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Chapter 1 

Distributions 

1.1 Random Variables 

A random variable is a real-valued function which exists within the domain of a defined 
sample space. A random variable is conventionally designated by a capital letter, say Y 1 

and the value of Y is denoted by a small letter, say y. The sample space is the range of 
values that y can be assigned. The small letter y is used in these notes for Y and y. 

Random variables can be either discrete or continuous. A discrete random variable 
can assume only a finite number of distinct values, such as z:ero or one 1 for example. A 
continuous random variable can assume any value within the range of the sample space. 

Random variables usually follow a distribution function or probability density which 
can be described mathematically in most cases. The distribution could have a number 
of parameters associated with it, such as a mean and variance, and all parameters will 
generally be designated collectively as a vector 0. The goal of statistical aualysis is usually 
to estimate elements of 0 from the observed random variables, y. 

If y represents a random variable from some distribution, then the expectation of y is 
denoted by 

E(y) = µ 

where E() means expected value. The expected value of y depends on its distribution and 
range of allowable values. The expected value is known as the mean, or the first moment 
of the distribution. Also of importance is the variance of y that could be expected with 
that distribution. The variance of a scalar random variable, y, is defined as 

Var(y) = E(y2) -E(y)E(y) = E(y - E(y)) 2 

and is commonly represented as ai. Variances arc known as the second moment of the 
distribution. Variances are always greater than zero. 

9 
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1.2 Discrete Random Variables 

In the general discrete case, the probability that Y takes the value y 1 is defined as the sum 
of the probabilities of all sample points that are assigned the value y. That is, 

P(Y = y) = p(y). 

The probability distribntion of Y lists the probabilities for each value of y. Suppose Y can 
take on four values with the following probabilities: 

y p(y) 
0 1/8 
1 1/4 
2 1/4 
3 3/8 

Any other values of y are assumed to have zero probability, and the sum of all proba­
bilities is 1, as required of a valid distribution function. 

Various kinds of probabilities may be calculated from this table. 

Pr(Y = 0) 
1 

p(O) = 8 

Pr(Y = 0 or Y = 2) p(O) + p(2) 
3 
-
8 

Pr(Y = 1 or Y = 2) p(l) + p(2) 
1 
-
2 

The cumulative distribution function is 

F(y) = Pr(Y <:: y), 

for example, 

F(O) p(O), 

F(l) p(O) +p(l) 
3 
8' 

F(2) p(O) + p(l) + p(2) 
5 

8' 
F(3) p(O) + p(l) + p(2) + p(3) 1. 

Also, if Y1 <:: Y2, then F(y1) <:: F(y,). Finally, 

Pr(YJ < Y <:: Y2) Pr(Y <:: Y2) - Pr(Y <:: Y1) 

F(y2) - F(y1). 



1.2. DISCRETE RANDO!'.! VARIABLES 

The expected value of a discrete random variable is defined as 

E(y) = LY p(y). 
y 

For the example above 1 

E(y) = (0(1/8) + 1(1/4) + 2(1/4) + 3(3/8)) = 1.875. 

Similarly 1 the expected value of a function of Y 1 say g(Y) is given by 

E(g(y)) = L9(Y) p(y). 
y 

Suppose y(y) = y2 , then 

E(y 2) = (0(1/8) + 1(1/4) + 4(1/4) + 9(3/8)) = 4.625. 

The variance of discrete random variable Y is 

For the example, 

Var(y) 

Var(y) = E(y - E(y)) 2 = E(y 2) - [E(y)]2
. 

(-1.875) 2 (1/8) + (-.875) 2 (1/4) + (.125)2 (1/4) + (1125) 2 (3/8) 

4.625 - (1.875)2 

1.109375 

1.2.1 Binomial Distribution 

11 

A common discrete distribution is the binomial distribution. A binomial event can take on 
only two possible outcomes, success or failure, zero or one, heads or tails, diseased or not 
diseased, and so on. The probability of one outcome is q and tbe probability of the other 
outcome is 1-q. Trials, or a succession of binomial events 1 are assumed to be independent. 
The random variable Y is the number of successes. The probability distribution is given 
by 

for y = 0, 1, 2, ... , n and O::; q ::; 1. The number of trials is rz. The expected value and 
variance of the binomial distribution are 

E(y) 

V nr(y) 

nq 

nq(l-q). 
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1.2.2 Poisson Distribution 

A Poisson probability distribution provides a good model for the probability distribution 
of the number Y of rare events that occur in a given space, time, volume, or any other 
dimension, and ,\ is the average value of Y. In dairy cattle brceding 1 for example, the 
number of quality embryos produced by a cow during superovulation can range from O to 
20 (or more)i but the average might be only 3 or 4. The Poisson probability distribution 
is given by 

).Y 
p(y) = 1 exp-A, 

y. 

for y = 0, 1, 2, ... and >. > 0. Also, 

E(y) >. 
Var(y) >.. 

The mean and the variance are equal. 

1.3 General Matrix Results 

Extending results from scalar random variables to vectors of random variables, also called 
a random vector variable, then the following general results apply. Vectors are denoted 
by boldfaced small letters. 

1.3.1 Expectations 

Let y 1 and Y2 be two random vector variables, then for i = 1 or 21 then 

for a vector of length n. If c is a scalar constant, then 

E(cy;) = cµ,. 

Similarly, if C is a matrix of constants, then 

E(Cy,) = Cµ,. 

Finally, 

E(y1 + Y2) E(Y1) + E(y2) 

µl + µ2. 
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1.3.2 Variance-Covariance Matrices 

Let y be a random vector variable of length n, then the variance-covariance matrix of y 
is as follows: 

Var(y) E(yy') - E(y)E(y') 

( 

2 
O"y1 O"y1y2 

2 
Cly1y2 ay2 

O"y:y,, O"y,y,, 

V 

A variance-covariance (VCV) matrix of a random vector contains variances on the diago­
nals and covariances in the off-diagonals. A VCV matrix is square, symmetric and should 
always be positive definite or positive semi-definite, i.e. all of the eigenvalues must be 
positive. Another name for VCV matrix is dispersion matrix or (co)variance matrix. 

Let C be a matrix of constants conformable for multiplication with the vector y, then 

Var(Cy) E(Cyy'C') - E(Cy)E(y'C') 

CE(yy')C' - CE(y )E(y')C' 

C {E(yy') - E(y)E(y')) C' 

CVar(y)C' = CVC'. 

If there are two sets of functions of y, say C1y and C2y, then 

Cov(C,y, C,y) = C1 VC~-

Similarly, if y and z represent two different random vectors, possibly of different orders) 
and if the ( co )variance matrix between these two vectors is W, then 

Cov(C1y, C2z) = C1 we;. 

1.4 Continuous Distributions 

Consider measuring the amount of milk given by a dairy cow at a particular milking. 
Even if a machine of perfect accuracy was used) the amount of milk would be a unique 
point on a continuum of possible values, such a.c; 32.35769842.... kg of milk. As such it 
is mathematically impossible to assign a nonzero probability to all of the infinite possible 
points in the continuum. Thus, a different method of describing a probability distribution 
of a continuous random variable must be used. The sum of the probabilities (if they 
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could be assigned) through the continuum is still assumed to sum to 1. The cumulative 
distribution function of a random variable is 

F(y) = P(Y-<: y), 

for -oo < y < oo. As y approaches -oo, then F(y) approaches 0. As y approaches oo, 
then F(y) approaches 1. Thus, F(y) is said to be a nondecreasing function of y. If a < b, 

then F(a) < F(b). 

If F(y) is the cumulative distribution function of Y, then the probability density function 

of Y is given by 
a F(y) , 

p(y) = By = F (y), 

wherever the derivative exists. Always for p(y) being a probability density function, 

Conversely, 

The expecled value of a continuous random variable y is 

provided that the integral exists. If g(y) is a function of y, then 

E(g(y)) = 1: g(y) JJ(Y) Dy 

provided that the integral exists. Finally, 

Var(y) = E(1/) - [E(y)]2
• 

1.4.1 Uniform Distribution 

The Uniform Distribution is one of the basic distributions in statistics. The primary 
application is in the generation of random numbers from other distributions. 

y U(a, b} 

p(y) U(y I a, b) 

where b is greater than a. In a uniform distributiou, every value between a and b has 
an equal probability of existing, i.e. p(y) = 1/(b - a). Usually b = 1 and a = 0 so that 
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the observed y are between O and 1, representing probabilities. The expected value and 
variance of this distribution are 

E(y) 

E(y') 

Then 

Var(y) 

1' y p(y)By 

1' y/(b - a)By 

1 

2y2 /(b - a) I: 
1 2 1 2 -b /(b - a) - -a /(b - a) 
2 2 
1 2 0 
-(b - a·)/(b - a) 
2 
(a+b)/2, 

1' y2 p(y)By 

1b y2 /(b - a)By 

" 1 
3y3 /(b - a) I~ 

~(b 3 
- a3)/(b - a) 

1 

3[(a + b)2 
- ab]. 

E(y 2 ) - E(y )2 

( 4[(a + b)2 
- ab] - 3(a + b)2 )/12 

(b - a)2 /12. 

Uniform Randon1 Number Generators 

George 1viarsaglia of Florida State University developed a uniform random number gener­
ator that has passed 18 different tests, and which has a long cycle time (i.e. the number 
of calls to the subroutine before the sequence of random numbers begins to repeat itself). 
The strategy utilized is a multiply-with-carry scheme. To give an idea of how this scheme 
works, start with Xn- I = 123456, which is called the seed. The next number would be 
generated by 

Xn 672 * [Xn-1 - (Xn-1/1000) * 1000)] + Xn-J/1000 

672 * [456] + 123 

306555 

This would he followed by 

x,, ~ 672 * 555 + 306 ~ 373266. 
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The number 672 is carefully chosen 1 and there is a process for doing this. The cycle time, 
or period, of the above generator is 336,000. Thus 1 after 336 1000 operations, the numbers 
begin again in the same sequence. This is an example of how multiply-with-carry works. 

fv1arsaglia1s proposed generator makes use of 8 numbers at a time rather than just the 
previous random number, as well as two sequences of numbers rather than just one. The 
period for this generator is 2250 which is a very, very large number. The two sequences are 

Xn 12013Xn-8 + 1066Xn-7 + 1215Xn-6 + 1492Xn-5 

and 

+) 776Xn-4 + 1812Xn-3 + )860Xn-2 + 1941Xn-l + 

carry mod 216
1 

Xn 9272Xn-8 + 7777Xn-7 + 6666Xn-G + 5555Xn-5 

+4444Xn-4 + 3333Xn-3 + 2222Xn-2 + llllXn-1 + 

carry mod 216 . 

The coefficients were carefully chosen. Each sequence provides a 16 bit integer number, 
and therefore, combining the two (by concatenation) gives a 32-bit random integer. 

Example Usage 

The uniform distribution random number generator can be used to simulate a discrete 
random variable (such as that given earlier - Section 1.2}. The steps of a simple program 
to assign ya value based upon the probabilities given earlier, would be as follows: 

call uniform(p) 
y = 0 

if(p.gt.0.125)y=1 
if(p.gt.0.375)y=2 
if(p.gt.0.625)y=3 

1.4.2 Normal Distribution 

The normal distribution has been the most commonly assumed distribution in animal 
breeding and statistical genetics. The properties of the distribution arc well known; com­
putations for estimators are relatively easy; and normal distributions suffice for a majority 
of situations. 

A scalar random variable y has a normal probability distribution if and only if 
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for -oo < x < +00 1 where CT2 is the variance of y and/tis the expected value of y. 

For a random vector variable, y, the multivariate normal density function is 

p(y) = (21r)- 5n IV 1-5 exp(-.5(y -µ)'V- 1(y-µ)) 

denoted as y ,.._, N(µ, V) where V is the variance-covariance L:iatrix of y. Note that the 
determinant of V must be positive, otherwise the density function is undefined. 

Random Norn1al Deviates 

There have been several ways to generate random variables from a normal distribution. 
Let r1 and r2 be values from a uniform distribution generator 1 between O and 1, then two 
random normal deviates can be computed as 

YI = (-2 ln r 1)·5 cos 2rrr 2 , 

a11d 
y, = (-2lnr1) 5 sin2rrr,. 

The quality of the results depend on the quality of the uniform distribution generator. 

Another algorithm again uses two values from a uniform distribution generator, say r1 

and r2, then 

v1 r1 + r1 - 1.0, and 

v2 r2 + r2 - 1.0, 

if q is less than 1 and greater tha11 0, then 

f (-2lnq/q) 5 

J/1 V1*f, 

Y2 V2*f. 

1.4.3 Beta Distribution 

Beta distributions may be assumed for random variables s11ch as heritability, probability 1 

or gene frequency all of which are limited to a value between zero and 1. 

for y E [Oi 1], where the constant of integration is 

C = f(a + b)/(r(a)r(b)), 
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and a and bare greater than 0. The gamma function, f{-) is 

for a> 0. When a= 1, then r(l) = 1. For a being an integer and greater than 1, then 

f(a) = (a - l)f(a - 1) = (a - l)! 

The expectation of a beta variable is 

which simplifies to 

E(y I a,b) = _:1__b_ 
a+ 

The variance of a beta variable is 

ab 
Var(yla,b)= (a+b)2(a+b+l) 

1.4.4 Gamma Distribution 

The Gamma Distribution has the following form; 

p(y I a,b) = Cy"- 1 exp-by' 

for y being greater than 0. Variance components are always supposed to be greater than 
0, thus a gamma distribution may be appropriate. The constant of integration is 

and both a and b arc greater than zero. The mean of the distribution is 

a 
E(y I a,b) = b' 

and the variance of the distribution is 

a 
Var(y I a,b) = b'. 

The coefficient of variation (5tandard deviation divided by the mean) is equal to a-· 5
. 

The gamma distribution is the ,,parent'' distribution for two special cases. \\'hen a= 11 

then the gamma distribution becomes the Exponential Distribution, i.c.1 

p(y I b) = bexp-bY, 
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for y greater than zero. The other case is when a = v /2 and b = 0.5 1 where v is commonly 
known as the degrees of freedom and is greater than zero. Then 

and 

p(y Iv)= Cy(v/2)-1 cxp-y/2, 

(1/2)"/ 2 

C = I'( / ) • V 2 

This is the Central Chi-square distribution. 

1.4.5 Chi-Square Distribution 

In the estimation of variance components, quadratic forms of y arc needed. If y ,..__, N(0 1 I), 
then y'y "' x;P where xf, is a central chi-square distribution with n degrees of freedom 
and n is the length of the random vector variable y. The mean of the central chi-square 
distribution is n, and the variance is 2n. The probability distribution function of s = y'y 
is 

p(s In)= (s)(n/ 2)-l exp ~0.5s/[2° 5"r(0.5n)], 

for J > 0. 

If y ~ N(µ, I), then y'y,....., x;,>. where A is the noncentrality parameter which is equal 
to .5µ' µ. The mean of a noncentral chi-square distribution is n + 2,\ and the variance is 
211 + 8.\. 

If y - N(µ, V), then y'Qy has a nonccntral chi-square distribution only if QV is 
idempotent, i.e. QVQV = QV. The 11oncc11trality parameter is.\= .5µ'QVQµ and the 
mean and variance of the distribution are tr(QV) + 2.\ and 2tr(QV) + 8.\, respectively. 

If there are two quadratic forms of y, say y' Qy and y'Py I and both quadratic forms 
have chi-square distributions, then the two quadratic forms are independent if QVP = 
0. Independence of quadratic forms is uecessary for the construction of valid tests of 
hypotheses. This property is not required for estimation of variances and covariances. 

Randon1 Chi-Square Generator 

Oue way to generate a central Chi-square VRriate with n degrees of freedom is to generate 
a vector of length n of random normal deviates, then sum the squares of these deviates. 
Thus) a very good random normal deviate generator would be necessary. Also, the com­
puting time to generate one Chi-square variate would depend on n, the number of random 
normal deviates to be generated. 

In order to save time for large n, a Chi-square variate is generated using a random 
gamma distribution variate, which requires two uniform variates, r 1 and r 2 , then 
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1 call uniform(r1) 
call uniform(r2) 
V1 = r1 + r! - 1 
V2 = r2 + r2 - 1 
f = V1•V1 + V2•V2 
if ( f .gt.1.0)go to 1 
if (V!.eq.O.O)then 

c=0.0 
else 
c=V2/V1 

endif 
anm = n/2 - 1 
s = dsqrt(anm+anm+1.0) 
y = s*c + anm 
if(y.le.O.O)go to 1 
temp= anm•dlog(y/anm)-s•c 
if(dabs(temp) .gt.85)then 

go to 1 
else 

e = (1.0+c•c)•dexp(temp) 
call uniform(r3) 
if(r3.gt.e)go to 1 

endif 
c at this point y is the gamma variate 

return 

The Chi-square variate with n degrees of freedom is then derived as 

If(n is even) then 
call gamma(iseed,n,gam) 
chi= gam + gam 

else (n is odd) 
m = n-1 

call gamma(iseed,m,gam) 
chi= gam + gam 
call normal(znorm) 
chi= chi+ znorm*znorm 

endif 

Chi-square variates are needed in Gibbs sampling to obtain new sample values of a 
variance component. 
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1.4.6 The Wishart Distribution 

The V\Tbhart Distribution is akin to a multivariate Chi-square Distribution. An entire 
matrix is envisioned of which the diagonals have a Chi-square distribution, and the off­
diagonals have a built-in correlation structure. The resulting matrix is positive definite. 

1. To generate a matrix having a Wishart distribution, let U equal a matrix with q 
rows and m columns (and q > m), then W = U'U is all rn by m positive definite 
matrix. 

2. Perform a Cholesky decomposition of W, so that 

W=TT', 

and T is a lower triangular matrix. 

3. Fill an m by m matrix, Z, with random normal deviates, and fill a vector, V 1 of 
length m with the square roots of random Chi-square variates, such that the first 
element has q - 1 degrees of freedom, the second has q - 2 df, and so on, and the 
last element has q - rn df. 

4. ::--.Jow form a matrix B such that the diag011als arc 

for i = 1 and for i > 1 
i-1 

Bi,i = Vi * Vi + L Zi,j * Zi,J. 

J=l 

The off diagonals of B are 

for j = 2 to m and i = 1, and for i > 1 

i-1 

Bi,j = Bj,i = Zi,j * Vi + L Zk,i * Zk,j' 
k=l 

for j =2 tom and i = 2,(.j-1). 

5. Finally, calculate S = TBT'. 

The matrix S is a random \Vishart matrix based upon the relationships in W. Note that 
the off-diagonals in B should be close to zero, on average. 



22 CHAPTER 1. DISTRIDUTIONS 

1.4.7 The t-Distribution 

The t-distribution is based on the ratio of two independent random variables. The first 
random variable follows a univariate normal distribution, and the second random variable 
follows a central chi-square distribution. Let y ,.,._, N(O, 1) and s"' x; with y and s being 
independent, then 

The mean of at-distribution is the mean of they variablc 1 and the variance is n/(n-2), and 
11 is the degrees of freedom of the distribution. As n becomes larger, the t-distribution 
becomes very similar to the normal distribution in shape. A t-distribution with small 
degrees of freedom would allow more observations to occur in the tails of the distribution, 
and therefore would look like a squashed normal distribution. 

1.4.8 The F-distribution 

A common distribution used in the testing of hypotheses is the F-distribution. A central 
F-distribution is based on the ratio of two independent central chi-square variables. Let 
s ~ x;;. and v ~ x?n with s and v being iuclependent 1 then 

(s/n) ~ F 
(v/m) n,m· 

The mean of the F-distribution is m/(m - 2) and the variance is 

2m2(n + m - 2) 
n(m - 2)2 (m - 4) • 

Tables of F-values have been constructed for various probability levels as criteria to test if 
the numerator chi-square variable has a noncentral chi-square distribution. If the calcu­
lated F-value is greater than the value in the tables, then s is implied to have a noncentral 
chi-square distribution, otherwise s has a central chi-square distribution. The square of a 
t-distribution variable gives a variable that has an F-distribution with 1 and n degrees of 
freedom. 

Noncentral F-distributions exist depending on whether the numerator or denominator 
variables have noncentral chi-square distributions. Tables for noncentral F-distributious 
generally do not exist because of the difficulty in predicting the noncentrality parameters. 
However, using random chi-square generators it is possible to numerically calculate an 
expected nouccntral F value for specific situations. VVhen both the numerator and de­
nominator chi-square variables are from noncentral distributions, then their ratio follows 
a doubly noncentral F-distribution. 
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1.5 Quadratic Forms 

A quadratic form is a weighted sum of squares of elements of a random vector variable. The 
general form is y'Qy 1 where y is a random vector variable 1 and Q is a regulator matrix. 
The regulator matrix can take on various forms and values depending on the situation. 
Usually Q is a symmetric matrix, but not necessarily positive definite. Examples of 
different Q matrices are as follows: 

1. Q = l 1 then y'Qy = y'y which is a total sum of squares of the elements in y. 

2. Q = J(l/n), then y'Qy = y'Jy(l/n) where n is the length of y. Note that J = 11', 
so that y'Jy = (y'l)(l'y) and (l'y) is the sum of the clements in y. 

3. Q = (I - J(l/n)) /(n - 1), then y'Qy gives the variance of the elements in y, crt. 

The expected value of a quadratic form is 

E(y'Qy) = E(tr(y'Qy)) = E(tr(Qyy')) = tr(QE(yy')). 

However, 
V ar(y) = E(yy') - E(y )E(y') 

so that 
E(yy') = Var(y) + E(y)E(y'), 

then 
E(y'Qy) = tr(Q(Var(y) + E(y)E(y'))). 

If we let Var(y) = V and E(y) = µ, then 

E(y'Qy) tr(Q(V + µµ')) 

tr(QV) + tr(Qµµ') 

tr(QV) + µ'Qµ. 

The expectation of a quadratic form does not depend on the distribution of y. Howevcr 1 the 
variance of a quadratic form requires that y follows a multivariate normal distribution. 
\Vithout showing the derivation, the variance of a quadratic form, assuming y has a 
multivariate normal distribution, is 

Var(y'Qy) = 2tr(QVQV) + 4µ'QVQµ. 

The quadratic form, y 1Qy) has a chi-square distribution if 

tr(QVQV) = tr(QV), and µ'QVQµ = µ'Qµ, 

or the single condition that QV is idempotent. Then if 

m = tr(QV) and ,\ = .5µ'Qµ, 
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the expected value of y'Qy is m + 2.,\ and the variance is 2ni + 8.\., which are the usual 
results for a noncentral chi-square variable. 

The covariance between two quadratic forms, say y 1Qy and y'Py, is 

Cov(y'Qy, y'Py) = 2tr(QVPV) + 4µ'QVPµ. 

The covariance is zero if QVP = 0, then the two quadratic forms are said to be indepen­
dent. 



Chapter 2 

Building Blocks 

2.1 Basic Blocks 

In order to derive lvlax.imum Likelihood and Residual Maximum Likelihood, a number 
of results about derivatives of determinants and other quantities needs to be reviewed. 
These will be called Building Blocks or BB for short, because they are not theorems or 
conjectures. 

BB-1. The (co)variance matrix of y is 

' v L ZiGiz;a; + Ra5 
i=l 

ZGZ' +R. 

Usually, each Gi is assumed to be I for most random fact.om, but for animal models 
Gi might be equal to A, the additive genetic relationship matrix. Thus, Gi does not 
always have to be diagonal, and will not be an identity in animal model analyses. 

BB-2. The inverse of V is 

To prove, show that yy- 1 =I.Let T = Z'R- 1Z+ c- 1 , then 

yy-1 (ZGZ' + R)[R- 1 

- R- 1 zT- 1 Z'R- 1

] 

zcz'R- 1 - zcz'R- 1zT- 1z'R- 1 

+1- zT- 1z'R- 1 

25 
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I+ [ZGT- ZGZ'R- 1Z - Z](T- 1Z'R- 1
) 

I+ [ZG(Z'R- 1 Z + c- 1

) - ZGZ'R- 1 Z - Z](T- 1 Z'R- 1

) 

I+ [ZGZ'R- 1Z + Z - ZGZ'R- 1Z - Z](T- 1Z'R- 1
) 

I+ [O](T- 1Z'R- 1) 

I. 

BB-3. If k is a scalar constant and A is any square matrix of order m, then 

I Ak I = k"' I A I . 

BB-4. For general square matrices, say M and U, of the same order then 

I MU I = I M I I u I . 

BB-5. For the general matrix below with A and D being square and non-singular (i.e. 
the inverse of each exists), then 

I~ -~ I =IA I I D+QA- 1B l=I DI I A+BD-
1
Q I 

Then if A= I and D = I, then I I I= 1, so that 

I I+QB I II+BQ I 
II+B'Q' I 
I l+Q'B' I-

BB-6. Using the results in (BB-4) and (BB-5), then 

[VI IR+ZGZ'I 

I R(I + R- 1zGz'J I 
[RI II+R- 1ZGZ'I 

I RI I I+Z'R- 1ZG I 
[ R 11 (G- 1 + Z'R- 1Z)G [ 

IR 11 G- 1 + z'rr- 1 z 11 GI. 
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BB-7. The mixed model coefficient matrix of Hender.son can be denoted by 

then the determinant of C can be derived as 

ICI = IX'R- 1x1 
x I c- 1 + z'(R- 1 - R- 1x(X'R- 1x)-x'R- 1)z 1 

I z'R-1z + c-1 I 
x I X'(R- 1 -R- 1Z(Z'R- 1z + c- 1)- 1Z'R- 1)x I -

Now let S = R- 1 - R- 1X(X'R- 1X)-X'R- 1 then 

I c I I X'R- 1x I I c- 1 + z'sz I 
= I Z'R- 1z + c- 1 11 x'v- 1x I. 

BB-8. A projection matrix, P 1 is defined as 

Properties of P: 

PX 0, 

Py v- 1(y - Xb), where 

f, (x'V- 1xJ-x'v- 1y. 

Therefore, 

BB-9. Derivative of v- 1 is 
av- 1 av _y-I~y-1 
a' - 8r,2 

ai i 

BB-10. Derivative of ln I V I is 

81n IV I = tr (v·l a-v,) 
Bo} Ba;: 

27 
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BB-11. Derivative of P is 

BB-12. Derivative of V is 

iJP 
iJ 2 a, 

BB-13. Derivative of ln I X'v- 1 X I is 

2.2 Basic Model 

CHAPTER 2. BUILDING BLOCKS 

The following simple model ,vill be assumed. The general linear model is described as 

y Xb + Zu + e, 

where E(y) Xb, 

E(u) 0, 

and E(e) 0. 

Often u is partitioned into s factors as 

The ( co )variance matrices are defined as 

and 
R = Var(e) = Iol 

Then 
Var(y) = V = ZGZ' + R, 
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and if Z is partitioned corresponding to u 1 as 

z [ Z1 Z2 z., I, then 

' ZGZ' LZiGiZ~a,T. 
i=l 

Let Vi ZiG1z; and 

Vo I, then 

' V Lvia;. 
i=o 

Covariances between random factors in the model will he allowed later, such as in a 
maternal effects model where there arc covariances between direct and maternal effects, 
or random regression models with covariances betv.reen the random regression coefficients, 
or multiple trait models. 

2.3 Mixed Model Equations 

Henderson's mixed model equations (.rvGvIE) are written as 

( 
X'R- 1 X X'R .. 1 Z1 X'R- 1 Z2 
z;R- 1x Z~R- 1 Z1 + G1 1a\ 2 z;R- 1 z2 

z;R- 1x z;R- 1Z1 z;R- 1
z2 + c;- 1a;-2 

z:R- 1x z:R- 1 Z1 z:R- 1 Z2 

z;R- 1y 
= z;R- 1y 

( 

X'R-'y l 
z:R- 1y 

Quadratic forms from solutions to these equations are 

where 

and for the residual variance, 

where 

c ~ y - xf, - zu. 

X'R-'Z., 
Z~R- 1Zs 
z;R- 1Z., 

l ( 
f, l f11 

u, 

u, 
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2.4 Unbiased Estimation of Variances 

Unbiased estimation is no longer practiced in animal breeding, but the history of the 
development from unbiased to likelihood based methods is important to understand. The 
best way to describe unbiased methods of estimation is to give a small example with only 
three observations. Assume that all Gi are equal to I for this example, so that ZiGiZ~ 

simplifies to ZiZ~. Let 

Then 

( 1 
1 

~)' V1 = Z1Z 1
1 = 1 

0 

and 

( ~ 0 

I ) V2 = Z2Z\ = 1 
1 

andVo=I. 

In this example, there arc 3 uuk11own variances to be estimated, an<l consequently, 
at least three quadratic forms arc needed in order to estimate the variances. The Q­
matrices are the 'weights' of the observations in the quadratic forms. These matrices 
differ depending on the method of estimation that is chosen. Below are three arbitrary 
Q-matrices that were chosen such that. Q1,:X = 0. They do not necessarily correspond to 
any known method of estimation 1 but arc for illustration of the calculations. Let 

( 1 -1 a ), -1 2 -1 
0 -1 1 

Q, ( 1 0 -1 ), () 1 -1 
-1 -1 2 

and Q, ( 2 -1 -1 

)· -1 2 -1 
-1 -1 2 

The numeric values of the quadratic forms are 

y 1Q1y = 657, 
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For example, 

y'Q2y 

and y'Q3y 

y'Q,y = ( 29 53 44 ) ( -1 
0 

The expectations of the quadratic forms are 

E(y'Q,y) trQ, Voa& + 
4a 2 

0 + 2af + 
E(y'Q,y) 4a6 + 4af + 
E(y'Q3y) 6a5 + 4a 2 

I + 

306, 

882. 

-1 0 
2 -1 

-1 

trQ 1 V 1a; 

2a5 
2 2a 2 , 

4ar 
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+ trQ, V2aJ 

Now equate the values of the quadratic forms to their corresponding expectations, which 
gives a system of equations to be solved1 such as Fa = w. In this case, the equatious 
would be 

( : ! ~ ) ( :~ ) = ( ~~:: ) ' 
6 4 4 <Ti 882. 

which gives the solution as /j = F- 1w, or 

( 
a-z ) ( 216.0 ) ~i -175.5 . 
a2 72.0 

Note that one of the estimates is negative, which is not appropriate for a variance compo­
nent. The estimate is said to be out of the parameter space. 

2.5 Variances of Quadratic Forms 

The variance of a quadratic form is given by 

Var(y'Qy) = 2trQVQV + 4b'X'QVQXb. 

Only translation invariant quadratic forms are typically considered in variance component 
estimation, that means b'X'QVQXb = 0. Thus, only 2trQVQV needs to be calculated. 
Remember that V can be written as the sum of s + 1 matrices, Vwf, then 

' ' 
trQVQV = trQLV,a; QLVjcrJ 

t=o 

8 8 

LL 
i=o j=u 

1=0 



32 CHAPTER 2. BUILDING BLOCKS 

For example, if s = 2, then 

trQVQV 4 2 2 trQV 0 QV 0a 0 + 2trQV 0 QV 1a 0 a 1 
+ 2trQV 0QV 2a5a§ + trQV 1QV 1a; 

+ 2trQV 1QV 2a;a~ + trQV 2QV2aJ. 

The exact sampling variances require the true, unknown components of variance. The 
magnitude of the sampling variances depends on 

1. The true magnitude of the individual components, 

2. The matrix Q which depends on the method of estimation and the model, and 

3. The structure and amount of the data through X and Z. 

Normally, the variance-covariance matrix of the estimates, commonly known as the 
sampling variances of the estimates, were never actually computed during the days of un­
biased methods due to their computational complexity. However, with today's computers 
their calculation can still be very challenging and usually impossible. For small examples 1 

the calculations can be easily demonstrated. In this case, 

Var(F- 1w) = p- 1var(w)F- 1', 

a function of the variance-covariance matrix of the quadratic forms. 

Using the small example of the previous section, the Var(w) is a 3x3 matrix. The (1,1) 
element is the variance of y'Q1Y which is 

Var(y'Q 1y) 2trQ 1 VQ 1V 

2trQ1VoQ1Voa6 + 4trQ1VoQ1Vw5a; 

+4trQ1VoQ1V2a5a~ + 2trQ1V1Q1Vw; 

+4trQ, V 1 Q, V2a;a? + 2trQ1 V2Q1 V2aJ 

20a6 + l6a5a; + l6a5a~ +Sat+ Oa;aJ 

The (1,2) element is the covariance between the first and second quadratic forms, 

Cov(y'Q,y, y'Q2y) = 2trQ1 VQ 2 V, 

and similarly for the other terms. All of the results are summarized in the table below. 

Forms a3 ajaf a5a~ a; afa1 a~ 
Var(w 1) 20 16 1G 8 0 8 
Cov(w,, w2) 14 24 8 JG 0 8 
Cov(w,,w,) 24 24 24 16 0 JG 

Var(w2) 20 48 16 32 16 8 
Cov(w2, w,) 24 48 24 32 16 16 

Var( W3) 36 48 48 32 16 32 
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To get numeric values for these variances, the true components need to be known. 
Assume that the true values are (76 = 250, (J"r = 10, and a~ = 80, then the variance of VJ1 

is 

Var(w1) 20(250)2 + 16(250)(10) + 16(250)(80) 

+8(10) 2 + 0(10)(80) + 8(80)2 

1,662,000. 

The complete variance- covariance matrix of the quadratic forms is 

( 

U/J) (1,662,000 1,147,800 2,144,000) 
Var w, = 1,147,800 1,757,200 2,218,400 . 

W3 2,144,000 2,218,400 3,550,800 

The variance-covariance matrix of the estimated variances ( assuming the above true val­
ues) would be 

Var(a) F- 1var(w)F- 1' 

( 

405,700 -275, 700 
-275, 700 280,900 
-240, 700 141,950 

-240, 700 ) 
141,950 = c. 
293,500 

2.6 Variance of A Ratio of Variance Estimates 

Often estimates of ratios of functions of the variances are needed for animal breeding work, 
such as hcritabilities, repeatabilities, and variance ratios. Let such a ratio be denoted as 
a/c where 

and 
c = ;z + d; + ;§ = (1 1 1 )a = 288. 

(NOTE: the negative estimate for a-r was set to zero before calculating C. 

From Osborne and Patterson (1952) and Rao (1968) an approximation to the variance 
of a ratio is given by 

Now note that 

Var(a/c) = (c2Var(a.) + a2 Var(c) - 2ac Cov(a,c))/c·'. 

\/ ar(a) 

Var( c) 

Cov(a, c,) 

(0 0 l)C(O O l)' = 293,500, 

(1 1 l)C(l 1 l)' = 231,200, 

(0 0 l)C(l 1 l)' = 194,750. 
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Then 

Var(a/c) 
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[(288)2(293, 500) + (72)2 (231, 200) 

-2(72)(288)(194, 750)]/(288) 4 

2.53876 

This result is very large, but could be expected from only 3 observations. Thus, (a/c) 
.25 with a standard deviation of 1.5933. 

Another approximation method assumes that the denominator has been estimated 
accurately, so that it is considered to be a constant, such as the estimate of O";. Then) 

Var(a/c) ~ Var(a)/c 2
. 

For the example problem, this gives 

Var(a/c) ~ 293, 500/(288) 2 = 3.53853, 

which is slightly larger than the previous approximation. The second approximation would 
not be suitable for a ratio of the residual variance to the variance of one of the other 
components. Suppose a = &6 = 216, and c = 6-~ = 72, then (a/c} = 3.01 and 

Var(a/c) = [(72)2(405, 700) + (216)2 (293,500) 

-2(72)(216)(-240, 700)1/(72) 4 

866.3966, 

with the first method, and 

Var(a/c) = 405, 700/(72) 2 = 78.26, 

with the second method. The first method is probably more realistic in this situation, but 
both are very large. 
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Likelihood Methods 

3.1 The Likelihood Function 

The normal distribution likelihood function is commonly assumed in animal breeding, and 
is used in REML and related methods of estimation. Use will be made of the building 
blocks of the previous chapter. The multivariate normal distribution likelihood function 
is 

L(y) = (2rr)- 5N IV ,- 5 exp(-.5(y - Xb)'v- 1 (y - Xb)). 

The log of the likelihood, say L1 is 

L 1 = -0.5[Nln(271") + In IV I +(y - Xb)'V- 1(y -Xb)]. 

The term N ln(21T) is a constant that does not involve any of the unknown variances or 
effects in the model, and therefore, it is commonly omitted during maximization compu­
tations. Maximizing the log likelihood maximizes the original likelihood function. 

In the previous chapter, 

and therefore, 

In IVl=ln IRI +In I GI +In I Z'R- 1z+c- 1 j. 

If R = Ia;J, then 

In jRj In I Ia5 I 
ln(o5)N I I I 
Nlno5(l). 

35 
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Similarly, if G = L+ 10'[ i where i = 1 to s, then 

.s 

lnlGI = I:lnllo}I 
i=l 

' L qi lnal. 
i=l 

Except
1 

that iu animal models one of the Gi is equal to Aa[. In that case, 

which is 
In I Ac,f I= q; hrnz I A I = q; hrn; + In I A I . 

Recall that 

and 

so that 

3.2 Maximum Likelihood 

Hartley and Rao (1967) described the maximum likelihood approach for the estimation of 
variance components. Let L2 be equivalent to L1 except for the constant involving 1r. 

L2 = -0.5[ln IV I +(y - Xb)'V- 1(y - Xb)J. 

The derivatives of L2 with respect to b an<l to a} for i = 0, 1, ... s are 

and 

-.5 tr[V- 1(8V /Bc,;)J 

+ .5(y - Xb)'V- 1(8V /8c,z)v- 1 (y - Xb) 

-.5 tr[v- 1V;] + .5(y - Xb)'v- 1v;v- 1(y - Xb) 

Equating the derivatives to zero gives 
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and 

Recall that 

where Pis the projection matrix, and that V 7_ = z 1z:, then 

In usual mixed model theory, the solution vector for a random factor may be written as 

so that 

Also, 

Let 

y'PV,Py 

T 

R 

and G 

then 
tr[V- 1V;] = tr(z;z,)a 02 - tr(z;zTZ'Z;)a 04

. 

If T can be partitioned into submatrices for each random factor 1 then 

+ 

and 

which yields 

Finally, 

Tao 2 (Z'Z + I)a,) = I, 

TZ'Za 0
2 

TZ 1ZilT()2 

+ 
I - T(L ra,-2), 

I - Tiiai- 2, 
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Combining results gives 
a}= (U~Ui + trTiia-5)/qi 

for i = 1,2, ... ,s, and for i = 0 gives 

a-g = (y'y - b'X'y - u'Z'y)/ N. 

3.2.1 The EM Algorithm 

El'd stands for J;:;xpectation Maximization. From Searle, Casella, and McCulloch (1992) the 
following explanation is given. The procedure alternates between calculating conditional 
expected values and maximizing simplified likelihoods. The actual data y are called the 
incomplete data in the E}.11 algorithm, and the complete data are considered to be y and 
the unobservable random effects, ui. If the realized values of the unobservable random 
effects were known, then their variance would be the average of their squared values, i.e., 

However
1 

in real life the realized values of the random effects are unknown. 

The steps of the EM algorithm arc as follows: 

Step 0. Decide on starting values for the variances and set rn = 0. 

Step 1.(E-step) Calculate the conditional expectation of the sufficient statistics, condi­
tional on the incomplete data. 

0'4(m}y'p(m}z z'p(m}y 
' ' ' 
+tr(O";(m}I - (J'tmlz; (V(ml)-1 Z;) 

f(m) 

' 
Step 2.(M-step) lvlaximize the likelihood of the complete data, 

i = a, 1, 2, ... , s. 

Step 3. If convergence is reached, set ir = o-(m+1}, otherwise increase m by one and 

return to Step 1. 

This is equivalent to constructing and solving the mixed model equations with a given set 
of variances, rr<m), and then 

and 

2(m+l) 
ao 

2(m+l) 
O'; 

(y'y - b'X'y - u'Z'y)/N, 

(
,,. 2(m+l) ·T )/ 
uiui + a0 t1 ii qi, 
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3.3 Restricted Maximum Likelihood 

Restricted (or Residual) maximum likelihood (REML), was first suggested by Thompson 
(1962), and was described formally by Patterson and Thompson (1971). The procedure 
requires that y have a multivariate normal distribution. The method is translation in­
variant. The maximum likelihood approach automatically keeps the estimator within the 
allowable parameter space(i.e. zero to plus infinity), and therefore, REML is a biased 
procedure. REML was proposed as an improvement to ML in order to account for the 
degrees of freedom lost in estimating fixed effects. 

The likelihood function used in REl\'11 is that for a set of error contrasts (i.e. residuals) 
that are assumed to have a multivariate normal distribution. The multivariate normal 
distribution likelihood function for the residual contrasts, K'y, where K'X = 0, and K' 
has rank equal to N - r(X), is 

L(K'y) = (27r)- 5(N-,·(XII I K'VK 1-5 exp(-.5(K'y)'(K'VK)- 1 (K'y)). 

The natural log of the likelihood function is 

L3 = -.5(N - r(X)) ln(27r) - .5ln I K'VK I -.5y'K(K'VK)- 1K'y. 

Notice that -.5(N - r(X)) ln(27r) is a constant that does not depend 011 the unknown 
variance components or factors in the model 1 and thcrcfore 1 can be ignored to give £4. 
Searle (1979) showed that 

ln I K'VK I = ln IV I +ln I X'v- 1x I 
and 

y'K(K'VK)- 1K'y = y'Py = (y -- xi,)'v-'(y - xi,) 

for any K' such that K'X = 0. Hence, L~ can be written as 

L4 = -.5 ln Iv I -.5111 I x'V- 1x I -.5(y - xi,yv- 1(y - Xb). 

REivIL can be calculated a number of different ways. 

1. Derivative Free approach is a search technique to find the parameters that max­
imize the log likelihood function. Two techniques will be described here. 

2. First Derivatives and EM is where the first derivatives of the log likelihood are 
determined and set to zero in order to maximi:zc the likelihood function. Solutions 
need to be obtained by iteration because the resulting equations are non linear. 

3. Second Derivatives are generally more computationally demanding. Gradient 
methods are used to find the parameters that make the first derivatives equal to zero. 
Ncwton-Raphson (involves the observed information matrix) and Fishers 1v1ethod of 
Scoring (involves the expected information matrix) have been used. Lately, the 
"average information" algorithm (averages the observed and expected information 
matrices) has been used to reduce the computational time. 
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All of the approaches attempt to maximize the log likelihood function of the error contrasts. 
To illustrate the methods, consider a single trait model with three factors (F, A, B), of 
which A and B arc random factors. There were a total of 90 observations 1 and the total 
sum of squares was 356,000. The least squares equations for this small example are shown 
below. 

50 0 5 15 30 5 10 20 15 Fi 3200 

0 40 5 15 20 5 10 20 5 F, 2380 

5 5 10 0 0 2 3 4 1 A, 580 

15 15 0 30 0 5 7 11 7 A, 1860 

30 20 0 0 50 3 10 25 12 A, 3140 

5 5 2 5 3 10 0 0 0 B, 700 

10 10 3 7 10 0 20 0 0 B2 1320 

20 20 4 11 25 0 0 40 0 B3 2400 

15 5 1 7 12 0 0 0 20 84 1160 

3.3.1 Derivative Free REML 

Derivative Free REML was proposed by Smith and Graser(1986) and Graser, Smith and 
Tier(1987) and has been expanded upon by Meyer (1987,91) who has developed a set of 
programs for computing estimates of variance components for a whole range of univariate 
and multivariate models. The description given below is a very simplified version of the 
method for basic understanding of the technique. 

Imagine an s dimensional array containing the values of the likelihood function for 
every possible set of values of the ratios of the components to the residual variance. The 
technique is to search this array and find the set of ratios for which the likelihood function 
is maximized. There is more than one way to conduct this search. Care must be taken to 
find the 'globaP maximum rather than one of possibly many 'local' maxima. At the same 
time the number of likelihood evaluations to be computed must also be minimized. 

Various alternative forms of L4 can be derived. Note that 

ln IV I= In IR I +ln I GI +ln I G- 1 + Z'R- 1Z I 

and that 

and that combining these results gives 

L, = - .5111 IR 1-.5111 I G 1-.5111 IC 1-.5y'Py. 

Now note that 

In I RI 



3.3. RESTRICTED MAXIMUM LIKELIHOOD 

Then 

In I GI 

and In IC I 

where In! X'R- 1X I 

and Z'SZ + G- 1 

/lllna5) 

' Lqilna}, 
i=l 

In I X'R- 1X I +In I Z'SZ + G- 1 
I 

In I X'Xao' I 

ln(ao'r(X) I X'X I 

In I X'X I -r(X)lna5, 

a02 Z'MZ + G- 1 

a02 (Z'MZ + G- 1a5). 

In IC l=ln I X'X I -r(X)lna5-qlna5 +ht I Z'MZ+G- 1a5 I, 
and finally, the log-likelihood function becomes 

' 
L4 = -.5(N-r(X)-q)lna5- .5I;q,lnaz 

i=l 

-.5ln I c· I -,5y'Py, 

where 

Note that 

qi ln aJ/CYi 

q, (ln a5 - In a,) 

so that 

' 
L4 -.5[(N - r(X))lna5- I;q,lna, +In I c• I +y'Py]. 

i=l 

41 

The quantity y'Py is y'(y - Xb - Zii)/a5. The computations are achieved by con­
structing the following matrix, 

Z'X Z'Z + G- 1a5 Z'y = ( ~~ "';'y ) . 
( 

X'X X'Z X'y ) 

y'X y'Z y'y y y y 

then by Gaussian elimination of one row at a time, the sum of the log of the non-zero 
pivots ( using the same ordering for each evaluation of the likelihood) gives log I C* I and 
y'(y - Xb - Zll). Gaussian elimination, using sparse matrix techniques, requires less 
computing time than inverting the coefficient matrix of the mixed model equations. The 
ordering of factors within the equations could be critical to the computational process and 
some experimentation may be necessary to determine the best ordering. The likelihood 
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function can be evaluated \vithout the calculation of solutions to the mixed model equa­
tions, without inverting the coefficient matrix of the mixed model equations 1 and without 
computing any of the a[. The formulations for more general models and multiple trait 
models are more complex, but follow the same ideas. 

Searching the array of likelihood values for various values of o:'i can be done in several 
different ways. One method is to fix the values of all but one of the s O:i, and then evaluate 
L2 for four or more different values of the O:i that were not fixed. Then one can use a 
quadratic regression analysis to determine the value of that one ratio which maximizes 
L2 given that the other ratios are fixed. This is repeated for each of the s ratios 1 and 
the process is repeated until a maximum likelihood is obtained. The calculations arc 
demonstrated in the example that follmvs. 

Degin by fixing the value of o:n = 10 and letting the value of aA take on the values of 
(5, 10, 20, 30, 40). Using L4 to evaluate the likelihood, then the results were as follows: 

CYA L4 
5 -251.4442 

10 -251.1504 
20 -250.9822 
30 -250.9274 
40 -250.9019 

For example, the likelihood value for a.4 = 40, would be 

L., = -~[(N - r(X)) lna5 - q,i in cq - qn 1110:11 + in I C' I +y'(y - Xb - Zu)/o-6] 

where 

then 

in IC' I 32.052454, 

y'Py 8483.176/al 88, 

QA ln 0:A 11.0666385, 

q11 ln 0:3 9.2103404, 

aJ 96.399728, 

ln aii 4.5685034, 

(N-r(X)) 88, 

L,i -0.5[88(4.5685) - 11.0666- 9.2103 + 32.0525 + (8483.176/96.3997)] 

-250.9019. 
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To find the value of 0:A that maximizes L4 for o:B = 10, let 

25 l (-251.4442 l 100 -251.1504 
400 and Y = -250.9822 
900 -250.9274 

1600 -250.9019 

then 

( 

-251.6016 ) 
J = (Q'Q)- 1Q'Y = .0448877 . 

-.000698 

From this a prediction equation for L4 can be written as 

£4 = - 251.6016 + .04489aA - .000698a~. 

This equation can be differentiated with respect to ctA and then equated to zero to find 
the value of the ratio that maximizes the prediction equation. This gives 

cq = .04489/(2(.000698)) = 32.1546. 

Now keep O'A = 32.1546 and try a number of values of as from 2 to 10, which give the 
following results. 

CTB £4 

2 -250.2722 
3 -250.1954 
4 -250.2379 
5 -250.3295 
6 -250.4419 
7 -250.5624 
8 -250.6843 
9 -250.8042 

10 -250.9204 

Applying the quadratic regression to these points gives 

CtB = 1.2625. 

The next step would be to fix as = 1.2625 and to try new values for G'Ai such as 25 
to 40 by units of 1. The range of values becomes finer and finer. To insure that one 
has found the global maximum, the entire process could Le started with vastly different 
starting values for the ratios 1 such as n13 = 50 and let values for nA be 401 501 601 and 
70. The more components there are to estimate, the more evaluations of the likelihood 
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that are going to be needed, and the more probable that convergence might be to a local 
maximum rather than to the global maximum. 

Please refer to the literature for specification of the log likelihood function for particular 
models and situations. Also, refer to work by Boldman and Van Vleck {1993) which found 
a simplification of 1vlcyer,s algorithms which reduced computational time by several orders 
of magnitude. Even so, DFREML has been applied to fairly small data sets and can take 
considerable time to find estimates for these. The available software may not be able to 
handle particular models, and so the user should be aware of these possible problems. 

The Simplex Method 

The Simplex Method (Nelder and Mead, 1965) is a procedure for finding the minimum of a 
function (i.e. the minimum of -2L4 or the maximum of L,1) with respect to the unknown 
variances and covariances. The best way to describe the method is using the example data 
from the previous sections. Begin by constructing a set of 1points 1 for which £4 is to be 
evaluated. A 'point' is a vector of values for the unknowns ( etA 1 eta), for example, 

01 = ( 12.1 3.8 ) , 

then form two more points by changing one unknown at a time. Let the three points be 
as shown in the following table. 

No. DA eta 
1 12.1 3.8 
2 13.1 3.8 
3 12.1 4.3 

Now calculate L1 for each point and arrange from largest to lowest value. 

No. ll:A 0:B L4 
2 13.1 3.8 -250.3047 
1 12.1 3.8 -250.3197 
3 12.1 4.3 -250.3662 

The idea now is to find another point to replace the last one(lowest L4). This is done 
by a process called reflection. Compute the mean of all points excluding the one with the 
lowest L4. 

Bm = ( 12.6 3.8 ) , 

then the reflection step is 
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where r is recommended by Nelder and Mead (1965) to be 1, giving 

04 = ( 13.1 3.3 ) . 

The corresponding L4 for this point was -250.2722. Compared to those in the table it has 
the largest value 1 and therefore, is a better point than the other three. 

No. °'A o:s L4 

4 13.1 3.3 -250.2722 
2 13.1 3.8 -250.3047 
1 12.1 3.8 -250.3197 

Given this success, the Simplex method calls for an expansion step, i.e. to make a 
bigger change. Thus, 

0s = 0m + E * (0,, - 0m), 

where E is suggested to be equal to 2. Hence 

05 = ( 13.6 2.8 ) 

Then L4 = -250.2546, and the expanded point is better yet. Now drop 01 from the table 
and put 05 at the top. 

No. 0:A Cl!J L4 

5 13.6 2.8 -250.25,)6 
4 13.1 3.3 -250.2722 
2 13.1 3.8 -250.3047 

This completes one iteration. Begin the next iteration by computing the mean of all points 
excluding the point with the lowest L4.. 

0,n = ( 13.35 3 05 ) . 

Another reflection step gives 

06 Om+ r * (Om - 01as1), 

( 13.6 2.3 ) . 

However, this gives L4 
from the table. 

-250.2761, v,:hich is betwec11 02 and 04, and can push out 02 

No. 0:.4 0:B L, 
5 13.6 2.8 -250.2546 
4 13.1 3.3 -250.2722 
6 13.6 2.3 -250.2761 
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Instead of an expansion step, a contraction step is needed because 06 did not give a 
greater L4 than the first two. Thus, 

where c = 0.5 is recommended. Hence, 

0; = ( 13.475 3.05 ) . 

Then L, = -250.2586 is better than that given by 04 , but not by 05 , thus the new table 
becomes m; follows: 

No. CYA °'B L, 
5 13.6 2.8 -250.2546 
7 13.475 3.05 -250.2586 
4 13.1 3.3 -250.2722 

The following steps were taken in the next iteration. 

1. The mean of the top two £4 is 

Bm = ( 13.5375 2.925 ) . 

2. A reflection step gives 

Bs Bm + r * (Bm - B,a,t), 

( 13.975 2.55 ) , 

which gave L, = -250.2563, which is better than 07. 

3. Add Os to the table and drop 0,. 

No. °'A as L, 
5 13.6 2.8 -250.2546 
8 13.975 2.55 -250.2563 
7 13.475 3.05 -250.2586 

4. Because L1 for Bs was not larger than L4 for 0s or smaller than L4 for 01, then no 
expansion or contraction step is necessary. Begin the next iteration. 

The Simplex method continues in this manner until all point entries in the table are 
equal. The constants recommended by Nelder and l\foad (1965) for reflection, expansion, 
and contraction could be adjusted for a particular data set. This method may converge to 
a local maximum, and so different starting values are needed to sec if it converges to the 
same point. The Simplex method does not work well with a large number of parameters 
to be estimated. 
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3.3.2 First Derivatives and EM Algorithm 

To derive formulas for estimating the variance components take the derivatives of £4 with 
respect to the unknown components. 

-.5trv- 1 ~~ - .5tr(X'v- 1xi-x'v- 1 ~~ v- 1x 
uu 1 uai 

+.5(y - xf,)'v- 1 ~~ v- 1(y - xf,J 
ua, 

Combine the two terms involving the traces and note that 

then 
aL., = -.5tr(v- 1 - v- 1x(x'v- 1x)-x'V- 1J av + .5y'P ~':. Py 
Ba[ Ba[ ua; 

= -.5trPZiz: + .5y'PZiz;Py 

fori=l, ... ,sor 
= -.5trP + .5y'PPy 

for i = 0 for the residual component. Using P and the fact that 

then 

and 
' 

trP = (N - r(X))a5 - L u;,1;/0}. 
i=l 

The other terms, y'Pz,z;Py and y'PPy, were simplified by Henderson (1973) to show 
that they could be calculated from the :tvlixed Iviodel Equations. :Note that Henderson 
(1973) showed 

then 

which when G1 = Iaj gives 

Py v- 1(y-Xb), 

f, (x'V- 1xi-x'v- 1y, 
ui Giz;Py, 

y'PZ;[G;G, 1G, 1G,Jz;Py 

(y'PZ;G;) c, 2 
( G; z;Py) 

.,c-2-
ui i lli 
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Similarly for the residual component 1 Henderson showed that 

' y'PPy = [y'y - b'X'y - IJu;z;y + u;u,a,)]/a-6, 
i=l 

where o:i = a5/a[-

Equate the derivatives to zero incorporating the above simplifications and obtain 

&l ( ti~ ui + trCii0'5); qi, 

8-6 y'Py/(N - r(X)). 

As with :tvlL, solutions using the E:M algorithm must be computed iteratively. Convergence 
is usually very slow, if it occurs, and the process may also diverge. 

Notice the differences between REML and ML. The denominator for &i; is N - r(X) 
rather than N, and in a-[ is trCii rather than trTii• The quadratic forms, however, are 
identical in REML and ML. Accounting for the degrees of freedom to estimate b has 
resulted in the REML algorithm. 

A major computing problem with the EivI algorithm is the calculation of trCii, which is 
the corresponding inverse elements of the mixed model equations for the ith random factor. 
\\Tith most applications in animal breeding, the order of the mixed model equations are 
too large to be inverted, and solutions to the equations are obtained by Gauss-Seidel 
iterations. However, there have been several attempts to approximate trCii, but these 
have not been totally suitable. 

To demonstrate the EM algorithm let ctA = 10 and as = 5 be the starting values of 
the ratios for factors A and I3, respectively. There were N = 90 total observations, and 
r(X) = 2. The .solution vector is 

F, 64.6313 
F, 59.4225 
A, -2.1363 
A, .4955 

A3 1.6368 
B1 5.1064 
B2 2.6402 

B3 -2.6433 
B, -5.1034 

Then 
y'(Xb + zu) = 347,871.2551 

and from the inverse of the coefficient matrix, 

trCA,\ = .16493, and trClln = .3309886 
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which give rise to the following estimates 1 

8-5 (356,000 - 347,871.2661)/88 

92.371976, 

a;, (7.4925463 + .16493(92.371976))/3 

7.575855, 

a1 (66.0771576 + .3309886(92.371976))/4 

24.16280774. 

Nevi'' ratios are formed as 

lXA = 92.371976/7.575855 = 12.192944, 

and 
a 8 = 92.371976/24.16280774 = 3.822899 

49 

and these are used to form the mixed model equations again, new solutions and traces 
are calculated, and so on, until the estimated ratios and the prior values of the ratios arc 
equal. The estimates converge to 

8-5 91.8639, 
, 2 
CT A 2.5692, 

a;, 30.5190. 

or 
aA = 35. 7558, and as = 3.0101. 

3.3.3 Second Derivatives, Average Information 

Second derivatives of the log likelihood lead to the expectations of the quadratic forms. 
One technique, 1v1IVQUE {Ivlinimum Variance Quadratic Unbiased Estimation) equates 
the quadratic forms to their expectations. The estimates are unbiased and if all variances 
remain positive, then convergence will ·he to the REML estimates. However, due to a 
shortage of data or an it1appropriatc modcl 1 the estimates derived in this manner can be 
negative. Computing the expectations of the quadratic forms requires the inverse of the 
mixed model equations coefficient matrix, and then products and crossproducts of various 
parts of the inverse. 

A gradient method using first and second derivatives can be used (Hofer 1 1998). The 
gradient, d ( the vector of first derivatives of the log likclihoocl)i is used to determine the 
direction towards the parameters that give the maximum of the log likelihood, such that 

0(1+ 1) = o(I) + M(')c1Ul, 

where d(t) are the first derivatives evaluated at 0 = e(tl 1 and M(t) in the Newton­
Raphson(NR) algorithm is the observed information rnatrix 1 and in the Fisher f\--Iethod 
of Scoring(FS) it is the expected information matrix. 
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The first derivatives are as follows (from earlier in these notes}: 

aL4 - C ·PZ·Z' C 'PZ·Z'P - 0 -a 2 - -.,)t, l ·i + .Qy l i Y -
(Y-i 

for i = 1, ... ) s or 
8L4 
-
8 2 = -.5trP + .5y'PPy = 0 

"o 
for the residual component. Then from earlier results, 

which combined give 

for i = 11 .•. , s, and 

trPZiz; 

y'Pz,z;Py 

' 
trP (N - r(X))a5 - L u;u,;a; 

i=l 

' y'PPy [y'y - b'X'y - L(u;z;y + u;u,a,)]/a5 
i=l 

which combined give 

' ' 0.5([y'y - b'X'y - L(u;z;y + u;u;ct;)]/a5 - (N - r(X))a5 + L u;u;/a;) = 0, 
i=l i=l 

which simplifies to 

' 0.5([y'y - b'X'y - L u;z;y]/a5 - (N - r(X))a5) = 0. 
i=l 

The second derivatives give a matrix of quantities. The elements of the observed infor­
mation matrix (Gilmour et al. 1995) are 

82L4 

8af8a5 
82L, 

8a 28a 2 
, J 

and 
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The elements of the expected information matrix (Gilmour et al. 1995) are 

E[ 
82L, 

a 28 ,I 
ai ao 

t: I 2 0.otr(PZ;Z;)/ ao, 

E[ 
821.1 o.5tr(Pz,z;pz 1 z1), ihr28a 2 1 

' J 
and 

E[ 
a'L,, 

1 0.5(N - r(X))/"6· 
8a 2 8a 2 

0 0 

As the name Average lnforrnation implies 1 average the observed and expected information 
matrices to give the following matrix of elements. 

I[a;, aJ] 
I[a;, a;] 

and 

0.5y'PZ,Z'.Py/uJ, 

y'Pz,z;Pz,z;Py /a5, 

The first derivatives form the vector, d(t), and 

The rest of this method is computational detail to simplify the requirements for inverse 
elements and solutions to ~HvIE. The calculations call not be illustrated very easily for the 
example data because the y-vector is uot available. 

3.3.4 Animal Models 

The model commonly applied to estimation of variance components in livestock genetics 
since 1989 has been an animal model. The animal model assumes a large, random mating 
population, an infinite number of loci each with a small and equal effect on the trait, only 
additive genetic effects, and all relationships among animals are know11 and tracible to an 
unselected base population ( somewhere in the past). Animals may have more than one 
record each. The equation of the model is 

y = Xb + Za + Zp + e, 

where a is the vector of animal additive genetic effects (one per animal)i and pis a vector 
of permanent environmental (p.e.) effects associated with each animal. 

E(y) Xb, 

Var ( ; ) ( 

Aa; 
0 

0 

0 
Ia~ 
0 
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The matrix A is called the numerator relationship matrix. Wright defined relationships 
among animals as correlations, but A is essentially relationships defined as covariances 
(the numerators of the correlation coefficients). Also, these only represent the additive 
genetic relationships between animals. 

The MME for this model are 

( 

X'X X'Z 
Z'X Z'Z + A- 1ka 
Z'X Z'Z 

X'Z 
Z'Z 

Z'Z + lkp 

Note that k(i is the ratio of residual to additive genetic variances 1 and kp is the ratio of 
residual to permanent environmental variances. Also, in rvIME the inverse of A is required. 

The Elvl-REML procedure gives 

ir; (y'y - b'X'y - a'Z'y - p'Z'y)/(N - r(X)), 

ir~ (ii'A- 1a+trA- 1Caair~)/n, 

ir; (p'p + trCppir;)/n, 

where n is the total number of animals, IV is the total number of records, and Caa are 
the inverse elements of the IvHvIE for the animal additive genetic effects, and Cw are the 
inverse elements of the tvlME for the animal permanent environmental effects. An example 
of this model will be given in later notes. 

Quadratic Forms in an Animal Model 

A necessary quadratic form in an animal model is ii' A -I ai and this can be computed very 
easily. Note that the inverse of A may be written as 

where T- 1 is an upper triangular matrix, and diagonal matrix 0- 2 has elements equal 
to 1, 2, or 4/3 in noninbred situations, and values greater than 2 in inbred situations. In 
Henderson (1975), this inverse was shown to be composed of just three numbers 1 i.e. 0, 
1 'son the diagonals, and -.5 corresponding to the parents of an animal. For example, 

Then 

0 
1 

-.5 
0 

0 0 l 0 0 
1 0 • 

-.5 I 

(ai - o.5(a, + ad)), 



3.3. RESTRICTED MAXIMUM LIKELIHOOD 53 

for the ith animal, and (1,5 and ad are the sire and clam estimated breeding values, respec­
tively. Consequently, 

a'T- 10- 2T 1
-

1a 

ri1'0- 2:rn 
q 

'ri1 2 i'i L_,; 'l l 

i=l 

where dii arc the diagonal elements of 0- 2 , and q is the number of animals. 
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Chapter 4 

Bayesian Methods 

These notes are based on a course given by Daniel Sorensen in 1998 at Armidale, NS\V, 
Australia. Subsequently, a book has been published in 2002 by Sorensen and Gianola en­
titled "Likelihood, Bayesian, and NIC1v1C Methods in Quantitative Genetics''. A Bayesian 
approach to estimation problems, in general, seems intuitively appealing to animal breed­
ers. Every element of a model is a random variable derived from a distribution function. 
A fixed factor becomes a random variable with possibly a uniform distribution going from 
a lower limit to an upper limit. A component of variance is a random variable having a 
Gamma or Chi-square distribution with x degrees of freedom. In addition, the researcher 
may have information from previous experiments that strongly indicate the value that a 
variance component may have, and the Bayes approach allows the apriori information to 
be included in the analysis. 

The Bayesian process is to specify distributions for each random variable of the model. 
These are combined to form the joint posterior distribution. Finding estimators via dif­
ferentiation of the joint posterior distribution may be difficult to achieve. Gibbs Sampling 
is a tool for deriving estimates of parameters from the joint posterior distribution without 
the differentiations. By determining conditional marginal distributions for each random 
variable of the model, then generating random samples from these distributions eventually 
converge to random samples from the joint posterior distribution. Computationally, any 
program that calculates solutions to Henderson's mixed model equations can be modified 
to implement Gibbs Sampling. Very good random number generators and a substantial 
amount of computer time are needed for large data sets in animal breeding to apply Gibbs 
Sampling. 

55 
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4.1 The Joint Posterior Distribution 

Begin with the simple single trait animal model. That is, 

y = Xb+Za+e. 

The Bayesian approach is to derive the joint posterior distribution by application of Bayes 
theorem. If 0 is a vector of random variables and y is the data vector, then 

Re-arranging gives 

p(0 I y) 

p(0, y) p(0) p(y I 0J 

p(y) p(O I y) 

p(0)p(y I BJ 
p(y) 

. p(y I 0J (pnor for 0)~~~ 
p(y) 

posterior probability function of B 

In terms of the simple animal model, B includes b, a, a-;, and O';. The conditional distri­
bution of y given B is 

y I b, a, <r;, ,,.; ~ N(Xb + Za, fo;), 

and 

Prior distributions need to be assigned to the components in 0, and these need to be 
multiplied together and times the conditional distribution of y given B. For the fixed 
effects vector, b, there is little prior knowledge about the values that elements in that 
vector might have. This is represented by assuming 

p(b) ex constant. 

For a
1 

the vector of additive genetic values, quantitative genetics theory suggests that 
they follow a normal distribution 1 i.e. 

and 
p(a) ex (<r~)(-q/Z) exp [-a'A- 1a/2<r~], 

where q is the length of a. A natural estimator of a~ is a'A- 1a/q 1 call it s;;1 where 
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Multiply both sides by q and divid by x~ to give 

2 
5

,
1 

, 
era ~ q a Xq 

which is a scaled, inverted Chi-square distribution, written as 

57 

where Va and S'; are hyperparameters with S~ being a prior guess about the value of cr~ 
and v 0 being the degrees of belief in that prior value. Usually q is much larger than Va 

and therefore, the data provide nearly all of the information about u~. Similarly 1 for the 
residual variance, 

( 2)-('e'+l) ( v, S;) cr 2 exp -~- . 
e 2 aJ 

Now form the joint posterior distribution as 

p(b, a, a;, a; I y) ex p(b)p(a I a~)p(a;)p(a;)p(y I b, a, a~, a;) 

which can be written as 

4.2 Fully Conditional Posterior Distributions 

In order to implement Gibbs sampling 1 all of the fully conditional posterior distributions 
(one for each component of 0 ) need to be derived from the above joint posterior dh:itribu­
tion. The conditional posterior distribution is derived from the joint posterior distribution 
by picking out the parts that involve the unknown parameter in question. Let 

W (X Z), 

(3' (b' a'), 

E (~A~1k)' 

C Henderson's :t\-Uxed Model Equations 

W'W+E 

C/J W'y 
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A new notation is introduced, let 

/3' = (/3; f3'_i), 

where !3i is a scalar representing just one element of the vector /3, and /3-i is a vector 
representing all of the other elements except /3i. Similarly, C and W can be partitioned 
in the same manner as 

W' 

C ci,-i 

C-i,-i )· 
In general terms, the conditional posterior distribution of f3 is a normal distribution, 

where 

Then 

for 

Also, 

where C · = (z'z + Ai,i k) for k = cr2/cr2 
i,1. i t ' , e a· 

The conditional posterior distributions for the variances arc inverted Chi-square distri­
butions, 

for v, = N + v,, and S; = (e'e + v,S;)/ve, and e = y - Xb - Za. 

4.3 Computational Scheme 

Gibbs sampling is much like Gauss-Seidel iteration. \i\/hen a new solution is calculated 
in the I\-Hxed IVIodel Equations for a level of a fixed or random factor, a random amount 
is added to the solution based upon its conditional posterior distribution variance before 
proceeding to the next level of that factor or the next factor. After all equations have 
been processed, new values of the variances are calculated and a new variance ratio is 
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determined prior to beginning the next round. The following :t-.-1ME for five animals will 
be used to illustrate the Gibbs sampling scheme: 

5 1 1 1 1 1 µ 238.2 

1 29 7 -7 -14 0 a1 38.5 

1 7 30 -14 8 -16 a2 48.9 

1 -7 -14 3G -14 0 a3 64.3 

1 -14 8 -14 '.!7 -16 a4 50.5 

1 0 -16 0 -16 33 as 36.0 

where k = a 2/a 2 = 14 and ' a , 

A '~ ,', ( 

28 7 -7 -14 

-1~ l 7 29 -14 8 
-7 -14 35 -14 0 . 

-14 8 -14 36 -16 
0 -16 0 -16 32 

The starting values for /3 = ( 0 0 0 0 0 0 ) , and for Va = v, = 10, and S; = 93½ 

and SJ = 6j, so that k = 14. Let RN D represent a random normal deviate from a random 
normal deviate generator, and let CH I ( idf) represent a random Chi-square variate from 
a random Chi-Square variate generator with idf degrees of freedom. To begin, let a; = S'; 
and a~ = s;;. Below are descriptions of calculations in the first two rounds. 

4,3.1 Round 1 

Process each factor in the model, one equation at a time. 

Overall 1nean 

Anitnal 1 

µ (238.2 - a 1 - a, - a3 - a-1 - as)/5 

47.64 

/l µ + RND * (a;/5) 5 

47.64 + (-1.21) * (4.32) 

42.41 

ii1 (38.5 - µ - 7a2 + 7a3 + 14a.;)/29 
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Animal 2 

Animal 3 

Animal 4 
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-.1349 

a1 ii1 + RND * (cri/29) 5 

-.1349 + (1.138)(1.794) 

1.9067 

ii 2 (48.9 - 1, - 7a1 + 14a3 - 8a1 + 16a5)/30 

-6.8591/30 = -.2286 

a, a,+ RND * (cr;/30) 5 

-.2286 + (.0047)(1.7638) 

-.2203 

iia (64.3 - µ + 7a 1 + 14a2 + 14a4 )/36 

.8931 

a3 iia+RND*(cr~/36)' 5 

.8931 + (-1.1061)(1.6102) 

-.8879 

ii4 (50.5 - µ + 14a 1 - 8a2 + 14a3 + 16a5)/37 

.6518 

a1 a,+ RND• (cr~/37) 5 

.6518 + (-1.2293)(1.5882) 

-1.3006 
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Animal 5 

Residual Variance 

ii5 (36.0 - 11 + I6a2 + I6a 4)/33 

-.9316 

as ii,+ RND * (o-~/33) 5 

-.9316 + (-.6472)(1.6817) 

-2.0200 
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Now calculate the residuals and their sum of squares in order to obtain a new residual 
variance. 

e1 38.5 - 42.41 - 1.9067 = -5.8167 

e2 48.9 - 42.41 + .2203 = 6.7103 

e3 64.3 - 42..Jl + .8879 = 22.7779 

e, 50.5 - 42.41 + 1.3006 = 9.3906 

e5 36.0 - 42.41 + 2.0200 = -4.3900 

e' e 705. 1503 

A new sample value of the residual variance is 

2 I 2 a, (ee+v,S,)/CHI(I5) 

(705.1503 + (10)(93.3333) )/17.1321 

95.6382. 

Additive Genetic Variance 

The additive genetic variance requires calculation of a' A - I a using the a-values obtained 
above, which gives 

Then 

a'A- 1a = 19.85586. 

r,~ (a'A- 1a + vaS~)/CII 1(15) 

(19.85586 + (!0)(6.66667))/10.7341 

8.0605. 
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A new sample value of the variance ratio becomes 

k = 95.6382/8.0605 = 11.8650. 

4.3.2 Round 2 

Round 2 begins by re-forming the :tvHvlE using the new variance ratio. The equations 
change to 

5 l l 1 1 I' 238.2 
1 24.73 5.93 -5.93 -11.86 0 a1 38.5 
1 5.93 25.58 -11.86 6.78 -13.56 a2 48.9 
1 -5.93 -11.86 30.66 -11.86 0 a3 64.3 
l -11.86 6.78 -11.86 31.51 -13.56 a4 50.5 
1 0 -13.56 0 -13.56 28.12 a5 36.0 

The process is repeated using the last values ofµ and a and a;. 

µ (238.2 - a1 - a2 - a, - a4 - as)/5 

48.14 

µ, fi+RND* (a~/5) 5 

48.14 + (.7465) * (4.3735) 

51.41 

a1 (38.5 - /L - 5.93a, + 5.93a3 + l l.864)/24.73 

-1.3059 

a1 a1 + RND * (a;/24.73) 5 

-1.3059 + (- .0478)(1.9665) 

-1.3999 

a2 (48.9 -1, - 5.93rq + 11.86a, - 6.78a4 + 13.56a5 )/25.58 

-.9113 

a2 a2 + RND * (a;/25.58) 5 

-.9113 + (.8386)(1.9336) 

.7102 

a3 -2.41355/30.66 

-.0787 

a, a,+ RN D * (a; /30.66) 5 

-.0787 + (-1.8414)(1.7662) 

-3.3309 

ii4 -89.2236/31.51 = -2.8316 

a4 -2.8316 + (-1.2549)(1.7422) 

-5.0179 
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ii5 -73.8224/28.12 = -2.6253 

a5 -2.6253 + (.8184)(1.8442) 

-1.1160 

The residuals and their sum of squares are 

e1 38.5 - 51.41 + 1.3999 = -11.5101 

e, 48.9 - 51.41 - .7102 = -3.2202 

e3 64.3 - 51.41 + 3.3309 = 16.2209 

e, 50.5 - 51.41 + 5.0179 = 4.1079 

e5 36.0 - 51.41 + 1.1160 = -14.2940 

e'e 627.1630 

The new sample value of the residual variance is 

er~ (e'e + v,S;)/CHI(l5) 

(627.1630 + (10)(93.3333))/20.4957 

76.1377. 

The new sample value of the additive genetic variance is 

er;; (a'A- 1a+vaS;)/CHJ(l5) 

(36.8306 + (10)(6.66667))/16.6012 

6.2343. 

The new variance ratio becomes 

k = 76.1377 /6.2343 = 12.2127. 

Continue taking samples for thousands of rounds. 

4.3.3 Burn-In Periods and Estimates 
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The samples do not immediately represent samples from the joint posterior distribution. 
Generally, this takes anywhere from 100 to 101000 samples depending on the model. This 
period is known as the burn-in period. Samples from the burn-in period are discarded. 
The length of the burn-in period (i.e. number of samples) is usually judged by visually 
inspecting a plot of sample values across rounds. 

A less subjective approach to determine convergence to the joint posterior distribution 
is to run two chains at the same time, both beginning with the same random number 
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seed. However, the starting values (in variances) for each chain are usually greatly dif­
ferent 1 e.g. one set is greatly above the expected outcome and the other set is greatly 
below the expected outcome. When the two chains essentially become one chain, i.e. the 
squared difference between variance estimates is less than a specified value (like 10- 5), 
then convergence to the joint posterior distribution has occurred. All previous samples 
are considered to be part of the burn-in period and are discarded. 

After burn-in, each round of Gibbs sampling is dependent on the results of the previ­
ous round. Depending on the total number of observations and parameters, one round 
may be positively correlated with the next twenty to three hundred rounds. The user 
can determine the effective number of samples by calculating lag correlations 1 i.e. the 
correlation of estimates between rounds 1 between every other round, between every third 
round, etc. Suppose a total of 12,000 samples (after removing the burn-in rounds) gave 
an effective number of samples equal to 500. This implies that samples that are 24 rounds 
apart should be uncorrelated. 

An overall estimate of a parameter can be obtained by averaging all of the 12,000 sam­
ples (after the burn-in). However 1 to derive a confidence interval or to plot the distribution 
of the samples or to calculate the standard deviation of the sample values, the variance of 
the 500 independent samples should be used. 

The final estimates are therefore 1 an average of the sample estimates. Some research 
has shown that the mode of the estimates might be a better estimate 1 which indicates that 
the distribution of sample estimates is skewed. One could report both the mean and mode 
of the samples) however

1 
the mode should be based on the independent samples only. 

4.3.4 Influence of the Priors 

In the small example, Va = Ve = 10 whereas N was only 5. Thus 1 the prior values of the 
variances received more weight than information coming from the data. This is probably 
appropriate for this small example 1 but if N were 51000,000 1 then the influence of the 
priors would be next to nothing. The amount of influence of the priors is not directly 
determined by the ratio of Vi to N. In the small example, even though va/(N +Va)=§, 
the influence of SJ could be greater than j, (Schenkel, 1998) 

4.3.5 Long Chain or Many Chains? 

Early papers on :tvIC:tvIC {IVIonte Carlo l\Iarkov Chain) methods recommended running 
many chains of samples and then averaging the final values from each chain. This was 
to insure independence of the samples. Another philosophy recommends one single long 
chain. For animal breeding applications this could mean 1001000 samples or more. If 
a month is needed to run 50,000 samples, then maybe three chains of 501000 would be 



4.3. COMPUTATIONAL SCHEME 65 

preferable. If only an hour is needed for 50,000 samples, then 1,000,000 samples would 
not be difficult to run. 

Two chains that utilize the same sequence of random numbers, but which use differ­
ent starting variances, arc recommended for determining the burn~in period, after which 
enough samples need to be run to generate a sufficient number of independent samples for 
obtaining standard deviations of the samples. A sufficient number of independent samples 
may be 100 or more depending on the amount of time needed to generate samples. 
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Chapter 5 

Data Readiness 

Prior to any analysis, data and pedigree files need to be prepared as input to a general 
program. General programs expect the pedigree to be arranged in a particular manner 
and the data file might also have to be re-arranged and sorted. Data preparation and 
validation are probably the most time consuming stages of any analysis. 

5.1 Pedigree Files 

The requisite information in a pedigree file is the animal ID, the sire ID 1 the dam ID, and 
possibly the year or date of birth. Additional information might be if the animal was a 
clone of another animal, or was the re~mlt of embryo transfer or embryo splitting. The 
surrogate dam should not be recorded as the biological dam of such animals, but should be 
in the pedigree file to account for maternal effects provided by the surrogate dam. Belmv 
is an example of a pedigree file that will be used in these notes. 

Animal Sire Dam Birth Year 
348097 351604 351342 1981 
349876 352515 350873 1981 
350010 348097 349876 1981 
350873 0 0 1980 
351011 353118 351342 1982 
351342 0 0 1980 
351604 350121 0 1980 
352012 352229 350873 1982 
352229 352515 351342 1981 
352515 0 0 1980 
353013 353118 350010 1982 
353118 350873 351604 1981 
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354018 353013 352012 1983 
354317 348097 351011 1983 
354516 351604 351342 1983 
354715 352515 351011 1983 
354914 351604 349876 1982 
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There are 17 animals in the list sorted by animal registration number. The following 
features can be identified about this file. 

1. The registration numbers cannot be used to order parents before their progeny. The 
sire ID of the first animal is greater than the animal's ID, which would not have 
occurred if animals were registered at birth in a consecutive manucr. 

2. Some of the pedigrees have missing information on sire and/or dam. 

3. Animal 350121 appears as a sire, but does not have its own record in the file. Thus) 
there should be 18 animals in the file. 

4. Animals 350873 and 351604 appear as both sire and darn in the file. 

The requirements for a pedigree file are 

1. All animals should be numbered consecutively, and 

2. Parent ID numbers should be smaller than the smallest progeny ID. 

An additional requirement might be that an animal ID can appear only as a sire or a dam 1 

but not both. Sometimes sire and dam IDs may be entered in the wrong fields, and if they 
have several progeny then they could appear a._<; both a sire and a dam. In most cases this 
is not a problcm

1 
but if the genetic model includes maternal genetic effects, then sire IDs 

should obviously not be in the file as a dam ID. 

Finally, all animals that appear as a sire ID or dam ID should be in the pedigree file 
in the animal ID column including their sire and dam IDs, if known. They should be 
assigned unknown parents and the earliest birth year. 

5.1.1 Achieving Chronological Order 

The first step is to assign generntion numbers to each animal, and this is done in an 
iterative manner until the generation numbers no longer need altering. Every animal 
begins with a generation number equal to one. Parents are given generation numbers 
that are at least one greater than the generation number of their offspring. Below are the 
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animals and the generation numbers assigned by iteration. Five iterations were needed 
with this small pedigree to correctly assign generation numbers. A code of O is given to 
animals without progeny, 1 if the animal appears as a sire, 2 if the animal appears as a 
dam, and 3 if the animal appears as both a sire and a dam. The animals that appear as 
both sire and dam can be corrected later, if necessary. 

Animal Sire Dam 1st 2nd 3rd 4th 5th Code 
348097 351604 351342 1 2 3 4 4 1 
349876 352515 350873 1 2 3 4 4 2 

350010 348097 349876 1 2 3 3 3 2 
350121 0 0 1 2 4 5 6 1 
350873 0 0 1 3 3 4 5 3 

351011 353118 351342 1 2 2 2 2 2 
351342 0 0 1 3 4 4 5 2 
351604 350121 0 1 3 3 4 5 3 
352012 352229 350873 1 2 2 2 2 2 
352229 352515 351342 1 2 3 3 3 1 
352515 0 0 1 3 4 4 5 1 

353013 353118 350010 1 2 2 2 2 1 
353118 350873 351604 1 2 3 3 3 1 

354018 353013 352012 1 1 1 1 1 0 
354317 348097 351011 1 1 1 1 1 0 
354516 351604 351342 1 1 1 1 1 0 
354715 352515 351011 1 1 1 1 1 0 
354914 351604 349876 1 1 1 1 1 0 

An output file with the generation numbers from the 5th iteration can be ,vritteni and 
this file must be sorted by the generation numbers to give the following file. 

Gen. No. Animal Sire Dam Code Birth Year 
6 350121 0 0 1 1980 
5 350873 0 0 3 1980 
5 351342 0 0 2 1980 
5 352515 0 0 1 1980 
5 351604 350121 0 3 1980 
4 349876 352515 350873 2 1981 
4 348097 351604 351342 1 1981 
3 352229 352515 351342 1 1981 
3 353118 350873 351604 1 1981 
3 350010 348097 349876 2 1981 
2 353013 353118 350010 1 1982 
2 352012 352229 350873 2 1982 
2 351011 353118 351342 2 1982 
1 354914 351694 349876 0 1982 
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1 
1 

1 
1 

354715 
354317 
354516 
354018 

352515 
348097 
351604 
353013 

351011 
351011 
351342 
352012 
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0 
0 
0 
0 

1983 
1983 
1983 
1983 

The second step is to renumber the animals consecutively from 1 to 18, and to replace 
the original registration numbers with the consecutive numbers for animals 1 sires, and 
dams. Parents will have smaller numbers than their progeny. The code for indicating sires 
or dams have been dropped. The sorted output file is as follows; 

Animal BirthYr Sire Dam Original ID 

1 1980 0 0 350121 
2 1980 0 0 350873 
3 1980 0 0 351342 
4 1980 0 0 352515 
5 1980 1 0 351604 
6 1981 4 2 349876 
7 1981 5 3 348097 
8 1981 4 3 352229 
9 1981 2 5 353118 

10 1981 7 6 350010 
11 1982 9 10 353013 
12 1982 8 2 352012 
13 1982 9 3 351011 
14 1982 5 6 354914 
15 1983 4 13 354715 
16 1983 7 13 354317 
17 1983 5 3 354516 
18 1983 11 12 354018 

5.1.2 Inbreeding Calculations 

The next step is to compute the inbreeding coefficients for each animal according to the 
Meuwisscn and Luo (1997) algorithm. These are needed to compute the diagonals of 0- 2 

in A- 1 = T- 1o- 2T1- 1 , which are1 in turn, needed to construct elements of A- 1 following 
Henderson's rules (1975), The diagonals of 0- 2 for the above animals were equal to 1 for 
animals 1 to 4, 1.3333 for animal 5, 2.13333 for animal 18, and 2 for all other animals (6 
to 17). 

Programs that prepare the pedigree file in the above rnauuer arc available. 

pedfOLf Assigns generation numbers to each animal and fills in the pedigree file. Animal 
IDs are assumed to be numeric only. 
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msort Sort routine to sort animals from high to low generation numbers, so that parents 
appear before their progeny. 

pedf02.f Re-numbers animals consecutively, including sire and darn IDs. 

msort Sort the output in consecutive number order. 

inbrd.f Compute inbreeding coefficients and diagonals of 0- 2 for use in other programs. 

5.2 Data File 

The software packages available to estimate variances and covariances generally require 
data to be prepared in specific formats. Any factor which might be included in a model 
should be created and present in the data file. For example, Age-of-Dam and Sex-of-Calf 
might be in the data. If the model will include an interaction between Age-of-Dam and 
Sex-of-Calf, then a code for the interaction effect, Age-X-Sex, should be included in the 
data file too. 1vlost of the software packages do not manipulate items in the data to form 
interaction effects, except SAS. 

Unfortunately
1 

software packages differ in the exact requirements for data files. The 
following generic format will be recommended. Data come as integer values and real values 
(with decimal places). Some, but not all programs require they variables to be real values, 
even if they are integer in nature. Every variable in the data should be separated from 
the next by at least one blank space. No character data are allowed in these data files. A 
record in the data file should be arranged as follows: 

1. Animal ID. The animal ID should be the same as that in the pedigree file. Thus, 
if the animals in the pedigree file have been re-numbered consecutively, then the 
animal IDs in the data should be numbered in the same manner. Consequently 1 the 
data file should not include any animals that <lid not appear in the pedigree file. 
However, the pedigree file may contain many more animals than those that have 
records. 

2. Integer Values. The next variables in the record should be any number of integer 
values. These indicate levels of factors that may be in the model, such as days in 
milk, age

1 
herd ID

1 
dam ID (consecutive numbers as in pedigree file), month, diet, 

year, etc. 

3. Real Values. All covariates and observed traits arc i11cluded in the real values, 
with or without a decimal in the number. If the model will be a random regression 
mo<lel, then the appropriate co\'ariates need to be created and stored in the data 
file. If the observations will be weighted by the inverse of a residual variance, then 
the weights should be included in the data file. 
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The specific formats for each software package will be given later, but the above arrange­
ment should be generally suitable. 

5.3 Control Files 

Each software package requires at least one control file that does the following (not neces­
sarily in this order): 

1. Identifies the pedigree and data files and the path to find them. 

2. Names the variables that arc integer and that are real, and a format (sometimes). 

3. :tvlodel specification. How many traits; what arc the fixed factors, covariates, and 
random factors of the model; weighting factors, if any. 

4. Type of analysis. REML Et-.'!, DF REML, Al REML, or Bayesian methodology. Not 
all methods are available in each software package. 

5. Starting values for parameters, degrees of belief. 

6. Other optional choices, dependent on the software package. These might include 
choice of output features, choice of level of optimization, choice of Jacobi or Gauss­
Seidel iteration strategies 1 choice of sparse matrix packages, degree of convergence 
desired, etc. 

Each software package has a different name for this control file, e.g. parameter file, driver 
file. Some control files are very easy to set up 1 and some control files are very tedious. 
However

1 
a program can be written to convert pedigree and data files (in the above generic 

formats) into the appropriate format for a specific software package, but none has been 
written. 

Each software package creates a number of different files for its own use. These files 
are generally written in binary format to save space and to speed up their reading during 
the analysis phase of the program. Such files are not readable by the user in most cases. 
Some of these files are important, for example, if a Gibbs sampling chain is interrupted 
and then must be re-started (without starting from scratch). Some of the files will be 
output from the analysis 1 and these may require further processing for interpretation. 
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Software Packages 

Three software packages are described in this chapter. This does not mean that these 
packages are recommended or are the best available. The packages are 1) VCE by Groen­
eveld; 2) DMU by Jensen and Madsen; and 3) MTDFREML by Boldman and others. The 
package ASREML by Gilmour is not described because this software has been commer­
cialized and is very expensive per copy. Also 1 the three packages cover all of the REML 
methods including Al REML. VCE is free. MTDFREML only uses DF REML. Users 
should try to learn how to use each package 1 as one package may not be suitable for all 
models and analyses. Because of the general nature of these programs to handle many 
different models and methods, the memory requirements can be substantial, thereby lim­
iting either the amount of data that can be accommodated or the model being applied. 
If the model has to be compromised, then the user may wish to use another software 
package. The more traits there arc and the more parameters to he estimated, the more 
memory and computing time that will be needed to get estimates. Finally, be cautious 
with results obtained from any of these programs. Just because results were obtained, the 
program may not have handled the model correctly, or the way you intended. Correct use 
of any package is the user's responsibility. If possible, use two software packages or two 
methodologies aud sec if the results agree. 

6.1 DMD-Jensen and Madsen 

DI\-IU was written by Per I\·ladsen and Just Jensen at the Danish Institute of Agricultural 
Sciences (DIAS), the Research Centre Foulum. The programs are in Fortran 90 or 95. 
The DlvIU package consists of modules. 

DMUl This module nmst always be used. This program reads the control file, and does 
preliminary massaging of the pedigree au<l data files for use ill the other modules. 
Pedigree information can be specified iu different ways. 

73 
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DMU4 This module is for solving the mixed model equations in order to obtain estimated 
breeding values. Standard errors of prediction can be obtained. Several methods of 
solving the equations can be used. They are 

1. Jacobi Conjugate Gradient (JCG), 

2. Jacobi Semi-Iteration (JS!), 

3. Successive Overrelaxation (SOR), 

4. Symmetric SOR Conjugate Gradient, 

5. Symmetric SOR Semi-Iteration, 

6. Reduced system Conjugate Gradient, 

7. Reduced system Semi-Iteration, 

8. FSPAK, speed optimized or memory optimized. 

DMUAI Module for estimation of covariance components using AI REML or EM REML. 

DMUGib Module for estimation of covariance components via Gibbs Sampling and 
Bayesian methodology. 

There is complete documentation available for this package from the source. The best 
way to explain the program is to describe the creation of the control files for different 
kinds of models. If something does not work from these notes, then please consult the 
documentation. 

6.1.1 Control File 

The control file in DMU is called a driver file. The driver file is organized into sections 
and contains keywords, some of which are mandatory. 
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Single Trait Animal Model 

$COMMENT 
Example driver file for a SINGLE TRAIT, Animal Model 
Trait for analysis is Tl 
Fixed factors are 
Random Factors are 

$ANALYSE 1 1 0 0 

RC RAS 
HRC ID 

$DATA ASCII (6,8,-99) /u/name/test/dairy.d 

$VARIABLE 
ID RC RAS HRC HS DAM 
ROUND LP! LP2 LP3 LP4 LP5 
Tl T2 

$MODEL 
1 
0 

7 0 4 2 3 4 1 
2 1 2 

0 
0 

$VAR_STR 2 PED 1 ASCII /u/name/test/ped.d 

Keywords begin with $ and have a specific syntax for what follows it. 
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$COMMENT Up to 10 lines may follow this keyword. All lines are repeated on the 
output files to identify the type of analysis. The user can input anylhing they want 
to identify the analysis. 

$AN ALYSE is followed by four numbers. 

• The first number specifies the task and is either a 1 or 11. A 1 indicates 
that REML estimation is to be conducted using DMUAI. An 11 indicates that 
DMU4 is to be used. 

• The second number indicates the method to be used. If the first number was 
a 1, then the method can be 1 - Al REl\11; 2 - EM REML based on Robin 
Thompson 1s algorithm; 3 - Eivl REl\,IL based on Esa .Mantysaari's algorithm; 
and 4 - AI RE:tvIL using step halving if an update goes outside the parameter 
space. If the first number was 11, the11 the method can be one of 10 possible 
methods. 
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• The third number refers to scaling the data to a residual variance of unity. A 
1 indicates yes to do scaling 1 and a 0 is for no scaling. 

• The fourth number refers to the amount of printout to be generated. A 0 stands 
for standard output. Values of 1 or 2 ask for more output, but the volume of 
output could be very large. 

Thus, in this example, variances arc to he estimated using AI REJvIL, no scaling of 
the data, and only standard output. 

item[$DATA] keyword is followed by the format of the data, either ASCII or BI­
NARY, followed by (number of integer values, number of real values, value below 
which real values are assumed missing), followed by the file name and the full path­
way to the file. In this example, the file is in ASCII format, the first 6 numbers are 
integers and the next 8 are real values. Any real values below -99 are considered to 
be missing. The location and name of the data file is given. 

$VARIABLE keyword is used to give names to the integer and real values in a record. 
A name may be up to 8 characters in length. Thus, ID RC RAS HRC HS DAM arc the 
six integer values and the following 8 are real values. This keyword is not mandatory, 
but it helps in understanding the next section of the driver file. 

$MODEL keyword is for describing the traits and models for each trait. 

• TRAITS. The first line indicates the number of traits in this analysis. In this 
case, only 1 trait. 

• ABSORB. Intended for future releases of DMU. For now there should be one 
0 for each trait to be analyzed, each on a separate line. In this example there 
is only one trait and therefore only one line with 0 in it. 

• MODEL. 
7 the seventh real value is y, 

0 no weighting of observations, 
4 number of class variables (fixed and random), 
2 second integer value (RC - Round-classifier subclasses), 
3 third int value (RAS - Round-age-season), 
4 fourth int value (HRC - Herd-round-classifier), 
1 first int value ( animal ID). 

The model equation could be written as 

Tl = RC + RAS + H RC + ID + e. 

• RANDOM. Indicates how many factors in the model are random factorn, and 
a numbering of those factors. Factors with the same number have a correlation 
structure between them, while factors with different numbers are independent 
of each other. The example says there are 2 random factors (assumed to be 
the last 2 specified in the MODEL, i.e. HRC and ID), and that these arc 
independent, HRC has structure 1 and ID has structure 21 to be defined in a 
later keyword. 
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• REGRES. For indicating number of covariates in a model with one line per 
trait. In this example 1 no covariates are in the model. 

• NOCOV. Number of covariances among residual effects. In this example, no 
covariances exist. 

$VAR_STR is used to specify the covariance structures of the random variables. If this 
keyword is omitted, then the assumed variance structure of all random variables is 
assumed to be Io}. However, in this example, an animal model i.s being employed 1 

therefore, the structure is A(T~. The ID variable was coded as number 2 in the 
RANDOM section of the previous keyword, and thus the first 2 in this keyword 
command. This is followed by PED to indicate the relationship matrix is to he used. 
There arc six options for the type of relationship matrix to be constructed. 

1 Sires and dams, inbred situation, 
2 Sires and dams, non-inbred situation, 
3 Sires and MGS, inbred, 
4 Sires and lvIGS, non-inbred, 
5 Not used, 
6 Same as 2 but with phantom groups. 

This code is followed by ASCII or BINARY and the full path and name of the pedigree 
file. 

Others . There are three more keywords which can be used to 1) specify prior or starting 
values of the variances and covariances; 2) indicate optional input to DMU4; and 
3) indicate optional input to DMUA!. These options expect filenames for the files 
where the additional information is stored. There are fixed formats for the addi­
tional information too. These are for fine-tuning an analysis, or possibly for saving 
information in case of a system malfunction, so that the analysis may be re-started 
with the same or different information. 
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Multiple Traits, Maternal Effects 

The following driver file is for running two traits, the second trait has a maternal genetic 
effect. 

$COMMENT 
Example driver file for a MULTIPLE TRAIT, Animal Model 
Two traits and including maternal effects for second trait 
Traits for analysis are Ti T2 
Fixed factors are 
Random Factors for Ti 
Random factors for T2 

$ANALYSE 1 1 0 0 

RC RAS 
HRC ID 
HRC DAM ID 

$DATA ASCII (6,8,-99) /u/name/test/dairy.d 

$VARIABLE 
ID RC RAS HRC HS DAM 
ROUND LPl LP2 LP3 LP4 LP5 
Tl T2 

$MODEL 
2 
0 
0 
7 0 4 2 3 4 1 
8 0 5 2 3 4 6 1 
2 1 2 
3 1 2 2 
0 
0 
0 

$VAR_STR 2 PED 1 ASCII /u/name/test/ped.d 

This driver file is very similar to that in the previous section. The only differences 
occur in the $MODEL statements. The model for the first trait is given by 7 0 4 2 3 4 1 
which is similar to the first example, and the model for the second trait is 8 0 5 2 3 4 6 
1 , where the 6 indicates the DAM ID of the animal. The first model has 2 random factors, 
coded as 1 and 2 for HRC and ID, respectively. The second model has 3 random factors 
namely, HRC

1 
DAM, and ID, coded as 11 2, and 2, respectively. Thus HRC have a covariance 

between traits, ID has a covariance between Lraits1 and ID and DAM have a covariance 
between them within trail 2. The structure of the covariances for those coded as 2 is the 
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additive genetic relationship matrix given in the $VAR_STR keyword. 

Single trait model with covariates 

$COMMENT 
Example driver file for a SINGLE TRAIT, Animal Model 
With a fixed covariate nested within a fixed factor 

Trait for analysis is Tl 
Fixed factors are RC 
Random Factors are HRC ID 
Covariate is AGE nested within RC 

$ANALYSE 1 1 0 0 

$DATA ASCII (6,9,-99) /u/name/test/dairy.d 

$VARIABLE 
ID RC RAS HRC HS DAM 
ROUND AGE LP! LP2 LP3 LP4 LP5 
Tl T2 

$MODEL 
1 
0 
7 0 3 2 4 1 
2 1 2 
1 2(1) 

0 
# (1) refers to factor 1 of the model (RC) 
# and () refer to nested 

$VAR_STR 2 PED 1 ASCII /u/name/test/ped.d 
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A new variable, AGE, was added to the data, which was the second real variable. Note 
that comments may be added to the driver file. Any lines starting with # and blank lines 
are ignored. 
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Randon1 regression model 

$COMMENT 
Example driver file for a SINGLE TRAIT, Animal Model 
Using longitudinal data, random regression model 
Trait for analysis is Ti 
Legendre polynomials are LP1 LP2 LP3 LP4 LP5 
Fixed factors are 
Random Factors are 

$ANALYSE 1 1 0 0 

RC RAS 
HRC ID 

$DATA ASCII (6,8,-99) /u/name/test/dairy.d 

$VARIABLE 
ID RC RAS HRC HS DAM 
ROUND LP1 LP2 LP3 LP4 LP5 
T1 T2 

$MODEL 
1 
0 
7 0 4 2 3 4 1 
2 1 2 
3 2(4) 3(4) 4(4) 
0 
0 

$VAR_STR 2 PED 1 ASCII /u/name/test/ped.d 

Thus, LP1,LP2) and LP3 are nested within levels of factor 4 of the model which is the 
animal ID. Because the animal ID factor is designated to have the additive relationship 
matrix covariance structure, the11 that structure is also applied to the covariates nested 
within the animal ID, as well as covariances between the covariates. 

6.1.2 Comments on DMU 

The driver files are not very complicated to construct, but the user may get confused by 
the number codes, and the manual will likely need to be utilized every time a new driver 
file is made, in order to remember what the code.s represent. The driver file should have 
been rna<le to be more explicit in itself. However, if DlvIU is used often, then the user may 
memorize the options and coding procedures so that they become second nature. 
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6.2 VCE - Groeneveld 

The control files for VCE are called parameter files or pfiles. pfiles are organized into 
sections which must be in a certain order. VCE is keyword oriented, and therefore, the user 
must not use these keywords to describe data or other variables. There is an online manual 
available to assist in understanding the use of VCE. VCE is capable of performing AI 
REML coded as (AG) in methods, Monte Carlo EM REML, coded as (AE), and Bayesian 
methods via Gibbs Sampling, coded as (GI). VCE is capable of handling dominance genetic 
effects and random regression models. 

6.2.1 pfile 

The parameter file for VCE is made up of sections identified by the following keywords in 
this order. 

COMMENT 
DATA 
lv!ODEL 
COVARIANCE 
SYSTEM 
OUTPUT 
END 

Optional 
Mandatory 
Mandatory 
Mandatory 
Optional 
Optional 
Optional 

Each section will be described separately, and then some examples will be given for 
particular models. VCE docs not distinguish between capital or small letters. Thus 1 

ANIMAL and animal are the same. 

6.2.2 COMMENT 

COMMENT job= iowastate 
The job name will appear on every page of the printout. 
An unlimited number of lines can follow. 
This section is for describing the analysis that the 
user is running. 

Care must be taken not to use another keyword in the comments sectiou. 
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6.2.3 DATA 

There are three types of data sets. An example DATA section follows. 

DATA 
datfile 

format 
dep 
indep 
group_by 
header 
crossbreeding 

pedfile 
format 
link 
dominance 
indep 
header 

ranfile 
format 
link 
indep 
header 

'dairy.ct' 
'(4f12.0,8f8.0)' 
AFS NRF NRC CTFS 
ANIMAL YS YSH MF SS AP AF PE 
variable 
0 
.false. 

'ped.d' 
'(4i10)' 
ANIMAL 
fANIMAL 

0 

'rfile.d' 
, ( ) , 

0 

• A format is not needed. If omitted, then the default option is free format. That 
is, a space must be inserted between each variable. If a format is given for the data 
file

1 
a typical FORTRAN format is used, and all variables must be read with the 'F 1 

in<licator even if the variables arc integer. 

• Note that the records in the data file must be arranged so that the observations 
or traits appear before any of the classification variables that may be used in the 
models. Or a format has to be given that uses the 'T 1 specifier for specific columns 
in which a variable is located to order the variables. Thus, dep refers to traits or 
dependent variables 1 and indep refers to independent variables. 

• The header indicates the number of records that should be skipped in the data file 
before records on animals begin. Usually the header is equal to 0, but if the data file 
is an Excel file, for example with headings on the columns, then the headings must 
be skipped. This statement allows the user to skip a certain number of records. 

• The crossbreeding keyword is used to indicate if crossbred animals appear in the 
data. 
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• The group_by keyword is to identify a variable in the data such that the residual 
variance could be different for each level of that variable 1 such as by hercl-ycar­
seaso11s, for example. 

• Note the semicolon after each file description. 

• There can be several data files. If the first data file is sorted by YSH, for example, 
then subsequent data files should be sorted in the same sequence. 

• The default option for the pedigree file assumes that the file contains animal 1 sire, 
and dam. If other information is on the file, such as breed codes, litter codes, or 
birthdates, then indep can be used to specify these variables. 

• The link keyword is usually equated to animal in order to have additive genetic 
effects in the model. 

• Dominance genetic relationships will be calculated if dominance = fanimal. 

• The ranfile is a file that identifies levels of heterogeneous variances for a random 
factor. An example will be given later. 

6.2.4 MODEL 

A typical simple specification for four traits, each with a different model is shown below. 

MODEL 
AFS YS YSH ANIMAL; 
NRF YS MF YSH SS ANIMAL; 
NRG YS AF YSH SS ANIMAL PE; 
GTFS = YS AP YSH ANIMAL PE; 

If NRF and NRC have the same model, then this could be written as 

NRF NRG YS MF AF YSH SS ANIMAL; 

• The ANIMAL effect should not be the first effect in the model equation. 

• The ANIMAL effect should appear in the model before the maternal effect, if included 
in the data. 

• Note that PE is the same as ANIMAL, because a variable should only appear once in 
the equation. 
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• Covariates are designated as p2(age), for cxample 1 which means to include age and 
age-squared. 

• To deviate covariates from their means then use pa2(age). This is generally a good 
idea to avoid rounding problems. 

• If the covariates are nested within year for example, then (1, p2 (age)] year would 
be used to include an intercept 1 age, and age-squared within years. 

• For a random regression model 1 this could be specified by [p5 (dim)] animal, which 
is a polynomial of dim 1 (days in milk), to the power 5 nested within animals. 

• If the user wanted to use Legendre polynomials, then [plg5(dim)]animal. 

6.2.5 COVARIANCE 

This section is for describing the structure of covariance matrices of the random variables. 

COVARIANCE 
ANIMAL ; 
YSH 
SS: NRF NRC; 
PE: NRC CTFS; 

The ANIMAL covariances are applied to all traits, as with YSH. Because the pedigree file 
was given in the DATA section and linked to ANIMAL, then the additive genetic relationship 
matrix will be employed. For YSH, the assumption is that the covariance structure is 
diagonal for a single trait and between traits. SS and PE are applied only to two traits 
each. There are options for specifying heterogeneous variances. The residual covariance 
structure, if not stated, is assumed to be diagonal within and between traits. 

Starting values for parameters can be determined by the program. Covariances are 
initially assumed to be close to zero. However, the user may specify starting values in a 
file, or values from a previous analysis may be used as input. Please consult the manual 
for details. 

6.2.6 SYSTEM 

This section describes the analysis that the user wishes to conduct 1 and how to proceed. 
There are keywords for iterative methods, such as for Gibbs sampling. There are keywords 
for constructing the additive genetic relationship matrix 1 and there are keywords for in­
dicating missing data or observations that the user might want to skip. Some examples, 
but not all possibilities are shown below. 
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SYSTEM 
method 'GI' 
me seed 56437281 
burn_max 5000 
burn_stop .0001 
restart .true. 

inbreeding .true. 

missing_value -99 
non zero 1000000 

non_zero is the number of nonzero elements iu the TvHv1E. The other variables should 
be obvious. The burn-in period would be limited to 5000 samples or to the level of 
0.0001 difference between the two chains. With Gibbs sampling 1 VCE uses two chain::;, 
with different starting parameters 1 but the same random number sequence. When the 
agreement between the two chains reaches the minimum <let.ired, then burn-in has been 
achieved and only samples from this point are used as samples from the joint posterior 
distribution. 

6.2.7 OUTPUT 

This section is for creating the desired output files. 

OUTPUT 
covfile 
inbreeding 
gibbs_log 

1 filename' format='( ) 1 next 
1 filenamei format='( )' next 
'filename' ; 

1· 
' 

0; 

Thus, the covfile will contain the estimated parameters from each Gibbs sample, after 
burn-in. Inbreeding coefficients of each animal can be saved. There are other options for 
getting exactly what you want or need. Please consult the manual. 

6.2.8 END 

The END statement terminates input to the program. Any lines that come after this are 
totally ignored. Thus, the user may put additional comments about the analysis after this 

statement. 

The manual for VCE Version 5.1 from December 2003 contains a lot of information, 
but some of the explanations are not very clear. Thus, the manual can be difficult to 
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follow and to get what is really needed. Assistance from the authors is not always readily 
at hand. However, VCE seems to be a very useful program if you understand the options 
and features. There is slightly more flexibility in modeling than in DlvIU. No comparisons 
have been made as to speed or memory requirements. 

6.3 MTDFREML 

These notes are based on the latest documentation which was April 1995. The authors 
were K. Boldman, L. Kriese, L. D. Van Vleck, C. P. Van Tassell, and S. D. Kachman. 
The programs were originally designed to run on personal computers interactively. The 
user would answer questions interactively with the program. If one of the answers was 
unacceptable or in error, then the program would abort and the user would need to begin 
again. With over 30 questions to be answered 1 this method of providing information to 
the program was slow 1 tedious, and subject to errors. The user can now create a file that 
has the answers to those questions. The MTDFREML package uses the Simplex method 
to locate the parameters that maximize the log likelihood function. The package also 
utilizes SPARSPAK routines for sparse matrix manipulations. The package consists of 
several programs. :tv1TDFNRM is used to prepare the additive genetic relationship matrix 
inverse and recode animals. MTDFPREP uses output from MTDFNRM to recode the 
data file, recode levels of fixed and random factors and to create new data files for the next 
program

1 
including information on the dimensions of vectors and arrays. 1V1TDFRUN is 

the program that searches for the maximum of the log likelihood function. 

MTDFNRM prepares 4 files; MTDFPREP prepares another 6 files, and MTDFRUN 
creates 10 files, of which 4 are necessary to continue from the last search. All pedigree 
and data input files from the user are assumed to be readable in free format. 

6.3.1 MTDFNRM 

This program computes the inverse of the additive genetic numerator relationship matrix, 
A- 1. The information required is given in the table below. 
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1 Animal model(O) or Sire-MGS model(l) 0 
2 Largest animal ID in pedigree file 99999999 
3 Smallest animal ID in pedigree file 0 
4 Name of pedigree file ped.d 
5 Original IDs and inbreeding values wanted yes 
6 Number of integer fields in file 6 
7 V/hich one is Animal ID 1 
8 V/hich one is Sire ID 2 
9 Which one is Dam ID 3 

10 Number of genetic groups 0 

The following data files are created. 

MTDFll Number of animals, list of animals by original ID 
with recoded ID, in asccuding order. 

l\ITDF13 Recoded pedigree, original pedigree, and 
inbreeding coefficients. 

MTDF44 Value of 0.5 In I A I, followed by 
non zero inverse elements in binary format. 

1JTDF56 Summary information from the nm. 

6.3.2 MTDFPREP 

87 

The data file must be prepared as for DlvIU with integer variables first followed by real 
variables. A PARAl\.I.DAT file must be prepared and included during the compilation of 
the program. The file indicates the maximum values possible for this particular analysis. 
The variables that can be changed in that file arc as follows: 
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MAXTRT 
MAXINTR 
MAXR8 
MAXANIM 
MAXCOV 
MAXNFR 
MAXFIX 
MAXNFL 
MAXCONS 
MAXRAN 
MAXNRL 
MAXINV 
MAXORDS 
MAXNZE 
NHASH 

CHAPTER G. SOFTWARE PACKAGES 

Number of traits 
Number of integer variables 
Number of real variables 
Number of animals(with records and ancestors and groups) 
Number of covariates per trait 
Number of regression coefficients per trait 
Number of fixed effects per trait 
Number of levels for a fixed effect 
Number of constraints 
Number of uncorrelated random effects per trait 
Number of levels for uncorrelated random effects 
Order of submatrix to be inverted 
Used by SPARSPAK 
Used by FSPAK 
Used by FSPAK for Hashing function 

The following information is needed 1 in this order. 
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1 Name of data file 
2 Up to 6 lines, description of analysis, ended by in 

column 1 after last comment line 
3 Number of integer variables 
4 Number of real variables 
5 Number of traits 
6 For each trait the following must be known 
6 a Name of trait 
6 b Position of trait in list of real variables 
6 C Missing value designation 
6 d Number of covariates in model for this trait 
6 e For each covariate with this trait 
6 e 1 N arne of covariate 
6 e 2 Position of covariate in real variables 
6 e 3 Type of covariate, linear, quadratic, 
6 f Number of fixed effects in model for this trait 

6 g For each fixed effect 
6 g 1 Name of fixed effect 
6 g 2 Position of fixed effect 
6 g 3 Write levels to MTDF66? l=yes 
6 h Position of animal ID in list of integers 
6 Number of animals in relationship matrix 
G j Is there a maternal effect? 1 = yes 
6 1 If yes, Name of effect, i.e. maternal 
6 j 2 If yes, Position of Maternal ID 
6 k Number of uncorrelated random effects 
6 Ill For each random effect 
6 Ill 1 Name of random effect 
G m 2 Position of random effect in integer list 
6 Ill 3 Write levels to MTDF66? l=yes 
7 Save labels for covariates and fixed effects? l=yes 

8 Save labels for random effects? l=yes 

Six data files arc created by this program that are used as input to the analysis program. 
The same file names arc generated each time the program is run. Therefore, information 
from the previous run will be lost or overwritten. Re-name the files if you think they 
might be used again at a later time before running this program. 

6.3.3 MTDFRUN 

Several options arc possible. 

TYPE OF ANALYSIS Ent.er O if this is a completely new run. Enter 1 if this is a 
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continuation of a previous run. 

OPTIONS. 

1. Estimate variance components. 

2. Solve l\IME only. 

3. Calculate sampling variances only. 

4. Solve MivIE, then sampling variances. 

Beginning a New Analysis 

Because SPARSPAK is used in MTDFRUN, the MME must be full rank. Only the input 
needed for OPTION 1, estimation of variance components, will be presented here. There 
are different inputs to the other OPTIONS. The program will ask the following questions. 

1 Up to 6 lines to describe the analysis with in the first column after the last conunent line. 
2 Is this a continuation? yes= 1 
3 OPTION number = 1 
4 Number of constraints, put 0 
5 Does file MTDF58 exist? yes=l 
6 Input of prior values for animal (and maternal) 

genetic effects according to model 
7 Verification of the priors. 
8 Number of parameters to hold constant. 
8 a Position of parameters to hold constant. 
9 Input of prior values for other random factors. 

10 Verification of the priors. 
11 Number of parameters to hold constant. 
11 a Position of parameters to hold constant. 
12 Input of priors for residual covariances. 
13 Verification of the priors. 
14 Number of parameters to hold constant. 
14 a Position of parameten; to hold constant. 
15 Write solutions for covariates and fixed effects? l=yes, 2=no. 
16 If yes, Merge labels with solutions'? l=yes, 2=no. 
17 \\Trite animal (and maternal) solutions? l=ycs, 2=no. 
18 \\Trite solutions to other random effects? l=ycs, 2=no. 
19 If yes, Merge labels with solutions'? l=yes, 2=no. 
20 Convergence criterion, l.e-6 or l.e-8. 
21 Number of Simplex rounds. 

The number of Simplex rounds should be at least one greater than the number of 
parameters to be estimated. Depending on the number of parameters and complexity of 
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the model, the number of rounds required could be 1000 or more. If the user enters a 1 
for number of Simplex rounds, then the program will give a timing per round, from which 
the user can determine the number of rounds to perform. However 1 if the method reaches 
convergence before the specified number of rounds, then the program will terminate. 

If the user wants to restart, then the questions are the same except that the input of 
the priors is skipped (items 4 through 14). The manual is filled with examples for different 
kinds of models which are useful to understand the program. 
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Chapter 7 

Maternal Effects Models 

7.1 Introduction 

In some species of livestock, such as beef cattle, sheep or swine, the female provides an 
environment for its offspring to survive and grow. Females vary in their ability to provide a 
good environment for their offspring, and this variability has a genetic basis. The offspring 
inherit directly an ability to grow (or survive) from both parents, and environmentally do 
better or poorer depending on their dam's maternal ability. Maternal ability is a genetic 
trait and is transmitted, as usual, from both parents, but maternal ability is only expressed 
by females when they have a calf (i.e. much like milk yield in dairy cows). 

A model to account for maternal ability is 

y = Xb + Z 1a + Z2m + Z3p + e, 

where y is the growth trait of a young animal, b is a vector of fixed factors influencing 
growth) such as contemporary group, sex of the offspring, or age of dam, a is a vector of 
random additive genetic effects (i.e. direct genetic effects) of the animals, m is a vector 
of random maternal genetic (dam) effects, and p, in this model, is a vector of maternal 
permanent environmental effects (because dams may have more than one offspring in the 
data). 

The expectations of the random vectors, a, m, p, and e are all null vectors in a model 
without selection, and the variance-covariance structure is 

( 
a 

l ( 

Aa 2 Aaam 0 

0 l Var 
m A~a:n Aa;i 0 0 
p 0 lai 0 , 

e 0 0 0 IaJ 

where a~ is the additive genetic variance, a;;.i is the maternal genetic variance, a am is 
the additive genetic by matenwl genetic covariance, and u' p is the maternal permanent 

9'.l 
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environmental variance. Also) 

where 

and 

and 
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Oarn 

(!2 
m 

e ~ N(O, fo~)-

In this model, a female animal. i 1 could have its own growth record for estimating 
ai. The same female could later have offspring of its own for estimating 1hi and Pi, and 
the offspring would also contribute towards (ti· The maternal effects model can be more 
complicated if, for example, embryo transfer is practiced. Recipient <lams would have 
maternal effects, but would not have direct genetic effects on that calf, see Schaeffer and 

Kennedy (1989). 

7.2 Simulation of Records 

To better understand this model, think about how records might be sampled in reality. 
For example, let 

Any positive definite matrix can be partitioned into the product of a matrix times its 
transpose (i.e. Cholesky decomposition), or 

Let a~ = 9 and a; = 81. Both the additive genetic and maternal genetic effects need to 
be sampled simultaneously because these effects are genetically correlated. 

Consider three animals
1 

A
1 

B, and C 1 where C is an offspring of sire A and dam 
B. First

1 
sample additive genetic values for the parents 1 and then generate the additive 

genetic effects of their progeny, animal C. For animal A, generate a vector of two random 
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normal deviates from a distribution with mean zero and variance unity, which will be pre­
multiplied by L. Animals A and B are base population animals unrelated to each other. 
Let the vector of random normal deviates be w' = (2.533 - .299), then for animal A 

( 
aA ) Lw 
TnA 

( 
7 0 ) ( 2.533 ) 

-1 5 -.299 

( 
17.731) 

-4.028 • 

Similarly for animal B, generate another vector of random normal deviates, say w' 
(-1.141 .235), then 

-1.141 ) 
.235 

The additive genetic value of animal C take the average of the parents 1 true breeding 
values and add a random :tviendelian sampling term. Generate another vector or random 
normal deviates, w' = (.275 .402), then 

( 
ac ) 
me 

1 ( aA + as ) 5 -
2 

+ (b,i) • Lw 
mA+mB 

~ ( 17.731-7.987) (~).5L ( .275) 
2 -4.028 + 2.316 + 2 .402 

( 6 ~;~ ) • 

where bii comes from factoring the additive genetic relationship matrix as A = TBT', for 
T being lower triangular and B being a diagonal matrix. Hence b-ii is a diagonal element 
of B. For non-inbred animals with both parents known the11 bii = 0.5, otherwise it can he 
less than 0.5, depending on the amount of inbreeding. 

lvlaternal permanent environmental effects must be generated for each dam with progeny. 
In this ca..se only animal B is a dam. 1.i!ultiply a new random normal deviate by Clp = 3, 
suppose the result is -4.491. An record for animal C is created by following the model 
equation, 

y µ+ac+ma+Ps+a,•RND 

140 + 6.233 + 2.:ll6 + (-4.491) + (9)(1.074) 

153. 724. 

where µ. was arbitrarily set to 140, and RN D refers to a new random normal deviate. 
The record on animal C consists of the direct genetic effect of animal C plus the maternal 
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genetic effect of the dam (B) plus the maternal permanent environmental effect of the 
dam (B) plus a residual. Records in real life are probably measured to the nearest whole 
unit, so y = 154 for animal C. 

7.3 Mixed Model Equations 

To illustrate the mixed model equations, assume the data as given in the table below. 

Animal Sire Dam CG Weight 

5 1 3 1 156 
6 2 3 1 124 
7 1 4 1 135 
8 2 4 2 163 
9 1 3 2 149 
10 2 4 2 138 

where CG stands for contemporary group, the only fixed effect in this example. Assume 
that the appropriate variance parameters were those used in the simulation in the previous 
section. Based on the matrix formulation of the model, the MrvIE are 

( 

X'X 
z;x 
z;x 
z;x 

where 

X'Z1 
z;z1 +A- 1kn 
z;z1 +A- 1k12 

Z\Z1 

X'Z 3 

z;z3 
z;z, 

X'Z2 
z;z2+A- 1k12 
z;z2 + A- 1k22 

Z\Z2 Z\Z3 + lk33 

) ( 

(J2 )
-\ 

k12 aam 2 

k22 aa: 
2 (TC, 

(Jm 

( )

-1 
49 -7 
-7 26 (81), 

( 
1.7192 
.4628 

.4628 ) 
3.2400 • 

Finally, k33 = a;/a~ = 81/9 = 9. 

The matrices for the example data are 

1 0 
1 0 

X= 
1 0 , ( 415 ) 
[) 1 ' X y = 450 ' 

0 1 
0 1 
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0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 

Z1= 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 () 0 0 0 0 0 1 

0 0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 

Z2 = 
0 0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 

1 0 
1 0 

Z3 = 
0 1 , ( 429 ) 
0 1 z,y = 43G • 

1 0 
0 1 

The other two right hand side matrices can be easily obtained from y and z;y. The order 
of the MME is 24. The inverse of the relationship matrix is 

5 0 2 1 -2 0 -2 0 -2 0 
0 5 1 2 0 -2 0 -2 0 -2 
2 1 5 0 -2 -2 0 0 -2 [) 

1 2 0 5 0 0 -2 -2 0 -2 

A-1 = ~ -2 0 -2 0 4 0 0 0 0 0 
2 0 -2 -2 0 0 4 0 0 0 0 

-2 0 0 -2 0 0 4 0 0 0 
0 -2 0 -2 0 0 0 4 0 0 

-2 0 -2 0 0 0 0 0 4 0 
0 -2 0 -2 0 0 0 0 0 4 

The solutions to the MME are 

, ( 137.8469 ) 
b = 150.4864 ' 

• = ( .0658 ) 
P -.0658 ' 

2.3295 -.3328 
-2.3295 .3328 

.1280 .1646 
-.1280 -.1646 

3.= 
5.1055 

and ill= 
-.6379 

-4.1143 ' .6792 
.2375 -.1254 

2.0161 -.3795 
.5447 .0136 

-3.7896 .4499 
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7.4 Estimation of Covariances 

Let the inverse of the coefficient matrix of the MME be represented as 

( 

C,, C,1 C,2 C,3 l 
C,, Cu C12 C13 
C2, C21 C,, C23 • 
C3, C31 C32 C33 

The quadratic forms required for RE:t\--IL or Bayesian estimation arc 

( 
ii' ) A-1 ( - • ) _ riI' a Ill - ( 

a'A- 1a 
ri1'A- 1a 

7.4.1 EM-REML 

For EM-REML estimation, 

( 
95.7075 

-13.6257 

P'P 0.008668) 

e'e 463.56943. 

ii,= (y'y - S'W'y)/(N - r(X)), 

where W = (X Z 1 Z2 Z3) and (3' = (b' a' m' p'). In the example, N = 6, r(X) = 2, and 

ii,= (125,751 - 125, 128.93)/4 = 155.51863. 

The genetic components are given by 

( 
., • ) [( -,A- 1

' ''A- 1 
- ) ( t (A- 1C ) ~a ~~m = ~ a~ ~ ~ -t-a2 T 11 

u u 2 m'A- 1a m'A- 1m ' tr(A- 1C ) = m 21 

tr(A- 1C12) 
tr(A- 1C22) 

( 
95.7075 -13.6257 ) 

-13.6257 2.0067 ' 

( 
5.1036 -0.8391 ) 

--0.8391 3.1199 ' 

( 
93.6068 -14.4124 ) 

-14.4124 48.7213 • 

Finally, the estimate of the maternal permanent environmental component would be 

ii~= (p'p + ii;trC33)/2, 

where p'p = 0.0086681, trC33 = 0.2097853, and iii, = 3.2634. The new estimates should 
be used to reconstruct the fl.HvIE to get new solutions and new estimates of variances and 
covariances 1 and this is repeated until convergence is achieved. 
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7.4.2 Bayesian Estimation 

For Bayesian estimation using Gibbs sampling, the MME would ·be solved and new samples 
generated for (31 = (b' a' m' p') as usual. For the genetics components, the necessary 
quadratic forms for the -ith sample arc given by 

a~A- 1mi 

m~A- 1mi 

This matrix follows an inverted VVishart distribution. To sample a new G, 

1. Invert the ith sample matrix, Gi. 

2. Compute the Cholesky decomposition of this inverse, 

where T is a lower triangular matrix. 

3. Generate a new sample for Gi)1 from a \iVishart distribution based on q degrees of 
freedom, where q is the number of animals, in this case q = 10. 

4. Invert the previous matrix to give Gi+l· 

For the residual and maternal permanent environmental effects, a new sample value for 
the residual variance is given by 

and a new sample value for the maternal permanent environmental variance is given by 

where p is the number of dams with progeny. :r,.,Jany samples may need to be drawn. The 
e and P are not estimates in the usual sense, but represent the current sample values in 
the Gibbs sampling chain. 

7.5 Warnings 

The influence of the correlation between direct and maternal effects on the relationship 
between solutions for direct and maternal effects can he a matter of concern. If the 
genetic correlation between direct and maternal true breeding values is negative (-0.lL for 
example, and if an auimal has a high, positive direct EBV based on its own growth record, 
then the maternal EBV could be very negative due to the correlation alone. Thus, if few 
of the animals with growth records have progeny, then the relationship between direct 
an<l maternal EBVs will be strongly negative (like -0.S)(refiecting the assumed negative 
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correlation amongst true breeding values). However1 if the data are complete and animals 
have both their own records and those of several progeny, then the correlation between 
direct and maternal EBVs should more closely follow the assumed genetic correlation. 

The data structure can affect the correct estimation of the genetic correlation between 
direct and maternal effects. Estimates of this correlation in beef cattle have ranged from 
-0.5 to +0.5, and this mostly reflects the differences in quality (completeness) of data used. 
In experimental station herds with several generations of animals and fairly complete data 
on pedigrees, the estimates of the genetic correlation have tended to be zero or slightly 
positive between direct and maternal effects. On the other hand, in field data with almost 
no ties between growth of calves with performance of offspring as a dam, the estimates of 
the genetic correlation have tended to be negative. To determine if your data arc complete, 
create a file that has an animal 1s own record plus the average growth record of its dam. 
If you have 3 million records 1 but only 100 dam-offspring pairs, then the reliability of the 
estimated correlation between direct and maternal effects will be low. One can also look 
at the number of female progeny of each sire that have their own progeny as a percentage 
of all female progeny. If that percentage is low ( i.e. less than 20% ), then the reliability of 
the estimated genetic correlation could be low. \Vith poor data structure, the possibility 
of a strong negative genetic correlation is very likely if the estimation process is started 
with a negative genetic correlation. 



Chapter 8 

Random Regression Models 

8.1 Introduction 

All livestock grow and perform over their lifetime. Traits that arc measured at various 
times during that life are known as longitudinal data. Examples are body weights, body 
lengths, milk production, feed intake, fat deposition 1 and egg production. On a biological 
basis there could be different genes that turn on or turn off as an animal ages causing 
changes in physiology and performance. Also, an animal's age can be recorded in years, 
months, weeks, days, hours, minutes, or seconds 1 so that, in effect, there could be a 
continuum or continuous range of points in time when an animal could be observed for a 
trait. These traits have also been called infinitely dimensional traits. 

Take body weight on gilts over 60 days on test as an example. 

Animal Days on Test 
10 20 30 40 50 60 

1 42 53 60 72 83 94 

2 30 50 58 GS 76 85 
3 38 44 51 60 70 77 

SD 1.6 3.7 39 5.0 5.3 5.6 

The differences among the three animals iucrease with days on test as the gilts become 
heavier. As the mean weight increases, so also the standard deviation of \Veights increases. 
The weights over time could be modeled a.s a mean plus covariates of days on test and days 
on test squared. Dependiug on the species and trait, perhaps a cubic or spline function 
would fit the data better. The point is that the means can be fit by a linear model \Vith 
a certain number of parameters. 

101 
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8.2 Multiple Trait Approach 

The data presented in the previous table have typically been analyzed such that the weights 
at each day on test are different traits. If t is the day on test, i.e. 101 20, 30, 40, 50, or 
601 then a model for any one of the weights could be 

Yt = Xb,+a, +e,, 

which is just a simple, single record, animal model. Analyses are usually done so that 
the genetic and residual variances and covariances arc estimated among the six weights. 
Suppose that an estimate of the genetic variances and covariances was 

2.5 4.9 4.6 4.6 4.3 4.0 
4.9 13.5 12.1 12.3 11.9 10.7 

G= 
4.6 12.1 15.2 14.5 14.6 12.5 
4.6 12.3 14.5 20.0 19.0 16.9 
4.3 11.9 14.6 19.0 25.0 20.3 
4.0 10.7 12.5 16.9 20.3 30.0 

Let the residual covariance matrix be 

3.8 7.4 6.9 6.8 6.4 6.0 
7.4 20.3 18.2 18.4 17.9 16.1 

R= 
6.9 18.2 22.8 21.8 21.9 18.8 
6.8 18.4 21.8 30.0 28.5 25.4 
6.4 17.9 21.9 28.5 37.5 30.5 
6.0 16.1 18.8 25.4 30.5 45.0 

Assuming a model with only an intercept 1 and that the three animals are unrelated, then 

(

1 1 0 0) 
(X Z) = 1 0 1 0 0 l5, 

1 0 0 1 

where the identity is of order 6 and 0 is the direct product operator. The observations 
\vould be ordered by days on test within animals, i.e., 

y' = ( 42 53 60 72 83 94 · • • 60 70 77 ) . 

The resulting Mlv!E would be of order 24 by 24, and the solutions would be as follows. 

Days on 
Test Mean Animal 1 Animal 2 Animal 3 
10 36.67 2.10 -2.61 0.51 
20 49.00 1.57 0.45 -2.02 
30 56.33 1.48 0.64 -2.12 
40 66.67 2.21 0.39 -2.60 
50 76.33 2.72 -0.24 -2.48 
60 85.33 3.48 -0.16 -3.32 
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Animal 1 clearly grew faster than the other two animals and its superiority grew larger 
with time. Animals 2 and 3 switched rankings after the first 10 days, an<l Animal 3 was 
clearly the slower growing animal. The estimates for the mean give an average growth 
curve for the 3 animals. 

A multiple trait approach may be appropriate here because every animal was weighed 
on exactly the same number of days on test throughout the trial. However, suppose the 
animals were of different ages at the start of test, and suppose that instead of days on 
test, the ages for each weight were given. As:mmc at start of test that Animal 1 was 18 
days old, Animal 2 was 22, and Animal 3 was 25. The multiple trait model could include 
a factor (classification or covariable) to account for different starting ages. The differences 
observed at any point in time could be due to the ages of the animals rather than just on 
the number of days on test. The analysis shown above would have an implied assumption 
that all animals began the test at the same age. 

8.3 Covariance Functions and Orthogonal Polynmnials 

Let the example data be as shown below, allowing for the different ages at each test. Note 
that the ages range from 28 days to 85 days, and that none of the animals were ever 
weighed at exactly the same age. 

Animal 1 Animal 2 Animal 3 
Age Wt Age Wt Age Wt 
28 42 32 30 35 38 
38 53 42 50 45 44 
48 60 52 58 55 51 
58 72 62 68 65 60 
68 83 72 76 75 70 
78 94 82 85 85 77 

Kirkpatrick et al.(1991) proposed the use of covariance functions for longitudinal data 
of this kind. A covariance function (CF) is a way to model the variances and covariances 
of a longitudinal trait. Orthogonal polynomials are used in this model and the user must 
decide the order of fit that is best. Legendre polynomials are the easiest to apply. They 
were first published around 1797. 

To calculate Legendre polynomials 1 first define 

Po(x) 

P1 (x) 

1, and 

:fl 
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then, in general, the n + 1 polynomial is described by the following recursive equation: 

1 
Pn+1(x) = -- ((2n + l)xPn(x) - nPn-1(x)). 

n+l 

These quantities are "normalizedn using 

(
2n + 1) •

5 

<Pn(x) = -
2
- Pn(x). 

This gives the following series, 

and so on. 

</>o(x) 

P2(x) 

¢2(x) 

G) 5 

Po(x) = .7071 

(D 5 

P1(x) 

l.2247x 
1 
2(3xI\(x) - lP 0(x)) 

(
~).5 (~x2 - ~) 
2 2 2 

-. 7906 + 2.3717x2
, 

The first six can be put into a matrix, A, as 

.7071 0 0 0 0 
0 1.2247 0 0 0 

A'= -.7906 0 2.3717 0 0 
0 -2.8062 0 4.6771 0 

.7955 0 -7.9550 0 9.2808 

0 
0 
0 
0 
0 

0 4.3973 0 -20.5206 0 18.4685 

Now define another matrix, M, as a matrix containing the polynomials of standardized 
time values. Legendre polynomials are defined within the range of values from -1 to +l. 
Thus, ages or time periods have to be standardized (converted) to the interval between -1 
to + 1. The formula is 

1 + 2 (; min 
( 

t, - t • ) 
q, = - . 

tma:r - tmin 

Let the minimum starting age for pigs on test be 15 days and the maximum starting age 
be 28 days, then the maximum age at end of test was 88 days. Thus, tmin = 25 = (15 + 10) 
and lmax = 88 = (28 + 60). 

The matrix G was based on weights taken on pigs that were all 21 days of age at start 
of test. The table below shmvs the ages and stan<lardi2ed time values for the six weigh 
dates. 



8.3. COVARIANCE FUNCTIONS AND ORTHOGONAL POLYNOMIALS 105 

Days on Age Standardized 
Test Value 

10 31 -1.000 
20 41 -.600 
30 51 -.200 
40 61 .200 
50 71 .600 
60 81 1.000 

Therefore, 
1 -1 1 -1 1 -1 

1 -.600 .360 -.216 .130 -.078 

M= 
1 -.200 .040 -,008 .002 -.000 

1 .200 .040 .008 .002 .000 
1 .600 .360 .216 .130 .078 
1 1 1 1 1 1 

This gives 

<!> MA, 
.7071 -1.2247 1.5811 -1.8708 2.1213 -2.3452 

.7071 -.7348 .0632 .6735 -.8655 .3580 

.7071 -.2449 -.6957 .5238 .4921 -.7212 

.7071 .2449 -,6957 -.5238 .4921 .7212 

.7071 .7348 .0632 -.6735 -.8655 -.3580 

.7071 1.2247 1.5811 1.8708 2.1213 2.3452 

which can be used to specify the elements of G as 

G <!> H <!>' 

M(AHA')M' 
MTM'. 

Note that cl>, M, and A are matrices defined by the Legendre polynomial functions and 
by the standardized time values and do not depend 011 the data or values in the matrix 
G. Therefore, it is possible to estimate either H or T, 

H = <I>-'c<I>-r, 

27.69 5.29 -1.95 0.05 -1.17 0.52 

5.29 4.99 0.42 -0.25 -0.30 -0.75 

-1.95 0.42 1.51 0.20 -0.33 -0.07 

0.05 -0.25 0.20 1.19 0.06 -0.71 
-1.17 -0.30 -0.33 0.06 0.58 0.15 

0.52 -0.75 -0.07 -0.71 0.15 1.12 

and 

T M- 1GM-T 
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16.44 G.48 -5.93 -11.49 -0.93 10.02 
6.48 49.87 -2.05 -155.34 1.44 111.23 

-5.93 -2.05 57.71 28.62 -50.06 -25.73 
-11.49 -155.34 28.62 635.49 -26.91 -486.90 

-0.93 1.44 -50.06 -26.91 49.80 26.49 
10.02 111.23 -25.73 -486.90 26.49 382.79 

VVhy orthogonal polynomials? Convert T and H to correlation matrices. 

1.00 .23 -.19 -.11 -.03 .13 
.23 1.00 -.04 -.87 .03 .81 

Tear= 
-.19 -.04 1.00 .15 -.93 -.17 
-.11 -.87 .15 1.00 -.15 -.99 
-.03 .03 -.93 -.15 1.00 . 19 

.13 .81 -.17 -.99 .19 1.00 

and 
1.00 .45 -.30 .01 -.29 .09 
.45 1.00 .15 -.10 -.17 -.32 

Hear 
-.30 .15 1.00 .15 -.36 -.05 

.01 -.10 .15 1.00 .07 -.62 
-.29 -.17 -.36 .07 1.00 .19 

.09 -.32 -.05 -.62 .19 1.00 

The largest absolute correlation in T was .991 while the largest absolute correlation in 
H was only .62. Orthogonal polynomials tend to reduce the correlatiom; between esti­
mated regression coefficients. This is advantageous when trying to estimate H by REML 
or Bayesian methods, because the estimates would converge faster to the maximum or 
appropriate posterior distribution than trying to estimate T. The matrix T actually had 
four correlations greater than 0.80 in absolute value) while H had none. There are other 
kinds of orthogonal polynomials, but Legendre polynomials are probably the easiest to 
calculate and utilize. 

H can be used to calculate the covariance between any two days on test between 10 
and 60 days. To compute the covariance between days 25 and 55, calculate the Legendre 
polynomial covariates as in calculating a row of Q:l. The standardized time values for days 
25 and 55 are -0.4 and 0.81 respectively. The Legendre polynomials {stored in L are 

L = ( .7071 
.7071 

-.4899 -.4111 .8232 -.2397 
. 9798 .7273 .1497 -.4943 

Then the variances and covariance for those two ages are 

LHL' = ( 14.4226 13. 7370 ) 
13.7370 28.9395 • 

-.6347 ) 
-.9370 • 

Thus, the genetic correlation between clays 25 and 55 is 0.67. The same calculations could 
be repeated for the residual variance-covariance matrix. Let 

s = <l>-1R<l>-T, 
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41.57 7.94 -2.91 0.11 -1.76 0.76 
7.94 7.45 0.62 -0.41 -0.44 -1.07 

-2.91 0.62 2.29 0.31 -0.52 -0.12 
0.11 -0.41 0.31 1.76 0.08 -1.04 

-1.76 -0.44 -0.52 0.08 0.88 0.24 
0.76 -1.07 -0.12 -1.0,1 0.24 1.64 

them the residual variances and covariances for days 25 and 55 would be 

LSL' = ( 21.6645 20.6166 ) 
20.6166 43.3442 • 

8.3.1 Reduced Orders of Fit 

107 

Although the order of G in the previous example was six and polynomials of standardized 
ages to the fifth power were used to derive the covariance functions 1 perhaps only squared 
or cubed powers are needed to adequately describe the elements of G. That is 1 find <I>* 
such that it is rectangular and H* has a smaller order, m < k, but still 

G = 4>*H*<I>*
1

. 

To determine H*, first pre-multiply G by 4>*' and post-multiply that by <I>* as 

q,•' (<I>'H'<t>'')<t>' 

( q,•' <I>' )H' ( q,•' <I>'). 

Now pre- and post- multiply by the inverse of (4>*
1 

4>*) = P to determine II*, 

H' = p-lq,•'Gq,•p-1_ 

To illustrate, let m = 3, then 

.7071 -1.2247 1.5811 

.7071 -.7348 .0632 

<I>*= 
.7071 -.2449 -.6957 
.7071 .2449 -.6957 
.7071 .7348 .0632 
.7071 1.2247 1.5811 

and 

( 3.0000 0.0000 1.3415 ) 
0.0000 4.1997 0.0000 , 
1.3415 0.0000 5.9758 

( .3705 .0000 -.0832 ) 
.0000 .2381 .0000 . 

-.0832 .0000 .1860 



108 CHAPTER 8. RANDOM REGRESSION MODELS 

Also, 

( 

220.2958 78.0080 61.4449 ) 
v•' G<I>' = 78.0080 67.5670 44.9707 . 

61.4449 44.9707 50.5819 

The matrix H* is then 

( 

26.8082 5.9919 -2.9122 ) 
5.9919 3.8309 .4468 . 

-2.9122 .4468 1.3730 

\\'hat order of reduced fit is sufficient to explain the variances and covariances in G? 
Kirkpatrick ct al.(1990) suggested looking at the eigenvalues of the matrix H from a full 
rank fit. Below are the values. The sum of all the eigenvalues was , and also shown is the 
percentage of that total. 

H 
Eigenvalue Percentage 

29.0357 .7831 
4.2922 .1158 
1.8161 .0490 
1.3558 .0366 
.5445 .0147 
.0355 .0010 

The majority of change in elements in G is explained by a constant, and by a linear 
increment. Both suggest that a quadratic function of the polynomials is probably sufficient. 
Is there a way to statistically test the reduced orders of fit to determine which is sufficient? 
A goodness of fit statistic is e' e where 

e=g-g 
and g is a vector of the half-stored elements of the matrix G, i.e., 

g' = ( 911 912 • • • Yl6 .922 • • • 966 ) . 

A half-stored matrix of order k has k(k + 1)/2 clements. For k = 6 there are 21 values. 
Likcwise1 g is a vector of half stored elements of the matrix cI>*H*1>*

1

• Although this matrix 
also has 21 values, because M has only rn < k columns, the number of independent values 
is m(rn + 1)/2. Form= 3 this number is 6. 

The test statistic, e'e, has a Chi-square distribution with k(k + 1)/2 - m(m + 1)/2 
degrees of freedom. In the example with 1n = 3, 

3.9622 4.7467 5.2006 5.3239 5.1165 4.5786 
4.7467 8.9493 11.4058 12.1162 11.0804 8.2986 

4>*H*«I>*' = 5.2006 11.4058 15.2402 16.7038 15. 7966 12.5186 
5.3239 12.1162 16. 7038 19.0868 19.2650 17.2386 
5.1165 11.0804 15.7966 19.2650 21.4857 22.4586 
4.5786 8.2986 12.5186 17.2386 22.4586 28.1786 
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and the residuals ( differences from the original G) are 

-1.4622 .1533 -.6006 -.7239 -.8165 -.5786 
.1533 4.5507 .6942 .1838 .8196 2.4014 

-.6006 .6942 -.0402 -2.2038 -1.1966 -.0186 
-.7239 .1838 -2.2038 .9132 -.2650 -.3386 
-.8165 .8196 -1.1966 -.2650 3.5i13 -2.1586 
-.5786 2.4014 -.0186 -.3386 -2.1586 1.8214 

so that the goodness of fit statistic is 

e'e = 59.3476, 

with 21-6=15 degrees of freedom. 

Is a fit of order 3 poorer than a fit of order 5? An F-statistic is possible by taking the 
difference in the goodness of fit statistics, divided by an estimate of the residual variance. 
The residual variance is estimated from a fit of order k - 1 or in this case of order 5. The 
goodness of fit statistic for order 5 was 7.2139 with 21-15=6 degrees of freedom. Hence 
the residual variance is 

cr2 = 7.2139/6 = 1.2023. 

The F-statistic to test if a fit of order 3 is different from a fit of order 5 is 

F = 
(e'em=3 - e'em=s)/(15 - 6) 

er' 
(59.3476 - 7.2139)/9 

1.2023 
5. 7926/1.2023 = 4.8180, 

with (9,6) degrees of freedom. The table F-value at the (P = .05) level is 4.10. Thus, the 
difference is significant, allCl a fit of order 5 is better than a fit of order 3. 

8.4 Basic Structure of RRM 

Random regression models have a basic structure that is similar in most applications. A 
simplified RR!vl for a single trait can be written as 

where 

Yijkn:t is the nth observation on the kth animal at time t belonging to the i th fixed factor 
and the /h group; 
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Fi is a fixed effect that is independent of the time scale for the observations, such as a 
cage effect, a location effect or a herd-test date effect; 

g(t)j is a function or functions that account for the phenotypic trajectory of the average 
observations across all animals belonging to the /h group; 

r(a 1 x, ml )k = I:;:10 akfXijk:f is the notation adopted for a random regression function. In 
this case, a denotes the additive genetic effects of the kth animal, x is the vector of 
time covariates, and ml is the order of the regression function. So that Xijk:t are 
the covariables related to time t 1 and ake are the animal additive genetic regression 
coefficients to be estimated; 

r(pe, x, m2)k = I:;',!;0 PktXijk:f is a similar random regression function for the permanent 
environmental {pe) effects of the J/h animal; and 

eijkn:t is a random residual effect with mean null and with possibly different variances for 
each t or functions oft. 

The function, g(t)j, can be either linear or nonlinear int. Such a function is necessary 
in a RRfvI to account for the phenotypic relationship between y and the time covariables 
(or other types of covariables that could be used in a RRM). In a test day model, g(t)1 

accounts for different lactation curve shapes for groups of animals defined by years of 
birth, parity number, and age and season of calving within parities, for example. With 
growth data, g(t)j accounts for the growth curve of males or females of breed X or breed 
Y from young or old darns. 

If the shape of the phenotypic relationship is not known or is nonlinear, then g(t)j could 
be a set of classification variables. Classification variables take up more degrees of freedom 
and require a large number of observations per level, but they do not force the user to 
explicitly define the shape of the trajectory. A mathematical function, on the other hand, 
does not use many degrees of freedom and gives a smooth trajectory over time regardless of 
the number of observations. The choice of classification variables or mathematical function 
is up to the researcher. If data are very numerous, and the mathematical function fits the 
data well, then either approach will generally lead to the same results. The phenotypic 
relationships, g(t)j, are important to a RRfvl analysis and deserve care and effort in their 
correct specification. 

The random regressions arc intended to model the deviations around the phenotypic 
trajectories. The pattern of variation may be very different in shape or appearance from 
the phenotypic relationships, and may be more simple than g(t)1. Orthogonal polynomials 
of standardized units of time have been recommended as covariables {Kirkpatrick et al., 
1990). Orthogonal polynomials have computational advantages. The primary general 
advantage is the reduced correlations among the estimated coefficients. A standardized 
unit of time, w, ranges from -1 to +l, and is derived as 

2 * (t - tmin} 
w~ -------1 

( lmax - tmin) ' 
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where tmin is the earliest date (or the youngest age) and tmax is the latest date (or oldest 
age) represented in the data. The order of the orthogonal polynomials would be m I and 
m21 i.e. the highest power of polynomial. Note that 1n1 and m,2 do not need to be equal, 
but often (for simplicity of computing) they are chosen to be the same. Mcyer(2000) 
aud Pool et al. (2000), for example, compared many RRM models with different orders 
of orthogonal polynomials for the genetic and pe effects. Several types of orthogonal 
polynomials are available 1 but Legendre polynomials have been utilized (Kirkpatrick et 
al., 1990). 

The residual variance should not be assumed to be constant from tmin to tmax· The 
residual effect is also known as a temporary environmental effect. Changes in residual 
variance might be predictable depending on the trajectory of the phenotypil'. data. For 
example, if RRTvI were being applied to growth data, weights may increase linearly with 
age, and the variance of weights may increase quadratically with age. Thus, the residual 
variance would be expected to increase in a similar manner as the phenotypic variance. 
Residual variances can be fit with a function oft, or assumed to have an autoregressive 
structure, or can be grouped into intervals having equal variance within the intervals. 
Research in this area is needed. 

In matrix notation the RRM is 

y = Xb + Z1a + Z2p + e, 

where b contains F1 and g(t)j effects, a contains m1 + 1 additive genetic regression coeffi­
cients for each animal, p contains 1n2 + 1 permanent environmental regression coefficients 
for each animal with data, and e contains the temporary environmental effects. Also, 

0 
I@P 

0 

where G is the variance-covariance matrix of the additive genetic random regression coeffi­
cients of order m1 + 1; P is the variance-covariance matrix of the permanent environmental 
random regression coefficients of order m2 + 1; and Risa diagonal matrix of temporary 
environmental variances which could vary depending on t, or R could be block diagonal 
with an autocorrelation structure for each animal's records. The mixed model equations 
(MME) are represented as 

X'R- 1Z2 
z;R- 1Z2 
z;R- 1z 2 + 1 0 p- 1 

Assumptions about the distributions of y and other random variables are not necessary to 
derive best linear unbiased predictors (BLUP)(Goldberger, 1962; Henderson, 1984) or the 
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MME, but when y is normally distributed then BLUP is also BLP if the model is correct 
and variances and covariances are known. In order to estimate the elements of G, P, and 
R via Bayesian methods or restricted maximum likelihood, then normality of the random 
variables must be a.ssumed (Sec for example Jamrozik and Schaeffer, 1997). 

8.4.1 Example Data Analysis By RRM 

Below are the data structure and pedigrees of four dairy cows. Given is the age at which 
they were observed for a trait during four visits to one herd. 

Age; Obs. at Visit 
Cow Sire Dam Visit 1 Visit 2 Visit 3 Visit 4 

1 7 5 22;224 34;236 47;239 
2 7 6 30;244 42;247 55;241 66;244 

3 8 5 28;224 40;242 
4 8 1 20;220 33;234 44;228 

The model equation might be 

where 

YJikt \I;+ bo + b1(A) + b2(A)
2 

+(aiozo + ailz1 + ai2z2) 

+(p,ozo + P,1z1 + P,2z2) + e1,H 

Vj is a random contemporary group effect which is assumed to follow a normal distri­
bution with mean 0 and variance, a~ = 4. 

bo, bi, and b2 are fixed regression coefficients on (A) = age and age squared which 
describes the general relationship between age and the observations 1 

aioi ail, and a 12 are random regression coefficients for animal i additive genetic effects1 

assumed to follow a multivariate normal distribution with mean vector null and 
variance-covariance matrix, G) 

Pio, P'il, and Pi2 are random regression coefficients for animal i permanent environmental 
effects, assumed to follow a multivariate normal distribution with mean vector null 
and variance-covariance matrix, P, 

zo, z1, and z2 are the Legendre polynomials based on standardized ages and derived as 
indicated earlier. The minimum age was set at 18 and the maximum age was set at 
68 for calculating the Legendre polynomials. 
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and Cjik is a temporary residual error term assumed to follow a normal distribution with 
mean O and variance, a'; = 9. In this examplc 1 the residual variance is assumed to 
be constant across ages. 

The model in matrix notation is 

y = Xb + Wv + Za + Zp + e, 

where 
1 22 484 224 0 0 0 
1 30 900 244 0 0 0 
1 28 784 224 0 0 0 
1 34 1156 236 0 1 0 0 
1 42 1764 247 0 1 0 0 

X= 
1 40 1600 242 

W= 
0 1 0 0 

1 20 400 
y= 

220 0 1 0 0 
1 47 2209 239 0 0 1 0 
1 55 3025 241 0 0 1 0 
1 33 1089 234 0 0 1 0 
1 66 4356 244 0 0 0 
1 44 1936 228 0 0 0 

and 

.7071 -1.0288 .882!) 0 0 0 0 0 0 0 0 
0 0 0 .7071 -.6369 -.1493 0 0 0 0 0 
0 0 0 0 0 0 .7071 -.7348 .0632 0 0 

.7071 -.4409 -.4832 0 0 0 0 0 0 0 0 
0 0 0 .7071 -.0490 -.7868 0 0 0 0 0 
0 0 0 0 0 0 .7071 -.1470 -.756'1 0 0 

0 
0 
0 
0 
0 
0 z~ 

0 0 0 0 0 0 0 0 0 .7071 -1.1268 1.2168 
.7071 .1960 -.7299 0 0 0 0 0 0 0 0 0 

0 0 0 .7071 .5879 -.2441 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 .7071 - .4899 -.4111 
0 0 0 .7071 1.1268 1.2168 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 .7071 .0490 -.7868 

In order to reduce rounding errors the covariates of age for the fixed regressions can be 
forcc<l to have a mean of approximately zero by subtracting 38 from all ages and 1642 
from all ages squared. Then 

1 -16 -1158 
1 -8 -742 
1 -10 -858 
1 -4 -486 
1 4 122 

X= I 2 -42 
1 -18 -1242 
1 9 567 
1 17 1383 
1 -5 -553 
1 28 2714 
1 6 294 
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The mixed model equations that need to be constructed to provide estimated breeding 
values are as follows; 

( 

X'X X'W 
W'X W'W+Ik1 
z'x z1w 
0 0 
z'x z1w 

X'Z 
W'Z 
Z'Z + A"" 0 G- 1aJ 
Alm 0G-1a; 

Z'Z 

0 
0 
A"b0c- 1a; 
A1,1'0G- 1a; 
0 

X'Z l W'Z 
Z'Z 

~'Z + I ,g. p- 10~ 

The entire MME can not be presented (order 43), but parts of the MME are given 
below. 

( 

3 0 
0 0 ] 

W'W = O 4 0 0 
0 0 3 0 ' 
0 0 0 2 

wx-U 

-34 
-2758 l 

-16 -1648 
21 1397 ' 
34 3008 

5 
X'X= 5 

( 

12 
1995 

l(i6, 883 

-1 ) 
166,883 , 

-1 14,415,319 

Z'Z is composed of the following four blocks of order 3, for the four animals with 
records; 

Animal 1 

Animal 2 

Animal 3 

Animal 4 

( 

1.5 -.9006 -.2335 ) 
-.9006 1.2912 -.8383 , 
-.2335 -.8383 1.5457 

( 

2 .7275 .0259 ) 
. 7275 2.0233 1.3612 , 
.0259 1.3612 2.1815 

( 

1 -.6235 -.4902 ) 
-.6235 .5615 .0648 , 
-.4902 .0648 .5761 

( 

1.5 -1.1085 .0134 ) 
-1.1085 1.5121 -1.2082 . 

.0134 -1.2082 2.2687 
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and Z'X is 
2.1213 -7.7781 -761.5467 

-1.2737 19.9884 1516.7598 
-.3302 -18.7627 -1201.416 
2.8284 28.9911 2458.5867 
1.0288 46.4439 4337.8027 

Z'X= 
.0366 27.9679 2979.5959 

1.4142 -5.6568 -636.3900 
-.8818 7.0540 636.6324 
-.6932 -2.1448 -22.4568 
2.1213 -12.0207 -1061.3570 

-1.5677 23.0259 1684.8063 
.0189 -24.5677 -1515.2470 

The right hand sides of the MME are 

X'y = 2070 , 
( 

2823) 

and 

68,064 

W'y= 
( 

692 l 945 
714 ' 

Z'y = 

472 

494.2629 
-287.6596 

-90.7117 
690.1296 
249.1165 

7.3023 
329.5086 

-200.1692 
-168.8920 

482.2422 
-351.3606 

-7.8918 
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The assumed variance-covariance matrices of the additive and permanent environmental 
effects need to he known for BLUP. Let 

G=( 

94.0000 -3.8500 .03098 ) 
-3.8500 1.5000 -.0144 , 

.03098 -.0144 .0014 

P=( 

63.0000 -2.1263 .0447 ) 
-2.1263 .5058 -.00486 , 

.0447 -.00486 .0005 
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and a; = 41 and er'; = 9. The solutions to l\HvlE are 

f,' = ( 234.4349 1.5957 -.01500 ) , 

i:.' = ( -.8213 1.5179 .0770 -.7736 ) . 

Let the solutions for the animal additive genetic random regression coefficients be pre­
sented as follows, where each row represents the coefficients for one animal (i.e. for the 
intercept, linear, and quadratic regressions) . 

-1.747298 . 124789 -.001223 
5.774393 -.553689 .005612 

-2.899020 .475908 -.004998 

.i= 
-4.926784 .159792 -.001347 
-2.002508 .301390 -.003149 

3.285314 -.297302 .002997 
1.692846 -.215472 .002232 

-2.975451 .211306 -.002080 

Similarly, the solutions for the animal permanent environmental random regression coef­
ficients can be given as 

( 
-.370066 

p= 
4.308127 
-.424394 

-3.513555 

.059735 
-.250192 

.145076 

.045355 

-.000696 l 
.004092 

-.001497 
-.001899 

The problem is to rank the animals for selection purposes. If animals are ranked on 
the basis of a0 , (the intercepts) then animal 2 would be the highest (if that was desirable). 
If ranked on the basis of a 1 ( the linear regression coefficient), then animal 3 would be the 
highest, and if ranked on the basis of a2 (the quadratic coefficient), then animal 2 would be 
the highest. To properly rank the animals, au EBY at different ages should be calculated, 
and then these could be combined with appropriate economic weights. Suppose EBVs for 
24, 36, and 48 mo of age are of particular interest, and the economic weights for these 
ages might be 2, 1

1 
and .5, respectively. A Total Economic Value can be calculated as 

TEV = 2 * EBV(24) + 1 * EBV(36) + .5 * EBV(48}. 

The Legendre polynomials for ages 24, 36, and 48 mo are given in the rows of the following 
matrix L, 

( 

.7071 
L = .7071 

.7071 

-.8328 
-.3429 

.2449 

The results arc shown in the following table. 

.3061 ) 
-.6046 . 
-.6957 
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Animal EBV(24) EBV(36) EBV(48) TEV 
1 -1.34 -1.28 -1.20 -4.56 
2 4.55 4.27 3.94 15.33 
3 -2.45 -2.21 -1.93 -8.07 
4 -3.62 -3.54 -3.44 -12.49 
5 -1.67 -1.52 -1.34 -5.52 
6 2.57 2.42 2.25 8.69 
7 1.38 1.27 1.14 4.60 
8 -2.28 -2.18 -2.05 -7.76 

The animal with the highest TEV wa..<; animal 2. All animals ranked rather similarly at 
each age on their EBVs. Rankings of animals could change with age. Thus, the pattern 
of growth could he changed to one that is desirable. 

8.5 Estimation of Parameters 

8.5.1 EM-REML 

Estimation of the common residual variance is 

a;= (y'y - b'X'y - c'W'y - a~M'y - f,'M'y)/(N - r(X)), 

where 

y'y 

i3'W'y 
N - r(X) 

-2 a, 

665,035, 

664877.89, 

12 - 3 = 9, 

17.4570. 

Let C represent the inverse of the lVIME coefficient matrix 1 and let Caa and Cpp rep­
resent the submatriccs of C corrm;pouding to animal additive genetic effects and animal 
permanent euvironmental effects1 respectively. Note that Caa is of order 24, and C 11p has 
order 12. Because the coefficients arc ordered within animals, then both Caa an<l Cpp can 
be partitioned into submatrices each of order 3 by a11irnab. The submatrix Ccc represents 
the inverse elements for the visit effects. 

The variance due to visit effects is estimated as usual in Ei\-1-RE:tvlL as 

a~= (c'c + tr(Cee)a;)/4, 

where 

C'C 3.5828, 
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1.2890, 

(3.5828 + (1.2890)17.4570)/ 4, 

6.5214. 

To estimate G, first calculate it'A- 13. using the a given in the previous section) which 
gives 

a' A -l ii = -4.925545 .557022 -.005720 . 
( 

66.679755 -4.925545 .048641 ) 

. 048641 -.005720 .000059 

The tricky part is calculating the appropriate traces. They arc 

lr3((A- 1 0 l3)Caa) = -2.689821 1.284185 -.012359 , 
( 

68.347139 -2.689821 .021540 ) 

.021540 -.012359 .001240 

where the trace is the sum of the 3 by 3 diagonal blocks of the matrix product indicated. 
Theses are combined to estimate G as 

G = (:i'A- 1a+tr3((A- 1 @I3)Caa)a;)/8, 

( 

157.476730 -6.485209 .053082 ) 
-6.485209 2.871876 -.027685 . 

. 053082 -.027685 .002714 

Similarly, the estimate of P is also a 3 by 3 matrix. 

p 

( 

31.222084 -1.320890 .025192 ) 
-1.320890 .089268 -.001369 , 

.025192 -.001369 .000023 

( 

18.467546 -.590303 .012875 ) 
-.590303 .209410 -.001880 , 

.012875 -.001880 .000217 

(p'p + tr 3 (Cp,,)a;)/4, 

( 

88.402374 -2.906448 
-2.906448 .936231 

.062487 -.008547 

.062487 ) 
-.008547 . 

.000952 

The new parameter estimates would be used to re-construct the IvUvIE and to solve 
them again. Then repeat the estimation of parameters and continue iterating these steps 
until convergence has been achieved) which will be when the global maximum has been 
attained. 
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8.5.2 Bayesian Estimation 

Using Gibbs sampling, as with other models, the MME would be solved and new samples 
generated for the fixed regressions, visit effects, animal additive genetic and animal per­
manent environmental effects by processing one equation at a time. Better performance 
can be achieved by using blocks of 3 by 3 matrices for the 3 random regression coefficients 
for animal additive genetic and animal permanent environmental effects. To illustrate, 
suppose the diagonal block for animal i additive genetic effects from the MrvIE was 

( 

1. 7675 
(z;zi + aiiG;:- 10-;,) =Qi,= -.2017 

1.0346 

-.2017 1.0346 ) 
19. 7604 173.6637 , 

173.6637 17839.79 

and that the current 'solution' for animal i was ai) 

(

-1.7473 ) 
3.j = .1248 , 

-.0012 

and the current sample value of a-; was 17.4570. To generate a new set of sample additive 
genetic effects for animal i then 

1. Invert Qi,., and multiply by the current sample value of a'; which gives 

( 

9.8906 
Q;;;'u; = .115912 

-.001720 

.115912 -.001720 

.967441 -.009424 
-.009424 .001070 )· 

2. Apply a Cholesky decomposition to the previous matrix, 

( 

3.144938 0 0 ) 
Chol(Q;;;'u;) = .036857 .982895 0 = L. 

-.000541 -.009568 .031282 

3. Generate a vector of three random normal deviates, suppose they are 

f' = ( 1.0673 -.5892 -.9814 ) . 

4. The new sample values for animal i additive genetic random regression coefficients 
is then 

a;+ u, 

(

-1.7473 ) ( 
.1248 + 

-.0012 

( ~ ~~:~ ) -.0269 

3.144938 
.036857 

-.000541 

0 
.982895 

-.009568 

0 ) ( 1.0673 ) 0 -.5892 , 
.031282 -.9814 
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The animal permanent environmental regression coefficients would be handled in the 
same way as the animal additive genetic coefficients. After new sample values for all effects 
in the M11E have been obtained, then the following quadratic forms are calculated, for 
example 1 

c'c 

p'p 

e 

e'e 

4.11, 

( 

64.71 
-4.15 
.0532 

Gk, 

( 

37.22 
-1.25 
.0247 

pki 

y-Wf], 

74.8851. 

-4.15 .0532 ) 
.51 -.0049 

-.0049 .000054 

-1.25 .0247 

)· .0873 -.0011 
-.0011 .000022 

The forms c'c and e'e follow inverted Chi-square distributions while the other two follow 
inverted Wishart distributions. New sample values for the variances would be given by 
the following: 

(T2 
V 

1 / 2 CC X4, 
(T2 

' 
1 / 2 ee X12, 

T Chol(G,;1 ), 

G -1 
k+l Wishart(T, 8), 

s Chol(P,;1), 

P -1 
k+l Wishart(S, 4), 

and these give new sample values for G and P. 
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Multiple Trait Models 

9.1 Introduction 

Animals are commonly observed for more than one trait because many traits affect overall 
profitability. A multiple trait (MT) model is one in which two or more traits arc ana­
lyzed simultaneously in order to take advantage of genetic and environmental correlations 
between traits. 

Reasons for using a multiple trait analysis arc as follows. 

1. Low Heritability Traits. MT models are useful for traits where the difference 
between genetic and residual correlations are large (e.g. greater than .5 difference) 
or where one trait has a much higher heritability than the other trait. Traits with 
low heritability tend to gain i11 accuracy when analyzed with high heritability traits 1 

although all traits benefit to some degree from the simultaneous analysis. 

2. Culling. 'lraits that occur at different times in the life of the animal, such that 
culling of animals may occur between measurements, are suitable for !v1T analyses. 
Consequently, animals which have observations later in life tend to be selected based 
on their performance for earlier traits. Thus, analysis of later life traits by themselves 
could suffer from the effects of culling bias, and the resulting EBV could lead to 
errors in selecting future parents. An MT analysis that includes all observations on 
an animal upon which culling decisions have been based, has been shown to account 
for the selection that has taken place, and therefore gives unbiased estimates of 

breeding values for all traits. 

3. Missing Traits. Some traits may be difficult to record on animals, and therefore, 
relatively few animals are actually measured for a trait. However, because this 
trait is genetically correlated to the more easily recorded traits, then a multiple 
trait analysis could help the accuracy of the less recorded trait. An example in dairy 

121 
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cattle could be a newly introduced conformation trait for which only the more recent 
animals have been scored. 

For cases where heritabilities of traits arc similar in magnitude, or where both genetic 
and residual correlations are relatively the same, or where every animal is measured for all 
traits, the benefits of a 1v1T analysis will be almost mmoticeablc. However, if culling bias 
exists, then an IvIT analysis should be performed even if the heritabilities and correlations 
are similar among traits. 

The accuracy of the a..ssumed genetic and residual correlations are critical to the success 
of a multiple trait analysis. If the parameter estimates are greatly different from the 
unknown true values, then an NIT analysis could do as much harm as it might do good. 

Lastly 1 multiple trait analyses can be very costly and time consuming to execute. lvIT 
programs are more complicated than single trait programs, more memory and disk storage 
are usually needed 1 and verification of results might be more complicated. These have to 
be balanced against the benefits of an :rvIT analysis. If culling bias is the main concern 1 

then an MT model must be used regardless of the costs or no analysis should he done at 
all, except for the traits not affected by culling bias. 

9.2 Models 

Consider two traits with a single observation per trait on animals. A model should be 
specified separately for each trait. Usually, the same model is assumed for each trait, 
and this can greatly simplify the computational aspects, but such an assumption may be 
unrealistic in many situations. 

Let the model equation for trait 1 be 

where Eli is a fixed effect with PB levels, a1j is a randorn 1 animal additive genetic effect for 
trait 1, and e1ij is a random residual environmental effect for trait 1. The model equation 
for trait 2 might be 

Y2ij = C2i + a21 + e2ij, 

where C2i is a fixed effect (different from Eli for trait 1) with PC levels, a21 is a random, 
animal additive genetic effect for trait 2, and e2ij is a random residual environmental effect 
for trait 2. 

For example, 'Ylij could be a trait like birthweight) so that Eli could identify animals 
born in the same season. Trait 2 could be yearling weights and C2i could identify con­
temporary groups of animals of the same sex, same herd, aud same rearing unit. ·within 
herd. 
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Because the two traits will be analyzed simultaneously, the variances and covariances 
need to be specified for the traits together. For example, the additive genetic variance­
covariance (VCV) matrix could be written as 

G = ( 911 912 ) ( 1 2 

912 922 2 15 

and the residual environmental VCV matrix as 

10 5 R = ( r11 
r12 

r12 ) 
r22 ( 5 100 

The genetic and residual correlations are, respectivl'ly, 

with 

and 

For all data, then 

p9 2/(15) 5 = .51G, 

fl, 5/(1000) 5 = .158 

2 1 h 1 = 11 = .0909, 

2 15 
1,2 = - = .1304. 
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). 

) 

The structure of the residual VCV matrix over all observations can be written several 
ways depending on whether allowance is made for missing observations on either trait for 
some animals. If all animals wern observed for both traits, then 

9.3 Example Data 

The following data were available following the previous models. Note that some of the 
trait 2 observations are missing, and therefore, possible culling bias is a reason to use a 
multiple trait analysis. 
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Animal Sire Dam B-level C-level Trait 1 Trait 2 
1 0 0 1 1 2.3 
2 0 0 1 2 2.6 
3 0 0 1 3 9.8 53 
4 0 0 1 1 4.7 4 
5 0 0 1 2 5.5 63 
6 1 3 2 3 2.5 
7 1 4 2 2 8.4 35 
8 1 5 2 3 8.2 41 
9 2 3 2 1 9.0 27 
10 2 4 2 1 7.8 32 
11 2 5 2 2 2.8 
12 6 10 2 3 7.4 67 

9.3.1 The MME 

Organize the data by traits within animals. The residual covariance matrix is given by R 
below. 

Two computing algorithms will be employed in order to simplify the multiple trait 
analysis. 

1. Assume that there is a common model for all traits. In this case the common model 
is 

Ytijkl = Btj + Ctk + au + etijkl. 

There are 2 levels of factor B, three levels of factor C, and 12 animals. Previously, 
factor B was only associated with trait 1. Therefore, during the analysis (by iteration 
on data, for example), the solutions for the B factor for trait 2 must always be kept 
at zero. Similarly 1 the C factor was only for trait 2, so that the solutions for the C 
factor pertaining to trait 1 must always be kept at zero. 

2. Assume that all animals arc observed for all traits. Therefore, R is the same for all 
animals and missing observations can be left at 0. However, in order to handle the 
missing observations appropriately 1 the missing observation has to be assigned to a 
fixed factor 1 such that this observation is the only observation in that level of the 
factor. For exarnple 1 for Animal 1 in the table, trait 2 is missing. Therefore 1 this 
observation is assigned to level 4 of factor C, C24. Animals which have trait 2 are 
assigned to the appropriate level of factor C. Similarly 1 Animal 2 is also missing trait 
2 and is assigned to level 5 of factor C. The other missing trait 2 observations belong 
to Animals 6 and 111 which are assigned to levels G and 7 of factor C1 respectively. 
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Because trait 1 is present for all animals, all trait 1 observations are assigned to the 
appropriate levels of factor B. If trait 1 was missing for an animal) then a new level 
of factor B would be created for that animal. By putting au animal into a level of 
a factor by itself automatically takes care of the observation being missing. This 
algorithm is due to Bruce Tier (AGBU-1998-PhD Thesis). 

To prove that this works, take R- 1 and do a Gaussian elimination (i.e. absorption) 
of the row and column corresponding to the missing trait 1 say trait 2, 

( Tl! Tl2 ) ( rl2 
) (,.22)-1 ( r12 ,.22 ) 

1 rl2 1'22 r22 

=( rll 7,12 ) ( ,.12(r'2)-1r12 .,.12 ), r12 ,.22 1'12 ,.22 

( Tll _ ,.12~.22J-1,-12 ~ ) . 

Recall that for a matrix of order 2 that 

rll 

Tl2 

r22 

IRI 

then 

,.,,/ I RI, 
-r1z/ IR I, 
r11/ IR I, 
(r11r22 ~ r12r12) 

(r22 - r12(r11)-
1
r12)/ IR I 

r11(r22 - r12(r11)-
1
r1z/rn(r11r22 - r12rl2) 

(rn)- 1 

which is exactly the weight applied to records on animals with only trait 1 observed. 
This proof can be extended to any number of traits recorded and any number missing 1 

by partitioning R into 

( 
Roo Rom ) 
Rmo R,nm 

1 

where the subscript o refers to traits that were observed and rn refers to traits that 
were missing on an animal. Then it can be easily shown that 

Iteration on Data Schmne 

The following will demonstrate the iteration on data technique to solve fdt,.1E for the 
multiple traits 1 using the example data. Assume that the iterated solutions are currently 
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at the following values. 

B11 5.0209 

B12 6.5592 

C21 20.0882 

C22 49.0575 

C23 51.9553 

C24 2.8590 

C25 0.1322 

C25 2.1189 
c,, 1.1463 

and the animal additive genetic current solutions are in the following table. 

Animal Sire Dam Trait 1 Trait 2 

1 0 0 -.3573 -1.6772 

2 0 0 -.0730 1.0418 

3 0 0 .4105 1.1707 

4 0 0 -.0449 -1.4923 

5 0 0 .0646 .9570 

6 1 3 -.1033 -.1410 
7 1 4 -.1975 -2.2983 

8 1 5 -.1410 -.9(i33 

9 2 3 .3079 1.6227 

10 2 4 .1426 1.1273 

11 2 5 -.1830 .6418 

12 6 10 .1554 1.5089 

The MlvIE arc ordered by B-factor equations, then C-factor 1 then animal additive 

genetic. 

Factor B. Go through the data, 01ie animal at a time. For animal 1, for example, take 
the observations and subtract the solutions for all other factors, except factor B, i.e., 

( 
2.3 - an ) ( 2.30 + 0.3573 ) ( 2.6573 ) 
0 - C2.1 - a21 = 0.00 - 2.8590 + 1.6772 = -1.1818 • 

Prernultiply by R- 1 and accumulate into the right hand sides for factor 13, level 1. 

R-1 ( 2.6573) = ( 0.2786) 
-1.1818 -0.0257 • 

The accumulated right-hand-sides for level Bl over the first five animals is then 

( 
2.5748 ) 

RHS = -0.1697 ' 
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and a new solution for level 1 of factor B for trait one is obtained by dividing the right 
hand side, 2.5748, by the diagonal which is 5r 11 = 0.5128, giving 5.0209. Because 
factor B is not in the model for trait 2, then the solution for the second trait is 
ignored 1 and B21 should be set to 0. 

Similarly for level B2, after accumulating the deviations on animals 6 through 121 

RHS = ( 4.7092) 
-0.1945 ' 

and the new level 2 solution for factor B is 

4.7092/{7r 11
) = 6.5592, 

au<l the solution for trait 2, B22, must be made 0. 

Factor C. Go through the data a second time. Subtract solutions for all other factors 
except those for factor C. Accumulate the deviations in the appropriate right-hand­
sides for the three levels of C. For animal 11 

( 
2.3 - Bu - a11 ) = 
0 - a21 

Premultiply by R- 1 to give 

( 
2.30 - 5.0209 + 0.3573 ) 

0.00 + 1.6772 

R-1 ( -2.3636 ) = ( -0.2510 ) 
1.6772 0.0293 • 

( -2.3636 ) . 
72 

The 0.0293 is accumulated in the RHS for level 4 of factor C because in this case 
the trait 2 observation was missing. Because this is the only observation in level 4, 
the new solution would be 

C24 = 0.0293/r 22 2.8590. 

For animal 21 

( 
2.6 - Bu - a12 ) 
0 - a,, 

Premultiply by R- 1 to give 

( 
2.6 - 5.0209 + 0.0730 ) 

0.0 - 1.0418 

-1 ( -2 3479 ) ( -0.2355 ) 
R -1.0418 0 0013556 • 

( 
-2.3479 ) 
-1.0418 • 

The 0.0013556 is accumulated in the RHS for level 5 of factor C because in this case 
the trait 2 observation was missing. Because this is the only observation in level 51 

the new solution would be 

C25 = 0.0013556/r 22 0.132171. 
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For animal 3, where both traits were observed, for example, 

( 
9.8 - B11 - a13 ) = ( 9.80 - 5.0209 - 0.4105 ) = ( 4.3686 ) 
53 - a23 53.00 - I.I 707 51.8293 • 

Animal 3 belonged to level 3 of factor C. Pre-multiply by R- 1 to obtain 

R-1 ( 4.3686 ) = ( 0.1823 ) 
51.8293 0.5092 • 

The value 0.5092 is added to the right hand sides for level 3 of Factor C. 

After processing all 12 animals, the right-hand-sides for each level of factor C are 

RHS21 0.6181, 

RHS22 1.0063, 

RHS,, 1.5986, 

RHS,., 0.0293, 

RHS25 0.0013556, 

RHS 26 0.0217, 

RHS21 0.0118. 

The new solutions are 

C21 RH S21 /3r 22 20.0883, 

C22 RHS 22/2r 22 49.0575, 

c,, RH S 23 /3r 22 51.9553, 

C21 RHS24/r 22 2.8590, 

C25 RHS2s/r 22 0.132171, 

c26 RHS26/r 22 2.1189, 

C,1 RHS 27/r 22 1.1463. 

Animal Additive Genetic. The inverse of the additive genetic relationship matrix for 
the twelve animals is 

5 0 1 1 1 -2 -2 -2 0 0 0 0 

0 5 1 1 1 0 0 0 -2 -2 -2 0 

1 1 4 0 0 -2 0 0 -2 0 0 0 
1 1 0 4 0 0 -2 () 0 -2 0 0 
1 1 0 0 4 0 0 -2 0 0 -2 0 

A-1 = ! -2 0 -2 0 0 5 0 0 0 1 () -2 

2 -2 0 0 -2 0 0 4 I) 0 0 0 0 

-2 0 0 0 -2 0 0 4 0 0 0 0 

0 -2 -2 0 0 () 0 0 4 0 0 () 

() -2 0 -2 0 1 0 0 0 5 0 -2 

0 -2 0 0 -2 0 0 0 0 0 4 0 
0 0 0 0 0 -2 0 0 0 -2 0 4 
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To get a new solution for Animal 1, for example, the record and its adjustments are 

( 
2.3 - B11 ) = ( 2.30 - 5.0209 ) = ( -2.7209 ) . 
0 - C21 0.00 - 2.8590 -2.8590 

Premultiply this by R- 1, giving 

RHS = ( -0.2644 ) . 
-0.01537 

Now adjustments need to be made due to the relationship matrix. For Animal 1 
these are 

ADJ 
1 

2(-a3 - a., - as+ 2a6 + 2a1 + 2a8 ), 

( 
-0.6569 ) 
-3.7203 • 

ADJ must be pre-multiplied by c- 1 and added to RHS. The end result must be pre­
multiplied by the inverse of the diagonal block for Animal 1, which is R- 1 +2.5G- 1. 

The solutions for Animal 1 arc then 

__I_ ( 15 -2 ) ( -0.6569 ) 
11 -2 1 -3.7203 ' 

( 
-0.219355 ) 
-0.218773 ' 

( 
-0.483755 ) . 
-0.234143 

( 
-0.3573 ) 
-1.6772 • 

The same process is followed for each animal, until new solutions have been computed 
for each animal. 

The results shown above were converged (to 4 decimal places at least), and therefore, 
the new solutions were identical to the old ones. However, this process is repeated until 
convergence is achieved, as it is here. 

9.4 Estimation of Covariance Matrices 

Derivative free RElvlL is one option for estimating variances and covariances in a multi­
trait situation, such as with MTDFREML. MTDFREML uses the simplex algorithm of 
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finding the global maximum of the likelihood function. Suppose there are two traits and 
only additive and residual covariance matrices. Then there are a total of six parameters 
lo be estimated. MTDFREML would begin by evaluating seven likelihoods, and then do 
more to find the maximum. If the number of traits is increased to 3, then there are 12 
parameters to be estimated and 13 initial likelihoods to evaluate. The numbers quickly 
increase as the number of traits increases. Also, if there is another random factor iu the 
models, then there is another increase in parameters. S0011 1 the number of likelihood 
evaluations becomes too large to permit analysis. 

The El\/J algorithm is not suitable due to the requirement for the traces of inverse 
elements that are needed. Inverses of the M:tvIE are much more of a problem than the log 
of the determinant of the Ml\lE coefficient matrix, and therefore 1 EM-REIV1L would not 
be practical. 

The Bayesian approach via Gibbs Sampling is very feasible, but the number of necessary 
samples might be too large or take too much time to complete. This section is intended 
to describe the Gibbs sampling approach to the multiple trait problem. Use will be made 
of the Iteration on Data algorithm given in the previous section. 

9.4.1 Sampling Solutions to MME 

For a t-trait analysis, any solution vector for a fixed effect factor in the 1'11-1E is a t x 1 
vector, and can be represented as 

then a new sample vector is generated by 

(Ji= t, + Lv, 

where 

and v is a t x 1 vector of random normal deviates. 

For factor B and C effects in the example, because factor B is associated with trait 1 
only, and factor C is associated with trait 2 only, the sampling procedure for these effects 
are scalar. Thus, the new Bu was 5.0209, and the diagonal of the MME corresponding 
to that equation was 5r 11 . Therefore, the variance of the estimate would be the inverse of 
this or 1/0.5128. A new sample value would be 

Bu = 5.0209 + RN D * 1.95, 

so that if RN D = -0.22, then the new Bu = 4.5919. Similarly, for C21 the estimate was 
20.0883 and the diagonal element of the lv!ME for C2 1 was 3r 22 = .0307692, and a new 
sample value would be 

C21 = 20.0883 + RN D * 32.5, 
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and if RN D = 0.43, then C21 = 34.0G33. 

For the additive genetic effects of animals, using animal 1 as an example, the solution 
vector was 

( 
-0.3573 ) 

ai = -1.6772 ' 

and the diagonal block of the Mi\:IE for this animal was 

R_ 1 25 •G-i=( 3.5117 -0.4597) 
+ • -0.4597 0.2375 • 

The diagonal block must be inverted and then decomposed via the Cholesky decomposi­
tion, i.e. 

( 
0.3814 0.7381 ) = ( 0.6176 0 ) ( 0.6176 1.1951 ) 
0.7381 5.6383 1.1951 2.0518 0 2.0518 • 

Generate a t by 1 vector of random normal dcviates 1 say, 

( 
-1.6794 ) 

V = 0.5536 ' 

then the new sample values for the animal additive genetic effects is 

( 
-0.3573 ) ( 0.6176 0 ) ( -1.6794 ) ( --1.0371 ) 

ai = -1.6772 + 1.1951 2.0518 0.5536 = -0.8711 • 

9.4.2 Sampling New Covariance Matrices 

If ai is the q x 1 vector of animal solutions for trait i, then form 

followed by 

If Va = 0, then 
, -iu ( o.5623 2.1843 ) 

S,, = U A = 2.1843 16.6941 ' 

with q = 12 degrees of freedom. Invert this matrix and apply a Cholesky decomposition, 
giving 

( 
1.9019 0 ) 

-0.2488 0.2447 • 

This matrix is supplied to a \i\lishart distribution raudom generator along with q as the 
degrees of freeclom1 and from this a new G- 1 is obtained. 
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The residual effects for each animal are obtained in a similar manner as in the iteration 
on data. Subtract the sample values of each of the effects of the model (for each trait) 
from the observations 1 eti = Yu - w~f3t. The residuals 1 for example 1 could be 

-2.3636 -1.1818 
-2.3480 -1.1740 

4.3686 -0.1260 
-0.2760 -14.5960 

0.4145 12.9856 

E= 
-3.9559 -1.9779 

2.0383 -11.7592 
1.7818 -9.9920 
2.1329 5.2890 
1.0982 10. 7845 

-3.5762 -1. 7881 
0.6854 13.5358 

Note that within traits the residuals sum to zero. Also1 that there arc BLUP estimates of 
the residuals for the rnissing trait 2 observations. 

Once the residuals arc calculated for all animals, then calculate 

E'E = ( 72.4247 19.2601 ) . 
19.2601 957.1828 

Let 
S, = (E'E + v,R,), 

which is then inverted and a Cholesky decomposition is applied to the inverse 1 i.e. 

where Le is supplied to a Wishart distribution random number generator to give a new 
sample matrix for the inverse of the residual variances and covariances 1 R- 1. 

The sampling process must be repeated until it converges to be samples from the 
posterior distribution. This may take longer than for scalar estimation of variances. 



Chapter 10 

Non-Additive Genetic Models 

10.1 Introduction 

In most animal breeding applications, only additive genetic effects are considered in the 
evaluation of animals. An infinitesimal animal model is assumed, where animals have been 
randomly mating. Application of non-additive genetic models has been limited because 
of difficulties in 1) computing dominance genetic relationships among animals in large 
populations; 2) computing the inverse of the domiuance genetic covariance matrix (and 
any other epistatic covariance matrices that could be created); and 3) constructing and 
solving Henderson's :tvirvlE which iucrcasc in size equal to the number of animal equations 
for each non-additive effect included in the model. These notes describe methods that avoid 
the problems in 2) and 3) above. Dominance genetic relationships can be calculated using 
a genomic (or gametic) relationship matrix which provides a number that can be used, 
but there is a limit to the number of pairs of animals for which a dominance relationship 
could be computed. 

10.2 The Model 

If non-additive genetic effects arc included in an animal model, then the assumption of 
random mating is still required. Otherwise non-zero covariances can arise between additive 
and dominance genetic effects. Thus, the model in these notes is based on approximations 
(as is any model). Consider a simple animal model with additive, dominance, and additive 
by dominance genetic effects, and repeated observations per animal, i.e., 

Yii =/'+a, + d, +(ad),+ Pi+ c,1, 

where Jl is the overall mean, ai is the additive genetic effect of animal i 1 di is the dominance 
genetic effect of animal i, (ad)1 is the additive by dominance genetic effect of animal i, Pi 

133 
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is the permanent environmental effect for an animal with records, and ei is the residual 
effect. Also1 

Vo, (fl (T 
0 0 0 0 

l 
Da-51 0 0 0 

0 A#Da; 1 0 0 
0 0 1a2 0 p 

0 0 0 la; 

10.3 Example Data 

Below are data and pedigrees for 16 animals. Only animals 11 to 16 have observations. 

Animal Sire Darn 1 2 3 4 
1 0 0 
2 0 0 
3 0 0 
4 0 0 
5 1 2 
6 3 4 
7 3 2 
8 1 4 
g 5 8 
10 7 6 
11 5 6 69 66 56 
12 5 6 29 6 
13 5 6 1 
14 7 8 44 103 85 70 
15 7 8 35 77 G8 
16 9 10 19 20 33 24 

Assume initially that 

2 2 a 10 324, u01 = 169, 

af 1 491 a; = 144, 

a~ 400. 

10.3.1 Genetic Relationships 

The first step is to compute the additive and dominance genetic relationship matrices for 
these 16 animals. To do thh, construct the genomic relationship matrix, which will be of 
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order 32 (2 times the number of animals). The entire matrix is not given, but only for the 
animals with records. 

llA JIB 
llA 16 0 
11B 0 16 
12A 8 0 
12B 0 8 
13A 8 0 
13B 0 8 
14A 2 2 
14B 2 2 
15A 2 2 
15B 2 2 
16A 5 1 
16B 1 5 

Part of the Genomic Relationship :Matrix 
for the Example Data (All numbers times 16). 

12A 12B 13A 13B 14A 14B 15A 
8 0 8 () 2 2 2 
0 8 0 8 2 2 2 

16 0 8 0 2 2 2 
0 16 0 8 2 2 2 
8 0 16 0 2 2 2 
0 8 0 16 2 2 2 
2 2 2 2 16 0 8 
2 2 2 2 0 16 0 
2 2 2 2 8 0 16 
2 2 2 2 0 8 0 
5 1 5 1 1 5 1 
1 5 1 5 5 1 5 

15B 16A 16B 
2 5 1 
2 1 5 
2 5 1 
2 1 5 
2 5 1 
2 1 5 
0 1 5 
8 5 1 
0 1 5 

16 5 1 
5 16 1 
1 1 16 

Recall that the additive genetic relationship between two individuals is calculated by 
adding the four numbers in a block and dividing by 2. Thus, the additive genetic relation-
ship between animals 11 and 16 is 

5 1 1 5 3 
a 11 16 = 0.5 * ( ~ + ~ + ~ + ~) = - . 

• 16 16 16 16 8 

The dominance genetic relationship is given by multiplying together the opposite corners 
of a block and adding the two results together. Hence for animals 11 and 16, 

5 5 1 1 25 1 26 13 
d11•16 = (16 * 16) + (16 * 16) = 256 + 256 = 256 = 12s· 

The complete A and D for all 16 animals follow. 

16 0 0 0 8 0 0 8 8 0 •I 4 •I 4 4 4 
0 16 0 0 8 0 8 0 •I 4 4 4 4 4 4 4 
0 0 16 0 0 8 8 0 0 8 4 4 4 4 4 4 
0 0 0 16 0 8 0 8 •I 4 4 4 4 4 4 4 
8 8 0 0 16 0 4 4 10 2 8 8 8 4 4 6 
0 0 8 8 0 16 4 4 2 10 8 8 8 ,I 4 6 
0 8 8 0 •I 4 16 0 2 10 •I 4 4 8 8 6 

A~_l_ 8 0 0 8 ,j ,j 0 16 10 2 4 4 4 8 8 6 
16 8 4 0 4 10 2 2 10 18 2 6 6 6 6 6 ID 

0 4 8 4 2 IO IO 2 2 18 6 6 6 6 6 IO 

4 4 4 4 8 8 4 4 G G 16 8 8 4 4 6 
4 4 4 4 8 8 4 4 6 6 8 16 8 •1 ,j 6 
4 4 4 4 8 8 ,j .j 6 G 8 8 16 4 4 6 
4 4 4 4 4 ,1 8 8 6 6 4 4 4 16 8 6 
,j 4 4 4 4 ,1 8 8 6 6 4 1 4 8 16 6 
,1 4 4 4 6 6 6 6 10 10 6 6 6 6 6 17 
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and 

256 0 0 0 0 0 0 0 32 0 0 0 0 0 0 0 
0 256 0 0 0 0 0 0 0 0 0 0 0 0 0 8 
0 0 256 0 0 0 0 0 0 32 0 0 0 0 0 0 
0 0 0 256 0 0 0 0 0 0 0 0 0 0 0 8 

0 0 0 0 25G 0 0 0 32 0 0 0 0 16 16 12 
0 0 0 0 0 256 0 0 0 32 0 0 0 16 16 12 
0 0 0 0 0 0 256 0 0 32 16 16 16 0 0 12 

D~-1- 0 0 0 0 0 0 0 256 32 a 16 16 16 0 0 12 
256 32 0 0 0 32 0 0 32 260 4 16 16 16 16 16 18 

0 0 32 0 0 32 32 0 4 260 16 16 16 16 16 18 
0 0 0 0 0 0 16 16 16 16 256 M 64 8 8 26 
0 0 0 0 0 0 16 16 16 16 64 256 64 8 8 26 
0 0 0 0 0 0 16 16 16 16 64 64 256 8 8 26 
0 0 0 0 16 16 0 0 16 16 8 8 8 256 64 26 
0 0 0 0 16 16 0 0 16 16 8 8 8 64 256 26 
0 8 0 8 12 12 12 12 18 18 26 26 26 26 26 257 

From these the matrix A#D can be derived, as 

4096 0 0 0 0 0 0 

0 4096 0 0 0 0 0 
0 0 •1096 0 0 0 0 
0 0 0 4096 0 0 0 
0 0 0 0 4096 0 0 
0 0 0 0 0 4096 0 
0 0 0 0 0 0 4096 

l 0 0 0 0 0 0 0 
A#D~ ~ 

25G 0 0 0 320 0 0 4096 
0 0 256 0 0 320 320 
0 0 0 0 0 0 64 
0 0 0 0 0 0 64 
0 0 0 0 0 0 64 
0 0 0 0 64 64 0 

0 0 0 0 64 64 0 

0 :12 0 32 72 72 72 

0 256 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 32 
0 0 256 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 32 
0 320 0 0 0 0 64 64 72 
0 0 320 0 0 0 64 64 72 
0 0 320 6-1 64 64 0 0 72 

4096 320 0 64 64 64 0 0 72 
320 4680 8 96 96 96 96 96 180 

0 8 4680 96 96 96 96 96 180 
64 96 96 4096 512 512 32 32 156 
64 96 96 512 4096 512 32 32 156 
64 96 96 512 512 •1096 32 32 156 
0 96 96 32 32 32 4096 G12 156 
0 96 96 32 32 32 512 4096 156 

72 180 180 156 156 156 156 156 4369 

Once A and D have been obtained then any epistatic genetic component covariance matrix 
can be obtained. For example, for the additive by additive by dominance component would 
be the result of A#A#D. 
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10.3.2 HMME 

The appropriate tv[l\lE needed for the analysis as described by Henderson (1984) would 
be 

( 

X'X X'Z X'Z 
Z'X Z'Z + A- 1k,o Z'Z 
Z'X Z'Z Z'Z+ n- 1 k01 
Z'X Z'Z Z'Z 
Z'X Z'Z Z'Z 

X'Z 
Z'Z 
Z'Z 

Z'Z + (A#D)-'ku 
Z'Z 

X'Z l Z'Z 
Z'Z 
Z'Z 

Z1Z + Ikµ 

where kw = 400/324, k01 = 400/169, ku = 400/49, and k,, = 400/144. Thus, the order 
is 55 for these 16 animals 1 with only 17 observations. Note that in the above equations, 
the inverses of A, D, and (A#D) are necessary. Only the inverse of A can be calculated 
easily. 

For the example data, 

X'y = (805), 

an<l 

0 
0 
0 
0 
0 
0 
0 

Z'y = 
0 
0 
0 

191 
35 

1 
302 
180 
9G 

The total sum of squares was 52,005. 
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The solutions are 

0 0 0 0 

0 -0.16 -0.01 0 

0 0 0 0 
0 -0.16 -0.01 0 

-3.77 0.41 0.02 0 
-3.77 0.41 0.02 0 

3.77 -0.57 -0.05 0 

it= 
3.77 

-2.40 
d= 

-0.57 
ad= 

-0.05 p= 0 
-0.04 -0.03 0 

-2.40 -0.04 -0.03 0 
2.98 3.75 1.56 6.00 

-8.76 -5.43 -1.55 -4.43 

-10.67 -6.92 -2.05 -6.13 

11.00 7.57 2.22 6.42 
6.48 4.04 1.03 2.41 

-6.59 -4.51 -1.49 -4.26 

and p = 43.82. The total genetic merit of au animal can be estimated by adding together 
the imlutions for the additive, dominance, and additive by dominance genetic values, 

0 
-0.17 

0 
-0.17 
-3.33 
-3.33 

3.15 

g= 
3.15 = (a+d + ,,°ct). 

-2.47 
-2.47 

8.29 
-15.73 
-19.65 

20.79 
11.54 

-12.60 

On the practical side, the solutions for the individual dominance and additive by domi­
nance solutions should be used in breeding programs, but how? Dominance effects arise 
due to particular sire-dam matings, and thus, dominance genetic values could be used to 
determine which matings were better. However, additive by dominance genetic solutions 
may be less useful. Perhaps the main point is that if non-additive genetic effects are signif­
icant, then they should he removed through the model to obtain more accurate estimates 
of the additive genetic effects, assuming that these have a much larger effect than the 
non-additive genetic effects. 
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10.4 Estimation of Variances 

Take the I'vI1v1E as shown earlier, i.e. 

( 

X'X X'Z X'Z 
Z'X Z'Z + A - 1 kJO Z1Z 
Z'X Z'Z Z'Z + 0- 1 1;01 

Z'X Z'Z Z1Z 
Z'X Z'Z Z'Z 

X'Z 
Z'Z 
Z'Z 

Z'Z + (A#D) ., k,, 
Z'Z 

X'Z 
Z'Z 
Z'Z 
Z'Z 

Z'Z + Ikp 

f, 

H n r 
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X'y l Z'y 
Z'y , 
Z'y 
Z'y 

Now subtract the equation for dominance genetic effects from the equation for additive 
genetic effects, and similarly for the additive by dominance and permanent environmental 
effects 1 giving 

Re-arranging terms, then 

A- 1k10a -D- 1ko1d 

A- 1k10a.- (A#D)- 1k11a·d 

A -lk • 1- 1k • ~10a - "rP 

ct 0A- 1(k10/k01Ja 

ad (A#D)A- 1(k10/k11)a 

p A- 1 (k10/kp)ii. 

0 

0 

0 

The only inverse that is needed is for A, and the equations to solve are only as large as 
the usual animal model Mlv!E. 

The following Gibbs sampling scheme is proposed for this model. (This is a pseudo 
Gibbs sampling scheme aud may not be appropriate. It does not sample the epistatic 
genetic effects, assuming that these are merely functions of the additive genetic effects. 
The solutions for these effects could also be sampled, but the variances of these effects 
would need to be approximated in some way. ) 

1. Using the current sample values for d 1 ad 1 and p 1 adjust the observations aud 
construct the animal model :tvIME. 

( 
X'X 
Z'X 

y = y - Z(d +ad+ p), 

X'Z ) ( b ) ( X'y ) 
Z'Z+A- 1k10 a = Z'y • 

2. Go through the :tvrtvIE equations and compute new .sample values for b and a as 
usual, i.e., 

b, [x'.(Y - X_,b_, - Z,a)]/x'.x,, 

b, b, + RND * (a;/x'.x,)· 5
, 
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and 

a, [z;(y - X,b - z_,a_,) - A=;k 10a_,j/(z;z, + aiik 10), 

a, a,+ RND * (a;/(z;z, + ai'k 10))·5 . 

3. New samples of the cpistatic genetic effects arc just functions of the samples values 
for a 1 namely, 

d DA- 1(k10/ko1)a 

ad (A#D)A- 1 (k10/kll)a 

p A- 1(k10/kp)a. 

4. Quadratic forms for the variances arc needed. Note from the fact that the epistatic 
genetic effects are functions of a, then so too are the quadratic forms. Let 

w 01 (D- 1<l) = A- 1(k10/ko1)a 

w 11 ((A#D)- 1ad) = A- 1(k10/k 11)a 

Wp (Ip) = A- 1(k10/kp)ii. 

The necessary quadratic forms, are then 

e y - Xb - Z(a + d +ad+ p), 

e'e 

d 1
wo1 

ad 1
w11 

d'D- 1d, 

ad'(A#D)- 1ad, 

' pp, 

The computation of these quadratic forms is not very complicated and do not require 
the inverses of D or A#D. 

5. New sample values of the variances are given by dividing the quadratic forms by a 
random Chi-square variate with appropriate degrees of freedom. If q is the number 
of animals in the relationship matrices, Np is the number of animals with records, N 
is the number of records, and CH I(v) is a random Chi-square variate with v degrees 
of freedom 1 then the new samples are 

2 aw a'A- 1a/CH/(q) 
2 

"01 d'woi/CHI(q), 
2 all ad'wll/CH/(q), 

a' p p'wp/CH !(Np), 

a' 
' 

e'e/CHI(N). 

6. Form the new variance ratios and begin the process again. 



10.4. ESTIMATION OF VARIANCES 141 

The only step missing to make this a valid Gibbs sampling scheme is the sampling of 
new values for d, ad, and p. For p one could use the diagonals of Z'Z + Ikµ for the 
variance of :f>. The problem would be in getting the variances for d and ad which would 
require the inverses of D and A#D, respectivcly 1 which are being avoided. These could 
be approximated by the diagonals of Z'Z+lko1 and Z'Z+lku. This might be better than 
not obtaining any new samples of d and ad, but comparisons to Gibbs 8<.U11pling with the 
full MME using the inverses of D and A#-D need to be made. 






