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Introduction to Course

1 Aim of the Course

The aim of the course is to present linear model methodology for genetic evaluation of
livestock (plants) and general analysis of livestock (plant) data.

2 The Assumed Genetic Model

The Infinitesimal Model (1909) is assumed. There are an estimated 30,000 genes in
mammals. If each gene has only two alleles (variants), then there are only 3 possible
genotypes at each locus. The number of possible genotypes across all loci would be 330000,
which is a number greater than the total number of animals in any livestock species. Many
genes are likely to have more than two alleles, and hence the number of possibly di↵erent
genotypes is even greater then 330000. Logically, one can assume a genome with essentially
an infinite number of loci as being approximately correct for all practical purposes.

Infinitesimal Model: An infinite number of loci are assumed, all with an equal and
small e↵ect on a quantitative trait.

True Breeding Value: The sum of the additive e↵ects of all loci on a quantitative trait
is known as the True Breeding Value (TBV).

3 Types of Genetic E↵ects

In this course, only additive genetic e↵ects are of interest. Additive e↵ects are generally
the largest of the genetic e↵ects, and the allelic e↵ects are passed directly to o↵spring
while the other genetic e↵ects are not transmitted to progeny, and are generally smaller
in magnitude.

3.1 Additive E↵ects

Assume one locus with three alleles, A1, A2, and A3. Assume also that the e↵ect of the
alleles are +3, +1, and -1, respectively. If the genetic e↵ects are entirely additive, then
the value of the possible genotypes would be the sum of their respective allele e↵ects, i.e.
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A1A1 = 3 + 3 = +6

A1A2 = 3 + 1 = +4

A1A3 = 3 � 1 = +2

A2A2 = 1 + 1 = +2

A2A3 = 1 � 1 = 0

A3A3 = �1 � 1 = �2.

3.2 Dominance E↵ects

Dominance genetic e↵ects are the interactions among alleles at a given locus. This is
an e↵ect that is extra to the sum of the additive allelic e↵ects. Each genotype would
have its own dominance e↵ect, let these be denoted as �ij, and each of them are non-zero
quantities. Using the previous example, the additive and dominance e↵ects would give

A1A1 = 3 + 3 + �11 = +6 + �11

A1A2 = 3 + 1 + �12 = +4 + �12

A1A3 = 3 � 1 + �13 = +2 + �13

A2A2 = 1 + 1 + �22 = +2 + �22

A2A3 = 1 � 1 + �23 = 0 + �23

A3A3 = �1 � 1 + �33 = �2 + �33.

3.3 Epistatic Genetic E↵ects

Epistatic genetic e↵ects encompass all possible interactions among the m loci (m being
approximately 30,000). This includes all two way interactions, three way interactions,
etc. As well, epistasis includes interactions between additive e↵ects at di↵erent loci,
interactions between additive e↵ects at one locus with dominance e↵ects at a second
locus, and interactions between dominance e↵ects at di↵erent loci.
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4 Necessary Information

Genetic improvement of a livestock species requires four pieces of information.

4.1 Pedigrees

Animals, their sires, and their dams need to be uniquely identified in the data. Birthdates,
breed composition, and genotypes for various markers or QTLs could also be stored. If
animals are not uniquely identified, then genetic change of the population may not be
possible. In aquaculture species, for example, individual identification may not be feasible,
but family identification (sire and dam) may be known.

4.2 Data

Traits of economic importance need to be recorded accurately and completely. All animals
within a production unit (herd, flock, ranch) should be recorded. Animals should not be
selectively recorded. Data includes the dates of events when traits are observed, factors
that could influence an animal’s performance, and an identification of contemporaries that
are raised and observed in the same environment under the same management regime.
Observations should be objectively measured, if at all possible.

4.3 Production System

A knowledge and understanding of the production system of a livestock species is impor-
tant for designing optimum selection and mating strategies. The key elements are the
gestation length and the age at first breeding. The number of o↵spring per female per
gestation will influence family structure. The use of artificial insemination and/or embryo
transfer could be important. Other management practices are also useful to know. All
information is used to formulate appropriate linear models for the analysis of the data
and accurate estimation of breeding values of animals.

4.4 Prior Information

Read the literature. Most likely other researchers have already made analyses of the same
species and traits. Their models could be useful starting points for further analyses. Their
parameter estimates could predict the kinds of results that might be found. The idea is
to avoid the pitfalls and problems that other researchers have already encountered. Be
aware of new kinds of analyses of the same data, that may not involve linear models.
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5 Tools for Genetic Evaluation

5.1 Statistical Linear Models

A model describes the factors that a↵ect each trait in a linear fashion. That is, a factor
has an additive e↵ect on a trait. All models are simple approximations to how factors
influence a trait. The goal is to find the best practical model that explains the most
variation. Statistical knowledge is required.

5.2 Matrix Algebra

Matrix algebra is a notation for describing models and statistical analyses in a simplified
manner. Matrix addition, multiplication, inversion, di↵erentiation, and other operations
should be mastered at an e�cient level of expertise.

5.3 Computing

Animal breeders should know how to write programs, or at least to be capable of using
software written by others. Available software may not be enough for some analyses, and
so new programs may need to be written. The best languages for programming animal
breeding work are FORTRAN (77 or 90), C, or C++. For this course, R software will
be used to solve the example problems. R is an open source language available on the
internet. Go to the CRAN site and download the latest version of R onto your desktop
machine or laptop. R is continually being updated with one or two new versions per year.
One version should su�ce for at least a year. Some of the basics of R will be given in
these notes.
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6 EXERCISES

1. Search the literature or internet to fill in the missing values in the following table.

Species Age at first breeding Gestation Pairs of
Males(days) Females (days) Length (d) Chromosomes

Cattle
Swine
Sheep
Goats
Horse
Elk
Deer
Llama
Rabbit
Mink
Chicken
Turkey
Dog
Cat
Mouse

2. Describe a typical production system for one of the livestock species in the previous
table.

3. Take one of the livestock species in the first question and make a file of the di↵erent
breeds within that species and the number of animals in each breed today in Canada
(your country). Include a picture and brief background of each breed.

4. Describe an existing data recording program for a quantitative trait in one species
in Canada (your country).
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7 Matrices

A matrix is a two dimensional array of numbers. The number of rows and number of
columns defines the order of the matrix. Matrices are denoted by boldface capital letters.

7.1 Examples

A =

0

B@
7 18 �2 22

�16 3 55 1
9 �4 0 31

1

CA

3⇥4

B =

0

B@
x y + 1 x + y + z

a� b c log d ep
x� y (m + n)/n p

1

CA

3⇥3

and

C =

 
C

11

C
12

C
21

C
22

!

2⇥2

7.2 Making a Matrix in R

A = matrix(data=c(7,18,-2,22,-16,3,55,1,9,-4,0,31),byrow=TRUE,
nrow=3,ncol=4)

# Check the dimensions
dim(A)

7.3 Vectors

Vectors are matrices with either one row (row vector) or one column (column vector), and
are denoted by boldface small letters.

7.4 Scalar

A scalar is a matrix with just one row and one column, and is denoted by an letter or
symbol.
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8 Special Matrices

8.1 Square Matrix

A matrix with the same number of rows and columns.

8.2 Diagonal Matrix

Let {aij} represent a single element in the matrix A. A diagonal matrix is a square matrix
in which all aij are equal to zero except when i equals j.

8.3 Identity Matrix

This is a diagonal matrix with all aii equal to one (1). An identity matrix is usually
written as I.

To make an identity matrix with r rows and columns, use

id = function(n) diag(c(1),nrow=n,ncol=n)

# To create an identity matrix of order 12
I12 = id(12)

8.4 J Matrix

A J matrix is a general matrix of any number of rows and columns, but in which all
elements in the matrix are equal to one (1).

The following function will make a J matrix, given the number or rows, r, and number
of columns, c.

jd = function(n,m) matrix(c(1),nrow=n,ncol=m)

# To make a matrix of 6 rows and 10 columns of all ones
M = jd(6,10)
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8.5 Null Matrix

A null matrix is a J matrix multiplied by 0. That is, all elements of a null matrix are
equal to 0.

8.6 Triangular Matrix

A lower triangular matrix is a square matrix where elements with j greater than i are
equal to zero (0), { aij} equal 0 for j greater than i. There is also an upper triangular
matrix in which {aij} equal 0 for i greater than j.

8.7 Tridiagonal Matrix

A tridiagonal matrix is a square matrix with all elements equal to zero except the diagonals
and the elements immediately to the left and right of the diagonal. An example is shown
below.

B =

0

BBBBBBBB@

10 3 0 0 0 0
3 10 3 0 0 0
0 3 10 3 0 0
0 0 3 10 3 0
0 0 0 3 10 3
0 0 0 0 3 10

1

CCCCCCCCA

.
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9 Matrix Operations

9.1 Transposition

Let {aij} represent a single element in the matrix A. The transpose of A is defined as

A0 = {aji}.

If A has r rows and c columns, then A0 has c rows and r columns.

A =

0

B@
7 18 �2 22

�16 3 55 1
9 �4 0 31

1

CA

A0 =

0

BBB@

7 �16 9
18 3 �4
�2 55 0
22 1 31

1

CCCA .

In R,

At = t(A)
# t() is the transpose function

9.2 Diagonals

The diagonals of matrix A are {aii} for i going from 1 to the number of rows in the
matrix.

O↵-diagonal elements of a matrix are all other elements excluding the diagonals.

Diagonals can be extracted from a matrix in R by using the diag() function.

9.3 Addition of Matrices

Matrices are conformable for addition if they have the same order. The resulting sum is
a matrix having the same number of rows and columns as the two matrices to be added.
Matrices that are not of the same order cannot be added together.

A = {a
ij

} and B = {b
ij

}
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A + B = {a
ij

+ b
ij

}.

An example is

A =

 
4 5 3
6 0 2

!

and B =

 
1 0 2
3 4 1

!

then

A + B =

 
4 + 1 5 + 0 3 + 2
6 + 3 0 + 4 2 + 1

!

=

 
5 5 5
9 4 3

!

= B + A.

Subtraction is the addition of two matrices, one of which has all elements multiplied
by a minus one (-1). That is,

A + (�1)B =

 
3 5 1
3 �4 1

!

.

R will check matrices for conformability, and will not perform the operation unless
they are conformable.

9.4 Multiplication of Matrices

Two matrices are conformable for multiplication if the number of columns in the first
matrix equals the number of rows in the second matrix.

If C has order p ⇥ q and D has order m ⇥ n, then the product CD exists only if
q = m. The product matrix has order p⇥ n.

In general, CD does not equal DC, and most often the product DC may not even
exist because D may not be conformable for multiplication with C. Thus, the ordering
of matrices in a product must be carefully and precisely written.

The computation of a product is defined as follows: let

Cp⇥q = {cij}

and
Dm⇥n = {dij}

and q = m, then

CDp⇥n = {
mX

k=1

cikdkj}.
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As an example, let

C =

0

B@
6 4 �3
3 9 �7
8 5 �2

1

CA and D =

0

B@
1 1
2 0
3 �1

1

CA ,

then

CD =

0

B@
6(1) + 4(2)� 3(3) 6(1) + 4(0)� 3(�1)
3(1) + 9(2)� 7(3) 3(1) + 9(0)� 7(�1)
8(1) + 5(2)� 2(3) 8(1) + 5(0)� 2(�1)

1

CA =

0

B@
5 9
0 10

12 10

1

CA .

In R,

# C times D - conformability is checked
CD = C %*% D

9.4.1 Transpose of a Product

The transpose of the product of two or more matrices is the product of the transposes of
each matrix in reverse order. That is, the transpose of CDE, for example, is E0D0C0.

9.4.2 Idempotent Matrix

A matrix, say A, is idempotent if the product of the matrix with itself equals itself, i.e.
AA = A. This implies that the matrix must be square, but not necessarily symmetric.

9.4.3 Nilpotent Matrix

A matrix is nilpotent if the product of the matrix with itself equals a null matrix, i.e.
BB = 0, then B is nilpotent.

9.4.4 Orthogonal Matrix

A matrix is orthogonal if the product of the matrix with its transpose equals an identity
matrix, i.e. UU0 = I, which also implies that U0U = I.
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9.5 Traces of Square Matrices

The trace is the sum of the diagonal elements of a matrix. The sum is a scalar quantity.
Let

A =

0

B@
.51 �.32 �.19

�.28 .46 �.14
�.21 �.16 .33

1

CA ,

then the trace is
tr(A) = .51 + .46 + .33 = 1.30.

In R, the trace is achieved using the sum() and diag() functions together. The
diag() function extracts the diagonals of the matrix, and the sum() function adds them
together.

# Trace of the matrix A
trA = sum(diag(A))

9.5.1 Traces of Products - Rotation Rule

The trace of the product of conformable matrices has a special property known as the
rotation rule of traces. That is,

tr(ABC) = tr(BCA) = tr(CAB).

The traces are equal, because they are scalars, even though the dimensions of the three
products might be greatly di↵erent.

9.6 Euclidean Norm

The Euclidean Norm is a matrix operation usually used to determine the degree of dif-
ference between two matrices of the same order. The norm is a scalar and is denoted as
kAk .

kAk = [tr(AA0)].5 = (
nX

i=1

nX

j=1

a2
ij)

.5.

For example, let

A =

0

B@
7 �5 2
4 6 3
1 �1 8

1

CA ,
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then
kAk = (49 + 25 + 4 + · · · + 1 + 64).5

= (205).5 = 14.317821.

Other types of norms also exist.

In R,

# Euclidean Norm
EN = sqrt(sum(diag(A %*% t(A))))

9.7 Direct Sum of Matrices

For matrices of any dimension, say H1, H2, . . .Hn, the direct sum is

P+
i Hi = H1 �H2 � · · ·�Hn =

0

BBBB@

H1 0 · · · 0
0 H2 · · · 0
...

...
. . .

...
0 0 · · · Hn

1

CCCCA
.

In R, the direct sum is accomplished by the block() function which is shown below.
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# Direct sum operation via the block function

block <- function( ... ) {
argv = list( ... )
i = 0
for( a in argv ) {
m = as.matrix(a)
if(i == 0)
rmat = m
else
{
nr = dim(m)[1]
nc = dim(m)[2]
aa = cbind(matrix(0,nr,dim(rmat)[2]),m)
rmat = cbind(rmat,matrix(0,dim(rmat)[1],nc))
rmat = rbind(rmat,aa)
}
i = i+1
}
rmat
}

To use the function,

Htotal = block(H1,H2,H3,H4)

9.8 Kronecker Product

The Kronecker product, also known as the direct product, is where every element of the
first matrix is multiplied, as a scalar, times the second matrix. Suppose that B is a matrix
of order m⇥ n and that A is of order 2⇥ 2, then the direct product of A times B is

A⌦B =

 
a11B a12B
a21B a22B

!

.

Notice that the dimension of the example product is 2m⇥ 2n.

In R, a direct product can be obtained as follows:

15



AB = A %x% B
# Note the small x between % %

9.9 Hadamard Product

The Hadamard product exists for two matrices that are conformable for addition. The
corresponding elements of the two matrices are multiplied together. The order of the
resulting product is the same as the matrices in the product. For two matrices, A and B
of order 2⇥ 2, then the Hadamard product is

A�B =

 
a11b11 a12b12

a21b21 a22b22

!

.

In R,

AB = A * B
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10 Elementary Operators

Elementary operators are identity matrices that have been modified for a specific purpose.

10.1 Row or Column Multiplier

The first type of elementary operator matrix has one of the diagonal elements of an
identity matrix replaced with a constant other than 1. In the following example, the
{1,1} element has been set to 4. Note what happens when the elementary operator is
multiplied times the matrix that follows it.

0

B@
4 0 0
0 1 0
0 0 1

1

CA

0

B@
1 2 3 4
8 7 6 5
9 10 11 12

1

CA =

0

B@
4 8 12 16
8 7 6 5
9 10 11 12

1

CA .

10.2 Interchange Rows or Columns

The second type of elementary operator matrix interchanges rows or columns of a matrix.
To change rows i and j in a matrix, the identity matrix is modified by interchange rows
i and j, as shown in the following example. Note the e↵ect on the matrix that follows it.

0

B@
1 0 0
0 0 1
0 1 0

1

CA

0

B@
1 2 3 4
8 7 6 5
9 10 11 12

1

CA =

0

B@
1 2 3 4
9 10 11 12
8 7 6 5

1

CA .

10.3 Combine Two Rows

The third type of elementary operator is an identity matrix that has an o↵-diagonal zero
element changed to a non-zero constant. An example is given below, note the e↵ect on
the matrix that follows it.

0

B@
1 0 0

�1 1 0
0 0 1

1

CA

0

B@
1 2 3 4
8 7 6 5
9 10 11 12

1

CA =

0

B@
1 2 3 4
7 5 3 1
9 10 11 12

1

CA .
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11 Matrix Inversion

An inverse of a square matrix A is denoted by A�1. An inverse of a matrix pre- or post-
multiplied times the original matrix yields an identity matrix. That is,

AA�1 = I, and A�1A = I.

A matrix can be inverted if it has a nonzero determinant.

11.1 Determinant of a Matrix

The determinant of a matrix is a single scalar quantity. For a 2⇥ 2 matrix, say

A =

 
a11 a12

a21 a22

!

,

then the determinant is
|A| = a11a22 � a21a12.

For a 3 ⇥ 3 matrix, the determinant can be reduced to a series of determinants of 2 ⇥ 2
matrices. For example, let

B =

0

B@
6 �1 2
3 4 �5
1 0 �2

1

CA ,

then

|B| = 6

�����
4 �5
0 �2

������ 1(�1)

�����
3 �5
1 �2

�����+ 2

�����
3 4
1 0

�����

= 6(�8) + 1(�1) + 2(�4)

= � 57.

The general expression for the determinant of a matrix is

|B| =
nX

j=1

(�1)i+jbij|Mij|

where B is of order n, and Mij is a minor submatrix of B resulting from the deletion of
the ith row and jth column of B. Any row of B may be used to compute the determinant
because the result should be the same for each row. Columns may also be used instead
of rows.

In R, the det() function may be used to compute the determinant.
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11.2 Matrix of Signed Minors

If the determinant is non-zero, the next step is to find the matrix of signed minors,
known as the adjoint matrix. Using the same matrix, B above, the minors and their
determinants are as follows:

M11 = +1

 
4 �5
0 �2

!

, and |M11| = � 8,

M12 = �1

 
3 �5
1 �2

!

, and |M12| = + 1,

M13 = +1

 
3 4
1 0

!

, and |M13| = � 4,

M21 = �1

 
�1 2

0 �2

!

, and |M21| = � 2,

M22 = +1

 
6 2
1 �2

!

, and |M22| = � 14,

M23 = �1

 
6 �1
1 0

!

, and |M23| = � 1,

M31 = +1

 
�1 2

4 �5

!

, and |M31| = � 3,

M32 = �1

 
6 2
3 �5

!

, and |M32| = 36, and

M33 = +1

 
6 �1
3 4

!

, and |M33| = 27.

The adjoint matrix of signed minors, MB is then

MB =

0

B@
�8 1 �4
�2 �14 �1
�3 36 27

1

CA .

11.3 The Inverse

The inverse of B is then
B�1 = |B|�1M0

B

=
1

�57

0

B@
�8 �2 �3

1 �14 36
�4 �1 27

1

CA .
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If the determinant is zero, then the inverse is not defined or does not exist. A square
matrix with a non-zero determinant is said to be nonsingular. Only nonsingular matrices
have inverses. Matrices with zero determinants are called singular and do not have an
inverse.

In R, there are di↵erent ways to compute an inverse.

BI = ginv(B) # will give generalized inverse if
# determinant is zero

11.4 Inverse of an Inverse

The inverse of an inverse matrix is equal to the original matrix. That is,

(A�1)�1 = A.

11.5 Inverse of a Product

The inverse of the product of two or more nonsingular matrices follows a rule similar to
that for the transpose of a product of matrices. Let A,B, and C be three nonsingular
matrices, then

(ABC)�1 = C�1B�1A�1,

and
C�1B�1A�1ABC = I.
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12 Generalized Inverses

A matrix having a determinant of zero, can have a generalized inverse calculated. There
are an infinite number of generalized inverses for any one singular matrix. A unique
generalized inverse is the Moore-Penrose inverse which satisfies the following conditions:

1. AA�A = A,

2. A�AA� = A�,

3. (A�A)0 = A�A, and

4. (AA�)0 = AA�.

Usually, a generalized inverse that satisfies only the first condition is su�cient for practical
purposes.

12.1 Linear Independence

For a square matrix with a nonzero determinant, the rows and columns of the matrix are
linearly independent. If A is the matrix, then linear independence means that no vector,
say k, exists such that Ak = 0 except for k = 0.

For a square matrix with a zero determinant, at least one non-null vector, k, exists
such that Ak = 0.

12.2 Rank of a Matrix

The rank of a matrix is the number of linearly independent rows and columns in the
matrix. Elementary operators are used to determine the rank of a matrix. The objective
is to reduce the matrix to an upper triangular form.

Pre-multiplication of a matrix by an elementary operator matrix does not change the
rank of a matrix.

Reduction of a matrix to a diagonal matrix is called reduction to canonical form,
and the reduced matrix is called the canonical form under equivalence.
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12.2.1 Example Reduction to Find Rank

Let

A =

0

B@
2 1 �1 3 8
4 7 5 �2 �1
6 8 4 1 7

1

CA .

The rank of a matrix can not be greater than the minimum of the number of rows or
columns, whichever is smaller. In the example above, A has 3 rows and 5 columns, and
therefore the rank of A can not be greater than 3. Let P

1

be the first elementary operator
matrix.

P
1

=

0

B@
1 0 0

�2 1 0
�3 0 1

1

CA ,

then

P
1

A =

0

B@
2 1 �1 3 8
0 5 7 �8 �17
0 5 7 �8 �17

1

CA .

Now use P
2

to subtract the third row from the second row, so that

P
2

=

0

B@
1 0 0
0 1 0
0 �1 1

1

CA ,

and

P
2

P
1

A =

0

B@
2 1 �1 3 8
0 5 7 �8 �17
0 0 0 0 0

1

CA .

The rank is the number of non-zero diagonal elements of the reduced matrix, i.e. r(A) = 2.

Full-row rank: If A has order m⇥ n with rank equal to m, then A has full row rank.

Full-column rank: A matrix with rank equal to the number of columns has full-column
rank.

Full rank: A square matrix with rank equal to the number of rows or columns has full
rank. A full rank matrix is nonsingular, has a non-zero determinant, and has an
inverse.

Rank of zero: A null matrix has a rank of zero.

Rank of one: A J matrix has a rank of one.

Idempotent Matrix: Has rank equal to the trace of the matrix.

Rank of a Product: If A has rank r and B has rank q, and the two matrices are
conformable for multiplication, then the product, AB, has a maximum possible
rank equal to the lesser of r or q.
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12.3 Consequences of Linear Dependence

A matrix with rank less than the number of rows or columns in the matrix means that
the matrix can be partitioned into a square matrix of order equal to the rank (with full
rank), and into other matrices of the remaining rows and columns. The other rows and
columns are linearly dependent upon the rows and columns in that square matrix. That
means that they can be formed from the rows and columns that are linearly independent.

Let A be a matrix of order p ⇥ q with rank r, and r is less than either p or q, then
there are p� r rows of A and q� r columns which are not linearly independent. Partition
A as follows:

Ap⇥q =

 
A

11

A
12

A
21

A
22

!

such that A
11

has order r ⇥ r and rank of r. Re-arrangement of rows and columns of
A may be needed to find an appropriate A

11

. A
12

has order r ⇥ (q � r), A
21

has order
(p� r)⇥ r, and A

22

has order (p� r)⇥ (q � r).

There exist matrices, K
1

and K
2

such that
⇣

A
21

A
22

⌘
= K

2

⇣
A

11

A
12

⌘
,

and  
A

12

A
22

!

=

 
A

11

A
21

!

K
1

,

and

A =

 
A

11

A
11

K
1

K
2

A
11

K
2

A
11

K
1

!

.

To illustrate, let

A =

0

BBB@

3 �1 4
1 2 �1

�5 4 �9
4 1 3

1

CCCA ,

and the rank of this matrix is 2. A 2 ⇥ 2 full rank submatrix within A is the upper left
2⇥ 2 matrix. Let

A
11

=

 
3 �1
1 2

!

,

then

A
12

=

 
4

�1

!

= A
11

K
1

,

where

K
1

=

 
1

�1

!

,
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A
21

=

 
�5 4

4 1

!

= K
2

A
11

,

where

K
2

=

 
�2 1

1 1

!

,

and
A

22

= K
2

A
11

K
1

=

 
�2 1

1 1

! 
3 �1
1 2

! 
1

�1

!

=

 
�9

3

!

.

This kind of partitioning of matrices with less than full rank is always possible. In
practice, we need only know that this kind of partitioning is possible, but K

1

and K
2

do
not need to be derived explicitly.

12.4 Calculation of a Generalized Inverse

For a matrix, A, of less than full rank, there is an infinite number of possible generalized
inverses, all of which would satisfy AA�A = A. However, only one generalized inverse
needs to be computed in practice. A method to derive one particular type of generalized
inverse has the following steps:

1. Determine the rank of A.

2. Obtain A
11

, a square, full rank submatrix of A with rank equal to the rank of A.

3. Partition A as

A =

 
A

11

A
12

A
21

A
22

!

.

4. Compute the generalized inverse as

A� =

 
A�1

11

0
0 0

!

.

If A has order p⇥q, then A� must have order q⇥p. To prove that A� is a generalized
inverse of A, then multiply out the expression

AA�A =

 
A

11

A
12

A
21

A
22

! 
A�1

11

0
0 0

! 
A

11

A
12

A
21

A
22

!

=

 
A

11

A
12

A
21

A
21

A�1

11

A
12

!

.

From the previous section, A
21

= K
2

A
11

so that

A
21

A�1

11

A
12

= K
2

A
11

A�1

11

A
12

= K
2

A
12

= A
22

.
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12.5 Solutions to Equations Not of Full Rank

Because there are an infinite number of generalized inverses to a matrix that has less
than full rank, then it logically follows that for a system of consistent equations, Ax = r,
where the solutions are computed as x = A�r, then there would also be an infinite number
of solution vectors for x. Having computed only one generalized inverse, however, it is
possible to compute many di↵erent solution vectors. If A has q columns and if G is one
generalized inverse of A, then the consistent equations Ax = r have solution

x̃ = Gr + (GA� I)z,

where z is any arbitrary vector of length q. The number of linearly independent solution
vectors, however, is (q � r + 1).

Other generalized inverses of the same matrix can be produced from an existing
generalized inverse. If G is a generalized inverse of A then so is

F = GAG + (I�GA)X + Y(I�AG)

for any X and Y. Pre- and post- multiplication of F by A shows that this is so.

12.6 Generalized Inverses of X0R�1X

The product X0R�1X occurs frequently where X is a matrix that usually has more rows
than it has columns and has rank less than the number of columns, and R is a square
matrix that is usually diagonal. Generalized inverses of this product matrix have special
features. Let X be a matrix of order N ⇥ p with rank r. The product, X0R�1X has
order p⇥ p and is symmetric with rank r. Let G represent any generalized inverse of the
product matrix, then the following results are true.

1. G is not necessarily a symmetric matrix, in which case G0 is also a generalized
inverse of the product matrix.

2. X0R�1XGX0 = X0 or XGX0R�1X = X.

3. GX0R�1 is a generalized inverse of X.

4. XGX0 is always symmetric and unique for all generalized inverses of the product
matrix, X0R�1X.

5. If 10 = k0X for some k0, then 10R�1XGX0 = 10.
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13 Eigenvalues and Eigenvectors

There are a number of square, and sometimes symmetric, matrices involved in statistical
procedures that must be positive definite. Suppose that Q is any square matrix then

• Q is positive definite if y0Qy is always greater than zero for all vectors, y.

• Q is positive semi-definite if y0Qy is greater than or equal to zero for all vectors y,
and for at least one vector y, then y0Qy = 0.

• Q is non-negative definite if Q is either positive definite or positive semi-definite.

The eigenvalues (or latent roots or characteristic roots) of the matrix must be calcu-
lated. The eigenvalues are useful in that

• The product of the eigenvalues equals the determinant of the matrix.

• The number of non-zero eigenvalues equals the rank of the matrix.

• If all the eigenvalues are greater than zero, then the matrix is positive definite.

• If all the eigenvalues are greater than or equal to zero and one or more are equal to
zero, then the matrix is positive semi-definite.

If Q is a square, symmetric matrix, then it can be represented as

Q = UDU0

where D is a diagonal matrix, the canonical form of Q, containing the eigenvalues of Q,
and U is an orthogonal matrix of the corresponding eigenvectors. Recall that for a matrix
to be orthogonal then UU0 = I = U0U, and U�1 = U0.

The eigenvalues and eigenvectors are found by solving

| Q� dI | = 0,

and
Qu� du = 0,

where d is one of the eigenvalues of Q and u is the corresponding eigenvector. There are
numerous computer routines for calculating D and U.

In R, the eigen() function is used and both U and D are returned to the user.
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14 Di↵erentiation

The di↵erentiation of mathematical expressions involving matrices follows similar rules as
for those involving scalars. Some of the basic results are shown below.

Let
c = 3x1 + 5x2 + 9x3 = b0x

=
⇣

3 5 9
⌘
0

B@
x1

x2

x3

1

CA .

With scalars, the derivatives are
@c

@x1
= 3

@c

@x2
= 5

@c

@x3
= 9,

but with vectors they are
@c

@x
= b.

The general rule is
@A0x

@x
= A.

Another function might be

c = 9x2
1 + 6x1x2 + 4x2

2

or

c =
⇣

x1 x2

⌘ 9 3
3 4

! 
x1

x2

!

= x0Ax.

With scalars the derivatives are

@c

@x1
= 2(9)x1 + 6x2

@c

@x2
= 6x1 + 2(4)x2,

and in matrix form they are,
@c

@x
= 2Ax.

If A was not a symmetric matrix, then

@x0Ax

@x
= Ax + A0x.
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15 Cholesky Decomposition

In simulation studies or applications of Gibb’s sampling there is frequently a need to factor
a symmetric positive definite matrix into the product of a matrix times its transpose. The
Cholesky decomposition of a matrix, say V, is a lower triangular matrix such that

V = TT0,

and T is lower triangular. Suppose that

V =

0

B@
9 3 �6
3 5 0

�6 0 21

1

CA .

The problem is to derive

T =

0

B@
t11 0 0
t21 t22 0
t31 t32 t33

1

CA ,

such that

t211 = 9

t11t21 = 3

t11t31 = �6

t221 + t222 = 5

t21t31 + t22t32 = 0 and

t231 + t232 + t233 = 21

These equations give t11 = 3, then t21 = 3/t11 = 1, and t31 = �6/t11 = �2. From the
fourth equation, t22 is the square root of (5� t221) or t22 = 2. The fifth equation says that
(1)(�2) + (2)t32 = 0 or t32 = 1. The last equation says that t233 is 21� (�2)2 � (1)2 = 16.
The end result is

T =

0

B@
3 0 0
1 2 0

�2 1 4

1

CA .

The derivation of the Cholesky decomposition is easily programmed for a computer. Note
that in calculating the diagonals of T the square root of a number is needed, and con-
sequently this number must always be positive. Hence, if the matrix is positive definite,
then all necessary square roots will be of positive numbers. However, the opposite is not
true. That is, if all of the square roots are of positive numbers, the matrix is not neces-
sarily guaranteed to be positive definite. The only way to guarantee positive definiteness
is to calculate the eigenvalues of a matrix and to see that they are all positive.
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16 Inverse of a Lower Triangular Matrix

The inverse of a lower triangular matrix is also a lower triangular matrix, and can be
easily derived. The diagonals of the inverse are the inverse of the diagonals of the original
matrix. Using the matrix T from the previous section, then

T�1 =

0

B@
t11 0 0
t21 t22 0
t31 t32 t33

1

CA ,

where

tii = 1/tii
t21t

11 + t22t
21 = 0

t31t
11 + t32t

21 + t33t
31 = 0

t32t
22 + t33t

32 = 0.

These equations give

t11 =
1

3

t21 = �1

6

t22 =
1

2

t31 =
5

24

t32 = �1

8
and

t33 =
1

4

Likewise the determinant of a triangular matrix is the product of all of the diagonal
elements. Hence all diagonal elements need to be non-zero for the inverse to exist.

The natural logarithm of the determinant of a triangular matrix is the summation
of the natural logarithms of the individual diagonal elements. This property is useful in
derivative free restricted maximum likelihood.
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17 EXERCISES

For each of the following exercises, first do the calculations by hand (or in your head).
Then use R to obtain results, and check to make sure the results are identical.

1. Given matrices A and B, as follows.

A =

0

B@
1 �1 0

�2 3 �1
�2 �2 4

1

CA , B =

0

BBB@

6 �5 8
�4 9 �3
�5 �7 1

3 4 �5

1

CCCA .

If legal to do so, do the following calculations:

(a) A0.

(b) A + A0

(c) AA. Is A idempotent?

(d) AB.

(e) |A|.
(f) B0A.

(g) Find the rank of B.

(h) A�1.

(i) B + B0.

(j) tr(BB0.

2. Given a new matrix, D.

D =

0

BBBBBB@

8 3 5 �1 7
4 1 2 �3 6

�2 6 7 �5 2
1 �2 �4 0 3
1 6 14 �3 �4

1

CCCCCCA

Find the rank and a generalized inverse of D.

3. Find the determinant and an inverse of the following lower triangular matrix.

L =

0

BBBBBB@

10 0 0 0 0
�2 20 0 0 0

1 �2 16 0 0
4 �1 �2 5 0

�1 �6 3 1 4

1

CCCCCCA
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4. If matrix R has N rows and columns with a rank of N � 2, and matrix W has N
rows and p columns for p < N with rank of p� 3, then what would be the rank of
W0R?

5. Create a square matrix of order 5 that has rank of 2, and show that the rank of
your matrix is indeed 2.

6. Obtain a generalized inverse of matrix B in the first question, and show that it
satisfies the first Moore-Penrose condition.
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Data Manipulations and R

18 Small Data Sets

Most ‘real life’ examples used in these notes to illustrate methods can be given in one
table on less than a page of paper. In these cases, the student can enter the data into R
manually in a few minutes.

Below are data on 10 beef calves born at a research station within one week of each
other.

Beef calf data on birthweights (BW) and calving ease (CE).
Calf Breed Sex CE BW(lbs)
1 AN M U 55
2 CH M E 68
3 HE M U 60
4 AN M U 52
5 CH F H 65
6 HE F E 64
7 CH F H 70
8 AN F E 61
9 HE F E 63
10 CH M C 75

An easy way to enter the data is by columns of the table.

calf = c(1:10) # makes a string of numbers 1 to 10
breed = c("AN","CH","HE","AN","CH","HE","CH","AN",
"HE","CH")
sex = c("M","M","M","M","F","F","F","F","F","M")
CE = c("U","E","U","U","H","E","H","E","E","C")
BWT = c(55,68,60,52,65,64,70,61,63,75)

Then the columns can be put into a data frame, as follows:

beefdat = data.frame(calf,breed,sex,CE,BWT)
beefdat # looks at the data, exactly like the table
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The data frame can be saved and used at other times. The saved file can not be
viewed because it is stored in binary format

setwd(choose.dir())
save(beefdat,file="beef.RData")

# and retrieved later as
load("beef.RData")

18.1 Creating Design Matrices

A desgin matrix is a matrix that relates levels of a factor to the observations. The
observations, in this example, are the birthweights. The factors are breed, sex, and CE.
The breed factor has 3 levels, namely AN, CH, and HE. The sex factor has 2 levels, M
and F, and the CE factors has 4 levels, U, E, H, and C.

A function to make a design matrix is as follows:

desgn <- function(v) {
if(is.numeric(v)) { vn = v }
else
{ vn = as.numeric(factor(v)) }

mrow = length(vn)
mcol = length(levels(vn))
X = matrix(data=c(0),nrow=mrow,ncol=mcol)
for(i in 1:mrow) {
ic = vn[i]
X[i,ic] = 1 }
return(X)
}

# To use, then
B = desgn(breed)
S = desgn(sex)
C = desgn(CE)
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These matrices are

B =

0

BBBBBBBBBBBBBBBBBB@

1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1
0 1 0
1 0 0
0 0 1
0 1 0

1

CCCCCCCCCCCCCCCCCCA

, S =

0

BBBBBBBBBBBBBBBBBB@

1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1
0 1
1 0

1

CCCCCCCCCCCCCCCCCCA

, C =

0

BBBBBBBBBBBBBBBBBB@

1 0 0 0
0 1 0 0
1 0 0 0
1 0 0 0
0 0 1 0
0 1 0 0
0 0 1 0
0 1 0 0
0 1 0 0
0 0 0 1

1

CCCCCCCCCCCCCCCCCCA

.

Each row of a design matrix has one 1 and the remaining elements are zero. The
location of the 1 indicates the level of the factor corresponding to that observation. If
you summed together the elements of each row you will always get a vector of ones, or a
J matrix with just one column.

18.2 The summary Function

The data frame, beefdat, was created earlier. Now enter

summary(beefdat)

This gives information about each column of the data frame. If appropriate it gives
the minimum and maximum value, median, and mean of numeric columns. For non-
numeric columns it gives the levels of that column and number of observations for each,
or the total number of levels. This is useful to check if data have been entered correctly
or if there are codes in that data that were not expected.

The information may not be totally correct. For example, if missing birthweights
were entered as 0, then R does not know that 0 means missing and assumes that 0 was
a valid birthweight. The letters NA, signify a missing value, and these are skipped in the
summary function.

18.3 Means and Variances

The functions to calculate the means and variances are straightforward. Let y be a vector
of the observations on a trait of interest.
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# The mean is
mean(y)
# The variance and standard deviation are
var(y)
sd(y)

18.4 Plotting

The plot function is handy for obtaining a visual appreciation of the data. There are also
the hist(), boxplot(), and qqnorm() functions that plot information. Use the ?hist,
for example, to find out more about a given function. This will usually show you all of
the available options and examples of how the function is used. There are enough options
and additional functions to make about any kind of graphical display that you like.

19 Large Data Sets

Large, in these notes, means a data set with more than 30 observations. This could be
real data that exists in a file on your computer. There are too many observations and
variables to enter it manually into R. The data set can be up to 100,000 records, but R
is not unlimited in space, and some functions may not be e�cient with a large number of
records. If the data set is larger than 100,000 records, then other programming approaches
like FORTRAN or C++ should be considered, and computing should be on servers with
multiprocessors and gigabytes of memory.

For example, setting up a design matrix for a factor with a large data set may require
too much memory. Techniques that do not require an explicit representation of the design
matrix should be used. A chapter on analyses using this approach is given towards the
end of the notes.

To read a file of trotting horse data, as an example, into R, use

zz = file.choose() # allows you to browse for file
# zz is the location or handle for the file
trot = read.table(file = zz, header=FALSE, col.names=
c("race","horse","year","month","track","dist","time"))

When a data frame is saved in R, it is written as a binary file, and the names of the
columns form a header record in the file. Normally, data files do not have a header record,
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thus, header=FALSE was indicated in the read.table() function, and the col.names had
to be provided, otherwise R provides its own generic header names like V1, V2, ....

19.1 Exploring the Data

summary(trot) # as before with the small data sets

dim(trot) # will indicate number of records and
# number of columns in trot data frame
horsef = length(factor(trot$horse)) # number of different horses
# in the data set
yearsf = length(factor(trot$year)) # number of different years

yearsf = factor(trot$year)
levels(yearsf) # list of years represented in data

tapply(trot$times,trot$track,mean) # mean racing times by
# track location
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20 EXERCISES

1. Enter the data from the following table into a data frame.

Trotting horses racing times.
Horse Sex Race Time(sec)

1 M 1 135
2 S 1 130
3 S 1 133
4 M 1 138
5 G 1 132
2 S 2 123
4 M 2 131
5 G 2 125
6 S 2 134

(a) Find the average time by race number and by sex of horse.

(b) Find the mean and variance of race times in the data.

(c) Create design matrices for horse, sex, and race.

(d) Do a histogram of race times.

(e) Save the data frame. Remove the data frame from your R-workspace using
rm(trot). Use ls() to determine that it is gone. Load the data frame back
into the R-workspace.

(f) Create a second data.frame by removing the ”sex” column from the first data
frame.

(g) Change the racing time of horse 6 in the second race to 136.

2. Read in any large data file, (provided by the instructor), and summarize the infor-
mation as much as possible.
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Writing a Linear Model

21 Parts of a Model

A linear model, in the traditional sense, is composed of three parts:

1. The equation.

2. Expectations and Variance-Covariance matrices of random variables.

3. Assumptions, restrictions, and limitations.

21.1 The Equation

The equation of the model contains the observation vector for the trait(s) of interest, the
factors that explain how the observations came to be, and a residual e↵ect that includes
everything not explainable.

A matrix formulation of a general model equation is:

y = Xb + Zu + e

where

y is the vector of observed values of the trait,

b is a vector of factors, collectively known as fixed e↵ects,

u is a vector of factors known as random e↵ects,

e is a vector of residual terms, also random,

X,Z are known matrices, commonly known as design or indicator matrices, that relate
the elements of b and u to their corresponding element in y.

21.1.1 Observation Vector

The observation vector contains elements resulting from measurements, either subjective
or objective, on the experimental units (usually animals) under study. The elements in
the observation vector are random variables that have a multivariate distribution, and if
the form of the distribution is known, then advantage should be taken of that knowledge.
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Usually y is assumed to have a multivariate normal distribution, but that is not always
true.

The elements of y should represent random samples of observations from some defined
population. If the elements are not randomly sampled, then bias in the estimates of b and
u can occur, which would lead to errors in ranking animals or conclusions to hypothesis
tests.

21.1.2 Factors

Discrete or Continuous A continuous factor is one that has an infinite-like range of
possible values. For example, if the observation is the distance a rock can be thrown,
then a continuous factor would be the weight of the rock. If the observation is the
rate of growth, then a continuous factor would be the amount of feed eaten.

Discrete factors usually have classes or levels such as age at calving might have four
levels (e.g. 20 to 24 months, 25 to 28 months, 29 to 32 months, and 33 months or
greater). An analysis of milk yields of cows would depend on the age levels of the
cows.

Fixed Factors In the traditional ”frequentist” approach, fixed and random factors need
to be distinguished.

If the number of levels of a factor is small or limited to a fixed number, then that
factor is usually fixed.

If inferences about a factor are going to be limited to that set of levels, and to no
others, then that factor is usually fixed.

If a new sample of observations were made (a new experiment), and the same levels
of a factor are in both samples, then the factor is usually fixed.

If the levels of a factor were determined as a result of selection among possible
available levels, then that factor should probably be a fixed factor.

Regressions of a continuous factor are usually a fixed factor (but not always).

Random Factors If the number of levels of a factor is large, then that factor can be a
random factor.

If the inferences about a factor are going to be made to an entire population of
conceptual levels, then that factor can be a random factor.

If the levels of a factor are a sample from an infinitely large population, then that
factor is usually random.

If a new sample of observations were made (a new experiment), and the levels were
completely di↵erent between the two samples, then the factors if usually random.
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Examples of fixed and random factors.
Fixed Random
Diets Animals
Breeds Contemporary Groups
Sex Herd-Year-Seasons
Age levels Permanent Environment
Cages, Tanks Maternal E↵ects
Seasons Litters

21.2 Expectations and VCV Matrices

In general terms, the expectations are

E

0

B@
y
u
e

1

CA =

0

B@
Xb
0
0

1

CA ,

and the variance-covariance matrices are

V

 
u
e

!

=

 
G 0
0 R

!

,

where G and R are general square matrices assumed to be nonsingular and positive
definite. Also,

V ar(y) = ZGZ0 + R = V.

21.3 Assumptions and Limitations

The third part of a model includes items that are not apparent in parts 1 and 2. For
example, information about the manner in which data were sampled or collected. Were
the animals randomly selected or did they have to meet some minimum standards? Did
the data arise from many environments, at random, or were the environments specially
chosen? Examples will follow.

A linear model is not complete unless all three parts of the model are present. Sta-
tistical procedures and strategies for data analysis are determined only after a complete
model is in place.

22 Example 1. Beef Calf Weights

Weights on beef calves taken at 200 days of age are shown in the table below.
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Males Females
198 187
211 194
220 202

185

22.1 Equation of the Model

yij = si + cj + eij,

where yij is one of the 200-day weights, si is an e↵ect due to the sex of the calf (fixed
factor), cj is an e↵ect of the calf (random factor), and eij is a residual e↵ect or unexplained
variation (random factor).

22.2 Expectations and Variances

E(cj) = 0

E(eij) = 0

V ar(cj) = �2
c

V ar(eij) = �2
ei

Additionally, Cov(cj, cj0) = 0, which says that all of the calves are independent of each
other, i.e. unrelated. Note that �2

ei implies that the residual variance is di↵erent for each
sex of calf, because of the subscript i. Also, Cov(eij, eij0) = 0 and Cov(eij, ei0j0) = 0 says
that all residual e↵ects are independent of each other within and between sexes.

22.3 Assumptions and Limitations

1. All calves are assumed to be of the same breed.

2. All calves were reared in the same environment and time period.

3. All calves were from dams of the same age (e.g. 3 yr olds).

4. Maternal e↵ects are ignored. Pedigree information is missing and maternal e↵ects
can not be estimated.

5. Calf e↵ects contain all genetic e↵ects, direct and maternal.

6. All weights were accurately recorded (i.e. not guessed) at age 200 days.
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22.4 Matrix Representation

Ordering the observations by males, then females, the matrix representation of the model
would be

y =

0

BBBBBBBBBBB@

198
211
220
187
194
202
185

1

CCCCCCCCCCCA

, X =

0

BBBBBBBBBBB@

1 0
1 0
1 0
0 1
0 1
0 1
0 1

1

CCCCCCCCCCCA

,

and Z = I of order 7. Also,

G = I�2
c = diag{�2

c}
R = diag{�2

e1 �2
e1 �2

e1 �2
e2 �2

e2 �2
e2 �2

e2}

23 Example 2. Temperament Scores of Dairy Cows

Below are progeny data of three sires on temperament scores (on a scale of 1(easy to
handle) to 40(very cantankerous)) taken at milking time.

CG Age Sire Score
1 1 1 17
1 2 2 29
1 1 2 34
1 2 3 16
2 2 3 20
2 1 3 24
2 2 1 13
2 1 1 18
2 2 2 25
2 1 2 31

23.1 Equation of the Model

yijkl = ci + aj + sk + eijkl,

where yijkl is a temperament score, ci is a contemporary group e↵ect (CG) which identifies
animals that are typically reared and treated alike together; aj is an age group e↵ect, in
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this case just two age groups; sk is a sire e↵ect; and eijkl is a residual e↵ect. Contemporary
groups and age groups are often taken to be fixed factors, and sires are generally random
factors. Age group 1 was for daughters between 18 and 24 mo of age, and age group 2
was for daughters between 25 and 32 mo of age.

23.2 Expectations and Variances

E(yijkl) = ci + aj

E(sk) = 0

E(eijkl) = 0

V ar(sk) = �2
s

Cov(sk, sk0) = 0

V ar(eijkl) = �2
ei

Thus, the residual variance di↵ers between contemporary groups. The sire variance rep-
resents one quarter of the additive genetic variance because all progeny are assumed to
be half-sibs (i.e. from di↵erent dams). The sires are assumed to be unrelated.

23.3 Assumptions and Limitations

1. Daughters were approximately in the same stage of lactation when temperament
scores were taken.

2. The same person assigned temperament scores for all daughters.

3. The age groupings were appropriate.

4. Sires were unrelated to each other.

5. Sires were mated randomly to dams (with respect to milking temperament or any
correlated traits).

6. Only one o↵spring per dam.

7. Only one score per daughter.

8. No preferential treatment towards particular daughters.
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24 Example 3. Feed Intake in Pigs

24.1 Equation of the Model

yijkmn = (HY M)i + Sj + Lk + akm + pkm + eijkmn,

where yijkmn is a feed intake measurement at a specified moment in time, n, on the mth

pig from litter k, whose sow was in age group j, within the ith herd-year-month of birth
subclass; HY M is a herd-year-month of birth or contemporary group e↵ect; Sj is an age
of sow e↵ect identified by parity number of the sow; Lk is a litter e↵ect which identifies
a group of pigs with the same genetic and environmental background; akm is an additive
genetic animal e↵ect; pkm is an animal permanent environmental e↵ect common to all
measurements on an animal; and eijkmn is a residual e↵ect specific to each measurement.

24.2 Expectations and Variances

E(Lk) = 0

V ar(Lk) = �2
L

E(akm) = 0

V ar(a) = A�2
a

E(pkm) = 0

V ar(p) = I�2
p

E(eijkmn) = 0

V ar(e) = R = I�2
e

G =

0

B@
I�2

L 0 0
0 A�2

a 0
0 0 I�2

p

1

CA .

All pigs were purebred Landrace. Two males and two females were taken randomly from
each litter for feed intake measurements.

24.3 Assumptions and Limitations

1. There are no sex di↵erences in feed intake.

2. There are no maternal e↵ects on feed intake.

3. All measurements were taken at approximately the same age of the pigs.
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4. All measurements were taken within a controlled environment at one location.

5. Feed and handling of pigs was uniform for all pigs within a herd-year-month subclass.

6. Litters were related through the use of boars from artificial insemination.

7. Feed intake was the average of 3 daily intakes during the week, and weekly averages
were available for 5 consecutive weeks.

8. Growth was assumed to be linear during the test period.

25 Comments on Models

1. Read the literature first to find out what should be in the model. Know what has
already been researched.

2. Explain your model to other people in a workshop. Get ideas from other people.

3. Talk to industry people to know how data are collected.

4. Test your models. Do not be afraid to change the model as evidence accumulates.

5. Not everyone will agree to the same model.

6. Make sure you can justify all three parts.

7. Consider non linear or other types of models if appropriate.

26 EXERCISES

Write models for each of the following situations.

1. Dogs compete at tracking at several levels of skill. The lowest level is called a TD
(Tracking Dog) trial. A track layer will set a track that is 600 to 800 meters in
length with at least two right angle turns in it and with two scent articles for the
dog to indicate. The dog must pick up or lie down next to an article. The track
must be at least one hour old before the dog runs it. The tracks are designed by a
judge based on the fields in which the tracks are set and weather conditions. Dogs
of many breed compete. Someone decided to analyze data from two years of trials
in Canada. The results of 50 trialswere collected. Dogs either passed or failed the
test, so the observation is either 1 (if they pass) or 0 (if they fail). Write a model
to analyze these data.
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2. Cows have been challenged with a foreign substance injected into their blood to
induce an immune response. Cows’ blood is sampled at 2 hr, 6 hr, 12 hr, 24 hr,
and 48 hr. Levels of immune response are measured in each sample. Four di↵erent
levels of the foreign substance have been used, and a fifth group of cows were given
a placebo injection. Each group contained 3 cows. All cows were between 60 to 120
days in milk.

3. Beef bulls undergo a 112 day growth test at stations located in 3 places in Ontario.
The traits measured are the amount of growth on test and amount of feed eaten
during the test. Data are from several years, and bulls are known to be related to
each other across years. Several breeds and crossbreds are involved in the tests. Age
at start of the test is not the same for each bull, but between 150 to 250 days.

4. Weights of individually identified rainbow trout were collected over five years at
two years of age. Fish are reared in tanks in a research facility with the capability
of controlling water temperature and hours of daylight. Tanks di↵er in size and
number of fish. Pedigree information is available on all fish. Sex and maturity are
known. When a trout matures they stop growing.

5. Rabbit rearing for meat consumption is concerned with raising the most rabbits per
litter. Average litter size at birth may be 9, but the average number at weaning is
only 7. Litter size at weaning is the economically important trait measured on each
doe.

6. Describe your own research project and write models for your data or experiment.
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Estimation

27 Description of Problem

Below are data on gross margins (GM) of dairy cows. For each cow there are also observa-
tions on protein yield, type score, non-return rate, milking speed, and somatic cell score.
The problem is to regress the observed traits onto gross margins to derive a prediction
equation. Given protein yield, type score, non-return rate, milking speed, and somatic
cell score, predict the gross margins of the cow.

Gross Margins (GM) of dairy cows.
Cow Prot Type Non-return Milking Somatic Gross

kg score rate speed Cell score Margins($)
1 246 75 66 3 3.5 -284
2 226 80 63 4 3.3 -402
3 302 82 60 2 3.1 -207
4 347 77 58 3 4.3 267
5 267 71 66 5 3.7 -201
6 315 86 71 4 3.5 283
7 241 90 68 3 3.6 -45
8 290 83 70 2 3.9 246
9 271 78 67 1 4.1 70

10 386 80 64 3 3.4 280

28 Theory Background

28.1 General Model

A general fixed e↵ects model is

y = Xb + e

with E(y) = Xb, and V ar(y) = V = V (e). V is assumed to be positive definite, i.e. all
eigenvalues are positive.

28.2 Function to be Estimated

Let a function of b be K0b, for some matrix K0.
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28.3 Estimator

The estimator is a linear function of the observation vector, L0y, where L0 is to be deter-
mined.

28.4 Error of Estimation

The error of estimation is given by L0y �K0b, and the variance-covariance matrix of the
error vector is

V ar(L0y �K0b) = V ar(L0y) = L0VL.

28.5 Properties of the Estimator

The following criteria are used to derive L0.

1. L0y should have the same expectation as K0b.

E(L0y) = L0E(y) = L0Xb,

and therefore, L0y is an unbiased estimator of K0b if L0X = K0.

2. The variance-covariance matrix of the error vector, L0VL, should have diagonal
elements that are as small as possible. Minimization of the diagonal elements of
L0VL results in an estimator that is called best.

28.6 Function to be Minimized

F = L0VL + (L0X�K0)�

where � is a LaGrange Multiplier that imposes the restriction L0X = K0.

The function, F, is di↵erentiated with respect to the unknowns, L and �, to give

@F

@L
= 2VL + X�,

and
@F

@�
= X0L�K.
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28.7 Solving for L0

The derivatives are equated to null matrices and rewritten as
 

V X
X0 0

! 
L
✓

!

=

 
0
K

!

where ✓ = .5�. Note that VL + X✓ = 0 from the first equation. Further,

L = �V�1X✓

Substitution into the second row gives

X0L = �X0V�1X✓ = K,

so that
✓ = � (X0V�1X)�K.

Putting ✓ into the equation for L, then

L = V�1X(X0V�1X)�K.

The estimator of K0b is then

L0y = K0(X0V�1X)�X0V�1y = K0b̂

where
b̂ = (X0V�1X)�X0V�1y.

BLUE stands for Best Linear Unbiased Estimator. K0b̂ is BLUE of K0b.

GLS stands for Generalized Least Squares, which are

(X0V�1X)b̂ = X0V�1y

and b̂ is the GLS solution.

Weighted LS is equivalent to GLS except that V is assumed to be a diagonal matrix
whose diagonal elements could be di↵erent from each other.

Ordinary LS is equivalent to GLS except that V is assumed to be an identity matrix
times a scalar. That is, all of the diagonals of V are the same value.
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29 BLUE for Example Data

The model is
y = Xb + e,

with
V ar(y) = V = I�2

e ,

X =

0

BBBBBBBBBBBBBBBBBB@

1 246 75 66 3 3.5
1 226 80 63 4 3.3
1 302 82 60 2 3.1
1 347 77 58 3 4.3
1 267 71 66 5 3.7
1 315 86 71 4 3.5
1 241 90 68 3 3.6
1 290 83 70 2 3.9
1 271 78 67 1 4.1
1 386 80 64 3 3.4

1

CCCCCCCCCCCCCCCCCCA

, y =

0

BBBBBBBBBBBBBBBBBB@

�284
�402
�207

267
�201

283
�45
246
70

280

1

CCCCCCCCCCCCCCCCCCA

.

Ordinary LS equations are su�cient for this problem.

X0X =

0

BBBBBBBB@

10 2891 802 653 30 36.40
2891 858337 231838 188256 8614 10547.60
802 231838 64588 52444 2393 2915.00
653 188256 52444 42795 1961 2377.10
30 8614 2393 1961 102 108.20

36.4 10547.60 2915 2377.10 108.2 133.72

1

CCCCCCCCA

,

X0y =

0

BBBBBBBB@

7
92442
4420
2593
�679

469

1

CCCCCCCCA

,

y0y = 622, 729.

The solutions are given by

b̂ = (X0X)�1 X0y,
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b̂ =

0

BBBBBBBB@

�4909.611560
4.158675

14.335441
20.833125
1.493961

327.871209

1

CCCCCCCCA

.

If the solve() function in R is used, then the b̂ above is obtained. If the solution
is obtained by taking the inverse of the coe�cient matrix, X0X, then a di↵erent solution
vector is found. This solution vector is invalid due to rounding errors in the calculation
of the inverse. To avoid rounding errors, subtract a number close to the mean of each
x�variable. For example, subtract 289 from all protein values, 80 from all type values,
65 from NRR, 3 from milking speed values, and 3.6 from somatic cell scores. Then

X =

0

BBBBBBBBBBBBBBBBBB@

1 �43 �5 1 0 �0.1
1 �63 0 �2 1 �0.3
1 13 2 �5 �1 �0.5
1 58 �3 �7 0 0.7
1 �22 �9 1 2 0.1
1 26 6 6 1 �0.1
1 �48 10 3 0 0.0
1 1 3 5 �1 0.3
1 �18 �2 2 �2 0.5
1 97 0 �1 0 �0.2

1

CCCCCCCCCCCCCCCCCCA

,

and

X0X =

0

BBBBBBBB@

10 1 2 3 0 0.40
1 22549 �20 �526 �59 24.40
2 �20 268 74 �13 �4.20
3 �526 74 155 2 0.30
0 �59 �13 2 12 �1.00

0.4 24.40 �4.20 0.30 �1.00 1.24

1

CCCCCCCCA

,

X0y =

0

BBBBBBBB@

7
90419
3860
2138
�700

443

1

CCCCCCCCA

,

Notice that the elements in the coe�cient matrix are much smaller, which leads to
less rounding error. The solutions are the same except for the intercept, which is now
�21.947742, which is related to the first solution in that

�4909.611560 = �21.947742� b̂1(289)� b̂2(80)� b̂3(65)� b̂4(3)� b̂5(3.6).
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30 Analysis of Variance

30.1 Basic Table Format

All analysis of variance tables have a basic format.

Source Degrees of Sum of Formula
Freedom Squares

Total N SST y0V�1y
Mean 1 SSM y0V�11(10V�11)�110V�1y
Model r(X) SSR b̂0X0V�1y = y0V�1X(X0V�1X)�X0V�1y
Residual N-r(X) SSE SST - SSR

For the example problem the table is as follows.

Analysis of Variance Table.
Source df SS
Total 10 622,729.00
Mean 1 4.90
Model 6 620,209.10
Residual 4 2519.90

Alternative tables can be found from di↵erent software packages. A common one is
shown below, with corrections for the mean.

Alternative Analysis of Variance Table.
Source df SS
Total-Mean 9 622,724.10
Model-Mean 5 620,204.20
Residual 4 2519.90

30.2 Requirements for Valid Tests of Hypothesis

The distribution of y should be multivariate normal. An F-statistic assumes that the
numerator sum of squares has a central Chi-square distribution, and the denominator sum
of squares has a central Chi-square distribution, and the numerator and denominator are
independent.

A sum of squares, say y0Qy, has a Chi-square distribution if QV is idempotent.
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30.2.1 Distribution of SSR

SSR = y0Q
R

y

Q
R

= V�1X(X0V�1X)�X0V�1.

SSR has a chi-square distribution if Q
R

V is idempotent.

Proof:

Q
R

VQ
R

V = [V�1X(X0V�1X)�X0][V�1X(X0V�1X)�X0]

= [V�1X(X0V�1X)�][X0V�1X(X0V�1X)�X0]

= [V�1X(X0V�1X)�][X0]

= Q
R

V.

30.2.2 Distribution of SSE

SSE = y0Q
E

y,

Q
E

= V�1 �Q
R

.

SSE has a chi-square distribution if Q
E

V is idempotent.

Proof:

Q
E

VQ
E

V = (V�1 �Q
R

)V(V�1 �Q
R

)V

= (I�Q
R

V)(I�Q
R

V)

= I�Q
R

V �Q
R

V + Q
R

VQ
R

V

= I� 2Q
R

V + Q
R

V

= I�Q
R

V

= Q
E

V

30.2.3 Independence of SSR and SSE

SSR and SSE are independent chi-square variables if Q
R

VQ
E

= 0.
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Proof:

Q
R

VQ
E

= Q
R

V(V�1 �Q
R

)

= Q
R

�Q
R

VQ
R

= Q
R

�Q
R

VQ
R

VV�1

= Q
R

�Q
R

VV�1

= Q
R

�Q
R

= 0

30.2.4 Noncentrality parameters for SSR and SSE

The denominator of an F-statistic must be a central chi-square variable, while the numer-
ator of the F-statistic will have a central chi-square distribution only if the null hypothesis
is true. The noncentrality parameter of SSR, if the null hypothesis is false, is

�R = .5b0X0Q
R

Xb.

The noncentrality parameter of SSE is always zero.

Proof:

Q
E

X = (V�1 �Q
R

)X

= V�1X�V�1X(X0V�1X)�X0V�1X

= V�1X�V�1X

= 0

30.3 Testing the Model

To test the adequacy of the model,

FM =
SSR/r(X)

SSE/(N � r(X))
.

SSR could have a noncentral chi-square distribution. The noncentrality parameter is
non-null except when b = 0. If b = 0, then the model is non-significant.

A significant FM is one that di↵ers from the table F-values, and indicates that b is
not a null vector and that the model does explain some of the major sources of variation.
The model should usually be significant because b includes the mean of the observations
which is usually di↵erent from zero.
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The test of the model for the example data is

FM =
620, 209.1/6

2519.9/4
= 164.083,

which is highly significant.

30.4 R2 Values

The multiple correlation coe�cient, R2, is another measure of the adequacy of a model
to fit the data.

R2 =
SSR� SSM

SST � SSM
.

The value goes from 0 to 1, and the higher the R2, the better is the fit of the model
to the data.

If the number of observations is small, then there is an adjustment for this situation.
Let N be the number of observations and r be the number of regression coe�cients
(including intercept), then the adjusted R2 value is

R2⇤ = 1� (N � 1)(1�R2)

(N � r)
.

For low R2, the adjusted value could be negative, which means it is actually 0, i.e. no fit
at all.

31 General Linear Hypothesis Testing

The general linear hypothesis test partitions SSR into sub-hypotheses about functions of
b. An hypothesis test consists of

1. a null hypothesis,

2. an alternative hypothesis,

3. a test statistic, and

4. a probability level or rejection region.

55



The alternative hypothesis is usually unrestricted. For hypothesis tests with viable
alternative hypotheses, the reader is refered to Henderson (1984) or Searle (1971).

The null hypothesis is written as

H0b = c

or as
H0b� c = 0

where

1. H0 must have full row rank, and

2. H0b must be an estimable function.

If these conditions are met, then H0b is testable.

The test statistic is

F =
s/r(H0)

SSE/(N � r(X))

where
s = (H0b̂� c)0(H0CH)�1(H0b̂� c),

and
C = (X0V�1X)�.

The statistic, s, is always independent of SSE and has a central Chi-square distribu-
tion if the null hypothesis is true.

31.1 Alternative Computing Formula for s

The following method for computing s shows that the test is comparing the solutions for
b̂ which were obtained from GLS equations with another set of solutions obtained from
a restricted set of GLS equations that were restricted assuming the null hypothesis was
true. If the sum of squares of di↵erences are significant, then the null hypothesis can be
rejected (or fail to be accepted). The alternative computing form is

s = b̂0X0V�1y � (b̂0
o

X0V�1y + ✓̂0
o

c)

where
b̂ = CX0V�1y

and  
b̂

o

✓̂
o

!

=

 
X0V�1X H

H0 0

!�  
X0V�1y

c

!

.
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The equivalence of the alternative formula to that in the previous section is as follows.
From the first row of the above equation,

X0V�1Xb̂
o

+ H0✓̂
o

= X0V�1y

which can be re-arranged and solved for b̂
o

as

b̂
o

= C(X0V�1y �H✓̂
o

)

= CX0V�1y �CH✓̂
o

= b̂�CH✓̂
o

and consequently from the second row of the restricted equations,

H0b̂
o

= c

= H0b̂�H0CH✓̂
o

Solving for ✓̂
o

gives
✓̂
o

= (H0CH)�1(H0b̂� c).

Now substitute this result into that for b̂
o

to obtain

b̂
o

= b̂�CH(H0CH)�1(H0b̂� c).

Taking the alternative form of s and putting in the new solutions for b̂
o

and ✓̂
o

the original
linear hypothesis formula is obtained, i.e.

s = SSR� (b̂0
o

X0V�1y + ✓̂0
o

c)

= SSR� [b̂0 � (H0b̂� c)0(H0CH)�1H0C]X0V�1y

+(H0b̂� c)0(H0CH)�1c

= SSR� SSR + (H0b̂� c)0(H0CH)�1(H0b̂� c)

= (H0b̂� c)0(H0CH)�1(H0b̂� c)

31.2 Hypotheses having rank of X

Suppose there are two null hypotheses such that

H0
1

b = 0 with r(H0
1

) = r(X),

H0
2

b = 0 with r(H0
2

) = r(X),

but
H0

1

6= H0
2

,

then s1 is equal to s2 and both of these are equal to SSR. To simplify the proof, but
not necessary to the proof, let X have full column rank. Both null hypotheses represent
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estimable functions and therefore, each H0
i

may be written as T0X for some T0, and T0X
has order and rank equal to r(X). Consequently, T0X can be inverted. Then

si = b̂0H
i

(H0
i

CH
i

)�1H0
i

b̂

= b̂0X0T(T0XCX0T)�1T0Xb̂

= b̂0(X0T)[(X0T)�1C�(T0X)�1](T0X)b̂

= b̂0C�b̂

= y0V�1XC(C�)CX0V�1y

= y0V�1XCX0V�1y

= SSR

31.3 Orthogonal Hypotheses

Let H0b = 0 be a null hypothesis such that r(H0) = r(X) = r, and therefore,

s = (H0b̂)0(H0CH)�1H0b̂ = SSR.

Now partition H0 into r rows as

H0 =

0

BBBB@

h0
1

h0
2

...
h0

r

1

CCCCA

where each h0
i

has rank of one, then the rows of H0 are orthogonal if

h0
i

Ch
j

= 0 for all i 6= j.

If the rows are orthogonal to each other then

H0CH =

0

BBBB@

h0
1

Ch
1

0 . . . 0
0 h0

2

Ch
2

. . . 0
...

...
. . .

...
0 0 . . . h0

r

Ch
r

1

CCCCA

which means that

s = SSR =
rX

i=1

(h0
i

b̂)2/(h0
i

Ch
i

).

When data are unbalanced, orthogonal contrasts are di�cult to obtain and depend on
the number of observations in each subclass. Orthogonal contrasts are not essential for
hypothesis testing. The subpartitions of SSR do not necessarily have to sum to SSR.
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31.4 Power of the Test

Every hypothesis test results in one of four possible outcomes depending on the true state
of nature and the outcome of the test, as shown below:

True State Test Result
of Nature Reject Accept
Null hypothesis true Type I error No error
Null hypothesis false No error Type II error

Type I errors occur when the null hypothesis is rejected even though it is true, and Type
II errors occur when the null hypothesis is not rejected when it is false. Depending on
the risks associated with each type of error, then either Type I or Type II errors can
be minimized. For example, if the hypothesis is that an animal does not have a disease
and the animal does not have the disease, then rejection of the hypothesis (Type I error)
results in the animal being treated for the disease. This could be very costly and might
involve surgery, or the treatment could be minimal in cost and without harmful e↵ects
on the animal. On the other hand, if the animal really does have the disease and the
hypothesis is not rejected (Type II error), then the animal would not be treated. The
cost of no treatment might be death of the animal.

The Power of the Test is 1 minus the probability of a Type II error. If a Type II
error results in death loss or heavy financial loss, then the researcher should use a very
high Power of the Test. The Power of the Test is important in clinical studies, but not as
critical in animal breeding research on field data.

32 Reduction Notation

Another computing technique for hypothesis testing is the use of reduction notation. The
equivalence to the general linear hypothesis method will be demonstrated. Let the general
fixed e↵ects model be re-written as

y =
pX

i=1

X
i

b
i

+ e

where p is the number of fixed factors in the model. Then the reduction due to fitting
the full model is denoted as

R(b
1

,b
2

, . . . ,b
p

) = b̂0X0V�1y = SSR.

To test the importance of factor b
1

, for example, the null hypothesis would be

H0
1

b = 0 or b
1

= 0.
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To obtain the appropriate reduction to test this hypothesis, construct a set of equations
with X

1

b
1

omitted from the model. Let

W =
⇣

X
2

X
3

. . . X
p

⌘
,

then the reduction due to fitting the submodel with factor 1 omitted is

R(b
2

,b
3

, . . .b
p

) = y0V�1W(W0V�1W)�W0V�1y

and the test statistic is computed as

s = R(b
1

,b
2

,b
3

, . . .b
p

)�R(b
2

,b
3

, . . .b
p

)

= R(b
1

| b
2

,b
3

, . . .b
p

)

with r(X) � r(W) degrees of freedom. The above s is equivalent to the general linear
hypothesis form because

R(b
2

,b
3

, . . .b
p

) = b̂0
o

X0V�1y

where b̂
o

is a solution to
 

X0V�1X H
1

H0
1

0

! 
b̂

o

✓̂
o

!

=

 
X0V�1y

0

!

.

The addition of H0
1

as a LaGrange Multiplier to X0V�1X accomplishes the same pur-
pose as omitting the first factor from the model and solving the reduced equations
W0V�1Wb̂

s

= W0V�1y, where b̂
s

is b̂ excluding b̂
1

.

As long as the reductions due to fitting submodels are subtracted from SSR, the same
s values will be calculated. The reduction notation method, however, assumes the null
hypothesis that H0b = 0 while the general linear hypothesis procedure allows the more
general null hypothesis, namely, H0b = c.
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33 Example in R

# X is a matrix with N rows and r columns
# y is a vector of the N observations
# Ordinary LS equations are

XX = t(X) %*% X
Xy = t(X) %*% y

bhat = solve(XX,Xy)
# OR
C = ginv(XX)
bhat = C %*% Xy
# The two vectors should be identical.
# If they are not equal, then rounding errors are
# occurring

# AOV Table
SST = t(y) %*% y
SSR = t(bhat) %*% Xy
SSE = SST - SSR
SSM = sum(y)*mean(y)
sors = c("Total","Mean","Model","Residual")
df = c(N, 1, r, (N-r) )
SS = c(SST, SSM, SSR, SSE)
FF = c(0,0,((SSR/r)/(SSE/(N-r))) , 0)
AOV = cbind(sors,df,SS,FF)
AOV

# R-squared
R2 = (SSR - SSM)/(SST - SSM)
R2S = 1 - ( (N-1)*(1-R2)/(N-r) )
R2
R2S
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# General Linear Hypothesis (assuming r=4, e.g.)
H0 = matrix(data=c(1, 0, 0, 0, 0, 1, 0, 0),byrow=TRUE,ncol=4)
c0 = matrix(data=c(250, 13),ncol=1)
w = (H0 %*% bhat) -c0
HCH = ginv(H0 %*% C %*% t(H0))
s = t(w) %*% HCH %*% w
df = 2 # two rows of H0
F = (s/df)/(SSE/(N-r)) # with df and (N-r) degrees of freedom
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34 EXERCISES

1. Prove that s in the general linear hypothesis is Chi-square and is independent of
SSE. This is complicated and di�cult.

2. Using the data from the example problem, test the hypothesis that

b1 = 5.

3. Using the data from the example problem, test the following hypothesis:

b2 = 0

b4 � b5 = 0

4. Derive a regression equation to predict the weight of rainbow trout at 9 months of
age from their fork lengths and body circumference measures.

Data on Rainbow Trout
Fish Fork L Circum. Weight

cm cm g
1 14.5 6.77 24.7
2 12.6 6.15 24.3
3 16.0 7.51 25.2
4 14.2 8.24 23.4
5 14.7 8.06 24.3
6 14.9 7.88 26.1
7 15.6 7.87 24.4
8 16.0 9.66 24.6
9 13.6 6.14 23.5
10 14.8 7.39 23.0
11 15.0 8.22 23.6
12 11.5 6.13 22.1
13 17.5 8.62 26.6

(a) Construct the AOV table.

(b) Test each regression for significance from zero.

(c) Subtract 14.5 from fork lengths, and 7.5 from circumferences, and re-analyze
the data.
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5. In a spline regression analysis inclusion of one of the x-variables depends on the
value of another x-variable. In this problem, x2 is included only if x1 is greater than
7, then x2 = X1 � 7, otherwise x2 = 0. The number 7 is called a knot, a point in
the curve where the shape changes direction. Below are the data and model.

Spline Regression Data.
x1 x2

1 x2 x2
2 yi

8 64 1 1 147
5 25 0 0 88

13 169 6 36 202
6 36 0 0 135
9 81 2 4 151

11 121 4 16 198
18 324 11 121 94
12 144 5 25 173
7 49 0 0 169
2 4 0 0 122

yi = a + b1x1 + b2x
2
1 + b3x2 + b4x

2
2 + ei,

with V ar(y) = I�2
e .

(a) Give the AOV table and R2 value.

(b) Test the hypothesis that
a = 250.

(c) Test the hypothesis that

b1 = �5

b2 = 0

b2 � b4 = 3

64



6. Below are data on protein yields of a cow during the course of 365 days lactation.

Daily Protein Yields, kg for Agathe.
Days in Milk(d) Yield(kg)

6 1.20
14 1.25
25 1.32
38 1.41
52 1.49
73 1.35

117 1.13
150 0.95
179 0.88
214 0.74
246 0.65
271 0.50
305 0.40
338 0.25
360 0.20

yi = b0 + b1s + b2s
2 + b3t + b4t

2 + ei,

and assume for simplicity that V ar(y) = I�2
e . Also,

s = d/365

t = log(400/d)

(a) Analyze the data and give the AOV table.

(b) Estimate the protein on day 200 and the standard error of that estimate.

(c) Estimate the total protein yield from day 5 to day 305, and a standard error
of that estimate.

(d) Could this prediction equation be used on another cow? Could it be used on
a clone of Agathe?
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Estimability

35 Introduction

Consider models where the rank of X is less than the number of columns in X. An
example is a two-way cross classified model without interaction where

yijk = µ + Ai + Bj + eijk,

and

yijk is an observation on the postweaning gain (165 days) of male beef calves,

µ is an overall mean,

Ai is an e↵ect due to the age of the dam of the calf,

Bj is an e↵ect due to the breed of the calf, and

eijk is a residual e↵ect specific to each observation.

There are four age of dam groups, namely 2-yr-olds, 3-yr-olds, 4-yr-olds, and 5-yr-olds
or greater, and three breeds, i.e. Angus(AN), Hereford(HE), and Simmental(SM). The
following assumptions are made,

1. There are no breed by age of dam interactions.

2. Diet and management e↵ects were the same for all calves.

3. All calves were raised in the same environment in the same months and year and at
the same age of development.

4. Calves resulted from random mating of sires to dams, and there is only one progeny
per sire and per dam.

Also,

E(yijk) = µ + Ai + Bj and

V ar(yijk) = �2
e ,

that is, the same residual variance was assumed for all calves regardless of breed group
or age of dam group. The data are given in the table below.
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Growth Data on Beef Calves
Calf Age of Dam Breed of PWG

Tattoo (yr) calf (kg)
16K 2 AN 346
18K 3 AN 355
22K 4 AN 363
101L 5+ HE 388
121L 5+ HE 384
98L 2 HE 366
115L 3 HE 371
117L 3 HE 375
52J 4 SM 412
49J 5+ SM 429
63J 2 SM 396
70J 2 SM 404

Determine the e↵ects of breed of calf and age of dam on postweaning gains of male
calves at a fixed age. The model in matrix notation is y = Xb + e, with

E(y) = Xb and V ar(y) = I�2
e ,

where

Xb =

0

BBBBBBBBBBBBBBBBBBBBBBB@

1 1 0 0 0 1 0 0
1 0 1 0 0 1 0 0
1 0 0 1 0 1 0 0
1 0 0 0 1 0 1 0
1 0 0 0 1 0 1 0
1 1 0 0 0 0 1 0
1 0 1 0 0 0 1 0
1 0 1 0 0 0 1 0
1 0 0 1 0 0 0 1
1 0 0 0 1 0 0 1
1 1 0 0 0 0 0 1
1 1 0 0 0 0 0 1

1

CCCCCCCCCCCCCCCCCCCCCCCA

0

BBBBBBBBBBBBB@

µ
A2

A3

A4

A5+

BAN

BHE

BSM

1

CCCCCCCCCCCCCA

.

36 The Rank of X

Procedures for determining the rank of a matrix using elementary operators were given in
previous notes. In practice, the matrix X is too large to apply elementary operators. Also,
in the use of classification models, X has mostly just zeros and ones in it. For one factor
in a model, say diets, in a row of X there will be a single one, indicating the particular
diet, and the remaining elements in the row will be zero. If there were five diets, then
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there would be five columns in X, and if those five columns were added together, the
result would be one column with all values equal to one.

If there were two factors, diets and breeds, in X, then the columns for the diet e↵ects
would always sum to give one, and the columns for the breed e↵ects would also sum to
give one. Thus, there would be a dependency between diet e↵ects and breed e↵ects. The
dependencies need to be identified and removed. For example, if the column for diet 1 was
removed from X, then there would not be a dependency between breed e↵ects and diet
e↵ects any longer. Any diet or any breed column could have been removed to eliminate
the dependency.

In the example problem of the previous section, the model equation is

yijk = µ + Ai + Bj + eijk,

where age of dam has 4 levels, and breed of calf has 3 levels. The total number of columns
in X is 8. The columns of age of dam e↵ects will have a dependency with the columns of
breed of calf, and therefore, one of those columns has to be removed. Suppose the column
for 2-yr-old age of dam is removed. The columns for breed of calf still sum to a column of
ones, which is the same as the column for µ. Thus, another column (one of the breed of
calf columns OR the µ column) needs to be removed. There are no further dependencies
after removing the µ column. There were two restrictions imposed, so the rank of X is
therefore, 6.

Given the model, and number of levels of each factor, it is possible to determine,
before analyzing the data, the rank of X without using elementary operators. This takes
practice, and problems are given in the Exercise section.

Another example is as follows. Let

yijk = µ + Ai + Bij + eijk,

where factor A has 5 levels and factor B has 3 levels for every level of factor A. The
total number of columns in X is 1 + 5 + 5 ⇤ (3) or 21. Factors A and B both have i as a
subscript, and therefore, there is a dependency for every i, or 5 dependencies. All columns
for factor A need to be removed. Also, summing all 15 columns of factor B gives a column
of ones, equivalent to the column for µ. Remove the column for µ and all dependencies
are removed. The rank of X is 15.

37 Estimable Functions

If the rank of X is less than the number of columns in X, then

• the inverse of X0X does not exist because its determinant is zero.
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• a generalized inverse must be used, let

C = (X0X)�

such that
b̃ = CX0y.

• there are an infinite number of generalized inverses of X0X, and therefore, an infinite
number of possible solution vectors, b̃.

Recall that,

X0XCX0X = X0X

XCX0X = X

and XCX0 is invariant to C.

37.1 Solution vector

If
b̃ = CX0y,

then
E(b̃) = CX0Xb

is the first set of estimable functions.

37.2 Other Estimable Functions

Let K0b represent a set of functions of the elements of b, to determine if that function is
estimable in terms of the working linear model, then show that

K0CX0X = K0.

If this equality does not hold, then the function K0b is not estimable.

Estimable functions are unique regardless of the solution vector or generalized inverse
of X0X that is derived.
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38 Generalized Least Squares Equations

38.1 Equations

Because V ar(y) = I�2
e , the GLS equations reduce to ordinary LS equations, i.e. X0Xb̃ =

X0y. For the example data,

X0X =

0

BBBBBBBBBBBBB@

12 4 3 2 3 3 5 4
4 4 0 0 0 1 1 2
3 0 3 0 0 1 2 0
2 0 0 2 0 1 0 1
3 0 0 0 3 0 2 1
3 1 1 1 0 3 0 0
5 1 2 0 2 0 5 0
4 2 0 1 1 0 0 4

1

CCCCCCCCCCCCCA

,X0y =

0

BBBBBBBBBBBBB@

4589
1512
1101
775

1201
1064
1884
1641

1

CCCCCCCCCCCCCA

,

and y0y = 1, 761, 549.

38.2 Generalized Inverse and Solution Vector

The rank of X in this example is 6. The dependencies are: columns 2, 3, 4, and 5 sum
to give column 1 as do columns 6, 7, and 8. Two constraints on the solutions are needed.
Let µ̂ and Â2 be set equal to zero, then a generalized inverse of (X0X) is C where C is
equal to

0

BBBBBBBBBBBBB@

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 .71366 .22467 .32159 �.31278 �.41410 �.13656
0 0 .22467 .79295 .19383 �.33921 �.16740 �.24670
0 0 .32159 .19383 .66960 �.17181 �.39648 �.21586
0 0 �.31278 �.33921 �.17181 .55066 .19383 .12775
0 0 �.41410 �.16740 �.39648 .19383 .52423 .14097
0 0 �.13656 �.24670 �.21586 .12775 .14097 .36564

1

CCCCCCCCCCCCCA

.

The corresponding solution vector is b̂ = CX0y, or
0

BBBBBBBBBBBBBB@

µ̃

Ã2

Ã3

Ã4

Ã5+

B̃AN

B̃HE

B̃SM

1

CCCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBB@

0.
0.

9.0264
13.5639
24.4934

347.1366
363.3921
400.7357

1

CCCCCCCCCCCCCA

.
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38.3 Expectation of Solution Vector

The expectation of b̂ is
E(b̂) = E(CX0y) = CX0Xb.

For the example data, the expectations are

E

0

BBBBBBBBBBBBBB@

µ̂

Â2

Â3

Â4

Â5+

B̂AN

B̂HE

B̂SM

1

CCCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBB@

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 �1 1 0 0 0 0 0
0 �1 0 1 0 0 0 0
0 �1 0 0 1 0 0 0
1 1 0 0 0 1 0 0
1 1 0 0 0 0 1 0
1 1 0 0 0 0 0 1

1

CCCCCCCCCCCCCA

0

BBBBBBBBBBBBB@

µ
A2

A3

A4

A5+

BAN

BHE

BSM

1

CCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBB@

0
0

A3 � A2

A4 � A2

A5+ � A2

µ + A2 + BAN

µ + A2 + BHE

µ + A2 + BSM

1

CCCCCCCCCCCCCA

.

Hence, Â3 = 9.0264 is not an estimate of A3, but is rather an estimate of the di↵erence
of A3 � A2. Also, B̂AN = 347.1366 is not an estimate of BAN , but of µ + A2 + BAN , an
estimate of the mean of Angus calves from 2-yr-old dams.

By computing the expected value of the solution vector, the functions of the true pa-
rameters that have been estimated by a particular generalized inverse can be determined.
These functions are estimable because the solution vector is a linear function of y, which
is always estimable.

38.4 Other Solution Vectors

Other possible solution vectors are given by the formula,

bo = CX0y + (I�CX0X)z,

where z is any vector of arbitrary constants. For example, let

z0 =
⇣

1 �2 6 0 1 �5 1 3
⌘
,
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then another solution vector is

bo = b̂ +

0

BBBBBBBBBBBBB@

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0

�1 �1 0 0 0 0 0 0
�1 �1 0 0 0 0 0 0
�1 �1 0 0 0 0 0 0

1

CCCCCCCCCCCCCA

0

BBBBBBBBBBBBB@

1
�2

6
0
1

�5
1
3

1

CCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBB@

1
�2

7.0264
11.5639
22.4934

348.1366
364.3921
401.7357

1

CCCCCCCCCCCCCA

.

In order to check that bo is a valid solution vector, multiply bo by X0X which gives

X0Xbo = X0XCX0y + X0X(I�CX0X)z

= X0y + (X0X�X0XCX0X)z

= X0y

Hence, bo regenerates X0y and is therefore, a valid solution vector. Because z is an
arbitrary vector, there are an infinite number of valid solution vectors to these equations.

38.5 Estimable Functions

The solution for A3 from b̃ was 9.0264 which was an estimate of A3�A2. More generally,

k0b̃ =
⇣

0 �1 1 0 0 0 0 0
⌘
b̃ = Ã3 � Ã2.

The solution for A3 from bo was 7.0264, and the expectation is not known. However,

k0bo = Ao
3 � Ao

2 = 7.0264� (�2) = 9.0264,

and the expected value of k0bo is A3 � A2, the same as the expected value of k0b̃.

Suppose the following two functions are of interest.

k0
1

=
⇣

1 1 �1 0 0 1 0 0
⌘
,

and
k0

2

=
⇣

1 0 0 1 0 0 0 1
⌘
.

One way to quickly determine if these functions are not estimable is to multiply each of
them times b̃ and bo and if the results are di↵erent, then that function is not estimable.
For the example data the results are

k01b̃ = 338.1102 and k0
1

bo = 340.1102,

and
k02b̃ = 414.2996 and k0

2

bo = 414.2996.
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Thus, k0
1

b would definitely not be an estimable function because di↵erent results were
obtained with di↵erent solution vectors. The function, k02b gave the same results for these
two solution vectors, and therefore might be an estimable function.

An exact method of determining estimability would be to check if

k0CX0X� k0 = 0 or k0CX0X = k0.

For the two functions in the previous paragraph,

k0
1

CX0X =
⇣

1 2 �1 0 0 1 0 0
⌘
6= k0

1

,

and
k0

2

CX0X = k0
2

.

Hence, k0
2

b is an estimable function.

38.6 Comments

Some basic results on estimability for classification models are

• µ is generally not estimable by itself.

• Di↵erences among levels of main factors are estimable provided that factor has no
interactions with other factors.

• Only estimable functions have any meaning or value in an analysis.

• Only estimable functions can be tested.

39 Sum of Squares Due to Model

The infinite number of possible solution vectors to the GLS equations yield the same sum
of squares due to the model. That is,

SSR = bo

0
X0y

= y0XCX0y + z0(I�X0XC)X0y

= y0XCX0y

because (I � X0XC)X0 = 0, and note that XCX0 = XC0X0 is unique for all possible
generalized inverses of X0X. For the example data,

SSR = b̂0X0y

= 1, 761, 457.9

= bo

0
X0y
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This means that the test of the significance of the model is always unique, i.e. the test
does not depend on the particular solution vector that has been calculated.

40 Least Squares Means

Least squares means are frequently reported in the scientific literature and are provided by
several statistical packages. Least squares means are estimable functions and are therefore
unique. For the example data, the least squares means for age of dam e↵ects would be

Least Squares Means
For Age of Dam

Age of Dam Least Square Mean
2 370.4215
3 379.4479
4 383.9854

5+ 394.9149

The functions that these numbers are estimating are not equal to µ+Ai because µ+Ai is
not an estimable function. Instead, these means are estimating µ + Ai +

1
3(BAN + BHE +

BSM).

Similarly, the least square means for the breed e↵ects are estimating the function

µ +
1

4
(A2 + A3 + A4 + A5+) + Bj.

The values were 358.9075, 375.1630, and 412.5066 for AN, HE, and SM, respectively.

Least square means are not well understood by all researchers because estimability
is not understood.

41 Variance of Estimable Functions

If k0b is an estimable function, then

k0CX0X = k0

or k0 = t0X with
t0 = k0CX0.
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Then

V ar(k0b̃) = k0V ar(b̃)k

= k0V ar(CX0y)k

= k0CX0V ar(y)XC0k

= k0CX0XC0k�2
e

= t0XC0k�2
e

= k0C0k�2
e

= k0Ck�2
e

If k0 =
⇣

1 0 0 1 0 0 0 1
⌘

and k0b̃ = 425.2291, then

V ar(k0b̂) = (.79295 + .36564 + 2(�.24670))�2
e

= .66519�2
e .

Similarly, if

K0 =

 
0 1 0 0 �1 0 0 0
0 0 0 0 0 0 �1 1

!

,

then

V ar(K0b̂) = K0CK�2
e

=

 
.66960 �.18062

�.18062 .60793

!

�2
e

42 Analysis of Variance

AOV for Calf Postweaning Gain Data.
Source Degrees of Sum of Squares Notation

Freedom
Total 12 1,761,549 SST
Mean 1 1,754,910.08 SSM
Model 6 1,761,457.9 SSR
Residual 6 91.1 SSE

An estimate of �2
e is

�̂2
e =

SSE

(N � r(X))
= 15.1833.
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42.1 The Model

A test of the adequacy of the model is

FM =
SSR/r(X)

SSE/(N � r(X))
=

293, 576.32

15.1833
= 19, 335.5.

Therefore, the model is highly significant. Another criterion would be the R2 where

R2 =
SSR� SSM

SST � SSM
= .9863.

Adjusting for the small sample size gives

R2⇤ = .9748.

Thus, the model is very adequate at explaining variation in calf postweaning gains.

42.2 Partitioning SSR

Two tests of interest for the example data would be

1. Age of dam e↵ects, and

2. Breed of calf e↵ects.

42.2.1 Age of Dam E↵ects

The null hypothesis would be H0
1

b = 0 where

H0
1

=

0

B@
0 1 �1 0 0 0 0 0
0 1 0 �1 0 0 0 0
0 1 0 0 �1 0 0 0

1

CA ,

and

H0
1

b =

0

B@
A2 � A3

A2 � A4

A2 � A5+

1

CA .

H0
1

b is an estimable function, and therefore, the test is testable.

The sum of squares is

s1 = (H0
1

b̃)0(H0
1

GH
1

)�1H0
1

b̃
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where

H0
1

b̃ =

0

B@
�9.0264
�13.5639
�24.4934

1

CA ,

H0
1

GH
1

=

0

B@
.71366 .22467 .32159
.22467 .79295 .19383
.32159 .19383 .66960

1

CA ,

(H0
1

GH
1

)�1 =

0

B@
1.86667 �.33333 �.80000
�.33333 1.41667 �.25000
�.80000 �.25000 1.95000

1

CA ,

and s1 = 981.10653 with 3 degrees of freedom. The F -test is

F1 =
s1/r(H0

1

)

15.185022
=

327.0355

15.185022
= 21.5.

Age of dam e↵ects, i.e. di↵erences among age of dam groups, are significantly di↵erent
from zero.

Suppose the null hypothesis for age of dam e↵ects had been written as H0
2

b = 0
where

H0
2

=

0

B@
0 1 �1 0 0 0 0 0
0 0 1 �1 0 0 0 0
0 0 0 1 �1 0 0 0

1

CA ,

and

H0
2

b =

0

B@
A2 � A3

A3 � A4

A4 � A5+

1

CA ,

then it can be shown that s2 = s1, and the same conclusions would be drawn with respect
to the age of dam di↵erences. To prove that s2 = s1, note that

H0
2

= PH0
1

where P is an elementary operator matrix,

P =

0

B@
1 0 0

�1 1 0
0 �1 1

1

CA ,

then

s2 = b̂0H
1

P0(PH0
1

CH
1

P0)�1PH0
1

b̂

= b̂0H
1

P0P0�1(H0
1

CH
1

)�1P�1PH0
1

b̂

= b̂0H
1

(H0
1

CH
1

)�1H0
1

b̂

= s1.

Thus, the di↵erences that are used in the null hypothesis only need to represent one set
of linearly independent di↵erences. All other di↵erences can be generated by use of the
appropriate elementary operator matrices.
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42.2.2 Breed of Calf E↵ects

The hypothesis is

H0
3

=

 
0 0 0 0 0 1 �1 0
0 0 0 0 0 1 0 �1

!

,

H0
3

b̃ =

 
�16.2555
�53.5991

!

,H0
3

CH
3

=

 
.68722 .37004
.37004 .66079

!

,

and s3 = 4742.0565 with 2 degrees of freedom.

42.2.3 Summary

The tests are summarized in the table below.

Partitions of SSR for Calf PWG Data
Source D.F. Sum of Squares
Model 6 1,761,457.9**
Age of Dam 3 981.1065**
Breed of Calf 2 4742.0565**

⇤⇤Significance at .05 level

43 Reduction Notation

Hypothesis testing may also be conducted using reduction notation as in the regression
models. For the example data, the model and submodels can be written as

Full Model y = µ1 + X
1

a + X
2

b + e where a refers
to the vector of four age of dam e↵ects, and b
refers to the vector of three breed of calf e↵ects.

Model 1 y = µ1 + X
2

b + e

Model 2 y = µ1 + X
1

a + e

Model 3 y = µ1 + e

The corresponding reductions for these models were obtained by constructing the
ordinary LS equations for each model, solving, and multiplying the solutions times their
corresponding right hand sides. The results gave
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R(µ, a,b) = SSR = 1,761,457.9 6 df
R(µ,b) = 1,760,476.7935 3 df
R(µ, a) = 1,756,715.8435 4 df
R(µ) = SSM 1,754,910.08 1 df

To test the age of dam di↵erences for significance from zero,

s1 = R(µ, a,b)�R(µ,b)

= R(a | µ,b)

= 981.1065

with 3 degrees of freedom (6-3).

For breed of calf di↵erences,

s3 = R(µ, a,b)�R(µ, a)

= R(b | µ, a)

= 4742.0565

with 2 (6-4) degrees of freedom.

Lastly,

s = R(µ, a,b)�R(µ)

= R(a,b | µ)

= SSR� SSM

= 6, 547.82

provides a test of the model excluding the mean with 5 (6-1) degrees of freedom.

All tests using reduction notation involve SSR in order to be equivalent to tests from
the general linear hypothesis approach. All tests are for di↵erences being not zero.

44 Connectedness

A procedure to determine connectedness was suggested by Weeks and Williams (1964).
If all subclasses of the fixed e↵ects are full, i.e. contain at least one observation, then the
data are completely connected and there are no problems of estimability.

When several subclasses are empty, i.e. do not contain any observations, then some
estimable functions of b may no longer be estimable.

Following Weeks and Williams (1964): An N -tuple is a collection of numbers that
identify a particular subclass. Suppose there are three fixed factors, then a general 3-tuple
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that identifies a subclass is (i, j, k), where i indicates the level number of the first factor,
j indicates the level number of the second factor, and k indicates the level number of the
third factor. Two N -tuples are said to be nearly identical if all of the level indicators are
the same except for one factor. The steps to determine connectedness are

1. Construct a table of all N -tuples that contain one or more observations.

2. Select any N -tuple from the table. The subclass with the largest number of obser-
vations would be a logical choice.

3. Find all N -tuples in the table that are nearly identical to the selected N -tuple, then
any N -tuples that are nearly identical to these, and so on until no more nearly
identical N -tuples can be found.

The resulting subset of N -tuples obtained in this manner form a connected set of sub-
classes. If any other N=tuples remain in the table, then repeat the procedure on the
remaining N -tuples, and continue until all N -tuples have been allocated to a connected
subset.

The following list of 2-tuples is used to illustrate the procedure.

(1,1) (1,2) (1,5) (1,6)
(2,2) (2,4) (2,6)

(3,3) (3,8)
(4,1) (4,4) (4,5) (4,7)

(5,3) (5,8)

Pick one of the points from the table, say (1,1). The 2-tuples that are nearly identical
to (1,1) are

(1,2), (1,5), (1,6), and (4,1).

Now find the 2-tuples that are nearly identical to each of these four subclasses, and
so on. The set of subclasses forms a connected subset consisting of

(1,1), (1,2), (1,5), (1,6), (4,1)
(2,2), (4,5), (2,6), (4,4), (4,7)
and (2,4).

The remaining points are (3,3), (3,8), (5,3), and (5,8) which form a second connected
subset, but this subset is disconnected from the first.

There are a few options for handling disconnected subclasses.
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1. Discard all of the small subsets and analyze only the largest group of connected
subclasses.

2. Analyze each connected subset separately.

3. Collect more data for those subclasses that would improve connectedness between
the disconnected groups. In the previous example, the addition of observations to
subclasses (1,3), (2,3), (1,8), (2,8), and (3,5) would make all subclasses in the table
connected.

The choice depends on the goals of the analysis and the costs of collecting more data
versus analyzing the available data.

The procedure of Weeks and Williams (1964) applies to a completely fixed e↵ects
model without interactions or covariates. Connectedness may also be a problem in some
mixed model situations and in the estimation of variance components. Computer pro-
grams for checking connectedness are not trivial for large data sets. A simple, e�cient
procedure for 2-tuples has been described by Fernando et al. (1983).

45 Classification Model with Interactions

Below are data on pheasants raised in two locations on three diets.

Example Data on Pheasants
Location Diet Males Females

1 1 3, 6, 4 2, 5, 1
2 1, 4, 5 1, 3
3 2, 4 1, 3, 2

2 1 5, 6, 4 2, 2, 4
2 2, 3, 6 3
3 4, 6, 5 2, 3, 3

Assume the model,

yijkm = µ + Li + Dj + Sk + LDij + LSik + DSjk + LDSijk + eijkm

where

µ is the overall mean,

Li is a location e↵ect,
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Dj is a diet e↵ect,

Sk is a sex e↵ect, and

LDij, LSik, DSjk are the two-way interaction e↵ects among the main factors, and

LDSijk is the three-way interaction of the main e↵ects.

All factors are assumed to be fixed e↵ects. The X matrix for this model is of order 32 by
36 with a rank of 12, which is the number of three-way interaction subclasses.

An alternative (equivalent) form of the above model is

yijkm = µijk + eijkm

which has a corresponding X matrix of order 32 by 12 with a rank of 12. Assuming that
V ar(e) = I�2

e , then

X0X = diag
⇣

3 3 3 2 2 3 3 3 3 1 3 3
⌘
,

and
(X0y)0 =

⇣
13 8 10 4 6 6 15 8 11 3 15 8

⌘
,

where subclasses are ordered as in the table.

45.1 Solution Vector

The solutions to the LS equations are the subclass means in this case. For example, the
solution for location 1, diet 2, females was

µ̃122 = 4/2 = 2,

with expectation equal to

E(µ̃122) = µ + L1 + D2 + S2 + LD12 + LS12 + DS22 + LDS122.

The expectation of all subclass means has a similar format to the above example. Notice
that all of the main e↵ects and all of the interaction terms are involved. Consequently,
there is no function of the µ̃ijk that can be formulated that would be totally free of the
interaction e↵ects. For example,

E(µ̃211 � µ̃111) = µ + L2 + D1 + S1 + LD21 + LS21 + DS11

+LDS211 � µ� L1 �D1 � S1 � LD11

�LS11 �DS11 � LDS111

= L2 � L1 + LD21 � LD11 + LS21 � LS11

+LDS211 � LDS111
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The consequence is that tests of hypotheses for the main e↵ects can not be conducted
unless the tests for all interaction e↵ects are not significantly di↵erent from zero.

The least squares mean for location 1 is

(µ̂111 + µ̂112 + µ̂121 + µ̂122 + µ̂131 + µ̂132)/6

= (
13

3
+

8

3
+

10

3
+

4

2
+

6

2
+

6

3
)/6

=
17.33333

6
= 2.88889,

which is an estimate of

µ + L1 + (D1 + D2 + D3)/3 + (S1 + S2)/2

+ (LD11 + LD12 + LD13)/3 + (LS11 + LS12)/2

+ (DS11 + DS12 + DS21 + DS22 + DS31 + DS32)/6

+ (LDS111 + LDS112 + LDS121 + LDS122 + LDS131 + LDS132)/6

45.2 AOV Table

Example Three-Way Classification
With Interaction Model

Source D. F. Sum of Squares
Total 32 435.00000
Mean 1 357.78125
Model 12 391.00000
Residual 20 44.00000

The adequacy of the model is given by

FM =
391/12

44/20
= 14.81,

which is highly significant with

R2 =
391.� 357.78125

435.� 357.78125
= .43.

45.3 Partitioning SSR

Begin by constructing the null hypothesis matrices for the main e↵ects using the simple
µijk model. Below are the hypothesis matrices for locations (L), diets (D), and sexes (S).

H0
L =

⇣
1 1 1 1 1 1 �1 �1 �1 �1 �1 �1

⌘
,
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H0
D =

 
1 1 �1 �1 0 0 1 1 �1 �1 0 0
1 1 0 0 �1 �1 1 1 0 0 �1 �1

!

,

and
H0

S =
⇣

1 �1 1 �1 1 �1 1 �1 1 �1 1 �1
⌘
.

The matrices for testing the interaction e↵ects are obtained from the matrices for the
main e↵ects by computing the product of each row of one matrix times each row of the
second matrix, element by element. The matrix for testing location by diet interaction
would be formed by the product of rows of H0

L times H0
D. Because the matrix for locations

has one row and that for diets has two rows, the resulting matrix will have 2(= 1 ⇥ 2)
rows, as follows:

H0
LD =

 
1 1 �1 �1 0 0 �1 �1 1 1 0 0
1 1 0 0 �1 �1 �1 �1 0 0 1 1

!

.

Similarly, for location by sex and diet by sex interactions,

H0
LS =

⇣
1 �1 1 �1 1 �1 �1 1 �1 1 �1 1

⌘
,

and

H0
DS =

 
1 �1 �1 1 0 0 1 �1 �1 1 0 0
1 �1 0 0 �1 1 1 �1 0 0 �1 1

!

.

The matrix for testing the three-way interaction can be formed in a number of ways,
one of which is to multiply H0

LD times H0
S giving

H0
LDS =

 
1 �1 �1 1 0 0 �1 1 1 �1 0 0
1 �1 0 0 �1 1 �1 1 0 0 �1 1

!

.

Partitions of SSR
Three-way model with interaction example.

Source D.F. Sum of Squares F-values
L,locations 1 4.3556 1.98
D,diets 2 2.4482 0.56
S,sexes 1 17.4222 7.92*
LD 2 1.4380 0.33
LS 1 0.3556 0.16
DS 2 1.1468 0.26
LDS 2 1.1013 0.25

None of the interaction e↵ects were significantly di↵erent from zero. Tests of the
main e↵ects may be interpretted ignoring the interactions.

If the three-way interaction was significant, then all of the other tests would not
be needed because they could not be interpretted without reference to the three-way
interactions.
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45.4 Missing Subclasses

If one or more subclasses had been empty, i.e. no observations present, then the for-
mulation of the hypothesis test matrices and the interpretation of results becomes more
complicated, and in some cases tests may not be possible at all.

As the number of missing subclasses increases, one must ”customize” the contrasts
to be those of the most interest. Another possibility is to remove data until all remaining
subclasses are full. This could have the e↵ect of eliminating one or more levels of several
factors which may not be desirable. If too many subclasses are missing, then a model that
ignores interactions could be analyzed. Interpretation of results would need to consider
the possibility that interactions might exist.

46 Classification Model with Covariates

Consider a nutrition trial of dairy heifers designed to study growth and development of
the mammary gland relative to the plane of nutrition. The amount of adipose tissue in
the mammary gland is one of the traits of interest which is dependent upon the amount
of growth hormone in the blood as well as the diet. A model might be as follows:

yij = µ + Ti + b(Xij) + eij

where

yij is the amount of adipose tissue,

µ is the overall mean,

Ti is the e↵ect of diet, i = 1, 2, 3,

b is the regression coe�cient of yij on Xij, and

eij is a residual e↵ect.

Assume that V ar(eij) = �2
e , and that all residual e↵ects are uncorrelated. The levels of

growth hormone in the blood are assumed to be una↵ected by the diets in the study.
If there were an e↵ect, then the inclusion of growth hormone levels as a covariate could
reduce the e↵ects of diets in the analysis. A way to counteract this problem would be to
estimate a separate regression coe�cient for each diet.
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Example data on dairy heifers.
Heifer Diet Adipose Growth

Number Tissue Hormone
1 1 147 55
2 1 150 47
3 1 145 56
4 1 166 50

5 2 114 53
6 2 140 48
7 2 105 49
8 2 130 54
9 2 133 58

10 3 101 42
11 3 97 45
12 3 112 51
13 3 90 57

46.1 Equations and Solution Vector

0

BBBBBB@

13 4 5 4 665
4 4 0 0 208
5 0 5 0 262
4 0 0 4 195

665 208 262 195 34303

1

CCCCCCA

0

BBBBBBB@

µ̂

T̂1

T̂2

T̂3

b̂

1

CCCCCCCA

=

0

BBBBBB@

1, 630
608
622
400

83, 645

1

CCCCCCA

with solutions 0

BBBBBBB@

µ̂

T̂1

T̂2

T̂3

b̂

1

CCCCCCCA

=

0

BBBBBB@

0.0000
165.1677
137.6690
112.3447
�.2532

1

CCCCCCA
.

The expectation of this particular solution vector is E(b̂) = (X0X)�X0Xb or

E

0

BBBBBBB@

µ̂

T̂1

T̂2

T̂3

b̂

1

CCCCCCCA

=

0

BBBBBB@

0 0 0 0 0
1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
0 0 0 0 1

1

CCCCCCA

0

BBBBBB@

µ
T1

T2

T3

b

1

CCCCCCA
.
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46.2 Least Squares Means

The least squares means for diets include the covariate as follows:

Diet 1

µ̂ + T̂1 + b̂X

= 0 + 165.1677 + (�.2532)(51.1538)

= 152.2155

where X is the average value of the covariate (growth hormone) in the data.

Diet 2

µ̂ + T̂2 + b̂X = 124.7168.

Diet 3

µ̂ + T̂3 + b̂X = 99.3925.

46.3 Analysis of Variance

AOV Table for Example
Data on Dairy Heifers.

Source D.F. Sum of Squares F-value
Total,SST 13 211,154.0000
Mean,SSM 1 204,376.9231
Model,SSR 4 209,808.9557 350.97**

Diets 2 5,187.6512 17.36**
Regression 1 16.1557 0.11

Residual,SSE 9 1,345.0443

The R2 for this model was 80.15%. The regression coe�cient was not significantly
di↵erent from zero. However, diets were highly significant.
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47 EXERCISES

1. Rank of the Model

Determine the number of columns in X and the rank of X for the following model
equations where all factors are fixed factors:

(a) yijkl = µ + Ai + Bj + Ck + eijkl where i = 1, 5, j = 1, 4, k = 1, 8.

(b) yijkl = µ + Ai + Bj + Ck + (AC)ik + eijkl where i = 1, 5, j = 1, 3, k = 1, 6.

(c) yijklm = µ+(AB)ij +(CD)kl +(BC)jk +eijklm where i = 1, 3, j = 1, 4, k = 1, 6,
l = 1, 5.

(d) yijklm = Ai + Bij + Cijk + Dl + eijklm where i = 1, 2, j = 1, 3, k = 1, 4, and
l = 1, 9.

(e) yijkl = µ + Ai + BC(jk) + b1x1ijkl + b2x2ijkl + eijkl where i = 1, 6, j = 1, 2, and
k = 1, 4.

(f) yijkl = µ +Ti +Hj +HYjk + eijkl where i = 1, 10, j = 1, 20, and k = 1, 15.

2. Disconnectedness

Determine the connected groups within each of the following sets of filled subclass
numbers

(a)

(1,1,1) (2,2,2) (3,3,4) (4,3,1)
(1,3,2) (2,1,4) (3,1,1) (4,4,1)
(1,3,1) (2,1,1) (3,2,4) (4,2,3)
(1,1,4) (2,4,1) (3,3,3) (4,4,4)
(1,2,3) (2,3,1) (3,1,4) (4,3,2)
(1,4,1) (2,2,3) (3,3,1) (4,4,3)
(1,2,1) (2,3,2) (3,4,2) (4,1,1)

(b)

(A,1,6) (A,2,5) (B,3,4) (B,1,5) (C,2,6)
(C,3,4) (D,2,1) (D,1,6) (A,3,3) (B,2,6)
(C,1,5) (D,3,1) (A,2,4) (B,1,6) (C,1,4)
(D,1,1) (A,3,1) (B,4,4) (C,3,3) (D,4,2)
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(c)

(1,1,1,1) (1,2,1,2) (2,1,3,1) (2,3,3,1) (3,2,2,1)
(1,3,3,3) (1,2,1,3) (3,2,1,2) (1,3,3,1) (2,3,1,1)
(2,2,3,1) (2,2,2,2) (1,2,3,1) (2,1,2,2) (2,2,3,1)
(3,2,3,1) (2,3,1,3) (1,3,2,1) (3,3,3,2) (1,1,1,2)

3. Classification Model

(a) Guinea pigs were given di↵erent types of water, and small amounts of one of
three varieties of nuts (as a snack). They were housed in separate cages within
one of four rooms that were kept at di↵erent temperatures. Below are records
on the amount of regular feed eaten per day. The factors in the model are
Room (R), Water Type (W)(either tap water or Perrier), and Nut Variety (V)
(either almonds, walnuts, or cashews). Nuts and water are o↵ered through the
day - equal amounts to each guinea pig.

The objective is to estimate and test di↵erences in regular feed intake (g) due
to room, water type, and nut variety.

Guinea Pig Data on Daily Feed Intake
Room Water Nuts Obs. Room Water Nuts Obs.

1 1 1 117 2 2 2 178
1 2 2 110 2 2 3 82
1 1 3 71 2 1 2 41
1 2 2 170 2 1 3 91
1 1 3 150 2 1 1 116
1 2 3 130 2 2 1 61
1 1 3 64 2 2 2 115
1 2 2 89 2 1 2 87
1 1 1 141
3 2 2 48 4 2 3 59
3 2 1 75 4 1 1 90
3 1 3 139 4 2 2 138
3 1 3 55 4 2 3 77
3 2 2 53 4 1 1 129
3 2 2 84 4 2 1 82
3 1 3 62 4 2 3 45
3 1 1 125 4 1 1 67
3 2 1 103 4 2 3 180

4 2 2 123

Let the model equation be:

yijkl = Ri + Wj + Vk + eijkl

Assume the residual variance is constant for all subclasses (i.e. I�2
e).
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i. Construct the OLS equations and obtain a solution.

ii. Test for di↵erences among rooms.

iii. Test for di↵erences among water types.

iv. Test for di↵erence among nut varieties.

v. Write a complete AOV table, and compute the multiple R2 coe�cient.

vi. Write a “Conclusions” paragraph about this analysis.

(b) Below are scores of warmblood mares from Inspection Tests given in three
locations, (Lj). Age of the horse at test, (Ai), is another important variable.

Mare Age Location Score
1 2 Alberta 71
2 3 Alberta 83
3 4 Alberta 92
4 2 Alberta 74
5 3 Sask. 68
6 4 Sask. 78
7 2 Sask. 80
8 3 Sask. 94
9 4 Man. 89
10 2 Man. 77
11 3 Man. 85
12 4 Man. 86

Let the model equation be

yijk = µ + Ai + Lj + eijk.

The total sum of squares is 80,285.

i. Set up X0X and X0y.

ii. Assume that the solution vector was as follows:
0

BBBBBBBBBBBB@

µ̂

Â1

Â2

Â3

L̂AL

L̂SK

L̂MB

1

CCCCCCCCCCCCA

=

0

BBBBBBBBBBB@

0.0
0.0
5.4
9.3

71.3
72.4
75.5

1

CCCCCCCCCCCA

,

Construct the basic AOV table.

iii. Calculate R2.

iv. Write the null hypothesis, (H0
0), for testing the e↵ect of location.
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v. Calculate the Least Squares Mean for LAL.

(c) Every time that I go to the cottage I have to clear the cottage of mice. Every
mouse that is killed, I measure its tail length and record its sex. Below is a
table of my findings over the last four years. Numbers in parentheses are the
number of mice, and the first number is the sum of the tail lengths of those
mice.

Sex 2004 2005 2006 2007 Row Totals
Females 54(12) 42(9) 51(10) 47(9) 194(40)
Males 34(8) 50(11) 46(10) 41(11) 171(40)
Column
Totals 88(20) 92(20) 97(20) 88(20) 365(80)

Construct Ordinary Least Squares equations from the numbers in the table for
a model with sex and year fixed e↵ects.

(d) Below are quantities calculated for an analysis of data on squirrels. Use these
quantities to complete the Analysis of Variance Table below.

y0y = 54, 079

N = 22

b̂0X0y = 43, 266.84

r(X) = 8

y0110y/N = 32, 417.26

Analysis of Variance Table
Source degrees of Sum of Squares Mean Squares F-value

freedom
Total

Model

Residual

What is the R2 value for this analysis?

(e) We know that
E(b̂) = CX0Xb,
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for C = (X0X)�, and for a given analysis it was found that

CX0X =

0

BBBBBBBBBBBBB@

0 0 0 0 0 0 0 0
0 1 �1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 �1 1 0 0 0
0 0 0 �1 0 1 0 0
1 0 1 1 0 0 1 0
1 0 1 1 0 0 0 1

1

CCCCCCCCCCCCCA

.

Determine if K0b is estimable if

K0 =

 
0 1 �1 �2 1 1 0 0
2 0 2 0 1 1 1 1

!

.

(f) Please use the data in Table AA. The first number is the number of observa-
tions, and the second number in parentheses is the SUM of the observations in
that subclass.
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Table AA
Farm Breeds Totals

1 2 3
1 5(105) 5(155) 30(780) 40(1040)
2 5( 45) 15(285) 10(140) 30(470)
Totals 10(150) 20(440) 40(920) 70(1510)

i. Construct the OLS equations (order 6) for the model

yijk = (BF )ij + eijk,

where both factors are fixed.

ii. Assume the total sum of squares is 37842, and a solution vector is equal
to the subclass means (and µ = 0), and its expectation are

b̂ =

0

BBBBBBBB@

21
9

31
19
26
14

1

CCCCCCCCA

=

0

BBBBBBBB@

BF11

BF12

BF21

BF22

BF31

BF32

1

CCCCCCCCA

.

Construct the basic ANOVA table from this information.

iii. Construct the null hypothesis matrices for the two main e↵ects (breed and
farm), and the one for the interaction between breed and farm.

iv. What are the R2 and estimate of residual variance for this analysis?
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Prediction Theory

48 Introduction

Best Linear Unbiased Prediction (BLUP) was developed for animal breeding by Dr.
Charles Roy Henderson around 1949. The methods were first applied to genetic eval-
uation of dairy sires in the northeastern United States in 1970. BLUP is used in nearly
all countries and all livestock species for genetic evaluation of individual animals.

DEFINITION: Prediction is the estimation of the realized value of a random
variable (from data) that has been sampled from a population with a known variance-
covariance structure.

49 General Linear Mixed Model

49.1 Equation of the Model

y = Xb + Zu + e

where

y is an N ⇥ 1 vector of observations,

b is a p⇥ 1 vector of unknown constants,

u is a q ⇥ 1 vector of unknown e↵ects of random variables,

e is an N ⇥ 1 vector of unknown residual e↵ects,

X,Z are known matrices of order N ⇥ p and N ⇥ q respectively, that relate elements of
b and u to elements of y.

The elements of b are considered to be fixed e↵ects while the elements of u are
the random e↵ects from populations of random e↵ects with known variance-covariance
structures. Both b and u may be partitioned into one or more factors depending on the
situation.
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49.2 Expectations and Covariance Structure

The expectations of the random variables are

E(u) = 0

E(e) = 0

E(y) = E(Xb + Zu + e)

= E(Xb) + E(Zu) + E(e)

= XE(b) + ZE(u) + E(e)

= Xb + Z0 + 0

= Xb

and the variance-covariance structure is typically represented as

V

 
u
e

!

=

 
G 0
0 R

!

,

where G and R are known, positive definite matrices. Consequently,

V ar(y) = V ar(Xb + Zu + e)

= V ar(Zu + e)

= ZV ar(u)Z0 + V ar(e) + ZCov(u, e) + Cov(e,u)Z0

= ZGZ0 + R, and

Cov(y,u) = ZG

Cov(y, e) = R

If u is partitioned into s factors as

u0 =
⇣

u0
1

u0
2

· · · u0
s

⌘
,

then

V ar(u) = V ar

0

BBBB@

u
1

u
2

...
u

s

1

CCCCA
=

0

BBBB@

G
11

G
12

· · · G
1s

G0
12

G
22

· · · G
2s

...
...

. . .
...

G0
1s

G0
2s

· · · G
ss

1

CCCCA
.

Each G
ij

is assumed to be known.

50 Predictors

The problem is to predict the function

K0b + M0u,

provided that K0b is an estimable function.
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50.1 Best Predictor

The best predictor, for any type of model, requires knowledge of the distribution of the
random variables as well as the moments of that distribution. Then, the best predictor
is the conditional mean of the predictor given the data vector, i.e.

E(K0b + M0u|y)

which is unbiased and has the smallest mean squared error of all predictors (Cochran
1951). The computational form of the predictor depends on the distribution of y. The
computational form could be linear or nonlinear. The word best means that the predictor
has the smallest mean squared error of all predictors of K0b + M0u.

50.2 Best Linear Predictor

The best predictor may be linear OR nonlinear. Nonlinear predictors are often di�cult to
manipulate or to derive a feasible solution. The predictor could be restricted to class of
linear functions of y. Then, the distributional form of y does not need to be known, and
only the first (means) and second (variances) moments of y must be known. If the first
moment is Xb and the second moment is V ar(y) = V, then the best linear predictor
is

E(K0b + M0u) = K0b + C0V�1(y �Xb)

where
C0 = Cov(K0b + M0u,y).

When y has a multivariate normal distribution, then the best linear predictor (BLP) is
the same as the best predictor (BP). The BLP has the smallest mean squared error of all
linear predictors of K0b + M0u.

50.3 Best Linear Unbiased Predictor

In general, the first moment of y, namely Xb, is not known, but V, the second moment,
is commonly assumed to be known. Then predictors can be restricted further to those
that are linear and also unbiased. The best linear unbiased predictor is

K0b̂ + C0V�1(y �Xb̂)

where
b̂ = (X0V�1X)�X0V�1y,

and C and V are as before.
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This predictor is the same as the BLP except that b̂ has replaced b in the formula.
Note that b̂ is the GLS estimate of b. Of all linear, unbiased predictors, BLUP has the
smallest mean squared error. However, if y is not normally distributed, then nonlinear
predictors of K0b + M0u could potentially exist that have smaller mean squared error
than BLUP.

51 Derivation of BLUP

51.1 Predictand and Predictor

DEFINITION: The predictand is the function to be predicted, in this case

K0b + M0u.

DEFINITION: The predictor is the function to predict the predictand, a linear function
of y, i.e. L0y, for some L.

51.2 Requiring Unbiasedness

Equate the expectations of the predictor and the predictand to determine what needs to
be true in order for unbiasedness to hold. That is,

E(L0y) = L0Xb

E(K0b + M0u) = K0b

then to be unbiased for all possible vectors b,

L0X = K0

or
L0X�K0 = 0.

51.3 Variance of Prediction Error

The prediction error is the di↵erence between the predictor and the predictand. The
covariance matrix of the prediction errors is

V ar(K0b + M0u� L0y) = V ar(M0u� L0y)

= M0V ar(u)M + L0V ar(y)L

�M0Cov(u,y)L� L0Cov(y,u)M

= M0GM + L0VL�M0GZ0L� L0ZGM

= V ar(PE)
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51.4 Function to be Minimized

Because the predictor is required to be unbiased, then the mean squared error is equivalent
to the variance of prediction error. Combine the variance of prediction error with a
LaGrange Multiplier to force unbiasedness to obtain the matrix F, where

F = V ar(PE) + (L0X�K0)�.

Minimization of the diagonals of F is achieved by di↵erentiating F with respect to
the unknowns, L and �, and equating the partial derivatives to null matrices.

@F

@L
= 2VL� 2ZGM + X� = 0

@F

@�
= X0L�K = 0

Let ✓ = .5�, then the first derivative can be written as

VL = ZGM�X✓

then solve for L as

V�1VL = L

= V�1ZGM�V�1X✓.

Substituting the above for L into the second derivative, then we can solve for ✓ as

X0L�K = 0

X0(V�1ZGM�V�1X✓)�K = 0

X0V�1X✓ = X0V�1ZGM�K

✓ = (X0V�1X)�(X0V�1ZGM�K)

Substituting this solution for ✓ into the equation for L gives

L0 = M0GZ0V�1 + K0(X0V�1X)�X0V�1

�M0GZ0V�1X(X0V�1X)�X0V�1.

Let
b̂ = (X0V�1X)�X0V�1y,

then the predictor becomes

L0y = K0b̂ + M0GZ0V�1(y �Xb̂)

which is the BLUP of K0b + M0u, and b̂ is a GLS solution for b. A special case for this
predictor would be to let K0 = 0 and M0 = I, then the predictand is K0b + M0u = u,
and

L0y = û = GZ0V�1(y �Xb̂).

Hence the predictor of K0b + M0u is
⇣

K0 M0
⌘

times the predictor of
⇣

b0 u0
⌘0

which

is
⇣

b̂0 û0
⌘0

.
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52 Variances of Predictors

Let

P = (X0V�1X)�

b̂ = PX0V�1y

then

û = GZ0V�1(y �XPX0V�1y)

= GZ0V�1Wy

for W = (I�XPX0V�1). From the results on generalized inverses of X,

XPX0V�1X = X,

and therefore,

WX = (I�XPX0V�1)X

= X�XPX0V�1X

= X�X = 0.

The variance of the predictor is,

V ar(û) = GZ0V�1W(V ar(y))W0V�1ZG

= GZ0V�1WVW0V�1ZG

= GZ0V�1ZG�GZ0V�1XPX0V�1ZG.

The covariance between b̂ and û is

Cov(b̂, û) = PX0V�1V ar(y)W0V�1ZG

= PX0W0V�1ZG

= 0 because X0W = 0

Therefore, the total variance of the predictor is

V ar(K0b̂ + M0û) = K0PK + M0GZ0V�1ZGM

�M0GZ0V�1XPX0V�1ZGM.

53 Variance of Prediction Error

The main results are

V ar(b̂� b) = V ar(b̂) + V ar(b)� Cov(b̂,b)� Cov(b, b̂)

= V ar(b̂)

= P.

V ar(û� u) = V ar(û) + V ar(u)� Cov(û,u)� Cov(u, û),
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where

Cov(û,u) = GZ0V�1WCov(y,u)

= GZ0V�1WZG

= GZ0(V�1 �V�1XPX0V�1)ZG

= V ar(û)

so that

V ar(û� u) = V ar(û) + G� 2V ar(û)

= G� V ar(û).

Also,

Cov(b̂, û� u) = Cov(b̂, û)� Cov(b̂,u)

= 0�PX0V�1ZG.

54 Mixed Model Equations

The covariance matrix of y is V which is of order N . N is usually too large to allow V
to be inverted. The BLUP predictor has the inverse of V in the formula, and therefore,
would not be practical when N is large. Henderson(1949) developed the mixed model
equations for computing BLUP of u and the GLS of b. However, Henderson did not
publish a proof of these properties until 1963 with the help of S. R. Searle, which was one
year after Goldberger (1962).

Take the first and second partial derivatives of F,
 

V X
X0 0

! 
L
✓

!

=

 
ZGM

K

!

Recall that V = V ar(y) = ZGZ0 + R, and let

S = G(Z0L�M)

which when re-arranged gives
M = Z0L�G�1S,

then the previous equations can be re-written as

0

B@
R X Z
X0 0 0
Z0 0 �G�1

1

CA

0

B@
L
✓
S

1

CA =

0

B@
0
K
M

1

CA .
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Take the first row of these equations and solve for L, then substitute the solution for
L into the other two equations.

L = �R�1X✓ �R�1ZS

and

�
 

X0R�1X X0R�1Z
Z0R�1X Z0R�1Z + G�1

! 
✓
S

!

=

 
K
M

!

.

Let a solution to these equations be obtained by computing a generalized inverse of
 

X0R�1X X0R�1Z
Z0R�1X Z0R�1Z + G�1

!

denoted as  
Cxx Cxz

Czx Czz

!

,

then the solutions are  
✓
S

!

= �
 

Cxx Cxz

Czx Czz

! 
K
M

!

.

Therefore, the predictor is

L0y =
⇣

K0 M0
⌘ Cxx Cxz

Czx Czz

! 
X0R�1y
Z0R�1y

!

=
⇣

K0 M0
⌘ b̂

û

!

,

where b̂ and û are solutions to 
X0R�1X X0R�1Z
Z0R�1X Z0R�1Z + G�1

! 
b̂
û

!

=

 
X0R�1y
Z0R�1y

!

.

The equations are known as Henderson’s Mixed Model Equations or MME. The equa-
tions are of order equal to the number of elements in b and u, which is usually much less
than the number of elements in y, and therefore, are more practical to solve. Also, these
equations require the inverse of R rather than V, both of which are of the same order,
but R is usually diagonal or has a more simple structure than V. Also, the inverse of G
is needed, which is of order equal to the number of elements in u. The ability to compute
the inverse of G depends on the model and the definition of u.

The MME are a useful computing algorithm for obtaining BLUP of K0b + M0u.
Please keep in mind that BLUP is a statistical procedure such that if the conditions
for BLUP are met, then the predictor has the smallest mean squared error of all linear,
unbiased predictors. The conditions are that the model is the true model and the variance-
covariance matrices of the random variables are known without error.

In the strictest sense, all models approximate an unknown true model, and the
variance-covariance parameters are usually guessed, so that there is never a truly BLUP
analysis of data, except possibly in simulation studies.
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55 Equivalence Proofs

The equivalence of the BLUP predictor to the solution from the MME was published by
Henderson in 1963. In 1961 Henderson was in New Zealand (on sabbatical leave) visiting
Shayle Searle learning matrix algebra and trying to derive the proofs in this section.
Henderson needed to prove that

V�1 = R�1 �R�1ZTZ0R�1

where
T = (Z0R�1Z + G�1)�1

and
V = ZGZ0 + R.

Henderson says he took his co↵ee break one day and left the problem on Searle’s desk,
and when he returned from his co↵ee break the proof was on his desk.

VV�1 = (ZGZ0 + R)(R�1 �R�1ZTZ0R�1)

= ZGZ0R�1 + I� ZGZ0R�1ZTZ0R�1

�ZTZ0R�1

= I + (ZGT�1 � ZGZ0R�1Z� Z)

TZ0R�1

= I + (ZG(Z0R�1Z + G�1)

�ZGZ0R�1Z� Z)TZ0R�1

= I + (ZGZ0R�1Z + Z

�ZGZ0R�1Z� Z)TZ0R�1

= I + (0)TZ0R�1

= I.

Now take the equation for û from the MME

Z0R�1Xb̂ + (Z0R�1Z + G�1)û = Z0R�1y

which can be re-arranged as

(Z0R�1Z + G�1)û = Z0R�1(y �Xb̂)

or
û = TZ0R�1(y �Xb̂).

The BLUP formula was
û = GZ0V�1(y �Xb̂).
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Then

GZ0V�1 = GZ0(R�1 �R�1ZTZ0R�1)

= (GZ0R�1 �GZ0R�1ZTZ0R�1)

= (GT�1 �GZ0R�1Z)TZ0R�1

= (G(Z0R�1Z + G�1)�GZ0R�1Z)TZ0R�1

= TZ0R�1.

Similarly, the MME solution for û and substituting it into the first equation in the
MME gives

X0R�1Xb̂ + X0R�1Z(TZ0R�1(y �Xb̂)) = X0R�1y.

Combine the terms in b̂ and y to give

X0(R�1 �R�1ZTZ0R�1)Xb̂ = X0(R�1 �R�1ZTZ0R�1)y,

which are the same as the GLS equations,

X0V�1Xb̂ = X0V�1y.

Goldberger (1962) published these results before Henderson (1963), but Henderson
knew of these equivalences back in 1949 through numerical examples. After he discovered
Goldberger’s paper (sometime after his retirement) Henderson insisted on citing it along
with his work. Most people in animal breeding, however, refer to Henderson as the
originator of this work and its primary proponent.

56 Variances of Predictors and Prediction Errors From
MME

The covariance matrices of the predictors and prediction errors can be expressed in terms
of the generalized inverse of the coe�cient matrix of the MME, C. Recall that

 
b̂
û

!

=

 
C

xx

C
xz

C
zx

C
zz

! 
X0R�1

Z0R�1

!

y,

or as
b̂ = C0

b

y,

and
û = C0

u

y.
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If the coe�cient matrix of the MME is full rank (or a full rank subset) (to simplify
the presentation of results), then

 
C

xx

C
xz

C
zx

C
zz

! 
X0R�1X X0R�1Z
Z0R�1X Z0R�1Z + G�1

!

=

 
I 0
0 I

!

,

which gives the result that
 

C
xx

C
xz

C
zx

C
zz

! 
X0R�1X X0R�1Z
Z0R�1X Z0R�1Z

!

=

 
I �C

xz

G�1

0 I�C
zz

G�1

!

.

This last result is used over and over in deriving the remaining results.

Now,

V ar(b̂) = V ar(C0
b

y)

= C0
b

V ar(y)C
b

= C0
b

(ZGZ0 + R)C
b

=
⇣

C
xx

C
xz

⌘ X0R�1

Z0R�1

!

(ZGZ0 + R)C
b

=
⇣

C
xx

C
xz

⌘ X0R�1Z
Z0R�1Z

!

GZ0C
b

+
⇣

C
xx

C
xz

⌘ X0

Z0

!

C
b

= �C
xz

G�1GZ0C
b

+
⇣

C
xx

C
xz

⌘ X0R�1X X0R�1Z
Z0R�1X Z0R�1Z

! 
C

xx

C
zx

!

= C
xz

G�1C
zx

+
⇣

I �C
xz

G�1

⌘ C
xx

C
zx

!

= C
xz

G�1C
zx

+ C
xx

�C
xz

G�1C
zx

= C
xx

.

The remaining results are derived in a similar manner. These give

V ar(û) = C
u

0V ar(y)C
u

= G�C
zz

Cov(b̂, û) = 0
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V ar(û� u) = V ar(û) + V ar(u)� Cov(û,u)� Cov(u, û)

= V ar(u)� V ar(û)

= G� (G�C
zz

)

= C
zz

Cov(b̂, û� u) = Cov(b̂,u)

= C
xz

In matrix form, the variance-covariance matrix of the predictors is

V ar

 
b̂
û

!

=

 
C

xx

0
0 G�C

zz

!

,

and the variance-covariance matrix of prediction errors is

V ar

 
b̂

û� u

!

=

 
C

xx

C
xz

C
zx

C
zz

!

.

As the number of observations in the analysis increases, two things can be noted from
these results:

1. V ar(û) increases in magnitude towards a maximum of G, and

2. V ar(û� u) decreases in magnitude towards a minimum of 0.

57 Hypothesis Testing

When G and R are assumed known, as in BLUP, then the solutions for b̂ from the MME
are BLUE and tests of hypotheses that use these solutions are best. Tests involving û are
unnecessary because when G and R have been assumed to be known, then the variation
due to the random factors has already been assumed to be di↵erent from zero. The
general linear hypothesis procedures are employed as in the fixed e↵ects model. The null
hypothesis is

⇣
H0

o 0
⌘ b

u

!

= c

or
H0

o

b = c,

where H0
o

b must be an estimable function of b and H0
o

must have full row rank. H0
o

b is
estimable if

H0
o

⇣
C

xx

C
xz

⌘ X0R�1X
Z0R�1X

!

= H0
o

.
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The test statistic is
s = (H0

o

b̂� c)0(H0
o

C
xx

H
o

)�1(H0
o

b̂� c)

with r(H0
o

) degrees of freedom, and the test is

F = (s/r(H0
o

))/�̂2
e ,

where
�̂2

e = (y0R�1y � b̂0X0R�1y � û0Z0R�1y)/(N � r(X)).

The degrees of freedom for F are r(H0
o

) and (N � r(X)). Note that

y0R�1y � b̂0X0R�1y � û0Z0R�1y = y0V�1y � b̂0X0V�1y.

If G and R are not known, then there is no best test because BLUE of b is not
possible. Valid tests exist only under certain circumstances. If estimates of G and R are
used to construct the MME, then the solution for b̂ is not BLUE and the resulting tests
are only approximate.

If the estimate of G is considered to be inappropriate, then a test of H0
o

b = c can be
constructed by treating u as a fixed factor, assuming that H0

o

b is estimable in the model
with u as fixed. That is,

 
b̂
û

!

=

 
X0R�1X X0R�1Z
Z0R�1X Z0R�1Z

!�  
X0R�1y
Z0R�1y

!

,

=

 
P

xx

P
xz

P
zx

P
zz

! 
X0R�1y
Z0R�1y

!

,

and

�̂2
e = (y0R�1y � b̂0X0R�1y � û0Z0R�1y)/(N � r

⇣
X Z

⌘
),

s = (H0
o

b̂� c)0(H0
o

P
xx

H
o

)�1(H0
o

b̂� c),

F = (s/r(H0
o

))/�̂2
e .

58 Restrictions on Fixed E↵ects

There may be functions of b that are known and this knowledge should be incorporated
into the estimation process. For example, in beef cattle, male calves of a particular breed
are known to weigh 25 kg more than female calves of the same breed at 200 days of
age. By incorporating a di↵erence of 25 kg between the sexes in an analysis then all
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other estimates of fixed and random e↵ects would be changed accordingly and also their
variances.

Let B0b = d be the restriction to be placed on b, then the appropriate equations
would be 0

B@
X0R�1X X0R�1Z B
Z0R�1X Z0R�1Z + G�1 0
B0 0 0

1

CA

0

B@
b̂
û
�

1

CA =

0

B@
X0R�1y
Z0R�1y

d

1

CA .

Because B0b = d is any general function, then there are three possible e↵ects of this
function on the estimability of K0b in the model. The conditions on B0 are that it

1. must have full row rank, and

2. must not have more than r(X) rows.

58.1 B0b is an estimable function

If B0b represents a set of estimable functions of b in the original model, then

1. the estimability of b is unchanged, and

2. the modified equations above do not have an inverse.

58.2 B0b is not an estimable function

If B0b represents a set of non-estimable functions of b with (p � r(X)) rows, where p is
the number of columns of X, then

1. b is estimable as if X was full column rank, and

2. the modified equations above have a unique inverse.

58.3 B0b is not an estimable function

If B0b represents a set of non-estimable functions of b with fewer than (p� r(X)) rows,
and if we let  

P
11

P
12

P
21

P
22

!

=

 
X0V�1X B

B0 0

!�

then K0b is estimable if
⇣

K0 0
⌘ P

11

P
12

P
21

P
22

! 
X0V�1X B

B0 0

!
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=
⇣

K0 0
⌘
.

The modified MME do not have a unique inverse in this situation.

59 Restricted BLUP

BLUP is commonly applied to models to evaluate the genetic merit of livestock in order to
make decisions on culling and breeding of animals. In these cases, an objective of selection
might be to improve the performance of animals for one trait while leaving another trait
unchanged. In matrix notation, we might have two functions,

K0
1

b + M0
1

u and K0
2

b + M0
2

u,

representing the vectors of elements upon which selection decisions are to be made. One
technique of achieving the objective is to force the covariance between the predictor of one
function with the predictand of the other function to be zero. A zero covariance would
result in no correlated response in K0

2

b + M0
2

u as a consequence of selecting on L0
1

y,
provided y has a multivariate normal distribution. The covariance matrix of concern is

Cov(L0
1

y,K0
2

b + M0
2

u) = L0
1

ZGM
2

.

Therefore, in deriving L0
1

we must add another LaGrange Multiplier to F to give

F = V ar(L0
1

y �K0
1

b�M0
1

u) + (L0
1

X�K0
1

)� + L0
1

ZGM
2

'.

Minimize the diagonals of F with respect to L
1

,�, and ', and equate the partial deriva-
tives to null matrices. The resulting modified MME would be

0

B@
X0R�1X X0R�1Z X0R�1ZGM

2

Z0R�1X Z0R�1Z + G�1 Z0R�1ZGM
2

M0
2

GZ0R�1X M0
2

GZ0R�1Z M0
2

GZ0R�1ZGM
2

1

CA

0

B@
b̂
û
t̂

1

CA

=

0

B@
X0R�1y
Z0R�1y
M0

2

GZ0R�1y

1

CA .

Let a generalized inverse of the coe�cient matrix be

0

B@
C

11

C
12

C
13

C
21

C
22

C
23

C
31

C
32

C
33

1

CA ,

then the following results may be derived:

V ar(b̂) = C
11

,
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V ar(û� u) = C
22

,

V ar(û) = G�C
22

,

Cov(b̂, û) = 0,

Cov(û,M0
2

u) = 0,

Cov(b̂,M0
2

u) = 0,

Cov(b̂, û� u) = C
12

,

M0
2

û = 0.

Another technique of obtaining the same result is to compute b̂ and û in the usual
manner from the MME, then derive the appropriate weights to apply, in K

1

and M
1

,
such that

Cov(K0
1

b̂ + M0
1

û,M0
2

u) = 0,

for a given M
2

.

60 Singular G

By definition, variance-covariance matrices should always be nonsingular. In particular,
G and R should be nonsingular because the MME utilize the inverse of these matrices to
obtain BLUP. The matrix V must always be nonsingular, but there may be cases when
either G or R may be singular.

Consider the case where G is singular, and therefore G does not have an inverse. The
BLUP of u is una↵ected since the inverse of G is not needed, but in the MME there is a
problem. Harville (1976) and Henderson(1973) suggest pre-multiplying the last equation
of the MME by G to give

 
X0R�1X X0R�1Z
GZ0R�1X GZ0R�1Z + I

! 
b̂
û

!

=

 
X0R�1y
GZ0R�1y

!

.

A disadvantage of these equations is that the coe�cient matrix is no longer symmetric,
and solving the equations by Gauss-Seidel iteration may be slow to achieve convergence,
if the solutions converge at all. Also, the variance-covariance matrix of prediction errors
has to be obtained as follows:

V ar

 
b̂

û� u

!

=

 
X0R�1X X0R�1Z
GZ0R�1X GZ0R�1Z + I

!�  
I 0
0 G

!

.

The equations could be made symmetric as follows:
 

X0R�1X X0R�1ZG
GZ0R�1X GZ0R�1ZG + G

! 
b̂
↵̂

!

=

 
X0R�1y
GZ0R�1y

!

,
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where
û = G↵̂,

and the variance-covariance matrix of prediction errors is calculated as

V ar

 
b̂

û� u

!

=

 
I 0
0 G

!

C

 
I 0
0 G

!

,

where C represents a generalized inverse of the coe�cient matrix in the symmetric set of
equations.

61 Singular R

When R is singular, the MME can not be used to compute BLUP. However, the calculation
of L0 can still be used and the results given earlier on variances of predictors and prediction
errors still holds. The disadvantage is that the inverse of V is needed and may be too
large to solve.

Another alternative might be to partition R and y into a full rank subset and analyze
that part ignoring the linearly dependent subset. However, the solutions for b̂ and û may
be dependent on the subsets that are chosen, unless X and Z may be partitioned in the
same manner as R.

Singular R matrices do not occur frequently with continuously distributed observa-
tions, but do occur with categorical data where the probabilities of observations belonging
to each category must sum to one.

62 When u and e are correlated

Nearly all applications of BLUP have been conducted assuming that Cov(u, e) = 0, but
suppose that Cov(u, e) = T so that

V ar(y) = ZGZ0 + R + ZT0 + TZ0.

A solution to this problem is to use an equivalent model where

y = Xb + Wu + ✏

for
W = Z + TG�1

and

V ar

 
u
✏

!

=

 
G 0
0 B

!
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where B = R�TG�1T0, and consequently,

V ar(y) = WGW0 + B

= (Z + TG�1)G(Z0 + G�1T0) + (R�TG�1T0)

= ZGZ0 + ZT0 + TZ0 + R

The appropriate MME for the equivalent model are
 

X0B�1X X0B�1W
W0B�1X W0B�1W + G�1

! 
b̂
û

!

=

 
X0B�1y
W0B�1y

!

.

The inverse of B can be written as

B�1 = R�1 �R�1T(G�T0R�1T)�1T0R�1,

but this form may not be readily computable.

The biggest di�culty with this type of problem is to define T = Cov(u, e), and
then to estimate the values that should go into T. A model with a non-zero variance-
covariance matrix between u and e can be re-parameterized into an equivalent model
containing u and ✏ which are uncorrelated.

63 G and R Unknown

For BLUP an assumption is that G and R are known without error. In practice this
assumption almost never holds. Usually the proportional relationships among parameters
in these matrices (i.e. such as heritabilities and genetic correlations) are known. In some
cases, however, both G and R may be unknown, then linear unbiased estimators of b and
u may exist, but these may not necessarily be best.

Unbiased estimators of b exist even if G and R are unknown. Let H be any nonsin-
gular, positive definite matrix, then

K0bo = K0(X0H�1X)�X0H�1y = K0CX0H�1y

represents an unbiased estimator of K0b, if estimable, and

V ar(K0bo) = K0CX0H�1VH�1XCK.

This estimator is best when H = V. Some possible matrices for H are I, diagonals of V,
diagonals of R, or R itself.

The u part of the model has been ignored in the above. Unbiased estimators of K0b
can also be obtained from

 
X0H�1X X0H�1Z
Z0H�1X Z0H�1Z

! 
bo

uo

!

=

 
X0H�1y
Z0H�1y

!
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provided that K0b is estimable in a model with u assumed to be fixed. Often the inclusion
of u as fixed changes the estimability of b.

If G and R are replaced by estimates obtained by one of the usual variance component
estimation methods, then use of those estimates in the MME yield unbiased estimators
of b and unbiased predictors of u, provided that y is normally distributed (Kackar and
Harville, 1981). Today, Bayesian methods are applied using Gibbs sampling to simulta-
neously estimate G and R, and to estimate b and u.

64 Example 1

Below are data on progeny of three sires distributed in two contemporary groups. The
first number is the number of progeny, and the second number in parentheses is the sum
of the progeny observations.

Sire Contemporary Group
1 2

A 3(11) 6(19)
B 4(16) 3(18)
C 5(14)

64.1 Operational Models

Let
yijk = µ + Ci + Sj + eijk,

where yijk are the observations on the trait of interest of individual progeny, assumed to
be one record per progeny only, µ is an overall mean, Ci is a random contemporary group
e↵ect, Sj is a random sire e↵ect, and eijk is a random residual error term associated with
each observation.

E(yijk) = µ,

V ar(eijk) = �2
e

V ar(Ci) = �2
c = �2

e/6.0

V ar(Sj) = �2
s = �2

e/11.5

The ratio of four times the sire variance to total phenotypic variance (i.e. (�2
c + �2

s +
�2

e)), is known as the heritability of the trait, and in this case is 0.2775. The ratio of the
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contemporary group variance to the total phenotypic variance is 0.1329. The important
ratios are

�2
e/�

2
c = 6.0

�2
e/�

2
s = 11.5

There are a total of 21 observations, but only five filled subclasses. The individual
observations are not available, only the totals for each subclass. Therefore, an equivalent
model is the “means” model.

ȳij = µ + Ci + Sj + ēij,

where ȳij is the mean of the progeny of the jth sire in the ith contemporary group, and
ēij is the mean of the residuals for the (ij)th subclass.

The model assumes that

• Sires were mated randomly to dams within each contemporary group.

• Each dam had only one progeny.

• Sires were not related to each other.

• Progeny were all observed at the same age (or observations are perfectly adjusted
for age e↵ects).

• The contemporary groups were independent from each other.

64.2 Mixed Model Equations

The process is to define y, X, and Z, and also G and R. After that, the calculations are
straightforward. The “means” model will be used for this example.

64.2.1 Observations

The observation vector for the “means” model is

y =

0

BBBBBB@

11/3
16/4
14/5
19/6
18/3

1

CCCCCCA
.
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64.2.2 Xb and Zu

Xb =

0

BBBBBB@

1
1
1
1
1

1

CCCCCCA
µ.

The overall mean is the only column in X for this model.

There are two random factors and each one has its own design matrix.

Zu =
⇣

Zc Zs

⌘ c
s

!

,

where

Zcc =

0

BBBBBB@

1 0
1 0
1 0
0 1
0 1

1

CCCCCCA

 
C1

C2

!

, Zss =

0

BBBBBB@

1 0 0
0 1 0
0 0 1
1 0 0
0 1 0

1

CCCCCCA

0

B@
SA

SB

SC

1

CA ,

so that, together,

Zu =

0

BBBBBB@

1 0 1 0 0
1 0 0 1 0
1 0 0 0 1
0 1 1 0 0
0 1 0 1 0

1

CCCCCCA

0

BBBBBB@

C1

C2

SA

SB

SC

1

CCCCCCA
.

64.2.3 G and R

The covariance matrix of the means of residuals is R. The variance of a mean of random
variables is the variance of individual variables divided by the number of variables in the
mean. Let nij equal the number of progeny in a sire by contemporary group subclass,
then the variance of the subclass mean is �2

e/nij. Thus,

R =

0

BBBBBB@

�2
e/3 0 0 0 0

0 �2
e/4 0 0 0

0 0 �2
e/5 0 0

0 0 0 �2
e/6 0

0 0 0 0 �2
e/3

1

CCCCCCA
.
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The matrix G is similarly partitioned into two submatrices, one for contemporary
groups and one for sires.

G =

 
Gc 0
0 Gs

!

,

where

Gc =

 
�2

c 0
0 �2

c

!

= I�2
c = I

�2
e

6.0
,

and

Gs =

0

B@
�2

s 0 0
0 �2

s 0
0 0 �2

s

1

CA = I�2
s = I

�2
e

11.5
.

The inverses of G and R are needed for the MME.

R�1 =

0

BBBBBB@

3 0 0 0 0
0 4 0 0 0
0 0 5 0 0
0 0 0 6 0
0 0 0 0 3

1

CCCCCCA

1

�2
e

,

and

G�1 =

0

BBBBBB@

6 0 0 0 0
0 6 0 0 0
0 0 11.5 0 0
0 0 0 11.5 0
0 0 0 0 11.5

1

CCCCCCA

1

�2
e

.

Because both are expressed in terms of the inverse of �2
e , then that constant can be

ignored. The relative values between G and R are su�cient to get solutions to the MME.

64.2.4 MME and Inverse Coe�cient Matrix

The left hand side of the MME (LHS) is

 
X0R�1X X0R�1Z
Z0R�1X Z0R�1Z + G�1

! 
b̂
û

!

,

and the right hand side of the MME (RHS) is

 
X0R�1y
Z0R�1y

!

.
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Numerically,

LHS =

0

BBBBBBBB@

21 12 9 9 7 5
12 18 0 3 4 5
9 0 15 6 3 0
9 3 6 20.5 0 0
7 4 3 0 18.5 0
5 5 0 0 0 16.5

1

CCCCCCCCA

0

BBBBBBBBB@

µ̂

Ĉ1

Ĉ2

ŜA

ŜB

ŜC

1

CCCCCCCCCA

,

and

RHS =

0

BBBBBBBB@

78
41
37
30
34
14

1

CCCCCCCCA

.

The inverse of LHS coe�cient matrix is

C =

0

BBBBBBBB@

.1621 �.0895 �.0772 �.0355 �.0295 �.0220
�.0895 .1161 .0506 .0075 .0006 �.0081
�.0772 .0506 .1161 �.0075 �.0006 .0081
�.0355 .0075 �.0075 .0655 .0130 .0085
�.0295 .0006 �.0006 .0130 .0652 .0088
�.0220 �.0081 .0081 .0085 .0088 .0697

1

CCCCCCCCA

.

C has some interesting properties.

• Add elements (1,2) and (1,3) = -.1667, which is the negative of the ratio of �2
c/�

2
e .

• Add elements (1,4), (1,5), and (1,6) = -.08696, which is the negative of the ratio of
�2

s/�
2
e .

• Add elements (2,2) and (2,3), or (3,2) plus (3,3) = .1667, ratio of contemporary
group variance to residual variance.

• Add elements (4,4) plus (4,5) plus (4,6) = .08696, ratio of sire variance to residual
variance. Also, ( (5,4)+(5,5)+(5,6) = (6,4)+(6,5)+(6,6) ).

• The sum of ((4,2)+(5,2)+(6,2)) = ((4,3)+(5,3)+(6,3)) = 0.
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64.2.5 Solutions and Variance of Prediction Error

Let SOL represent the vector of solutions to the MME, then

SOL = C ⇤ RHS =

 
b̂
û

!

=

0

BBBBBBBBB@

µ̂

Ĉ1

Ĉ2

ŜA

ŜB

ŜC

1

CCCCCCCCCA

=

0

BBBBBBBB@

3.7448
�.2183

.2183
�.2126

.4327
�.2201

1

CCCCCCCCA

.

The two contemporary group solutions add to zero, and the three sire solutions add to
zero.

The variances of prediction error are derived from the diagonals of C corresponding
to the random e↵ect solutions multiplied times the residual variance. Hence, the variance
of prediction error for contemporary group 1 is .1161 �2

e . An estimate of the residual
variance is needed. An estimate of the residual variance is given by

�̂2
e = (SST � SSR)/(N � r(X)).

SST was not available from these data because individual observations were not available.
Suppose SST = 322, then

�̂2
e = (322� 296.4704)/(21� 1) = 1.2765.

SSR is computed by multiply the solution vector times the RHS of the MME. That is,

SSR = 3.7448(78)�.2183(41)+.2183(37)�.2126(30)+.4327(34)�.2201(14) = 296.4704.

The variance of prediction error for contemporary group 1 is

V ar(PE) = .1161(1.2765) = .1482.

The standard error of prediction, or SEP, is the square root of the variance of prediction
error, giving .3850. Thus, the solution for contemporary group 1 is -.2183 plus or minus
.3850.

Variances of prediction error are calculated in the same way for all solutions of random
e↵ects.

E↵ect Solution SEP
C1 -.2183 .3850
C2 .2183 .3850
SA -.2126 .2892
SB .4327 .2885
SC -.2201 .2983
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Sire A has 9 progeny while sire B has 7 progeny, but sire B has a slightly smaller
SEP. The reason is due to the distribution of progeny of each sire in the two contemporary
groups. Sire C, of course, has the larger SEP because it has only 5 progeny and all of
these are in contemporary group 1. The di↵erences in SEP in this small example are not
large.

64.2.6 Repeatability or Reliability

Variances of prediction error are often expressed as a number going from 0 to 100 %
, known as repeatability or reliability (REL) (depending on the species). The general
formula is

REL = (V ar(True Values)� V ar(PE))/(V ar(True Values),

times 100. Thus, for contemporary group 1, the reliability would be

REL = 100(.1667� .1482)/(.1667) = 11.10.

For Sire A, the REL would be

REL = 100(.08696� (.0655 ⇤ 1.2765))/(.08696) = 3.85.

Thus, sires have smaller reliabilities than contemporary groups, but SEP for sires is smaller
than for contemporary groups. This is because contemporary groups have more progeny
in them than sires have, and because the variance of contemporary groups is larger than
the variance of sire transmitting abilities.

64.3 R Methods for MME

Given the matrices X, Z, G�1, R�1, and y, then an R-function can be written to set up
the MME, solve, and compute SSR. This function works for small examples, as given in
these notes. For large problems, other methods can be used to solve the equations by
iterating on the data. The function for small examples is given here.
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MME = function(X,Z,GI,RI,y) {
XX = t(X) %*% RI %*% X
XZ = t(X) %*% RI %*% Z
ZZ = (t(Z) %*% RI %*% Z) + GI
Xy = t(X) %*% RI %*% y
Zy = t(Z) %*% RI %*% y

# Combine the pieces into LHS and RHS
piece1 = cbind(XX,XZ)
piece2 = cbind(t(XZ),ZZ)
LHS = rbind(piece1,piece2)
RHS = rbind(Xy,Zy)

# Invert LHS and solve
C = ginv(LHS)
SOL = C %*% RHS
SSR = t(SOL) %*% RHS
SOLNS = cbind(SOL,sqrt(diag(C)))

return(list(LHS=LHS,RHS=RHS,C=C,SSR=SSR,SOLNS=SOLNS))
}

To use the function,

Exampl = MME(X1,Z1,GI,RI,y)
str(Exampl)

# To view the results
Exampl$LHS
Exampl$RHS
Exampl$C
Exampl$SOLNS
Exampl$SSR
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65 EXERCISES

1. Below are data on progeny of 6 rams used in 5 sheep flocks (for some trait). The
rams were unrelated to each other and to any of the ewes to which they were
mated. The first number is the number of progeny in the herd, and the second
(within parentheses) is the sum of the observations.

Ram Flocks
ID 1 2 3 4 5
1 6(638) 8(611) 6(546) 5(472) 0(0)
2 5(497) 5(405) 5(510) 0(0) 4(378)
3 15(1641) 6(598) 5(614) 6(639) 5(443)
4 6(871) 11(1355) 0(0) 3(412) 3(367)
5 2(235) 4(414) 8(874) 4(454) 6(830)
6 0(0) 0(0) 4(460) 12(1312) 5(558)

Let the model equation be

yijk = µ + Fi + Rj + eijk

where Fi is a flock e↵ect, Rj is a ram e↵ect, and eijk is a residual e↵ect. There
are a total of 149 observations and the total sum of squares was equal to 1,793,791.
Assume that �2

e = 7�2
f = 1.5�2

r when doing the problems below.

(a) Set up the mixed model equations and solve. Calculate the SEPs and reliabil-
ities of the ram solutions.

(b) Repeat the above analysis, but assume that flocks are a fixed factor (i.e. do
not add any variance ratio to the diagonals of the flock equations). How do
the evaluations, SEP, and reliabilities change from the previous model?

(c) Assume that rams are a fixed factor, and flocks are random. Do the rams rank
similarly to the previous two models?

2. When a model has one random factor and its covariance matrix is an identity matrix
times a scalar constant, then prove the the solutions for that factor from the MME
will sum to zero. Try to make the proof as general as possible.

120



Genetic Relationships

66 Pedigree Preparation

Pedigrees of animals need to be arranged in chronological order. Parents should appear
in a list before (ahead of) their progeny. Ordering a pedigree is most easily accomplished
by sorting animals by birthdate. Birthdates can be incorrectly recorded or entered, or for
many individuals may not be available. One approach is to assume that all birthdates
are incorrect. Animals can be arranged by assigning generation numbers to animals, then
iterate through the pedigrees modifying the generation numbers of the sire and dam to be
at least one greater than the generation number of the o↵spring. The number of iterations
depends on the number of generations of animals in the list. Probably 20 or less iterations
are needed for most situations.

If the number of iterations reaches 50 or more, then there is an increased likelihood
that there is a loop in the pedigrees. That means that an animal is its own ancestor,
somewhere back in the pedigree. For example, A might be the parent of B, and B is
the parent of C, and C is the parent of A. In this case the generation numbers will keep
increasing in each iteration. Thus, if more than 50 iterations are used, then look at the
animals with the highest generation numbers and try to find the loop. A loop is an error
in the pedigrees and must be repaired. Either correct the parentage, or remove the parent
of the older animal.

66.1 Example Pedigree to Sort

Animal Sire Dam Generation Number
BF DD HE 1
DD GA EC 1
GA 1
EC GA FB 1
FB 1
AG BF EC 1
HE DD FB 1

All animals begin with generation number 1. Proceed through the pedigrees one
animal at a time.

1. Take the current generation number of the animal and increase it by one (1), call it
m. The first animal is BF, for example, and its generation number is 1, increased
by 1 becomes m=2.
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2. Compare m to the generation numbers of the animal’s sire and dam. In the case
of BF, the sire is DD and DD’s generation number is 1. That is less than 2 so
DD’s generation number has to be changed to 2 (m). The dam is HE, and HE’s
generation number is also changed to 2.

Repeat for each animal in the pedigree list. Keep modifying the generation numbers until
no more need to be changed. The animal with the highest generation number is the oldest
animal.

The end result after four iterations of the example pedigree is shown below.

Animal Sire Dam Generation Number
BF DD HE 2
DD GA EC 4
GA 6
EC GA FB 5
FB 6
AG BF EC 1
HE DD FB 3

Now sort the list by decreasing order of the generation number.

Animal Sire Dam Generation Number
GA 6
FB 6
EC GA FB 5
DD GA EC 4
HE DD FB 3
BF DD HE 2
AG BF EC 1

The order of animals GA or FB is not important. The order of animals with the
same generation number is not critical.

Once the pedigree is sorted, then the birthdates can be checked. Errors can be spotted
more readily. Once the errors are found and corrected, then the generation numbers
could be checked again. Animals should then be numbered consecutively according to
the last list from 1 to the total number of animals in the list. That means that parent
numbers should always be smaller than progeny ID numbers. Having animals in this
order facilitates calculation of inbreeding coe�cients, assignment of animals with unknown
parents to groups, and utilization of the inverse of the relationship matrix in the solution
of mixed model equations.
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67 Genomic Relationships

Genomic relationships are constructed by identifying the genomic sources for each animal.
One half of the alleles, genomic e↵ects, are from the male parent and the other half of
alleles are from the female parent. Let g be a vector of the genomic e↵ects for all animals,
of length 2N where N is the number of animals, then

V ar(g) = G�2
g .

The genomic relationship matrix, G, can be viewed as the average of an infinite number
of gametic relationship matrices, Gi, for the ith gene. The genomic relationship matrix
can be constructed using simple rules.

67.1 Example Pedigree

Parentage of five animals are given below.

Example Pedigree.
Animal Sire Dam

A - -
B - -
C A B
D A C
E D B

Expand this table to identify the genomic structure. Parent1 and Parent2 indicate
the genomic sources for the male or female parents of the sire of an animal, respectively.
For example, for animal C, the male source of alleles is C1, and the source of alleles for
C1 comes from animal A’s genes. The source of alleles for C2 is from the female parent,
B.

Example Genomic Pedigree.
Animal Genome Parent1 Parent2

A A1 - -
A A2 - -
B B1 - -
B B2 - -
C C1 A1 A2
C C2 B1 B2
D D1 A1 A2
D D2 C1 C2
E E1 D1 D2
E E2 B1 B2
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This genomic relationship matrix will be of order 10. The diagonals of all genomic
relationship matrices are always equal to 1. The quantities in the o↵-diagonals of the
matrix are probabilities of genes being identical by descent (an average probability across
all genes).

A B C D E
A1 A2 B1 B2 C1 C2 D1 D2 E1 E2

A1 1 0 0 0
A

A2 0 1 0 0
B1 0 0 1 0

B
B2 0 0 0 1
C1 1

C
C2 1
D1 1

D
D2 1
E1 1

E
E2 1

Because the parents of A and B are unknown, then they are assumed to be randomly
drawn from a large random mating population and assumed to have no genes identical
by descent between them.

Let (A1,C1) indicate an element in the above table between the A1 male parent
contribution of animal A and the C1 male parent contribution of animal C, then the
value that goes into that location is

(A1,C1) = 0.5 * [ (A1,A1) + (A1,A2) ] = 0.5.

Similarly, for the rest of the A1 row,

(A1,C2) = 0.5 * [ (A1,B1) + (A1,B2) ] = 0,
(A1,D1) = 0.5 * [ (A1,A1) + (A1,A2) ] = 0.5,
(A1,D2) = 0.5 * [ (A1,C1) + (A1,C2) ] = 0.25,
(A1,E1) = 0.5 * [ (A1,D1) + (A1,D2) ] = 0.375,
(A1,E2) = 0.5 * [ (A1,B1) + (A1,B2) ] = 0.
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This recursive pattern follows through the entire table. Relationships should be
determined row-wise, and when a row is completed, the values are transcribed down
the corresponding column. Thus, if (X,Y) corresponds to the relationship between two
genomic contributions, then X should always chronologically precede Y. If this is not the
case, then errors in relationship calculations can result. The completed table is shown
below.

A B C D E
A1 A2 B1 B2 C1 C2 D1 D2 E1 E2

A1 1 0 0 0 .5 0 .5 .25 .375 0
A

A2 0 1 0 0 .5 0 .5 .25 .375 0
B1 0 0 1 0 0 .5 0 .25 .125 .5

B
B2 0 0 0 1 0 .5 0 .25 .125 .5
C1 .5 .5 0 0 1 0 .5 .5 .5 0

C
C2 0 0 .5 .5 0 1 0 .5 .25 .5
D1 .5 .5 0 0 .5 0 1 .25 .625 0

D
D2 .25 .25 .25 .25 .5 .5 .25 1 .625 .25
E1 .375 .375 .125 .125 .5 .25 .625 .625 1 .125

E
E2 0 0 .5 .5 0 .5 0 .25 .125 1

Animals D and E are inbred and the o↵diagonals between D1 and D2 and between
E1 and E2 show the inbreeding coe�cient.

67.2 Additive Genetic Relationships

Additive and dominance relationships may be obtained from this genomic relationship
table. The additive relationship between animals A and C is given by

0.5 * [ (A1,C1) + (A1,C2) + (A2,C1) + (A2,C2) ] = 0.5.

Add the four numbers in each square of the table and divide by 2. Then the matrix
of additive relationships is

A =

0

BBBBBB@

1 0 .5 .75 .375
0 1 .5 .25 .625
.5 .5 1 .75 .625
.75 .25 .75 1.25 .75
.375 .625 .625 .75 1.125

1

CCCCCCA
.
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67.3 Dominance Genetic Relationships

The dominance genetic relationship between animals X and Y, in general, is given
by

(X1,Y1)*(X2,Y2) + (X1,Y2)*(X2,Y1).

The complete dominance relationship matrix is

D =

0

BBBBBB@

1 0 0 .25 0
0 1 0 0 .125
0 0 1 .25 .25
.25 0 .25 1.0625 .15625
0 .125 .25 .15625 1.015625

1

CCCCCCA
.

68 Example Genomic Model

Assume the five animals (A through E) had records equal to 5, 7, 9, 2, and 4, respectively.
The process is to define y, X, Z, G, and R.

y =

0

BBBBBB@

50
70
90
20
40

1

CCCCCCA
, X =

0

BBBBBB@

1
1
1
1
1

1

CCCCCCA
,

Z =

0

BBBBBB@

1 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 1 1

1

CCCCCCA
,

G =
1

8

0

BBBBBBBBBBBBBBBBBB@

8 0 0 0 4 0 4 2 3 0
0 8 0 0 4 0 4 2 3 0
0 0 8 0 0 4 0 2 1 4
0 0 0 8 0 4 0 2 1 4
4 4 0 0 8 0 4 4 4 0
0 0 4 4 0 8 0 4 2 4
4 4 0 0 4 0 8 2 5 0
2 2 2 2 4 4 2 8 5 2
3 3 1 1 4 2 5 5 8 1
0 0 4 4 0 4 0 2 1 8

1

CCCCCCCCCCCCCCCCCCA

,
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and
R = I.

The variances are �2
g = �2

e , so that the ratio of residual to genomic variances is equal to
1.

Solving the MME for this model can be done using the function given in the notes
on prediction theory.

R Statements

GI = ginv(G)
RI = ginv(R)
genom = MME(X,Z,GI,RI,y)

The solutions to the equations are
0

BBBBBBBBBBBBBBBBBBBBBB@

µ̂

Â1
Â2
B̂1
B̂2
Ĉ1
Ĉ2
D̂1
D̂2
Ê1
Ê2

1

CCCCCCCCCCCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBBBBBBBBB@

56.4194
�3.0015
�3.0015

3.0015
3.0015
�.7295
5.2736

�8.1364
�2.8628
�6.8468

1.2053

1

CCCCCCCCCCCCCCCCCCCCA

.

The total additive genetic merit of an animal is equal to the sum of the two genomic
contributions. Thus, for animal E, an estimate of the total additive genetic merit is called
an Estimated Breeding Value.

EBVE = �6.8468 + 1.2053 = �5.6415.

Animal E received the more favourable alleles from its female parent.

69 Inverse of the Genomic Matrix

The methods of Henderson(1975), Quaas(1976), and Meuwissen and Luo (1992) were
combined to find a fast way of inverting the genomic relationship matrix.
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Partition the genomic relationship matrix as

G = TDT0

where T is a lower triangular matrix and D is a diagonal matrix. The diagonals of D are
obtained while forming a row of T. Animal genomes are processed in order from oldest
to youngest (i.e. parents before progeny).

For animal genomes with unknown parent genomes, the diagonals of D are equal to
1. Therefore, the diagonals of D for A1, A2, B1, and B2 are equal to 1.

Begin with C1, the parent genomes are A1 and A2. Form a table as follows:

Genome t D
C1 1 x
A1 .5 1
A2 .5 1

The diagonal element for (C1,C1) in G is equal to 1, which is equal to t0Dt, which is

(1)2x + (.5)2(1) + (.5)2(1) = 1,

which can be re-arranged and solved for x,

x = 1 � .25 � .25 = .5.

A similar table and calculations can be made for C2, D1, and E2. Thus, the diagonal
elements of D for these genomic contributions are also equal to .5.

The table for D2 is a little longer. Start with parent genomes C1 and C2

Genome t D
D2 1 x
C1 .5 .5
C2 .5 .5

Now add the parent genomes of C1 and C2, as follows:

Genome t D
D2 1 x
C1 .5 .5
C2 .5 .5
A1 .25 1
A2 .25 1
B1 .25 1
B2 .25 1
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The next step would be to add the ’parents’ of A1 and A2, then B1 and B2, but these
’parents’ are unknown, and so no further additions to the table are made. Now compute
t0Dt as

x + (.5)2(.5) + (.5)2(.5) + 4(.25)2(1) = 1,

or
x = 1� .125� .125� 4(.0625) = .5.

The table of E1 is more complex. The parent genomes are D1 and D2. As the animals
become younger, the length of these tables can become greater, and with n generations
there can be up to 2n + 1 elements in a table.

Genome t D
E1 1 x
D1 .5 .5
D2 .5 .5
A1 .25 1
A2 .25 1
C1 .25 .5
C2 .25 .5
A1 .125 1
A2 .125 1
B1 .125 1
B2 .125 1

Note that A1 and A2 appear twice in the table. Their coe�cients in t must be added
together before computing t0Dt. The new table, after adding coe�cents is

Genome t D
E1 1 x
D1 .5 .5
D2 .5 .5
A1 .375 1
A2 .375 1
C1 .25 .5
C2 .25 .5
B1 .125 1
B2 .125 1

Then

x = 1� 2(.5)2(.5)� 2(.375)2(1)� 2(.25)2(.5)� 2(.125)2(1) = .375.

The complete results for the diagonals of D are given in the next table.
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Diagonals of D
Animal Genome Parent1 Parent2 D

A A1 - - 1
A A2 - - 1
B B1 - - 1
B B2 - - 1
C C1 A1 A2 .5
C C2 B1 B2 .5
D D1 A1 A2 .5
D D2 C1 C2 .5
E E1 D1 D2 .375
E E2 B1 B2 .5

The inverse of G is
G�1 = T�TD�1T�1,

and as Henderson (1975) discovered, the elements in T�1 are all 1’s on the diagonals, and
each row has a -.5 in the columns corresponding to the two parent genomes. All other
elements are equal to 0. This structure leads to a simple set of rules for creating the
inverse of G, which can be accomplished by going through the pedigrees, one genome at
a time.

Let di be equal to one over the diagonal of D for the ith genome, and let p1 and p2 be
the parent genomes, then the contributions to the inverse of G from this genome would
be to add the following values:

i p1 p2
i di .5di .5di

p1 .5di .25di .25di

p2 .5di .25di .25di

Applying these rules, then the complete inverse is shown in the table below.
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A B C D E
A1 A2 B1 B2 C1 C2 D1 D2 E1 E2

A1 2 1 0 0 -1 0 -1 0 0 0
A

A2 1 2 0 0 -1 0 -1 0 0 0
B1 0 0 2 1 0 -1 0 0 0 -1

B
B2 0 0 1 2 0 -1 0 0 0 -1
C1 -1 -1 0 0 2.5 .5 0 -1 0 0

C
C2 0 0 -1 -1 .5 2.5 0 -1 0 0
D1 -1 -1 0 0 0 0 2.6667 .6667 -1.3333 0

D
D2 0 0 0 0 -1 -1 .6667 2.6667 -1.3333 0
E1 0 0 0 0 0 0 -1.3333 -1.3333 2.6667 0

E
E2 0 0 -1 -1 0 0 0 0 0 2

70 Additive Relationship Matrix

The additive genetic relationships between animals were obtained from the genomic re-
lationship matrix. The order of the additive genetic relationship matrix, A, equals the
number of animals (N) in the pedigree. However, elements of A can be determined by
the tabular method directly, and its inverse can be derived directly using the methods of
Henderson (1975) and Meuwissen and Luo (1992).

Sewell Wright, in his work on genetic relationships and inbreeding, defined the re-
lationship between two animals to be a correlation coe�cient. That is, the genetic co-
variance between two animals divided by the square root of the product of the genetic
variances of each animal. The genetic variance of an animal was equal to (1 + Fi)�2

a,
where Fi is the inbreeding coe�cient of that animal, and �2

a is the population additive ge-
netic variance. Correlations range from -1 to +1, and therefore, represented a percentage
relationship between two individuals, usually positive only.

The elements of the additive relationship matrix are the numerators of Wright’s corre-
lation coe�cients. Consequently, the diagonals of A can be as high as 2, and relationships
between two individuals can be greater than 1. The A is a matrix that represents the
relative genetic variances and covariances among individuals.
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70.1 The Tabular Method

Additive genetic relationships among animals may be calculated using a recursive proce-
dure called the Tabular Method (attributable to Henderson and perhaps to Wright before
him). To begin, make a list of all animals that have observations in your data, and for
each of these determine their parents (called the sire and dam). An example list is shown
below.

Animal Sire Dam
A - -
B - -
C - -
D A B
E A C
F E D

The list should be in chronological order so that parents appear before progeny. The
sire and dam of animals A, B, and C are assumed to be unknown, and consequently
animals A, B, and C are assumed to be genetically unrelated. In some instances the
parentage of animals may be traced for several generations, and for each animal the
parentage should be traced to a common base generation.

Using the completed list of animals and pedigrees, form a two-way table with n rows
and columns, where n is the number of animals in the list, in this case n = 6. Label the
rows and columns with the corresponding animal identification and above each animal ID
write the ID of its parents as shown below.

Tabular Method Example,
Starting Values.

-,- -,- -,- A,B A,C E,D
A B C D E F

A 1 0 0

B 0 1 0

C 0 0 1

D

E

F
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For each animal whose parents were unknown a one was written on the diagonal of
the table (i.e for animals A, B, and C), and zeros were written in the o↵-diagonals between
these three animals, assuming they were unrelated. Let the elements of this table (refered
to as matrix A) be denoted as aij. Thus, by putting a 1 on the diagonals for animals
with unknown parents, the additive genetic relationship of an animal with itself is one.
The additive genetic relationship to animals without common parents or whose parents
are unknown is assumed to be zero.

The next step is to compute relationships between animal A and animals D, E, and
F. The relationship of any animal to another is equal to the average of the relationships
of that animal with the parents of another animal. For example, the relationship between
A and D is the average of the relationships between A and the parents of D, who are A
and B. Thus,

aAD = .5 ( aAA + aAB ) = .5(1 + 0) = .5
aAE = .5 ( aAA + aAC ) = .5(1 + 0) = .5
aAF = .5 ( aAE + aAD ) = .5(.5 + .5) = .5

The relationship table, or A matrix, is symmetric, so that aAD = aDA, aAE = aEA,
and aAF = aFA. Continue calculating the relationships for animals B and C to give the
following table.

Tabular Method Example,
Partially Completed.

-,- -,- -,- A,B A,C E,D
A B C D E F

A 1 0 0 .5 .5 .5

B 0 1 0 .5 0 .25

C 0 0 1 0 .5 .25

D .5 .5 0

E .5 0 .5

F .5 .25 .25

Next, compute the diagonal element for animal D. By definition this is one plus the
inbreeding coe�cient, i.e.

aDD = 1 + FD.
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The inbreeding coe�cient, FD is equal to one-half the additive genetic relationship be-
tween the parents of animal D, namely,

FD = .5aAB = 0.

When parents are unknown, the inbreeding coe�cient is zero assuming the parents of the
individual were unrelated. After computing the diagonal element for an animal, like D,
then the remaining relationships to other animals in that row are calculated as before.
The completed matrix is given below. Note that only animal F is inbred in this example.
The inbreeding coe�cient is a measure of the percentage of loci in the genome of an
animal that has become homogeneous, that is, the two alleles at a locus are the same
(identical by descent). Sometimes these alleles may be lethal and therefore, inbreeding is
generally avoided.

Tabular Method Example
Completed Table.

-,- -,- -,- A,B A,C E,D
A B C D E F

A 1 0 0 .5 .5 .5

B 0 1 0 .5 0 .25

C 0 0 1 0 .5 .25

D .5 .5 0 1 .25 .625

E .5 0 .5 .25 1 .625

F .5 .25 .25 .625 .625 1.125

Generally, the matrix A is nonsingular, but if the matrix includes two animals that are
identical twins, then two rows and columns of A for these animals would be identical, and
therefore, A would be singular. In this situation assume that the twins are genetically
equal and treat them as one animal (by giving them the same registration number or
identification) (see Kennedy and Schae↵er, 1989).

71 Inbreeding Calculations

The inbreeding coe�cients and the inverse of A for inbred animals are generally required
for BLUP analyses of animal models. Thus, fast methods of doing both of these calcula-
tions, and for very large populations of animals are necessary.
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A = TBT0,

where T is a lower triangular matrix and B is a diagonal matrix. Quaas (1976) showed
that the diagonals of B, say bii were

bii = (.5� .25(Fs + Fd)),

where Fs and Fd are the inbreeding coe�cients of the sire and dam, respectively, of the
ith individual. If one parent is unknown, then

bii = (.75� .25Fp),

where Fp is the inbreeding coe�cient of the parent that is known. Lastly, if neither parent
is known then bii = 1.

One of the more e�cient algorithms for calculating inbreeding coe�cients is that of
Meuwissen and Luo (1992). Animals should be in chronological order, as for the Tabular
Method. To illustrate consider the example given in the Tabular Method section. The
corresponding elements of B for animals A to F would be

⇣
1 1 1 .5 .5 .5

⌘
.

Now consider a new animal, G, with parents F and B. The first step is to set up three
vectors, where the first vector contains the identification of animals in the pedigree of
animal G, the second vector will contain the elements of a row of matrix T, and the third
vector will contain the corresponding bii for each animal.

Step 1 Add animal G to the ID vector, a 1 to the T-vector, and

bGG = .5� .25(.125 + 0) = 15/32

to the B-vector, giving

ID vector T-vector B-vector
G 1 15/32

Step 2 Add the parents of G to the ID vector, and because they are one generation back,
add .5 to the T-vector for each parent. In the D-vector, animal B has bBB = 1, and
animal F has bFF = .5. The vectors now appear as

ID vector T-vector B-vector
G 1 15/32
F .5 .5
B .5 1

135



Step 3 Add the parents of F and B to the ID vector, add .25 (.5 times the T-vector value
of the individual (F or B)) to the T-vector, and their corresponding bii values. The
parents of F were E and D, and the parents of B were unknown. These give

ID vector T-vector B-vector
G 1 15/32
F .5 .5
B .5 1
E .25 .5
D .25 .5

Step 4 Add the parents of E and D to the ID vector, .125 to the T-vector, and the
appropriate values to the B-vector. The parents of E were A and C, and the parents
of D were A and B.

ID vector T-vector B-vector
G 1 15/32
F .5 .5
B .5 1
E .25 .5
D .25 .5
A .125 1
C .125 1
A .125 1
B .125 1

The vectors are complete because the parents of A, B, and C are unknown and no
further ancestors can be added to the pedigree of animal G.

Step 5 Accumulate the values in the T-vector for each animal ID. For example, animals
A and B appear twice in the ID vector. Accumulating their T-vector values gives

ID vector T-vector B-vector
G 1 15/32
F .5 .5
B .5+.125=.625 1
E .25 .5
D .25 .5
A .125+.125=.25 1
C .125 1

Do not accumulate quantities until all pathways in the pedigree have been processed,
otherwise a coe�cient may be missed and the wrong inbreeding coe�cient could be
calculated.
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Step 6 The diagonal of the A matrix for animal G is calculated as the sum of the squares
of the values in the T-vector times the corresponding value in the B-vector, hence

aGG = (1)2(15/32) + (.5)2(.5) + (.625)2

+(.25)2(.5) + (.25)2(.5) + (.25)2 + (.125)2

= 72/64

= 1
1

8

The inbreeding coe�cient for animal G is one-eighth.

The e�ciency of this algorithm depends on the number of generations in each pedi-
gree. If each pedigree is 10 generations deep, then each of the vectors above could have
over 1000 elements for a single animal. To obtain greater e�ciency, animals with the
same parents could be processed together, and each would receive the same inbreeding
coe�cient, so that it only needs to be calculated once. For situations with only 3 or 4 gen-
eration pedigrees, this algorithm would be very fast and the amount of computer memory
required would be low compared to other algorithms (Golden et al. (1991), Tier(1990)).

71.1 Example Additive Matrix

Consider the pedigrees in the table below:

Animal Sire Dam
1 - -
2 - -
3 1 -
4 1 2
5 3 4
6 1 4
7 5 6

Animals with unknown parents may or may not be selected individuals, but their
parents (which are unknown) are assumed to belong to a em base generation of animals,
i.e. a large, random mating population of unrelated individuals. Animal 3 has one
parent known and one parent unknown. Animal 3 and its sire do not belong to the
base generation, but its unknown dam is assumed to belong to the base generation. If
these assumptions are not valid, then the concept of phantom parent groups needs to be
utilized (covered later in these notes). Using the tabular method, the A matrix for the
above seven animals is given below.
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-,- -,- 1,- 1,2 3,4 1,4 5,6
1 2 3 4 5 6 7

1 1 0 .5 .5 .5 .75 .625
2 0 1 0 .5 .25 .25 .25
3 .5 0 1 .25 .625 .375 .5
4 .5 .5 .25 1 .625 .75 .6875
5 .5 .25 .625 .625 1.125 .5625 .84375
6 .75 .25 .375 .75 .5625 1.25 .90625
7 .625 .25 .5 .6875 .84375 .90625 1.28125

Now partition A into T and B giving:

Sire Dam Animal 1 2 3 4 5 6 7 B
1 1 0 0 0 0 0 0 1.0
2 0 1 0 0 0 0 0 1.0

1 3 .5 0 1 0 0 0 0 .75
1 2 4 .5 .5 0 1 0 0 0 .50
3 4 5 .5 .25 .5 .5 1 0 0 .50
1 4 6 .75 .25 0 .5 0 1 0 .50
5 6 7 .625 .25 .25 .5 .5 .5 1 .40625

Note that the rows of T account for the direct relationships, that is, the direct transfer
of genes from parents to o↵spring.

71.2 The Inverse of Additive Relationship Matrix

The inverse of the relationship matrix can be constructed similarly to the inverse of the
genomic relationship matrix by a set of rules. Recall the previous example of seven animals
with the following values for bii.

Animal Sire Dam bii b�1
ii

1 - - 1.00 1.00
2 - - 1.00 1.00
3 1 - 0.75 1.33333
4 1 2 0.50 2.00
5 3 4 0.50 2.00
6 1 4 0.50 2.00
7 5 6 0.40625 2.4615385

Let � = b�1
ii , then if both parents are known the following constants are added to the

appropriate elements in the inverse matrix:
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animal sire dam
animal � �.5� �.5�
sire �.5� .25� .25�
dam �.5� .25� .25�

If one parent is unknown, then delete the appropriate row and column from the rules
above, and if both parents are unknown then just add � to the animal’s diagonal element
of the inverse.

Each animal in the pedigree is processed one at a time, but any order can be taken.
Let’s start with animal 6 as an example. The sire is animal 1 and the dam is animal 4. In
this case, � = 2.0. Following the rules and starting with an inverse matrix that is empty,
after handling animal 6 the inverse matrix should appear as follows:

1 2 3 4 5 6 7
1 .5 .5 -1
2
3
4 .5 .5 -1
5
6 -1 -1 2
7

After processing all of the animals, then the inverse of the relationship matrix for
these seven animals should be as follows:

1 2 3 4 5 6 7
1 2.33333 .5 -.66667 -.5 0 -1 0
2 .5 1.5 0 -1.00000 0 0 0
3 -.66667 0 1.83333 .5 -1 0 0
4 -.5 -1 .5 3.0000 -1 -1 0
5 0 0 -1 -1 2.61538 .61538 -1.23077
6 -1 0 0 -1 .61538 2.61538 -1.23077
7 0 0 0 0 -1.23077 -1.23077 2.46154

The product of the above matrix with the original relationship matrix, A, gives an
identity matrix.

71.3 R function To Construct A-inverse

Given a pedigree list and the corresponding bii values for each animal in the pedigree, then
the inverse of A can be written. Below is a function in R that will do those calculations.
Animals should be numbered consecutively from 1 to N .

139



R Statements

# sid is a list of the sire IDs
# did is a list of the dam IDs
AINV = function(sid,did,bi) {
nam = length(sid)
np = nam + 1
roul = matrix(data=c(1,-0.5,-0.5,
-0.5,0.25,0.25,-0.5,0.25,0.25),ncol=3)
ss = sid + 1
dd = did + 1
LAI = matrix(data=c(0),nrow=np,ncol=np)
for(i in 1:nam) {
ip = i + 1
k = cbind(ip,ss[i],dd[i])
x = 1/bi[i]
LAI[k,k] = LAI[k,k] + roul*x
}
k = c(2:np)
AI = LAI[k,k]
return(AI) }

71.4 Phantom Parent Groups

Westell (1984) and Robinson (1986) assigned phantom parents to animals with unknown
parents. Each phantom parent was assumed to have only one progeny. Phantom parents
were assumed to be unrelated to all other real or phantom animals.

Phantom parents whose first progeny were born in a particular time period probably
underwent the same degree of selection intensity to become a breeding animal. However,
male phantom parents versus female phantom parents might have been selected di↵erently.
Phantom parents were assigned to phantom parent groups depending on whether they were
sires or dams and on the year of birth of their first progeny.

Genetic groups may also be formed depending on breed composition and/or regions
within a country. The basis for further groups depends on the existence of di↵erent
selection intensities involved in arriving at particular phantom parents.

Phantom parent groups are best handled by considering them as additional animals
in the pedigree. Then the inverse of the relationship matrix can be constructed using the
same rules as before. These results are due to Quaas (1984). To illustrate, use the same
seven animals as before. Assign the unknown sires of animals 1 and 2 to phantom group
1 (P1) and the unknown dams to phantom group 2 (P2). Assign the unknown dam of
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animal 3 to phantom group 3 (P3). The resulting matrix will be of order 10 by 10 :

A�1
⇤ =

 
Arr Arp

Apr App

!

,

where Arr is a 7 by 7 matrix corresponding to the elements among the real animals; Arp

and its transpose are of order 7 by 3 and 3 by 7, respectively, corresponding to elements
of the inverse between real animals and phantom groups, and App is of order 3 by 3 and
contains inverse elements corresponding to phantom groups. Arr will be exactly the same
as A�1 given in the previous section. The other matrices are

Arp =

0

BBBBBBBBBBB@

�.5 �.5 .33333
�.5 �.5 0

0 0 �.66667
0 0 0
0 0 0
0 0 0
0 0 0

1

CCCCCCCCCCCA

App =

0

B@
.5 .5 0
.5 .5 0
0 0 .33333

1

CA

In this formulation, phantom groups (according to Quaas (1984)) are additional fixed
factors and there is a dependency between phantom groups 1 and 2. This singularity
can cause problems in deriving solutions for genetic evaluation. The dependency can be
removed by adding an identity matrix to App. When genetic groups have many animals
assigned to them, then adding the identity matrix to App does not result in any significant
re-ranking of animals in genetic evaluation and aids in getting faster convergence of the
iterative system of equations.

Phantom groups are used in many genetic evaluation systems today. The phantom
parents assigned to a genetic group are assumed to be the outcome of non random mating
and similar selection di↵erentials on their parents. This assumption, while limiting, is not
as severe as assuming that all phantom parents belong to one base population.

72 Identical Genotypes

Occasionally genetically identical twins are born, arising from a single embryo. These
individuals share all of the same genetic material, both nuclear and non-nuclear DNA. In
an additive genetic relationship matrix the rows for those two animals will be identical,
and therefore, a dependency exists in the relationship matrix and an inverse is not possible.

Clones are individuals that tend to share only the nuclear DNA, and the assumption
is that the non-nuclear DNA can cause genetic and phenotypic di↵erences between the
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animals in their development. The additive genetic portion, which is passed on to progeny,
is in the nuclear DNA, and therefore, the additive relationship matrix will have identical
rows of numbers for clones from the same animal. The additive relationship matrix would
be singular.

Kennedy and Schae↵er (1989) suggested that the relationship matrix be constructed
for “genotypes” rather than for individuals in the case of these identical animals. If
there were five clones of one animal, then the animal and its clones would represent one
genotype, and so there would be only one row of the additive relationship matrix for all
six animals. If the animals were measured for some trait, then that “genotype” would
have repeated observations (without permanent environmental e↵ects). They would all
receive the same estimated breeding value.

One could also treat them as full-sibs, all having the same parents, but not sharing
the exact same DNA. If there were many of these in the data file, then it could cause an
overestimation of the additive genetic variance. Therefore, this approach would not be
suitable.

73 Unknown Sires

In some situations a female is exposed to more than one possible mate. For example, a
group of cows in a beef herd may have access to 3 or 4 males during the breeding season.
Another example occurs in mink breeding where the success of having conception requires
mating a female three times with di↵erent males at each mating. Progeny born from one
female are a mixture of progeny of those three males. That is, di↵erent eggs could be
fertilized by di↵erent males. Through genetic tests, the probabilities that a progeny is
from either the first, second, or third male are known.

The additive relationship matrix can be constructed using the probabilities that a
specific male is the sire of a given progeny. An example is as follows: Animals A and B
are males, C is a female, and D is a progeny of C with 0.25 probability that the sire was
A and 0.75 probability that the sire was B. Construct the additive genetic relationship
matrix for this pedigree.

A B C D
A 1 0 0 .125
B 0 1 0 .375
C 0 0 1 .5
D .125 .375 .5 1

Normally the relationship of the sire to its progeny (if unrelated to the dam) is 0.5,
but in this case, for the relationship between A and D, the value has to be multiplied
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times the probability of A being the sire of D. Between B and D, the relationship of .5
has to be multipled times .75.

The inverse of this matrix is derived in a similar manner as the regular additive
relationship matrix. The bi values for animals A, B, and C are equal to 1. Because D has
two possible sires, its bi value needs to be calculated di↵erently.

ID vector T-vector B-vector
D 1 x
C .5 1
B .375 1
A .125 1

The diagonal of A for animal D has to be assumed to be known, as one plus one half
the relationship between the sire(s) and dam. In this case, A, B, and C are all unrelated,
and therefore, D will not be inbred, so that the diagonal of A will be 1.

aDD = 1 = x + (.5)2(1) + (.375)2(1) + (.125)2(1)

Solving for x gives .59375 = bD. The inverse elements added to A for animal D are
given by

0

BBB@

�.125
�.375
�.5
1

1

CCCA
1

.59375

⇣
�.125 �.375 �.5 1

⌘
=

0

BBB@

.0263 .0789 .1053 �.2105

.0789 .2368 .3158 �.6316

.1053 .3158 .4211 �.8421
�.2105 �.6316 �.8421 1.6842

1

CCCA .

To complete the inverse, add 1 to the diagonals for animals A, B, and C.

74 EXERCISES

1. Use the following data for this problem.

Treatment Animal Sire Dam Observations
1 1 15
2 2 73
1 3 44
2 4 1 3 56
1 5 2 4 55
2 6 1 5 61
1 7 6 4 32
2 8 7 5 47
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Let the model equation be

yij = Ti + pj + mj + eij

where Ti is a fixed treatment e↵ect, pj is a random, paternal gamete e↵ect of animal
j, mj is a random, maternal gamete e↵ect of animal j, and eijk is a random, residual
e↵ect. Assume that

�2
e = 3.2�2

G.

(a) Complete the genomic relationship matrix for the eight animals, and the inverse
of it.

(b) Construct the MME and solve.

(c) Predict the breeding values of each animal and obtain the standard errors of
prediction.

(d) Test the di↵erence between the treatments.

(e) Form the additive relationship matrix for this pedigree.

(f) Calculate the inverse of A.

(g) Assume the model
yij = Ti + aj + eij

where aj is the animal additive genetic e↵ect with covariance matrix A�2
a, and

where
�2

e = 1.6�2
a.

Construct the MME for this model and solve. Compare EBVs from this model
and the previous model.

2. Use the following data for this problem.

Animal Sire Dam CG Observations
1
2
3
4 1 3 1 6
5 2 4 1 15
6 1 1 9
7 2 6 2 11
8 1 3 2 8
9 2 4 2 13
10 5 8 3 7
11 5 3 3 10
12 2 7 3 5

144



Let the model equation be
yij = CGi + aj + eij

where CGi is a fixed contemporary group e↵ect, aj is a random, animal additive
genetic e↵ect, and eijk is a random residual e↵ect. Assume that

�2
e = 1.2 �2

a.

(a) Complete the additive relationship matrix and the inverse of it.

(b) Construct the MME and solve for this model.

(c) Compute SEP for the EBV and also reliabilities.

3. You are given the following pedigree information and values of bi. Determine the bi

value and inbreeding coe�cient of animal H which is a progeny of animals G and F.

Animal Sire Dam Fi bi

A 0 1
B A 0 3/4
C A B 1/4 1/2
D C B 3/8 7/16
E A D 5/16 13/32
F C D 1/2 11/32
G E B 11/32 27/64
H G F

Write out A�1 for this pedigree using Henderson’s rules.

4. The following boxes are from a larger genomic relationship matrix.

L K
Km Kf Lm Lf Mm Mf

Gm 1
2 0 1

4
3
8 w x

Gf 1
4

1
2

1
2

1
8 y z

(a) Calculate w, x, y, and z.

(b) Calculate aGL and dGL

5. Assign phantom groups to replace missing sire and dam identifications in the fol-
lowing pedigree.
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Animal Sire Dam Sex Year of birth
1 M 1970
2 F 1970
3 M 1971
4 F 1971
5 F 1971
6 M 1970
7 1 F 1972
8 2 M 1972
9 F 1972
10 M 1972

Form the inverse of the relationship matrix, including the phantom groups.

6. For the example pedigree in the section on Unknown Sires, compute the inverse
of the A matrix assuming the probability that the sire is animal A of 0.3, and for
animal B is 0.7.

7. In the section on Unknown Sires, let three unrelated sires be animals G, H, and
K. Female M was exposed to all three sires (as in mink). The probabilities of the
three sires being the sire of a progeny are .2, .5, and .3, for animals G, H, and K,
respectively. Also assume that animal M is related to animal H by .25. Construct
the A matrix and derive the inverse (without inverting A directly).
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Phantom Parent Groups

75 Background History

Pedigree information on each animal may not be traceable back to the same base genera-
tion due to lack of recording and/or movement of animals from one owner to another (in
the same or di↵erent countries). Therefore, a pedigree file may have many animals with
missing parent identification. Animals with missing parents should not be assumed to be
from a homogeneous base population.

One technique to deal with missing parent information is to assign a parent group
to an animal based upon the year of birth of the animal and the pathway of selection. If
the animal is a female, for example, and the dam information is missing, then the parent
group would be in the Dams of Females pathway (DF). There are also Dams of Males
(DM), Sires of Females (SF), and Sires of Males (SM). Four pathways and various years of
birth nested within each pathway. These have become known as phantom parent groups.

Genetic group e↵ects are added to the model.

y = Xb + ZQg + Za + e,

where

a is the vector of animal additive genetic e↵ects,

Z is the matrix that relates animals to their observations,

g is the vector of genetic group e↵ects, and

Q is the matrix that relates animals to their genetic groups, and

y,Xb, e are as described in earlier notes.

The Estimated Breeding Value, EBV, of an animal is equal to the sum of the group and
animal solutions from MME, i.e.

Vector of EBVs = Qĝ + â.

The grouping strategy described above was developed by Westell (1988), Quaas(1988),
and Robinson(1986). To illustrate, phantom parents have been added to the following
pedigrees, indicated by P1 to P6.
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Animal Sire Dam
A P1 P4
B P2 P5
C P3 P6
D A B
E A C
F E D

Now assign P1, P2, and P3 to genetic group 1 and P4, P5, and P6 to genetic group
2. The pedigree list becomes

Animal Sire Dam
A G1 G2
B G1 G2
C G1 G2
D A B
E A C
F E D

75.1 Simplifying the MME

The advantage of phantom parent grouping is that the mixed model equations simplify
significantly. Using the previous model, the MME are

0

B@
X0X X0ZQ X0Z
Q0Z0X Q0Z0ZQ Q0Z0Z
Z0X Z0ZQ Z0Z + A�1↵

1

CA

0

B@
b̂
ĝ
â

1

CA =

0

B@
X0y
Q0Z0y
Z0y

1

CA .

Notice that Q0 times the third row subtracted from the second row gives

Q0A�1â↵ = 0.

Quaas and Pollak (1981) showed that the above equations could be transformed so that
Qĝ + â can be computed directly. The derivation is as follows. Note that

0

B@
b̂
ĝ
â

1

CA =

0

B@
I 0 0
0 I 0
0 �Q I

1

CA

0

B@
I 0 0
0 I 0
0 Q I

1

CA

0

B@
b̂
ĝ
â

1

CA

=

0

B@
I 0 0
0 I 0
0 �Q I

1

CA

0

B@
b̂
ĝ

Qĝ + â

1

CA .
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Substituting this equality into the left hand side (LHS) of the MME gives
0

B@
X0X 0 X0Z

Q0Z0X 0 Q0Z0Z
Z0X �A�1Q↵ Z0Z + A�1↵

1

CA

0

B@
b̂
ĝ

Qĝ + â

1

CA =

0

B@
X0y

Q0Z0y
Z0y

1

CA .

To make the equations symmetric again, both sides of the above equations must be
premultiplied by 0

B@
I 0 0
0 I �Q0

0 0 I

1

CA .

This gives the following system of equations as
0

B@
X0X 0 X0Z
0 Q0A�1Q↵ �Q0A�1↵

Z0X �A�1Q↵ Z0Z + A�1↵

1

CA

0

B@
b̂
ĝ

Qĝ + â

1

CA =

0

B@
X0y
0

Z0y

1

CA .

Quaas (1988) examined the structure of Q and the inverse of A under phantom parent
grouping and noticed that Q0A�1Q and �Q0A�1 had properties that followed the rules
of Henderson (1976) for forming the elements of the inverse of A. Thus, the elements of
A�1 and Q0A�1Q and �Q0A�1 can be created by a simple modification of Henderson’s
rules. Use �i as computed earlier, (i.e. �i = B�1

ii ), and let i refer to the individual animal,
let s and d refer to either the parent or the phantom parent group if either is missing,
then the rules are

Constant to Add Location in Matrix
�i (i, i)

��i/2 (i, s),(s, i),(i, d), and (d, i)
�i/4 (s, s),(d, d),(s, d), and (d, s)

Thus, Q0A�1Q and Q0A�1 can be created directly without explicitly forming Q and
without performing the multiplications times A�1.

75.2 Typical Computational Problems

The solution to the modified equations has a problem in that the genetic group e↵ects are
still fixed e↵ects and some restriction on their solutions may be needed to reach conver-
gence. For animals with both parents unknown, then there can be complete confounding
between the sire parent group and the dam parent group which causes a problem in getting
a solution. Kennedy proposed to break confounding by defining genetic groups such that
sire parent groups might be 70-71, 72-73, etc., while dam parent groups might be 69-70,
71-72, 73-74, etc. giving an overlap between sire and dam groups. Schae↵er (personal
practice) suggested adding ↵ to the diagonals of the genetic group e↵ect equations in
the modified equations. This automatically removes confounding, and the genetic group
solutions sum to zero.
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76 Estimation of Variances

A simulation study was conducted to look at the e↵ects of genetic grouping methods, in
general. A base population of 100 sires and 2000 dams was generated. Matings within
a generation were random. Each mating resulted in one o↵spring, hence 2000 o↵spring
per generation. Two correlated traits were simulated for each animal with a genetic
correlation of 0.10, and a residual correlation of 0.30. Selection of males and females
for the next generation was on the basis of trait 2 phenotypes (available for males and
females). Animals were selected across generations, and so generations were overlapping.
Trait 1 was analyzed in this study and only females after generation 0 were assumed to
have single records for trait 1. The residual and genetic variances for both traits were
the same. Total phenotypic variance was 100, and heritability in the base population was
0.25. Eight generations of selection and matings were made after the base population.
Complete pedigrees were known in this population, denoted as P0. No phantom grouping
was necessary with this population because all animals traced back to the same base
population parents.

Two subpopulations were created from P0 by randomly eliminating parents of an-
imals. Two di↵erent percentages were utilized, being 10 and 25%, denoted as P10 and
P25, respectively. Di↵erent rates were used to test the impact on EBVs and genetic pa-
rameters. Phantom parent groups were formed according to the four pathways of selection
and by generation of birth, i.e. 32 groups. There were no attempts to ensure a particular
number of animals per group, but on average there would be 50 per group at 10% and
125 at 25%. The unknown parents, however, have an e↵ect on the inbreeding coe�cients,
and therefore, on the elements in the relationship matrix inverses.

77 Models of Analyses

Several di↵erent models were applied to each data set.

77.1 Model 1

A simple animal model was assumed where

y = 1µ + Za + e,

where y are the trait 1 single records on females, µ is the overall mean, a is the vector of
animal additive genetic e↵ects for all males and females in the population, and e is the
vector of residual e↵ects. Also,

V ar(a) = A�2
a,
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where A�1 was created from the pedigree that was known in a given population. This
model assumes all animals can be traced back to the same base population animals.

77.2 Model 2

Due to selection there are usually time trends that need to be taken into account. This is
accomplished by adding a generation e↵ect to the model replacing the overall mean e↵ect.
This is also a form of genetic grouping where Q denotes to which group each animal with
a record belongs, and X = ZQ.

y = Xb + Za + e,

where b are the 8 generation e↵ects. Phantom parent groups are not utilized with this
model. The EBVs of animals with records is the sum of the generation group solution
plus the additive genetic solution.

77.3 Model 3

The model is
y = 1µ + ZQg + Za + e,

where Q describes the phantom parent grouping definitions, and g are the phantom group
e↵ects. With this model the phantom group e↵ects can be either fixed or random. This
model and model 4 were only applied to populations P10 and P25. EBVs were obtained
directly from this model (Qĝ + â).

77.4 Model 4

The model is
y = Xb + ZQg + Za + e,

which has generation e↵ects in b and also uses phantom grouping in g. The definition of
an EBV is not clear in this model. There is double counting for genetic trend in b and in
g. The EBV was the sum of the generation group solution and the animal solution.

78 Analyses

Fifty (50) replicates were made of each population structure and model of analysis. Vari-
ance components were estimated using Bayesian methods and Gibbs sampling (30,000
total samples and 3,000 burn-in period).
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EBVs were calculated in the next step using the estimated components, using a set
convergence criteria or a maximum of 3000 iterations, whichever came first. No restrictions
were placed on any solutions. Iteration on data methods were used to solve the MME.
Average inbreeding coe�cients by generation were summarized. Correlations of EBVs
with true breeding values were computed for all animals in generations 1 to 8. True
genetic trends in males and females by generation were averaged over replicates. The
di↵erence between true generation average and estimated average in generation 8 was
used to determine if trends were under or over estimated.

Note that when phantom groups were fixed, there were severe confounding problems
with the MME, and therefore, only results for when the variance ratio (residual to genetic)
was added to the diagonals of the phantom group equations are reported here(i.e. when
phantom groups were random). The correlations between true and estimated breeding
values for fixed phantom groups were less than 0.2 with Model 3, for example.

79 Results

Table 1 gives the correlations between true and estimated breeding values of all animals
from generations 1 to 8. The best model appears to be one without any generation
e↵ects or phantom groups, for all pedigree structures. As the percentage of animals
with unknown parents is increased the correlation decreases. Di↵erences between models
and pedigree structures were significantly di↵erent from Model 1 and P0. Although the
di↵erences are significant statistically, they may not be practically significant.

Table 1
Correlations of true breeding values with
estimated breeding values of all animals

from generations 1 to 8.
Standard error of estimates was 0.0025.

Data Model 1 Model 2 Model 3 Model 4
Set µ Xb µ + ZQg Xb + ZQg

P0 .588 .579

P10 .575 .567 .567 .568

P25 .555 .550 .544 .547

Average inbreeding coe�cients of animals born in generation 8 are given in Table
2. When full pedigree information was available back to the base population, then the
average inbreeding coe�cient was 0.00872. When 10% of the parents were assumed to
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be unknown the average inbreeding coe�cient dropped by about 0.0027 (which was sta-
tistically significant), and at 25% a drop of 0.0054 occurred. Thus, inbreeding rate is
significantly underestimated when pedigrees are missing. The di↵erences are small on a
practical basis, but over time these di↵erences would become greater.

Table 2
Average inbreeding coe�cients computed from

known pedigree information of animals in
generation 8.

Standard error of estimates was 0.000001.
Data Model 1 Model 2 Model 3 Model 4
Set µ Xb µ + ZQg Xb + ZQg

P0 .00872 .00872

P10 .00596 .00594 .00585 .00587

P25 .00330 .00328 .00325 .00322

Estimates of genetic and residual variances and heritability are given in Table 3.
Model 1 was unbiased for all three pedigree structures, as was Model 3 for P10 and P25.
Thus, phantom parent groups may be ignored when estimating genetic parameters under
any pedigree structure. Including a fixed generation e↵ect in the model tended to bias the
genetic component downwards and resulted in underestimated heritability. The residual
component was not a↵ected.

Table 3
Estimates of genetic (G) and residual (R)

variances and heritability (h2).
Standard errors of estimates were 0.60, 0.71,

and 0.006 for R, G, and h2, respectively.
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Data Model 1 Model 2 Model 3 Model 4
Set µ Xb µ + ZQg Xb + ZQg

P0 R 74.8 75.5
G 25.1 24.2
h2 .251 .242

P10 R 74.8 75.7 74.9 75.4
G 25.3 23.8 25.4 24.2
h2 .252 .239 .252 .243

P25 R 74.9 75.9 74.9 75.4
G 25.2 23.5 25.3 24.2
h2 .251 .236 .252 .242

Genetic trends were also a↵ected by the model and pedigree structure. The average
di↵erences between true genetic averages and estimated genetic averages in generation 8
are shown in Table 4. Model 1 (with no generation e↵ects or phantom groups) always
underestimated the true genetic change in the population. The bias increased as the
percentage of unknown parents increased. Model 3 (with phantom parent groups) was
also underestimated, but not as much as Model 1. When generation e↵ects were in the
model (Models 2 and 4), then genetic trends were estimated unbiasedly.

Table 4
Average di↵erence of true minus estimated
genetic averages of animals in generation 8,

expressed in genetic standard deviation units.
Standard error of estimates was 0.008.

Data Model 1 Model 2 Model 3 Model 4
Set µ Xb µ + ZQg Xb + ZQg

P0 .187 -.004

P10 .274 -.005 .233 .007

P25 .361 -.005 .246 .010

Table 5 shows trends in phantom group solutions for Model 3 as fixed or random,
averaged over replicates, and also shows true genetic trends for comparison and estimates
of generation e↵ects from Model 2. Phantom group solutions did not follow true genetic
trends (either as fixed or as random), and there is no theoretical requirement anywhere
that the phantom group solutions should be smooth or linear. When phantom groups are
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fixed, the estimates had much higher standard errors, and were too variable from replicate
to replicate. The generation e↵ect estimates from Model 2 were linear and smooth, but
underestimated the true genetic trend. However, when the generation e↵ect solutions are
added to the animal solutions to give EBV, the trend in average EBV gives an unbiased
estimate of the true genetic trend.

Table 5
Two sets of phantom group solutions for Model 3,

P10, for fixed and random analysis, average
estimates of generation e↵ects from Model 2,

and average true breeding values by generation.
Gen. True b̂ SB SC DB DC

1 -.044 .006 .093 -1.220 .730 -.580 R
2.526 -1.448 2.408 -.590 F

2 .661 .530 .276 .447 .714 .079 R
-5.268 .780 6.311 .175 F

3 1.041 .930 .762 -.450 1.202 .407 R
3.295 -.472 -.469 .589 F

4 1.426 1.219 .968 1.948 1.300 1.302 R
1.892 2.743 3.443 1.682 F

5 1.841 1.625 1.072 1.558 1.172 1.086 R
-1.974 2.206 3.455 1.401 F

6 2.220 1.996 1.518 1.457 1.704 1.467 R
-2.589 2.116 4.278 1.885 F

7 2.665 2.301 .855 1.875 .647 1.592 R
-1.505 2.690 -7.416 2.021 F

8 3.006 2.668 .003 2.150 .005 1.921 R
.000 3.087 .000 2.492 F

SE .099 .373 .373 .373 .373 R
2.366 2.366 2.366 2.366 F

80 Discussion and Conclusions

Limitations of this study were

1. Missing parents were determined randomly for lack of knowledge about how missing
parents are actually sampled. Thus, if parents are missing based on some selective
strategy, then the results could be much worse than shown here for P10 and P25.

2. Selection in this simulation on phenotypes of trait 2, while analyzing only trait 1
in females was a simplification as might occur when analyzing fertility traits, for
example, after selection for many generations on production.
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3. Phenotypic selection would keep inbreeding from accumulating too quickly in this
small population.

4. Assortative mating of parents would be another complication to this simulation that
would likely increase inbreeding, as well as genetic change.

5. Results may also di↵er slightly with heritability of the trait.

The choice of model seems to depend on the objective of the analysis. If the objective
is to estimate the genetic parameters unbiasedly, then Model 1 should be used. However,
Model 1 significantly underestimates genetic trends. The best model for estimation of
genetic trend was Model 2. The degree of underestimation by Model 1 depends on the
percentage of missing parent information. Thus, the best course of action seems to be to
use Model 1 for estimating parameters, and with those parameter estimates use Model 2
to get unbiased estimates of genetic trend and presumably EBVs. Hence, phantom parent
groups are not necessary for either objective. Models 3 and 4 gave lower correlations of
true BV with EBV than Models 1 or 2.

If phantom parent groups are used, then do not expect the solutions to be smooth
and linear, or to follow the true genetic trend. Forcing phantom group solutions to be
smooth would be incorrect and could introduce bias to EBVs. Phantom groups as random
should be better than phantom groups as fixed, but there have been other studies that
have shown no di↵erences between fixed or random if the number of animals per phantom
group is large.
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Animal Model

81 Introduction

In animal genetics, measurements are taken on individual animals, and thus, the model
of analysis should include the animal additive genetic e↵ect. The remaining items in the
model are factors that have an e↵ect on the trait of interest. The infinitesimal genetic
model is assumed, and the animals that have been measured should represent a random
sample (or the entire sample) of progeny of the breeding males and females in the popu-
lation. That means measurements should not be taken only from the biggest progeny, or
the best progeny, or the poorest progeny, but a random sample of progeny.

A simple animal model with one record per animal is

yi = µ + ai + ei,

where yi is the phenotypic record or observation, µ is the overall mean of the observations,
ai are the additive genetic values of animals, and ei are the residual or environmental
e↵ects associated with the ith observation. Assumptions for this model are

1. The population is large (infinite) in size.

2. The association of alleles from the two parents is assumed to be at random.

3. No selection has been imposed on individual records.

4. Only additive genetic e↵ects exist.

5. The influence of other factors on the observations is absent.

The expectations (for the example data to follow) are

E(ai) = 0, and E(ei) = 0,

and the variances are

V ar(ai) = �2
a,

V ar(ei) = �2
e .

The variances are assumed known, at least to proportionality. The covariance matrix of
the vector of animal additive genetic e↵ects is

V ar(a) = A�2
a.
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The relationship matrix is assumed to be complete back to the base population ( a large,
randomly mating population ).

The heritability of the trait is

h2 =
�2

a

�2
a + �2

e

,

and the ratio of variances is

↵ =
�2

e

�2
a

.

82 Example Problem

Below is the pedigree information and data on 16 animals. The first four animals were
base generation animals without records.

82.1 Data

Animal Sire Dam Record Animal Sire Dam Record
1 0 0 9 5 6 36.0
2 0 0 10 7 8 66.4
3 0 0 11 5 8 28.9
4 0 0 12 7 6 73.0
5 1 2 38.5 13 1 6 44.2
6 3 4 48.9 14 3 8 53.4
7 3 2 64.3 15 5 4 33.6
8 1 4 50.5 16 7 8 49.5

The number of observations is N = 12, and the total sum of squares is 30, 811.78.
Let �2

a = 36, and �2
e = 64, so that h2 = 0.36, and ↵ = 1.777778.
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82.2 Additive Genetic Relationships

The matrix of additive genetic relationships among the sixteen individuals is A (times
16) given below:

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

16 0 0 0 8 0 0 8 4 4 8 0 8 4 4 4
0 16 0 0 8 0 8 0 4 4 4 4 0 0 4 4
0 0 16 0 0 8 8 0 4 4 0 8 4 8 0 4
0 0 0 16 0 8 0 8 4 4 4 4 4 4 8 4
8 8 0 0 16 0 4 4 8 4 10 2 4 2 8 4
0 0 8 8 0 16 4 4 8 4 2 10 8 6 4 4
0 8 8 0 4 4 16 0 4 8 2 10 2 4 2 8
8 0 0 8 4 4 0 16 4 8 10 2 6 8 6 8
4 4 4 4 8 8 4 4 16 4 6 6 6 4 6 4
4 4 4 4 4 4 8 8 4 16 6 6 4 6 4 8
8 4 0 4 10 2 2 10 6 6 18 2 5 5 7 6
0 4 8 4 2 10 10 2 6 6 2 18 5 5 3 6
8 0 4 4 4 8 2 6 6 4 5 5 16 5 4 4
4 0 8 4 2 6 4 8 4 6 5 5 5 16 3 6
4 4 0 8 8 4 2 6 6 4 7 3 4 3 16 4
4 4 4 4 4 4 8 8 4 8 6 6 4 6 4 16

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

.

82.3 Application of BLUP with R

The construction of mixed model equations begins by defining X, Z, G and R.

X is a vector of ones of order 12 by 1.

Z is a 12 by 16 matrix, in which the first four columns are all zero, and the last 12
columns are an identity matrix.

G is A�2
a of order 16, and

R is I�2
e of order 12.

To set up X in R, use the jd function below.

# function to form a J matrix - all ones
jd <- function(n,m) matrix(c(1),nrow=n,ncol=m)

X = jd(12,1)

There are at least two ways to create Z.

159



# First Method
# function to make an identity matrix
id <- function(n) diag(c(1),nrow=n,ncol=n)

Z = cbind((jd(12,4)*0),id(12))

# Second Method
# function to make a design matrix
desgn <- function(vnum) {
mrow = length(vnum)
mcol = max(vnum)
W = matrix(data=c(0),nrow=mrow,ncol=mcol)
for(i in 1:mrow) {
ic = vnum[i]
W[i,ic] = 1 }
return(W) }

anim = c(5:16) # animals with records
Z = desgn(anim)

The desgn function can be used generally for creating design matrices from a list of
the levels of a factor.

The inverse of the relationship matrix is needed. A list of the sires and dams of the
16 animals are needed, with zeros for missing parents, and a list of the bi values for each
animal are needed. In this example, the bis for animals 1 to 4 are 1, and for animals 5
through 16 are 0.5.
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y = matrix(data=c(38.5,48.9,64.3,50.5,36.0,66.4,28.9,
73.0,44.2,53.4,33.6,49.5)
bii = c(1,1,1,1,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5)
sid = c(0,0,0,0,1,3,3,1,5,7,5,7,1,3,5,7)
did = c(0,0,0,0,2,4,2,4,6,8,8,6,6,8,4,8)

AI = AINV(sid,did,bii)

# multiply AI by the variance ratio
GI = AI * alpha

RI = id(12)

Alpha is the ratio of residual to additive genetic variances. In this example, the ratio
is 64 divided by 36, or 1.778. The last line above creates the inverse of R which is an
identity matrix. Finally, the mixed model equations are created and solved using the MME
function given in an earlier section of the notes.

Exmp = MME(X,Z,GI,RI,y)

Exmp$LHS
Exmp$RHS
Exmp$C
Exmp$SOLNS

82.4 Solutions and SEP

The solutions for the animals are given in the next table. The estimate of the overall
mean was 48.8955.

EBV for animals from MME and diagonals of the inverse
of the LHS.
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Animal EBV Diagonals
1 -4.7341 .4866
2 .3728 .4959
3 5.8579 .4786
4 -1.4967 .4975

5 -7.1305 .4198
6 2.1335 .4260
7 8.4380 .4137
8 -2.1543 .4274
9 -4.7807 .4592

10 6.2947 .4582
11 -8.0126 .4795
12 9.4167 .4751
13 -2.0456 .4507
14 2.4341 .4501
15 -6.7242 .4459
16 2.5849 .4582

An estimate of the residual variance is obtained by subtracting the total sum of
squares minus the sum of squares due to the model, and dividing that by N � r(X).

SST = 30, 811.78

SSR = 29, 618.3158

SST � SSR = 1193.464

�̂2
e = 108.4967

The Standard Error of Prediction (SEP) of an Estimated Breeding Value (EBV) is
the square root of the product of the diagonal of the inverse of the LHS times the estimate
of residual variance. Thus for animal 1 in the table above, the SEP is

SEP = (.4866⇥ 108.4967).5 = 7.2662.

82.5 Reliability

The reliability (REL) of an EBV is another measure of accuracy of the estimate.

RELi = (aii � cii↵)/aii,

where aii is the diagonal of the A matrix for animal i, and cii is the diagonal of the inverse
of the LHS (in the table above). For animal 1,

REL = (1 � .4866(1.778))/1 = .1349.
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The reliability is only 13.49 %, which is low.

Publication of “o�cial” EBV often requires a minimum reliability, such as 75%, plus
minimums on number of progeny and number of contemporary groups for those progeny.

83 Simulation of Records

The sampling processes involved in generating a set of data are better understood through
simulation.

83.1 Generating Breeding Values of Animals

Let the heritability of the trait be 0.25, and the variance of phenotypic records to be 100.
Then, �2

a = 25, and �2
e = 75. Breeding values of base population animals are created by

multiplying a pseudo-random normal deviate, RND, times the genetic standard deviation,
�a = 5. Let there be two base animals,

a1 = �1.8014 ⇤ 5 = �9.0070

a2 = 0.6556 ⇤ 5 = 3.2780

Progeny can be generated from animals previously generated as the average of the
parent breeding values plus a Mendelian sampling e↵ect. The Mendelian sampling e↵ect
is the product of another random normal deviate times the genetic standard deviation of
the Mendelian sampling e↵ect. The variance of the Mendelian sampling e↵ect is bi times
the genetic variance, where bi is obtained during the calculation of inbreeding coe�cients
(given in previous notes). That is,

bi = (0.5� 0.25 ⇤ (Fs + Fd)),

where Fs and Fd are the inbreeding coe�cients of the sire and dam, respectively.

Let Animal 3 be a progeny of animals 1 and 2,

a3 = 0.5 ⇤ (a1 + a2) + m3

b3 = 0.5,

m3 = (0.5).5�a RND

= 0.7071 ⇤ 5 ⇤ (�.4045),

= �1.4301
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a3 = 0.5(�9.0070 + 3.2780)� 1.4301

= �4.2946.

83.2 Phenotypic Records

To create phenotypic records, the equation of the model must be specified. Assume that

yij = µ + dj + ai + eij,

where µ is an overall mean (assume a value of 50); dj is a diet e↵ect for one of 3 diets, ai

is the animal breeding value, and eij is a residual e↵ect.

Animals must be assigned to a diet. One way is to have the experimental design
known in advance, such that an animal is created for a specific diet. Another way is to
pick one of the three diets randomly and assign it to that animal. The di↵erences among
the diets should be set before generating records. Assume that

d1 = �10.0,

d2 = 0,

d3 = 10.0.

Diet di↵erences would be constant for all animals generated. If the simulation were
repeated, then the same di↵erences would probably be used. This would be the tradition-
alist’s view of a fixed factor.

Residual e↵ects are random and specific to each observation. A residual e↵ect is
generated by multiplying a random normal deviate times the residual standard deviation.

A record for animal 3, in diet 3, would be

y33 = 50 + 10.0 � 4.2946 + .3939(8.6602) = 59.1167.

Usually observations will be to the nearest whole number, so that y33 = 59 would be the
final result for animal 3.

If animals are generated in chronological order, then inbreeding coe�cients need to be
calculated as new animals are generated, so that bi values can be obtained for generating
Mendelian sampling e↵ects. This is an e�cient algorithm for simulating data for large
populations. A later set of notes will consider using R to generate large populations of
animals for single or multiple traits.

84 Measuring Genetic Change

To measure genetic change, the population needs to be defined precisely. In dairy cattle,
one population would be all females born, by year of birth. Then the average EBVs of

164



cows by year of birth would estimate the genetic change in new females coming into the
population.

Another population could be all females calving in a particular year. This is di↵erent
from the first population because cows can have several calvings over their lifetime, and
secondly not all females that are born would necessarily calve even once. A cow’s EBV
could appear in the calculations in more than one year of calving. This would represent
the trend in genetic merit of actively lactating cows.

In beef cattle, the averages for females being bred in a given year could be an inter-
esting trend to monitor versus the average of females that produce a calf. In all cases,
EBVs are used in the calculations.

Genetic trends can be overestimated if the heritability used in the calculation of
EBV is too large. Similarly, if the heritability is too low, then genetic trend can be
underestimated. Thus, having good estimates of the variance parameters is crucial to
good estimates of genetic trend.

85 Reduced Animal Models

85.1 Usual Animal Model Approach

Consider an animal model with periods as a fixed factor and one observation per animal,
as in the table below.

Animal Model Example Data
Animal Sire Dam Period Observation

5 1 3 2 250
6 1 3 2 198
7 2 4 2 245
8 2 4 2 260
9 2 4 2 235
4 - - 1 255
3 - - 1 200
2 - - 1 225

Assume that the ratio of residual to additive genetic variances is 2. The MME for
this data would be of order 11 (nine animals and two periods).
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0

BBBBBBBBBBBBBBBBBBBB@

3 0 0 1 1 1 0 0 0 0 0
0 5 0 0 0 0 1 1 1 1 1
0 0 4 0 2 0 �2 �2 0 0 0
1 0 0 6 0 3 0 0 �2 �2 �2
1 0 2 0 5 0 �2 �2 0 0 0
1 0 0 3 0 6 0 0 �2 �2 �2
0 1 �2 0 �2 0 5 0 0 0 0
0 1 �2 0 �2 0 0 5 0 0 0
0 1 0 �2 0 �2 0 0 5 0 0
0 1 0 �2 0 �2 0 0 0 5 0
0 1 0 �2 0 �2 0 0 0 0 5

1

CCCCCCCCCCCCCCCCCCCCA

0

BBBBBBBBBBBBBBBBBBBBB@

b̂1

b̂2

â1

â2

â3

â4

â5

â6

â7

â8

â9

1

CCCCCCCCCCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBBBBBBBBB@

680
1188

0
225
200
255
250
198
245
260
235

1

CCCCCCCCCCCCCCCCCCCCA

and the solutions to these equations are
0

BBBBBBBBBBBBBBBBBBBBB@

b̂1

b̂2

â1

â2

â3

â4

â5

â6

â7

â8

â9

1

CCCCCCCCCCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBBBBBBBBB@

225.8641
236.3366
�2.4078

1.3172
�10.2265

11.3172
�2.3210
�12.7210

6.7864
9.7864
4.7864

1

CCCCCCCCCCCCCCCCCCCCA

.

Some species, such as swine or rainbow trout, have many o↵spring per mating, and
subsequently fewer animals are needed for breeding purposes. The MME would contain
many equations (one per animal), even though a large percentage of animals do not have
any progeny. Reducing the order of the MME would be an advantage, to save computing
time. Quaas and Pollak (1980) proposed the reduced animal model. There is one model
for animals that are not parents, and a separate model for animals that are parents. The
total number of animal genetic equations in MME is equal to the number of animals that
are parents. The solutions for the animals in the reduced animal model are exactly the
same as solutions from the regular animal model.

85.2 Theoretical Development

The vector of additive genetic values of animals in the animal model is a. Denote animals
with progeny as a

p

, and those without progeny as a
o

, so that

a0 =
⇣

a
p

0 a
o

0
⌘
.
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In terms of the example data,

a
p

0 =
⇣

a1 a2 a3 a4

⌘
,

a
o

0 =
⇣

a5 a6 a7 a8 a9

⌘
.

The additive genetic value of an animal may be written as the average of the additive
genetic values of the parents plus a Mendelian sampling e↵ect, which is the animal’s
specific deviation from the parent average, i.e.

ai = .5(as + ad) + mi.

Therefore,
ao = Pap + m,

where P is a matrix that indicates the parents of each animal in ao, with elements equal
to 0.5, and m is the vector of Mendelian sampling e↵ects. Then

a =

 
ap

ao

!

=

 
I
P

!

ap +

 
0
m

!

,

and

V ar(a) = A�2
a

=

 
I
P

!

App

⇣
I P0

⌘
�2

a +

 
0 0
0 D

!

�2
a

where D is a diagonal matrix with diagonal elements equal to bi, and bi is 0.5 � 0.25 ⇤
(Fs + Fd) for the ith animal, and

V ar(ap) = App�
2
a.

The animal model can now be written as
 

yp

yo

!

=

 
Xp

Xo

!

b +

 
Zp 0
0 Zo

! 
I
P

!

ap +

 
ep

eo + Zom

!

.

The residual vector has two types of residuals and the additive genetic values of animals
without progeny have been replaced with Pap. Because every individual has only one
record, then Zo = I, but Zp may have fewer rows than there are elements of ap because
not all parents may have observations themselves. In the example data, animal 1 does
not have an observation, therefore,

Zp =

0

B@
0 1 0 0
0 0 1 0
0 0 0 1

1

CA .
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Consequently,

R = V ar

 
ep

eo + m

!

=

 
I�2

e 0
0 I�2

e + D�2
a

!

=

 
I 0
0 Ro

!

�2
e

The mixed model equations for the reduced animal model are
 

X0
pXp + X0

oR
�1
o Xo X0

pZp + X0
oR

�1
o P

Z0
pXp + P0R�1

o Xo Z0
pZp + P0R�1

o P + A�1
pp ↵

! 
b̂
âp

!

=

 
X0

pyp + X0
oR

�1
o yo

Z0
pyp + P0R�1

o yo

!

.

Solutions for âo are derived from the following formulas:

âo = Pâp + m̂,

where
m̂ = (Z0

oZo + D�1↵)�1(yo �Xob̂�Pâp).

85.3 Analysis of Example Data

Using the example data,

P =

0

BBBBBB@
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0 .5 0 .5
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1

CCCCCCA
,

and
D = diag

⇣
.5 .5 .5 .5 .5

⌘
,

then the MME with ↵ = 2 are
0
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0 .8 2.4 0 .4 0
1 1.2 0 3.6 0 .6
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1

CCCCCCCCA

0

BBBBBBBBB@

b̂1
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â4

1
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0
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379.2
551.

1

CCCCCCCCA

The solutions are as before, i.e.
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b̂1 = 225.8641, â1 = -2.4078, â3 = -10.2265,
b̂2 = 236.3366, â2 = 1.3172, â4 = 11.3172.

To compute âo, first calculate m̂ as:

(I + D�1↵) =

0

BBBBBB@

5 0 0 0 0
0 5 0 0 0
0 0 5 0 0
0 0 0 5 0
0 0 0 0 5

1

CCCCCCA

yo =

0

BBBBBB@

250
198
245
260
235

1

CCCCCCA

Xob̂ =

0

BBBBBB@

0 1
0 1
0 1
0 1
0 1

1

CCCCCCA

 
225.8641
236.3366

!

Pâp =

0

BBBBBB@

�6.3172
�6.3172

6.3172
6.3172
6.3172

1

CCCCCCA

m̂ = (I + D�1↵)�1(yo �Xob̂�Pâp)

=

0

BBBBBB@

3.9961
�6.4039

.4692
3.4692

�1.5308

1

CCCCCCA

and

Pâp + m̂ =

0

BBBBBB@

�2.3211
�12.7211

6.7864
9.7864
4.7864

1

CCCCCCA
.

Generally, with today’s computer power, there is little need to use reduced animal
models. However, routine genetic evaluation schemes for species with high reproductive
rates may benefit from using a reduced animal model.
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86 Sire and Dam Models

Another type of reduced animal model is called a sire and dam model. The assumptions
to use this model are

1. Animals have only one record each,

2. Animals that have records are not parents of other animals, and

3. None of the parents have records of their own.

4. Sires and dams are mated randomly.

5. Sires and dams are random samples of parents, and not the result of intense selection.

6. Progeny have only one record each.

Parents have only progeny, and do not have records themselves. The animal model equa-
tion is re-written from

y = Xb + Ia + e

to
y = Xb + .5(Zsas + Zdad) + m + e

where the subscripts s and d refer to sire and dam, respectively. The analysis is conducted
by combining (m + e) into one residual term, say ✏. Also,

V ar

0

B@
as

ad

m + e

1

CA =

0

B@
I�2

s 0 0
0 I�2

d 0
0 0 I(�2

m + �2
e)

1

CA ,

which implies that sires are unrelated to each other or to any of the dams, and dams are
unrelated. The sire variance is usually assumed to be equal to one quarter of the additive
genetic variance. The dam variance generally equals one quarter of the additive genetic
variance plus any common environmental e↵ects, dominance genetic e↵ects, and maternal
genetic e↵ects. Heritability is usually estimated from the sire variance for that reason.

In a sire and dam model, there is no interest in obtaining predictions for the progeny.
However, the Mendelian sampling e↵ects can be obtained by backsolving.

Sires and dams have usually been highly selected, especially sires, and so are not
random samples of males or females amongst all males and females that are born in the
population. They should not be random factors in the model, but more likely should be
fixed factors.
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87 Sire-Maternal Grandsire Models

The sire and dam model may be further simplified, when appropriate, to a sire-maternal
grandsire model. The assumptions for this model are the same as those for the sire-dam
model plus:

1. Each dam has only one progeny, and the dams of the dams (i.e. maternal grand-
dams) have only one daughter, and

2. The daughters of a maternal grandsire (MGS) represented in the data are a random
sample of all daughters of that MGS.

The last assumption is the most critical, and probably not valid. In dairy cattle, usually
dams of cows are selected, and only good cows are allowed to have progeny. Poor cows are
either culled or not allowed to produce replacement cows. For this reason, Sire-Maternal
Grandsire models are not recommended in dairy cattle, and possibly other species too.

The ad vector in the sire and dam model may be further partitioned as

ad = .5(amgs + amgd) + md

so that if Zmgd = I, and Zd = I, then

y = Xb + .5Zsas

+.5(.5Zmgsamgs + .5amgd + md) + ✏

= Xb + Zs(.5as)

+.5Zs(.5amgs) + (.25amgd + md + ✏).

The vectors .5as and .5amgs contain many of the same sires, and so the two can be
combined into one vector, say s, and the two incidence matrices can also be combined
into one matrix, say Zsmgs, which contains a 1 in each row for the sire of an animal, and
a .5 for the MGS of that animal. A computational requirement at this point is that the
sire and MGS are not the same individual for any one animal. The combined model is

y = Xb + Zsmgss + ⇠.

The solutions for s are in terms of estimated transmitting abilities and must be doubled
to give estimated breeding values.

88 Sire Models

The next progression away from the animal model is a sire model. More assumptions
are needed than the previous models. The sire model was one of the first models used in
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animal breeding for the evaluation of dairy bulls for the milk producing ability of their
daughters. The additional assumptions of the sire model are

1. Sires are mated randomly to dams, and

2. Dams are mated to only one sire and have just one progeny.

The sire model is relatively simple to apply. Relationships among sires are usually formed
based on the sire and MGS of each bull, rather than sire and dam.

Because of the many assumptions that are implied with a sire model (when compared
to an animal model), the use of a sire model in the genetic evaluation of animals should
be a last resort. If at all possible, an animal model should be employed.
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89 EXERCISES

1. Below are pedigrees and data on 20 animals in three contemporary groups.

Animal Sire Dam Group Record
1 - -
2 - -
3 - -
4 - -
5 1 2 1 40
6 1 2 1 28
7 3 4 1 34
8 1 2 1 35
9 1 4 2 17
10 3 2 2 41
11 1 4 2 25
12 3 2 2 38
13 1 2 2 29
14 3 4 2 27
15 5 7 3 37
16 6 14 3 30
17 8 7 3 42
18 1 10 3 46
19 3 13 3 24
20 5 9 3 26

(a) Construct A�1 and set up the MME.

(b) Apply the following model,

yij = µ + gi + aj + eij,

where group, animal additive genetic, and residual e↵ects are random. Let

�2
e/�

2
a = 1.5, �2

e/�
2
g = 5.0.

(c) Compute SEP and reliabilities for all animals.

(d) Estimate the average EBVs for each contemporary group.

(e) Apply a reduced animal model to the same data. Compare solutions.

2. Generate phenotypes for animals 7 to 16 in the table below. Contemporary groups
(gi) are random e↵ects with variance, �2

g = 120. Age e↵ects are fixed with di↵erences
A1 = 0, A2 = 15, A3 = 20, and A4 = 22. Let the overall mean (µ) be 300, and the
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additive genetic variance be 2000, and the residual variance be 6500. The model
equation is

yijk = µ + gi + Aj + ak + eijk,

where ak are the animal additive genetic values, and eijk is a residual e↵ect.

Animal Sire Dam Group Age
7 4 2 1 1
8 5 1 1 2
9 5 7 1 3
10 4 1 1 1
11 5 3 2 4
12 4 2 2 3
13 5 1 2 2
14 6 7 2 1
15 6 8 2 3
16 6 9 2 4

(a) Analyze the data you have created with the assumed model to obtain EBV on
the animals.

(b) Correlate the EBVs with the true breeding values (which are known in a sim-
ulation exercise).

(c) Repeat the generation of new data sets, in the same manner using a di↵erent
set of random numbers, a total of 10 times, and average the correlation of EBV
with true breeding values over the 10 replicates. What is the variability of the
correlation?

(d) Analyze the data with an appropriate Sire-Dam model and compare the sire
and dam solutions with the solutions from the Animal model.
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Reduced Animal Models

90 Introduction

In situations where many o↵spring can be generated from one mating (as in fish, poultry,
or swine), or where only a few animals are retained for breeding, the genetic evaluation
of all animals may not be necessary. Only animals that are candidates for becoming the
parents of the next generation need to be evaluated. Pollak and Quaas (1980) came up
with the reduced animal model or RAM to cover this situation. Consider an animal model
with periods as a fixed factor and one observation per animal, as in the table below.

Animal Model Example Data.
Animal Sire Dam Period Observation

5 1 3 2 250
6 1 3 2 198
7 2 4 2 245
8 2 4 2 260
9 2 4 2 235
4 - - 1 255
3 - - 1 200
2 - - 1 225

90.1 Usual Animal Model Analysis

Assume that the ratio of residual to additive genetic variances is 2. The MME for this
data would be of order 11 (nine animals and two periods). The left hand sides and right
hand sides of the MME are
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0 1 �2 0 �2 0 5 0 0 0 0
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0 1 0 �2 0 �2 0 0 5 0 0
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and the solutions to these equations are
0

BBBBBBBBBBBBBBBBBBBBB@

b̂1

b̂2

â1

â2

â3

â4

â5

â6

â7

â8

â9

1
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=
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225.8641
236.3366
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1.3172
�10.2265

11.3172
�2.3210
�12.7210

6.7864
9.7864
4.7864

1

CCCCCCCCCCCCCCCCCCCCA

.

A property of these solutions is that

10A�1â = 0,

which in this case means that the sum of solutions for animals 1 through 4 is zero.

90.2 Reduced AM

RAM results in fewer equations to be solved, but the solutions from RAM are exactly the
same as from the full MME. In a typical animal model with a as the vector of additive
genetic values of animals, there will be animals that have had progeny, and there will be
other animals that have not yet had progeny (and some may never have progeny). Denote
animals with progeny as a

p

, and those without progeny as a
o

, so that

a0 =
⇣

a0
p

a0
o

⌘
.

In terms of the example data,

a0
p

=
⇣

a1 a2 a3 a4

⌘
,

a0
o

=
⇣

a5 a6 a7 a8 a9

⌘
.

Genetically for any individual, i, the additive genetic value may be written as the
average of the additive genetic values of the parents plus a Mendelian sampling e↵ect,
which is the animal’s specific deviation from the parent average, i.e.

ai = .5(as + ad) + mi.

Therefore,
ao = Tap + m,
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where T is a matrix that indicates the parents of each animal in ao, and m is the vector
of Mendelian sampling e↵ects. Then

a =

 
ap

ao

!

=

 
I
T

!

ap +

 
0
m

!

,

and

V ar(a) = A�2
a
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!

App
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⌘
�2

a +

 
0 0
0 D

!

�2
a

where D is a diagonal matrix with diagonal elements equal to (1 � .25di), and di is the
number of identified parents, i.e. 0, 1, or 2, for the ith animal, and

V ar(ap) = App�
2
a.

The animal model can now be written as
 

yp

yo

!

=

 
Xp

Xo

!

b +

 
Zp 0
0 Zo

! 
I
T

!

ap +

 
ep

eo + Zom

!

.

Note that the residual vector has two di↵erent types of residuals and that the additive
genetic values of animals without progeny have been replaced with Tap. Because every
individual has only one record, then Zo = I, but Zp may have fewer rows than there are
elements of ap because not all parents may have observations themselves. In the example
data, animal 1 does not have an observation, therefore,

Zp =

0

B@
0 1 0 0
0 0 1 0
0 0 0 1

1

CA .

Consequently,
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The mixed model equations for the reduced animal model are
 

X0
pXp + X0
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.

Solutions for âo are derived from the following formulas.

âo = Tâp + m̂,

where
m̂ = (Z0

oZo + D�1↵)�1(yo �Xob̂�Tâp).

Using the example data,
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then the MME with ↵ = 2 are
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The solutions are as before, i.e.

b̂1 = 225.8641, â1 = -2.4078, â3 = -10.2265,
b̂2 = 236.3366, â2 = 1.3172, â4 = 11.3172.

91 Backsolving for Omitted Animals

To compute âo, first calculate m̂ as:

(I + D�1↵) =

0

BBBBBB@

5 0 0 0 0
0 5 0 0 0
0 0 5 0 0
0 0 0 5 0
0 0 0 0 5

1

CCCCCCA
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yo =

0

BBBBBB@

250
198
245
260
235

1

CCCCCCA

Xob̂ =

0

BBBBBB@

0 1
0 1
0 1
0 1
0 1

1

CCCCCCA

 
225.8641
236.3366

!

Tâp =

0

BBBBBB@

�6.3172
�6.3172

6.3172
6.3172
6.3172

1

CCCCCCA

m̂ = (I + D�1↵)�1(yo �Xob̂�Tâp)

=

0

BBBBBB@

3.9961
�6.4039

.4692
3.4692

�1.5308

1

CCCCCCA

and

Tâp + m̂ =

0

BBBBBB@

�2.3211
�12.7211

6.7864
9.7864
4.7864

1

CCCCCCA
.

The reduced animal model was originally described for models where animals had only
one observation, but Henderson(1988) described many other possible models where this
technique could be applied. Generally, with today’s computers there is not much problem
in applying regular animal models without the need to employ a reduced animal model.

179



92 EXERCISES

Below are data on animals with their pedigrees.

Animal Sire Dam Year Group Observation
1 - - 1920 1 24
2 - - 1920 1 12
3 - - 1920 1 33
4 - - 1920 2 27
5 - - 1920 2 8
6 - - 1920 2 19
7 1 4 1922 3 16
8 1 4 1922 3 28
9 1 4 1922 3 30
10 1 5 1922 3 42
11 1 6 1922 3 37
12 1 6 1922 3 44
13 2 4 1922 4 11
14 2 4 1922 4 18
15 2 4 1922 4 23
16 2 5 1922 4 9
17 2 5 1922 4 2
18 2 6 1922 4 25
19 7 16 1924 5 14
20 7 16 1924 5 19
21 7 16 1924 5 17
22 10 13 1924 5 39
23 10 13 1924 5 43

Assume a heritability of 0.32 for this trait.

Analyze the data with both the usual animal model, and the reduced animal model.

yijk = Yi + Gj + ak + eijk,

where Yi is a year e↵ect, Gj is a group e↵ect, ak is an animal e↵ect, and eijk is a
residual e↵ect.

The solutions to both analyses should be identical.

In the RAM, backsolve for â23.

What about the prediction error variance for â23?
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Estimation of Variances and Covariances

93 Variables and Distributions

Random variables are samples from a population with a given set of population param-
eters. Random variables can be discrete, having a limited number of distinct possible
values, or continuous.

94 Continuous Random Variables

The cumulative distribution function of a random variable is

F (y) = Pr(Y  y),

for �1 < y < 1.

As y approaches �1, then F (y) approaches 0. As y approaches 1, then F (y)
approaches 1.

F (y) is a nondecreasing function of y. If a < b, then F (a) < F (b).

p(y) = @ F (y)
@y

= F 0(y), wherever the derivative exists.
R1
�1 p(y) @y = 1.

F (t) =
R t
�1 p(y) @y.

E(y) =
R1
�1 y p(y) @y

E(g(y)) =
R1
�1 g(y) p(y) @y

V ar(y) = E(y2)� [E(y)]2.

94.1 Normal Random Variables

Random variables in animal breeding problems are typically assumed to be samples from
Normal distributions, where

p(y) = (2⇡)�.5��1 exp(�.5(y � µ)2��2)

for �1 < x < +1, where �2 is the variance of y and µ is the expected value of y.

For a random vector variable, y, the multivariate normal density function is

p(y) = (2⇡)�.5n | V |�.5 exp(�.5(y � µ)0V�1(y � µ))
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denoted as y ⇠ N(µ,V) where V is the variance-covariance matrix of y. The determinant
of V must be positive, otherwise the density function is undefined.

94.2 Chi-Square Random Variables

If y ⇠ N(0, I), then y0y ⇠ �2
n, where �2

n is a central chi-square distribution with n degrees
of freedom and n is the length of the random vector variable y.

The mean is n. The variance is 2n. If s = y0y > 0, then

p(s | n) = (s)(n/2)�1 exp�0.5s/[20.5n�(0.5n)].

If y ⇠ N(µ, I), then y0y ⇠ �2
n,� where � is the noncentrality parameter which is equal

to .5µ0µ. The mean of a noncentral chi-square distribution is n + 2� and the variance is
2n + 8�.

If y ⇠ N(µ,V), then y0Qy has a noncentral chi-square distribution only if QV is
idempotent, i.e. QVQV = QV. The noncentrality parameter is � = .5µ0QVQµ and the
mean and variance of the distribution are tr(QV) + 2� and 2tr(QV) + 8�, respectively.

If there are two quadratic forms of y, say y0Qy and y0Py, and both quadratic forms
have chi-square distributions, then the two quadratic forms are independent if QVP = 0.

94.3 The Wishart Distribution

The Wishart distribution is similar to a multivariate Chi-square distribution. An entire
matrix is envisioned of which the diagonals have a Chi-square distribution, and the o↵-
diagonals have a built-in correlation structure. The resulting matrix is positive definite.
This distribution is needed when estimating covariance matrices, such as in multiple trait
models, maternal genetic e↵ect models, or random regression models.

94.4 The F-distribution

The F-distribution is used for hypothesis testing and is built upon two independent Chi-
square random variables. Let s ⇠ �2

n and v ⇠ �2
m with s and v being independent,

then
(s/n)

(v/m)
⇠ Fn,m.

The mean of the F-distribution is m/(m� 2). The variance is

2m2(n + m� 2)

n(m� 2)2(m� 4)
.
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95 Expectations of Random Vectors

Let y1 be a random vector variable, then

E(y1) = µ1 =

0

BBBB@

µ11

µ12
...
µ1n

1

CCCCA
,

for a vector of length n. If c is a scalar constant, then

E(cy1) = cµ1.

Similarly, if C is a matrix of constants, then

E(Cy1) = Cµ1.

Let y2 be another random vector variable of the same length as y1, then

E(y1 + y2) = E(y1) + E(y2)

= µ1 + µ2.

96 Variance-Covariance Matrices

Let y be a random vector variable of length n, then the variance-covariance matrix of y
is:

V ar(y) = E(yy0)� E(y)E(y0)

=

0

BBBB@

�2
y1

�y1y2 · · · �y1yn

�y1y2 �2
y2

· · · �y2yn

...
...

. . .
...

�y1yn �y2yn · · · �2
yn

1

CCCCA

= V

A variance-covariance (VCV) matrix is square, symmetric and should always be positive
definite, i.e. all of the eigenvalues must be positive.

Another name for VCV matrix is a dispersion matrix or (co)variance matrix.
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Let C be a matrix of constants conformable for multiplication with the vector y, then

V ar(Cy) = E(Cyy0C0)� E(Cy)E(y0C0)

= CE(yy0)C0 �CE(y)E(y0)C0

= C (E(yy0)� E(y)E(y0))C0

= CV ar(y)C0 = CVC0.

If there are two sets of functions of y, say C1y and C2y, then

Cov(C1y,C2y) = C1VC0
2.

If y and z represent two di↵erent random vectors, possibly of di↵erent orders, and if
the (co)variance matrix between these two vectors is W, then

Cov(C1y,C2z) = C1WC0
2.

97 Quadratic Forms

Variances are estimated using sums of squares of various normally distributed variables,
and these are known as quadratic forms. The general quadratic form is

y0Qy,

where y is a random vector variable, and Q is a regulator matrix. Usually Q is a symmetric
matrix, but not necessarily positive definite.

Examples of di↵erent Q matrices are as follows:

1. Q = I, then y0Qy = y0y which is a total sum of squares of the elements in y.

2. Q = J(1/n), then y0Qy = y0Jy(1/n) where n is the length of y. Note that J = 110,
so that y0Jy = (y01)(10y) and (10y) is the sum of the elements in y.

3. Q = (I� J(1/n)) /(n� 1), then y0Qy gives the variance of the elements in y, �2
y .

The expected value of a quadratic form is

E(y0Qy) = E(tr(y0Qy)) = E(tr(Qyy0)) = tr(QE(yy0)),

and the covariance matrix is

V ar(y) = E(yy0)� E(y)E(y0)
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so that
E(yy0) = V ar(y) + E(y)E(y0),

then
E(y0Qy) = tr(Q(V ar(y) + E(y)E(y0))).

Let V ar(y) = V and E(y) = µ, then

E(y0Qy) = tr(Q(V + µµ’))

= tr(QV) + tr(Qµµ’)

= tr(QV) + µ0Qµ.

The expectation of a quadratic form was derived without knowing the distribution of y.
However, the variance of a quadratic form requires that y follows a multivariate normal
distribution. Without showing the derivation, the variance of a quadratic form, assuming
y has a multivariate normal distribution, is

V ar(y0Qy) = 2tr(QVQV) + 4µ0QVQµ.

The quadratic form, y0Qy, has a chi-square distribution if

tr(QVQV) = tr(QV), and µ0QVQµ = µ0Qµ,

or the single condition that QV is idempotent. Then if

m = tr(QV) and � = .5µ0Qµ,

the expected value of y0Qy is m + 2� and the variance is 2m + 8�, which are the usual
results for a noncentral chi-square variable.

The covariance between two quadratic forms, say y0Qy and y0Py, is

Cov(y0Qy,y0Py) = 2tr(QVPV) + 4µ0QVPµ.

The covariance is zero if QVP = 0, then the two quadratic forms are said to be indepen-
dent.

98 Basic Model for Variance Components

The general linear model is described as

y = Xb + Zu + e,

where E(y) = Xb,

E(u) = 0,

and E(e) = 0.
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Often u is partitioned into s factors as

u0 = (u01 u02 . . . u0s ).

The (co)variance matrices are defined as

G = V ar(u) = V ar

0

BBBB@

u1

u2
...
us

1

CCCCA
=

0

BBBB@

G1�
2
1 0 . . . 0

0 G2�
2
2 . . . 0

...
...

...
0 0 . . . Gs�

2
s

1

CCCCA

and
R = V ar(e) = I�2

0.

Then
V ar(y) = V = ZGZ0 + R,

and if Z is partitioned corresponding to u, as

Z = [ Z1 Z2 . . . Zs ], then

ZGZ0 =
sX

i=1

ZiGiZ
0
i�

2
i .

Let Vi = ZiGiZ
0
i and

V0 = I, then

V =
sX

i=o

Vi�
2
i .

98.1 Mixed Model Equations

Henderson’s mixed model equations (MME) are written as
0

BBBBB@

X0R�1X X0R�1Z1 X0R�1Z2 . . . X0R�1Zs

Z0
1R�1X Z0

1R�1Z1 + G�1
1 ��2

1 Z0
1R�1Z2 . . . Z0

1R�1Zs

Z0
2R�1X Z0

2R�1Z1 Z0
2R�1Z2 + G�1

2 ��2
2 . . . Z0

2R�1Zs
...

...
...

...
Z0

sR�1X Z0
sR�1Z1 Z0

sR�1Z2 . . . Z0
sR�1Zs + G�1

s ��2
s

1

CCCCCA

0

BBBBB@

b̂
û1

û2
...
ûs

1

CCCCCA

=

0

BBBBB@

X0R�1y
Z0

1R�1y
Z0

2R�1y
...
Z0

sR�1y

1

CCCCCA
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99 Unbiased Estimation of Variances

Assume that all Gi are equal to I for this example, so that ZiGiZ0
i simplifies to ZiZ0

i. Let

X =

0

B@
1
1
1

1

CA , Z1 =

0

B@
1 0
1 0
0 1

1

CA ,

Z2 =

0

B@
1 0
0 1
0 1

1

CA , and y =

0

B@
29
53
44

1

CA ,

Then

V1 = Z1Z
0
1 =

0

B@
1 1 0
1 1 0
0 0 1

1

CA ,

and

V2 = Z2Z
0
2 =

0

B@
1 0 0
0 1 1
0 1 1

1

CA

and V0 = I.

99.1 Define the Necessary Quadratic Forms

At least three quadratic forms are needed in order to estimate the variances. Below are
three arbitrary Q-matrices that were chosen such that QkX = 0. Let

Q1 =

0

B@
1 �1 0

�1 2 �1
0 �1 1

1

CA ,

Q2 =

0

B@
1 0 �1
0 1 �1

�1 �1 2

1

CA ,

and Q3 =

0

B@
2 �1 �1

�1 2 �1
�1 �1 2

1

CA .

The numeric values of the quadratic forms are

y0Q1y = 657,

y0Q2y = 306,

and y0Q3y = 882.
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For example,

y0Q1y =
⇣

29 53 44
⌘
0

B@
1 �1 0

�1 2 �1
0 �1 1

1

CA

0

B@
29
53
44

1

CA = 657.

99.2 The Expectations of the Quadratic Forms

The expectations of the quadratic forms are

E(y0Q1y) = trQ1V0�
2
0 + trQ1V1�

2
1 + trQ1V2�

2
2

= 4�2
0 + 2�2

1 + 2�2
2

E(y0Q2y) = 4�2
0 + 4�2

1 + 2�2
2,

E(y0Q3y) = 6�2
0 + 4�2

1 + 4�2
2.

99.3 Equate Expected Values to Numerical Values

Equate the numeric values of the quadratic forms to their corresponding expected values,
which gives a system of equations to be solved, such as F� = w. In this case, the equations
would be 0

B@
4 2 2
4 4 2
6 4 4

1

CA

0

B@
�2

0

�2
1

�2
2

1

CA =

0

B@
657.
306.
882.

1

CA ,

which gives the solution as �̂ = F�1w, or

0

B@
�̂2

0

�̂2
1

�̂2
2

1

CA =

0

B@
216.0

�175.5
72.0

1

CA .

The resulting estimates are unbiased.

99.4 Variances of Quadratic Forms

The variance of a quadratic form is

V ar(y0Qy) = 2trQVQV + 4b0X0QVQXb.

Only translation invariant quadratic forms are typically considered in variance component
estimation, that means b0X0QVQXb = 0. Thus, only 2trQVQV needs to be calculated.
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Remember that V can be written as the sum of s + 1 matrices, Vi�
2
i , then

trQVQV = trQ
sX

i=o

Vi�
2
i Q

sX

j=o

Vj�
2
j

=
sX

i=o

sX

j=o

tr QViQVj �2
i �2

j

For example, if s = 2, then

trQVQV = trQV0QV0�
4
0 + 2trQV0QV1�

2
0�

2
1

+ 2trQV0QV2�
2
0�

2
2 + trQV1QV1�

4
1

+ 2trQV1QV2�
2
1�

2
2 + trQV2QV2�

4
2.

The sampling variances depend on

1. The true magnitude of the individual components,

2. The matrices Qk, which depend on the method of estimation and the model, and

3. The structure and amount of the data through X and Z.

For small examples, the calculation of sampling variances can be easily demonstrated.
In this case,

V ar(F�1w) = F�1V ar(w)F�10
,

a function of the variance-covariance matrix of the quadratic forms.

Using the small example of the previous section, the V ar(w) is a 3x3 matrix. The
(1,1) element is the variance of y0Q1y which is

V ar(y0Q1y) = 2trQ1VQ1V

= 2trQ1V0Q1V0�
4
0 + 4trQ1V0Q1V1�

2
0�

2
1

+4trQ1V0Q1V2�
2
0�

2
2 + 2trQ1V1Q1V1�

4
1

+4trQ1V1Q1V2�
2
1�

2
2 + 2trQ1V2Q1V2�

4
2

= 20�4
0 + 16�2

0�
2
1 + 16�2

0�
2
2 + 8�4

1 + 0�2
1�

2
2 + 8�4

2

The (1,2) element is the covariance between the first and second quadratic forms,

Cov(y0Q1y,y0Q2y) = 2trQ1VQ2V,

and similarly for the other terms. All of the results are summarized in the table below.
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Forms �4
0 �2

0�
2
1 �2

0�
2
2 �4

1 �2
1�

2
2 �4

2

V ar(w1) 20 16 16 8 0 8
Cov(w1, w2) 14 24 8 16 0 8
Cov(w1, w3) 24 24 24 16 0 16
V ar(w2) 20 48 16 32 16 8
Cov(w2, w3) 24 48 24 32 16 16
V ar(w3) 36 48 48 32 16 32

To get numeric values for these variances, the true components need to be known.
Assume that the true values are �2

0 = 250, �2
1 = 10, and �2

2 = 80, then the variance of w1

is

V ar(w1) = 20(250)2 + 16(250)(10) + 16(250)(80)

+8(10)2 + 0(10)(80) + 8(80)2

= 1, 662, 000.

The complete variance- covariance matrix of the quadratic forms is

V ar

0

B@
w1

w2

w3

1

CA =

0

B@
1, 662, 000 1, 147, 800 2, 144, 000
1, 147, 800 1, 757, 200 2, 218, 400
2, 144, 000 2, 218, 400 3, 550, 800

1

CA .

The variance-covariance matrix of the estimated variances (assuming the above true val-
ues) would be

V ar(�̂) = F�1V ar(w)F�10

=

0

B@
405, 700 �275, 700 �240, 700

�275, 700 280, 900 141, 950
�240, 700 141, 950 293, 500

1

CA = C.

99.5 Variance of A Ratio of Variance Estimates

Often estimates of ratios of functions of the variances are needed for animal breeding work,
such as heritabilities, repeatabilities, and variance ratios. Let such a ratio be denoted as
a/c where

a = �̂2
2 = (0 0 1)�̂ = 72.

and
c = �̂2

0 + �̂2
1 + �̂2

2 = (1 1 1)�̂ = 288.

(NOTE: the negative estimate for �̂2
1 was set to zero before calculating c.

From Osborne and Patterson (1952) and Rao (1968) an approximation to the variance
of a ratio is given by

V ar(a/c) = (c2V ar(a) + a2V ar(c)� 2ac Cov(a, c))/c4.

190



Now note that

V ar(a) = (0 0 1)C(0 0 1)0 = 293, 500,

V ar(c) = (1 1 1)C(1 1 1)0 = 231, 200,

Cov(a, c, ) = (0 0 1)C(1 1 1)0 = 194, 750.

Then

V ar(a/c) = [(288)2(293, 500) + (72)2(231, 200)

�2(72)(288)(194, 750)]/(288)4

= 2.53876

This result is very large, but could be expected from only 3 observations. Thus, (a/c) =
.25 with a standard deviation of 1.5933.

Another approximation method assumes that the denominator has been estimated
accurately, so that it is considered to be a constant, such as the estimate of �2

e . Then,

V ar(a/c) ⇠= V ar(a)/c2.

For the example problem, this gives

V ar(a/c) ⇠= 293, 500/(288)2 = 3.53853,

which is slightly larger than the previous approximation. The second approximation
would not be suitable for a ratio of the residual variance to the variance of one of the
other components. Suppose a = �̂2

0 = 216, and c = �̂2
2 = 72, then (a/c) = 3.0, and

V ar(a/c) = [(72)2(405, 700) + (216)2(293, 500)

�2(72)(216)(�240, 700)]/(72)4

= 866.3966,

with the first method, and

V ar(a/c) = 405, 700/(72)2 = 78.26,

with the second method. The first method is probably more realistic in this situation,
but both are very large.

100 Useful Derivatives of Quantities

The following information is necessary for derivation of methods of variance component
estimation based on the multivariate normal distribution.
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1. The (co)variance matrix of y is

V =
sX

i=1

ZiGiZ
0
i�

2
i + R�2

0

= ZGZ0 + R.

Usually, each Gi is assumed to be I for most random factors, but for animal models
Gi might be equal to A, the additive genetic relationship matrix. Thus, Gi does not
always have to be diagonal, and will not be an identity in animal model analyses.

2. The inverse of V is

V�1 = R�1 �R�1Z(Z0R�1Z + G�1)�1Z0R�1.

To prove, show that VV�1 = I. Let T = Z0R�1Z + G�1, then

VV�1 = (ZGZ0 + R)[R�1 �R�1ZT�1Z0R�1]

= ZGZ0R�1 � ZGZ0R�1ZT�1Z0R�1

+I� ZT�1Z0R�1

= I + [ZGT� ZGZ0R�1Z� Z](T�1Z0R�1)

= I + [ZG(Z0R�1Z + G�1)� ZGZ0R�1Z� Z](T�1Z0R�1)

= I + [ZGZ0R�1Z + Z� ZGZ0R�1Z� Z](T�1Z0R�1)

= I + [0](T�1Z0R�1)

= I.

3. If k is a scalar constant and A is any square matrix of order m, then

| Ak | = km | A | .

4. For general square matrices, say M and U, of the same order then

| MU | = | M | | U | .
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5. For the general matrix below with A and D being square and non-singular (i.e. the
inverse of each exists), then

�����
A �B
Q D

����� =| A | | D + QA�1B |=| D | | A + BD�1Q | .

Then if A = I and D = I, then | I |= 1, so that

| I + QB | = | I + BQ |
= | I + B0Q0 |
= | I + Q0B0 | .

6. Using the results in (4) and (5), then

| V | = | R + ZGZ0 |
= | R(I + R�1ZGZ0) |
= | R | | I + R�1ZGZ0 |
= | R | | I + Z0R�1ZG |
= | R | | (G�1 + Z0R�1Z)G |
= | R | | G�1 + Z0R�1Z | | G | .

7. The mixed model coe�cient matrix of Henderson can be denoted by

C =

 
X0R�1X X0R�1Z
Z0R�1X Z0R�1Z + G�1

!

then the determinant of C can be derived as

| C | = | X0R�1X |
⇥ | G�1 + Z0(R�1 �R�1X(X0R�1X)�X0R�1)Z |

= | Z0R�1Z + G�1 |
⇥ | X0(R�1 �R�1Z(Z0R�1Z + G�1)�1Z0R�1)X | .

Now let S = R�1 �R�1X(X0R�1X)�X0R�1 then

| C | = | X0R�1X | | G�1 + Z0SZ |
= | Z0R�1Z + G�1 | | X0V�1X | .
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8. A projection matrix, P, is defined as

P = V�1 �V�1X(X0V�1X)�X0V�1.

Properties of P:

PX = 0,

Py = V�1(y �Xb̂), where

b̂ = (X0V�1X)�X0V�1y.

Therefore,
y0PZiGiZ

0
iPy = (y �Xb̂)0V�1ZiGiZ

0
iV

�1(y �Xb̂).

9. Derivative of V�1 is
@V�1

@�2
i

= �V�1 @V

@�2
i

V�1

10. Derivative of ln | V | is
@ ln | V |

@�2
i

= tr

 

V�1 @V

@�2
i

!

11. Derivative of P is
@P

@�2
i

= �P
@V

@�2
i

P.

12. Derivative of V is
@V

@�2
i

= ZiGiZ
0
i.

13. Derivative of ln | X0V�1X | is

@ ln | X0V�1X |
@�2

i

= tr(X0V�1X)�X0V�1 @V

@�2
i

V�1X.
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101 Random Number Generators and R

R has some very good random number generators built into it. These functions are very
useful for application of Gibbs sampling methods in Bayesian estimation. Generators
for the uniform distribution, normal distribution, Chi-square distribution, and Wishart
distribution are necessary to have. Below are some examples of the various functions in
R. The package called “MCMCpack” should be obtained from the CRAN website.

require(MCMCpack)

# Uniform distribution generator
# num = number of variates to generate
# min = minimum number in range
# max = maximum number in range
x = runif(100,min=5,max=10)

# Normal distribution generator
# num = number of deviates to generate
# xmean = mean of the distribution you want
# xSD = standard deviation of deviates you want
w = rnorm(200,-12,16.3)

# Chi-square generator
# num = number of deviates to generate
# df = degrees of freedom
# ncp = non-centrality parameter, usually 0
w = rchisq(15,24,0)

# Inverted Wishart matrix generator
# df = degrees of freedom
# SS = matrix of sum of squares and crossproducts
U = riwish(df,SS)
# New covariance matrix is the inverse of U
V = ginv(U)

A Chi-square variate with m degrees of freedom is the sum of squares of m ran-
dom normal deviates. The random number generator, however, makes use of a gamma
distribution, which with the appropriate parameters is a Chi-square distribution.

The uniform distribution is the key distribution for all other distribution generators.
R uses the Mersenne Twister (Matsumoto and Nishimura, 1997) with a cycle time of
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219937 � 1. The Twister is based on a Mersenne prime number.

102 Positive Definite Matrices

A covariance matrix should be positive definite. To check a matrix, compute the eigen-
values and eigenvectors of the matrix. All eigenvalues should be positive. If they are not
positive, then they can be modified, and a new covariance matrix constructed from the
eigenvectors and the modified set of eigenvalues. The procedure is shown in the following
R statements - should be improved.

# Compute eigenvalues and eigenvectors
GE = eigen(G)

nre = length(GE $values)
for(i in 1:nre) {
qp = GE$ values[i]
if(qp < 0)qp = (qp*qp)/10000
GE$ values[i] = qp }

# Re-form new matrix
Gh = GE$ vectors
GG = Gh %*% diag(GE$values) %*% t(Gh)

If the eigenvalues are all positive, then the new matrix, GG, will be the same as the
input matrix, G.

103 EXERCISES

1. This is an example of Henderson’s Method 1 of unbiased estimation of variance
components. Let

y = 1µ + Z1u1 + Z2u2 + e,
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with data as follows:0

BBBBBBBBBBBBBBBBBBBBBBB@

15
42
20
36
50
17
34
23
28
31
45
37

1

CCCCCCCCCCCCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBBBBBBBBBBBB@

1
1
1
1
1
1
1
1
1
1
1
1

1

CCCCCCCCCCCCCCCCCCCCCCCA

µ +

0

BBBBBBBBBBBBBBBBBBBBBBB@

1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1
0 1 0
0 1 0
0 0 1
0 1 0
1 0 0
1 0 0

1

CCCCCCCCCCCCCCCCCCCCCCCA

0

B@
u11

u12

u13

1

CA+

0

BBBBBBBBBBBBBBBBBBBBBBB@

1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1
0 0 0 1

1

CCCCCCCCCCCCCCCCCCCCCCCA

0

BBB@

u21

u22

u23

u24

1

CCCA+ e.

Also,
V = Z1Z

0
1�

2
1 + Z2Z

0
2�

2
2 + I�2

0.

Calculate the following:

(a) M = 1(101)�110

(b) A = Z1(Z0
1Z1)�1Z0

1

(c) B = Z2(Z0
2Z2)�1Z0

2

(d) Q0 = I�M

(e) Q1 = A�M

(f) Q2 = B�M

(g) y0Q0y

(h) y0Q1y

(i) y0Q2y

(j) E(y0Q0y) = tr(Q0V0)�2
0 + tr(Q0V1)�2

1 + tr(Q0V2)�2
2

(k) E(y0Q1y)

(l) E(y0Q2y)

(m) Estimate the variances.

(n) Compute the variances of the estimated variances.

2. Check the following matrix for positive definiteness, and create a new modified
matrix from it, that is positive definite (if it is not already positive definite).

R =

0

BBBBBB@

1 �2 3 �4 5
�2 3 �1 3 4

3 �1 7 �3 5
�4 3 �3 11 �2

5 4 5 �2 15

1

CCCCCCA
.
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Likelihood Methods

104 Likelihood Functions

The multivariate normal distribution likelihood function is

L(y) = (2⇡)�.5N | V |�.5 exp(�.5(y �Xb)0V�1(y �Xb)).

The log of the likelihood, say L1 is

L1 = �0.5[N ln(2⇡) + ln | V | +(y �Xb)0V�1(y �Xb)].

The term N ln(2⇡) is a constant that does not involve any of the unknown variances or
e↵ects in the model, and therefore, it is commonly omitted during maximization compu-
tations. Maximizing the log likelihood maximizes the original likelihood function.

Previously,
| V |=| R | | Z0R�1Z + G�1 | | G |,

and therefore,
ln | V |= ln | R | + ln | G | + ln | Z0R�1Z + G�1 | .

If R = I�2
0, then

ln | R | = ln | I�2
0 |

= ln(�2
0)

N | I |
= N ln �2

0(1).

Similarly, if G =
P+ I�2

i , where i = 1 to s, then

ln | G | =
sX

i=1

ln | I�2
i |

=
sX

i=1

qi ln �2
i .

Except, that in animal models one of the Gi is equal to A�2
i . In that case,

ln | A�2
i |= ln(�2

i )
qi | A |

which is
ln | A�2

i |= qi ln �2
i | A | = qi ln �2

i + ln | A | .

Recall that

C =

 
X0R�1X X0R�1Z
Z0R�1X Z0R�1Z + G�1

!

,
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and
| C |=| Z0R�1Z + G�1 | | X0V�1X |

so that
ln | C |= ln | Z0R�1Z + G�1 | + ln | X0V�1X | .

105 Maximum Likelihood Method

Hartley and Rao (1967) described the maximum likelihood approach for the estimation
of variance components. Let L2 be equivalent to L1 except for the constant involving ⇡.

L2 = �0.5[ln | V | +(y �Xb)0V�1(y �Xb)].

The derivatives of L2 with respect to b and to �2
i for i = 0, 1, . . . s are

@L2

@b
= X0V�1Xb�X0V�1y

and

@L2

@�2
i

= �.5 tr[V�1(@V/@�2
i )]

+ .5(y �Xb)0V�1(@V/@�2
i )V

�1(y �Xb)

= �.5 tr[V�1Vi] + .5(y �Xb)0V�1ViV
�1(y �Xb)

Equating the derivatives to zero gives

b̂ = (X0V�1X)�X0V�1y,

and
tr[V�1Vi] = (y �Xb̂)0V�1ViV

�1(y �Xb̂).

Recall that
Py = V�1(y �Xb̂),

where P is the projection matrix, and that Vi = ZiZ0
i, then

tr[V�1ZiZ
0
i] = y0PViPy.

In usual mixed model theory, the solution vector for a random factor may be written as

ûi = GiZ
0
iPy,

so that

y0PViPy = y0PZiGiG
�2
i GiZ

0
iPy

= û0iG
�2
i ûi

= û0iûi/�
4
i .
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Also,

tr[V�1Vi] = tr[(R�1 �R�1Z(Z0R�1Z + G�1)�1Z0R�1)ZiZ
0
i].

Let

T = (Z0R�1Z + G�1)�1,

R = I�2
0,

and G =
+X

I�2
i ,

then
tr[V�1Vi] = tr(Z0

iZi)�
�2
0 � tr(Z0

iZTZ0Zi)�
�4
0 .

If T can be partitioned into submatrices for each random factor, then

T��2
0 (Z0Z +

+X
I↵i) = I,

and

TZ0Z��2
0 = I�T(

+X
I��2

i ),

TZ0Zi�
�2
0 = I�Tii�

�2
i ,

which yields

tr(Z0
iZTZ0Zi)�

�4
0 = tr(Z0

iZi)�
�2
0 � tr(I�Tii�

�2
i )��2

i .

Finally,

tr[V�1Vi] = tr(I�Tii�
�2
i )��2

i

= trI��2
i � trTii�

�4
i

= qi�
�2
i � trTii�

�4
i .

Combining results gives
�̂2

i = (û0iûi + trTii�̂
2
0)/qi

for i = 1, 2, . . . , s, and for i = 0 gives

�̂2
0 = (y0y � b̂0X0y � û0Z0y)/ N.

105.1 The EM Algorithm

EM stands for Expectation Maximization. The procedure alternates between calculating
conditional expected values and maximizing simplified likelihoods. The actual data y are
called the incomplete data in the EM algorithm, and the complete data are considered to
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be y and the unobservable random e↵ects, ui. If the realized values of the unobservable
random e↵ects were known, then their variance would be the average of their squared
values, i.e.,

�̂2
i = u0iui/qi.

However, in real life the realized values of the random e↵ects are unknown.

The steps of the EM algorithm are as follows:

Step 0. Decide on starting values for the variances and set m = 0.

Step 1.(E-step) Calculate the conditional expectation of the su�cient statistics, condi-
tional on the incomplete data.

E(u0iui | y) = �
4(m)
i y0P(m)ZiZ

0
iP

(m)y

+tr(�2(m)
i I� �

4(m)
i Z0

i(V
(m))�1Zi)

= t̂
(m)
i

Step 2.(M-step) Maximize the likelihood of the complete data,

�
2(m+1)
i = t̂

(m)
i /qi, i = 0, 1, 2, . . . , s.

Step 3. If convergence is reached, set �̂ = �(m+1), otherwise increase m by one and
return to Step 1.

This is equivalent to constructing and solving the mixed model equations with a given set
of variances, �(m), and then

�
2(m+1)
0 = (y0y � b̂0X0y � û0Z0y)/N,

and �
2(m+1)
i = (û0iûi + �

2(m+1)
0 trTii)/qi.
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106 Restricted Maximum Likelihood Method

Restricted (or Residual) maximum likelihood (REML), was first suggested by Thompson
(1962), and described formally by Patterson and Thompson (1971). The procedure re-
quires that y has a multivariate normal distribution. The method is translation invariant.
The maximum likelihood approach automatically keeps the estimator within the allowable
parameter space(i.e. zero to plus infinity), and therefore, REML is a biased procedure.
REML was proposed as an improvement to ML in order to account for the degrees of
freedom lost in estimating fixed e↵ects.

The likelihood function used in REML is that for a set of error contrasts (i.e. resid-
uals) assumed to have a multivariate normal distribution. The multivariate normal dis-
tribution likelihood function for the residual contrasts, K0y, where K0X = 0, and K0 has
rank equal to N � r(X), is

L(K0y) = (2⇡)�.5(N�r(X)) | K0VK |�.5 exp(�.5(K0y)0(K0VK)�1(K0y)).

The natural log of the likelihood function is

L3 = �.5(N � r(X)) ln(2⇡)� .5 ln | K0VK | �.5y0K(K0VK)�1K0y.

Notice that �.5(N � r(X)) ln(2⇡) is a constant that does not depend on the unknown
variance components or factors in the model, and therefore, can be ignored to give L4.
Searle (1979) showed that

ln | K0VK | = ln | V | + ln | X0V�1X |

and
y0K(K0VK)�1K0y = y0Py = (y �Xb̂)0V�1(y �Xb̂)

for any K0 such that K0X = 0. Hence, L4 can be written as

L4 = �.5 ln | V | �.5 ln | X0V�1X | �.5(y �Xb̂)0V�1(y �Xb̂).

REML can be calculated a number of di↵erent ways.

1. Derivative Free approach is a search technique to find the parameters that max-
imize the log likelihood function. Two techniques will be described here.

2. First Derivatives and EM is where the first derivatives of the log likelihood are
determined and set to zero in order to maximize the likelihood function. Solutions
need to be obtained by iteration because the resulting equations are non linear.

3. Second Derivatives are generally more computationally demanding. Gradient
methods are used to find the parameters that make the first derivatives equal to zero.
Newton-Raphson (involves the observed information matrix) and Fishers Method
of Scoring (involves the expected information matrix) have been used. Lately, the
”average information” algorithm (averages the observed and expected information
matrices) has been used to reduce the computational time.
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106.1 Example Problem

All of the approaches attempt to maximize the log likelihood function of the error con-
trasts. To illustrate the methods, consider a single trait model with three factors (F, A, B),
of which A and B are random factors. There were a total of 90 observations, and the
total sum of squares was 356,000. The least squares equations for this small example are
shown below.

0

BBBBBBBBBBBBBBB@

50 0 5 15 30 5 10 20 15
0 40 5 15 20 5 10 20 5
5 5 10 0 0 2 3 4 1

15 15 0 30 0 5 7 11 7
30 20 0 0 50 3 10 25 12
5 5 2 5 3 10 0 0 0

10 10 3 7 10 0 20 0 0
20 20 4 11 25 0 0 40 0
15 5 1 7 12 0 0 0 20

1

CCCCCCCCCCCCCCCA

0

BBBBBBBBBBBBBBB@

F1

F2

A1

A2

A3

B1

B2

B3

B4

1

CCCCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBBBB@

3200
2380
580

1860
3140
700

1320
2400
1160

1

CCCCCCCCCCCCCCCA

.

106.1.1 Derivative Free REML

Imagine an s dimensional array containing the values of the likelihood function for every
possible set of values of the ratios of the components to the residual variance. The
technique is to search this array and find the set of ratios for which the likelihood function
is maximized. There is more than one way to conduct the search. Care must be taken to
find the ’global’ maximum rather than one of possibly many ’local’ maxima. At the same
time the number of likelihood evaluations to be computed must also be minimized.

Various alternative forms of L4 can be derived. Note that

ln | V |= ln | R | + ln | G | + ln | G�1 + Z0R�1Z |

and that
ln | X0V�1X |= ln | C | � ln | Z0R�1Z + G�1 |

and that combining these results gives

L4 = � .5 ln | R | �.5 ln | G | �.5 ln | C | �.5y0Py.

Now note that

ln | R | = ln | I�2
0 |

= N ln �2
0,

ln | G | =
sX

i=1

qi ln �2
i ,
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and ln | C | = ln | X0R�1X | + ln | Z0SZ + G�1 |
where ln | X0R�1X | = ln | X0X��2

0 |
= ln(��2

0 )r(X) | X0X |
= ln | X0X | �r(X) ln �2

0,

and Z0SZ + G�1 = ��2
0 Z0MZ + G�1

= ��2
0 (Z0MZ + G�1�2

0).

Then
ln | C |= ln | X0X | �r(X) ln �2

0 � q ln �2
0 + ln | Z0MZ + G�1�2

0 |,
and finally, the log-likelihood function becomes

L4 = �.5(N � r(X)� q) ln �2
0 � .5

sX

i=1

qi ln �2
i

�.5 ln | C? | �.5y0Py,

where

C? =

 
X0X X0Z
Z0X Z0Z + G�1�2

0

!

.

Note that

qi ln �2
i = qi ln �2

0/↵i

= qi(ln �2
0 � ln ↵i)

so that

L4 = �.5[(N � r(X)) ln �2
0 �

sX

i=1

qi ln ↵i + ln | C? | +y0Py].

The quantity y0Py is y0(y � Xb̂ � Zû)/�2
0. The computations are achieved by

constructing the following matrix,
0

B@
X0X X0Z X0y
Z0X Z0Z + G�1�2

0 Z0y
y0X y0Z y0y

1

CA =

 
C? W0y
y0W y0y

!

,

then by Gaussian elimination of one row at a time, the sum of the log of the non-zero
pivots (using the same ordering for each evaluation of the likelihood) gives log | C? | and
y0(y � Xb̂ � Zû). Gaussian elimination, using sparse matrix techniques, requires less
computing time than inverting the coe�cient matrix of the mixed model equations. The
ordering of factors within the equations could be critical to the computational process and
some experimentation may be necessary to determine the best ordering. The likelihood
function can be evaluated without the calculation of solutions to the mixed model equa-
tions, without inverting the coe�cient matrix of the mixed model equations, and without
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computing any of the �2
i . The formulations for more general models and multiple trait

models are more complex, but follow the same ideas.

Searching the array of likelihood values for various values of ↵i can be done in several
di↵erent ways. One method is to fix the values of all but one of the s ↵i, and then evaluate
L2 for four or more di↵erent values of the ↵i that were not fixed. Then one can use a
quadratic regression analysis to determine the value of that one ratio which maximizes
L2 given that the other ratios are fixed. This is repeated for each of the s ratios, and
the process is repeated until a maximum likelihood is obtained. The calculations are
demonstrated in the example that follows.

Begin by fixing the value of ↵B = 10 and letting the value of ↵A take on the values of
(5, 10, 20, 30, 40). Using L4 to evaluate the likelihood, then the results were as follows:

↵A L4

5 -251.4442
10 -251.1504
20 -250.9822
30 -250.9274
40 -250.9019

For example, the likelihood value for ↵A = 40, would be

L4 = �1

2
[(N � r(X)) ln �2

0 � qA ln ↵A � qB ln ↵B + ln | C? | +y0(y �Xb̂� Zû)/�2
0]

where

ln | C? | = 32.052454,

y0Py = 8483.176/�2
0 = 88,

qA ln ↵A = 11.0666385,

qB ln ↵B = 9.2103404,

�2
0 = 96.399728,

ln �2
0 = 4.5685034,

(N � r(X)) = 88,

then

L4 = �0.5[88(4.5685)� 11.0666� 9.2103 + 32.0525 + (8483.176/96.3997)]

= �250.9019.
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To find the value of ↵A that maximizes L4 for ↵B = 10, let

Q =

0

BBBBBB@

1 5 25
1 10 100
1 20 400
1 30 900
1 40 1600

1

CCCCCCA
and Y =

0

BBBBBB@

�251.4442
�251.1504
�250.9822
�250.9274
�250.9019

1

CCCCCCA

then

�̂ = (Q0Q)�1Q0Y =

0

B@
�251.6016
.0448877
�.000698

1

CA .

From this a prediction equation for L4 can be written as

L4 = � 251.6016 + .04489↵A � .000698↵2
A.

This equation can be di↵erentiated with respect to ↵A and then equated to zero to find
the value of the ratio that maximizes the prediction equation. This gives

↵A = .04489/(2(.000698)) = 32.1546.

Now keep ↵A = 32.1546 and try a number of values of ↵B from 2 to 10, which give
the following results.

↵B L4

2 -250.2722
3 -250.1954
4 -250.2379
5 -250.3295
6 -250.4419
7 -250.5624
8 -250.6843
9 -250.8042

10 -250.9204

Applying the quadratic regression to these points gives

↵B = 1.2625.

The next step would be to fix ↵B = 1.2625 and to try new values for ↵A, such as
25 to 40 by units of 1. The range of values becomes finer and finer. To insure that one
has found the global maximum, the entire process could be started with vastly di↵erent
starting values for the ratios, such as ↵B = 50 and let values for ↵A be 40, 50, 60, and
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70. The more components there are to estimate, the more evaluations of the likelihood
that are going to be needed, and the more probable that convergence might be to a local
maximum rather than to the global maximum.

Please refer to the literature for specification of the log likelihood function for par-
ticular models and situations.

106.1.2 The Simplex Method

The Simplex Method (Nelder and Mead, 1965) is a procedure for finding the minimum
of a function (i.e. the minimum of �2L4 or the maximum of L4) with respect to the
unknown variances and covariances. The best way to describe the method is using the
example data from the previous sections. Begin by constructing a set of ’points’ for which
L4 is to be evaluated. A ’point’ is a vector of values for the unknowns ( ↵A, ↵B), for
example,

✓1 =
⇣

12.1 3.8
⌘
,

then form two more points by changing one unknown at a time. Let the three points be
as shown in the following table.

No. ↵A ↵B

1 12.1 3.8
2 13.1 3.8
3 12.1 4.3

Now calculate L4 for each point and arrange from largest to lowest value.

No. ↵A ↵B L4

2 13.1 3.8 -250.3047
1 12.1 3.8 -250.3197
3 12.1 4.3 -250.3662

The idea now is to find another point to replace the last one(lowest L4). This is done
by a process called reflection. Compute the mean of all points excluding the one with the
lowest L4.

✓m =
⇣

12.6 3.8
⌘
,

then the reflection step is
✓4 = ✓m + r ⇤ (✓m � ✓last),

where r is recommended by Nelder and Mead (1965) to be 1, giving

✓4 =
⇣

13.1 3.3
⌘
.
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The corresponding L4 for this point was -250.2722. Compared to those in the table it has
the largest value, and therefore, is a better point than the other three.

No. ↵A ↵B L4

4 13.1 3.3 -250.2722
2 13.1 3.8 -250.3047
1 12.1 3.8 -250.3197

Given this success, the Simplex method calls for an expansion step, i.e. to make a
bigger change. Thus,

✓5 = ✓m + E ⇤ (✓4 � ✓m),

where E is suggested to be equal to 2. Hence

✓5 =
⇣

13.6 2.8
⌘
.

Then L4 = �250.2546, and the expanded point is better yet. Now drop ✓1 from the table
and put ✓5 at the top.

No. ↵A ↵B L4

5 13.6 2.8 -250.2546
4 13.1 3.3 -250.2722
2 13.1 3.8 -250.3047

This completes one iteration. Begin the next iteration by computing the mean of all
points excluding the point with the lowest L4.

✓m =
⇣

13.35 3.05
⌘
.

Another reflection step gives

✓6 = ✓m + r ⇤ (✓m � ✓last),

=
⇣

13.6 2.3
⌘
.

However, this gives L4 = �250.2761, which is between ✓2 and ✓4, and can push out ✓2

from the table.

No. ↵A ↵B L4

5 13.6 2.8 -250.2546
4 13.1 3.3 -250.2722
6 13.6 2.3 -250.2761

208



Instead of an expansion step, a contraction step is needed because ✓6 did not give a
greater L4 than the first two. Thus,

✓7 = ✓m + c ⇤ (✓6 � ✓m),

where c = 0.5 is recommended. Hence,

✓7 =
⇣

13.475 3.05
⌘
.

Then L4 = �250.2586 is better than that given by ✓4, but not by ✓5, thus the new table
becomes as follows:

No. ↵A ↵B L4

5 13.6 2.8 -250.2546
7 13.475 3.05 -250.2586
4 13.1 3.3 -250.2722

The following steps were taken in the next iteration.

1. The mean of the top two L4 is

✓m =
⇣

13.5375 2.925
⌘
.

2. A reflection step gives

✓8 = ✓m + r ⇤ (✓m � ✓last),

=
⇣

13.975 2.55
⌘
,

which gave L4 = �250.2563, which is better than ✓7.

3. Add ✓8 to the table and drop ✓4.

No. ↵A ↵B L4

5 13.6 2.8 -250.2546
8 13.975 2.55 -250.2563
7 13.475 3.05 -250.2586

4. Because L4 for ✓8 was not larger than L4 for ✓5 or smaller than L4 for ✓7, then no
expansion or contraction step is necessary. Begin the next iteration.

The Simplex method continues in this manner until all point entries in the table are
equal. The constants recommended by Nelder and Mead (1965) for reflection, expansion,
and contraction could be adjusted for a particular data set. This method may converge to
a local maximum, and so di↵erent starting values are needed to see if it converges to the
same point. The Simplex method does not work well with a large number of parameters
to be estimated.
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106.2 First Derivatives and EM Algorithm

To derive formulas for estimating the variance components take the derivatives of L4 with
respect to the unknown components.

@L4

@�2
i

= �.5trV�1 @V

@�2
i

� .5tr(X0V�1X)�X0V�1 @V

@�2
i

V�1X

+.5(y �Xb̂)0V�1 @V

@�2
i

V�1(y �Xb̂)

Combine the two terms involving the traces and note that

V�1(y �Xb̂) = Py,

then
@L4

@�2
i

= �.5tr(V�1 �V�1X(X0V�1X)�X0V�1)
@V

@�2
i

+ .5y0P
@V

@�2
i

Py

= �.5trPZiZ
0
i + .5y0PZiZ

0
iPy

for i = 1, . . . , s or
= �.5trP + .5y0PPy

for i = 0 for the residual component. Using P and the fact that

V�1 = R�1 �R�1Z(Z0R�1Z + G�1)�1Z0R�1

then
trPZiZ

0
i = qi/�

2
i � trCii�

2
0/�

4
i

and

trP = (N � r(X))�2
0 �

sX

i=1

û0iûi/�
2
i .

The other terms, y0PZiZ0
iPy and y0PPy, were simplified by Henderson (1973) to

show that they could be calculated from the Mixed Model Equations. Note that Henderson
(1973) showed

Py = V�1(y �Xb̂),

b̂ = (X0V�1X)�X0V�1y,

ûi = GiZ
0
iPy,

then

y0PZiZ
0
iPy = y0PZi[GiG

�1
i G�1

i Gi]Z
0
iPy

= (y0PZiGi)G
�2
i (GiZ

0
iPy)

= û0iG
�2
i ûi
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which when Gi = I�2
i gives

û0iûi/�
4
i .

Similarly for the residual component, Henderson showed that

y0PPy = [y0y � b̂0X0y �
sX

i=1

(û0iZ
0
iy + û0iûi↵i)]/�

2
0,

where ↵i = �2
0/�

2
i .

Equate the derivatives to zero incorporating the above simplifications and obtain

�̂2
i = (û0iûi + trCii�

2
0)/qi,

�̂2
0 = y0Py/(N � r(X)).

As with ML, solutions using the EM algorithm must be computed iteratively. Convergence
is usually very slow, if it occurs, and the process may also diverge.

Notice the di↵erences between REML and ML. The denominator for �̂2
0 is N � r(X)

rather than N , and in �̂2
i is trCii rather than trTii. The quadratic forms, however, are

identical in REML and ML. Accounting for the degrees of freedom to estimate b has
resulted in the REML algorithm.

A major computing problem with the EM algorithm is the calculation of trCii, which
is the corresponding inverse elements of the mixed model equations for the ith random
factor. With most applications in animal breeding, the order of the mixed model equations
are too large to be inverted, and solutions to the equations are obtained by Gauss-Seidel
iterations. However, there have been several attempts to approximate trCii, but these
have not been totally suitable.

To demonstrate the EM algorithm let ↵A = 10 and ↵B = 5 be the starting values of
the ratios for factors A and B, respectively. There were N = 90 total observations, and
r(X) = 2. The solution vector is

0

BBBBBBBBBBBBBBB@

F1

F2

A1

A2

A3

B1

B2

B3

B4

1

CCCCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBBBB@

64.6313
59.4225
�2.1363

.4955
1.6368
5.1064
2.6402

�2.6433
�5.1034

1

CCCCCCCCCCCCCCCA

.

Then
y0(Xb̂ + Zû) = 347, 871.2661

211



and from the inverse of the coe�cient matrix,

trCAA = .16493, and trCBB = .3309886

which give rise to the following estimates,

�̂2
0 = (356, 000� 347, 871.2661)/88

= 92.371976,

�̂2
A = (7.4925463 + .16493(92.371976))/3

= 7.575855,

�̂2
B = (66.0771576 + .3309886(92.371976))/4

= 24.16280774.

New ratios are formed as

↵A = 92.371976/7.575855 = 12.192944,

and
↵B = 92.371976/24.16280774 = 3.822899

and these are used to form the mixed model equations again, new solutions and traces
are calculated, and so on, until the estimated ratios and the prior values of the ratios are
equal. The estimates converge to

�̂2
0 = 91.8639,

�̂2
A = 2.5692,

�̂2
B = 30.5190.

or
↵A = 35.7558, and ↵B = 3.0101.

106.3 Second Derivatives, Average Information

Second derivatives of the log likelihood lead to the expectations of the quadratic forms.
One technique, MIVQUE (Minimum Variance Quadratic Unbiased Estimation) equates
the quadratic forms to their expectations. The estimates are unbiased and if all variances
remain positive, then convergence will be to the REML estimates. However, due to a
shortage of data or an inappropriate model, the estimates derived in this manner can be
negative. Computing the expectations of the quadratic forms requires the inverse of the
mixed model equations coe�cient matrix, and then products and crossproducts of various
parts of the inverse.
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A gradient method using first and second derivatives can be used (Hofer, 1998). The
gradient, d ( the vector of first derivatives of the log likelihood), is used to determine the
direction towards the parameters that give the maximum of the log likelihood, such that

✓(t+1) = ✓(t) + M(t)d(t),

where d(t) are the first derivatives evaluated at ✓ = ✓(t), and M(t) in the Newton-
Raphson(NR) algorithm is the observed information matrix, and in the Fisher Method of
Scoring(FS) it is the expected information matrix.

The first derivatives are as follows (from earlier in these notes):

@L4

@�2
i

= �.5trPZiZ
0
i + .5y0PZiZ

0
iPy = 0

for i = 1, . . . , s or
@L4

@�2
0

= �.5trP + .5y0PPy = 0

for the residual component. Then from earlier results,

trPZiZ
0
i = qi/�

2
i � trCii�

2
0/�

4
i ,

y0PZiZ
0
iPy = û0iûi/�

4
i

which combined give

0.5(û0iûi/�
4
i � qi/�

2
i + trCii�

2
0/�

4
i ) = 0,

for i = 1, . . . , s, and

trP = (N � r(X))�2
0 �

sX

i=1

û0iûi/�
2
i

y0PPy = [y0y � b̂0X0y �
sX

i=1

(û0iZ
0
iy + û0iûi↵i)]/�

2
0

which combined give

0.5([y0y � b̂0X0y �
sX

i=1

(û0iZ
0
iy + û0iûi↵i)]/�

2
0 � (N � r(X))�2

0 +
sX

i=1

û0iûi/�
2
i ) = 0,

which simplifies to

0.5([y0y � b̂0X0y �
sX

i=1

û0iZ
0
iy]/�2

0 � (N � r(X))�2
0) = 0.
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The second derivatives give a matrix of quantities. The elements of the observed
information matrix (Gilmour et al. 1995) are

� @2L4

@�2
i @�2

0

= 0.5y0PZiZ
0
iPy/�4

0,

� @2L4

@�2
i @�2

j

= 0.5tr(PZiZ
0
j)� 0.5tr(PZiZ

0
iPZjZ

0
j)

+y0PZiZ
0
iPZjZ

0
jPy/�2

0 � 0.5y0PZiZ
0
jPy/�2

0,

and

� @2L4

@�2
0@�2

0

= y0Py/�6
0 � 0.5(N � r(X))/�4

0.

The elements of the expected information matrix (Gilmour et al. 1995) are

E[� @2L4

@�2
i @�2

0

] = 0.5tr(PZiZ
0
i)/�

2
0,

E[� @2L4

@�2
i @�2

j

] = 0.5tr(PZiZ
0
iPZjZ

0
j),

and

E[� @2L4

@�2
0@�2

0

] = 0.5(N � r(X))/�4
0.

As the name Average Information implies, average the observed and expected information
matrices to give the following matrix of elements.

I[�2
i , �

2
0] = 0.5y0PZiZ

0
iPy/�4

0,

I[�2
i , �

2
j ] = y0PZiZ

0
iPZjZ

0
jPy/�2

0,

and

I[�2
0, �

2
0] = 0.5y0Py/�6

0.

The first derivatives form the vector, d(t), and

M(t) = I[�, �]�1.

The rest of this method is computational detail to simplify the requirements for inverse
elements and solutions to MME. The calculations can not be illustrated very easily for
the example data because the y-vector is not available.

106.4 Animal Models

The model commonly applied to estimation of variance components in livestock genetics
since 1989 has been an animal model. The animal model assumes a large, random mating
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population, an infinite number of loci each with a small and equal e↵ect on the trait, only
additive genetic e↵ects, and all relationships among animals are known and tracible to an
unselected base population (somewhere in the past). Animals may have more than one
record each. The equation of the model is

y = Xb + Za + Zp + e,

where a is the vector of animal additive genetic e↵ects (one per animal), and p is a vector
of permanent environmental (p.e.) e↵ects associated with each animal.

E(y) = Xb,

V ar

0

B@
a
p
e

1

CA =

0

B@
A�2

a 0 0
0 I�2

p 0
0 0 I�2

e

1

CA .

The matrix A is called the numerator relationship matrix. Wright defined relationships
among animals as correlations, but A is essentially relationships defined as covariances
(the numerators of the correlation coe�cients). Also, these only represent the additive
genetic relationships between animals.

The MME for this model are
0

B@
X0X X0Z X0Z
Z0X Z0Z + A�1ka Z0Z
Z0X Z0Z Z0Z + Ikp

1

CA

0

B@
b̂
â
p̂

1

CA =

0

B@
X0y
Z0y
Z0y

1

CA .

Note that ka is the ratio of residual to additive genetic variances, and kp is the ratio
of residual to permanent environmental variances. Also, in MME the inverse of A is
required.

The EM-REML procedure gives

�̂2
e = (y0y � b̂0X0y � â0Z0y � p̂0Z0y)/(N � r(X)),

�̂2
a = (â0A�1â + trA�1Caa�̂

2
e)/n,

�̂2
p = (p̂0p̂ + trCpp�̂

2
e)/n,

where n is the total number of animals, N is the total number of records, and Caa are
the inverse elements of the MME for the animal additive genetic e↵ects, and Cpp are
the inverse elements of the MME for the animal permanent environmental e↵ects. An
example of this model will be given in later notes.

106.4.1 Quadratic Forms in an Animal Model

A necessary quadratic form in an animal model is â0A�1â, and this can be computed very
easily. Note that the inverse of A may be written as

A�1 = T�1D�2T0�1
,
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where T�1 is an upper triangular matrix, and diagonal matrix D�2 has elements equal
to 1, 2, or 4/3 in noninbred situations, and values greater than 2 in inbred situations. In
Henderson (1975), this inverse was shown to be composed of just three numbers, i.e. 0,
1’s on the diagonals, and -.5 corresponding to the parents of an animal. For example,

T0�1 =

0

BBB@

1 0 0 0
0 1 0 0

�.5 �.5 1 0
�.5 0 �.5 1

1

CCCA .

Then

T0�1â = m̂

= (âi � 0.5(âs + âd)),

for the ith animal, and âs and âd are the sire and dam estimated breeding values, respec-
tively. Consequently,

â0A�1â = â0T�1B�2T0�1â

= m̂0B�2m̂

=
qX

i=1

m̂2
i b

ii,

where bii are the diagonal elements of B�2, and q is the number of animals.

107 EXERCISES

Below are pedigrees and data on 20 animals.
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Animal Sire Dam Group Record
1 - -
2 - -
3 - -
4 - -
5 1 2 1 28
6 1 2 1 40
7 3 4 1 30
8 1 2 1 35
9 1 4 2 17
10 3 2 2 41
11 1 4 2 23
12 3 2 2 38
13 1 2 2 37
14 3 4 2 27
15 5 7 3 24
16 6 14 3 31
17 8 7 3 42
18 1 10 3 47
19 3 13 3 26
20 5 9 3 33

1. Construct A�1 and set up the MME.

2. Apply EM-REML to the model,

yij = µ + gi + aj + eij,

where group, animal additive genetic, and residual e↵ects are random. Let

�2
e/�

2
a = 1.5, �2

e/�
2
g = 5.0,

to start the iterations. Do five iterations of EM-REML.

3. Apply EM-REML again to the model with

�2
e/�

2
a = 3.0, �2

e/�
2
g = 2.5,

and do five iterations of REML from these starting values.

4. Do the results of the previous two question tend to give similar answers? Comment
on the results.

5. Use the Derivative Free method and compute the log likelihoods for various sets of
parameters.
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Bayesian Methods

Every variable in a linear model is a random variable derived from a distribution
function. A fixed factor becomes a random variable with possibly a uniform distribution
going from a lower limit to an upper limit. A component of variance is a random variable
having a Gamma or Chi-square distribution with df degrees of freedom. In addition, the
researcher may have information from previous experiments that strongly indicate the
value that a variance component may have, and the Bayes approach allows the apriori
information to be included in the analysis.

The Bayesian process is to

1. Specify distributions for each random variable of the model.

2. Combine the distributions into the joint posterior distribution.

3. Find the conditional marginal distributions from the joint posterior distribution.

4. Employ Markov Chain Monte Carlo (MCMC) methods to maximize the joint poste-
rior distribution. Gibbs Sampling is a tool in MCMC methods for deriving estimates
of parameters from the joint posterior distribution.

By determining conditional marginal distributions for each random variable of the
model, then generating random samples from these distributions eventually converge to
random samples from the joint posterior distribution. Computationally, any program that
calculates solutions to Henderson’s mixed model equations can be modified to implement
Gibbs Sampling.

108 The Joint Posterior Distribution

Begin with a simple single trait animal model. That is,

y = Xb + Za + e.

Let ✓ be the vector of random variables and y is the data vector, then

p(✓,y) = p(✓) p(y | ✓)

= p(y) p(✓ | y)

Re-arranging gives

p(✓ | y) =
p(✓)p(y | ✓)

p(y)
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= (prior for ✓)
p(y | ✓)

p(y)
= posterior probability function of ✓

In terms of the simple animal model, ✓ includes b, a, �2
a, and �2

e .

108.1 Conditional Distribution of Data Vector

The conditional distribution of y given ✓ is

y | b, a, �2
a, �

2
e ⇠ N(Xb + Za, I�2

e),

and

p(y | b, a, �2
a, �

2
e) / (�2

e)
(�N/2) exp

h
�(y �Xb� Za)0(y �Xb� Za)/2�2

e

i
.

108.2 Prior Distributions of Random Variables

108.2.1 Fixed E↵ects Vector

There is little prior knowledge about the values in b might have. This is represented by
assuming

p(b) / constant.

108.2.2 Random E↵ects and Variances

For a, the vector of additive genetic values, quantitative genetics theory suggests that
they follow a normal distribution, i.e.

a | A, �2
a ⇠ N(0,A�2

a)

and
p(a) / (�2

a)
(�q/2) exp

h
�a0A�1a/2�2

a

i
,

where q is the length of a.

A natural estimator of �2
a is a0A�1a/q, call it S2

a, where

S2
a ⇠ �2

q�
2
a/q.

Multiply both sides by q and divide by �2
q to give

�2
a ⇠ qS2

a/�
2
q
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which is a scaled, inverted Chi-square distribution, written as

p(�2
a | va, S

2
a) / (�2

a)
�( va

2 +1) exp

 

�va

2

S2
a

�2
a

!

,

where va and S2
a are hyperparameters with S2

a being a prior guess about the value of �2
a

and va being the degrees of belief in that prior value. Usually q is much larger than va

and therefore, the data provide nearly all of the information about �2
a.

108.2.3 Residual E↵ects

Similarly, for the residual variance,

p(�2
e | ve, S

2
e ) / (�2

e)
�( ve

2 +1) exp

 

�ve

2

S2
e

�2
e

!

.

108.2.4 Combining Prior Distributions

The joint posterior distribution is

p(b, a, �2
a, �

2
e | y) / p(b)p(a | �2

a)p(�2
a)p(�2

e)p(y | b, a, �2
a, �

2
e)

which can be written as

/ (�2
e)
�(N+ve

2 +1) exp

"

� 1

2�2
e

((y �Xb� Za)0(y �Xb� Za) + veS
2
e )

#

(�2
a)
�( q+va

2 +1) exp

"

� 1

2�2
a

(a0A�1a + vaS
2
a)

#

.

109 Fully Conditional Posterior Distributions

In order to implement Gibbs sampling, all of the fully conditional posterior distributions
(one for each component of ✓ ) need to be derived from the joint posterior distribution.
The conditional posterior distribution is derived from the joint posterior distribution by
picking out the parts that involve the unknown parameter in question.
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109.1 Fixed and Random E↵ects of the Model

Let

W = (X Z),

�0 = (b0 a0),

⌃ =

 
0 0
0 A�1k

!

,

C = Henderson0s Mixed Model Equations

= W0W + ⌃

C�̂ = W0y

A new notation is introduced, let

�0 = (�i �0�i),

where �i is a scalar representing just one element of the vector �, and ��i is a vector
representing all of the other elements except �i. Similarly, C and W can be partitioned
in the same manner as

W0 = (Wi W�i)
0

C =

 
Ci,i Ci,�i

C�i,i C�i,�i

!

.

In general terms, the conditional posterior distribution of � is a normal distribution,

�i | ��i, �
2
a, �

2
e ,y ⇠ N(�̂i, C

�1
i,i �2

e)

where
Ci,i�̂i = (W0

iy �Ci,�i��i).

Then
bi | b�i, a, �2

a, �
2
e ,y ⇠ N(b̂i, C

�1
i,i �2

e),

for
Ci,i = x0ixi.

Also,
ai | b, a�i, �

2
a, �

2
e ,y ⇠ N(âi, C

�1
i,i �2

e),

where Ci,i = (z0izi + Ai,ik), for k = �2
e/�

2
a.
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109.2 Variances

The conditional posterior distributions for the variances are inverted Chi-square distribu-
tions,

�2
a | b, a, �2

e ,y ⇠ ṽaS̃
2
a�

�2
ṽa

for ṽa = q + va, and S̃2
a = (a0A�1a + vaS

2
a)/ṽa, and

�2
e | b, a, �2

a,y ⇠ ṽeS̃
2
e�

�2
ṽe

for ṽe = N + ve, and S̃2
e = (e0e + veS

2
e )/ṽe, and e = y �Xb� Za.

110 Computational Scheme

Gibbs sampling is much like Gauss-Seidel iteration. When a new solution is calculated
in the Mixed Model Equations for a level of a fixed or random factor, a random amount
is added to the solution based upon its conditional posterior distribution variance before
proceeding to the next level of that factor or the next factor. After all equations have
been processed, new values of the variances are calculated and a new variance ratio is
determined prior to beginning the next round. The following MME for five animals will
be used to illustrate the Gibbs sampling scheme:

0

BBBBBBBB@

5 1 1 1 1 1
1 29 7 �7 �14 0
1 7 30 �14 8 �16
1 �7 �14 36 �14 0
1 �14 8 �14 37 �16
1 0 �16 0 �16 33

1

CCCCCCCCA

0

BBBBBBBB@

µ
a1

a2

a3

a4

a5

1

CCCCCCCCA

=

0

BBBBBBBB@

238.2
38.5
48.9
64.3
50.5
36.0

1

CCCCCCCCA

,

where k = �2
e/�

2
a = 14, and

A�1 =
1

14

0

BBBBBB@

28 7 �7 �14 0
7 29 �14 8 �16

�7 �14 35 �14 0
�14 8 �14 36 �16

0 �16 0 �16 32

1

CCCCCCA
.

The starting values for � =
⇣

0 0 0 0 0 0
⌘
, and for va = ve = 10, and S2

e = 931
3

and S2
a = 62

3 , so that k = 14. Let RND represent a random normal deviate from a random
normal deviate generator, and let CHI(idf) represent a random Chi-square variate from a
random Chi-Square variate generator with idf degrees of freedom. Every time that RND
and CHI(idf) appear, a di↵erent random number is generated for that expression.

To begin, let �2
e = S2

e and �2
a = S2

a. Below are descriptions of calculations in the first
two rounds.
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110.1 Round 1

110.1.1 Fixed and Random E↵ects of Model

• Overall mean

µ̂ = (238.2� a1 � a2 � a3 � a4 � a5)/5

= 47.64

µ = µ̂ + RND ⇤ (�2
e/5).5

= 47.64 + (�1.21) ⇤ (4.32)

= 42.41

• Animal 1

â1 = (38.5� µ� 7a2 + 7a3 + 14a4)/29

= �.1349

a1 = â1 + RND ⇤ (�2
e/29).5

= �.1349 + (1.138)(1.794)

= 1.9067

• Animal 2

â2 = (48.9� µ� 7a1 + 14a3 � 8a4 + 16a5)/30

= �6.8591/30 = �.2286

a2 = â2 + RND ⇤ (�2
e/30).5

= �.2286 + (.0047)(1.7638)

= �.2203

• Animal 3

â3 = (64.3� µ + 7a1 + 14a2 + 14a4)/36

= .8931

a3 = â3 + RND ⇤ (�2
e/36).5

= .8931 + (�1.1061)(1.6102)

= �.8879
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• Animal 4

â4 = (50.5� µ + 14a1 � 8a2 + 14a3 + 16a5)/37

= .6518

a4 = â4 + RND ⇤ (�2
e/37).5

= .6518 + (�1.2293)(1.5882)

= �1.3006

• Animal 5

â5 = (36.0� µ + 16a2 + 16a4)/33

= �.9316

a5 = â5 + RND ⇤ (�2
e/33).5

= �.9316 + (�.6472)(1.6817)

= �2.0200

110.1.2 Residual Variance

Calculate the residuals and their sum of squares in order to obtain a new residual
variance.

e1 = 38.5� 42.41� 1.9067 = �5.8167

e2 = 48.9� 42.41 + .2203 = 6.7103

e3 = 64.3� 42.41 + .8879 = 22.7779

e4 = 50.5� 42.41 + 1.3006 = 9.3906

e5 = 36.0� 42.41 + 2.0200 = �4.3900

e0e = 705.1503

A new sample value of the residual variance is

�2
e = (e0e + veS

2
e )/CHI(15)

= (705.1503 + (10)(93.3333))/17.1321

= 95.6382.

110.1.3 Additive Genetic Variance

The additive genetic variance requires calculation of a0A�1a using the a-values ob-
tained above, which gives

a0A�1a = 19.85586.
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Then

�2
a = (a0A�1a + vaS

2
a)/CHI(15)

= (19.85586 + (10)(6.66667))/10.7341

= 8.0605.

A new sample value of the variance ratio becomes

k = 95.6382/8.0605 = 11.8650.

110.2 Round 2

Round 2 begins by re-forming the MME using the new variance ratio. The equations
change to

0

BBBBBBBB@

5 1 1 1 1 1
1 24.73 5.93 �5.93 �11.86 0
1 5.93 25.58 �11.86 6.78 �13.56
1 �5.93 �11.86 30.66 �11.86 0
1 �11.86 6.78 �11.86 31.51 �13.56
1 0 �13.56 0 �13.56 28.12

1

CCCCCCCCA

0

BBBBBBBB@

µ
a1

a2

a3

a4

a5

1

CCCCCCCCA

=

0

BBBBBBBB@

238.2
38.5
48.9
64.3
50.5
36.0

1

CCCCCCCCA

.

110.2.1 Fixed and Random E↵ects of Model

The process is repeated using the last values of µ and a and �2
e .

µ̂ = (238.2� a1 � a2 � a3 � a4 � a5)/5

= 48.14

µ = µ̂ + RND ⇤ (�2
e/5).5

= 48.14 + (.7465) ⇤ (4.3735)

= 51.41

â1 = (38.5� µ� 5.93a2 + 5.93a3 + 11.864)/24.73

= �1.3059

a1 = â1 + RND ⇤ (�2
e/24.73).5

= �1.3059 + (�.0478)(1.9665)

= �1.3999

â2 = (48.9� µ� 5.93a1 + 11.86a3 � 6.78a4 + 13.56a5)/25.58
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= �.9113

a2 = â2 + RND ⇤ (�2
e/25.58).5

= �.9113 + (.8386)(1.9336)

= .7102

â3 = �2.41355/30.66

= �.0787

a3 = â3 + RND ⇤ (�2
e/30.66).5

= �.0787 + (�1.8414)(1.7662)

= �3.3309

â4 = �89.2236/31.51 = �2.8316

a4 = �2.8316 + (�1.2549)(1.7422)

= �5.0179

â5 = �73.8224/28.12 = �2.6253

a5 = �2.6253 + (.8184)(1.8442)

= �1.1160

110.2.2 Residual Variance

The residuals and their sum of squares are

e1 = 38.5� 51.41 + 1.3999 = �11.5101

e2 = 48.9� 51.41� .7102 = �3.2202

e3 = 64.3� 51.41 + 3.3309 = 16.2209

e4 = 50.5� 51.41 + 5.0179 = 4.1079

e5 = 36.0� 51.41 + 1.1160 = �14.2940

e0e = 627.1630

The new sample value of the residual variance is

�2
e = (e0e + veS

2
e )/CHI(15)

= (627.1630 + (10)(93.3333))/20.4957

= 76.1377.
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110.2.3 Additive Genetic Variance

The new sample value of the additive genetic variance is

�2
a = (a0A�1a + vaS

2
a)/CHI(15)

= (36.8306 + (10)(6.66667))/16.6012

= 6.2343.

The new variance ratio becomes

k = 76.1377/6.2343 = 12.2127.

Continue taking samples for thousands of rounds.

110.3 Burn-In Periods

The samples do not immediately represent samples from the joint posterior distribution.
Generally, this takes anywhere from 100 to 10,000 samples depending on the model and
amount of data. This period is known as the burn-in period. Samples from the burn-in
period are discarded. The length of the burn-in period (i.e. number of samples) is usually
judged by visually inspecting a plot of sample values across rounds.

A less subjective approach to determine convergence to the joint posterior distribution
is to run two chains at the same time, both beginning with the same random number seed.
However, the starting values (in variances) for each chain are usually greatly di↵erent,
e.g. one set is greatly above the expected outcome and the other set is greatly below
the expected outcome. When the two chains essentially become one chain, i.e. the
squared di↵erence between variance estimates is less than a specified value (like 10�5),
then convergence to the joint posterior distribution has occurred. All previous samples
are considered to be part of the burn-in period and are discarded.

110.4 Post Burn-In Analysis

After burn-in, each round of Gibbs sampling is dependent on the results of the previous
round. Depending on the total number of observations and parameters, one round may
be positively correlated with the next twenty to three hundred rounds. The user can
determine the e↵ective number of samples by calculating lag correlations, i.e. the correla-
tion of estimates between rounds, between every other round, between every third round,
etc. Determine the number of rounds between two samples such that the correlation is
zero. Divide the total number of samples (after burn-in) by the interval that gives a zero
correlation, and that gives the e↵ective number of samples. Suppose a total of 12,000
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samples (after removing the burn-in rounds) and an interval of 240 rounds gives a zero
correlation between samples, then the e↵ective number of samples is 12,000 divided by 240
or 50 samples. There is no minimum number of independent samples that are required,
just the need to know how many there actually were.

An overall estimate of a parameter can be obtained by averaging all of the 12,000
samples (after the burn-in). However, to derive a confidence interval or to plot the dis-
tribution of the samples or to calculate the standard deviation of the sample values, the
variance of the independent samples should be used.

The final estimates are therefore, an average of the sample estimates. Some research
has shown that the mode of the estimates might be a better estimate, which indicates
that the distribution of sample estimates is skewed. One could report both the mean and
mode of the samples, however, the mode should be based on the independent samples
only.

110.5 Influence of the Priors

In the small example, va = ve = 10 whereas N was only 5. Thus, the prior values of the
variances received more weight than information coming from the data. This is probably
appropriate for this small example, but if N were 5,000,000, then the influence of the
priors would be next to nothing. The amount of influence of the priors is not directly
determined by the ratio of vi to N . In the small example, even though va/(N + va) = 2

3 ,
the influence of S2

a could be greater than 2
3 . When N is large there may be no need for

va or ve at all, or at least very small values would su�ce.

110.6 Long Chain or Many Chains?

Early papers on MCMC (Monte Carlo Markov Chain) methods recommended running
many chains of samples and then averaging the final values from each chain. This was
to insure independence of the samples. Another philosophy recommends one single long
chain. For animal breeding applications this could mean 100,000 samples or more. If
a month is needed to run 50,000 samples, then maybe three chains of 50,000 would be
preferable, all running simultaneously on a network of computers. If only an hour is
needed for 50,000 samples, then 1,000,000 samples would not be di�cult to run.

Two chains that utilize the same sequence of random numbers, but which use di↵er-
ent starting variances, are recommended for determining the burn-in period, after which
enough samples need to be run to generate a su�cient number of independent samples for
obtaining standard deviations of the samples. A su�cient number of independent samples
may be 100 or more depending on the amount of time needed to generate samples.
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110.7 Heritabilities and Correlations

The Gibbs sampling process gives samples of variances, and usually each sample is saved
(or every mth sample). Thus, for each saved sample of variances, the heritability (or
genetic correlation) could be calculated or the ratio of residual to additive variance, or
any other quantity that may be of interest to the user. Then those values could be
averaged and the variance of the samples calculated to give a standard error of the overall
heritability estimate. This gives the user a good idea of the variability in these ratios.

110.8 Estimated Breeding Values

Although not common, Gibbs sampling can be used to get Estimated Breeding Values
(EBV) of animals and their standard errors of prediction (across samples). The standard
errors of prediction could then be converted to a reliability of the EBV rather than deriving
an approximation for reliability. Only 100 to 500 additional rounds of Gibbs sampling are
needed for this purpose.

111 EXERCISES

Below are data on progeny of 4 sires. Sires are assumed to be unrelated. Each number is
an observation on one progeny.
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Data For Assignment.
Sire Contemporary Groups

1 2 3
1 13, 9 3, 9 12, 18
2 3 8, 13 6
3 - 18, 10 15
4 6, 8 - 9

Assume the model equation

yijk = ci + sj + eijk,

where ci is a fixed contemporary group e↵ect, sj is a random sire e↵ect, and eijk is a
random residual e↵ect.

1. Set up the MME. Assume that �2
e/�

2
s = 10.

2. Apply REML EM to the model (Just one iteration) to estimate the sire and residual
variances. Calculate an estimate of heritability.

3. Perform many rounds of Gibbs sampling on the MME solutions and on the vari-
ances. The MME solutions have normal conditional posterior distributions, and the
variances have inverted Chi-square distributions. Assume degrees of belief equal
to the number of observations, and prior values equal to the estimates from the
previous question.

4. Plot the sample values of the variances.

5. Calculate an estimate of heritability for each Gibbs sample, and compute the mean
and variance of the sample heritability values.
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Repeated Records Animal Model

112 Introduction

Animals are observed more than once for some traits, such as

• Fleece weight of sheep in di↵erent years.

• Calf records of a beef cow over time.

• Test day records within a lactation for a dairy cow.

• Litter size of sows over time.

• Antler size of deer in di↵erent seasons.

• Racing results of horses from several races.

Usually the trait is considered to be perfectly correlated over the ages of the animal.
Besides an animal’s additive genetic value for a trait, there is a common permanent
environmental (PE) e↵ect which is a non-genetic e↵ect common to all observations on the
same animal.

113 The Model

The model is written as

y = Xb +
⇣

0 Z
⌘ a0

ar

!

+ Zp + e,

where

b = vector of fixed e↵ects, 
a0

ar

!

=

 
animals without records
animals with records

!

,

p = vector of PE e↵ects of length equal to ar , and

e = vector of residual e↵ects.

The matrices X and Z are design matrices that associate observations to particular levels
of fixed e↵ects and to additive genetic and PE e↵ects, respectively. In a repeated records
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model, Z is not equal to an identity matrix. Also,

a | A, �2
a ⇠ N(0,A�2

a)

p | I, �2
p ⇠ N(0, I�2

p)

e ⇠ N(0, I�2
e)

G =

 
A�2

a 0
0 I�2

p

!

.

Repeatability is a measure of the average similarity of multiple records on animals
across the population (part genetic and part environmental), and is defined as a ratio of
variances as

r =
�2

a + �2
p

�2
a + �2

p + �2
e

,

which is always going to be greater than or equal to heritability, because

h2 =
�2

a

�2
a + �2

p + �2
e

.

114 Simulation of Records

Simulating multiple records on animals may help to understand this type of model. Let

�2
a = 36

�2
p = 16 and

�2
e = 48

Thus,

h2 =
36

36 + 16 + 48
= .36,

and

r =
36 + 16

36 + 16 + 48
= .52.

114.1 Data Structure

Animal Sire Dam Year 1 Year 2 Year 3
7 1 2

p p p

8 3 4
p p

9 5 6
p p

10 1 4
p p

11 3 6
p

12 1 2
p
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None of the animals are inbred, so that the inverse of the additive genetic relationship
matrix is

A�1 =
1

2

0

BBBBBBBBBBBBBBBBBBBBBBB@

5 2 0 1 0 0 �2 0 0 �2 0 �2
2 4 0 0 0 0 �2 0 0 0 0 �2
0 0 4 1 0 1 0 �2 0 0 �2 0
1 0 1 4 0 0 0 �2 0 �2 0 0
0 0 0 0 3 1 0 0 �2 0 0 0
0 0 1 0 1 4 0 0 �2 0 �2 0

�2 �2 0 0 0 0 4 0 0 0 0 0
0 0 �2 �2 0 0 0 4 0 0 0 0
0 0 0 0 �2 �2 0 0 4 0 0 0

�2 0 0 �2 0 0 0 0 0 4 0 0
0 0 �2 0 0 �2 0 0 0 0 4 0

�2 �2 0 0 0 0 0 0 0 0 0 4

1

CCCCCCCCCCCCCCCCCCCCCCCA

.

114.2 Additive Genetic Values of Animals

The first six animals are assumed to be base generation animals, and should be generated
first. Let RND represent a random normal deviate, and bi is 0.5� 0.25(Fs + Fd).

Animal Parent Ave. RND (36 ⇤ bi).5 TBV
1 0.0 -2.5038 6.0 -15.0228
2 0.0 -.3490 6.0 -2.0940
3 0.0 -.2265 6.0 -1.3590
4 0.0 -.3938 6.0 -2.3628
5 0.0 1.4786 6.0 8.8716
6 0.0 2.3750 6.0 14.2500
7 -8.5584 -.8166 4.2426 -12.0229
8 -1.8609 1.0993 4.2426 2.8030
9 11.5608 1.5388 4.2426 18.0893
10 -8.6928 .0936 4.2426 -8.2957
11 6.4455 1.3805 4.2426 12.3024
12 -8.5584 -1.2754 4.2426 -13.9694

114.3 Permanent Environmental E↵ects

Each animal has a PE e↵ect that is common to each of its own records, but is not
transmitted to progeny. Genetic relationships have no bearing on PE e↵ects. Generate a
RND and multiply by �p = 4. These are shown in the table below.
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Animal TBV PE
1 -15.02 2.97
2 -2.09 -9.04
3 -1.36 4.44
4 -2.36 -4.16
5 8.87 -5.68
6 14.25 6.85
7 -12.02 1.38
8 2.80 7.02
9 18.09 5.94

10 -8.30 -5.03
11 12.30 -1.06
12 -13.97 -2.69

114.4 Records

Records are generated according to the model equation,

yijk = ti + aj + pj + eijk,

where ti is a year e↵ect. Let t1 = 53, t2 = 59, and t3 = 65. Note that �p = 4, and
�e = 6.9282. Residual values are generated for each observation as RND ⇤ �e. Add
together the pieces and round to the nearest whole number.

Year 1 Year 2 Year 3
Animal TBV PE y1jk y2jk y3jk

1 -15.02 2.97
2 -2.09 -9.04
3 -1.36 4.44
4 -2.36 -4.16
5 8.87 -5.68
6 14.25 6.85
7 -12.02 1.38 39 51 62
8 2.80 7.02 48 72
9 18.09 5.94 71 96

10 -8.30 -5.03 56 47
11 12.30 -1.06 86
12 -13.97 -2.69 46

An interesting point to observe from the simulation is that the PE e↵ects are present
even for animals with only one record. Also, the same PE value is present in all records
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of one animal.

Another assumption is that the records have a genetic correlation of one, which is
true in the way that the above records were simulated because the same TBV was used
for each record. In real life, genes a↵ecting a trait might change as the animal ages, and
therefore, the genetic correlation between successive records could be less than unity.

115 Mixed Model Equations

Let
W =

h
X

⇣
0 Z

⌘
Z
i
,

then

W0W =

0

BBB@

X0X 0 X0Z X0Z
0 0 0 0

Z0X 0 Z0Z Z0Z
Z0X 0 Z0Z Z0Z

1

CCCA , W0y =

0

BBB@

X0y
0

Z0y
Z0y

1

CCCA ,

and

⌃ =

0

BBB@

0 0 0 0
0 A00ka A0rka 0
0 Ar0ka Arrka 0
0 0 0 Ikp

1

CCCA ,

where Aij are corresponding elements of the inverse of the additive genetic relationship
matrix (given earlier) partitioned according to animals without and with records. In this
example, each submatrix is of order 6. Also,

ka = �2
e/�

2
a = 1.33333, andkp = �2

e/�
2
p = 3.

MME are therefore,

(W0W + ⌃)� = W0y

(W0W + ⌃)� =

0

BBB@

X0X 0 X0Z X0Z
0 A00ka A0rka 0

Z0X Ar0ka Z0Z + Arrka Z0Z
Z0X 0 Z0Z Z0Z + Ikp

1

CCCA

0

BBBB@

b̂
â0

âr

p̂

1

CCCCA
.

Let a generalized inverse of the coe�cient matrix be represented as

(W0W + ⌃)� =

0

B@
� � �
� Caa �
� � Cpp

1

CA ,
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where Caa is of order 12 in this case, and Cpp is of order 6.

The full HMME are too large to present here as a whole, so parts of the matrix are
given as follows.

X0X =

0

B@
3 0 0
0 4 0
0 0 4

1

CA , X0y =

0

B@
158
225
291

1

CA ,

X0Z =

0

B@
1 1 1 0 0 0
1 1 0 1 0 1
1 0 1 1 1 0

1

CA ,

Z0Z = diag(3 2 2 2 1 1),

and

Z0y =

0

BBBBBBBB@

152
120
167
103
86
46

1

CCCCCCCCA

.

The solutions for animals are given in the table below. Solutions for year e↵ects were

t̂1 = 50.0858,

t̂2 = 63.9612,

t̂3 = 72.0582.

Animal TBV PE â p̂
1 -15.02 2.97 -7.9356
2 -2.09 -9.04 -4.4473
3 -1.36 4.44 2.8573
4 -2.36 -4.16 -2.6039
5 8.87 -5.68 5.0783
6 14.25 6.85 7.0512
7 -12.02 1.38 -8.0551 -1.6566
8 2.80 7.02 1.0111 0.7861
9 18.09 5.94 11.1430 4.5140

10 -8.30 -5.03 -8.7580 -3.1007
11 12.30 -1.06 6.9271 1.7537
12 -13.97 -2.69 -8.7750 -2.2965

The correlation between â and TBV was .9637, and between p̂ and true PE was .7215.
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116 Reliability of EBVs

Owners of animals are very interested in Estimated Breeding Values (EBVs), and the main
question is about its reliability or accuracy. The variance-covariance matrix of prediction
errors is given by Caa�

2
e . Reliability, R, of the ith animal is defined as

R = (aii�
2
a � cii�

2
e)/�

2
a,

where aii is the diagonal of A for animal i, and cii is the diagonal of Caa for animal i.
Note that this is equivalent to

R = aii � ciika.

This procedure does not work when phantom groups are included in the formation of A�1

because then it is possible that
ciika > aii

for some situations. Below is a table of the reliabilities for the twelve animals in the
example analysis.

Animal â cii R
1 -7.9285 .6472 .1371
2 -4.4339 .6524 .1301
3 2.8289 .6476 .1365
4 -2.6365 .6398 .1469
5 5.0996 .6807 .0924
6 7.0703 .6653 .1129
7 -8.0155 .4740 .3680
8 .9544 .5012 .3317
9 11.1845 .4985 .3353

10 -8.7771 .5180 .3093
11 6.9204 .5656 .2459
12 -8.7807 .5592 .2544

Animals with records have a higher reliability than animals that have only progeny.
Also, animal 7 had a higher reliability because it had three records while animals 11 and
12 had only one record. Reliability reflects the years in which the records were made
and the number of contemporaries within a year, and specifically who the contemporaries
actually were. Reliability also includes the fact that animals were related.

In the analysis of very large numbers of animals, the calculation of Caa is virtually im-
possible. Thus, animal breeders have devised many ways of approximating the diagonals
of Caa. The following method is due to Schae↵er and Jansen (1997).
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Step 1 Account for contemporary group size and PE e↵ects. Take animal 7 as an ex-
ample. Animal 7’s first record in year 1 was made with two other contemporaries,
calculate

d7 = 1� 1 ⇤ 1

3
=

2

3
.

Animal 7’s second and third records were made with three contemporaries each, so
accumulate the following:

d7 = d7 + (1� 1

4
) + (1� 1

4
)

or

d7 =
2

3
+

3

4
+

3

4
= 2.1666667.

Now adjust for the fact that we must also estimate PE e↵ects for this animal. The
adjustment is

d7 = d7 �
d7 ⇤ d7

d7 + kp

= 2.16667� 4.694444

5.1666667
= 1.25806452.

Finally, add aiika, diagonal element from A�1ka, to give

d7 = 1.25806 + 2(1.33333) = 3.92473.

This is done for all animals with records. Animals without records have di = ka.
For animals 1 through 12 the results are

d1 = 1.33333

d2 = 1.33333

d3 = 1.33333

d4 = 1.33333

d5 = 1.33333

d6 = 1.33333

d7 = 3.92473

d8 = 3.62893

d9 = 3.62893

d10 = 3.66667

d11 = 3.26667

d12 = 3.26667
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Step 2 Convert the above numbers into a number that would represent an equivalent
number of progeny, ni, by

ni = (di � ka)/.5ka.

This gives

n1 = 0.00000

n2 = 0.00000

n3 = 0.00000

n4 = 0.00000

n5 = 0.00000

n6 = 0.00000

n7 = 3.88710

n8 = 3.44339

n9 = 3.44339

n10 = 3.50000

n11 = 2.90000

n12 = 2.90000

Step 3 Add contributions to parents. Animals must be processed from youngest to
oldest. Let ↵ = (4� h2)/h2 = 10.11111. The contribution to a parent is

qi = .25↵ti/(1� .25ti),

where
ti = ni/(ni + ↵),

or
qi = .25↵ ⇤ ni/(.75ni + ↵).

The value qi is added to the ns of the sire of i and to the nd of the dam of i. The
qi values of animals 7 through 12 are given below.

Animal nei ti qi

7 3.88710 .277686 .754293
8 3.44339 .254040 .685706
9 3.44339 .254040 .685706
10 3.50000 .257143 .694657
11 2.90000 .222886 .596653
12 2.90000 .222886 .596653

For animal 7, for example, qi = .754293 is added to n1 and n2 because the parents
of 7 are animals 1 and 2. Animal 1 receives contributions from animals 7, 10, and
12, or

ne1 = 0.0 + .754293 + .694657 + .596653 = 2.045603
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Similarly for all parents,

ne2 = 0.0 + .754293 + .596653 = 1.350946

ne3 = 0.0 + .685706 + .596653 = 1.282359

ne4 = 0.0 + .685706 + .694657 = 1.380363

ne5 = 0.0 + .685706 = .685706

ne6 = 0.0 + .685706 + .596653 = 1.282359

In real datasets, animals could very likely have both records and progeny.

Step 4 Set up selection index equations with progeny on the animal, on its sire, and on
its dam. Assume the sire and dam are unrelated. Use ni as the number of progeny
for animal i. Take animal 7 as an example with sire equal to animal 1 and dam
equal to animal 2, and calculate

m1 = (n1 � q7)/(n1 � q7 + ↵)

= (2.045603� .754293)/(1.291310 + 10.111111)

= 1.291310/11.402421

= .113249

m2 = (n2 � q7)/(n2 � q7 + ↵)

= (1.350946� .754293)/(.596653 + 10.111111)

= .055722

t1,2 = (m1 + m2)/4

= (.113249 + .055722)/4

= .042243

q1,2 = ↵t1,2/(1� t1,2)

= .445958

Now q1,2 is the contribution (in progeny equivalents) to the number of e↵ective
progeny for animal 7. Thus,

R = (n7 + q1,2)/(n7 + q1,2 + ↵)

= (3.88710 + .445958)/(4.333058 + 10.111111)

= .299987.

This approximation is much less than the value of .3680 derived from the diagonal
of Caa. The small number of records in this example could be a cause for the
disagreement.

For animal 1, the parents are unknown and so

R = n1/(n1 + ↵)

= 2.045603/(2.045603 + 10.111111)

= .168269,
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which is greater than the value of .1371 from Caa and shows that approximations
do not work in all cases. For animal 12,with sire equal to animal 1 and dam equal
to animal 2, and calculate

m1 = (n1 � q12)/(n1 � q12 + ↵)

= (2.045603� .596653)/(1.448950 + 10.111111)

= 1.448950/11.560061

= .125341

m2 = (n2 � q12)/(n2 � q12 + ↵)

= (1.350946� .596653)/(1.754293 + 10.111111)

= .117862

t1,2 = (m1 + m2)/4

= (.125341 + .117862)/4

= .060801

q1,2 = ↵t1,2/(1� t1,2)

= .654562

Now q1,2 is the contribution (in progeny equivalents) to the number of e↵ective
progeny for animal 12. Thus,

R = (n12 + q1,2)/(n12 + q1,2 + ↵)

= (2.9 + .654562)/(3.554562 + 10.111111)

= .2601,

which is only slightly higher than .2544 given by Caa.

Reliabilities are required to determine the ’o�cial’ status of an animal’s EBV. The
approximations that are used should be on the conservative side for safety reasons.

There may also be a method of determining approximate reliabilities by using Gibbs
sampling, but not allowing the variances to change in each round. The starting values
would be the solutions to the MME and the known variances. Then about 200 rounds of
sampling should give a good estimate of the prediction error variance of the EBVs for each
animal, which can then be used to arrive at reliability. Two hundred samples would be
calculated for each animal, and the standard deviation of those samples would estimate
the square root of the prediction error variances. This would be similar to computing 200
more iterations in the solution phase of the program.

117 Selection of Animals to Have Later Records

Often records on animals are taken over time, as the animal ages. Consequently the
observed value of the first record determines if that animal makes a second record, and so
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on. Thus, selection could a↵ect the mean and variance of later repeated records. This type
of selection is handled adequately by HMME provided that all first records of animals
and pedigrees are known for all animals. If these provisions are not met, then EBVs and
estimates of fixed e↵ects from a repeated records analysis could be biased by culling, with
the magnitude determined by the severity of the culling.

118 Permanent E↵ects?

Permanent environmental e↵ects may not really be permanent. Environmental e↵ects
are encountered all through the life of any living animal. There are certain e↵ects that
become part of that animal’s performance ability for the entirety of its life. However, there
could be many e↵ects that become incorporated into the animal’s performance ability as
the animal gains experience and encounters new events. For example, a tennis player
may develop a wicked backhand shot due to a coach that forced the player to practice
it endlessly. A few years later, a di↵erent coach may work more on the player’s serve.
Thus, environmental e↵ects accumulate over time. Both coaches now a↵ect that player’s
performance ability for the rest of his(her) life. Eventually age, injury, stress, success
become other environmental e↵ects.

A model with one permanent environmental e↵ect per animal represents an average
of all such environmental e↵ects over the performance lifetime of the animal. There is not
an easy way to model accumulated environmental e↵ects with time. Putting a time e↵ect
into the model is not su�cient, because the time e↵ects may be di↵erent for each animal.

The accumulated e↵ects are averaged into the PE e↵ect, and the deviations around
that (animal by time interaction e↵ects) become part of the residual e↵ect. Either a
random regression model or a multiple trait model are recommended for repeated record
situations because of the above problems.
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119 EXERCISES

Below are scores (out of 200) of dogs in three di↵erent agility competitions. Assume a
repeated records animal model where the score has a heritability of 0.25, and a repeata-
bility of 0.45. Each trial was held in a di↵erent city with a di↵erent judge and course
setter.

Scores (out of 200) for three agility competitions for dogs.
Dog Sire Dam Age Trial 1 Trial 2 Trial 3
1 - - 7 135 150
2 - - 6 110
3 1 2 4 127 134 130
4 1 2 4 108 140
5 1 - 4 95 104
6 1 - 5 138 161
7 3 - 2 154 166
8 3 4 2 155 140
9 5 - 1 128
10 5 6 1 117

1. Write a complete repeated records model for these data.

2. Construct HMME and solve. Which dogs are tops?

3. Provide prediction error variances for the EBV.

4. Show how to estimate the variances for one round of EM-REML, or one round of
Gibbs sampling.

5. Predict a record of animal 9 in Trial 3, if it had been entered. Also give a prediction
error variance for that record.
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Maternal Genetic Models

120 Introduction

In mammalian species of livestock, such as beef cattle, sheep or swine, the female provides
an environment for its o↵spring to survive and grow in terms of protection and nourish-
ment. Females vary in their ability to provide a suitable environment for their o↵spring,
and this variability has a genetic basis. O↵spring directly inherit an ability to grow (or
survive) from both parents, and environmentally do better or poorer depending on their
dam’s genetic maternal ability. Maternal ability is a genetic trait expressed by the dam in
the o↵springs’ performance, and is transmitted, like all genetic traits, from both parents.
Maternal ability is only expressed by females when they have o↵spring (i.e. much like
milk yield in dairy cows).

A model to account for maternal ability is

y = Xb + Z1a + Z2m + Z3p + e,

where y is the growth trait of a young animal, b is a vector of fixed factors influencing
growth, such as contemporary group, sex of the o↵spring, or age of dam, a is a vector of
random additive genetic e↵ects (i.e. direct genetic e↵ects) of the animals, m is a vector
of random maternal genetic (dam) e↵ects, and p, in this model, is a vector of maternal
permanent environmental e↵ects (because dams may have more than one o↵spring in the
data).

The expectations of the random vectors, a, m, p, and e are all null vectors in a model
without selection, and the variance-covariance structure is

V ar

0

BBB@

a
m
p
e

1

CCCA =

0

BBB@

A�2
a A�am 0 0

A�am A�2
m 0 0

0 0 I�2
p 0

0 0 0 I�2
e

1

CCCA ,

where �2
a is the additive genetic variance, �2

m is the maternal genetic variance, �am is
the additive genetic by maternal genetic covariance, and �2

p is the maternal permanent
environmental variance. Also,

0

B@
a

A,G
m

1

CA ⇠ N

  
0
0

!

, G⌦A

!

,

where

G =

 
�2

a �am

�am �2
m

!

,
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and
p | I, �2

p ⇠ N(0, I�2
p),

and
e ⇠ N(0, I�2

e).

In this model, a female animal, i, could have its own growth record for estimating
âi. The same female could later have o↵spring for estimating m̂i and p̂i, and the o↵spring
would also contribute towards âi. The maternal e↵ects model can be more complicated if,
for example, embryo transfer is practiced. Recipient dams would have maternal e↵ects,
but would not have direct genetic e↵ects on that calf, see Schae↵er and Kennedy (1989).

To better understand this model, simulation of records is again useful. Let

G =

 
�2

a �am

�am �2
m

!

=

 
49 �7
�7 26

!

.

Any positive definite matrix can be partitioned into the product of a matrix times its
transpose (i.e. Cholesky decomposition), or

G = LL0

L =

 
7 0

�1 5

!

.

Let �2
p = 9 and �2

e = 81. This model di↵ers from previous models in that both the additive
genetic and maternal genetic e↵ects need to be generated simultaneously because these
e↵ects are genetically correlated. The same is true for multiple trait models. Consider
three animals, A, B, and C, where C is an o↵spring of sire A and dam B.

120.1 Genetic Values

1. For A, generate a vector of two random normal deviates which will be pre-multiplied
by L. Animals A and B are base population animals that are unrelated to each other.
Let the vector of random normal deviates be w0 = (2.533 � .299), then for A

 
aA

mA

!

= Lw

=

 
7 0

�1 5

! 
2.533
�.299

!

=

 
17.731
�4.028

!

.
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2. Similarly for animal B,
 

aB

mB

!

=

 
7 0

�1 5

! 
�1.141

.235

!

=

 
�7.987

2.316

!

.

3. Creating a progeny’s true breeding value is similar to the scalar version. Take the
average of the parents’ true breeding values and add a random Mendelian sampling
term.

 
aC

mC

!

=
1

2

 
aA + aB

mA + mB

!

+ (bii)
.5Lw

=
1

2

 
17.731� 7.987
�4.028 + 2.316

!

+ (
1

2
).5L

 
.275
.402

!

=

 
6.233
.371

!

.

All animals have both direct and maternal genetic breeding values.

120.2 Maternal Permanent Environmental Values

For all dams, a maternal permanent environmental e↵ect should be generated. In this
case only for animal B, multiply a random normal deviate by �p = 3, suppose it is �4.491.

120.3 Phenotypic Record

An observation for animal C is created by following the model equation,

y = Fixed E↵ects + aC + mB + pB + �e ⇤RND

= 140 + 6.233 + 2.316 + (�4.491) + (9)(1.074)

= 153.724.

The Fixed E↵ects contribution of 140 was arbitrarily chosen for this example. The main
point is that the observation on animal C consists of the direct genetic e↵ect of animal
C plus the maternal genetic e↵ect of the dam (B) plus the maternal permanent environ-
mental e↵ect of the dam (B) plus a residual.

121 HMME

To illustrate the calculations, assume the data as given in the table below.
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Animal Sire Dam CG Weight
5 1 3 1 156
6 2 3 1 124
7 1 4 1 135
8 2 4 2 163
9 1 3 2 149
10 2 4 2 138

CG stands for contemporary group, the only fixed e↵ect in this example. Assume
that the appropriate variance parameters are those which were used in the simulation in
the previous section. Based on the matrix formulation of the model, the MME are

0

BBB@

X0X X0Z1 X0Z2 X0Z3

Z0
1X Z0

1Z1 + A�1k11 Z0
1Z2 + A�1k12 Z0

1Z3

Z0
2X Z0

2Z1 + A�1k12 Z0
2Z2 + A�1k22 Z0

2Z3

Z0
3X Z0

3Z1 Z0
3Z2 Z0

3Z3 + Ik33

1

CCCA

0

BBBB@

b̂
â
m̂
p̂

1

CCCCA
=

0

BBB@

X0y
Z0

1y
Z0

2y
Z0

3y

1

CCCA ,

where
 

k11 k12

k12 k22

!

=

 
�2

a �am

�am �2
m

!�1

�2
e ,

=

 
49 �7
�7 26

!�1

(81),

=

 
1.7192 .4628
.4628 3.2400

!

.

Note that these numbers are not equal to
 

81/49 81/(�7)
81/(�7) 81/26

!

.

Finally, k33 = �2
e/�

2
p = 81/9 = 9.

The matrices are

X =

0

BBBBBBBB@

1 0
1 0
1 0
0 1
0 1
0 1

1

CCCCCCCCA

, X0y =

 
415
450

!

,

Z1 =

0

BBBBBBBB@

0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

1

CCCCCCCCA

,
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Z2 =

0

BBBBBBBB@

0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0

1

CCCCCCCCA

,

Z3 =

0

BBBBBBBB@

1 0
1 0
0 1
0 1
1 0
0 1

1

CCCCCCCCA

, Z0
3y =

 
429
436

!

.

The other two right hand side matrices can be easily obtained from y and Z0
3y. Thus,

the order of the MME will be 24. The inverse of the relationship matrix is

A�1 =
1

2

0

BBBBBBBBBBBBBBBBBB@

5 0 2 1 �2 0 �2 0 �2 0
0 5 1 2 0 �2 0 �2 0 �2
2 1 5 0 �2 �2 0 0 �2 0
1 2 0 5 0 0 �2 �2 0 �2

�2 0 �2 0 4 0 0 0 0 0
0 �2 �2 0 0 4 0 0 0 0

�2 0 0 �2 0 0 4 0 0 0
0 �2 0 �2 0 0 0 4 0 0

�2 0 �2 0 0 0 0 0 4 0
0 �2 0 �2 0 0 0 0 0 4

1

CCCCCCCCCCCCCCCCCCA

.

The solutions to the MME are

b̂ =

 
137.8469
150.4864

!

, p̂ =

 
.0658

�.0658

!

,

â =

0

BBBBBBBBBBBBBBBBBB@

2.3295
�2.3295

.1280
�.1280
5.1055

�4.1143
.2375

2.0161
.5447

�3.7896

1

CCCCCCCCCCCCCCCCCCA

, and m̂ =

0

BBBBBBBBBBBBBBBBBB@

�.3328
.3328
.1646

�.1646
�.6379

.6792
�.1254
�.3795

.0136

.4499

1

CCCCCCCCCCCCCCCCCCA

.

No correlations with true values were calculated for this small example.
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The influence of the correlation between direct and maternal e↵ects can be a matter of
concern. If the correlation between direct and maternal true breeding values is negative (-
0.1), for example, and if an animal has a high direct EBV based on its own growth record,
then the maternal EBV could be very negative due to the correlation alone. Thus, if few
of the animals with growth records have progeny too, then the relationship between direct
and maternal EBVs will be strongly negative (like -0.8)(reflecting the assumed negative
correlation amongst true breeding values). However, if the data are complete and animals
have both their own records and those of several progeny, then the correlation between
direct and maternal EBVs should more closely follow the assumed genetic correlation.
This situation can also a↵ect the correct estimation of this genetic correlation. Estimates
of this correlation in beef cattle has ranged from -0.5 to +0.5, and this mostly reflects the
di↵erences in quality (completeness) of data used.

In experimental station herds with several generations and fairly complete data, the
estimates have tended to be zero or slightly positive between direct and maternal e↵ects.
On the other hand, in field data with almost no ties between growth of calves with
performance of o↵spring as a dam, the estimates of the correlation have tended to be
negative. To determine if your data are complete, create a file that has an animal’s
own record plus the average growth record of its progeny, to do a sort of dam-o↵spring
phenotypic correlation. If you have 3 million records, but only 100 dam-o↵spring pairs,
then the reliability of the estimated correlation between direct and maternal e↵ects will
be low.

122 Cytoplasmic E↵ects

Cytoplasmic e↵ects are created by mitochondrial DNA that is passed through the ooctye
to each o↵spring of a female. This DNA does not undergo meiosis, but is transmitted
directly and wholly to each oocyte. The size of this maternal e↵ect is not known, but sev-
eral attempts were made to estimate the e↵ect. Brian Kennedy was noted for debunking
the incorrect models that were used to estimate cytoplasmic e↵ects (J. Dairy Sci. 1986,
69:3100-3105). Kennedy suggested the use of an animal model (with additive genetic
relationships), which included a female line of origin e↵ect. That is, each animal would
need to be traced back to a female in the base population with unknown parents. All
such females would represent a di↵erent line of cytoplasmic e↵ects. The variance of the
line e↵ects would need to be estimated. Most studies using this model showed very small
levels of cytoplasmic e↵ects in dairy cattle.
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123 Embryo Transfer

Embryo transfer is used widely in dairy and beef cattle breeding. A genetically superior
female is identified, and the owner desires to have many o↵spring from this individual.
The cow is superovulated and the multiple embryos are harvested and inseminated, then
at a certain stage of development, the embryos are implanted into recipient cows (of a
di↵erent breed possibly). The recipients serve as a surrogate mother. When the calf is
born, the maternal environment that it lives with is that of the recipient cow, and not
that of its biological female parent. This can be handled in the maternal genetics e↵ects
model. The biological parent is included in the inverse of the relationship matrix, but the
design matrix (Z2) indicates the surrogate dam of that calf. The maternal genetic e↵ects
in the calf are inherited from the biological parents, but the maternal environment that
influences its own growth is from the surrogate dam.

124 Data Structure

Data structure is very important for estimating the covariance between direct and mater-
nal genetic e↵ects. Mahyar Heydarpour (2006) recently completed a study of this problem
with multiple trait models, and showed that estimates could be biased by poor data struc-
ture. At least two features must be present to enable proper estimation of the covariance
matrices.

1. Females must appear in the data as a calf with their own early growth records,
and they must appear later as the dam of other calves where they express their
maternal genetic influence. There needs to be a high percentage of such ties (through
a common ID number) in the data structure in order for the covariance between
direct and maternal genetic e↵ects to be estimable.

2. Sires must have daughters that appear as dams of calves.

Often the identification of a calf (registration number) is unknown in dairy and there-
fore, the link between the female calf growth record with that animal’s progeny in later
years is lost. There is a good link for a dam with all of her progeny, but not with her
own growth data when she was a calf. Without this link, the covariance between direct
and maternal genetic e↵ects is often very highly negative. This can be shown to be a
mathematical consequence of the data structure, if a negative correlation is used as a
prior value.

If the data structure is poor, then use of a zero covariance may be better than trying
to estimate the covariance
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125 EXERCISES

Analyze the following data sets using an appropriate maternal e↵ects model. Also, per-
form one iteration or one round of Gibbs sampling or EM REML.

125.1 Data Set 1

Weaning weights (pounds) of Hereford, female, beef calves from three contemporary
groups (CG) and at di↵erent ages at weaning.

Calf Sire Dam CG Age Weight(lb)
5 17 2 1 205 500
6 18 1 1 216 580
7 18 3 1 190 533
8 17 4 1 196 535
9 18 1 2 210 507
10 17 2 2 221 555
11 19 3 2 175 461
12 19 4 2 184 467
13 18 5 3 212 548
14 17 7 3 214 605
15 20 3 3 202 480
16 20 4 3 236 576

Assume that

G =

 
2122 338
338 1211

!

,

�2
p = 476, and �2

e = 5962.

What are the direct and maternal heritabilities, and direct-maternal correlation?

125.2 Data Set 2

This is an example of some animals being produced from embryo transfer. An animal from
ET has a recipient female as the “dam” providing the maternal environment. Assume
recipients are unrelated to any other animals genetically.

Length of rat pups after one week (cm).
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Pup Sire Dam Sex ET Length
5 1 3 No M 7.3
6 1 3 Yes F 6.5
7 2 4 No F 7.5
8 2 4 No M 8.7
9 2 4 Yes M 9.4

Assume that

G =

 
0.05 �0.01

�0.01 0.02

!

,

�2
p = 0.014, and �2

e = 0.12.

What are the direct and maternal heritabilities, and direct-maternal correlation?
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Random Regression Models

126 Introduction

All biological creatures grow and perform over their lifetime. Traits that are measured at
various times during that life are known as longitudinal data. Examples are body weights,
body lengths, milk production, feed intake, fat deposition, and egg production. On a
biological basis there could be di↵erent genes that turn on or turn o↵ as an animal ages
causing changes in physiology and performance. Also, an animal’s age can be recorded in
years, months, weeks, days, hours, minutes, or seconds, so that, in e↵ect, there could be
a continuum or continuous range of points in time when an animal could be observed for
a trait. These traits have also been called infinitely dimensional traits.

Take body weight on gilts from a 60-day growth test as an example.

Animal Days on Test
10 20 30 40 50 60

1 42 53 60 72 83 94
2 30 50 58 68 76 85
3 38 44 51 60 70 77

SD 1.6 3.7 3.9 5.0 5.3 5.6

The di↵erences among the three animals increase with days on test as the gilts become
heavier. As the mean weight increases, so also the standard deviation of weights increases.
The weights over time could be modeled as a mean plus covariates of days on test and days
on test squared. Depending on the species and trait, perhaps a cubic or spline function
would fit the data better. The point is that the means can be fit by a linear model with
a certain number of parameters.

127 Multiple Trait Approach

The data presented in the previous table have typically been analyzed such that the
weights at each day on test are di↵erent traits. If t is the day on test, i.e. 10, 20, 30, 40,
50, or 60, then a model for any one of the weights could be

yt = Xbt + at + et,

which is just a simple, single record, animal model. Analyses are usually done so that
the genetic and residual variances and covariances are estimated among the six weights.
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Suppose that an estimate of the genetic variances and covariances was

G =

0

BBBBBBBB@

2.5 4.9 4.6 4.6 4.3 4.0
4.9 13.5 12.1 12.3 11.9 10.7
4.6 12.1 15.2 14.5 14.6 12.5
4.6 12.3 14.5 20.0 19.0 16.9
4.3 11.9 14.6 19.0 25.0 20.3
4.0 10.7 12.5 16.9 20.3 30.0

1

CCCCCCCCA

.

Let the residual covariance matrix be

R =

0

BBBBBBBB@

3.8 7.4 6.9 6.8 6.4 6.0
7.4 20.3 18.2 18.4 17.9 16.1
6.9 18.2 22.8 21.8 21.9 18.8
6.8 18.4 21.8 30.0 28.5 25.4
6.4 17.9 21.9 28.5 37.5 30.5
6.0 16.1 18.8 25.4 30.5 45.0

1

CCCCCCCCA

.

Assuming a model with only an intercept, and that the three animals are unrelated, then

(X Z) =

0

B@
1 1 0 0
1 0 1 0
1 0 0 1

1

CA⌦ I6,

where the identity is of order 6 and ⌦ is the direct product operator. The observations
would be ordered by days on test within animals, i.e.,

y0 =
⇣

42 53 60 72 83 94 · · · 60 70 77
⌘
.

The resulting MME would be of order 24 by 24, and the solutions would be as follows.

Days on
Test Mean Animal 1 Animal 2 Animal 3
10 36.67 2.10 -2.61 0.51
20 49.00 1.57 0.45 -2.02
30 56.33 1.48 0.64 -2.12
40 66.67 2.21 0.39 -2.60
50 76.33 2.72 -0.24 -2.48
60 85.33 3.48 -0.16 -3.32

Animal 1 clearly grew faster than the other two animals and its superiority grew
larger with time. Animals 2 and 3 switched rankings after the first 10 days, and Animal 3
was the slower growing animal. The estimates for the mean give an average growth curve
for the 3 animals.

254



A multiple trait approach may be appropriate here because every animal was weighed
on exactly the same number of days on test throughout the trial. However, suppose the
animals were of di↵erent ages at the start of test, and suppose that instead of days on
test, the ages for each weight were given. Assume at start of test that Animal 1 was 18
days old, Animal 2 was 22, and Animal 3 was 25. The multiple trait model could include
a factor (classification or covariable) to account for di↵erent starting ages. The di↵erences
observed at any point in time could be due to the ages of the animals rather than just on
the number of days on test. The analysis shown above would have an implied assumption
that all animals began the test at the same age.

128 Covariance Functions

Let the example data be as shown below, allowing for the di↵erent ages at each test.
Note that the ages range from 28 days to 85 days, and that none of the animals were ever
weighed at exactly the same age.

Animal 1 Animal 2 Animal 3
Age Wt Age Wt Age Wt
28 42 32 30 35 38
38 53 42 50 45 44
48 60 52 58 55 51
58 72 62 68 65 60
68 83 72 76 75 70
78 94 82 85 85 77

Kirkpatrick et al.(1991) proposed the use of covariance functions for longitudinal data
of this kind. A covariance function (CF) is a way to model the variances and covariances
of a longitudinal trait. Orthogonal polynomials are used in this model and the user must
decide the order of fit that is best. Legendre polynomials (1797) are the easiest to apply.

To calculate Legendre polynomials, first define

P0(x) = 1, and

P1(x) = x,

then, in general, the n + 1 polynomial is described by the following recursive equation:

Pn+1(x) =
1

n + 1
((2n + 1)xPn(x)� nPn�1(x)) .

These quantities are ”normalized” using

�n(x) =
✓

2n + 1

2

◆.5

Pn(x).
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This gives the following series,

�0(x) =
✓

1

2

◆.5

P0(x) = .7071

�1(x) =
✓

3

2

◆.5

P1(x)

= 1.2247x

P2(x) =
1

2
(3xP1(x)� 1P0(x))

�2(x) =
✓

5

2

◆.5

(
3

2
x2 � 1

2
)

= �.7906 + 2.3717x2,

and so on. The first six can be put into a matrix, ⇤, as

⇤0 =

0

BBBBBBBB@

.7071 0 0 0 0 0
0 1.2247 0 0 0 0

�.7906 0 2.3717 0 0 0
0 �2.8062 0 4.6771 0 0

.7955 0 �7.9550 0 9.2808 0
0 4.3973 0 �20.5206 0 18.4685

1

CCCCCCCCA

.

Now define another matrix, M, as a matrix containing the polynomials of standardized
time values. Legendre polynomials are defined within the range of values from -1 to +1.
Thus, ages or time periods have to be standardized (converted) to the interval between
-1 to +1. The formula is

q` = �1 + 2
✓

t` � tmin

tmax � tmin

◆
.

Let the minimum starting age for pigs on test be 15 days and the maximum starting age
be 28 days, then the maximum age at end of test was 88 days. Thus, tmin = 25 = (15+10)
and tmax = 88 = (28 + 60).

The matrix G was based on weights taken on pigs that were all 21 days of age at
start of test. The table below shows the ages and standardized time values for the six
weigh dates.

Days on Age Standardized
Test Value
10 31 -1.000
20 41 -.600
30 51 -.200
40 61 .200
50 71 .600
60 81 1.000
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Therefore,

M =

0

BBBBBBBB@

1 �1 1 �1 1 �1
1 �.600 .360 �.216 .130 �.078
1 �.200 .040 �.008 .002 �.000
1 .200 .040 .008 .002 .000
1 .600 .360 .216 .130 .078
1 1 1 1 1 1

1

CCCCCCCCA

.

This gives

� = M⇤,

=

0

BBBBBBBB@

.7071 �1.2247 1.5811 �1.8708 2.1213 �2.3452

.7071 �.7348 .0632 .6735 �.8655 .3580

.7071 �.2449 �.6957 .5238 .4921 �.7212

.7071 .2449 �.6957 �.5238 .4921 .7212

.7071 .7348 .0632 �.6735 �.8655 �.3580

.7071 1.2247 1.5811 1.8708 2.1213 2.3452

1

CCCCCCCCA

.

which can be used to specify the elements of G as

G = �H�0

= M(⇤H⇤0)M0

= MTM0.

Note that �, M, and ⇤ are matrices defined by the Legendre polynomial functions and
by the standardized time values and do not depend on the data or values in the matrix
G. Therefore, it is possible to estimate either H or T,

H = ��1G��T ,

=

0

BBBBBBBB@

27.69 5.29 �1.95 0.05 �1.17 0.52
5.29 4.99 0.42 �0.25 �0.30 �0.75

�1.95 0.42 1.51 0.20 �0.33 �0.07
0.05 �0.25 0.20 1.19 0.06 �0.71

�1.17 �0.30 �0.33 0.06 0.58 0.15
0.52 �0.75 �0.07 �0.71 0.15 1.12

1

CCCCCCCCA

,

and

T = M�1GM�T

=

0

BBBBBBBB@

16.44 6.48 �5.93 �11.49 �0.93 10.02
6.48 49.87 �2.05 �155.34 1.44 111.23

�5.93 �2.05 57.71 28.62 �50.06 �25.73
�11.49 �155.34 28.62 635.49 �26.91 �486.90
�0.93 1.44 �50.06 �26.91 49.80 26.49
10.02 111.23 �25.73 �486.90 26.49 382.79

1

CCCCCCCCA

.
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Why orthogonal polynomials? Convert T and H to correlation matrices.

Tcor =

0

BBBBBBBB@

1.00 .23 �.19 �.11 �.03 .13
.23 1.00 �.04 �.87 .03 .81

�.19 �.04 1.00 .15 �.93 �.17
�.11 �.87 .15 1.00 �.15 �.99
�.03 .03 �.93 �.15 1.00 .19

.13 .81 �.17 �.99 .19 1.00

1

CCCCCCCCA

,

and

Hcor =

0

BBBBBBBB@

1.00 .45 �.30 .01 �.29 .09
.45 1.00 .15 �.10 �.17 �.32

�.30 .15 1.00 .15 �.36 �.05
.01 �.10 .15 1.00 .07 �.62

�.29 �.17 �.36 .07 1.00 .19
.09 �.32 �.05 �.62 .19 1.00

1

CCCCCCCCA

.

The largest absolute correlation in T was .99, while the largest absolute correlation in
H was only .62. Orthogonal polynomials tend to reduce the correlations between esti-
mated regression coe�cients. This is advantageous when trying to estimate H by REML
or Bayesian methods, because the estimates would converge faster to the maximum or
appropriate posterior distribution than trying to estimate T. The matrix T actually had
four correlations greater than 0.80 in absolute value, while H had none. There are other
kinds of orthogonal polynomials, but Legendre polynomials are probably the easiest to
calculate and utilize.

H can be used to calculate the covariance between any two days on test between 10
and 60 days. To compute the covariance between days 25 and 55, calculate the Legendre
polynomial covariates as in calculating a row of �. The standardized time values for days
25 and 55 are -0.4 and 0.8, respectively. The Legendre polynomials (stored in L are

L =

 
.7071 �.4899 �.4111 .8232 �.2397 �.6347
.7071 .9798 .7273 .1497 �.4943 �.9370

!

.

Then the variances and covariance for those two ages are

LHL0 =

 
14.4226 13.7370
13.7370 28.9395

!

.

Thus, the genetic correlation between days 25 and 55 is 0.67. The same calculations could
be repeated for the residual variance-covariance matrix. Let

S = ��1R��T ,

=

0

BBBBBBBB@

41.57 7.94 �2.91 0.11 �1.76 0.76
7.94 7.45 0.62 �0.41 �0.44 �1.07

�2.91 0.62 2.29 0.31 �0.52 �0.12
0.11 �0.41 0.31 1.76 0.08 �1.04

�1.76 �0.44 �0.52 0.08 0.88 0.24
0.76 �1.07 �0.12 �1.04 0.24 1.64

1

CCCCCCCCA

,
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then the residual variances and covariances for days 25 and 55 would be

LSL0 =

 
21.6645 20.6166
20.6166 43.3442

!

.

128.1 Reduced Orders of Fit

Although the order of G in the previous example was six and polynomials of standardized
ages to the fifth power were used to derive the covariance functions, perhaps only squared
or cubed powers are needed to adequately describe the elements of G. That is, find �⇤

such that it is rectangular and H⇤ has a smaller order, m < k, but still

G = �⇤H⇤�⇤0
.

To determine H⇤, first pre-multiply G by �⇤0
and post-multiply that by �⇤ as

�⇤0
G�⇤ = �⇤0

(�⇤H⇤�⇤0
)�⇤

= (�⇤0
�⇤)H⇤(�⇤0

�⇤).

Now pre- and post- multiply by the inverse of (�⇤0
�⇤) = P to determine H⇤,

H⇤ = P�1�⇤0
G�⇤P�1.

To illustrate, let m = 3, then

�⇤ =

0

BBBBBBBB@

.7071 �1.2247 1.5811

.7071 �.7348 .0632

.7071 �.2449 �.6957

.7071 .2449 �.6957

.7071 .7348 .0632

.7071 1.2247 1.5811

1

CCCCCCCCA

,

and

�⇤0
�⇤ =

0

B@
3.0000 0.0000 1.3415
0.0000 4.1997 0.0000
1.3415 0.0000 5.9758

1

CA ,

(�⇤0
�⇤)�1 =

0

B@
.3705 .0000 �.0832
.0000 .2381 .0000

�.0832 .0000 .1860

1

CA .

Also,

�⇤0
G�⇤ =

0

B@
220.2958 78.0080 61.4449
78.0080 67.5670 44.9707
61.4449 44.9707 50.5819

1

CA .
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The matrix H⇤ is then 0

B@
26.8082 5.9919 �2.9122
5.9919 3.8309 .4468

�2.9122 .4468 1.3730

1

CA .

What order of reduced fit is su�cient to explain the variances and covariances in G?
Kirkpatrick et al.(1990) suggested looking at the eigenvalues of the matrix H from a full
rank fit. Below are the values. The sum of all the eigenvalues was , and also shown is the
percentage of that total.

H
Eigenvalue Percentage

29.0357 .7831
4.2922 .1158
1.8161 .0490
1.3558 .0366
.5445 .0147
.0355 .0010

The majority of change in elements in G is explained by a constant, and by a linear
increment. Both suggest that a quadratic function of the polynomials is probably su�-
cient. Is there a way to statistically test the reduced orders of fit to determine which is
su�cient? A goodness of fit statistic is ê0ê where

ê = g � ĝ

and g is a vector of the half-stored elements of the matrix G, i.e.,

g0 =
⇣

g11 g12 · · · g16 g22 · · · g66

⌘
.

A half-stored matrix of order k has k(k + 1)/2 elements. For k = 6 there are 21 values.
Likewise, ĝ is a vector of half stored elements of the matrix �⇤H⇤�⇤0

. Although this matrix
also has 21 values, because M has only m < k columns, the number of independent values
is m(m + 1)/2. For m = 3 this number is 6.

The test statistic, ê0ê, has a Chi-square distribution with k(k + 1)/2 �m(m + 1)/2
degrees of freedom. In the example with m = 3,

�⇤H⇤�⇤0
=

0

BBBBBBBB@

3.9622 4.7467 5.2006 5.3239 5.1165 4.5786
4.7467 8.9493 11.4058 12.1162 11.0804 8.2986
5.2006 11.4058 15.2402 16.7038 15.7966 12.5186
5.3239 12.1162 16.7038 19.0868 19.2650 17.2386
5.1165 11.0804 15.7966 19.2650 21.4857 22.4586
4.5786 8.2986 12.5186 17.2386 22.4586 28.1786

1

CCCCCCCCA

,
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and the residuals (di↵erences from the original G) are

0

BBBBBBBB@

�1.4622 .1533 �.6006 �.7239 �.8165 �.5786
.1533 4.5507 .6942 .1838 .8196 2.4014

�.6006 .6942 �.0402 �2.2038 �1.1966 �.0186
�.7239 .1838 �2.2038 .9132 �.2650 �.3386
�.8165 .8196 �1.1966 �.2650 3.5143 �2.1586
�.5786 2.4014 �.0186 �.3386 �2.1586 1.8214

1

CCCCCCCCA

,

so that the goodness of fit statistic is

ê0ê = 59.3476,

with 21-6=15 degrees of freedom.

Is a fit of order 3 poorer than a fit of order 5? An F-statistic is possible by taking the
di↵erence in the goodness of fit statistics, divided by an estimate of the residual variance.
The residual variance is estimated from a fit of order k� 1 or in this case of order 5. The
goodness of fit statistic for order 5 was 7.2139 with 21-15=6 degrees of freedom. Hence
the residual variance is

�2 = 7.2139/6 = 1.2023.

The F-statistic to test if a fit of order 3 is di↵erent from a fit of order 5 is

F =
(ê0êm=3 � ê0êm=5)/(15� 6)

�2

=
(59.3476� 7.2139)/9

1.2023
= 5.7926/1.2023 = 4.8180,

with (9,6) degrees of freedom. The table F-value at the (P = .05) level is 4.10. Thus, the
di↵erence is significant, and a fit of order 5 is better than a fit of order 3.

261



129 Basic Structure of RRM

Random regression models have a basic structure that is similar in most applications. A
simplified RRM for a single trait can be written as

yijkn:t = Fi + g(t)j + r(a, x,m1)k + r(pe, x,m2)k + eijkn:t,

where

yijkn:t is the nth observation on the kth animal at time t belonging to the ith fixed factor
and the jth group;

Fi is a fixed e↵ect that is independent of the time scale for the observations, such as a
cage e↵ect, a location e↵ect or a herd-test date e↵ect;

g(t)j is a function or functions that account for the phenotypic trajectory of the average
observations across all animals belonging to the jth group;

r(a, x,m1)k =
Pm1

`=0 ak`xijk:` is the notation adopted for a random regression function. In
this case, a denotes the additive genetic e↵ects of the kth animal, x is the vector of
time covariates, and m1 is the order of the regression function. So that xijk:` are
the covariables related to time t, and ak` are the animal additive genetic regression
coe�cients to be estimated;

r(pe, x,m2)k =
Pm2

`=0 pk`xijk:` is a similar random regression function for the permanent
environmental (pe) e↵ects of the kth animal; and

eijkn:t is a random residual e↵ect with mean null and with possibly di↵erent variances for
each t or functions of t.

The function, g(t)j, can be either linear or nonlinear in t. Such a function is necessary
in a RRM to account for the phenotypic relationship between y and the time covariables
(or other types of covariables that could be used in a RRM). In a test day model, g(t)j

accounts for di↵erent lactation curve shapes for groups of animals defined by years of
birth, parity number, and age and season of calving within parities, for example. With
growth data, g(t)j accounts for the growth curve of males or females of breed X or breed
Y from young or old dams.

If the shape of the phenotypic relationship is not known or is nonlinear, then g(t)j

could be a set of classification variables. Classification variables take up more degrees
of freedom and require a large number of observations per level, but they do not force
the user to explicitly define the shape of the trajectory. A mathematical function, on
the other hand, does not use many degrees of freedom and gives a smooth trajectory
over time regardless of the number of observations. The choice of classification variables
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or mathematical function is up to the researcher. If data are very numerous, and the
mathematical function fits the data well, then either approach will generally lead to the
same results. The phenotypic relationships, g(t)j, are important to a RRM analysis and
deserve care and e↵ort in their correct specification.

The random regressions are intended to model the deviations around the phenotypic
trajectories. The pattern of variation may be very di↵erent in shape or appearance from
the phenotypic relationships, and may be more simple than g(t)j. Orthogonal polynomials
of standardized units of time have been recommended as covariables (Kirkpatrick et al.,
1990). Orthogonal polynomials have computational advantages. The primary general
advantage is the reduced correlations among the estimated coe�cients. A standardized
unit of time, w, ranges from -1 to +1, and is derived as

w =
2 ⇤ (t� tmin)

(tmax � tmin)
� 1,

where tmin is the earliest date (or the youngest age) and tmax is the latest date (or oldest
age) represented in the data. The order of the orthogonal polynomials would be m1 and
m2, i.e. the highest power of polynomial. Note that m1 and m2 do not need to be equal,
but often (for simplicity of computing) they are chosen to be the same. Meyer(2000)
and Pool et al. (2000), for example, compared many RRM models with di↵erent orders
of orthogonal polynomials for the genetic and pe e↵ects. Several types of orthogonal
polynomials are available, but Legendre polynomials have been utilized (Kirkpatrick et
al., 1990). The first 6 Legendre polynomial functions of standardized units of time are
given in Table 1. Thus, if w = �0.2, then the covariables that would go into the model
(for order equal to 5) are shown in the last column of Table 1. Covariables based upon
orthogonal polynomials are small numbers that reduce problems with rounding errors, and
they provide relatively small correlations between the estimated regression coe�cients.

The residual variance should not be assumed to be constant from tmin to tmax. The
residual e↵ect is also known as a temporary environmental e↵ect. Changes in residual
variance might be predictable depending on the trajectory of the phenotypic data. For
example, if RRM were being applied to growth data, weights may increase linearly with
age, and the variance of weights may increase quadratically with age. Thus, the residual
variance would be expected to increase in a similar manner as the phenotypic variance.
Residual variances can be fit with a function of t, or assumed to have an autoregressive
structure, or can be grouped into intervals having equal variance within the intervals.
Research in this area is needed.

In matrix notation the RRM is

y = Xb + Z1a + Z2p + e,

where b contains Fi and g(t)j e↵ects, a contains m1 +1 additive genetic regression coe�-
cients for each animal, p contains m2 +1 permanent environmental regression coe�cients
for each animal with data, and e contains the temporary environmental e↵ects. Also,
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V ar

0

B@
a
p
e

1

CA =

0

B@
A⌦G 0 0

0 I⌦P 0
0 0 R

1

CA ,

where G is the variance-covariance matrix of the additive genetic random regression coe�-
cients of order m1+1; P is the variance-covariance matrix of the permanent environmental
random regression coe�cients of order m2 + 1; and R is a diagonal matrix of temporary
environmental variances which could vary depending on t, or R could be block diagonal
with an autocorrelation structure for each animal’s records. The mixed model equations
(MME) are represented as

0

B@
X0R�1X X0R�1Z1 X0R�1Z2

Z0
1R

�1X Z0
1R

�1Z1 + A�1 ⌦G�1 Z0
1R

�1Z2

Z0
2R

�1X Z0
2R

�1Z1 Z0
2R

�1Z2 + I⌦P�1

1

CA

0

B@
b̂
â
p̂

1

CA =

0

B@
X0R�1y
Z0

1R
�1y

Z0
2R

�1y

1

CA .

Assumptions about the distributions of y and other random variables are not necessary
to derive best linear unbiased predictors (BLUP)(Goldberger, 1962; Henderson, 1984) or
the MME, but when y is normally distributed then BLUP is also BLP if the model is
correct and variances and covariances are known. In order to estimate the elements of
G, P, and R via Bayesian methods or restricted maximum likelihood, then normality of
the random variables must be assumed (See for example Jamrozik and Schae↵er, 1997).
This paper will concentrate on the applications of RRM and not on the estimation of
(co)variance parameters, nor on the computational details of estimating (co)variances or
solving mixed model equations. Some of the applications in this paper have applied RRM
to discrete data, and therefore, a BLUP analysis would not be optimum. However, the
presentation of these ideas may stimulate others to find better solutions.

130 Example Data Analysis By RRM

Below are the data structure and pedigrees of four dairy cows. Given is the age at which
they were observed for a trait during four visits to one herd.

Age, Obs. at Visit
Cow Sire Dam Visit 1 Visit 2 Visit 3 Visit 4

1 7 5 22,224 34,236 47,239
2 7 6 30,244 42,247 55,241 66,244
3 8 5 28,224 40,242
4 8 1 20,220 33,234 44,228
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The model equation might be

yjik:t = Vj + b0 + b1(A) + b2(A)2

+(ai0z0 + ai1z1 + ai2z2)

+(pi0z0 + pi1z1 + pi2z2) + ejik:t

where

Vj is a random contemporary group e↵ect which is assumed to follow a normal distri-
bution with mean 0 and variance, �2

c = 4.

b0, b1, and b2 are fixed regression coe�cients on (A) = age and age squared which
describes the general relationship between age and the observations,

ai0, ai1, and ai2 are random regression coe�cients for animal i additive genetic e↵ects,
assumed to follow a multivariate normal distribution with mean vector null and
variance-covariance matrix, G,

pi0, pi1, and pi2 are random regression coe�cients for animal i permanent environmental
e↵ects, assumed to follow a multivariate normal distribution with mean vector null
and variance-covariance matrix, P,

z0, z1, and z2 are the Legendre polynomials based on standardized ages and derived as
indicated earlier. The minimum age was set at 18 and the maximum age was set at
68 for calculating the Legendre polynomials.

and ejik is a temporary residual error term assumed to follow a normal distribution with
mean 0 and variance, �2

e = 9. In this example, the residual variance is assumed to
be constant across ages.

The model in matrix notation is

y = Xb + Wv + Za + Zp + e,

where

X =

0

BBBBBBBBBBBBBBBBBBBBBBB@

1 22 484
1 30 900
1 28 784
1 34 1156
1 42 1764
1 40 1600
1 20 400
1 47 2209
1 55 3025
1 33 1089
1 66 4356
1 44 1936

1

CCCCCCCCCCCCCCCCCCCCCCCA

, y =

0

BBBBBBBBBBBBBBBBBBBBBBB@

224
244
224
236
247
242
220
239
241
234
244
228

1

CCCCCCCCCCCCCCCCCCCCCCCA

, W =

0

BBBBBBBBBBBBBBBBBBBBBBB@

1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1

1

CCCCCCCCCCCCCCCCCCCCCCCA

,
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and

Z =

0

BBBBBBBBBBBBB@

.7071 �1.0288 .8829 0 0 0 0 0 0 0 0 0
0 0 0 .7071 �.6369 �.1493 0 0 0 0 0 0
0 0 0 0 0 0 .7071 �.7348 .0632 0 0 0

.7071 �.4409 �.4832 0 0 0 0 0 0 0 0 0
0 0 0 .7071 �.0490 �.7868 0 0 0 0 0 0
0 0 0 0 0 0 .7071 �.1470 �.7564 0 0 0
0 0 0 0 0 0 0 0 0 .7071 �1.1268 1.2168

.7071 .1960 �.7299 0 0 0 0 0 0 0 0 0
0 0 0 .7071 .5879 �.2441 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 .7071 �.4899 �.4111
0 0 0 .7071 1.1268 1.2168 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 .7071 .0490 �.7868

1

CCCCCCCCCCCCCA

.

In order to reduce rounding errors the covariates of age for the fixed regressions can be
forced to have a mean of approximately zero by subtracting 38 from all ages and 1642
from all ages squared. Then

X =

0

BBBBBBBBBBBBBBBBBBBBBBB@

1 �16 �1158
1 �8 �742
1 �10 �858
1 �4 �486
1 4 122
1 2 �42
1 �18 �1242
1 9 567
1 17 1383
1 �5 �553
1 28 2714
1 6 294

1

CCCCCCCCCCCCCCCCCCCCCCCA

.

The mixed model equations that need to be constructed to provide estimated breeding
values are as follows;
0

BBBB@

X0X X0W X0Z 0 X0Z
W0X W0W + I 9

4 W0Z 0 W0Z
Z0X Z0W Z0Z + Ann ⌦G�1 Anb ⌦G�1 Z0Z
0 0 Abn ⌦G�1 Abb ⌦G�1 0
Z0X Z0W Z0Z 0 Z0Z + I⌦P�1

1

CCCCA

0

BBBB@

b̂
ĉ
ân

âb

p̂

1

CCCCA
=

0

BBBB@

X0y
W0y
Z0y
0

Z0y

1

CCCCA
.

The entire MME can not be presented, but parts of the MME are given below.

W0W =

0

BBB@

3 0 0 0
0 4 0 0
0 0 3 0
0 0 0 2

1

CCCA ,

W0X =

0

BBB@

3 �34 �2758
4 �16 �1648
3 21 1397
2 34 3008

1

CCCA ,
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X0X =

0

B@
12 5 �1
5 1995 166, 883

�1 166, 883 14, 415, 319

1

CA ,

Z0Z is composed of the following four blocks of order 3, for the four animals with
records;

Animal 1

0

B@
1.5 �.9006 �.2335

�.9006 1.2912 �.8383
�.2335 �.8383 1.5457

1

CA ,

Animal 2

0

B@
2 .7275 .0259

.7275 2.0233 1.3612

.0259 1.3612 2.1815

1

CA ,

Animal 3

0

B@
1 �.6235 �.4902

�.6235 .5615 .0648
�.4902 .0648 .5761

1

CA ,

Animal 4

0

B@
1.5 �1.1085 .0134

�1.1085 1.5121 �1.2082
.0134 �1.2082 2.2687

1

CA .

and Z0X is

Z0X =

0

BBBBBBBBBBBBBBBBBBBBBBB@

2.1213 �7.7781 �761.5467
�1.2737 19.9884 1516.7598
�.3302 �18.7627 �1201.416
2.8284 28.9911 2458.5867
1.0288 46.4439 4337.8027
.0366 27.9679 2979.5959

1.4142 �5.6568 �636.3900
�.8818 7.0540 636.6324
�.6932 �2.1448 �22.4568
2.1213 �12.0207 �1061.3570

�1.5677 23.0259 1684.8063
.0189 �24.5677 �1515.2470

1

CCCCCCCCCCCCCCCCCCCCCCCA

.

The right hand sides of the MME are

X0y =

0

B@
2823
2070

68, 064

1

CA ,
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W0y =

0

BBB@

692
945
714
472

1

CCCA ,

and

Z0y =

0

BBBBBBBBBBBBBBBBBBBBBBB@

494.2629
�287.6596
�90.7117
690.1296
249.1165

7.3023
329.5086

�200.1692
�168.8920

482.2422
�351.3606
�7.8918

1

CCCCCCCCCCCCCCCCCCCCCCCA

.

The variance-covariance matrices of the additive and permanent environmental e↵ects
need to be known for BLUP. Normally, these are not well known and must be estimated
simultaneously with the other e↵ects of the model. Let

G =

0

B@
94.0000 �3.8500 .03098
�3.8500 1.5000 �.0144

.03098 �.0144 .0014

1

CA ,

and

P =

0

B@
63.0000 �2.1263 .0447
�2.1263 .5058 �.00486

.0447 �.00486 .0005

1

CA .

The solutions to MME are

b̂0 =
⇣

234.9797 1.4670 �.01399
⌘
,

ĉ0 =

0

BBB@

�.8630
1.2885
.1443

�.5698

1

CCCA .

Let the solutions for the animal additive genetic random regression coe�cients be pre-
sented in tabular form as follows.
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Animal a0 a1 a2

1 -2.021529 .175532 -.002696
2 5.751601 -2.139115 .025848
3 -2.474456 2.554412 -.029269
4 -5.376687 -.370873 .002174
5 -1.886714 1.464975 -.016963
6 3.333268 -1.065525 .013047
7 1.503398 -1.081654 .012555
8 -2.948511 .681643 -.008633

Similarly, the solutions for the animal permanent environmental random regression
coe�cients can be given in tabular form.

Animal p0 p1 p2

1 -.296786 .246946 -.002521
2 3.968256 -.730659 .009430
3 -.834765 .925329 -.008164
4 -4.505439 -.441805 .001257

The problem is to rank the animals for selection purposes. If animals are ranked on
the basis of a0, then animal 2 would be the highest (if that was desirable). If ranked on
the basis of a1, then animal 3 would be the highest, and if ranked on the basis of a2,
then animal 2 would be the highest. To properly rank the animals, an EBV at di↵erent
ages could be calculated, and then these could be combined with appropriate economic
weights. Calculate EBVs for 24, 36, and 48 mo of age, and use economic weights of 2, 1,
and .5, respectively, for the three EBVs. A Total Economic Value can be calculated as

TEV = 2 ⇤ EBV(24) + 1 ⇤ EBV(36) + .5 ⇤ EBV(48).

The Legendre polynomials for ages 24, 36, and 48 mo are given in the rows of the following
matrix L,

L =

0

B@
.7071 �.8328 .3061
.7071 �.3429 �.6046
.7071 .2449 �.6957

1

CA .

The results are shown in the following table.
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Animal EBV(24) EBV(36) EBV(48) TEV
1 -1.58 -1.49 -1.38 -5.33
2 5.86 4.78 3.53 18.26
3 -3.89 -2.61 -1.10 -10.93
4 -3.49 -3.68 -3.89 -12.61
5 -2.56 -1.83 -.96 -7.43
6 3.25 2.71 2.09 10.25
7 1.97 1.43 .79 5.76
8 -2.66 -2.31 -1.91 -8.58

The animal with the highest TEV was animal 2. All animals ranked rather similarly
at each age on their EBVs. Rankings of animals could change with age. Thus, the pattern
of growth could be changed one that is desirable.

Estimation of the residual variance is

�̂2
e = (y0y � b̂0X0y � ĉ0W0y � â0nM

0y � p̂0M0y)/(N � r(X)),

where

y0y = 665, 035,

�̂0W0y = 664902.89,

N � r(X) = 12� 3 = 9,

�̂2
e = 14.6788.

131 EXERCISES

1. A biologist studied chipmunks in southern Ontario. He planted small TV cameras
inside four nests of chipmunks. The territories of the occupants of the four nests
did not overlap. With the cameras he had students monitor the nests for a day at
several times during the summer and fall. Students counted the number of nuts
that were collected and stored in the nest on a given day during a set 8 hour period.
Below are the observations on the four nests for various days of the year.

Number of nuts collected in 8 hours.
Day of Year Nest Number of Nuts Day of Year Nest Nuts

123 1 25 161 1 11
124 2 37 155 2 14
127 3 16 153 3 9
129 4 42 151 4 12
192 1 13 225 1 38
194 2 15 227 2 29
198 3 10 233 3 37
200 4 16 246 4 44
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(a) Write a complete random regression model for these data, including the as-
sumptions and limitations.

(b) Compute a simple 4 by 4 phenotypic covariance matrix for the four nest sites.
Then use covariance functions and tests to determine the appropriate order for
a random regression model, and to obtain initial covariance matrices for the
model.

(c) Apply the random regression model to the data, and plot the di↵erences be-
tween the nests.
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Multiple Traits

132 Introduction

Animals are commonly observed for more than one trait because many traits a↵ect overall
profitability. A multiple trait (MT) model is one in which two or more traits are ana-
lyzed simultaneously in order to take advantage of genetic and environmental correlations
between traits.

Low Heritability Traits: MT models are useful for traits where the di↵erence
between genetic and residual correlations are large ( e.g. greater than 0.5 di↵erence ) or
where one trait has a much higher heritability than the other trait. EBVs for traits with
low heritability tend to gain more in accuracy than EBVs for traits with high heritability,
although all traits benefit to some degree from the simultaneous analysis.

Culling: Another use of MT models is for traits that occur at di↵erent times in the
life of the animal, such that culling of animals results in fewer observations on animals for
traits that occur later in life compared to those at the start. Consequently, animals which
have observations later in life tend to have been selected based on their performance for
earlier traits. Thus, analysis of later life traits by themselves could su↵er from the e↵ects
of culling bias, and the resulting EBV could lead to errors in selecting future parents.
An MT analysis that includes all observations on an animal upon which culling decisions
have been based, has been shown to account, to some degree, for the selection that has
taken place.

MT models do not o↵er great increases in accuracy for cases where heritabilities of
traits are similar in magnitude, where both genetic and residual correlations are relatively
the same magnitude and sign, or where every animal is measured for all traits. However,
if culling bias may exist, then an MT analysis should be performed even if the parameters
are similar. An MT analysis relies on the accuracy of the genetic and residual correlations
that are assumed.

If the parameter estimates are greatly di↵erent from the underlying, unknown true
values, then an MT analysis could do as much harm as it might do good.

Computer programs are more complicated, require more memory and disk storage
for MT analyses. Verification of results might be more complicated. These have to be
balanced against the benefits of an MT analysis. If culling bias is the main concern, then
an MT model must be used regardless of the costs or no analysis should be done at all,
except for the traits not a↵ected by culling bias.
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133 Models

Consider two traits with a single observation per trait on animals. A model should be
specified separately for each trait. Let the model equation for trait 1 be

y1ij = B1i + a1j + e1ij,

where B1i is a fixed e↵ect with pB levels, a1j is a random, animal additive genetic e↵ect
for trait 1, and e1ij is a random residual environmental e↵ect for trait 1.

The model equation for trait 2 might be

y2ij = C2i + a2j + e2ij,

where C2i is a fixed e↵ect (di↵erent from B1i for trait 1) with pC levels, a2j is a random,
animal additive genetic e↵ect for trait 2, and e2ij is a random residual environmental
e↵ect for trait 2.

For example, y1ij could be birthweight, so that B1i could identify animals born in
the same season. Trait 2 could be yearling weights and C2i could identify contemporary
groups of animals of the same sex, same herd, and same rearing unit within herd.

Because the two traits will be analyzed simultaneously, the variances and covariances
need to be specified for the traits together. For example, the additive genetic variance-
covariance (VCV) matrix could be written as

G =

 
g11 g12

g12 g22

!

=

 
1 2
2 15

!

,

and the residual environmental VCV matrix as

R =

 
r11 r12

r12 r22

!

=

 
10 5
5 100

!

.

The genetic and residual correlations are, respectively,

⇢g = 2/(15).5 = .516,

⇢r = 5/(1000).5 = .158

with

h2
1 =

1

11
= .0909,

and

h2
2 =

15

115
= .1304.

For all data, then

V ar

 
a1

a2

!

=

 
Ag11 Ag12

Ag12 Ag22

!

.
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The structure of the residual VCV matrix over all observations can be written several
ways depending on whether allowance is made for missing observations on either trait for
some animals. If all animals were observed for both traits, then

V ar

 
e1

e2

!

=

 
Ir11 Ir12

Ir12 Ir22

!

.

134 Simulation of Trait Records

When simulating data for a multiple trait problem, observations for all animals for all
traits should be generated. Then one can go through the simulated data and delete
observations to simulate a missing data situation, or selectively delete observations to
imitate culling decisions. Another simplification is to assume that the model for each
trait is the same, and then for a factor that does not belong with a given trait just make
the true values of levels for that factor and trait equal to zero. In matrix form, the model
equation for one animal would be

 
y1ij

y2ij

!

=

 
1 0 0 0
0 0 1 0

!
0

BBB@

B11

B12

B21

B22

1

CCCA+

 
0 1 0 0 0 0
0 0 0 0 1 0

!

0

BBBBBBBB@

C11

C12

C13

C21

C22

C23

1

CCCCCCCCA

+

 
Parent Ave. Trait 1
Parent Ave. Trait 2

!

+ (bii)
.5LG

 
RND(1)
RND(2)

!

+LR

 
RND(3)
RND(4)

!

,

where LG and LR are lower triangular matrices such that

G = LGL0G

=

 
1 0
2 (11).5

!

L0G

and R = LRL0R

=

 
(10).5 0
(2.5).5 (97.5).5

!

L0R.

Let B11 = 6.7 and B12 = 6.3 for trait 1, and because factor B is not in the model
for trait 2, then B21 = 0 and B22 = 0. Similarly, C21 = 25, C22 = 40, and C23 = 55 for
trait 2, and because factor C is not in the model for trait 1, then C11 = 0, C12 = 0, and
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C13 = 0. Suppose the animal is a base animal, then bii = 1 and the parent averages for
traits 1 and 2 are assumed to be zero, then the observations would be

 
y1ij

y2ij

!

=

 
1 0 0 0
0 0 1 0

!
0

BBB@

6.7
6.3
0
0

1

CCCA+

 
0 1 0 0 0 0
0 0 0 0 1 0

!

0

BBBBBBBB@

0
0
0
25
40
55

1

CCCCCCCCA

+

 
Parent Ave. Trait 1=0
Parent Ave. Trait 2=0

!

+ (1).5

 
1 0
2 (11).5

! 
.6942
�1.3027

!

+

 
(10).5 0
(2.5).5 (97.5).5

! 
�.5324
�.9468

!

,

=

 
6.7

0

!

+

 
0

40

!

+

 
.6942

�2.9322

!

+

 
�1.6836
�10.1907

!

=

 
5.7106

26.8771

!

.

The following data (rounded o↵) were simulated according to the preceeding scheme
and parameters.

Animal Sire Dam B-level C-level Trait 1 Trait 2
1 0 0 1 1 2.3 39
2 0 0 1 2 2.6 39
3 0 0 1 3 9.8 53
4 0 0 1 1 4.7 4
5 0 0 1 2 5.5 63
6 1 3 2 3 2.5 64
7 1 4 2 2 8.4 35
8 1 5 2 3 8.2 41
9 2 3 2 1 9.0 27
10 2 4 2 1 7.8 32
11 2 5 2 2 2.8 46
12 6 10 2 3 7.4 67

To simulate selection, assume that all animals had trait 1 observed, but any ani-
mal with a trait 1 value below 3.0, then trait 2 observation was removed. Four trait 2
observations were deleted, giving the results in the table below.

275



Animal Sire Dam B-level C-level Trait 1 Trait 2
1 0 0 1 1 2.3
2 0 0 1 2 2.6
3 0 0 1 3 9.8 53
4 0 0 1 1 4.7 4
5 0 0 1 2 5.5 63
6 1 3 2 3 2.5
7 1 4 2 2 8.4 35
8 1 5 2 3 8.2 41
9 2 3 2 1 9.0 27
10 2 4 2 1 7.8 32
11 2 5 2 2 2.8
12 6 10 2 3 7.4 67

135 HMME

Organize the data by traits within animals. With two traits there are three possible
residual matrices per animal, i.e.,

R12 =

 
10 5
5 100

!

,

R1 =

 
10 0
0 0

!

,

R2 =

 
0 0
0 100

!

,

depending on whether both traits, trait 1, or trait 2, respectively, were observed. In the
example data, only R12 and R1 are needed. To simplify notation, let

E12 = R�1
12

=
1

975

 
100 �5
�5 10

!

=

 
.102564 �.005128

�.005128 .010256

!

,

and

E1 = R�
1

=

 
.1 0
0 0

!

,

E2 = R�
2

=

 
0 0
0 .01

!

.
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Again, to simplify construction of the MME, pretend that both traits have the same
model equation, so that

ytijk = Bti + Ctj + atk + etijk.

There are 2 levels of factor B, three levels of factor C, and 12 animals. For a single trait
model this would give MME of order 17. Construct a table of order 17. The elements of
this table will be matrices of order 2(in general, order t). Start with animal 1, then

y1 =

 
2.3
�

!

, and E1y1 =

 
.23
0

!

.

Now add E1 to the boxes in the MME table as follows:

B1 B2 C1 C2 C3 a1 · · · RHS
B1 E1 E1 E1 E1y1

B2

C1 E1 E1 E1 E1y1

C2

C3

a1 E1 E1 E1 E1y1

Similarly for animal 2,

y2 =

 
2.6
�

!

, and E1y2 =

 
.26
0

!

.

Accumulating into the MME table gives

B1 B2 C1 C2 C3 · · · a2 RHS
B1 2E1 E1 E1 E1 E1(y1 + y2)
B2

C1 E1 E1 E1y1

C2 E1 E1 E1 E1y2

C3

a2 E1 E1 E1 E1y2

For animal 3,

y3 =

 
9.8
53

!

, and E12y3 =

 
.7333
.4933

!

,

and the MME table becomes
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B1 B2 C1 C2 C3 · · · a3 RHS
B1 2E1 + E12 E1 E1 E12 E12 E1(y1 + y2) + E12y3

B2

C1 E1 E1 E1y1

C2 E1 E1 E1y2

C3 E12 E12 E12 E12y3

a3 E12 E12 E12 E12y3

The remaining animals are processed in the same manner. The resulting equations
are of order 34 by 34. To these A�1 ⌦ G�1 must be added to the animal by animal
submatrix in order to form the full HMME. However, solutions for the B-factor for trait 2
are not needed because the B-factor does not a↵ect trait 2, and solutions for the C-factor
for trait 1 are not needed because the C-factor does not a↵ect trait 1. Therefore, remove
rows (and columns) 2, 4, 5, 7, and 9, or if an iterative solution is being computed, then
require that the solutions for B21, B22, C11, C12, and C13 are always equal to zero. The
solutions to the HMME, for this example, were

B11 = 5.0209

B12 = 6.5592

C21 = 20.0882

C22 = 49.0575

C23 = 51.9553

The animal additive genetic solutions are shown in the table below.

Animal Sire Dam Trait 1 Trait 2
1 0 0 -.3573 -1.6772
2 0 0 -.0730 1.0418
3 0 0 .4105 1.1707
4 0 0 -.0449 -1.4922
5 0 0 .0646 .9570
6 1 3 -.1033 -.1410
7 1 4 -.1975 -2.2983
8 1 5 -.1410 -.9633
9 2 3 .3079 1.6227
10 2 4 .1426 1.1273
11 2 5 -.1830 .6418
12 6 10 .1554 1.5089

The correlation between the animal additive genetic solutions for traits 1 and 2 was
.74 which is greater than the .52 assumed in the original G.
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136 Bruce Tier’s MT Trick

There is another way to construct the MME without the need of forming di↵erent inverses
of R for missing traits. If a trait is missing, then that observation is assigned to its own
contemporary group in the model for that trait. In the example data there were four
missing observations. Animal 1 would be assigned to C24, animal 2 to C25, animal 6
to C26 and animal 11 to C27, respectively. In this case only trait 2 observations were
missing. If trait 1 observations were also missing, then animals would be assigned to
separate levels of factor B. In this way, only one residual VCV matrix is needed, i.e. R12.
Let X represent the design matrix for fixed e↵ects (factors B and C) for either trait. Note
the four extra columns for factor C for the animals with missing trait 2 observations.

Xb =

0

BBBBBBBBBBBBBBBBBBBBBBB@

1 0 0 0 0 1 0 0 0
1 0 0 0 0 0 1 0 0
1 0 0 0 1 0 0 0 0
1 0 1 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 1 0
0 1 0 1 0 0 0 0 0
0 1 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1
0 1 0 0 1 0 0 0 0

1

CCCCCCCCCCCCCCCCCCCCCCCA

0

BBBBBBBBBBBBBBB@

B11

B12

C21

C22

C23

C24

C25

C26

C27

1

CCCCCCCCCCCCCCCA

.

A missing observation is replaced with zero. The resulting solutions are identical to
those given earlier, except that now there are also solutions for the single observation
contemporary groups. That is, C24 = 2.8590, C25 = .1322, C26 = 2.1189, and C27 =
1.1463. These solutions do not mean anything, but must be calculated.

To prove that this trick will work, take R�1 and do a Gaussian elimination (i.e.
absorption) of the row and column corresponding to the missing trait, say trait 2,

 
e11 e12

e12 e22

!

�
 

e12

e22

!

(e22)�1
⇣

e12 e22
⌘
,

=

 
e11 e12

e12 e22

!

�
 

e12(e22)�1e12 e12

e12 e22

!

,

=

 
e11 � e12(e22)�1e12 0

0 0

!

.

Recall that for a matrix of order 2 that

e11 = e22/ | R |,
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e12 = �e12/ | R |,
e22 = e11/ | R |,

| R | = (e11e22 � e12e12)

then

e11 � e12(e22)�1e12 = (e22 � e12(e11)
�1e12)/ | R |

= e11(e22 � e12(e11)
�1e12/e11(e11e22 � e12e12)

= (e11)
�1

which is exactly the weight applied to records on animals with only trait 1 observed.
This proof can be extended to any number of traits recorded and any number missing, by
partitioning R into  

Roo Rom

Rmo Rmm

!

,

where the subscript o refers to traits that were observed and m refers to traits that were
missing on an animal. Then it can be easily shown that

R�1
oo = Roo �Rom(Rmm)�1Rmo.

This trick is not very practical, for example, when one trait has 1 million observa-
tions and trait 2 has only 100,000 observations, then there would be 900,000 extra single
observation subclasses created for trait 2. However, if the percentages of missing obser-
vations are relatively small, or if many traits are being considered, then pretending all
observations are present may make programming easier.

137 Estimation of Covariance Matrices

Derivative free REML is one option for estimating variances and covariances in a multi-
trait situation. The EM algorithm is not suitable due to the requirement for the traces of
inverse elements that are needed. Even DF REML takes considerably more time as the
number of parameters to be estimated increases.

Another option is the Bayesian approach, where operations are performed in t di-
mensions, for t being the number of traits. Thus, for a solution to the MME, the t ⇥ 1
vector for any one fixed e↵ect, for example, would be

�̂i = (X0
iR

�1Xi)
�1X0

iR
�1(yi �W�i��i),

then
�i = �̂i + Lv,
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where
LL0 = (X0

iR
�1Xi)

�1,

and v is a t⇥1 vector of random normal deviates. Similar formulas can be derived for the
random factors of the model. The conditional distributions for these factors are assumed
to be normally distributed.

If ai is the q ⇥ 1 vector of animal solutions for trait i, then form

U =
⇣

a1 a2 · · · at

⌘
,

followed by
Sa = (U0A�1U + ⌫aGa),

which is then inverted and a Cholesky decomposition is applied to the inverse, i.e.

LaL
0
a = S�1

a ,

where La is supplied to a Wishart distribution random number generator to give a new
sample matrix for the inverse of the additive genetic variances and covariances.

A di�cult part of a multiple trait analysis, when missing traits are possible, is the
calculation of the appropriate residual matrix of sums of squares and cross products. The
residual e↵ect for any one trait is

eti = yti �w0
i�t,

and for a particular animal, k,

resk =
⇣

e0o e0m
⌘
,

where the subscripts o and m refer to observed and missing, respectively, and where
e0m = 00. In order to calculate the correct sum of squares and crossproducts of the
residuals for REML or the Bayesian approach, a prediction of em is needed. This can be
easily done by

res0k⇤ =

 
Roo Rom

Rmo Rmm

! 
R�1

oo 0
0 0

! 
eo

0

!

.

For the first animal in the example data, for example, the estimated residual for trait 1
was -2.363638, then

res01⇤ =

 
10 5
5 100

! 
1
10 0
0 0

! 
�2.363638

0

!

,

=

 
1 0
.5 0

! 
�2.363638

0

!

,

=

 
�2.363638
�1.181819

!

.
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If you use Bruce Tier’s MME with the single observation contemporary groups for
missing trait observations, then the residuals can be calculated directly by (y�W�) using
zero as the observation for the missing traits and using the solutions for the single obser-
vation contemporary groups. This gives the exact same residual estimates as the above
methodology. Therefore, Tier’s approach is handy for the Gibb’s sampling algorithm.

Once the residuals are calculated for all animals with records, then calculate

res0k⇤resk⇤,

and sum across N animals. Then let

Se = (
NX

k=1

(res0k⇤resk⇤) + ⌫eRe),

which is then inverted and a Cholesky decomposition is applied to the inverse, i.e.

LeL
0
e = S�1

e ,

where Le is supplied to a Wishart distribution random number generator to give a new
sample matrix for the inverse of the residual variances and covariances.
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138 EXERCISES

Below are data on three blood component traits (just called Trait 1, Trait 2, and Trait 3)
taken on 6 mink adults. The lab technician slid on a banana peel, dropped some of the
blood samples, and so some data were lost. The technician was fired for eating in the lab.

Animal Sire Dam Age(yrs) Trait 1 Trait 2 Trait 3
6 1 3 3 2.5 53
7 1 4 2 8.4 175
8 1 5 3 41 197
9 2 3 1 9.0
10 2 4 1 32 156
11 2 5 2 168

Let

R =

0

B@
11 5 29
5 97 63

29 63 944

1

CA ,

and

G =

0

B@
0.94 1.62 �5.87
1.62 14.33 �11.79

�5.87 �11.79 803.41

1

CA .

1. Write a model for the analysis.

2. Analyze the data with that model.

3. Rank the animals in some way.

4. Perform one iteration or one round of sampling to estimate the covariance matrices.

283



Non-Additive Animal Models

139 Non-Additive Genetic E↵ects

Non-additive genetic e↵ects (or epistatic e↵ects) are the interactions among loci in the
genome. There are many possible degrees of interaction (involving di↵erent numbers of
loci), but the e↵ects and contributions of those interactions have been shown to diminish
as the degree of complexity increases. Thus, mainly dominance, additive by additive,
additive by dominance, and dominance by dominance interactions have been considered
in animal studies.

To estimate the variances associated with each type of interaction, relatives are needed
that have di↵erent additive and dominance relationships among themselves. Computation
of dominance relationships is more di�cult than additive relationships, but can be done
as shown in earlier notes.

If non-additive genetic e↵ects are included in an animal model, then an assumption
of random mating is required. Otherwise non-zero covariances can arise between additive
and dominance genetic e↵ects, which complicates the model enormously.

140 Interactions at a Single Locus

Let the model for the genotypic values be given as

Gij = µ + ai + aj + dij,

where

µ = G.. =
X

i,j

fijGij,

ai = Gi. �G..,

Gi. = Pr(A1)G11 + Pr(A2)G12,

aj = G.j �G..

G.j = Pr(A1)G12 + Pr(A2)G22,

dij = Gij � ai � aj � µ

Thus, there are just additive e↵ects and dominance e↵ects to be estimated at a single
locus. A numerical example is given below.

284



Genotype Frequency Value
A1A1 f11 = 0.04 G11 = 100
A1A2 f12 = 0.32 G12 = 70
A2A2 f22 = 0.64 G22 = 50

Then

µ = 0.04(100) + 0.32(70) + 0.64(50) = 58.4,

G1. = 0.2(100) + 0.8(70) = 76.0,

G.2 = 0.2(70) + 0.8(50) = 54.0,

a1 = G1. � µ = 17.6,

a2 = G.2 � µ = �4.4,

d11 = G11 � a1 � a1 � µ = 6.4,

d12 = G12 � a1 � a2 � µ = �1.6,

d22 = G22 � a2 � a2 � µ = 0.4.

Now a table of breeding values and dominance e↵ects can be completed.

Genotype Frequency Total Additive Dominance
A1A1 0.04 G11 = 100 a1 + a1 = 35.2 d11 = 6.4
A1A2 0.32 G12 = 70 a1 + a2 = 13.2 d12 = �1.6
A2A2 0.64 G22 = 50 a2 + a2 = �8.8 d22 = 0.4

The additive genetic variance is

�2
a = 0.04(35.2)2 + 0.32(13.2)2 + 0.64(�8.8)2 = 154.88,

and the dominance genetic variance is

�2
d = 0.04(6.4)2 + 0.32(�1.6)2 + 0.64(0.4)2 = 2.56,

and the total genetic variance is

�2
G = �2

a + �2
d

= 157.44,

= 0.04(100� µ)2 + 0.32(70� µ)2 + 0.64(50� µ)2

= 0.04(41.6)2 + 0.32(11.6)2 + 0.64(�8.4)2

= 157.44.
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This result implies that there is a zero covariance between the additive and domi-
nance deviations. This can be shown by calculating the covariance between additive and
dominance deviations,

Cov(A, D) = 0.04(35.2)(6.4) + 0.32(13.2)(�1.6) + 0.64(�8.8)(0.4)

= 0

The covariance is zero under the assumption of a large, random mating population without
selection.

141 Interactions for Two Unlinked Loci

Consider two loci each with two alleles, and assume that the two loci are on di↵erent
chromosomes and therefore unlinked. Let pA = 0.4 be the frequency of the A1 allele at
locus A, and let pB = 0.8 be the frequency of the B1 allele at locus B. Then the possible
genotypes, their expected frequencies assuming joint equilibrium, and genotypic values
would be as in the table below. Joint equilibrium means that each locus is in Hardy-
Weinberg equilibrium and that the probabilities of the possible gametes are equal to the
product of the allele frequencies as shown in the table below.

Possible Expected
Gametes Frequencies
A1 B1 pApB = 0.32

A1 B2 pAqB = 0.08

A2 B1 qApB = 0.48

A2 B2 qAqB = 0.12

Multiplying these gametic frequencies together, to simulate random mating gives the
frequencies in the table below. The genotypic values were arbitrarily assigned to illustrate
the process of estimating the genetic e↵ects.
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Genotypes Frequencies Genotypic
A-Locus B-locus fijk` Value,Gijk`

i, j k, `
11 11 p2

Ap2
B =.1024 G1111 = 108

11 12 p2
A2pBqB =.0512 G1112 = 75

11 22 p2
Aq2

B =.0064 G1122 = �80
12 11 2pAqAp2

B =.3072 G1211 = 95
12 12 4pAqApBqB =.1536 G1212 = 50
12 22 2pAqAq2

B =.0192 G1222 = �80
22 11 q2

Ap2
B =.2304 G2211 = 48

22 12 q2
A2pBqB =.1152 G2212 = 36

22 22 q2
Aq2

B =.0144 G2222 = �100

141.1 Estimation of Additive E↵ects

↵A1 = G1... � µG = 16.6464,

↵A2 = �11.0976,

↵B1 = 10.4384,

↵B2 = �41.7536.

The additive genetic e↵ect for each genotype is

aijk` = ↵Ai + ↵Aj + ↵Bk + ↵B`

a1111 = ↵A1 + ↵A1 + ↵B1 + ↵B1,

= 16.6464 + 16.6464 + 10.4384 + 10.4384,

= 54.1696,

a1112 = 1.9776,

a1122 = �50.2144,

a1211 = 26.4256,

a1212 = �25.7664,

a1222 = �77.9584,

a2211 = �1.3184,

a2212 = �53.5104,

a2222 = �105.7024.

The additive genetic variance is then

�2
a =

X

ijk`

fijk`a
2
ijk` = 1241.1517.
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141.2 Estimation of Dominance E↵ects

There are six conditional means to compute, one for each single locus genotype.

G11.. = Pr(B1B1)G1111 + Pr(B1B2)G1112 + Pr(B2B2)G1122,

= (.64)(108) + (.32)(75) + (.04)(�80),

= 89.92,

G12.. = 73.60,

G22.. = 38.24,

G..11 = 80.16,

G..12 = 48.96,

G..22 = �87.20.

The dominance genetic e↵ects are given by

�Aij = Gij.. � µG � ↵Ai � ↵Aj,

so that

�A11 = 89.92� 63.4816� 16.6464� 16.6464,

= �6.8544,

�A12 = 4.5696,

�A22 = �3.0464,

�B11 = �4.1984,

�B12 = 16.7936,

�B22 = �67.1744.

The dominance deviations for each genotype are

dijk` = �Aij + �Bk`,

d1111 = �11.0528,

d1112 = 9.9392,

d1122 = �74.0288,

d1211 = 0.3712,

d1212 = 21.3632,

d1222 = �62.6048,

d2211 = �7.2448,

d2212 = 13.7472,

d2222 = �70.2208.
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The dominance genetic variance is therefore,

�2
d =

X

ijk`

fijk`d
2
ijk` = 302.90625.

141.3 Additive by Additive E↵ects

These are the interactions between alleles at di↵erent loci. There are four conditional
means to calculate,

G1.1. = Pr(A1B1)G1111 + Pr(A1B2)G1112

+Pr(A2B1)G1211 + Pr(A2B2)G1212,

= .32(108) + .08(75) + .48(95) + .12(50),

= 92.16,

G1..2 = 84.192,

G.21. = 61.76,

G.2.2 = 14.88.

The additive by additive genetic e↵ect is

↵↵A1B1 = G1.1. � µG � ↵A1 � ↵B1 = 1.5936,

↵↵A1B2 = �6.3744,

↵↵A2B1 = �1.0624,

↵↵A2B2 = 4.2496.

The additive by additive deviations for each genotype are

aaijk` = ↵↵AiBk + ↵↵AiB` + ↵↵AjBk + ↵↵AjB`,

aa1111 = 6.3744,

aa1112 = �9.5616,

aa1122 = �25.4976,

aa1211 = 1.0624,

aa1212 = �1.5936,

aa1222 = �4.2496,

aa2211 = �4.2496,

aa2212 = 6.3744,

aa2222 = 16.9984.
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The additive by additive genetic variance is

�2
aa =

X

ijk`

fijk`aa2
ijk` = 27.08865.

141.4 Additive by Dominance E↵ects

This is the interaction between a single allele at one locus with the pair of alleles at a
second locus. There are twelve possible conditional means for twelve possible di↵erent A
by D interactions. Not all are shown,

G1.11 = Pr(A1)G1111 + Pr(A2)G1211,

= .4(108) + .6(95),

= 100.2,

G.211 = Pr(A1)G1211 + Pr(A2)G2211,

= .4(95) + .6(48),

= 66.8.

The specific additive by dominance e↵ects are

↵�A1B11 = G1.11 � µG � ↵A1 � 2↵B1 � �B11 = 0.2064.

Finally, the additive by dominance genetic values for each genotype are

adijk` = ↵�AiBk` + ↵�AjBk` + ↵�BkAij + ↵�B`Aij,

ad1111 = �3.8784,

ad1112 = 4.7856,

ad1122 = 23.7696,

ad1211 = 2.9296,

ad1212 = �4.5664,

ad1222 = �10.3424,

ad2211 = �2.1824,

ad2212 = 3.9616,

ad2222 = 3.2256.

The additive by dominance genetic variance is

�2
ad =

X

ijk`

fijk`ad2
ijk` = 17.2772.
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141.5 Dominance by Dominance E↵ects

Dominance by dominance genetic e↵ects are the interaction between a pair of alleles at
one locus with another pair of alleles at a second locus. These e↵ects are calculated as
the genotypic values minus all of the other e↵ects for each genotype. That is,

ddijk` = Gijk` � µG � aijk` � dijk` � aaijk` � adijk`.

The dominance by dominance genetic variance is the sum of the frequencies of each
genotype times the dominance by dominance e↵ects squared, �2

dd = 8.5171. The table of
all genetic e↵ects are given below.

Genotypes fijk` Gijk` aijk` dijk` aaijk` adijk` ddijk`

A-Locus B-Locus
11 11 .1024 108 54.1696 -11.0528 6.3744 -3.8784 -1.0944
11 12 .0512 75 1.9776 9.9392 -9.5616 4.7856 4.3776
11 22 .0064 -80 -50.2144 -74.0288 -25.4976 23.7696 -17.5104
12 11 .3072 95 26.4256 0.3712 1.0624 2.9296 0.7296
12 12 .1536 50 -25.7664 21.3632 -1.5936 -4.5664 -2.9184
12 22 .0192 -80 -77.9584 -62.6048 -4.2496 -10.3424 11.6736
22 11 .2304 48 -1.3184 -7.2448 -4.2496 -2.1824 -0.4864
22 12 .1152 36 -53.5104 13.7472 6.3744 3.9616 1.9456
22 22 .0144 -100 -105.7024 -70.2208 16.9984 3.2256 -7.7824

A summary of the genetic variances is

Total Genetic 1596.9409,
Additive 1241.1517,
Dominance 302.9062,
Add by Add 27.0886,
Add by Dom 17.2772,
Dom by Dom 8.5171.

142 More than Two Loci

Interactions can occur between several loci. The maximum number of loci involved in
simultaneous interactions is unknown, but the limit is the number of gene loci in the
genome. Many geneticists believe that the higher order interactions are few in number,
and that if they exist the magnitude of their e↵ects is small. Someday the measurement
of all of these interactions may be possible, but modelling them may be impossible, and
practical utilization of that information may be close to impossible.
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143 Linear Models for Non-Additive Genetic E↵ects

Consider a simple animal model with additive, dominance, and additive by dominance
genetic e↵ects, and repeated observations per animal, i.e.,

yij = µ + ai + di + (ad)i + pi + eij,

where µ is the overall mean, ai is the additive genetic e↵ect of animal i, di is the dominance
genetic e↵ect of animal i, (ad)i is the additive by dominance genetic e↵ect of animal i, pi

is the permanent environmental e↵ect for an animal with records, and ei is the residual
e↵ect. Also,

V ar

0

BBBBBB@

a
d
ad
p
e

1

CCCCCCA
=

0

BBBBBB@

A�2
10 0 0 0 0

0 D�2
01 0 0 0

0 0 A�D�2
11 0 0

0 0 0 I�2
p 0

0 0 0 0 I�2
e

1

CCCCCCA
.

143.1 Simulation of Data

Data should be simulated to understand the model and methodology. The desired data
structure is given in the following table for four animals.

Animal Number of Records
1 3
2 2
3 1
4 4

Assume that

�2
10 = 324, �2

01 = 169,

�2
11 = 49, �2

p = 144,

�2
e = 400.

The additive genetic relationship matrix for the four animals is

A = L10L
0
10

=

0

BBB@

1 0 0 0
.5 .866 0 0

.25 0 .9682 0

.75 .433 0 .7071

1

CCCAL010
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=

0

BBB@

1 .5 .25 .75
.5 1 .125 .75

.25 .125 1 .1875

.75 .75 .1875 1.25

1

CCCA .

The dominance genetic relationship matrix (derived from the genomic relationship matrix)
is

D = L01L
0
01

=

0

BBB@

1 0 0 0
.25 .9682 0 0

.0625 �.0161 .9979 0
.125 .0968 �.00626 .9874

1

CCCAL001

=

0

BBB@

1 .25 .0625 .125
.25 1 0 .125

.0625 0 1 0
.125 .125 0 1

1

CCCA .

The additive by dominance genetic relationship matrix is the Hadamard product of A
and D, which is the element by element product of matrices.

A�D = L11L
0
11

=

0

BBB@

1 0 0 0
.125 .9922 0 0

.015625 �.00197 .999876 0
.09375 .08268 �.0013 1.1110

1

CCCAL011

=

0

BBB@

1 .125 .015625 .09375
.125 1 0 .09375

.015625 0 1 0
.09375 .09375 0 1.25

1

CCCA .

The Cholesky decomposition of each of these matrices is necessary to simulate the separate
genetic e↵ects. The simulated genetic e↵ects for the four animals are (with va, vd, and
vad being vectors of random normal deviates)

a = (324).5L10va,

=

0

BBB@

12.91
13.28

�10.15
38.60

1

CCCA ,

d = (169).5L01vd,

=

0

BBB@

15.09
5.32

�17.74
3.89

1

CCCA ,
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(ad) = (49).5L11vad,

=

0

BBB@

�12.22
�1.32
�4.30

5.76

1

CCCA .

In the additive genetic animal model, base population animals were first simulated and
then progeny were simulated by averaging the additive genetic values of the parents and
adding a random Mendelian sampling e↵ect to obtain the additive genetic values. With
non-additive genetic e↵ects, such a simple process does not exist. The appropriate genetic
relationship matrices are necessary and these need to be decomposed. The alternative
is to determine the number of loci a↵ecting the trait, and to generate genotypes for
each animal after defining the loci with dominance genetic e↵ects and those that have
additive by dominance interactions. This might be the preferred method depending on
the objectives of the study.

Let the permanent environmental e↵ects for the four animals be

p =

0

BBB@

8.16
�8.05
�1.67
15.12

1

CCCA .

The observations on the four animals, after adding a new residual e↵ect for each record,
and letting µ = 0, are given in the table below.

Animal a d (ad) p 1 2 3 4
1 12.91 15.09 -12.22 8.16 36.21 45.69 49.41
2 13.28 5.32 -1.32 -8.05 9.14 -14.10
3 -10.15 -17.74 -4.30 -1.67 -20.74
4 38.60 3.89 5.76 15.12 24.13 83.09 64.67 50.13

143.2 HMME

Using the simulated data, the MME that need to be constructed are as follows.
0

BBBB@

X0X X0Z X0Z X0Z X0Z
Z0X Z0Z + A�1k10 Z0Z Z0Z Z0Z
Z0X Z0Z Z0Z + D�1k01 Z0Z Z0Z
Z0X Z0Z Z0Z Z0Z + (A�D)�1k11 Z0Z
Z0X Z0Z Z0Z Z0Z Z0Z + Ikp

1

CCCCA

0

BBBB@

b̂
â
d̂
âd
p̂

1

CCCCA
=

0

BBBB@

X0y
Z0y
Z0y
Z0y
Z0y

1

CCCCA
,

where k10 = 400/324, k01 = 400/169, k11 = 400/49, and kp = 400/144. Thus, the order is
17 for these four animals, with only 10 observations. Note that

X0y = (327.63) ,
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and

Z0y =

0

BBB@

131.31
�4.96
�20.74
222.02

1

CCCA .

The solutions are

â =

0

BBB@

12.30
1.79

�8.67
15.12

1

CCCA , d̂ =

0

BBB@

4.18
�4.86
�6.20

8.19

1

CCCA , âd =

0

BBB@

1.49
�1.68
�1.87

3.00

1

CCCA , p̂ =

0

BBB@

4.56
�6.18
�5.57

7.18

1

CCCA ,

and µ̂ = 17.02.

The total genetic merit of an animal can be estimated by adding together the solutions
for the additive, dominance, and additive by dominance genetic values,

ĝ =

0

BBB@

17.97
�4.75
�16.73

26.32

1

CCCA = (â + d̂ + âd).

On the practical side, the solutions for the individual dominance and additive by domi-
nance solutions should be used in breeding programs, but how? Dominance e↵ects arise
due to particular sire-dam matings, and thus, dominance genetic values could be used
to determine which matings were better. However, additive by dominance genetic solu-
tions may be less useful. Perhaps the main point is that if non-additive genetic e↵ects
are significant, then they should be removed through the model to obtain more accurate
estimates of the additive genetic e↵ects, assuming that these have a much larger e↵ect
than the non-additive genetic e↵ects.

144 Computing Simplification

Take the MME as shown earlier, i.e.
0

BBBB@

X0X X0Z X0Z X0Z X0Z
Z0X Z0Z + A�1k10 Z0Z Z0Z Z0Z
Z0X Z0Z Z0Z + D�1k01 Z0Z Z0Z
Z0X Z0Z Z0Z Z0Z + (A�D)�1k11 Z0Z
Z0X Z0Z Z0Z Z0Z Z0Z + Ikp

1

CCCCA

0

BBBB@

b̂
â
d̂
âd
p̂

1

CCCCA
=

0

BBBB@

X0y
Z0y
Z0y
Z0y
Z0y

1

CCCCA
,

Now subtract the equation for dominance genetic e↵ects from the equation for additive
genetic e↵ects, and similarly for the additive by dominance and permanent environmental

295



e↵ects, giving

A�1k10â�D�1k01d̂ = 0

A�1k10â� (A�D)�1k11âd = 0

A�1k10â� I�1kpp̂ = 0

Re-arranging terms, then

d̂ = DA�1(k10/k01)â

âd = (A�D)A�1(k10/k11)â

p̂ = A�1(k10/kp)â

The only inverse that is needed is for A, and the equations to solve are only as large as
the usual animal model MME. The steps in the procedure would be iterative.

1. Adjust the observation vector for solutions to d̂, âd, and p̂ (initially these would
be zero) as

ỹ = y � Z(d̂ + âd + p̂).

2. Solve the following equations:
 

X0X X0Z
Z0X Z0Z + A�1k10

! 
b̂
â

!

=

 
X0ỹ
Z0ỹ

!

.

3. Obtain solutions for d̂, âd, and p̂ using

d̂ = DA�1(k10/k01)â

âd = (A�D)A�1(k10/k11)â

p̂ = A�1(k10/kp)â.

4. Go to step 1 and begin again until convergence is reached.

145 Estimation of Variances

Given the new computing algorithm, and using Gibbs sampling as a tool the variances
can be estimated. Notice from the above formulas that

w01 = (D�1d̂) = A�1(k10/k01)â

w11 = ((A�D)�1âd) = A�1(k10/k11)â

wp = (Ip̂) = A�1(k10/kp)â.
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Again, the inverses of D and (A�D) are not needed. The necessary quadratic forms are
then

d̂0w01 = d̂0D�1d̂,

âd
0
w11 = âd

0
(A�D)�1âd,

p̂0wp = p̂0p̂,

and â0A�1â. Generate 4 random Chi-Square variates, Ci, with degrees of freedom equal
to the number of animals in â, then

�2
10 = â0A�1â/C1

�2
01 = d̂0w01/C2

�2
11 = âd

0
w11/C3

�2
p = p̂0wp/C4.

The residual variance would be estimated from

�2
e = ê0ê/C5,

where C5 is a random Chi-square variate with degrees of freedom equal to the total number
of observations. This may not be a totally correct algorithm and some refinement may
be necessary, but this should be the basic starting point.
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146 EXERCISES

1. Below are data on five animals for two traits.

Animal Fi Trait 1 Trait 2
1 0 14.3 34.4
2 .25 38.9
3 .125 15.3
4 .375 21.1 38.7
5 .344 12.1 45.9

Let the model for trait t be

yti = µt + ati + dti + btFi + eti,

where µt is the overall mean, ati is the additive genetic merit of animal i for trait
t, dti is the dominance genetic merit of animal i for trait t, Fi is the inbreeding
coe�cient of animal i, bt is a regression of the trait on the inbreeding coe�cient
(inbreeding depression), and eti is a random residual e↵ect.

V ar

0

B@
a
d
e

1

CA =

0

B@
A
N

G10 0 0
0 D

N
G01 0

0 0 I
N

R

1

CA ,

where

G10 =

 
16 3
3 33

!

, G01 =

 
9 4
4 24

!

,

and

R =

 
49 11
11 64

!

.

The additive and dominance relationships among the five animals are as follows:

A =
1

32

0

BBBBBB@

32 24 20 28 24
24 40 24 32 28
20 24 36 22 29
28 32 22 44 33
24 28 29 33 43

1

CCCCCCA
,

and

D =
1

1024

0

BBBBBB@

1024 256 256 384 288
256 1088 160 480 376
256 160 1040 208 396
384 480 208 1168 484
288 376 396 484 1145

1

CCCCCCA
.
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(a) Set up the appropriate MME for this MT model and solve. Also show the
variances of prediction error for both additive and dominance e↵ects.

(b) Test is the regression coe�cient is significantly di↵erent from zero using the
general linear hypothesis, for each trait separately.

(c) Show the formulas for the EM REML algorithm for this model to estimate
G10, G01, and R.

(d) Perform the calculations of EM REML for one iteration using the results from
part i.

(e) Do another multiple trait model without the dominance genetic e↵ects in the
model and compare EBVs for the additive genetic merit. Do the animals rank
the same?

(f) Do another iteration of EM REML for this second model. Where does the
dominance genetic variance go, (into the additive or residual variances)?
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2. Assume a model with the following genetic factors,

yijk = Yi + aj + dj + (aa)j + pj + eijk.

Let the underlying parameters be

�2
a = 64, �2

d = 25,
�2

aa = 9, and �2
e = 169,

�2
p = 36

Below are the observations on animals.

Animal Sire Dam Year 1 Year 2 Year 3
1 - - 102
2 - - 66
3 1 2 90 79
4 1 2 43 58
5 3 4 76 63
6 3 4 60 84
7 3 2 59
8 1 4 97

(a) Construct the gametic relationship matrix and from that obtain A, the additive
genetic relationship matrix and D, the dominance genetic relationship matrix.

(b) Construct the matrix for additive by additive genetic e↵ects, A#A.

(c) Analyze the data with the above model by setting up the complete MME.
Estimate the total genetic e↵ect as gj = aj + dj + (aa)j.

(d) Use the shortcut computing algorithm as given in class.

(e) Try to estimate the variance components of the model.
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E↵ects of Selection

147 Background History

Animal models assume that matings amongst animals have been random. However, live-
stock animals are continually selected to produce the next generation of better performing
individuals. Selection is considered to be any actions taken to change the probability that
an animal reproduces. Once a mating occurs, the genotypes are determined by the laws
of Mendelian sampling, a random process.

Gail Belonsky and Brian Kennedy (1988) did a simulation study that compared
selection of males based on random selection, phenotypic selection, or selection on EBVs
from a BLUP animal model in terms of the amount of inbreeding that would be created.
The population simulated was 100 females mated to 5 males. Each mating resulted in
2 o↵spring. Twenty generations of matings were simulated. The results are in the table
below.

Average Inbreeding Coe�cients after 20 Generations
Selection h2 = 0.1 h2 = 0.3 h2 = 0.6
Random .15 .15 .15
Phenotypic .17 .21 .22
BLUP EBVs .29 .30 .27

Selection on BLUP EBVs increased the level of inbreeding after 20 generations by
almost 2 times compared to random selection of males. However, at a heritability of 0.6,
the level of inbreeding was actually less. This is because the amount of weight given to
the parent average in the EBV decreases as heritability goes up. This can be seen in the
thesis of Longyang Wu (2000). Note that

â = w1(Data) + w2(ParentAve) + w3(ProgenyAve).

Let

D = Records + 2k + 0.5kp

k = �2
e/�

2
a

p = number of progeny

w1 = Records/D

w2 = 2k/D

w3 = 0.5kp/D

The e↵ect of heritability can be seen in the following table.
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Weights on Di↵erent Components of BLUP EBVs
One record per animal, two progeny per animal.

h2 k D Data, w1 Parents, w2 Progeny, w3

.1 9 28 .036 .643 .321

.3 21
3 8 .125 .583 .292

.6 2
3 3 .333 .444 .222

At low heritability, there is a high weight on the parent average, but as heritability
increases that weight decreases, and the weight on the animal’s own record increases.

If the number of progeny was increased to 10, then w3 changes to .703 at heritability
of .1. Thus, increasing the number of progeny is the best way to increase the accuracy of
an EBV.

148 Selection Theory

Consider a bivariate normal distribution for variables, y and x, where

E

 
y
x

!

=

 
µy

µx

!

,

and

V ar

 
y
x

!

=

 
�2

y �yx

�yx �2
x

!

.

The conditional variance of x given y is

V ar(x | y) = �2
x �

(�yx)2

�2
y

.

Assume truncation selection on y (pick the top fraction from a sorted list of y), then

ys = the selected y

E(ys) = µ + i�y

i = the mean in a N(0, 1) distribution

of the top fraction

V ar(ys) = �2
ys

= (1� k)�2
y

k = i(i� t)

where t is the trunction point for that fraction on a N(0,1) distribution.
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148.1 Variance of xs

The variance of the selected x values, given that selection was on y is given by

V ar(xs) = V ar(x | ys) + V ar(E(x | ys)),

where

E(x | ys) = µx +
�yx

�2
y

(ys � E(ys))

= E(x | y)

V ar(x | ys) = �2
x �

(�yx)2

�2
y

�2
x

�2
x

= (1� r2
yx)�

2
x,

V ar(E(x | ys)) = V ar(
�yx

�2
y

ys)

= (
�yx

�2
y

)2�2
ys

= (
�yx

�2
y

)2(1� k)�2
y

= (1� k)
(�yx)2

�2
y

�2
x

�2
x

= (1� k)r2
yx�

2
x

Putting the pieces together, then

V ar(xs) = (1� r2
yx)�

2
x + (1� k)r2

yx�
2
x

= [(1� r2
yx) + (1� k)r2

yx]�
2
x

= (1� kr2
yx)�

2
x

148.2 Example Simulation

Let

V ar

 
y
x

!

=

 
100 �20
�20 40

!

,

which gives a correlation of

ryx = �.31622777

r2
yx = .1
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One thousand pairs of y and x were generated, sorted from highest to lowest for y, and
then the top 100 y were used to form ys. The intensity of selection is the top 10%, so that
i = 1.755, t = 1.2821, and k = i(i� t) = .83. Below is a table of the predicted variances
and actual variances (average over 1000 replicates).

Parameter Expected Actual
�2

ys
(1-.83)�2

y = 17.00 16.95

�ysxs (1-.83)�yx = -3.40 -3.26

�2
xs

(1-.83(.1))�2
x = 36.68 36.59

149 Selection and Animal Models

A simple animal model, one record per animal, is

yi = µ + ai + ei.

Selection is on y and now let x = a be the correlated variable. The expected changes in
the additive variance would be as derived below.

�2
as

= �2
a � k

(�ya)2

�2
y

�ya = �2
a = h2�2

y

�2
as

= �2
a � k

(�2
a)

2

�2
y

= (1� k h2)�2
a

Now change x to be ei, which is also correlated with y.

�2
es

= �2
e � k

(�ye)2

�2
y

�ye = �2
e = (1� h2)�2

y

�2
es

= �2
e � k

(�2
e)

2

�2
y

= (1� k (1� h2))�2
e
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As an example to illustrate, let

�2
y = 700,

�2
a = 210,

�2
e = 490,

so that h2 = 0.3. Assume 50% truncation selection where i = 0.8, t = 0, and k = 0.64.
Then

�2
ys

= (1� .64)(700) = 252,

�2
as

= (1� .64(.3))(210) = 169.68,

�2
es

= (1� .64(1� .3))(490) = 270.48.

Note that
�2

ys
6= �2

as
+ �2

es
,

because selection creates a covariance between selected animal and residual e↵ects. The
correct result is

�2
ys

= �2
as

+ �2
es

+ 2�ases .

Thus,
�ases = 0.5(252 � 169.68 � 270.48) = �94.08.

150 Mating of the Selected Animals

The animals in ys are randomly mated to produce progeny generation 1. The variances
in the progeny generation 1 are as follows:

�2
e1

= �2
e = 490.

�2
a1

=
1

2
(�2

as
) + (Mendelian sampling)

=
1

2
(�2

as
) +

1

2
(�2

a)

=
1

2
(1� k h2)�2

a +
1

2
�2

a

= (1� 1

2
k h2)�2

a = (1� 0.5(.64)(.3))(210) = 189.84,
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= �2
a � d1

d1 = 20.16,

where d1 is the amount of linkage disequilibrium generated by selection of the parents.

�2
y1

= �2
a1

+ �2
e1

= 189.84 + 490 = 679.84,

= (1� 0.5k h4)�2
y .

Now, allow the progeny generation to mate randomly again, without any selection
on generation 1 animals. Generation 2 animals would then have the following variances:

�2
e2

= �2
e = 490.

�2
a2

=
1

2
(�2

a1
) + (Mendelian sampling)

=
1

2
(�2

a1
) +

1

2
(�2

a)

= (1� 1

4
k h2)�2

a = (1� 0.25(.64)(.3))(210) = 199.92,

= �2
a � 0.5 d1

�2
y2

= 689.92.

Continued generations of random mating would re-generate the lost genetic variance
due to the original selection. Each generation of random mating reduces the original
disequilibrium by one half.

If the population was small in size, then Mendelian sampling variance would decrease
due to rising inbreeding levels.

151 Another Cycle of Selection

Instead of randomly mating individuals from generation 1, suppose that another selection
of 50% was imposed. The heritability of the trait in generation 1 is

h2
1 = �2

a1
/�2

y1
= 189.84/679.84 = 0.27924.
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Then the new variances in the selected animals would be

�2
a1s

= (1� h2
1 k)�2

a1

= 0.821285(189.84)

= 155.91,

�2
a2

= 0.5�2
a1s

+ 0.5�2
a

= 0.5(155.91) + 0.4(210)

= 182.955,

= �2
a � 0.5d1 � 0.5h2

1k�2
a1

= �2
a � d2,

d2 = 0.5d1 + 0.5h2
1k�2

a1

= 0.5(20.16) + 16.96 = 27.04.

Continuing to make further cycles of selection, then the additive genetic variance at
time t would be

�2
at

= �2
a � dt,

where
dt+1 = 0.5 dt + 0.5h2

t k�2
at

,

or the disequilibrium at time t + 1 is half the disequilibrium at time t plus some new
disequilibrium. If we equate dt+1 to dt and call it d, then

d = 0.5 d + 0.5h2
t k�2

at

= h2
t k�2

at
,

as t goes to infinity. Thus, the amount of new disequilibrium equals one half the old
disequilibrium, so that the loss due to selection is counteracted equally by the gain in
genetic variability due to Mendelian sampling. This is known as the Bulmer e↵ect,
1970. Of course, this ignores small population size and the e↵ects of inbreeding.

The Bulmer e↵ect was demonstrated by a simulation experiment by Kennedy. The
percentage selected was the top 20%, where k = .7818 with an initial phenotypic variance
of 100 and an initial heritability of 0.5.

Generation �2
yt

h2
t dt R = ih2

t �yt

0 100.0 .500 0.0 0.00
1 90.2 .446 -9.8 7.00
2 88.1 .432 -11.9 5.93
3 87.6 .429 -12.4 5.68
4 87.5 .428 -12.5 5.63

inf 87.5 .428 -12.5 5.61
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The total amount of genetic change in 4 generations would be

R = 7.00 + 5.93 + 5.68 + 5.63 = 24.24.

Normally, (before Bulmer’s e↵ect was shown) the total response in four generations would
have been predicted to be

R = 4 ⇥ 7.00 = 28.00,

but the actual response would have been 15.5% less.

152 Summary of Selection E↵ects

Non-random mating results in the following consequences.

1. Causes changes to gene frequencies at all loci.

2. Changes in gene frequencies cause a change in genetic variance. Recall from quan-
titative genetics that

�2
G = 2pq[a + d(q � p)]2 + [2pqd]2.

3. In finite populations, non-random mating causes a reduction in the e↵ective popu-
lation size, which subsequently causes an increase in levels of inbreeding.

4. Joint equilibrium becomes joint disequilibrium, and therefore, non-zero covariances
between additive and dominance genetic e↵ects are created.

5. If the pedigrees of animals are not complete nor traceable to the base generation,
then non-random mating causes genetic evaluations by BLUP to be biased, and
causes estimates of genetic variances, by any method, to be biased.

6. Because the genetic variance decreases due to joint disequilibrium and inbreeding,
response to selection is generally lower than expected by selection index over several
generations.

153 E↵ects of Selection on Genetic Evaluation

The e↵ects of non-random mating on genetic evaluation are minimal IF

• Complete (no missing parent information) pedigrees are known back to a common
base population which was mating randomly,
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• Data on all candidates for selection are available, and

• Genetic parameters from the base population are known.

If the above conditions hold, then application of BLUP does not lead to bias in EBVs,
but selection increases the variance of prediction error over populations that are randomly
mating. However, in animal breeding, the practical situation is that complete pedigrees
seldom exist. Thus, bias can creep into estimates of fixed e↵ects and EBVs.

Recall that HMME for a simple animal model are
0

B@
X0R�1X X0R�1Z 0
Z0R�1X Z0R�1Z + Annka Anoka

0 Aonka Aooka

1

CA

0

B@
b̂
ân

âo

1

CA =

0

B@
X0R�1y
Z0R�1y

0

1

CA ,

where ka = ��2
a . A generalized inverse of the coe�cient matrix can be represented as

0

B@
Cxx Cxn Cxo

Cnx Cnn Cno

Cox Con Coo

1

CA .

Then remember that

V ar

 
ân � an

âo � ao

!

=

 
Cnn Cno

Con Coo

!

,

and that

Cov(b̂, ân) = 0,

Cov(b̂, an) = �Cxn.

These results indicate that HMME forces the covariance between estimates of the fixed
e↵ects and estimates of additive genetic e↵ects to be null. However, there is a non-zero
covariance between estimates of the fixed e↵ects and the true additive genetic values of
animals. Hence, any problem with the true additive genetic values will cause problems
with estimates of fixed e↵ects.

Consider the equation for b̂,

b̂ = (X0R�1X)�(X0R�1y �X0R�1Zân),

and the expectation of this vector is

E(b̂) = (X0R�1X)�(X0R�1Xb�X0R�1ZE(ân)).

The fixed e↵ects solution vector contains a function of the expectation of the additive
genetic solution vector. Normally, because the BLUP methodology requires

E(ân) = E(an) = 0,
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then the fixed e↵ects solution vector is also unbiased.

Selection, however, can cause a change in expectations where

E(an) 6= 0,

and therefore, the expectation of the fixed e↵ects solution vector contains a function of
E(an) and is consequently biased. If b̂ is biased, then this will cause a bias in â.

153.1 Derivation of A Di↵erent Method

Re-state the model (in general terms) as

y = Xb + Zu + e,

where

E

 
u
e

!

=

 
u
0

!

,

and therefore,
E(y) = Xb + Zu.

To simplify, assume that G = V ar(u) and R = V ar(e) and that neither is drastically
a↵ected by non-random mating.

The prediction problem is the same as before. Predict a function of K0b + M0u by a
linear function of the observation vector, L0y, such that

E(K0b + M0u) = E(L0y),

and such that V ar(K0b+M0u�L0y) is minimized. Form the variance of prediction errors
and add a LaGrange multiplier to ensure the unbiasedness condition, then di↵erentiate
with respect to the unknown L and the matrix of LaGrange multipliers and equate to
zero. The solution gives the following equations.

 
X0V�1X X0V�1Z
Z0V�1X Z0V�1Z

! 
b̂
û

!

=

 
X0V�1y
Z0V�1y

!

.

Because V = ZGZ0 + R, and

V�1 = R�1 �R�1ZTZ0R�1,

for T = (Z0R�1Z + G�1)�1, then the following equations give the exact same solutions
as the previous equations.

 
X0R�1X X0R�1Z
Z0R�1X Z0R�1Z

! 
b̂
û

!

=

 
X0R�1y
Z0R�1y

!

.
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If a generalized inverse to the above coe�cient matrix is represented as
 

Cxx Cxz

Czx Czz

!

,

then some properties of these equations are

Cov(b̂,u) = 0,

E(b̂) = (X0R�1X)�X0R�1Xb,

Cov(b̂, û) = Cxz.

Firstly, these results suggest that if non-random mating has occurred and has changed the
expectation of the random vector, then an appropriate set of equations is the generalized
least squares equations. However, GLS equations give a lower correlation with true values
and large mean squared errors (when matings are at random) compared to BLUP and
HMME. Secondly, the estimates of the fixed e↵ects have null covariances with the true
random e↵ects, and the covariances between estimates of the fixed e↵ects and estimates
of the random e↵ects are non-zero, which is opposite to the results from BLUP. With
the least squares solutions, application of the regressed least squares procedure could be
subsequently used to give EBVs.

There is another problem with these equations. If u = a as in an animal model, then
Z = I, and the GLS equations do not have a solution unless â = 0. This is not very useful
for genetic evaluation purposes.

153.2 An Alternative Model

The Mendelian sampling variance was assumed to be una↵ected by non-random mating,
but could be reduced by the accumulation of inbreeding. The animal model equation is

y = Xb + Za + Zp + e.

The animal additive genetic e↵ect can be written as

a = Tss + Tdd + m,

where Ts and Td are matrices of ones and zeros, such that each row has an element that
is 1 and all others are 0, and these indicate the sire and dam of the animal, respectively,
and m is the Mendelian sampling e↵ect. Due to non-random mating then,

E(a) = Tss + Tdd,

which is not a null vector, in general. Let

Zs = ZTs,

Zd = ZTd,
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then the model becomes

y = Xb + Zss + Zdd + Zm + Zp + e.

Also,

E(y) = Xb + Zss + Zdd,

E(m) = 0,

E(p) = 0,

E(e) = 0,

and

V ar

0

B@
m
p
e

1

CA =

0

B@
B�2

a 0 0
0 I�2

p 0
0 0 I�2

e

1

CA ,

where B is from
A = TBT0.

If all animals were non inbred then all of the diagonals of B would be equal to .5.

Note that the matrix A or its inverse are not necessary in this model, and that sires
and dams (resulting from selection) are fixed e↵ects in this model. The equations to solve
are 0

BBBB@

X0X X0Zs X0Zd X0Z X0Z
Z0

sX Z0
sZs Z0

sZd Z0
sZ Z0

sZ
Z0

dX Z0
dZs Z0

dZd Z0
dZ Z0

dZ
Z0X Z0Zs Z0Zd Z0Z + B�1ka Z0Z
Z0X Z0Zs Z0Zd Z0Z Z0Z + Ikp

1

CCCCA

0

BBBB@

b̂
ŝ
d̂
m̂
p̂

1

CCCCA
=

0

BBBB@

X0y
Z0

sy
Z0

dy
Z0y
Z0y

1

CCCCA
.

Thus, for each animal with a record, both parents must be known as well as the inbreeding
coe�cients of all animals.

This model was applied to data on 12 animals with records, four sires and four dams.
The solutions for the sires and dams are shown below, after forcing their sum to be zero.

µ̂ = 49.558333,

ŝ1 = �7.079167,

ŝ3 = 7.2875,

ŝ5 = �16.14583,

ŝ7 = 15.9375,

d̂2 = 1.7375,

d̂4 = 0.0875,

d̂6 = 3.9375,

d̂8 = �5.7625,
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The solutions for sires and dams represent estimated transmitting abilities and should be
multiplied by 2 to give EBV. The estimates of the Mendelian sampling e↵ects for animals
5 through 16 were

m̂ =

0

BBBBBBBBBBBBBBBBBBBBBBB@

�1.254878
�1.763415

1.254878
1.7414634
�0.296341
1.4634146
0.2743902
0.7829268
�0.486585
0.5085366
0.0219512
�2.246341

1

CCCCCCCCCCCCCCCCCCCCCCCA

.

The general property of these solutions would be 10B�1m̂ = 0. In this example all of the
diagonal elements of B�1 were equal to 2, but with inbred individuals this would not be
the case. The m̂ sum to zero in this example.

EBV are created by summing sire and dam solutions with the Mendelian sampling
estimates. The results for animals 5 through 16 were

EBV =

0

BBBBBBBBBBBBBBBBBBBBBBB@

�6.60
5.61

10.28
�5.25
�12.50

11.64
�21.63

20.66
�3.63

2.03
�16.04

7.93

1

CCCCCCCCCCCCCCCCCCCCCCCA

.

Animals 5, 6, 7, and 8 have two sets of solutions. For example, animal 5 has ŝ5 = �16.14
and EBV = �6.60. The former solution is based on the progeny of animal 5 only, and
the EBV is based upon its own record plus information from its parents. If ŝi is based
upon many progeny, then it could be more accurate than the EBV based on just one
record and parent information. Therefore, as in HMME a combination of progeny, own
record, and parents should be possible, and maybe more accurate than either piece alone.

Let w1 = 0.5qika, and w2 = (ni + 2ka) where qi is the number of progeny for animal
i and ni is the number of records on animal i, then a combined EBV on a cow could be
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calculated as
cEBV = (w1d̂i + w2âi)/(w1 + w2).

Using animal 5 as an example, q5 = 3 and n5 = 1, then

w1 = 0.5(3)(64/36) = 2.6667,

w2 = (1 + 2(64/36)) = 4.5556.

Then

cEBV = (2.6667(�16.14) + 4.5556(�6.60))/(2.6667 + 4.5556) = �10.12.

Non-random mating is taken into account because the sire and dam of each animal
with a record is included in the model. The solutions for sires and dams from this model
are valid estimates of transmitting abilities provided that the progeny are a random sample
of their progeny. The Mendelian sampling estimates for animals provides a means of
estimating the additive genetic variance. Inbreeding is still accounted for in the matrix
B. This model also avoids the problem of forming phantom parent groups for animals
with missing parent information. If an animal with a record has an unknown dam (or
sire), then a phantom dam (sire) can be created which has this animal as its only progeny.
If both parents are unknown, then both a phantom sire and phantom dam need to be
assumed, with this animal as their only progeny. Further study of this model is warranted.
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