are observed for all traits. Therefore, R is the same for all
animals and missing observations can be left at 0. However, in order to handle the
missing observations appropriately, the missing observation has to be assigned to a
fixed factor, such that this observation is the only observation in that level of the
factor. For example, for Animal 1 in the table, trait 2 is missing. Therelore, this
observation is assigned to level 4 of factor C, (3. Animals which have trait 2 are
assigned to the appropriate level of factor C. Similarly, Animal 2 is also missing trait
2 and is assigned to level 5 of factor C. The other missing trait 2 observations belong
to Animals 6 and 11, which are assigned to levels 6 and 7 of factor C, respectively.
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Because trait 1 is present for all animals, all trait 1 observations are assigned to the
appropriate levels of factor B. If trait 1 was missing for an animal, then a new level
of factor B would be created for that animal. By putting an animal into a level of
a factor by itself automatically takes care of the observation being missing. This
algorithm is due to Bruce Tier (AGBU-1998-PhD Thesis).

To prove that this works, take R™! and do a Gaussian elimination (i.e. absorption)
of the row and column corresponding to the missing trait, say trait 2,

1,12 12
r r ot (7.22)71 P12 22
7.12 7.2'2 7‘22 3

Recall that for a matrix of order 2 that

pll = ra/ | R,

T‘l2 = 7?‘12/ | R l,
= /R,
IR | = (riiree — riare)

then

T

11 7‘12(7_22)—1?‘12 {ros — 1'12(7‘11)4]7'12)/ ‘ R f

= ri(ree — ri2(rn) tre/ri (e ree - rieri2)

= {ru)*

whicl is exactly the weight applied to records on animals with only trait 1 observed.
This proof can be extended to any numher of traits recorded and any number missing,

by partitioning R into
ROO Rom
R?TLD R/m,m '

where the subscript o refers to traits that were observed and m refers to traits that
were missing on an animal. Then it can be easily shown that

Rﬁl = R _ Ro™ (Rmm)—lRmo
00 .
Iteration on Data Scheme

The following will demonstrate the iteration on data technique to solve MMIS for the
multiple traits, using the example data. Assume that the iterated solutions are currently
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at the following values.

By 5.0209
Big 6.5592
Coy 20.0882
Cay 49.0675
Caa = 51.9553 |,
Coy 2.8590
Chas 0.1322
Cos 2.1189
Cor 1.1463

and the animal additive genetic current solutions are in the following table.

Animal Sire Dam Trait 1 Trait 2
1 0 0 -.3573  -1.6772
2 0 0 -0730  1.0418
3 0 0 .4105  1.1707
4 0 0 -.0449  -1.4923
5 0 0 0646 9570
6 1 3 -.1033  -.1410
7 1 4 -.1975  -2.2983
8 1 5 -.1410 -.9633
9 2 3 8079 1.6227
10 2 4 1426 1.1273
11 2 ] -.1830 6418
12 6 10 1554 1.5089

The MME arc ordered by B-factor equations, then C-factor, then animal additive
genctic.

Factor B. Go through the data, one animal at a time. For animal 1, for example, take
the observations and subtract the solutions for all other factors, except factor B, i.e.,

23 —an _ 230+03573 \ 2.6573
0 Cag—az |\ 0.00—-28590+ 1.6772 | |\ —1.1818 }°
Premultiply by R~ and accuimlate into the right hand sides for factor B, level 1.
R 2.6573 _ 0.2786
—1.1818 —0.0257 J°
The accumulated right-land-sides for level B1 over the (irst five animals is then

RHS — ( 2.5748 )

—0.1697
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and a new solution for level 1 of factor B for trait one is obtained by dividing the right
hand side, 2.5748, by the diagonal which is 5! = 0.5128, giving 5.0209. Because
factor B is not in the model for trait 2, then the solution for the second trait is
ignored, and I32; should be set to 0.

Similarly for level B2, after accumulating the deviations on animals 6 through 12,

wns— (470
and the new level 2 solution for factor B is
4.7092/(71) = 6.5592,
and the solution for trait 2, Bag, must be made 0.
Factor C. Go through the data a second time. Subtract solutions for all other factors

except those for factor C. Accumulate the deviations in the appropriate right-hand-
sides for the three levels of C. For animal 1,

93— DBy —ay | _ { 230 - 5.0209+03573 | _ { —2.3636
0 - ag - 0.00+16772 |\ 16772 }°

Premultiply by R™! to give

R-! —2.3636 } { —0.2510
1.6772 |~ 0.0293
The 0.0293 is accumulated in the RHS for level 4 of factor C because in this case

the trait 2 obscrvation was missing. Because this is the only observation in level 4,
the new solution would be

gy = 0.0293/7% = 2.8590.

For animal 2,

26—By; — a2 \ [ 2.6-50209+0.0730 } _ [ —2.3479
0 — a2 B 0.0 1.0418 /| |\ -1.0418 |
Premultiply by R™! to give

R-! —-2.3479 \ —().2355
—1.0418 /| 0.0013356 J°
The 0.0013556 is accurmulated in the RHS for level 5 of factor C because in this ease

the trait 2 observation was missing. Because this is the only observation in levet 5,
the new solution would be

Cys = 0.0013556/7%% = 0.132171.
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For animal 3, where both traits were observed, for example,

98—By—az | _ [ 9.80~5.0209 — 04106 Y 4.3686

53 — ags N 53.00 — 1.1707 | \ 51.8293 |~
Animal 3 belonged to level 3 of factor C. Pre-multiply by R™! to obtain

po [ 43686\ _ (01823
51.8293 0.5092 |-

The value 0.5092 is added to the right hand sides for level 3 of Factor C.

After processing all 12 animals, the right-hand-sides for each level of factor C are

RHSy, = 0.6181,
RHSy = 1.0063,
RHSy3 = 1.5986,
RHS,y = 0.0293,
RHSy, = 0.0013556,
RHSs = 0.0217,
RHSs; = (0.0118.

The new solutions are

Cyi = RHSy /3% = 20.0883,
Coe = RHSy /2% = 49.0575,
Chy = RHSy/3r = 51.9553,

Coy = RHS2/r?? = 2.8590,
Con = RHS5/r*? = 0.132171,
Cog = RHSQG/T‘ZE = 2.1189,

Cor = RHSyu/r* = 1.1463.

Animal Additive Genetic. The inveise of the additive genetic relationship matrix for
the twelve animals is

5 0 1 1 1 -2 -2 -2 0 0 0 0

6 5 1 1 1 0o 0o 0 —2 -2 -2 0

1 1 4 0 0 -2 0 0 -2 0 0 0

1 1 0 4 0 0 -2 0 0 -2 0 0

1 i 0 0 4 0 0 -2 0 0 -2 0

Al = lr-2 0 -2 0 0 5 o o o 1 0 -2
2{ -2 0 0 -2 0 0 4 0 0 0 0 0O
-2 0 0 0 -2 0 0 4 0 0 0 O

0O -2 -2 0 0 0 0 0 4 0 0 O

0 -2 0 -2 0o 1 0o 0o 0 5 0 -2

0o -2 ¢ 0 -2 0o 0 0 0 0 4 0

o 0o o o o0 -2 0 0 06 -2 0 4
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To get a new solution for Animal 1, for example, the record and its adjustments are
23—Byy \ _ [ 230-50200 ) [ -2.7209
0 — Cay L 00028590 /  \ -2.8590 ]~
Prenmultiply this by R}, giving

RIS — ( —0.2644 )

—0.01537

Now adjustments need to be made duc to the relationship matrix. For Animal 1
these are

1
ADJ = 5(4137(14 — a5 + 2as + 2a7 + 2ag),
[ ~0.6569
N -3.7203 /-

AD.J must be pre-multiplied by G~} and added to RHS. The end result must be pre-
multiplied by the inverse of the diagonal block for Animal 1, which is R=!' +2.5G™L.

1 15 —2 —0.6569
-1 _
G ADJS = 11(v2 1)(4.7203)'
B —0.219355
- —0.218773 |

4 _ —~0.483755
RHS+G ADJ = (4.234143 '

The solutions for Animal 1 are then

~0.3573
-1 9g@-Ny! -1 =
(R -+25G7) 7 (RHS + G ADJ) (—1.6772 )

The same process is followed for each animal, until new sclutions have been computed
for each animal.

The results shown above were converged (to 4 decimal places at least), and therefore,
the new solutions were identical to the old ones. Howcver, this process is repeated until
convergence is achieved, as it is here.

9.4 Estimation of Covariance Matrices

Derivative free REML is one aption for estimating variances and covariances in a multi-
trait situation, such as with MTDFREML. MTDFREML uses the simplex algorithm of
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finding the global maximum of the likelihood function. Suppoese there are two traits and
only additive and residual covariance matrices. Then there are a total of six parameters
to be estimated. MTDFREML would begin by evaluating seven likelihoods, and then do
more to find the maximum. If the number of traits is increased to 3, then there are 12
parameters to be estimated and 13 initial likelihoods to evaluate. The numbers quickly
increase as the number of traits increases. Also, if there is another randow factor in the
models, then there is another increase in parameters. Soon, the number of likelihood
evaluations becoimes too large to permit analysis.

The EM algorithm is not suitable due to the requirement for the traces of inverse
elements that are needed. Inverses of the MME are much more of a problem than the log
of the determinant of the MME coefficient matrix, and therefore, EM-REML would not
be practical.

The Bayesian approach via Gibbs Sampling is very feasible, but the number of necessary
samples might be too large or take too much time to complete. This section is intended
to describe the Gibbs sampling approach to the multiple trait problem. Use will be made
of the Iteration on Data algorithm given in the previcus section.

9.4.1 Sampling Solutions to MME

For a {-trait analysis, any solution vector for a fixed effect factor in the MME is a § x 1
vector, and can be represented as

B = (XRT'X)TXIR s — W),
then a new sample vector is generated by
B; =B + Lv,
where
LL = (X'R'X))™,

and v is a £ x 1 vector of random normal deviates.

For lactor B and C effects in the example, because factor B is associated with trait 1
only, and factor C is associated with trait 2 only, the sampling procedure for these effects
are scalar. Thus, the new By; was 5.0209, and the diagonal of the MME corresponding
to that equation was 5r''. Therefore, the variance of the estimate would be the iuverse of
this or 1/0.5128. A new sample value would be

B, =5.0209 + RND + 1.95,

so that if RND = —0.22, then the new By; = 4.5919. Similarly, for C%; the cstimate was
20.0883 and the diagonal element of the MME for Cy was 3r%2 = 0307692, and a new

sample value would be
Cyy = 20.0883 -+ RN D » 32.5,
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and if RND = 0.43, then Cs; = 34.0633.

For the additive genetic effects of animals, using animal 1 as an example, the solution

vector was
ay — —0.3573
S S v B

and the diagonal block of the MME for this animal was

. 35117 —0.4597
1 -1 _
R +25+G™ = ( _0.4597  0.2375 ) :

The diagonal block must be inverted and then decomposed via the Cholesky decomposi-

tion, i.e.

0.3814 0.7381 \ { 0.6176 0] 0.6176 1.1951

0.7381 56383 / |\ 1.1951 2.0518 0 2.0518 /-
Generate a t by 1 vector of random normal deviates, say,

o [ —Le794
o 0.5536 °
then the new sample values for the animal additive genetic effects is
o — —0.3573 N 0.6176 0 -1.6794 } { --1.0371
P —16772 1.1951 2.0518 0.5536 |\ —0.8711 /-

9.4.2 Sampling New Covariance Matrices

If a; is the ¢ x 1 vector of animal solutions for trait 1, then form
U:('c’q an -+ a ),

followed by
S, = (UAT'U 4 1,G,).
If v =0, then

S, U'A-'U = ( 0.5623  2.1843 )

2.1843 16.6941

with ¢ = 12 degrees of freedom. Invert this matrix and apply a Cholesky decomposition,

giving
1.9019 0
—0.2488 0.2447 |~

This matrix is supplied to a Wishart distribution random generator along with g as the
degrees of freedom, and from this a new G™! is obtained.
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The residual effects for each animal are obtained in a similar manner as in the iteration
on data. Subtract the sample values of each of the effects of the model (for each trait)
from the observations, e; = v — wifs. The residuals, for example, could be

—-2.3636 —1.1818
-2.3480 —1.1740
4.3686  —0.1260
—0.2760 —14.5960
0.4145 12.9856
—-3.9559 —-1.9779
2.0383 —11.7592
1.7818  —9.9920
2.1329 5.2890
1.0982  10.7845
—-3.5762 —1.7881
0.6854  13.53568

Note that within traits the residuals sum to zero. Also, that there are BLUP estimates of
the residuals for the missing trait 2 observations.

Once the residuals are calculated for all animais, then calculate

e 72,4247 19.2601
EE = ( 19.2601 957.1828 ) '

Let
S. = (E'E + v.R,),

which is then inverted and a Cholesky decomposition is applied to the inverse, i.e.
-1
L.L, =S,

where L, is supplied to a Wishart distribution random number generator to give a new
sample matrix for the inverse of the residual variances and covariances, R™1.

The sampling process must be repeated until it converges to he samples from the
posterior distribution. This may take longer than for scalar estimation of variances.



Chapter 10

Non-Additive Genetic Models

10.1 Introduction

In most animal breeding applications, only additive genetic effects are considered in the
evaluation of animals. An infinitesimal animal model is assumed, where animals have been
randomly mating. Application of non-additive genetic models has been lhmited hecause
of difficulties in 1) computing dominance genetic relationships among animals in large
populations; 2} computing the inverse of the dominance genetic covariance matrix {(and
any other cpistatic covariance matrices that could be created); and 3) constructing and
solving Henderson’s MME which iucrease in size equal to the number of animal equations
for each non-additive effect included in the model. These notes describe methods that avoid
the problems in 2) and 3) above. Dominance genetic relationships can be calculated using
a genomic (or gametic) relationship matrix which provides a number that can be used,
but there is a limit to the number of pairs of animals for which a dominance relationship
could be computed.

10.2 The Model

If non-additive genetic effects are included in an animal model, then the assumption of
random mating is still required. Otherwise non-zero covariances can arise between additive
and dominance genetic effects. Thus, the model in these notes is based on approximations
(as is any model}. Consider a simple animal model with additive, dominance, and additive
by dominance genctic effects, and repeated observations per animal, i.c.,

Yij = p o+ d; + {ad); + pi + €ij,

where g is the overall mean, a, is the additive genetic effect of animal ¢, d; is the dominance
genetic effect of animal i, {ad); is the additive by dominance genetic cffect of animal i, p;

133
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is the permanent environmental effect for an animal with records, and e; is the residual
effect, Also,

a Ad?y 0 0 0 0
d 0 Do3 0 0 o0
Var| ad | = 0 0 A#Dd? 0 0
D 0 0 0 Io2 0
e 0 0 0 0 Io2

10.3 Example Data

Below are data and pedigrees for 16 animals. Only animals 11 to 16 have observations.

Animal Sire Dam 1 2 3 4
1 0 0
2 0 0
3 0 0
4 0 0
5 1 2
6 3 4
7 3 2
8 1 4
9 5 8
10 7 6
11 5 6 63 66 56
12 5 6 29 6
13 5 6 i
14 7 8 44 103 85 70
15 7 8 35 77 68
16 9 10 19 20 33 24
Assume initiaily that
ol = 324, of =169,
oh = 49, ol =144,
gl = 400.

10.3.1 Genetic Relationships

The first step is to compute the additive and dominance genetic relationship matrices for
these 16 animals. To do this construct the genomic relationship matrix, which will be of
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order 32 (2 times the number of animals). Tle entire matrix is not given, but only for the
animals with records.

Part of the Genomic Relationship Matrix
for the Example Data (All numbers times 16).

11A 11B | 12A 12B | 13A 13B | 14A 14B | 15A 15B | 16A 168
11A 16 0 8 0 8 0 2 2 2 2 5 1
11B 0 16 0 8 0 8 2 2 2 2 1 5
12A 3 0 16 0 8 0 2 2 2 2 3 1
12B 0 8 0 16 0 8 2 2 2 2 1 5
13A 8 0 8 0 16 0 2 2 2 2 5 1
1318 0 3 0 8 0 16 2 2 2 2 1 5
14A 2 2 2 2 2 2 16 0 8 0 1 5
14B 2 2 2 2 2 2 0 16 0 8 5 1
15A 2 2 2 2 2 2 8 0 16 0 1 5
15B 2 2 2 2 2 2 0 8 0 16 5] 1
16A 9 1 b 1 o 1 1 5 1 3 16 1
168 1 5 1 ) 1 5 5 1 5 1 1 16

Recall that the additive genetic relationship between two individuals is calculated by
adding the four numbers in a block and dividing by 2. Thus, the additive genetic relation-
ship between animals 11 and 16 is

5 1 1 ] 3
anae = 05 (< 4 b b ) =
11.16 (616" 16" 16) 7 &
The dominance genetic relationship is given by multiplying together the opposite corners
of a block and adding the two results together. Hence for animals 11 and 16,

1 1 25 26 13

1
* —) = + — = _— = —.
16 16 256 256 256 128

) 5
duiis = (E * E) +(

The complete A and D for all 16 aniinals follow.

5 0 o 0 & 0 0 8 8 0 4 4 4 4 4 4
¢ 6 0 0O B8 0 & 0O 4 4 4 4 4 4 4 A
¢ 0 16 0 0 & 8 0 0 8 4 4 4 4 4 A
¢6 0 0 16 0 8 0 8 - 4 4 4 4 4 4 A4
8 8 0 016 0 4 4 10 2 8 8 8 4 4 6
o 0o 8 & 0 16 4 4 2 100 8 8 8 4 4 6
o 8 8 0 4 4 16 0 2 1w 4 4 4 8 B 6
A= 1 8 0 0 8 4 4 0 16 100 2 49 4 4 B 8 6
T 8 4 0 4 W0 2 2 10 18 2 6 6 6 6 6 10 [’
o 4 8 4 2 10 100 2 2 18 6 6 6 6 6 10
4 4 4 4 8 8 4 4 6 6 16 &8 8 4 4 6
4 4 4 4 8 8 4 4 6 6 8 16 &8 4 4 6
4 4 4 4 8 8 4 4 6 6 8 8 I6 4 4 6
4 4 4 4 4 4 8 8 6 6 4 4 4 16 8 6
4 4 4 4 4 4 8 8 6 6 4 4 4 B 16 6
4 4 4 4 6 6 6 6 1 10 6 6 6 6 6 17
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and

256 0 0 0 0 0 0 0 32 0 0 0 0 0 0 0

0 2586 0 0 0 0 0 0 0 0 0 0 0 0 0 8

0 0 256 0 0 0 1] 0 0 32 0 0 0 0 0 0

0 0 0 256 0 0 M 0 0 0 0 0 0 0 0 8

0 0 0 0 256 0 0 0 32 0 0 0 0 16 16 12

0 0 0 1] 0 256 0 0 0 32 0 0 0 16 16 12

0 0 0 0 0 0 256 0 0 32 16 16 16 0 0 12

___l_ 0 0 0 0 0 0 0 256 32 0 16 16 16 0 0 12
256 32 0 0 0 32 0 0 32 260 4 16 16 i6 16 16 18
0 0 32 1] 0 32 32 0 4 260 16 16 16 16 16 18

0 0 0 1] 0 0 16 16 16 16 256 G4 64 B 8 26

0 L] 0 0 0 0 16 16 16 16 64 256 G4 B 8 26

0 0 0 0 0 0 16 16 16 1G 04 64 256 B8 B 26

0 0 0 M 16 16 0 0 16 16 8 8 8 2586 G4 26

0 0 0 0 16 16 0 0 16 16 8 B 8 64 256 26

0 8 0 8 12 12 12 12 18 18 26 26 26 26 26 257

From these the matrix A#D can be derived, as

4096 0 0 0 0 0 0
0 4006 0 0 0 0 0

0 0 4096 0 0 0 0

0 0 0 4006 0 0 0

0 0 0 0 4096 0 0

0 0 0 0 0 4096 0

0 0 0 0 0 0 4006

1 0 0 0 0 0 0 0
A#D = 1056 256 0 0 0 320 0 0
0 0 256 0 0 320 320

0 0 0 0 0 0 64

0 0 0 0 0 0 64

0 0 0 0 0 0 64

0 0 0 0 64 64 0

0 0 0 0 64 64 0

0 32 0 32 T2 T2 0M

0 256 0 0 a 0 0 0 0
0 a 0 0 0 0 0 0 32
0 0 956 0 0 0 0 0 0
0 0 0 0 0 0 0 0 32
0 320 0 0 0 0 64 64 T2
0 0 320 0 0 0 64 64 72
0 0 320 64 64 o4 0 0 72

4096 320 0 64 64 64 0 0 72
320 4680 8 96 96 96 96 96 180
0 8 4680 96 96 a6 96 96 180
G4 96 96 409G 512 512 32 32 156
64 96 96 512 4096 512 32 32 156
64 96 9G 512 512 4096 32 32 156
0 96 96 32 32 32 4096 512 156
0 96 96 32 32 32 512 4096 156
72 180 180 156 156 156 156 156 43069

Once A and D have been obtained then any epistatic genetic component covariance matrix
can be obtained. For example, for the additive by additive by dominance component would
be the result of A#A#D.
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10.3.2 HMME

The appropriate MME needed for the analysis as described by Henderson (1984) would
be

X'X X'z X'Z X'z X'Z b X'y
ZX ZZ+ Ak Z2'7 VAV / Z'Z a Z'y
X 7'z 2%+ D Ykn 77 Z'Z d =| Zy |,
Z'X Z'Z YAV Z'Z+ (A#D) s Z'Z ad Z'y
Z'X Z'7 Z'Z Z'Z Z'Z + Ik, P Z'y

where kg = 400/324, ko1 = 400/169, ky; = 400/49, and &, = 400/144. Thus, the order
is 55 for these 16 animals, with only 17 observations. Note that in the above equations,
the inverses of A, D, and (A#D) are necessary. Only the inverse of A can be calculated
casily.

For the example data,

X'y = (805),

and

Cad =
s ] Lo W
M= = D0 00000 00O

180
96

The total sum of squares was 52,005.
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The solutions are

0 0 0 0

0 —0.16 —0.01 0

0 0 0 0

0 ~-0.16 —0.01 0

377 0.41 0.02 0

_3.77 0.41 0.02 0

3.77 —0.57 —0.05 0

) 3.77 . Q.57 - ~0.05 . 0
a=1 o4 |" 97| —o0a | 2T 00 |0 PT 0|’

—2.40 —0.04 ~0.03 0

2.98 3.75 1.56 6.00

—8.76 ~5.43 ~155 443

—10.67 —6.92 205 —6.13

11.00 7.57 2.2 6.42

6.48 404 1.03 2.41

—6.59 —451 ~1.49 —4.96

and i = 43.82. The total genetic merit of an animal can be estimated by adding together
the solutions for the additive, dominance, and additive by dominance genetic values,

0
—0.17
0
—0.17
-3.33
—3.33
3.15
3.15
-2.47
—2.47
8.29
—15.73
—19.65
20.79
11.54
—12.60

= (a+d + ad).

i1-B
Il

On the practical side, the solutions for the individual dominance and additive by domi-
nance solutions should be used in breeding programs, but how? Dominance effects arise
due to particular sire-dam matings, and thus, dominance genetic values could be used to
determine which matings were better. However, additive by dominance genetic soluticns
may be less useful. Perhaps the main point is that if non-additive genetic effects are signif-
icant, then they should be remwoved through the mode] to obtain more accurate estimates
of the additive genetic cffects, assuming that these have a much larger effect than the
nou-additive genetic effects.
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10.4 Estimation of Variances

Take the MME as shown carlier, i.e.

X'X X'Z X'Z X'z X'Z b X'y
ZX TP+ A kg Z'Z Z'Z VA A Z'y
Z'X Z'Z 22+ D kg YA Z'Z d = | Zy |,
Z'X Z'Z YA Z'E+ (A#D) Z'Z ad Z'y
Z'X 7'z Z'E Z'Z Z'Z 4+ 1k, b Z'y

Now subtract the equation for dominance genetic effects from the equation for additive
g

genetic effects, and similarly for the additive by dominance and permanent environmental

effects, giving

A_lkloé—D-lkm(] = 0
A" ka — (A#D) 'kpjad =
A ga I kp = 0
Re-arranging terms, then
d = DA ki ka)a

(A#DYA M (kio/kn)a
p A Hkio/kp)a

w
=B
Il

The oaly inverse that is needed is for A, and the equations to solve are only as large as
the usual animal model MMIE.

The following Gibbs sampling scheme is proposed for this model. (This is a pseudo
Gibbs sampling scheme and may not be appropriate. It does not sample the epistatic
geiletic effects, assuming that these are merely functions of the additive genetic effects.
The solutions for these effects could also be sampled, but the variances of these effects
would need to be approximated in some way. )

1. Using the current sample values for d, ad, and p, adjust the observations and
construct the animal model MME.,

y=y—Z(d + ad + p),

X'X X'Z by Xy
Z'X ZZ-+ Ak a | \Z¥y )
2. Go through thc MME equations and compute new sample values for b and a as
usual, i.e.,

b = [x|(¥ ~ X_:b_; — Za)]/xixs,
by by + RND * (02 /x/x;)%,
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and

d; [zi(¥ — Xib — Z_;a ;) — AT kioa}/(zjz; + a*kio),
Gi -+ RND x (02 /(2i2; + a%ky9))°.

a@;

New samples of the epistatic genetic effects are just functions of the samples values
for a, namely,

d DA‘A[(}C]()/}C(n)a
ad = (A#D)A (kp/kn)a
p = A l(kig/k,)a.

!

Quadratic forms for the variances are needed. Note from the fact that the epistatic
genctic effects are functions of a, then so too are the quadratic forms. Let

wor = (D_lél) = A_l(km/km)fl
wi = ((A#D) 'ad) = A7 (kio/kii)a
Wy = (If)) = Akl(km/kp)é..

The necessary quadratic forms, are then

a’A 'a
e = y—-Xb-Z{a+d+ad+ p),

!
ee

dIWQl = d’D—ld,
ad'w;; = ad'(A#D) !ad,
pPw, = pp,

The computation of these quadratic forms is not very complicated and do not require
the inverses of D or A#D.

New sample values of the variances are given by dividing the quadratic forms by a
random Chi-square variate with appropriate depgrees of freedom. If ¢ is the number
of animals in the relationship matrices, Ny is the mumber of animals with records, N
is the number of records, and CHI(¥) is a random Chi-square variate with i degrees
of freedom, then the new samples are

o2, = a'A lajCHI(g)
op = d'wo/CHI(g),

of, = ad'wy/CHI(g),
on = P'wy/CHI(N),
J,‘Z‘ = e'e/CHI(N).

Form the new variance ratios and begin the process again.
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The only step missing to make this a valid Gibbs sampling scheme is the sampling of
new values for d, ad, and p. For p one could use the diagonals of Z'Z + Ik, for the
variance of p. The problem would be in getting the variances for d and ad which would
require the inverses of D and A#D, respectively, which are being avoided. These could
be approximated by the diagonals of Z'Z + Iky, and Z'Z+Ik;,. This might be better than
not obtaining any new samples of d and ad, but comparisons to Gibbs sampling with the
full MME using the inverses of I} and A#D need to be made.








