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PART ONE

SELECTION INDEX

The following 22 chapters cover material needed for application of the selection
index to nearly any imaginable selection problem. The initial chapters review or introduce
expected values, probabilities for identity by descent, kinds of genetic values and genetic
variances, and genetic covariances between relatives. These tools and definitions provide
the foundation for deriving and applying the selection index and its properties. Much of this
material was developed by Dr. C. R. Henderson who began such a course in 1948 at Cornell
University after studying at Iowa State University with Dr. Jay L. Lush and Dr. L. N. Hazel.
For many years, I taught the course, also at Cornell University, with some new material
based usually on the principles outlined by Henderson. The course has subsequently been

given at the University of Nebraska-Lincoln.



CHAPTER 1

PARAMETERS, STATISTICS, AND EXPECTED VALUES

A review of some basic statistics may be useful before discussing selection for
quantitative traits. Two important parameters for the description of continuous or
quantitative traits are the mean (or average) and the standard deviation. The usual Greek
symbols for these are u, "mu," and o, small "sigma." The square of the standard deviation,
o2

, is called the variance, "sigma squared."

A subscript can be used to distinguish the means and variances for different

2

X would be the mean and variance for some

populations or different traits; e.g., uy and o
trait called X. After this chapter when developing selection index procedures, means,
variances, and covariances will be assumed to be known exactly. When true values are
known exactly, they are called parameters. In the real world, parameters are never known
exactly because the entire potential population is not known or measured. Then parameters
such as the mean or variance must be estimated from a sample of the population.
Technically, estimates are known as statistics. A statistic that estimates a parameter may
be given the same symbol but with a hat or caret, “, to distinguish it from the parameter.
Often parameters are designated with Greek letters and estimates by corresponding English

letters in some way. Pretending that parameters are known can be justified in some cases

because with large samples the error (difference of estimate from parameter) will be very
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small. In the last part of the book on mixed model procedures, this pretence will be
tightened so that means are estimated from the population jointly with predicting genetic
values. Even then, variances and covariances will be assumed to be known exactly.

Chapters 35-39 describe some simple ways of estimating variances and covariances.

THE MEAN
If x; (i=1, ..., n) is the observation on the ith individual for trait X, then the estimate

of by is uy or equivalently X, "x-bar". A simple estimate is

n
by = X X;/n = (x] + Xg + *++ + xy)/n which may also be called X,
i=1
n
the average of n observations. The symbol ¥ is mathematical notation that means to sum
i=1

everything that follows the = for changes in the subscript i which changes by units of 1 from
i = 1 (the first record) to i = n (the last record). If observations for the whole population,
N

N, were known, then u, = X x;/N.
i=1

VARIANCE

Although the standard deviation is a more intuitive measure of variability, the usual

2

measure of variability is the variance, 0%

, which is the standard deviation squared for trait
X. Knowledge of variances is necessary in animal breeding for at least two reasons.
Variances are useful in describing populations and, more importantly, are used along with
covariances in developing procedures for predicting genetic values. The definition of o% for

a population is

o2 = Elxudl = [xm? + Opud? 4.+ Gns)?UN,



Expected Values 5

where N is the total number of observations in the population. The E stands for expected
or average value and will be discussed later in this chapter. Thus, a% is a kind of average,
i.e., is the average of the squared deviations of the observations from the mean for a
variable named X. While the variance is in terms of units squared, the standard deviation
is in terms of the units of measurement--the same as the mean, e.g., the mean of milk

production may be expressed in Ib. of milk, the variance in 1b2 of milk, and the standard

deviation in lb. of milk.

Computing the Variance

If x; (i=1, .., N) is the observation on the itll individual, then

2

N
2 2
oy = I Giom)/N = @ Ni) /N

i
The above procedure is appropriate when u, is known exactly. When N includes the whole
population, the computed value is the population variance, and when n is a sample of the

population, the value is an estimate of the population variance and should be denoted as

c‘:x. If uy is estimated from a sample of the data as X or [y, then ai is estimated as:
A2 2 =x) (2x
62 = (21 - &)y ),
n
where n-1 is the degrees of freedom.
The division is by n-1 so that E(&)z() = 0)2(, = oi, i.e., the average of estimates of o% will be

oi. Thus, the estimate is said to be unbiased. Alternative computing procedures are listed

in Table 1.1. The following section on expected values will describe how to find the

. A2
expected or average value of estimates such as Oy
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The mean and standard deviation characterize a normal distribution of observations.
The normal distribution follows the bell-shaped curve where the values along the horizontal

axis are plotted against the frequencies of those values on the vertical axis.

Frequencies

S py20y ByOy By Pyt Oy py+20y +

values of X

The average of all the x; is uy and lies at the center of the symmetrical distribution--
one-half the x; above and one-half the xj below p,. The range p, - o, to u, + o, will
contain 68% of the X;3 My - 20, 1O py + 2°x will contain 96% of the X;. Multipliers of o,
for other frequencies are given in most introductory statistics books.

The distribution of averages of n observations has mean p,. The variance of the

a2 : A R
averages is 6, /n, with the square root, 6= = Oy /yn ,called the standard error of the mean.

COVARIANCE

The variance and the corresponding standard deviation thus measure how one trait
varies. The covariance, a measure of how two traits vary together (co-vary), is also needed
in developing selection procedures. For example, the covariance between two traits
measured on the same animal, e.g., height and weight, may be needed or the covariance
between the same trait measured on two relatives may be needed. The definition and

computing procedures for the covariance are analogous to those for the variance.
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Suppose that the two measures are x; and yj (i=1, .., N) for the measurements on
the il pair of relatives. The covariance has the symbol Ixy (sigma-x-y) and is defined as
the average of products of deviations from the means of traits X and Y;

oxy = El(ity) (¥j=Hy)]

= [(1=kx) (F171y) + (ky) (V27Hy) + - + (AN-Hx) ON-H#y)]/N
N

.El [ (xi=px) (vi-my) 1/N.
1=

This computation is appropriate when uy and py are known exactly and gives the
population covariance when N includes the whole population and gives an estimate (axy)
of the population covariance when n is a sample.

If py and py are estimated from a sample of the population as X and y, (&, ),

then

A

bxy = =L (xi-fy) (yi-fiy) 1/ (1)

2X:)(2Zy;
[=x;y; - %y_l)]/(n—l).

Note the similarity of the computing procedures for variances and covariances.

A positive covariance indicates that as the value for one trait increases, the value for
the other trait also tends to increase. A negative covariance indicates that as the value for
one trait increases, the other tends to decrease. The traits are not correlated when the
covariance is zero. The units of a covariance are units of the first trait times units of the

second trait.
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FREQUENCY DATA

Sometimes observations fall into discrete categories. An example is with two alleles
at one locus which results in three genotypes--the two homozygotes and the heterozygote.
Estimates of means, variances and covariances can be made with the previously described
procedures where each observation is treated separately. For purposes of algebraic
simplification or slightly less tedious computation, advantage can be taken of all observations
in a category being the same. Suppose that the observations in ¢ categories are
y; (i=1, .., ¢) with frequencies in each category of f;. Unless some categories are thrown

C

out, .21 f; = 1. The formulas are given for cases where =f; might not equal unity. Suppose
1=
that the sample size is n. Then the number with observation y; in category i is nf;. The sum

C
of all observations is X nf;y;. The estimated mean is the sum divided by the number of
C l=1
observations, X nf;;
i=1

iy =7y = (znfjy;)/(znfy) = =fjy;/zf; .

The definition of variance is the same as for non-categorized data but the squared
deviations from the mean are identical for all observations in the same category, i.e., nf; will
be (y; - ﬁy)z so that the sum of squared deviations is
fi(v: = 0. = nsfi(ve - o)
znf;(y; l‘y) = n2f;(y; /-’-y) .
Division by number of observations minus one results in:
2 £ ) -
oy = [nzf;(y; - u.y) ]/(nzf;-1) and for £f; = 1
W2 £ < N2
8 = [=fi(y; - Ay ] [n/(a-D)}.

The preceding formulas are given in Table 1.1. Algebraically identical computing

formulas which in most cases are easier to use are in the right column of Table 1.1.
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CORRELATION

The correlation coefficient is a standardized measure of the relationship between two
traits which allows comparisons of correlations among different pairs of traits. The possible
range is -1 to +1 with no units involved for either trait. The correlation between traits X

and Y or relatives x and y is defined as
fy = =
0202
X'y
If estimates of the covariance and variances are used in the formula, then Txy is an estimate

of the population correlation coefficient.

REGRESSION

The selection index procedures that will be developed are related to regression
equations. The simplest form of a regression equation is to predict the value of some trait
for an animal i, e.g., y;, when the measurement of another trait, x;, is known. The statistical
procedure of minimizing the squared error between y; and the prediction, §; results in the
equation for regression of trait Y on trait X. The basic principle is that a change in trait
X results in a corresponding change in trait Y. The regression coefficient denoted as by-x
(b-y-dot-x), describes the magnitude of the corresponding change. Least squares or

minimization of £(y; -§)° results in the solution for by., = 6y /3. The full equation

also depends on by and f,:

A

i = iy + byuy (xj - ).
As with the correlation coefficient, the covariance determines the direction of the change.

Note that the covariance is in terms of units for x by units for y and the variance of X is in
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the square of units for X so that by.x is in terms of units of Y divided by units of X, i.e,
change in Y per unit change in X. The estimated means ﬁy and [y are as described earlier.
To estimate uy, py and by .y, measurements on both traits are needed. Then, to predict y;

. is needed.

as yj, only a measure on x;

EXPECTED VALUES

The use of expected values increases the powerful and flexibility of the selection
index but at the expense of minor frustration of some students who initially have difficulty
in developing a feeling for what they are doing. Experience has shown that most students
overcome this difficulty after some practice and that they become much more adept at
solving problems which involve more than the usual case of selection for additive genetic
value.

The symbol often used for the expected or average value of some expression
involving constants and variables is E( ). Expected values of most expressions used in
estimating genetic parameters are relatively easy to determine if six definitions are
remembered.

Let ¢ = constant; x; = variable from some distribution with mean py and variance

oi; and y; = variable from some distribution with mean Ky variance 03, and covariance
with xj, oyy.

Definition 1: E(c) = c¢. Certainly the average value of a constant is that constant.
Similarly E(c?) = c2.
Definition 2: E(x;) = uy. The average of all possible values of variable X is its

average Or mean, liy.
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Definition 3: E(cx;) = ¢ E(x;) = cuy. The average of all possible values of a
variable times a constant is the constant times the mean of the variable. The principle is
that for expressions involving a constant the constant can be taken outside the expectation
operation.

Definition 4: E(xj+y;) = EX) + E(y;) = py + by The principle is that the
expectation of a sum can be taken as the sum of the expectations of the parts.

Definition 5: E[(xi-ux)z] = 03. By definition, the variance of a variable X, o%, is the
average squared deviation of the variable from its mean. Definition 5 leads directly to
E(x2) = o + “‘x If the equation for definition S is expanded, the expectation of its parts
is:

o2 = E(xj-ty)® = B2ty + )

- E(7) - EQuyxp) + E(:2) from (4)
= E(x7) - 2uE(x;) + 4> from (1) and (3)
- B - @uy) () + By

2 2
= E(xi ) - ﬂx.

Therefore, E(xiz) = oi + u)z(. Note that E(xiz) = oi when uy, = 0. Also, as a rule of
thumb for finding the variance for a variable X, E(xiz) = oz can be used since uy drops out
of the variance.

Definition 6: E[(x-xy) (.Vi'“'y)] = Oxy- By definition, the covariance between
variables X and Y, Oxy» is the average of the products of their deviations from their means.
Thus, E(xjyj) = oxy + kxuy Which follows from definition 6. If the equation for definition

6 is expanded, the expectation of its parts is:
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oxy = El(xj=by) (vi~Hy)]
= E(Xjyj = BxYi = ByXj + Hxhy)
= E(xjyj) - uxE(j) - u.yE(xi) * byhy from (1) and (3)
= B(xjyi) - Bxiy = Bykx *+ Hxby
= E(Xjyj) - xhy-
Therefore, E(xjyj) = oxy * kxty. Note that E(xjy;) = oxy When either or both
Ky and py = q,

A general procedure that works well for applying these definitions to determine the
expected values of more complicated sums of squares and products of variables is to use the
following steps:

Step 1. Substitute elements of the model into the function.

Step 2. Expand the function in terms of the model.

Step 3. Find the expected value of each term of the function.

Step 4. The expected value of the function will be the sum of the expected values

of the individual terms.

Example

Let Pij =pu+ A+ Eijv where Pij is an observation on the ]t—h' record in the i class,
u is a constant, A, is a variable with u A = 0 and variance o%, Eij is a variable with
LE = 0 and variance o%, and the covariance between any two A's, any two E's or any A and

any E is zero.
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The expected value of any observation is

E(Pij) = E(u + Aj + EU) = E(u) + E(A)) + E(EU)

L+ 0+0=npu
The expected value of any observation squared is:

E(P, ) “E[( + A + EIJ) 1=E@? + Al + E% + 2uA; + 2uEjj + 2AE;))

E(u?) E(A. ) + E(E..) + E(2uA;) + E(uEj) + EQAE;)

w2 02 . oE + 2uE(A;) + 2uE(Ey) + 2E(AEj)

= 2+02+02
H AT 9E

since E(A;) and E(Eij) both equal zero and E(AiEij) =oag = 0.
The expected value of the product of observations (j ' # j) in the same class

(class 1) is:

E(PijPI_]') = E[(’J' + Al + El]) ([J. + Al + El]')]

E(u®+ Ayt uEjp + A+ AT+ AEjp + Eji+ AE;+ BB )

u +0+0+0+oA+0+0+0+0
-2+ o}
because both E(A]E ) and E(AlE .} are equal to zero when o AE = 0 and E(EijEij') =0
when oEijElJ' =
The expected value of the product of observations in different classes (classes i and

i) is:

E(P;P) = El(u + Aj + Ep) (b + Ap + Egy)] (/1" and j#j' or j=)

Il

E(u +uA; +uE +uA1+A1A +A1E..+uE +A1E +EIJE1'J')

u +0+0+0+0+0+0+0+0

with most terms equal to zero.
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Another Example
Suppose a phenotypic observation on animal i is made up of a constant u, a genetic
value G, and an environmental effect E:

P; =u+ Gj+ E;

where us = pg =0, E(Gzi) = 0(2;, E(E%) = a%, and no covariance between any G's, any

E's, and any G with any E.

]

b+ pug + UE = 4
Note that pp = K, i.e.,, two symbols that are equal which will be convenient in the

expectation for 012).

E(P?) = E[(s + G; + E)?] = E(u® + G? + EZ + 2uG, + 2uE; + 2GE)
= 12 + E(G%) + E(E?) + 2uE(G;) + 2uE(E;) + 2E(G;E)
=t +oi+ok+0+0+0
If ogg * 0, then E(G,E;) would also be different from zero.

With no G with E covariance:

op = El(P;u)?) = El(w + G; + E; - 0% = E[(G; + E)?]

E(G?) + E(E?) + 2E(GE))

oé+o%+0

= Eu? + #G; + pE; +uG; + GiGj + GE; + kE; + GE; + EE)
2

=H
COV(PP)) = E[(Pru)(Pyu)] = E[( + G; + Ej - w)( + Gj + E; - p)]
=0+0+0+0.
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TABLE 1.1. SUMMARY OF MEAN AND VARIANCE

Symbols:

Population

Sample

Units

Computing formulas:

Nonfrequency data:

Population

Sample

Frequency data:

Population

Sample

Mean Variance
Kx oi, V(x)
P X 6% S§
units units squared
IXj . Z(Xi-ux)z
N X N
= (x;-fiy)>
—_— = X =X
n n-1
fiy; i (y;-thy)?
iYi - 1()'1 “'y)
zf; Efi
A N2
4 =5 zfj (yi""y) n
“y Zfi n-1

|

Standard Deviation

Alternate Computing
Forms for Variance

2 2
in -Nﬂx

2 2
z fiyi -(zf;) p,y ‘

zf ’
it 5t =1, sty -u

As above, but multiply




CHAPTER 2

A LITTLE ABOUT MATRIX ALGEBRA

The algebraic description of selection index procedures is very easy with algebra of
matrices and vectors. Matrix algebra is also very efficient for writing least squares and
mixed model equations and describing the properties of mixed model procedures which will
be introduced in the second section of the book. Computer packages are readily available
for doing computations interactively using the notation of matrix algebra. Two obvious ones
are MATLAB, a personal computer package, which is excellent for working problem sets
on a scale not possible with desk calculators, and the IML routines in SAS, a statistical
package used in many statistical methods courses. MATLAB is also available on many large
computer systems. Although much of the detail of selection index and mixed model
procedures is not efficiently done with matrix routines, the arithmetically difficult parts can
be illustrated quickly with friendly matrix packages. This chapter will describe the basic
rules for matrix algebra and later chapters will describe the computations both element by
element and also in matrix form suitable for calculation with a matrix package. MATLAB
terminology will be used although IML statements are similar. This chapter and summaries
at the end of some chapters on matrix notation can be skipped without missing any of the
basic ideas of selection index theory. Many illustrative problems, however, will become
more valuable by combining the detail needed for deriving the expected variances and

covariances with the ease of doing the final computations with a hands-on matrix package.

17
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The set of numbers such as the coefficients used later in the numerical example of
the one-way fixed classification model:

6312
3300
1010
200 2

is called a matrix of 4 rows and 4 columns. Matrices do not have to be square or
symmetrical as is C. A symmetrical matrix has columns equal to its corresponding rows.
A matrix with only one column is called a vector; e.g., the right-hand sides for that example

can be written as the vector, r:

y..
Y1.

y2.
y3.

Notice that elements of matrices and vectors can be represented with numbers or symbols.
Matrix arithmetic would require numbers. Matrix algebra may be done with a mixture of
both. Matrix algebra is useful in working with and solving least squares and mixed model
equations as well as selection index procedures. The notation of matrix algebra is especially
convenient and concise for writing simultaneous equations both symbolically and
numerically.

The rules of matrix algebra are similar to those for scalar algebra with some
important exceptions. Only four rules will be needed for most of this book. Other rules will

be introduced when needed.
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MATRIX MULTIPLICATION
Rule 1) Matrix multiplication is accomplished by summing the products of each element
of each row of the first matrix with the corresponding element of each column
of the second matrix (thus the number of elements in each row of the first
matrix must equal the number of elements in each column of the second matrix
to be conformable for multiplication). A new matrix is formed from the sums
of these row by column products;

Sum of products of elements of 1st row x 1st column = new element 1,1
Sum of products of elements of 1st row x 2nd column = new element 1,2

Sum of products of elements of 2nd row x 1st column = new element 2,1
Sum of products of elements of 2nd row x 2nd column = new element 2,2

(The first subscript refers to the row; the second, to the column of the resulting matrix, or

vector.)

For example, examine multiplication of a matrix of numbers by column vector of

symbols:
6 3 1 2 il
3 3 0 0 Aq
1 0 1 0 A
2 0 0 2 Az
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Sum for 1st row by 1st column;

60 + 3A1 + 1A2 + 2A3

Sum for 2nd row by 1st column:

3u + 3A1 + 0A, + 0A3

Sum for 3rd row by 1st column;

1 + 0A; + 1A, + 0A4

(element 1,1)

(element 2,1)

(element 3,1)
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Sum for 4th row by 1st column;

2;1 + OAl + OAZ + 2A3 (element 4,1) \

\Y

The results are the left-hand sides (LHS) of the least squares equations for an example of
the one-way classification model. This example is partially numerical, the elements of C,

and partially symbolic, the elements of the solution vector:

/

The coefficients of the effects on the left-hand sides (LHS) of least squares (LSE)
or mixed model equations (MME) make up the coefficient matrix, for example, the matrix
C. A similar matrix of coefficients for selection index equations will be denoted P.

The sums on the right of the equal signs make up the right-hand side (RHS) vector:

y..
Y1.

Y2,
y3.

r =

With selection index equations, the RHS vector will be made up of covariances of

records in the index with the variable being predicted and may be denoted as g.
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Thus, in matrix notation, the set of least square equations can be written:
Cs = r and
the set of selection index equations as:
Pb =g
where b is the vector of selection index weights.

Multiplication of matrices is a simple extension of matrix by vector multiplication and
can be thought of as multiplying the first matrix by a succession of vectors that make up the
second matrix. MATLAB would produce the matrix product of A and B and put it in
matrix E from E = A*B. Note that usually A*B # B*A. In fact, even if A*B is

conformable, B*A might not be conformable for multiplication.

SOLUTIONS WITH INVERSES
Rule 2) If C or P is square and composed of independent rows (columns), the matrix
equivalent of division in scalar arithmetic can be used to solve for the solution
vector s or b.
In scalar (usual) arithmetic,
2x =4
can be solved by premultiplying both sides by the scalar inverse of 2, that is by (2)'1;
@1@x = @he = 2.
Because (2)'1(2) = 1, then x = 2 is the solution.
In matrix notation, premultiplying both sides by the matrix inverse of C produces the
solution vector;

cles = ¢l
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If C can be inverted, i.e., is a nonsingular matrix, then;
clc=1.
I'is the matrix equivalent of the scalar 1. Note that as in scalar algebra, the identity
(one) vanishes in multiplication: IC = C, Is = s, etc. In fact, I is a matrix with 1's as

diagonal (top left to bottom right) elements and 0's as off-diagonal elements; e.g.,

1000
0100
0010
0001

clc-1-

Thus, to solve Cs = r, then clcs=clris equivalentto Is = Clrsothats = C'lr.

Note that C1 » I/C which has no meaning in matrix algebra.

Finding the elements of the inverse, C'l, from Cis usually accomplished by computer
programs although students in matrix algebra courses often are required to practice on
matrices of order 2x2, 3x3, 4x4, etc. In fact, the command in MATLAB, INV(C) will
produce the elements of the inverse.

Note that constraints often must be applied to LSE or MME to make the rows of the
coefficient matrix independent so that an inverse of C can be obtained. If the rows are
dependent, an inverse does not exist and the matrix is said to be singular. A special kind
of inverse called the generalized or Penrose inverse can be used in those cases, although
care must be taken in interpreting the resulting solutions. In MATLAB, use PINV(C).

Thus, in MATLAB, b = INV(P)*g and s = PINV(C)*r.
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ADDITION (SUBTRACTION)
Rule 3) Addition (subtraction) of two matrices is accomplished by adding (subtracting)
corresponding elements of the two matrices. Thus the matrices must have the

same number of rows and columns to be conformable for addition. In

MATLAB, D = A+B.

SCALAR BY MATRIX MULTIPLICATION
Rule 4) Multiplication of a scalar by a matrix is defined as the multiplication of each

element of the matrix by the scalar. If the scalar is (1-h2)/h2, which for

h2 = 25 is (1-.25)/(.25) = 3, then, for example:

3000
0300
0030
0003

31

This operation in MATLAB would be:

3*EYE(4) .



CHAPTER 3

QUANTIFYING THE SIMPLE MENDELIAN MODEL

This chapter is not necessary for development of selection procedures for traits
influenced by many genes and could be skipped. Nevertheless, examination of simpler
models may provide insight into more complicated models which are based on the same
principles.

The usual genetic model is

Phenotype = Genotypic effects + Environmental effects
P =G + E
The simplest Mendelian model has E = 0 and only three possible genotypes and genotypic
effects for one locus with two alleles, A and a.

In a random mating population, if the gene frequency of an allele, A, at a particular

locus is p and if there is only one other allele, a, with frequency, 1 - p = q, then the

expected frequencies of the three possible genotypes are by the Hardy-Weinberg law

Genotype Frequency = f; Value = y;
AA p? u
Aa 2pq [(u+v)/2} + d
aa q2 v

25
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Abitrary symbolic effects can be assigned to the genotypes as shown. The value d
represents the dominance deviation as a difference of the effect of the heterozygote from
the average effect of the homozygotes. There are several possible kinds of dominance
depending on the size of d: if d = 0, there is no dominance or equivalently there is lack
of dominance or the model contains only additive effects; if d = (u-v)/2, there is complete
dominance, that is, the value of Aa equals the value of AA; and if |d| > (u-v)/2, there is
overdominance, that is, the value of the heterozygote is greater than the value of the AA

homozygote or less than the value of the aa homozygote.

POPULATION MEAN

The definition of the population mean or average, g, is as shown in Chapter 1:
n n
p=(X fiyp/ ¥ f,
i=1 i=1
where n is the number of different genotypes. Usually, Xf; = 1 but will not if certain
genotypes are discarded due to selection.

Application of this formula prdvides the symbolic mean for the simplest Mendelian

model in the case of no selection:

g =v + p(u-v), if d = 0; and

p =v + p(u-v) + 2pqd, if d # 0.
The population average will be maximum when p = 1,ifu > vand d £ (u-v)/2.
If d > (u-v)/2 (overdominance), then the population average will be maximum when

p = {[(u-v)/2] + d}/2d as can be found by equating the derivative of u with respect to p

to zero.
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POPULATION VARIANCE

The definition of the population variance, o2

, as shown in Chapter 1 is:
2 % 2./ 5
o“ = [X fiyi-w)°)/ X
1=1 1-1
If Efi = 1, then
02

2 2
= 2 filyi-w) = By - WP

Application of this formula will yield equations involving p, u, v, and d, as shown in standard

text books on population genetics.

BREEDING VALUE UNDER THE SIMPLE MENDELIAN MODEL

Selection index procedures are primarily aimed toward predicting breeding value.
Breeding value can be thought of as the part of the genotypic effects of an animal that can
be passed to its progeny. In fact, breeding value is defined for quantitative traits as twice
the superiority of an animal that is exhibited in its progeny. The same concept can be
shown for effects at a single locus with two alleles.

The frequencies of progeny of the three parental genotypes under random mating are

described in the following table.

Parent Parent Progeny Frequency
enotype Frequency AA Aa aa
AA p? P q O
Aa 2pq p/2 12 q/2
aa q2 0 p q

The progeny frequencies are from randomly mating a particular parent type to the rest of
the population. For example, Aa x population gives from the gametic arrays the progeny

frequencies,
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[(1/2)(A) + (1/2)(a)] x [(P)(A) + (@)(a)]

Vv
(p/2)(AA) + (1/2)(Aa) + (q/2)(aa) .

The progeny means in symbolic terms for the three parental genotypes are found by
applying the formula for the mean with frequencies to be:

Baa = pu + q{[(u+v)/2] + d},

BAg = -Spu + S{[(u+v)/2] + d} + Sqv,

Hag = P{(u+v)/2] + d} + qv.
These expressions show:
(1) that pp, = (Haa + Haa)/2 for any values of p and d, that is, the mean for progeny of
heterozygotes is the average of the means of the progeny of the two kinds of homozygotes
and (2) that breeding values (progeny means) of the parental genotypes depend on gene

frequency (even if u>v, u4 o may be less than u,, when p is small).

HERITABILITY FOR THE SIMPLE GENETIC MODEL
For the simple genetic model (1 locus, 2 alleles, the heterozygote value equal to the
average value of the homozygotes, i.e., d = 0) with no environmental effects, the regression

of offspring mean on parental value is 1/2 (see formulas in Chapter 1).

Parent Value Frequency Progenv Mean
AA u p2 pu + q(u+v)/2
Aa (u+v)/2 2pq (pu/2) + [(u+v)/4] + (qv/2)

aa v q p(u+v)/2 + qv



Simple Model 29

Here, the mean, 4 = v + p(u-v) and the variance of parents is pq(u-v)2/2 = aé, which is
the genetic variance since there are no environmental effects. The covariance of progeny
means and parent values is pq(u-v)2/4 = aé/z and thus the regression of offspring mean
on parent value is 1/2.

The following principles should be noted:

1.  Any kind of dominance will decrease the regression coefficient.

2.  Selection on parents will not affect the regression if the heterozygote has a

value which is the average of the values of the homozygotes (additive model).
3. If there is some form of dominance, selection on the parents will, in general,

affect the regression as can be seen by plotting progeny means against parental

values.

SIMPLE GENETIC MODEL WITH ENVIRONMENTAL EFFECTS

Suppose to the simple genetic model that a random environmental contribution is

2

added that averages zero but has variance ag. Then, phenotype = genotype + environment,

or P = G + E. If there is no correlation between G and E, then phenotypic variance,

012) = oz + oi. In terms of selection, usually the components of P cannot be separated

directly. The environmental effect, E, may mask what is to be evaluated, G.

HERITABILITY DEFINED

Heritability is defined in the "broad sense" as the ratio of all of the genetic variance

to the total variance;

2 _ 2,2 2
h -og/(og+oe).
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With additive gene action (the heterozygote intermediate in value between

homozygotes) for the simple model the covariance between parent and progeny is

( 1/2)(02A). This result can be shown to be true even if environmental variation exits

because the environmental variation is assumed to be random with average value of zero.

If d does not equal 0 (some form of dominance), part of the genetic variance will be

due to the dominance effects, UED and some to additive effects, ozA

If there is some form of dominance, the regression of progeny on parent is reduced.

The covariance, however, between progeny and parent is (1/2)(02A) either with
dominance or with no dominance (see appendix this chapter).

Heritability is defined in the "narrow sense" as the ratio of additive genetic variance

to the total variance;

°§A 2 2 2
h2 = T, where og = ogA + ogD
ag O,

Thus, twice the regression of progeny mean on parent value equals heritability in the
"narrow sense” even with dominance in the simple genetic model with random
environmental effects. The same will be true for quantitative traits influenced by genes at
many loci.

Later chapters show that additive genetic effects are most important since they have
a much greater chance than dominance or epistatic effects of being transmitted from one

generation to the next.
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APPENDIX TO CHAPTER THREE

DERIVATION OF az, O;A’ azD FOR 1 LOCUS WITH 2 ALLELES

Let value of AA = 1, value of Aa = d, and value of aa = 0. The frequency of

A is p and the frequency of ais 1 - p = q. Random mating is assumed.

Total Genetic Variance, cré

Hg = p? + 2pqd
oé = p2 + 2pqd2 +0- (p2 + 2pqd)2
= p% + 2pqd? - p* - 4p>qd - 4p%(q?)d?
= palp(1+p) + 2d(d - 2p? - 2pqd)]
Ifd = 1/2, of = pq/2.

Regression of Genotypic Value, G, on Number of "+" Genes, X, to Define o gA

(Depends on p)

The following table describes frequencies and genetic values associated with number

of positive genes in the genotype:

Genotype Frequency G X
AA p2 1 2
Aa 2pq d 1
aa q2 0 0
2 22 " . . . . . .
o, =r1_0_, the additive genetic variance, is defined as the variance in G due
EA &8
to additive gene effects (i.e., variance in G accounted for by regression of G on X):
2 _ e
o F —_—
A 02

X
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Now evaluate Ogx and ag.
by = 2p
o> = p%@? + 2pq + 0 - (2p)?
= 4p? + 2pq - 4p% = 2pq
Hg = p? + 2pqd
Ogx = 2p2 + 2pqd + 0 - 2p(p? + 2pqd)

= 2p2 + 2pqd - 2p3 - 4p2qd‘

= 2pq(p+d-2pd)
Thus

2
2 _ (00" _ [2pq(p+d-2pd)}?
gA 2 2pq

g
X

2pq(p+d-2pd)®

= 2pq(p2 + d2 + 4p2d2 + 2pd - 4p2d - 4pd2).

The dominance genetic variance is variance in G not accounted for by regression on X:

= p2q[1-p+4d(d-pd-1+p)].

Ifd =1/2, OEA = ogD = 0. With this assignment of genetic values, d =1/2 corresponds

to no dominance, i.e., (VAA *+ Va2)/2 = (1+0)/2 = 1/2.



Simple Model 33

COVARIANCE (PROGENY, PARENT) WITH DOMINANCE
The table summarizes parental frequencies and parent and progeny values when the

genotypic values are defined as 1, d, and 0.

Values
Parents Frequency Parent Progeny Mean
AA p? 1 p + qd
Aa 2pq d (1/2)(p) + (1/2)(d)
aa q2 0 pd

Kprogeny = Hparent = Hpopulation = p* + 2pqd
Cov = pA(p + qd) + 2pqd(1/2)(p+d) - (p* + 2pqd)?
= pq(p + d - 2pd)>%,
which is (1 /2)(02A) no matter what the values of p and d are.

In this derivation, the values of the genotypes (1, d, and 0) have been scaled from
general phenotypic values of u, [(u+v)/2] + d', and v by subtracting v from each general
value and then dividing by u-v. Note that the scaled d = (1/2) + [d'/(u-v)] in terms of the
general values. To convert the above results (variances) back to general values, multiply

by (u-v)2.



CHAPTER 4

A SHORT SUMMATION ON POPULATION GENETICS

The principles of quantitative genetics and population genetics are closely linked.
Population genetics is primarily concerned with identifiable alleles and their frequencies
whereas quantitative genetics is primarily concerned with small effects of many
unidentifiable alleles. Causes and effects of changes in frequencies of alleles is a major
common concern of these two related fields of genetics. This chapter summarizes a few of
the more obvious results from population genetics. Texts such as Doolittle (1987), Hartl
(1980), Falconer (1989), provide much more complete development of the principles of
population genetics. This chapter could be expanded in lectures if the topics of quantitative
and population genetics are covered in one course. This chapter should be skipped if the

course is limited to selection for quantitative traits.

THE HARDY-WEINBERG LAW

If in a large population, p is the frequency of gene A and q is the frequency of the
other allele, a, then after one generation of random mating the genotypes will have and will
continue to have in future generations the frequencies p2 for AA, 2pq for Aa, and q2 for aa.

Note that p + q = 1. Hence,q = 1- p.

35
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This principle can be extended to the case of n alleles, A, (i=1, .., n), with
frequencies p;, by computing the frequencies of the genotypes obtained from multiplying the
gametic array for males by the same gametic array for females, (pjA; + ... + PAp).
The genotypes and their frequencies will be:

homozygotes:  A;A; with frequencies p% fori =1,..n
] heterozygotes: A]A] with frequencies 2pipj for alli »j.
Again, ¥ pj =1
i=1

ESTIMATION OF GENE FREQUENCIES

The general formula for the

Number of that allele

frequency of some allele = .
Total number of genes at that locus

The problems of estimation are illustrated in the following special cases.
(1) Dominance:
The frequency of a recessive gene in a random mating population can be

2

estimated from the knowledge that a fraction q“ of the population is expected

to be homozygous recessive. Then,

q = ynumber recessive types/total number of animals ,
andp=1-q.
In the case of multiple alleles with complete dominance, the frequency of the most
recessive allele is estimated first. For example, suppose Aq is dominant to Ay and A3, and

A,y is dominant to Aj as shown below.
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Genotype Phenotype Expected Frequency
A1 5
A1Ay Aq PT + 2P1Pp + 2p1P3
A1A3
Aghg 5
AgxAz Ay P + 2pyp3
2
AzAg Az P3

Then from the last equation, p3 = Jnumber A3 type/total number. Put the estimate

of p3 into the second equation, p% + 2pyp3 = number A, type/total number,

and solve for p,. Next substitute the estimates of p3 and p, into the first equation,

p% + 2p1py + 2pyp3 = number A, type/total number and solve for p; or find p; by
difference since p; + p, + p3 = l,orp; = 1-p, - P3.

(2) Incomplete dominance:

With incomplete dominance, heterozygotes can be distinguished from

homozygotes so that the gene frequencies can be found from the general

formula whether or not the population is randomly mating. For example, with

three alleles,
Number Aj alleles

P1 = Total number of genes at the A locus

Each A;A; genotype contributes two A alleles; each AjA, genotype contributes

one A allele; and each A{A3 genotype contributes one A allele to the number of A genes.

Then,

2(number of AjA1) + number of AjA, + number of AjA3
P1 =

b

2(total number of animals)

and p, and p3 may be estimated similarly.
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FREQUENCIES OF COMPOSITE GENOTYPES

The frequencies of composite genotypes in a random mating population which is at
equilibrium with respect to linkage are equal to the products of the single locus frequencies.
For example, if the frequencies of A; and A, alleles are p; and p,, respectively, and the
frequencies of By and B, alleles are ry and r), respectively, then the frequencies of the

composite (two-locus) genotypes at equilibrium will be:

Genotypes Frequencies
A1A1B1By piry
A1A(B1By piCarry)
A1A1B,B, PIT5
A1AB1B4 (2ppy)7
A1A2B1By (2p1p2)(2ryry)
A1A2B,By (2p1P))
AxArB1By pors

AgAgB 1By P(2ryry)
AgAzB)B) P55

Extension to more than two alleles per locus or more loci follows the same pattern.

EFFECT OF SELECTION ON GENE FREQUENCIES

Selection may change the frequency of a certain allele in a population. Gene
frequency after selection (among the survivors and with random mating of the survivors
among the next generation) depends on the fitness of the genotypes and allelic frequencies

in the current generation. Fitness of a genotype is defined as the proportion of the genotype
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that reproduces relative to the other genotypes. Let s be the fraction of AA genotypes, r
be the fraction of Aa genotypes, and t the fraction of aa genotypes that do not reproduce,
where 1 2 s, r and t 2 0. By counting alleles, the frequency of allele a after selection is

expected to be

_ number of "a” genes among survivors
2(number of survivors).

This expression has specific forms for special kinds of selection as described later. The

change in allelic frequency from one generation to another is the difference in allelic
frequencies between the generations, i.e.,
Aq =q,-q,1,

where the subscripts refer to generations n and n-1.

Special Cases
In the following special cases, some simplifications may be made.
(1) No homozygous recessive individuals reproduce (zero fitness for the aa
genotype; s = 0, r = 0, t = 1).
The composition of the initial generation (n = 0) can be described:

Relative Frequency

Genotype Frequency Fitness of Survivors
AA p2 s =1 p2
Aa 2pq lo =1 2pq
aa q2 1-t=0 0
T(;xl 1 p2 + 2pq=—1 - q2
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Then, by the general equation because only the Aa genotype contains an a allele

_ number of a alleles in survivors
total number alleles in survivors

q = 2pq(number of animals) - 9

2(p2 + 2pq)(number of animals)  1*4

If this procedure is followed through n generations, the frequency of the allele
a will be g, = q/(1 + nq), where q was the original allelic frequency of
the recessive allele. From this expression, the number of generations, m,
required to go from an allelic frequency of q to one of g, is found to be
n = (1/q,) - (1/9).
(2) Selection in favor of heterozygotes (r = 0)

The composition of the initial generation (n = 0) before and after

selection is:

Relative Frequency

Genotype  Frequency Fitness of Survivors
AA p2 1-s pz(l-s)
Aa 2pq 1 2pq
aa q2 1-t q2( 1-t)
Total 1 T 1sp2tqZ

Application of the géneral procedure for finding the new allelic frequency, qy,

gives




()
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The change in allelic frequency from the zero generation to the next is:

Aq = PAGPta)

1-sp 2-tq 2

When aq = 0, there will be no change in allelic frequency from the (n-1)St
generation to the nth generation and the population will be at equilibrium.
As seen from the numerator, equilibrium occurs when sp - tq = 0.
Thus, equilibrium allelic frequency will be reached when p = t/(s+t) and
q = s/(s+t).
Partial selection against homozygous recessives (s = 0, r = 0, t > 0)

The composition of the initial generation before and after selection is:

Relative Frequency

Genotype  Frequency Fitness of Survivors
AA p? 1 p?
Aa 2pq 1 2pq
aa q2 1-t q2( 1-t)
Taal T - l—tq2

The allelic frequency, gy, in the survivors is by the general procedure

q1 =

Aq

1l
e
|
0
|
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(4) Selection against heterozygotes (s = 0, r > 0, t = 0)
The composition of the initial generation before and after selection is:

Relative Frequency

Genotype Frequency Fitness of Survivors
AA p* 1 p?
Aa 2pq 1-r 2pq(1-r)
aa q2 1 q2
T-o_t.al l_ T 1-2pqr
By the general procedure, the allelic frequency, qy, in the survivors is
q] = %%, and
aq =q) - q = ———rplq_(igp:ll) .

(5) Changes in allelic frequencies with other combinations of fitness values can be

worked out similarly by the general procedure.

DETECTION OF CARRIERS OF RECESSIVE ALLELES

The confidence of detection of a heterozygote for a recessive allele (i.e., a carrier of
the recessive gene) depends on the probability of obtaining at least one affected offspring
in n offspring if the suspected carrier is actually a carrier. This probability is one minus the
probability of obtaining all normal offspring in n offspring.

A general testing procedure is to mate a suspected carrier to a group of females
which produce a fraction, p, A alleles and a fraction, q, a alleles. Then, if the suspect is
really a carrier, the probability that all n offspring will be normal is [1 - q/2)]™ and the
confidence of detection (i.e., proving the animal is a carrier) is 1 - [1 - (g/2)]™. Usually

testing is for males because of their potentially high reproductive rate relative to females.
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Some special cases are:
(1) Mating a carrier male to known homozygous recessive females
The probability of obtaining all normal offspring is (1/2)™.
Therefore, the "confidence" of detecting him as a carrier is 1 - (1/2)™.
Note that q = 1 and that 1 - (q/2) = 1/2.
(2) Mating a carrier male to known carrier (heterozygous) females
The "confidence" of detecting him as a carrier is 1 - (3/4)™.
Note that ¢ = 1/2 and that 1 - (q/2) = 3/4.
(3) Mating a carrier male to his own daughters.
The "confidence" of detecting him as a carrier is 1 - (7/8)". Note that
q = 1/4 and that 1 - (q/2) = 7/8. This probability is calculated under the
assumption that the dams were all homozygous for the normal allele. With this
system, recessive alleles at all loci will have the same chance of detection.
(4) Mating a carrier male at random in a population where the frequency of the
recessive gene is q‘ in the previous generation
The "confidence” of detecting him as a carrier is 1- [(2+q )/2(1+q )™

Note that q = q'/ (1 +q') since none of the homozygous recessive females will

be mated.

What should be remembered about testing for carriers is that even one verified
affected offspring marks a suspected carrier as a carrier. Even if all offspring are normal,
that will never completely rule out the possibility a male is a carrier, even though the
probability of detection may be quite high.

Table 4.1 shows the confidence of detection of carrier males for the four testing

systems. A further discussion of method 4 follows.



TABLE 4.1. CHANCES OF DETECTING A CARRIER MALE FOR VARIOUS TYPES OF MATINGS

Detects all

Detects only one lethal lethals carried Detects all lethals depending on_ frequency
homozygous known random 1n22%P%$ftlgn
Numbey of recessive carrier own - Efi:—:—)
Progeny females females daughters lethal Gene Frequency = q* i Apgez ous generation

n 1-(1/2)" 1-(3/4)" 1-(7/8)" .2 .1 .05 .01 .001
1 .50 .25 .12 .08 .05 .02 .00 .00

2 .75 A .23 .16 .09 .05 .01 .00

3 .88 .58 .33 .23 .13 .07 .01 .00

4 .94 .68 L4l .29 .19 .09 .02 .00

5 .97 .76 .49 .35 .21 .11 .02 .00

6 .98 .82 .55 .41 .24 .13 .03 .00

7 .99 .87 .61 46 .28 .16 .03 .00

8 1.00 .90 .66 .50 .31 .18 .04 .00

9 .92 .70 .54 .34 .20 .04 .00
10 .94 .74 .58 .37 .21 .05 .00
15 .99 .87 .73 .50 .30 .07 .01
20 1.00 .93 .82 .61 .38 .09 .01
50 1.00 .99 .90 .70 .22 .02
100 1.00 .99 .91 .39 .05
200 1.00 .99 .63 .10
300 1.00 .77 .14
400 .86 .18

500 .92 .22

Xapujy uondajas
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ARTIFICIAL INSEMINATION AND UNDESIRABLE RECESSIVES

Method 4 of the preceding section can be used to decrease the frequency of all
undesirable genes by progeny testing all males at random in the population before heavy use
through artificial insemination. The following describes how such a program would work
for dairy cattle where Al is widely used.

The essential question is, "Can Al be used to find carrier bulls before they spread
undesirable genes?" The answer is yes since any good young sire sampling program will
provide for each young bull producing at least 200 progeny. In the dairy situation, 200
calves may yield 50 or so production-tested daughters. At the same time, the 200 progeny
will provide an excellent test of whether the bull is a carrier of any undesirable recessive
genes.

What does this mean in terms of numbers of affected calves? An Al program which
observes 200 tested progeny can be compared with what would happen without AI. The
effect of Al testing with 200 progeny versus no testing is shown in the Table 4.2.

With all the expressed fears that AI may sabotage a population by spreading an
undesirable allele throughout the population, it is more than a little reassuring to know this
is unlikely to happen. More reassuring is the knowledge that a properly set up young sire
sampling program in Al will actually protect a population against undesirable genes and
reduce the number of affected calves.

A more technical description follows on how to calculate expected frequencies of
affected calves of future generations with an Al testing scheme with various numbers of test

matings and initial gene frequencies.



TABLE 4.2.

NUMBER OF AFFECTED OFFSPRING WITH NO PROGENY TESTING AND WITH TESTING WITH 200 PROGENY

No

Al

No

Al

No

Al

No

Al

No

Al

testing
test
testing
test
testing
test
testing
testing
testing

testing

Before Testing

250,000
250,000
40,000
40,000
10,000
10,000
2,500
2,500
100

100

No. of affected progeny per million progeny born in generation
1 2 3 4 5 -- 10
111,111 62,500 40,000 27,778 20,408 -- 6,944
0 0 2 28 55 -- 9
27,778 20,408 15,625 12,346 10,000 -- 4,444
0 2 28 55 43 -- 7
8,264 6,944 5,917 5,102 4,444 -- 2,500
1 23 55 46 29 -- 6
2,268 2,066 1,890 1,736 1,600 -- 1,111
20 54 47 30 20 -- 4
98 96 94 92 91 -- 83
37 23 16 11 8 -- 3

Xapuy uon3aag gy
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THE EFFECT OF TESTING BULLS IN Al ON THE FREQUENCY OF RECESSIVE
ALLELES

As the frequency of a recessive allele drops under the conditions of Al, the
confidence of detecting a carrier by random mating goes down. What will be the effect of
the reduced confidence on selection against the gene?

The solution can be obtained by computing the allelic frequencies for several
generations. Males will be progeny-tested on n females. All males and females which are
homozygous for recessive alleles will be culled. Heterozygotes have the same fitness as the
"normal” homozygotes. Let P = frequency of the normal allele, A, in males surviving
selection, g = frequency of the other allele, a, in males surviving selection, P; = frequency
of A in females surviving selection, Qj = frequency of a in females surviving selection, and
j is the generation number. The frequency of genotypes in the next generation can be found
by expanding (ij + qja)(PjA + Qja). The composition of the next generation before and

after selection is:

Males Females
Frequency Frequency
Genotype Frequency  Fitness Survivors Frequency Fitness  Survivors
AA PiF ! PiF PFj ! PiF]
Aa PP e Qg pQray 1 POl
aa qJQJ 0 0 q]Q] 0 0
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a;(i=j+1) is the probability of not detecting a carrier by random mating to the
population. Males are tested in the population of contemporary females.
o = (1 -.SQj + l)n, where n is the number of progeny and Qj +1 Is the frequency of a among
the surviving females. The frequency of a among the selected males is
G+1 = (2i/2)(PjQ;+qiP)/[pjFj + i(pjQj+qiF)]-
The composition of the next generation can be found by expanding
(pj+1A + Qj+1a)(Pj+1A + Qj+la)-

Note that this is a repeating pattern and can be easily programmed for a computer.



CHAPTER 5§

GENES IDENTICAL BY DESCENT--THE BASIS OF GENETIC
LIKENESS

Individuals may have genes in common from a common ancestor. Such genes are
identical by descent. If genes are identical but not necessarily from a common ancestor,
they are identical in state. The term allele may be more appropriate but the term gene will
be used here.

The concept of identity by descent is an approach to the complications of multi-
allelic, multi-loci gene systems which affect quantitative traits. With the identity by descent
approach, there is no need to know how many alleles are at a locus, the value of each allele,
the number of loci which have genes influencing the quantitative trait, or the gene
frequencies. This approach was formulated by Malécot (1948) and about the same time by
C. C. Cockerham and C. R. Henderson, who further developed the concept. The identity
by descent approach is to calculate probabilities of genes, genotypes and non-allelic
combinations of genes being identical because of common ancestors.

Two limitations of the probabilistic method are:

1.  Calculations of probabilities must begin at a specified base period even though

most life probably originated from a small number of genes.

2. The method estimates how many genes are identical by descent between two

animals only on a probability basis.

49
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The notation is that an animal will have genes bibj at the b locus where the subscript
describes the origin of the gene. The basis for calculation of relationships is the probability
that a random gene at any locus, say the b locus, is identical by descent for a pair of
individuals. At some arbitrary base period, the b genes of the common ancestor are tagged
and then the probability that the b genes of the two individuals will be common by descent
is computed.

Let the genotypes of two animals at the b locus be bibj and b b, where the
subscripts refer to the origin of the gene. The probability that the genes at a locus are
identical by descent between two individuals is defined by comparing the origins of the first
gene of the first animal with the first and second genes of the second animal, and the second
gene of the first animal with the first and second genes of the second.

Thus, for the four possible combinations:

Probability (b; = b)) = 0ifi »m; = 1ifi = m,

Probability (b; = b)) = 0ifi#n; = 1ifi =n,

Probability (bj =by) =0ifj#m; =1ifj=m,

Probability (bj =b,)=0ifj#n; =1ifj=n.
The probability that a random gene at this locus is identical in two animals is the average
probability for these four comparisons, i.e.,

[P(i=m) + P(i=n) + P(j=m) + P(j=n)]/4.

In fact, this expression is the same as the probability that a random gene from one animal
and a random gene from the other animal will be identical by descent.

As a specific example, suppose that two unrelated noninbred animals are mated, i.e.,

the mating is byb, x bgb,. The possible offspring are b1bs, b1by, bybs, byby. The fraction
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of random pairs of genes being identical between any progeny, say b;bs, and any parent,

say bqb,, is:

P(b; = by) = 1
P(b; = by) = 0
P(by = b)) = 0
P(by = by) = 0

with the average being 1/4.

ADDITIVE RELATIONSHIP

The relationship of an individual with itself is considered generally to be one. The
"a" or additive relationship between two individuals is defined as twice the fraction of genes
identical by descent so that the additive relationship of a noninbred animal with itself is one.
As shown in the appendix to Chapter 6, because each locus has two additive gene effects,
the additive relationship is the measure of the fraction of additive gene effects in common
between relatives. In a noninbred population, the additive relationship is equal to the
coefficient of relationship. The coefficient of relationship is also equal to the correlation
between additive effects as will be described in Chapter 6.

The coefficient of relationship between animals i and j is:

nij = aij/yfaiiaj)

where ajj is the additive relationship between i and j, a;; is the additive relationship of i to
itself (a;; = 1 if noninbred) and aj; is the additive relationship of j to itself.  Thus, the

additive relationship is sometimes called the numerator relationship because the additive

relationship is the numerator for the coefficient of relationship. The following table
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describes the probabilities for most common kinds of comparisons for pairs of individuals.

PROBABILITIES OF GENES IDENTICAL BY DESCENT

Fraction Identical Additive
Comparison by Descent Relationship
blbl with blbl 1 2
(completely inbred with self)
blbl with b2b2 0 0
(noninbred with self)
b1b2 with b1b3 1/4 1/2
b1b2 with b3b4 0 0

Parent-progeny Relationship

Unrelated and noninbred parents, b, b, and b3by, have potential progeny b1bs, b1by,
b2b3, and b2b4. From the table above, the fraction of genes identical by descent for any
one parent with bybs is 1/4; with b;by, 1/4; with bybs, 1/4; and with byby, 1/4. The

average is (1/4 + 1/4 + 1/4 + 1/4)/4 = 1/4 and the additive relationship is 1/2.

Grandparent-grandprogeny Relationship
Two unrelated and noninbred animals, bb, and b3by, have potential progeny b;bs,
b1b4, b2b3, and b2b4. One of these progeny chosen at random, say b1b3, is mated to an

unrelated animal, bgbg, chosen from the population. The potential genotypes of their
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progeny are bybs, b1bg, b3bg, and bybs. Now compare genes of either grandparent, say
byb,, with genes of the grandprogeny. The fraction of genes of that grandparent that are
identical by descent with bybg is 1/4; with byb¢, 1/4; with bsbs, 0; and with b3bg¢, 0. The
average is 1/8.

The same average would be found for the grandparent, that is b;b,, with the other
12 possible grandprogeny types. In one-half the comparisons the grandprogeny and
grandparent are unrelated in the sense that no genes are alike at that locus. Since the
probability of no genes in common at one loci is 1/2, the probability of no genes in common
at n loci is (1/2)" for grandparent and grandprogeny pairs which is not a very large
probability, even for number of loci as small as four. The average identical by descent over
all loci is likely to be quite close to the calculated probability of genes being identical by

descent.

Full sib Relationship

Two unrelated and noninbred animals, b1b2 and b3b4, have progeny b1b3, b1b4,
bybs, and byby. When the full sib progeny are randomly compared, there are 16 different
combinations of pairs of full sibs, each having equal frequency. The values in the table are

the probabilities of genes being identical for each of the 16 comparisons.

Possible Genotypes of
2nd Full Sib with Frequencies

1/4bbs  1/4bjb,  1/4bgby  1/4byby

Possible 1/4 bybs 1/2 1/4 1/4 0
Genotypes of 1/4 byby 1/4 1/2 0 1/4
1st full sib 1/4 bybs 1/4 0 1/2 1/4

with frequencies 1/4 byby 0 1/4 1/4 1/2
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The average will be =fX;. For all 16 cells, f; = 1/16. The average fraction of genes
identical by descent = (1/16)[(4)(1/2) + (8)(1/4) + (4)(0)] = 1/4 as before. Note that
although the average fraction of genes identical by descent is 1/4 that 1/4 of the
comparisons have probability 1/2 (an identical genotype), 1/2 have probability 1/4, and 1/4
have probability 0. One-fourth of the comparisons have no genes in common at one locus,

and therefore the probability of no genes in common at n loci = (1/4)? for full sibs.

Half-sib Relationship

When animal b;b, is mated to b3by, they have potential progeny b;bs, biby, bybs,
and byby with equal frequencies. When animal byb, is also mated to bgbg, they have
potential progeny bybs, b1b¢, bybs, and bybg. The values in the table are fractions of genes

identical by descent for each of the 16 possible pairs of half-sibs.

Possible Genotypes of
1st Half-Sib with Frequencies
1/4 bbby 1/4byby  1/4byby  1/4 byby

Possible 1/4 bybs 1/4 1/4 0 0
Genotypes of 1/4 bybg 1/4 1/4 0 0
2nd Half-Sib 1/4 bybs 0 0 1/4 1/4

with frequencies 1/4 bybg 0 0 1/4 1/4

The average fraction of genes identical by descent is:
(1/16)[(8)(1/4) + (8)(0)] = 1/8, and the additive relationship is 1/4. One-half of the
comparisons have no genes in common at one locus, and the probability of no genes in

common at n loci = (1/2)™.
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Summary of Most Common Relationships

Probability Probability No
Ave. Fraction of Genotype Genes Identical
Relationship Identical Identical at n Loci
Parent-progeny 1/4 0 0
Grandparent-grandprogeny 1/8 0 (1/2)2
Full sibs 1/4 1/4 1/t
Half sibs 1/8 0 (1/2)"

DOMINANCE RELATIONSHIP

The probability of an identical genotype at one locus by descent is the probability
that the pair of genes at one locus for two animals identical by descent, i.e., for relatives
with genotypes bibj and b b, P(genotype identical) = P(bibj = b,by)- The only pairs
in the above table that can have a genotype at one locus identical by descent are pairs of
full sibs, e.g., byby with b{bs. The dominance relationship between a pair of animals is
defined as the probability of genotypes being identical by descent.

The following is an example of computing average probability of genotypes in
common for full sibs.

Let the parents be unrelated so that their symbolic genotypes and those of their full
sib progeny can be represented as:

Parents: b1bz’ b3b4

Full Sib Progeny (with frequencies):
1/4 byb3, 1/4 byby, 1/4 bybs, 1/4 byby

The average probability that bibj = b,b,, is the average of all 16 comparisons as shown in

the following table.
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Possible Genotypes of
2nd Full Sib with Frequencies

1/4 bibz 1/4 bibg 1/4 bybs 1/4boby

Possible 1/4 bybs
Genotypes of 1/4 biby The frequency of each comparison is
1st Full Sib 1/4 bybs (1/4)(1/4) = 1/16.
with Frequencies 1/4 byby

Then, the average P(genotypes identical at the "b" locus) is:

= (1/16)[P(b1b3=b{b3) + P(byb3=b;by) + P(byb3=byb3) + P(b1b3=byby) +
P(b;by=bib3) + P(bjbg=b by) + P(b1bg=byb3) + P(bby=bsby) +
P(byb3=byb3) + P(byb3=biby) + P(byby=byb3) + P(bybz=byby) +
P(bybg=b1b3) + P(bybg=biby) + P(byby=byb3) + P(byby=byby)]

=(1/16)(1+0+0+0+0+1+0+0+0+0+1+0+0+0+0+1)=1/4

Only one of four comparisons are expected to have genotypes at the "b" locus
identical by descent. The average fraction of all loci with genotypes identical for pairs of
full sibs is also one-fourth.

Dominance effects are defined as the interaction of two genes at one locus. Of the
relatives shown in the summary table, only full sibs can have dominance effects contribute
to likeness of pairs of relatives. Dominance effects occur when the value of bibj is not the
average value of b; plus the average value of bj. The dominance relationship between
noninbred animals A and B, d ARy €an be found from the additive relationships among the

parents of A and B as will be seen.



Genetic Likeness 57

INBREEDING COEFFICIENT

The coefficient of inbreeding, F, is defined as the probability that two genes at one
locus will be identical by descent when averaged over all loci, i.e., for an animal with one
locus and genotype bibj’ F = P(bi=bj). The two genes will be identical only if the parents
have genes identical by descent. The expected frequency of two genes identical by descent
at one locus is equal to the probability that each parent will contribute an identical gene,
i.e., the probability of pairs of single genes being identical between the parents. Therefore,
Fp = (1 /2)(asd) where p, s, and d refer to the progeny, sire, and dam, respectively, and
app = 1+ (1/2)(asd)' Fp is the inbreeding coefficient which also corresponds to the

fraction of loci having both genes identical by descent.

SOME USEFUL IDENTITIES IN WORKING WITH ADDITIVE AND DOMINANCE

RELATIONSHIPS
If animals A and B have parents AS, Ap and BS, B, respectively, then usually
aAB = (1/4)(apgBg * 2AgBp * 2ApBg * 2ApBp)-
As shown in the appendix,
azB = (1/2)(aABS + aABD) if A is older than B.
or equivalently app = (1/2)(ag Ag * 2B AD) if B is older than A.
These equalities are the basis for computing additive relationships by the tabular
method.
The dominance relationship can also be computed from the additive relationships
among the parents even when the parents are inbred if the animals are themselves

noninbred. As shown in the appendix,
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daB = (1/4)(aagBg 2 ApBp, * 2AgBp) 2ApBg)-
Also as just seen, the inbreeding coefficient for an animal is one-half the additive
relationship between its parents,

Fp = (1/20(@pgAp) 5 FB = (1/2)(2BgBp) »

and an animal's additive relationship to itself is

aps = L+ FA =1+ (1/2)(3ASAD) ;agg = 1 + FB =1 + (1/2)(aBsBD).

EXPANSION TO MORE THAN ONE LOCUS

The probability of a pair of nonallelic genes being alike in two individuals by descent
is P(genes at first locus are identical by descent) x P(genes at the second locus are identical
by descent). This pattern can be expanded to trios, etc., of nonallelic genes.

The probability of a particular combination of an allelic pair of genes (a genotype)
and a gene at another locus being identical by descent in two individuals is
P(the genotypes at one locus are identical) x P(genes at the other locus are identical).

The probability of a genotype at one locus and a genotype at another locus being
common by descent in two individuals is P(first locus genotype is alike) xP(other locus
genotype is alike). However, these probabilities are equal. Thus, the probability of
genotypes being common at two loci is P(genotype in common) squared or the square of the
dominance relationship.

The expansion to higher order combinations can be done similarly.

To apply these principles, only two measures of relationship are needed:
aij’ the additive or a relationship between individuals i and j which is twice the fraction of

single genes which are identical by descent (this will be the numerator of the coefficient of
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relationship), and dij’ the probability that individuals i and j have a genotype at one locus
(an allelic pair of genes) identical by descent (this is called the dominance or d
relationship).

Many introductory texts describe how to calculate relationships by the method of
tracing paths. That method is quick and easy for simple relationships and for few animals.

A more powerful method described next is the tabular method (Cruden, 1949; Emik and

Terrill, 1949).

TABULAR METHOD OF COMPUTING a5 AND dij

The easiest and safest method of computing additive relationships is the tabular

method:

1. Determine which animals to include in the table. Include all animals after the
oldest or base generation is chosen. Put them in order by date of birth, oldest
first.

2. Write the names or numbers of the animals in order of birth across the top of
the table (the columns) and along the side of the table (the rows) as shown in
the example which follows.

3. Write above the number of the animals the numbers of their parents, if known.

4. Puta 1in each of the diagonal cells of the table, such as row 1, column 1; row
2, column 2; etc. The one is the animal's basic relationship to itself unless it
is inbred. For the base generation animals, enter their relationships to each
other or assume them to be zero, and if known, add their inbreeding

coefficients to the diagonals.
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5. Begin at the diagonal of each row which now has a 1 in it. Add to this 1, one-
half of the relationship between the animal's parents. This is the inbreeding
coefficient which will often be zero. Compute the off-diagonal cells by rule 6.

6. Compute entries for each off-diagonal cell of row 1 according to the rule of 1/2
the entry for the first parent in this row plus 1/2 the entry for the second parent
in the row. When the first row is finished, write the same values down the first
column.

7. Continue as before for the next rows and columns until finished, always
remembering to do a row at a time and to put the same values down the

corresponding column before going to the next row.

Example

The following is an example of the ayj and dij relationships for paternal half-sibs A

and D.

A/B
\C
e
\



Genetic Likeness 61

B-C B-E
B C E A D
B 1 0 0 12 12
c o 1 0 12 0
E 0 0 1 0 12
A 12 12 0 1 14
D 1/2 0 1/2 1/4 1
apa = (1/2) (app + apg) = (1/2) (1 + 0)
app = (1/2) (aBB + aBE) - (1/2) (1 + 0)
aca = (1/2) (aCB + acc) - (1/2) (0 + 1)
acp = (1/2) (aCB + aCE) - (1/2) (0 + 0)
apa = (1/2) (agp + agg) = (1/2) (0 + 0)
agp = (1/2) (aEB + aEE) - (1/2) (0 + 1)
ags = 1+ (1/2) (agg) = 1+ (1/2) (0)
app = (1/2) (app + app) = (1/2) (1/2+0)
app = 1+ (1/2) (app) = 1+ (1/2) (0)

1/2

1/2

1/2

1/2

1/4

The dominance relationship for non-inbred animals can be found from the additive

relationships among the parents, e.g.,

dap = (1/4) (agg x acg + acg x agp) = (1/4) (1 x 0+ 0 x 0) = 0.
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APPENDIX TO CHAPTER FIVE
PROOFS OF IDENTITIES FOR PROBABILITIES BY DESCENT

A. Probability of genes identical by descent: (Malécot, 1948)
1.  Definition: Let the pair of animals, A and B, have genotypes bibj and by b,
representing symbollically all loci, then
P(random pair of genes identical) =
AR =% [P(i=k) + P(i=¢) + P(j=k) + P(j=2)]

2. Definition: The additive relationship, appg = 2aap.

B. Probability of genotypes identical by descent:
1. Definition: Let Agand Ap, be the parents of A and Bg and By be the parents
of B with genotypes bibj for A and byb, for B, then
P(genotype identical) = dyg = P(bibj = byb,).
2. Computationally, dag =1/4(a AgBg * 2ApBp * 2AgBp) * aADBS) for
non-inbred animals:
P(bibj = byb,) = P(Ag contributes b; to A and Bq contributes b, _ to B) x
P(Ap contributes bj to A and B, contributes bj= ¢ 10 B)
+ P(Ag contributes b; to A and B, contributes b~ to B) x
P(Ap contributes bj to A and Bg contributes b;_ , to B)

J
But, P(Ag contributes b; to A and Bg contributes b; to B)

= P(genes identical by descent for Ag and Bg)) = « AgBg"

Similarly for the other probabilities.
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Thus

P(bibj = bkbf.) = aASBS x aADBD * aASBD X aADBS
= (1/4) [aASBS X 3ApBp * aAgBp * aADBS]
The four additive relationships can be found from the relationship table.

C. The inbreeding coefficient, F 4, is the fraction of loci with genes identical by descent for
animal A.
By definition, F of the loci of A have @ = 1 and 1 - F of the loci have @ = 1/2,
i.e., F of the loci are of the form bibi with @ = 1 and 1-F of the loci are of the
form bibj with @ = 1/2.

1. Thus the average fraction of genes identical for A with itself is:

"

ap o = P(genes identical) = (F)(1) + (1-F) (1/2) = 1/2 + (1/2)F and

app = 2apa = 1 + F, that is, the numerator or additive relationship of an

individual to itself is 1 + F.
2. If Sis the sire of A and D is the dam of A, then F = (1/2) agp.
Let the genotypes be bibj for A, byb, for S, and b b, for D.
By definition apa = (1/4) [P(i=i) + P(i=j) + P(j=i) +P(j=j)]
= 1/2 + (1/2) P(i=j)
Thus F, = P(i=j).
But P(i=j) is ag since b; must come from one parent and bj from the other,

ie., P(i=j) = (1/4) [P(k=m) + P(k=n) + P(¢=m) + P(¢=n)]

= %SD
Therefore, Fp = egp = (1/2) agp,
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D. The tabular method of computing relationships depends on the fact that if B has
parents B_ and Bpy, then a, g = (1/2) (aABS + aABD)-
Let the symbolic genotypes be bibj for A, byb, for Bg and b,b,, for Bp,.
The possible and equally likely genotypes of B are:
Bl, bkbm;
B2, bkbn;
B3, b ebms and
By, byby.
By previous definition,

aap = average of °‘AB1’ °‘AB2’ °‘AB3’ °‘AB4 so that:

aap = (1/4) { (1/9)[P(i=k) + P(i=m) + P(j=k) + P(j=m)
+ (1/4) [P(=k) + P(i=n) + P(j=k) + P(j=n)]
+ (1/4) [P(i=¢) + P(i=m) + P(j=¢) + P(j=m)]
+ (1/4) [PGi=t) + P(i=m) + P(i=t) + PG=n)]}
After combining and rearranging:
aap = (1/8)[P(i=k) + P(i=¢) + P(i=m) + P(i=n) + P(j=k) + P(j=¢) + P(j=m) + P(j=n)]
But  app - (1/4)[P(i=k) + P(i=¢) + P(j=k) + P(j=¢)] and
apBp = (1/4)[P(i=m) + P(i=n) + PG=m) + P(=n)}

Thus apg = (1/2) (O‘ABS + aABD) and appg = (1/2) (aABS + aABD)'



CHAPTER 6

GENETIC VALUES AND GENETIC COVARIANCES

Quantitative geneticists have followed the nomenclature of statistics and the logic of
effects of different types of gene combinations to define several kinds of genetic effects.
These types include single gene effects which generally are most important and effects of
gene combinations such as a gene pair at one locus (the genotype) and a gene pair with the
genes at different loci. The potential number of combinations of more genotypes and genes
at separate loci is nearly infinite. In introductory texts the combinations are put into two
groups: 1) single gene effects which together sum to breeding value or additive genetic
value and 2) all other genetic effects which are called epistatic or interaction effects. In this
chapter the theoretical partition of genetic effects into as many combinations as might be
needed will be discussed, even though one type of effect is usually of primary importance,
the additive gene effects. Two other kinds of effects have received some practical attention,
dominance (the gene pair at one locus) effects, and additive by additive (gene pairs with the
genes at different loci) effects. The definitions also lead directly to describing the genetic

covariance between records of relatives with specified additive and dominance relationships.

DEFINITION OF GENETIC VALUES
An additive gene effect is defined as the average replacement value of that gene, i.e.,

if that gene replaces the average gene, the change in value is the additive genetic effect of

65
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that gene. Thus, if two of that gene are added, the change in value will be twice the
additive effect of adding one gene. The sum over all loci of all additive genetic effects is
the additive genetic value, G 4, of the animal.

A dominance genetic effect is defined as the average replacement value of a
particular gene pair at one locus as a difference from the additive genetic effects. The sum
over all loci of all dominance genetic effects is the dominance genetic value, GD, of the
animal.

An additive by additive genetic effect is defined as the average replacement value of
a pair of non-allelic genes--the specific effect of a gene from one locus and a gene from
another locus as a difference from the additive genetic effects of the genes. The additive
by additive genetic value, G5 5, of an animal is the sum of all specific effects of non-allelic
gene pairs.

An additive by dominance gene effect is defined as the average replacement value
of a gene at one locus and a gene pair (genotype) at another locus as a difference from the
additive, dominance, and additive by additive genetic effects. The sum of all such effects
is the additive by dominance genetic value, G AD of an animal.

Similarly, higher order genetic effects can be defined, e.g., additive by additive by
additive and additive by dominance by dominance. These different types of genetic effects
are defined to be independent and to have average values of zero in an unselected
population.

The total genetic value of an animal is the sum of the various genetic values:

G =Gp +Gp+Gpp+Gap +Gapa *



Genetic Values 67

If these values could be measured separately, variances for each could be computed
as for any other variable. Whether or not they can be measured, a variance can be
hypothesized for each kind of genetic value. In fact, since the various genetic values are
defined to be independent, total genetic variance is the sum of the variances of the

component genetic values:

2 2 2 L2 .2
°G " °Gp " %Gp " °Gaa " %Gap T %Gaaa "

A simpler but less symbolic notation for the components of genetic variance is based

2 . . : .
on g where i refers to the number of single nonallelic genes and j refers to the number

of allelic pairs (genotypes) contributing to the genetic effect. This notation is summarized

as follows:
Gene action Contribution to genetic variation
sum of effects of symbols jargon
single genes: ay, ag, by, by, ete. °2GA G%O additive genetic variance
allelic pairs: a1y, ¢{Cs, etc. UZGD 0(2)1 dominance genetic variance
non-allelic pairs: albl’ a,Cs, etc. oéAA 0%0 additive by additive
single genes and allelic pairs: ozGAD o%l additive by dominance
alblbz, C1d5d6, etc.
two allelic pairs: GZG DD 0%)2 dominance by dominance
a1a3b4b6, CIC2b2b3, etc.
in general og where i refers to number

v of nonallelic genes

acting together with j
allelic pairs

Total genetic variance can then be written as:

2 .. 2.2 .2 .2 2 2
9G =2 =2 % 790 " %1 " %0 " %1 T %0
i+j>0
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GENE EFFECTS IN COMMON BY DESCENT

Since there are two additive genetic effects at each locus, the fraction of additive
gene effects in common for relatives A and B is the additive or numerator relationship,
aap, Which equals twice the probability that a random gene from animal A is identical by
descent to a random gene from relative B at a single locus. The appendix to this chapter
contains a more mathematical explanation for using a, g rather than a, p/2 to describe
additive effects in common by descent.

The fraction of dominance effects in common will be dapg which equals the
probability of genotypes identical by descent or equivalently the fraction of loci with
identical genotypes for relatives A and B.

Similarly, a%B is the fraction of additive by additive genetic effects in common and
apgdap is the fraction of additive by dominance genetic effects identical by descent.

In general, (a AB)i(d AB)J gives the fraction of genetic effects in common by descent

due to i non-allelic genes acting together with j allelic pairs (genotypes).

GENETIC COVARIANCES BETWEEN RELATIVES
Genetic covariance between relatives depends on the fraction of different kinds of
genetic effects which are common by descent. In fact, covariance due to additive gene
effects in common is a ABU%O -- the product of the fraction of additive effects in common
and additive genetic variance. Covariance due to common dominance effects is d ABG%I;
2

that due to additive by additive effects is a/%B"ZO and that due to additive by dominance

effects is a ABd ABU%I' These and others are summarized as follows:
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Contribution to genetic covariance between individuals.

Contribution to covariance

Genetic components between individuals A and B
2 1 2
%10 (@aB) 97
2 2
%1 @aB)' gy
2 2
920 (aABY
2 1 1 2
11 (@aB) (daB)" o7
2 2
T (AR o,
2 1 2 2
912 (2AB) (dAB)” 97
2 i )
Uij (aAB)l(dAB)“ Oij
fori=0,...,n;j=0,...,nwithnloci alsoi + jmustbe > 0andi +j<n

The total genetic covariance is the sum of the parts, that is,

2 2 2 2 2
9GAGB =2aAB9) * 4ABY); * @5B%0 * 2ABYABO]] *

In summation notation the total genetic covariance can be written as

i i 2
UGAGB = '2. = (aAB)l(dAB)J oij
i+j>0

The subscripts of the genetic variance components correspond to the superscripts of
the additive and dominance relationships. When j = 0, (d AB)J = 1 for any d , g and when
dag = 0, (d AB)O = 1 but (d AB)l = 0, etc. These simplifications are illustrated in the
coefficients in the column for contribution to covariance between individuals. An important
point is that as i increases, the coefficients of the higher order genetic components of

. . 2 . _— ,
variance decrease. Thus even if 0,p Is large, the contribution to likeness by that

component, (aAB)i °i20’ will be small if i is very large. For example, with ayg = 1/4
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andi = 3,a ziB = 1/64 is the coefficient for variance due to additive by additive by additive

effects as compared to the coefficient of 1/4 for variance due to additive genetic variance.

EXPECTED VALUES TO SHOW CONTRIBUTION TO GENETIC COVARIANCE
As shown in Chapter 1, the average or expected value of the product of two
variables, x; andy;, is written E(xy;). If E(x;) = 0 is the average of variable X, then
By = oy Similarly, E(x) = o3, E(x))? = k20> where k is a constant and
E(kxxikyyi) = kxkyoxy.
This principle will be applied to the example of genetic covariance between relatives
X and Y for only three kinds of genetic effects but this example will illustrate how the
overall genetic covariance between relatives is determined.
Let Gy = GAX + GDX + Gaay If Y is related to X, then a fraction of
these gene effects also appear in Gy. Then write
Gy = GAY + GDY + GAAY
Gy = aXYGAX + other Gay+ dXYGDx + other GDY + a)z(YGAAX + other GAAY .
The other genetic effects are due to genes from other sources and Mendelian sampling and
are independent of the effects in common with Gy.
Since the genetic effects are defined to be independent with zero means, then

9GxGy =E(GxGy).
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Next, substitute for Gy and Gy, expand, and take expectations of the parts:
9%GxGy = E[(GAX)(aXYGAX)] + E[(GAX)(other GAY)] + E[(GAX)(dXYGDX)] +
EI(G A )(0ther Gp )] * EI(G A )axyGaa)] *+ EIG A )(other Gyl +
E[(GDy)(axyG Ayl + E(GDy)(other Ga )l + E(GD 4 )AXYGDy)] +
E[(Gp )(other Gp. )] + EIGD,)@gyGaay)]l + EGD )(other Gapy)] *
E[(G AAX)(aXYG Ax)] + E[(G AAX)(other G AY)] + E[(G AAX)(dXYGDX)] +
E[(G AAX)(other GDY)] + E[(G AAX)(a )2(YG AAX)] + E[(G AAX)(other G AAY)] .
After factoring constants outside the expected value operator, then according to the rules
for expected values:
%Gy Gy =axyozGA+0+0+0+0+0+0+0+dXYoéD+
0+0+0+0+0+0+0+a)2(YoéAA+0.
The zero terms come from independence of genetic effects and the lack of genetic

effects in common between terms such as (G Ax) and (other G AY).

Example one: The contribution of all genetic components up to second order (i + j = 2)
interaction components to the likeness between records of a parent (X) and its progeny (Y).
. . 1
The relationships are: a = _ andd = 0.
p XY 5 XY

Therefore:

GxGy = (30" o3y + (O oy + 200 o5 +

1 2 1 2
(%07 o + ('O o7 -
Thus:
1, 2 1 2
°GxGy =(3) 9y * (-2-)2 920 -

(Note that (0)0 = (N)? = 1 for any number (N), but that (0)N = 0 for N > 0.)
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Example Two: The genetic covariance between full sibs, X and Y.
1 1
B = — andd = -,

ecause aXY > an XY 7

then
1, 2 1, 2 1 2 1 2 1,,1, 2

GxGy = (5) o7p * () ogy * () a5 * (P 65 + () o7y -
Although full sib pairs and parent-progeny pairs have the same additive relationship the
likeness (genetic covariance) will be greater between full sib pairs than parent-progeny pairs

if dominance effects, dominance by dominance effects, and additive by dominance effects

contribute to genetic variation.

ESTIMATION OF GENETIC VARIANCES

These two examples also indicate how the components of genetic variance may be
estimated. Covariances between pairs of relatives are computed and equated to their
theoretical composition. In general, as many covariances as theoretical components are
necessary. In the above two examples, only two components could be estimated but not
0%0 and 0%0 together since both the parent-progeny and full sib covariances have the same
expectation for those components. Usually 0%0 and a%l would be estimated for this case.
Note that the other components usually must be assumed to be zero.

For example, suppose that Cov(full sib one, full sib two) = 50, and also that

Cov(parent-progeny) = 40. Assume 0%0 = 032 = 031 = 0.

Then,
1, 2 1, 2
50 = (5) 910 * (.Z) 901
1, 2
40 = (5) 910

. 2 2
Thus, estimates are 610 = 80 and So1 = 40.
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In general, for a random mating population, the additive fraction of genetic
variance, 0%0’ is about all that can be used for selection gains. Selection for gene
combinations is ineffective because the contribution to descendants drops by a 4 g with each
generation. The usual goal is to select for additive merit--the part that contributes 030 to

genetic variance and the most to covariances between relatives.

DEFINITION OF HERITABILITY
ST " " . 2,2 2 2 .

Heritability in the "broad sense" is defined as oG/(oG+aE) where oG is the total

geneticvariance, IZ oizj, and oé is the variance due to non-genetic effects (environmental
1

effects).

Heritability in the "narrow sense" is defined as 02 /(02 +02) where 02 is the

k4 10/{°G*°E 10

additive genetic variance and 02G + 0123 is the total or phenotypic variance which is the
total genetic variance plus the environmental variance. This form of heritability, sometimes

called additive heritability, will be used again and again when methods of selection for

additive genetic value are discussed.
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APPENDIX TO CHAPTER SIX

WHY a, p DESCRIBES GENETIC COVARIANCE RATHER THAN a, p/2

1. Additive Genetic Variance, aio

Consider one locus only.

Let @ + o = Ga G, is additive genetic value of animal A due to
effects o; and @ of genes a; and 3
ap +ap = Gp Gp is additive genetic value of animal B due to
effects a;r and o of genes a; and 3 .
Then Cov (GA’GB) = E(aiai. + aiaj. + ajai. + ajaj.)
2y - 2 =
But E(ap) = o for all m and E(aa ) = 0
for all m # m'"
Thus  COV (G),Gp) = az[P(i=i') + P(i=j) + P(j=i) + P(j=j)]
= o2 [4P (random genes of A and B are identical by descent)]
= o [4 (1/2)app)
= o? [2a,g],
2 2
but olg = ElG4] = Elg + aj]z
- Ela] + a;.?'  2aj0)
- 247+ 0 since E(e) = 0
and E(aiaj) = 0 unless inbred.
2
g
Thus _10 o and
2 2
o
10 2 .
therefore COV (G,,Gpr) = — (2 =a . This procedure may be
re (GpGp) > (2app) AB%0 P y

extended to many loci.
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2. Additive by Additive Genetic Variance, a§0
Consider the minimum of two loci and let (aB),, be the additive by additive effect
of the mill gene from the "a" locus and nth gene from the "b" locus. Let the additive values
of animals A and B be
GlO,A =0t o+ B +B, and

G].O,B = aiv + Ctjv + Bkv + Beo .

Then let the corresponding additive by additive effects be
GZO,A = (aB); + (aB)j, + (aB)jk + (aB)jp_ and
GZO,B = (aB)jpr + (a@B)yg + (aB)j.k. + (aB)j'e' .
Then COV,((A,B) = (aB)z[P(i =1")P(k=k")+P(i=1)P(k= ¢")+P(i=j)P(k=k") +P(i=])P(k= ¢')
+ P(i=1)P(2=k")+P(i=1)P(£=2")+P(i=j)P(e =k")+P(i=j)P(2=2¢")
+ P(j=1)P(k=k")+P(j=1)P(k= )+ P(=])P(k=k")+P(j=])P(k= ¢")

+ P(j=1")P(e=k")+P(j=1)P(e=2)+P(=;)P(2 =k")+P(j=])P(2=2¢")]

= (eB)?[P(i=i)+P(i=])+P(=i)+P(=j)]
x[P(k=k")+P(k=2")+P(e=k')+P(2=2¢"]
= (aB)2[4P(gcnes identical)x4P(genes identical)]

= (aB)%[(2aop)(2app)]

2 2
But o3 = El[(Gyya)l = 4f2aB)2 so that o50/4 = (aB)?

%20

Therefore COV,(A,B) = v (43%B) = aZABO%O when all terms are evaluated.



CHAPTER 7

THE SELECTION INDEX

The basic problem in obtaining improvement through breeding is to choose animals
that have the greatest genetic value to be parents of the next generation. The simplified
model for a record, P;, on animal i poses the problem:

P,=pn+ Gi + Ei,
where u is the population mean, a constant, which may represent other fixed factors that
influence P;; G; is the effect on P; due to the animal's complete genotype, and E; is the
effect of the environment on P; and is the effect that masks the evaluation of G;. As was
demonstrated earlier, only additive genetic effects have much chance of being transmitted
over many generations. However, often G; can be safely assumed to be due only to additive
genetic effects.

The problem is to maximize the average of G of the selected group, BGs where kG

is the average G of the total group, i.e.,
MAXIMIZE [AG = g - bl

Genetic improvement per year under normality and other assumptions, as will be derived

later, is:

AG/yr = (I'TIDO'G)/L ’
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where AG is the genetic improvement per generation; ry is the correlation between the
true additive genetic value and I, the index prediction of it; D is a factor related to selection
intensity (value of 0 with no selection and a value of about 3 for selection of the top one-
half percent); o is the genetic standard deviation, and L is the generation interval in years
defined as the average number of years between birth of parents and the birth of
replacement offspring. The four parts of the key equation for genetic improvement will be
discussed separately.

What is a selection index estimate of genetic value? This question is, perhaps, best
answered by an example.

Suppose several animals each have three relatives with records; (X, X5, and X3).
Relatives are known to have genetic effects in common by descent. Thus, the record of
each relative should tell something about the genetic value of the animal being evaluated.
A logical way to put the information together is to weight each record by its relative
importance, i.e., estimate G as I = byX; + byX5 + b3X3, where the b's are the appropriate
weights and the X's are known records of the three relatives. The selection index prediction
of true genetic value is I. The records are adjusted for any fixed factors such as p,

Le, X; = Pi - L.

WHAT SHOULD THE WEIGHTS (b's) BE?
Some desirable properties of the index to predict some true value, T, should be:
1.  To minimize errors of prediction which is the average or expected squared

difference between T and its predictor, I, i.e., MINIMIZE E(T-I)z.
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2. To maximize rj, the correlation between true value and prediction of true
value; this correlation is often called accuracy of prediction of T.

3. To maximize the probability of correctly ranking the animals, and

4. To maximize average true value of the selected group.

The selection index procedure which will be described satisfies properties 1 and 2 and
satisfies properties 3 and 4 if the records of relatives, the X's, and T, the true value, follow
a multivariate normal distribution. These procedures were developed from work by Se\;/all
Wright, Jay Lush, and C. R. Henderson. Henderson proved many of the properties. Most
of the development that follows was taught for many years by C. R. Henderson at Cornell

University, beginning in 1948.

METHOD OF FINDING b's
The general linear index is I = byX{ + byXy + ««« + byXp for predicting some
true value, T, which often is, but is not necessarily, additive genetic value. The goal is to
maximize rpy. Maximizing the logarithm of ry, log (ry), is equivalent to maximizing ry
but is easier to accomplish. Note that:
log (ry) = log (orpp) - (1/2) log (o) - (1/2) log (o7).
The rules for finding variances and covariances of linear functions (see Chapter 1)

will give oy and o% in terms of the unknown b's and known variances and covariances.

Note that o% is a constant and does not contribute to the equations.

o] = blaTxl + bonX2 + e & bNOTXN , and
2 22 22
op = bl Oxl + 2b1b20X1X2 + e 4 2b1bN0X1XN + b2 0X2 +

22
2b2b30‘x2x3 + oo 4+ bNOXN .
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These expressions are then substituted into log (1), and the partial derivatives of log (r7)

with respect to each of the b's are set equal to zero, i.e.,

510 bl“?g +byox.x, *+ *** *bNOX,X
8UTD _ OX4T _ 1 142 14N

= 0
6b1 oI U%
2
5]0g (rTI) ) 0X2T _ b10X1X2 + b20X2 + s e e + bNoXZXN “ o
§by OTI U%
blox + bso +'°°+bN02
slog (rmp) _ OXNT 1XN 2°X2XN XN 0
sbN oy o%

Rearrangement of these equations gives the selection index equations (except for a
constant, k = o%/orn, on the right hand sides of the equations) which define the unknown

selection index weights, the b's:
b 2 + b + b b = k
1°X1 29X1Xo 39X1X3 tooos ot ODNOX XN T ORIX(T

2
b10X2X1 + b20X2 + b3OX2X3 + o o o 4 bNGXZXN = kosz

0 . . .
. L4 . L] .

2
bloxNX1+ bZGXNX2+ b30xNX3 + o0 o 4+ bNOXN = koXNT
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Some important points to notice about these equations are:

1. The constant, k = o%/aTI, will not change the relative sizes of the b's or the
ry S0 k can be set equal to 1, which as will be shown, will result in the same
b's that minimize squared prediction error. In fact, when squared prediction
error is minimized, o% = OTT-

2.  The equations are symmetrical, i.e., the coefficients of the unknown b's are the
same in each column as the corresponding row. See, for example, the
coefficients (the covariances) in row 1 and in column 1.

3. The equations are similar to multiple regression equations except that the true
variances and covariances are assumed known and replace the sums of squares
and products used in multiple regression.

4.  If squared prediction error, E(T—I)Z, is minimized, the same equations are found
except that the constant, o%/ oy is not a multiplier of the right-hand sides of
the equations.

Average squared prediction error is
E[(T-1)?) = 04 + o] - 20qy + 4% + 43 - 2uuy,

The constants p and py will not change differences in the I's. Thus, o%, o%, and oy can
be expressed in terms of linear functions of the b's as for maximization of ry. Usually p
and pj are assumed to equal zero. The partial derivatives of o% + o% - 207 with respect
to by, by *++, by equated to zero provide the following equations which define the b's

which minimize prediction error squared and also maximize r:
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s 2 2 2
€1 o1 " OTI)=O' b02 + boo + e+« + byno = oX,T
5b; . 1 X1 29X1X» N9X1XN X1

2 2
6(0I *op - 2077) _

0: bqo + byo + e + b02 = 0
5bN =V 19X NX1 29XNX2 N XN XNT

These equations are the same as for maximizing rp when a%/a—n is set equal to unity. In

this derivation, o‘% = oy automatically as shown in the appendix to this chapter.

OTHER PROPERTIES OF THE SELECTION INDEX

1.  The correlation between the index and true value is:

2 2
Iy = JZbioxiT/OT = \j(bIC’XlT +boox,T * /oy

The rules for expected values show:

o1y = EbioxiT so that I'TI = GTI/O%‘ .

If an index is not the selection index, the definitional form of the correlation must be used

to obtain accuracy:

22
I = oT1/ o9l

where oy and o% can be calculated using expected values.

If the index is the selection index, the definitional form of the correlation reduces to:

’o-n/o% because o%= o1



Selection Index 83

2. Becausel = zbiXi and the Xl are variables, then the index values will also be

variable. In fact, if I is the selection index:

o2 = 2ok
This expression shows that a% corresponds to variation in T that is accounted for by I.

When I is not the selection index:

o% = E(Iz) * r%la% .

3. The variance of prediction errors (average squared difference of T from I) is:
V(T-T) = E[(T-)?] = (1140 .
This expression corresponds to the variation in T not accounted for by L.
When 1 is not the selection index, the variance of prediction errors must be
calculated from expected values:

E[(T-1)?] = E(T?) + E(1?) - 2E(TI) * (1-tp)0% .

4. The average of true values for animals with index value 1 is:
E(T|I=1,) = 1, .

With this property, the selection index procedure is unbiased.

5.  Intuitively, animals with the same index value would be expected to have
different true values. In fact, the variance of true values for animals with the same index
value, IO, is:

V(T|1=1) = (1-1p)o% .
These properties will be used later to make probability statements about the true

value of an animal with a certain index value. If I is not the selection index, T Must be

calculated from E(TT), E(Iz), and o%.
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APPENDIX TO CHAPTER SEVEN
DERIVATION OF SELECTION INDEX WITH MATRIX ALGEBRA

Let x be the information vector:
X =(xg " xN)'.

T may be a true value for a trait, or, e.g., T may be a combination of a vector of

genetic values, g, for several traits weighted by a vector of economic values, v, i.e.:
T=vg

T is to be predicted from a linear function of x; that is, each x; is weighted by some
factor b; so that T =1 = b'x. With no loss of generality, the x; can be assumed to have
zero means, i.e., have been adjusted for fixed effects such as u. The variance-covariance
matrix of x is E(xx') = P.
Then:

o} = E[b'xx'b] = bE[xx]b = bPb' .
With T, the scalar variable to be predicted, o = E[Tb'x] = b'E[Tx] = b'c where
¢ is the vector of covariances between the X; and T, e.g.:
(OX T OX,T *** OXNT) -

Squared prediction error is:

a% + a% - 20-[—[ = o% + b'Pb - 2b'c.
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To minimize squared prediction error, partial derivatives are taken with respect to b and

equated to zero with rules for derivatives of matrices and vectors (Searle, 1982):

5(o% + b"Pb - 2b°C)
= 0, where by parts;

sb
2
§(op) 2.
=5 = 0, because o is a constant;
M =2 Pb and
§b
§(b°c) - ¢
5b )

Thus

2Pb-2c =0and Pb = ¢
so that

b="pPle.
For an animal with information vector, x, the index is:
I =0bx.

With the identity, b = P1c |

a% can be rewritten as :

o} = bPb = ¢PIPPle = ¢Ple = be.

The last expression in the series of equalities is the easiest to calculate.

Similarly, oy = b'c  so that the correlation between I and T is:

tp = orp/(030BS = be/[be) o - ‘b'c/a?r.
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If derivation of the selection index equations is from maximizing ry = o7/ (o%o%)‘s,

the logarithm of 1y is easier to work with. By remembering that

then the parts of

sllog(x)] _ [ 1

] §(x)
5(y) X

()’

2 2
§[log(oy) - .5 log(ay) - .5 log(om)]
sb

can be differentiated separately as follows:

§(b’c)
&b

c(1/op)

5.5 log(b’Pb)]
5b

Pb(1/ af) and

1.5 log(om)]
5b

Thus

¢(1/op) - Pb(1/0%) = 0 and Pb = ¢(o}/ory) -

If the constant, o%/a-n, is set equal to 1, the equations are the same as for minimizing

prediction error squared. A constant other than one could be chosen but would not change

ranking by the index and would not change the r1. The calculations for o% and o would,

however, be different.



CHAPTER 8

DETERMINING THE COEFFICIENTS FOR
SELECTION INDEX EQUATIONS

In matrix form, the selection index procedure is quite simple; an inversion and a
matrix by vector multiply to solve for the weights, one vector by vector multiply for the index
and another vector by vector multiply if accuracy or prediction error variance is wanted.
These steps were shown in the appendix of Chapter 7. With or without matrix algebra,
however, the difficult part of selection index procedures is to determine the numbers
(coefficients in selection index jargon) that go into the left-hand sides (LHS) and right-hand
sides (RHS) of the equations that must be solved to find the weights (b's) for the records
(X's). This chapter will utilize expected values to determine these coefficients from a few
genetic parameters, such as heritability (h2), repeatability (r), numbers of records for the
different relatives, and the numerator relationships.

The X; used in the selection index are often averages of records. The variance of
an average depends partly on the covariance between records making up the average. Such
covariances will be between records on the same animal or between records on relatives
such as paternal half-sibs. An important step in finding the variance is to determine the

covariance between records in the average.

87
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MODELS FOR DETERMINING COVARIANCES BETWEEN RECORDS
Traits that can be measured only once can be represented by the model:
Pl = Gl + El
where P; is the phenotypic record adjusted for fixed effects such as the overall mean,
G; is the total genetic value, and
E, is the total of all environmental effects.
The covariance between records on relatives i and j can be determined by expected
values:
Cov(P; ’Pj) = E[(G; + Ei)(Gj + E_])] = oGiGj + oEiEj ,
under the usual assumption of no covariance between genetic and environmental effects.
2 2 .
Note that oGiGj = ajj019 * djjogy * -+ as developed in Chapter 6.
For convenience of notation, the covariance between environmental effects on
records of relatives i and j will be defined as:
g =C '02
EiEj =439
2 2

where 0§ = op is the total or phenotypic variance. Thus, if only additive genetic effects

are involved:

2 22
i = 8ji0 = aijh oy -

oGiG
Then
2
Cov(Pi,Pj) = (aijh2 + Cij)oX .

Even if other genetic effects are involved, this expression is often a good approximation for

the phenotypic covariance.
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Multiple measurement traits are those that allow repeated records, as for example

a first milk lactation, a second milk lactation, etc. The model for such records is:

where Pij is the jth phenotypic record of the ith animal adjusted for the mean and
other fixed effects,

G; is the total genetic value,

PE; is the total of all permanent environmental effects which affect each record

the animal makes, and

TEij is the total of all random temporary environmental effects which affect

only the jth record of animal i.

This model may be an over-simplification of the true model for some multiple
measurement traits but is often a reasonable approximation.

Because Gi and PEi repeat in every record of the animal, this is sometimes
called the repeated records or repeatability model and sometimes the animal model. The
sum of all permanent effects of the animal can be denoted as the animal effect:

A; = G; + PE;.
Repeatability, r, is defined as the fraction of the total variance which is due to animal

effects:

r = 0%/0)2( = (c:(%l + OIZ)E)/(O‘% + 0}2’E + o%E) .

Note that o% = ra)zi, an identity that is often useful.
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The covariance between two records on the same animal is o% = ro)z( and can be
determined with expected values:
Cov(P;iPy) = El(A; + TEj)(A; + TE)] = 03 = ro%
under the assumption of zero covariances between animal effects and temporary
environmental effects and between temporary environmental effects. Now the variance of

an average which is the most important coefficient of the LHS's can be developed.

THE VARIANCE OF AN AVERAGE

Let X; be the average of n; records:

Xip * =r+ *+ Xip,

X; = —
1

If E(X%j) = o)2< for all i and j (that is, all records are from a distribution having the
same variance) and if E(Xijxij’) = oy for all j # j; that is, all pairs of records with a

common 1 subscript have the same covariance, then:

2

2

5 Xip * o+ Xip,
o, =EX) =

nj

2
njoy + nj (ni-Nox'x
2

n;

2
oy + (nj-lox'x

I
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In the following paragraphs when X; is the average of records on the same animal,

oxrx Is the covariance between records on the same animal so that
2
UX‘X = rUX.

When X; is the average of single records on a group of equally related relatives (with
additive and dominance relationships, a;; and d;;\), then oy is the covariance between
records of any pair of relatives 1 and i', each contributing a record to the average so that

— .. 2
oX'X = oGiGi' * G0y
the sum of the total genetic covariance and the environmental covariance.
2 o . . .
If 9G;G; = aii'hzox (only additive genetic effects contribute to the genetic

covariance), then:

2
oxX'x = (aii'h2 * Cjjoy

COVARIANCE BETWEEN AVERAGES
The covariance between averages is often equal to the covariance between any record
in the first average and any record in the other average. Expected values can be used to

determine when this is true. Let X;, be a record from average

Xjp + 0+ Xip,

i ’

and X] ¢ be arecord from average
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If E(Xika ¢) is the same for all k and ¢, then the expected value shows that in the

numerator of

Xit *+ =0+ Xing [| Xj1 + *** * Xjn,

Cov(X;,X)) = E j

ni nj
there are njny expected values with the same expectation, E(Xika ¢), and that the

denominator is nn . Thus, if a representative record from X; is G; + E; and a

representative record from X] is Gj + E;, then

Cov(X;, X;) E[(Gj + E{) (Gj + Ej)]

2
= oGiGj * Gjox -

SUMMARY OF VARIANCE OF AN AVERAGE

1) If Xl is the average of records on animal i, then oxrx = ro>2(,

2) If X1 is the average of single records of relatives of type i,

2

then ox'x = 9GGy * Sii'9X> and

3) I X is the average of n; records on each of p; relatives of type i,
then also ox'x = oG + c-'-o2 .

Gy i1'9x

The derivation of the variance of an average of averages can be done with expected

values using the often correct property that the covariance between averages is the same as

the covariance between a record from one average and a record from the other average.

Let X; = Xipr oo Xipi where
Pi

xij is the average of n; records on each animal j in relative group i. The number of animals

in group i is p;.
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Then _ _
? Xi1 *+ *** * Xip. Xip)? v eee ()‘(ipi)z + all products
°xi T F Pi ) 2
P
_ PiV&Xj) + pii-DCov(X;j, Xjj)
2
Pj

2 2
ox * (ni—l)rax

nj

2
+ (pi-l)(oGlGi- + c]i'OX)

Pi

4) This formula allows calculation of the variance of the average of any number
of animals, each with any number of records using just a few parameters, i.e., variances do
not need to be estimated for all combinations of number of animals and number of records

from sets of data if the assumptions are correct for the previous derivation.

THE RIGHT HAND SIDES
The selection index weights (b's) depend primarily on the variances of the averages
and RHS's of the equations to find the selection index weights. If oii, °Xin' and
OX;T are known for all i and j, the equations to find the appropriate weights for the
index can be set up easily; aii and "Xin can be estimated or derived as shown and do
not depend on what is being predicted. The RHS's, OXT however, are the covariances
between what can be measured, the X;, and T, something that cannot be measured or seen.
Therefore, ox,T must be computed indirectly. If selection is for additive genetic value,

OX.T = aiao%o where a,  is the additive relationship between the relative with record
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X; and the additive genetic value, G Ay of the individual a that is to be evaluated.
The additive genetic variance is G%O' The RHS is the portion of the genetic
covariance between relatives i and a that is due to additive genetic effects in common.
Recall that 0%0/ o>2( = h2, heritability in the ‘'narrow sense". Thus,
G%O = hzog( and OX;T = ajh Zoi.

Although the usual case is to select for additive genetic value the selection index is
more general and can be used for most possible definitions of T, the true value to be
predicted. The only part of the selection index equations to find the weights that changes
when T is redefined are the right-hand sides, the IX,T- Of course, o% changes and other
parameters that depend on o% and the RHS's will also change. Expected values and simple
models can be used to find OX,T and o%. The expected values will be demonstrated for
several definitions of T, including the usual one where T is additive genetic value. To
simplify the expected values, all variables will be assumed to have zero means, although, as
stated earlier, variances and covariances are not affected by the means.

Case 1. T=G Ay additive genetic value for animal a.
Let X; be a representative record included in X; with model
X; = G; + E;or X; = G; + PE; + TE;, where G; can also be separated
into additive, dominance, additive by additive genetic values, etc; PE; is
the permanent environmental effect on all records of animal i; and TE;

is a temporary environmental effect on a specific record of i.

Then, oxiT = E(XiGAa) = E[(G; + Ei)(GAa)]

+

E(GiGa,) + E(E{Ga)
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unless a nonzero genetic by environmental covariance exists. Thus, the
right-hand sides of the selection index equations will be
a. 02, = a;_h20%, where o is the phenotypic variance of
ia%10 = 3o X X phenotyp
individual records. If X; is a record on animal a (i=c), then
iy = 1+ Fa.

Similarly, 0% = E(GA ) = aq05g = (1+Fo)h 20y ifaisinbred and
«a

a% = 0%0 = hza)z( if a is not inbred.

Case 2. T =A, =G, + PE_, real producing ability of animal a.
If i=aq, OX:T = E[(G, + PE, + TE,)(Gy + PE,)]

= oé + O%E = °2A = ro%i', if not inbred.

It i#a ox.T=EGj+PEj+TE)Gq + PE,)]

E(GiG, + E(PE;PE,)

E(G;G,) + E(PE,PE,) + others likely to be zero
= oGiGa + OPEiPEa which is the

total genetic covariance plus permanent environmental covariance that

sometimes is assumed to be zero but is not necessarily so, e.g., for

littermates. For alli # a, and °2G = U%O’ the RHS's will be the same

as for predicting additive genetic value and if a has no records, the index

weights and index will be the same as for predicting additive genetic

value. However, o% will be different;

2 2 2 2 2 .
o% = E(A,)) = E[(G4 + PEa)z] =0, =0g * Opg = Ioy if not

inbred. Recall that repeatability or the correlation between records on



96 Selection Index

the same animal is defined as :

r= (aé + G%E)/O‘% = a%/a)zc.

Case 3. T = GDa’ dominance genetic value.

2
ox,T = El(G; +ENGp, )] = digog;

Case 4. T =G Ay * GDa’ additive plus dominance genetic value.

2 2
ox,T = E[(Gj + E)(Gp, + Gp )l = 2ig97g * dia% >

2 2 2 . .
o = E[(GAa + GDa)Z] = 990 * 91 ° if not inbred.

Case 5. T = G, overall genetic value.
2 2
OXiT = E[(Gi + Ei)(GQ)] = aGiGa = aiaolo + dia0’01 + oo

o% = E(Gf) = oé = 0%0 + ogl + «++  if not inbred.

If Gy,=G Ay’ then case 5 is the same as predicting additive genetic
value as in case 1.

Case 6. T = (1/2)GAa, the average part of additive genetic value that is
transmitted to progeny--transmitting ability. Transmitting ability is usually
reported by most national dairy and beef sire and cow evaluations under
such names as expected progeny difference (EPD), predicted difference

(PD), and predicted transmitting ability (PTA or ETA).
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ox;T = El(Gi + E)(1/2)(Ga )] = (1/2E((G; + E{ )(Gp )]

= (1/2)aiao§0
Thus, because all RHS's are one-half those for predicting additive genetic
value, the index weights and index will only be one-half as large as when

predicting additive genetic value. The variance of T is:

o - E[(I/Z)Z(G,ia)] - (1/HEG2 ) = (1/4)2g49%,
a

= (1/4)07, for Fy = 0.
Thus, the ry will be the same as for predicting additive genetic value.
These first six definitions show the flexibility of the selection index if T

can be defined. In the following cases, there is more difficulty in

determining exactly what T is.

T =P, =G, +Ey =G, + PE, + TE,, a future record (this is
probably what most breeders think is happening in cases, 1, 2, and 5).
If i = a (animal already has a record, e.g., record P,; and want

to predict from this record, record P5),

E[(Gq * PEy + TEy1)(Gy + PE, + TE )]
2,2 _ 2

=9G * %€ T 9%
if not inbred.

oxX iT

Ifi»a
OX:T = E[(G; + PE; + TE{)(G, + PE, + TE,)]
= E(G;G,) + E(PE,PE,) + E(TE,TE,)
= Cov(G{G,) + Cov(EE,).
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The two environmental covariances sometimes can be assumed to be zero.
The first term is the total genetic covariance and not just the covariance
due to additive genetic effects. These right-hand sides and index weights
are the same as for predicting real producing ability if E(TE;TE ) = 0.
However, o% is different;

a%q = E(G, + PE, + TEm)2 = aé + G%E + o.-er = oé + 012_3 = ag(,

the total or phenotypic variance of single records.

Case 8. T

average of records of m future half-sib progeny of some sire
[(£G ;)/m] + [(ZE,)/m]

Because the covariance between averages and between individual

records is the same in this case, let
P, = G, + E_ be a representative record in T; then
ox;T = E[(Gj + E{)(Gg + Eg)]l = 0G G,
2 .

However, 2 (
2 =(G; + E; oy * m-1)oxx
o = E{[— Dy - — ,

where oy is the covariance between pairs of records in the average T.

This term can be evaluated as before and will have one or more genetic
components and possibly an environmental covariance,
0G.Gn * OE.E:
GiGy E{E;
in which the genetic plus environmental covariance between i and i' are

both included.
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Case 10.
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T = average of records of an infinite number, « , of future half-sib
progeny of some sire.

OX.T is as in (case 8), but

2 2

or = (ox/m) + [(m-1) ox'x/m] and as m - o, o-% - oy
where

O'Xox = oGiGi' + O'EiEi,.
When m = oo, this case is the same as predicting (1/2)(G Aa) of a sire
if Gy, =G Ay

T = average additive genetic value of m or « future half-sib progeny,

(=Gp aj )/m.

OX.T = 3iaC1p 2 in (case 8), and
2 2 2
o = E{[(2G )/mI’} = [07) + (m-D)agqayg)/m

because 0%0 is the variance of additive genetic values and aaa"’%o is
the covariance between additive genetic values of a and o, a
representative pair in the group. As m - o, o% - aaa"’%()' For
noninbred half-sib progeny, a,,» = 1/4 and o% = (1 /4)0%0 as in case 6
when predicting (1/2)(Gp ). In case 10, a refers to a progeny

sire
group, and in case 6, a designates a particular sire that has the progeny.

These examples illustrate the power of the selection index method; T can be almost

anything, even, for example, difference in additive genetic value between animals or linear

functions of genetic values. The absolute necessity of clearly defining what T is should be

clear. Precise definition of T would avoid much confusion.
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AVERAGE OF RECORDS OF A SINGLE RELATIVE

If X, is the average of n; records on an animal, then the variance of the average can
be found as a function of variances and covariances of the records going into the average.
If, as often is nearly true, the variance of first records equals the variance of second records,
etc., and the covariances are all equal, then

1+ (ni—l)r]

nj

2 2
9%X; T %X

where 052( is the variance associated with single records and r is repeatability. Thus, the

diagonal coefficient of the selection index equations to find the selection index weights is:

1+ (ni-l)r]

nj

2
¢

Each off-diagonal coefficient is the same as the covariance between a single record of one
animal and a single record of another relative.

If, however, the only reason for likeness between relatives is common additive genetic
h2
Jh ox-
If other components of genetic variance are important, this expression is not the true

effects, then the off-diagonal coefficients are of the form "Xin = aij"%o = aj

covariance but may be a reasonable approximation because the coefficients of the other
components will be small. A more likely source of error is the possibility of an
environmental covariance among relatives. If c; jc’g( is the covariance between records
of relatives i and j caused by common environmental effects, then the off-diagonal
- _ 2 2 ) . \
coefficients should be axixj = (aj jh * Cij )ox - The equations to find the b's can be

written (assuming all c;;: = 0) to predict Gy :
] Ag
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1+(ny-Dr) 2 22 22 22
—_—  |oyb + aioh by + e + h b = ai1,h“o
[ n ox01 121 0x02 aIND OxDN 1ol 9
22 1+(np-1)r| 2 22 22
h b — — —loyby + e + h b = an,h“o
a12h oxbq [ n ox02 NN oyxON 2a1 Ox
22 22 1+(nN-1r) 2 22
aiNh b + h“oyb + oo |- b = anuyh
IND0xDq NI 0xDb [ N Ox°N Nefl ox

Because o>2< appears in each equation, dividing each equation by 0)2( will not change the

solutions for the b's.

Thus, the equations can be written as:

1+(n1-Dr
_(L_)bl + aph?by + oo + aNh%by = ajgh?
n
1+(nHr-Dr
a12h2b1 + —(-nzz—)bz + eee + aZthbN = a2ah2
1+(nn-1Dr
althbl + azthbz + oo + _(_§_le = aNahz
nN

Only r and h? are necessary in order to set up the equations because the

relationships can be computed and the n's will be known. These equations are sometimes

called the simplified equations . Another simplification is to divide by hzo)z(.
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AVERAGE OF n RECORDS ON p EQUALLY RELATED RELATIVES
Let X, be the average of a genetic group of animals (p;) each with n; records (e.g.,
a group of paternal half-sisters each with 2 records). Further, 1) each animal in the group

has the same relationship, a.:

;i»» to all other animals in the group, and 2) each animal in

group i has the same relationship to all animals in group j, i.e., ajj is same for all pairs of

animals; one from group i and one from group j. Then the diagonal coefficients become:

1+(n;-1)r

2 nj
X,

+ (p; - Dajph?

Oy -
Pi X

If other than additive genetic variance contributes to likeness between animals in the

genetic group, the part of the numerator corresponding to the covariance within group will
. . . . 2 .

be greater. For example, if the environmental covariance is Cij'ox and there is also

likeness due to dominance genetic variance, the diagonal coefficients are:

1+(n;-Dr 2 .2
——— + @i DG h? + dijog, /oy + Gip)
1

02 = o
X D; X
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After dividing by o% and with the assumptions to be again stated, the simplified

equations for finding the appropriate weights for the index

N
Gy =1= XbX; are:
* i=1

dib;  + apph?by + +o + aphZby = ag b
2 2 = a2
alzh b] + d2b2+ e + aZNh bN = azah

. .
. .

2 2 _ 2
alNh b1+ aZNh b2+ ese 4 dNbN = aNah
1+(nj-1)r

2
+ (p; - Dajph
nl (pl ) 11

where di =
Pi

The assumptions that are implied by this simplified set of equations are:

1)  selection is for additive genetic value,

2)  the variances of single records for all relatives are o

3) the covariance between records on an animal is ro

X ’
for all relatives.

4) only additive genetic variance contributes to the covariance among

relatives. If this assumption is not true, the aijh2 terms should be

modified to take into account other components of genetic variance and

any environmental covariance, and

5)  each animal in group i has the same number of records. If not, the group

should be divided so that each animal in a sub-group has the same

number of records.
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RECORDS FROM INBRED ANIMALS

The variation among inbred animals will be greater than for non-inbred animals since
the genetic variance of inbred animals is aii‘%o = ( 1+Fi)o%0 when only additive genetic
effects are considered. Thus, the phenotypic variance among single records of inbred
animals is (1+4Fas, + o = [(15F)h? + (1-h9)Jox, where o is the variance of
single records of non-inbred animals. The diagonal coefficients of the equations that
determine the selection index weights will be increased. For single records, the increase will
be Fih 20§( to (1+F;h 2)crg(. For the average of records on the same animal, the

diagonal coefficient will be:

2

[1+(ni-1)r 2
—— +Fh*%|o
X

0

: : . . 2
because the covariance between records on the animal will also increase by Fih zox.

For the average of single records on each of p; animals in group i, the diagonal coefficient

will be:

(1+F;h 2y . (Pi-l)aii'h2 2
Pi

Although that situation seems rather unlikely, in most such cases, a;; will be larger than
if the animals were not inbred. For the average of n; records on each of p; animals in

group i, the diagonal coefficient becomes:

[ 1+(nj-1)r

" Fihz] + (pi-D)ajj+h?
1

Oy -
Pi X

If animal a is inbred, the formula for the denominator of rqy will be o% = (1+Fa)h20)2(

when selecting for G A,
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COMPUTATION OF ACCURACY WITH SIMPLIFIED EQUATIONS
The solutions for the b's will be the same for the simplified equations as for the

regular equations if the assumptions are true. For the regular equations

2 2
I = ZbiUXiT/"T-

22 2
oy = ajq07( for oX;T

and remember that o% = 0%0 if T is additive genetic value.

Then

For the simplified equations, substitute a;,h

2 2,2
IT1 = £bjaja070/970 = Thidje and rqy = yEbjaj,

Thus, only r and h? are needed to compute the b's and rpy with the simplified

equations when selecting for additive genetic value.

VARIANCE OF T GIVEN THE INDEX WITH SIMPLIFIED EQUATIONS

0%0 = 0-21- will be needed since

OT|I=IO = (1_r'I'[)°T = (1_2biaicz)°']" = (1-zbjajy)h ox -

ADDITIONAL NOTE

Often all animals will not have records available on the same types of relatives. Even
when records are available on the same relatives, the relatives may not have the same
number of records. The selection index procedure can still be used to compare animals, but
then the weights for the index for each animal with a different set of records and types of
relatives will have to be found from the set of equations corresponding to the p;'s and n;'s

associated with records of relatives of that animal.
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APPLICATION OF THE INDEX TO CASES WHERE THE ASSUMPTIONS ARE TRUE
1.  One or several records on the individual being evaluated.
Often individuals must be compared on the basis of their performance but with
unequal numbers of records. The best procedure is to solve the index equations for each

specific case (i.e., number of records per individual). If, however, all the variances = 0)2(,

all the covariances among the X's = ro)2<, and the covariances on the RHS's all are equal,
then the equations can be simplified.

If the covariances between all records and the additive genetic value of the individual
are all equal, as is a common assumption, the index becomes

I =bX

where X is the average of n records on the individual to be indexed for additive genetic

value.
The equation to find b for equal variances and covariances is:
1+ (n-Dr 2 nh 2
— —~ 7| b=h® sothatb= ———— __.
n 1+(n-1)r
Iy = _____nh2 [h 242 /h 202] = nh because 02 = 02 = h 20>
1 1+(n-1)r X X 1+(n-1)r T 10 X
Then
2 nh? | 22 . .
GTI I=[. = 1-—__1h ox for animals with the same number of records and the
~lo 1+(n-1)r

same index value, I,

This procedure allows animals with varying numbers of records to be ranked
according to estimated breeding value so that the probability of correctly ranking the

animals is maximized.
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2. The case of using one record on each of many relatives to estimate the breeding

value of animal a.

The index equations will be:

2 2 _ 2
bl + a12h b2 + o + alNh bN = alah

2 2 _ 2
a12h bl + b2 + e + aZNh bN = azah

2 2 _ 2
alNh b1+32Nh b2+ coe + bN—aNah .

Only additive relationships and heritability are needed to set up the equations to

solve for the selection index weights.

3. The case where related individual i has more than one record (m;).

Now the diagonal coefficient will be:

1+(nj-1)r

nj

The off-diagonals and RHS's will be the same as case 2.

4. The case where the X are the averages of single records of p; members of group
i with relationship a;; with each other and all having the same relationship to a and to other
groups or individuals used in the index.

Now the diagonal coefficients will be:

1+(p;-1)ajjh %
Pi '

The off-diagonals and RHS's will be the same as in cases 2 and 3.
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5. The case where p; members of group i have more than one record (n;).

The diagonal coefficients will be:

1+(n;-1)r
— T+ (p-Dayh?
nj

Pi
The off-diagonal coefficients and RHS's are the same as before. This case provides the
general form of the diagonal coefficients because when n; = 1, the diagonal is the same as
for case 4; whenp; = 1, the diagonal is the same as for case 3 and when n; = 1 and

p; = 1, the diagonal coefficient is the same as case 2.

6. If members of a group of related individuals have differing numbers of records,
then each subgroup with different numbers of records per individual can be treated as a

separate group.

APPROXIMATION TO THE SELECTION INDEX WHEN h? IS SMALL
If heritability is small, a further approximation can be made to the selection index
equations. The simplified equations have aijh2 as the off-diagonal coefficients. The aij's are
less than or equal to 1/2 except for unusual situations. If h2 = .05, then all the off-diagonal
coefficients are less than or equal to (1/2) (.05) = (1/40). The approximation is to set these
small off-diagonal coefficients to zero. The equations then become:
dyby = a1’
dab; = apoh”

_ 2
dNDN = angh

where dy, d,, ¢+ +, d are the diagonal coefficients after dividing by 0)2( .
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With this approximation, the weights are proportional to the relationships when each
relative has only one record. This procedure also provides an approximate computational
check for cases where the off-diagonals are really greater than zero. The ry appears larger
than it really is if the r%l is computed as £b;a;, since the b's will be larger than they should
be.

. 22, _ 2 _w2

The true rpy will be U’H/(OI op)5 where o1 = E(TI) and o1 =E(I).

SELECTION INDEX NOT EXPRESSED IN DEVIATIONS

So far the index has been expressed in deviations where I as well as the X's are
deviations from their population averages.

This is equivalent to

Ideviation = (I = Ko) = b1(X1-#p) + ba(X3-p2) + +++ + DNXN-HN)-
If the index is desired as an actual value, then if the u's are known,

I =py +by(Xg-pq) + +++ + bN(XN-#N)

where I is not expressed as a deviation; u, is the average of the population where the
animals being indexed will make records; and Bis for i=1, +++, N, are the population
averages associated with the records of the various relatives used in the index.

Example: Suppose a dairy cow makes a record of 14000 in a herd that averages
12000. A progeny record in that herd is to be predicted.

Then if h% = 25

b = (1/2)h? = .125

= 12000 + .125(14000 - 12000) = 12,250 .

Iprogeny

Suppose instead that the herd average will increase to 13000 before the progeny

makes a record. Then

Iprogeny = 13000 + .125(14000 - 12000) = 13,250
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TABLE 8.1. WEIGHTS AND ACCURACY VALUES FOR PREDICTING

DITIVE

GENETIC VALUE FROM RECORDS OF VARIOUS RELATIVES. (h“ IS

HERITABILITY; r IS REPEATABILITY).

Records

Individual

Dam or sire
or progeny

Sire and dam

One grandparent
Four grandparents

One great-grand-
parent

Eight great-
grandparents

Individual and one
parent or progeny

Individual and
both parents

Individual and one
grandparent or
grandprogeny

Individual and four
grandparents

Parent and progeny

Progeny (p half-sibs)

(1)
(n)
(1)

()
(n)

Selection
Index Weights

n2

nh2/[1 + (n-1)r]
h2/2

nh?/[1 + (n-1)r)(2)
h2/2; h2/2
Snh2/[1 + (n-1)r];
SnhZ/[1 + (n-1)r]
h2/4

All h2/4

h2/8

All h2/8
[h2-(h%/2)2)/(1 - (h%/2)?);
[h2(1-h%)/2)/11 - (h%/2)?]

hz(h2 2)/(h*-2);
n%(h%-1)/(h*-2) « + -

g 16)/(h4 -16);
h%(h2-1)/(h*-16)

h2(h2-4)/(h4-4)
hZ(h2-1)/(h*-4) + « «

202 /(4 +h%); 2h%/(4+h?)
2ph?/[4 + (p-1)h?]

Accuracy = rqy

/2
ynh?/[1 + (n-1)r]

sofn2

50ynh2/[1 + (n-1)r]

71ynZ

Inh 2/[1 + (n-1)r]

25/n2
sofn2

1252
35/h2

J5h2-2n% /40t

yh2(2n2-3)/(h%-2)

yh2@2n2-17)/(h*-16)

yh2(2n2-5)/(h%-4)

y2h2/(4+n?)

YphZ/[4 + (p-1)h?]
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TABLE 8.1 continued:
Let A = [1 + (n-r]/n, D = {1 + [(p-1)h2/4]}/p, and C = AD - (h*/16).

Records Weights Accuracy
Individual (n) and [h2D - (h2/4)2)/C; Jo1 + (02/4)
paternal half-sibs (p) hZ(A-h%)/4C

Individual (n) and his [h2D - (h%/2)2)/[C - 3h%/16)); by + (02/2)

paternal half-sib Sh2(A-h2)/[C - (3h%/16)]

progeny (p)

Dam (n) and Snh2/[1 + (n-1)r]; /b1/2 + (b1/4)
paternal half-sibs (p) ph2/ 4 + (p-l)hz]

Dam (1) (b2 - (h*/16))/12 - (h*/64));

sire (1), and [h2 - (h*/16)}/12 - (h%/64)]; Jio1 + by + b3)/2
progeny (1) [h? - (b*/8))/12 - (h*/64)]

Paternal half-sibs (m), mh2/[4 + (m-l)hz];

dam (n), and dam's h2[D - (h2/16)]/(2C) /b1/4 +by/2 + b3/8

paternal half-sibs (p) h2(A-h2)/(8C)




CHAPTER 9

SIRE EVALUATION, EXAMPLE OF APPLICATION OF
SELECTION INDEX

Many traits cannot be measured on males, thus genetic evaluation must be based
either on records of female ancestors or on records of female progeny. Evaluation on the
basis of progeny also usually results in much greater accuracy (ry) than pedigree
evaluation, even with traits measured on both sexes. This method has received much use

in dairy cattle and poultry breeding and also with other classes of animals. \

ESTIMATION OF BREEDING VALUE
The problem of prediction of breeding value from progeny records in the simplest
form is that the average of single records adjusted for fixed factors of p progeny all from
different dams, Xy is known and the additive genetic value of sire, e, is to be predicted as:
I =bX;.
If the assumptions discussed earlier are true, the simplified equation to find the best

weighting factor, by, is:

[1 + (p-1) f=111'h2
P

bl = alahz.

113
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In the diagram

PR
P
s

X, and X are a representative pair of records in the progeny average and « represents the
animal to be evaluated.
In this situation, ajp = .25 and a1y = .5, so that:

2
b= 5PN 20 . 2B oy - ey

1+(p-1)(:25 h ) - 4-h% P*
2

Asp ——> ©, b ——> 2.0,

Forh? = 25, by = 2P; forb? = 5, b= 2B e

- In general, rqq a14b1 Note that

(P+l)

as the number of progeny, p ——> ®, rp —> L.00.

Note: 1) a new equation is not needed for c;,ach sire with a different number of
progeny, because by has been solved for in terms of p and h2,
2) by depends on p,
3) 1y depends on p, and
4) by can exceed one. For most genetic evaluations, the b's are usually less

than one except for sire evaluation from progeny records.
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VARIATIONS ON SIRE EVALUATION

The preceding section describes the basis for predicting additive genetic value of a
sire from his progeny. Similar procedures that have been used will yield a weighting factor
which is one-half this bl; for example, P rather than Zp .

p+15 p+15
The following two additional definitions of true value result in the smaller weight.

Definition II. Rather than estimating the breeding value of the sire, the breeding value

of a future progeny, a, is to be estimated.

ae”
PR
PR

ajq = .25 as before, but a1, = .25 rather than .5. Again, 4 = (4- hz)/h2

Now, bl = p and, in this case, as p ———> 0, bl — 1.0.
p+
For h% = 25, by = P = forh?® =5, b= P e
p+7
Also 1 = 25 p+ ! ¥oy

and, in this case, as p ——> Ip ———> 5.
Note that this accuracy is for predicting the additive genetic value of an animal from records

of p paternal half sibs.
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Definition III. The daughter or progeny superiority of a sire (also called transmitting
ability) is to be predicted. Progeny superiority is defined to be the average
of an infinite number of future progeny which is equivalent to one-half the
additive genetic value of the sire, i.e., T = .5 GSIRE .

The equation to find by is:

1 + (p-1) 25 h?
P

by = (5)(S)h?) andb; = —P_ asin definition IL.
p+A

The accuracy, TP however, will not be the same as in definition IT but will be the same as

for predicting the breeding value of the sire.

b1o
Remember Iy = 17X .

- P 2
Note that biox T = [m] (5) (5) %y
T
ButT = .5 GSire' Thus, because G is additive value:

0% = E(T?) = E[(G/2)?] = (25)E[ G?] = (25)07, -

[p/(P+1)1(25 7)) I ;
I'TI = : = "
2507, prh

which is the same rqy as when estimating the additive genetic value of the sire. This result

Thus,

should be expected because the only change has been to divide what is to be predicted by
a constant one-half. The only difference in the evaluations is a factor of one-half. Ranking
will be the same. The important point is to define T exactly, since what T is, makes a

difference in the weighting factor and may make a difference in ry .
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ENVIRONMENTAL COVARIANCE IN SIRE EVALUATION

If progeny are treated more alike because they are related than are unrelated
animals, then an environmental covariance in addition to a genetic covariance will exist
among animals in a progeny group. Assume that the environmental correlation among half-
sibs in the same environment is Cll"’)z( .

The equation to find by to evaluate the sire from p progeny with one record each is:

1+ (p-1)(agh? + c1q) )

2
> 1 = a1gh” ,

where aq. is the relationship among animals in the group, (aqy = .25, if half sibs),
cll.a% is the environmental covariance, and

a1, 1s relationship of animals in the group to a. If a is the sire, then a;, = .5.

2 2
Thus, by = .5 ph and Iy = 25 ph .
1+ (p-1)(25h2 + ¢17) 1+ (p-1)(25h2 + ¢17)

Ifeqpr =25 h% and h% = 25 as is approximately true for lactation yield:

b = pq or 2p rather than Zp with no environmental correlation,
p+7 p+14 p+15
Sp p
and 1y = =71 .
T p+7 p+7

In this case as p ——> o, bl —> Lbutrpp —> 7L
The important point is if ¢y * 0, thenas p ———> o, g ———> less than 1,

depending on the ratio, ¢qq /all'hz.
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The following table compares the b;'s and ry's when h% = 25 with and without

environmental correlation.

No environmental correlation Environmental correlation
¢ipr =0 ¢qpr = 0625
Number of
rogen
’ pg ’ by = piIiS I = ' p«IL)IS by = pI«)~7 rrp = .71 pIi7
1 125 25 125 25
3 33 41 30 39
10 .80 .62 S9 54
20 1.15 76 74 .61
50 1.54 .88 .88 .66
100 1.73 93 93 .69
1000 1.98 99 .99 70
© 2.00 1.00 1.00 1

The previous table assumes the environmental correlation is the same for all pairs
of progeny. The USDA dairy sire evaluation procedures in the past and now with mixed
model methods, however, assume only records of daughters of a sire in the same herd have

an environmental correlation. If there are I daughters in the 11-11 herd, then:

2
by = 2 ph . b2 = 25and ;g = 0625,
2 4Zn (nj-1) cqpr
4 +(p-1) h* +
by = 2p as compared to by = 2p with ¢y4. = 0.
znj (nj-1) p+15
p+15 + —— —
1%

As before, r1 = /.5 b1 ; and for h? = 25 and ¢cqq0 = .0625,
TI 1 11

p .
zn; (nj-1)

I"I'I =
p+15S +
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CORRECTION FOR LEVEL OF MATES

If mates of one sire are much superior to the mates of another sire, then this
knowledge could be used in evaluating the sires from their progeny averages to avoid bias
from the selected mates. One approach is to set up one equation for each daughter

and one equation for each dam record. For two dams and two daughters:

Daughter 1

/
X ~
/

Sire (a)

Daughter 2

Dam 2 (X4)

The equations to find the b's for I = b1Xq + bpXy + b3Xg + byXy are :

by + 25h%y + 5 h%by+ Ob, = .5h?
25 h%by + by + 0by + .5h%b, = .5h
5 h%by+  0by + by+ Oby=0

0b; + Sh%by+  Obg+  by=0

As expected, by = by = b. But, by = by = -5 h2b; i.c., the weight for the dam is -5 h°
of that for the progeny. This weight is certainly different from weights of the historical
daughter-dam comparison where:

Sire value = Daughter average - Dams' average.

With such a procedure, by = -b; rather than -.5 hzbl.



120  Selection Index

The equal parent or American index also weighted the dam record too much.
The "logic" for the equal parent index was that

Progeny value = .5 (Sire value) + .5 (Dam value).

Rearrangement of the terms gives

Sire value = 2 (Progeny average value) - Dams' average,
s0 that by = -.5 by rather than by = -5 h%b,.

The correct procedure can be simplified if the dams (sire's mates) are assumed to
be unrelated so that only two b's are needed because each daughter record receives the
same weight as any other daughter record and each dam record receives the same weight
as any other dam record.

If X, is the average of single records of p daughters and

X2 is the average of single records of the p dams,

the equations to find the weights are:

by = agh?

1+ (p-1) a11'h2] lalzhz
b1 +
P P

[alz h2
p

by + [%] by = ayh?.

The off-diagonal coefficient corresponds to the average covariance between the

daughters and dams. Each daughter has covariance alzhzo)z( with her dam but a

covariance of zero with the other p - 1 dams resulting in Cov(X{,X5) = alzhzoi/p.
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Usually ajp = 25, apy = S5, a1y = S and By = 0 so that

by = —2P _ and by = -5 h2by.
p+A.—h2

Note the similarity to the b; when dams are not considered, e.g., if h? = 25,

by = 2p rather than by = 2p when the dams' records are ignored.
p+14.75 p+15

Similarly, the ry1 changes only slightly because a,, = 0. If h2 = 25,

_ p - p :
Iy = —r rather than rqv = when dams are ignored.
TI \l D+ 1475 TI p+ 15 s

In other words, correction of a progeny proof for differences in mates does not

increase accuracy of evaluation much. The advantage of correcting for differences in mates

is to eliminate bias that would inflate proofs of sires mated to better than average dams.

PROGENY WITH DIFFERENT NUMBERS OF RECORDS

Often in evaluation of sires, progeny may have different numbers of records. A
common example is that Standardbred trotting horses may have many more than one racing
record. One solution to the problem of weighting these records is to set up one equation
for each record. Then the correct weight would be found for each record, but many
equations would be needed. If simplified equations are used, diagonal coefficients will
be 1. RHS's will be aiozh2 as before for all i. In the case of half sibs for sire evaluation,
RHS's will all be .5 hZ. Off-diagonal coefficients will be of two kinds. Coefficients
corresponding to covariances among records on the same animal will be repeatability, r,

because the covariance, oxx = ro)z( . The other coefficients will be aijhz as before where
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3 is the relationship between pairs of animals that made the records. In sire evaluation
from paternal half-sib records, these coefficients will be .25 h2,
Example: Daughter 1 has two records X and X, ,
Daughter 2 has one record X3 ,
Daughter 3 has three records X4 » Xg , and X6 .
To estimate the additive genetic value of their sire from
Daughter 1
X1, Xz)V\
Daughter 2 <#———————— Sire (a)

(X3) /

Daughter 3
(X4, X5, Xg)
the index will be: I = byX; + byX, + byXs + byX, + bsXs + beX -

The equations to find the b's are:

by +  1by + 251%by + 25 h%by + 25 h%bs + 25 hPbg = .5 h

by + by + .25 h%by + 25 W%, + .25 hPbg + 25 h%bg = 5 h?
2512, + 25h%y + by + 25 W%, + 25 h%bs + 25 hPbg = .5 b
250%, + 25h%, + 25h%y+ by +  tbs+  rbg = .5 h?
2502, + 25h%, + 25h%y +  tby+  bs+  rbg = .5h

251%; + 25h%, + 25h%y + by +  tbg+ b = .5h?
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An easier way to obtain the same result is to divide the daughters into groups with

the same number of records for each daughter in a group:

X1 is the average of p; daughters with n; = 1 record,

X, is the average of p, daughters with ny = 2 records,

XN is the average of py daughters with ny = N records.

The equations to find the weights for
I'=b1X{ + by Xy + +o+ + bNXy are:

diby + agph?by + -+ + ajnhlby

1l
o
—
R
[=n
[\®]

a12h2b1 +  dgby Heee s azthbN

1}

=y

[\
R

L[] .
. L)

althbl + a2Nh2b2 + vee 4+ dNbN = aNahz.

If all animals are half-sibs,
1 +(n;-1)r
i (pi-1) 25h2
nj

Pi

agh?= 25b%, and a;h® = 5 b2,

The rq7 can be computed as usual as the square root of the sum of products of the b's and

the corresponding additive relationships on the RHS.
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EVALUATION WITH FULL SIB GROUPS

Some species such as swine and poultry may have full-sib progeny groups. Each male
may be mated to more than one female. If each female produces only one set of progeny,
the animals in each group will be related as full sibs (a;; = .5) but also will be related as
paternal half sibs (aij = .25) to animals in other groups.

If p; is the number in each full sib group, n; = 1 and the sire is to be evaluated,

(a;,=-5), the equations defining the b's are:

dby + 25h%y + -+ + 25h%yN = Sh>
25h%; +  dyby ++e+ + 25h%bN = Sh?
25h%; +« 25h%by + +++ +  dNDN = ShZ  where

1 + (pi-1) .5 h2
Pi '

Modifications would, of course, have to be made for some n > 1, for other possible
relationships such as maternal sibs and for any environmental correlation which is very likely
for animals in the same litter as well as maternal effects in common as discussed in the
chapter on imbedded traits.

Use of other combinations of relatives in the selection index is illustrated in problem
sets. Often the animal will have records (one or more), progeny with records and relatives

with records through both the paternal and maternal sides of the pedigree.



CHAPTER TEN

PROBABILITY STATEMENTS ABOUT TRUE VALUES

One property of selection index is that the average true value, T, for animals with the
same index value, I=I, is I, Thus, I, is the mean of a subdistribution of T for animals

with the same index, I, i.e., the distribution is conditional on IO and the accuracy of

prediction of I, rpy. The variance of T for I=I depends on ry and o% but not on I :

0’

2 2, 2
UT|I=IO = (1-rTI) or-

If T and I follow a bivariate normal distribution, I . and o%'|1=lo determine the
distribution of T for I=Io . After a review of the normal distribution, how to use the
conditional mean and variance to make probability statements about T for I=1 will be

described.

THE NORMAL DISTRIBUTION

2

The mean, p, and the variance, 0“, completely determine the normal distribution.

The normal distribution follows the so-called bell shaped curve.

Frequency of
X values

- u + 0
<——— values of X ——
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Let X be a set of values having a normal distribution. The mean is also the median of the
X values, i.e., one-half the values of X are greater than u and one-half the values are less
than u. The distribution of values is also symmetrical. The curve on the right-hand side of
u is the mirror image of the curve on the left-hand side of . The variance, 02, determines
how flat or how peaked the curve is. A large o2 tends to flatten the curve and a small o2
tends to peak the values about u. The total frequency of X's is 1 or 100%. Thus, the area
under the normal curve is also 1. The fraction of the area above u is 0.5 and the fraction
below u is also 0.5.

A table of areas under the normal curve describes the fraction of the area between
u and u + to or equivalently between u and u - to because the distribution is symmetrical.
This fraction corresponds to the probability that a random value of X will be between
s and p + to . The values of t are multipliers of the standard deviation.

These are two uses of such a table (e.g., Table 10.1):

1) To find probabilities (fractions of total area) corresponding to truncation points
which can be expressed as u + to or u - to depending on which side of u the
truncation point is located and

2) To find truncation points expressed as 4 + to or u - to corresponding to required

probabilities.

Examples of Finding Probabilities Corresponding to Specified Truncation Points
Let 0 = 2 and u = 10 for a distribution of values of X. The problem is to find the

probability that a random value of X will be between 6 and 12.
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TABLE 10.1. AREAS UNDER THE NORMAL CURVE

il .

T

n  utto p-to 2
Truncation Point Area between p+to and p
t or between u-to and pu
.0 .0
1 04
2 .08
3 12
4 .16
5 .19
.6 23
T .26
8 29
9 32
1.0 34
1.1 36
1.2 38
1.3 40
14 42
1.5 43
1.6 445
1.7 455
1.8 464
1.9 471
2.0 477
2.5 494
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The first step in finding probabilities is to draw a picture to describe the problem as
shown for this example. The picture usually will give an approximate answer as a way of

checking the logic of the exact answer.

Because the table gives the area between u and i +to, the solution is to find the area
between 4 = 10 and ¢ + t1p0 = 12 and the area between u =10 and p - tg@ = 6.
Subscripts on the t's are to identify the truncation points. Total area is sum of the two
parts. In more formal terms: P(6 < X < 12) = P(6 < X < 10) + P(10 < X < 12).

To use the table, t{, and tg must be calculated:

p+tp0 =12 butp =10ando = 2. Thustjp = (12-10)/2=1.
The corresponding area (Table 10.1) is .34 .
The general method of finding a t corresponding to a positive truncation point, i.e.,

a point greater than the mean is to write the equality and solve for ¢:

u+to-u - truncation point - pu
o o

t =

On the left side of u, ptgo = 6 and thus, 10 - te (2) = 6 and tg = 2.

For t = 2, the corresponding area is .477 between 6 and 10.
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For t corresponding to truncation points less than the mean,

truncation point - u | truncation point - u|
p . In general, t = P .
o o

The total area between 6 and 12 is .477 + .34 = 817, which is the fraction of X's

t = -

expected to have values between 6 and 12 or equivalently the probability that any random
X will be between 6 and 12.

Another example is to find the probability of an X value above a truncation point,
such as 12. Then, 4 + to = 12 withu = 10 and 0 = 2 and P(10 < X < 12) = .34,
Obviously, P(10 < X < ) = .5, Thus, P(12 < X < ) = .5-.34 = .16.

The probability of a random X less than 12 can be found by similar logic, i.e.,

P(w < X < 12) = P(0 < X < 10) + P(10 < X < 12) = .50 + .34 = .84.

Examples of Finding Truncation Points Corresponding to Specified Probabilities

Find the region which includes 90% of values of X which is also the probability that
a random value of X will be in that region. These ranges may be chosen so that they are
symmetrical about 4, i.e., s +to is the upper limit, and p -to is the lower limit with t the
same in both upper and lower limits. First, draw the picture which will show that the area
from u to 4 + to must be .90/2 = 45. The t corresponding to an area of .45 is about
halfway between 1.6 and 1.7 solett = 1.65. If 4 = 10 and o = 2 as before, the upper limit
is 10 + 1.65(2) = 13.30, and the lower limit is 10 - 1.65(2) = 6.70 .

Next, find the truncation point which 90% of the values of X will exceed for the

example with 4 = 10and o = 2.
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T

i “ m"mm"“““mm“NNI|||||||||||m"...,,,,,,,,m,m

The t corresponding to an area of .40 between u and u - to must be found. From
Table 10.1, t ~ 1.3. Thus, the truncation point is 10 - 1.3(2) = 7.4. The probability of a

random X having a higher value is 90%. Also, 90% of the values of X will be greater

than 7.4,

APPLICATIONS TO ESTIMATING TRUE VALUE

One property of the selection index is “T|I=Io = I,  Thus, I, corresponds to the

mean of the distribution of T values for animals with the same index. Thus, I0 can be

substituted for u of the normal distribution. Similarly, oy |1-1, will be substituted for o of

0 Io+tor|1-1,

the general distribution. A typical picture is:

T

<— Values of T|I1=], ——
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EXAMPLES
Probability Statements About Additive Genetic Values; T = GAa .

A bull has 35 progeny with 1 record each averaging +200; h? = 25; 0%0 = 1000000.
What is the probability his true additive genetic value is greater than zero?

For h? = 25, A =15 so that

- 2p _ 70
) p+15 50’
Thus OT|1=Iy = (1 - .70) (1000000) = 300000 and OT|1=1, = 548.

Io = (14)(200) = 280, and ryy = —E_ = .70.

The picture is:

t
Io-tor|=280 =0 T =280

|0 - 280]
548
0 and 280 as .19. Thus, the probability that T for the bull will exceed zero is

Then, t = = 51. The corresponding area gives the fraction between

S0 + .19 = .69. Correspondingly, the probability that his true value is less than zero

is 1.00 - .69 = .31.

Probability Statements About A Future Record
The previous discussion was about the probability that an animal's additive genetic

value was between, above, or below certain truncation points given the index estimate of
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breeding value and the corresponding ry and 0(23. In fact, if the animal actually makes a
record, in addition to its genetic value, a new random environmental effect influences the
record. Thus, variance of records for animals with a predicted genetic value depends on the
variance of additive genetic values given the index plus the variance of environmental
effects. In this case of predicting a future record, T = X, = G Ay * E,, Lis the prediction
of a future phenotypic record of animal a that has no previous record. In this example, the
assumption is that G, = G Ay The selection index equations to find the appropriate
weights for the X's are, as usual, on the left-hand sides, the variances and covariances of the

X's. The right hand sides are:

E(X)(Ga, * Eo)] = E[Ga; *+ E)(Ga_ * Eq)]

E(GAiGAa+ GAiEa"' GAaEi +E{E,).

ox iT

The middle two terms are genetic-environmental covariances which are usually assumed to
be zero. The first term is a ao%o for G A= G, and the last term is the covariance between
environmental effects on a record of i and on a record of a which may or not be zero. With
no environmental covariance, the right-hand sides are aiao%o = aiahzo)z( as for predicting
additive genetic value so that the index for predicting a future record is exactly the same as
for predicting additive genetic value. The reason is that there is no way of predicting a

random and independent E, for the new record.
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The ryy and 02, however, are different from the case when I predicted G5 . Now
TI T o

o% = E(Tz) = E(G Ayt Ea)2 = OZGA + a% = og( rather than GZGA = hzcr?(. The

numerator of Iy is zbia.iahzo)z( as before, but

2 2
_ zbjajgh "oy _ W
m= |——— ° Zbj2iq
’x
rather than \/Tbja;, because prediction of E , is zero. 'I‘hena-zrlI=IO = (1-h 22biaia)"§(

rather than (1-Zbja;,)h Zoi. Notice that many of the same quantities, =b;a; ,,

h2, 0)2(, are
involved whether prediction is for G A, O X =G A, * E, ; the arrangement, however,

is different in important ways.

Prediction of a Progeny Record from Prediction of Additive Genetic Values of the Parents
The application of these distributional properties makes sense primarily when records
of ancestors are used in estimating the animal's genetic value, as for example, if the sire's

and dam's estimated additive genetic values are used in estimating the additive genetic value

Ggire + G
of their progeny: Gprogeny = S 5 dam which also predicts a record of the progeny.

The r%l for additive genetic value of a progeny equals one-fourth the sum of the r%l

for additive genetic value of sire and dam. This equality can be shown by setting up the
equations to predict the additive genetic values of sire and dam and then to predict the
average of the additive genetic values of the sire and dam. Assume for milk yield that

h% = .25 and 6% = (2000 Ib)2.
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The following table shows the effect of increasing r%l for sire and dam onoy | I<I,

of the progeny.

r%l oX|1=I, 95% probability range =

Sire Dam Progeny (for progeny) Ip * 196 ox|1-1

0 0 0 2000 Ib. I, = 3920

25 0 0625 1984 I, + 3889

25 25 1250 1968 I, = 3857

50 50 2500 1936 I, = 3795

a5 S0 3125 1920 I, = 3763

75 5 3750 1904 I, £ 3732
1.00 75 4375 1887 I, * 3699
1.00 1.00 5000 1871 I, * 3667

The obvious conclusion from this chart is that the average error of predicting a
record of a progeny (o | I=Io) does not decrease very much even with perfect prediction

of the parents' genetic values when o% is relatively large.

Probability Statements About Differences in Genetic Values for Unrelated Animals
Assume animal 1 has index value Iy with r%ll and animal 2 has index value I, with
r%lz. Differences in true additive genetic values for animals with index values I and I,
will have a distribution corresponding to the definition of T = GA1 - GA2. The
immediate problem is to determine the mean and variance for the distribution of

T;-T,|1{-I; . The mean is the same as the mean of (T; |1 = I;)-(T,|I = L) and is
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The variance can be determined by the rules for the variance of a linear function or can be
derived from the selection index procedure for

T = Gp; - Ga, withI = byX; + byX,. By rules for variance of a linear function,
because the covariance between Ty | I=I4 and T2]I=12 is zero if the records in Iy and I,

are independent. Thus,

V(T 11=1y) - (T, |1=Ly)] = (2 - r%ll - r-12-12)02G.

These parameters can be used to make probability statements about the difference in true
values for animals with indexes Il and I,. In this case, 11-12 replaces u of the general
discussion and (2 - r%ll - r’%‘IZ)UZG replaces o2,

As a numerical example, suppose I; = 500 and I, = 200, ie., I;-I = 300 and
r%ll = .75 and r.12--12 = .25 and OZG = (1000)2. What is the probability that the true

difference in genetic values is zero or less, i.e., that an animal with I, = 200 actually has

equal or greater true value than an animal with I; = 500?

The picture is:

1 t
0 IyI, = 300

\'4

~—T4|I; - Th|L,
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The problem is to find Prob[(T;|I; - T, |I,)< 0].
Thus,

2 2 2
0= (Il -12) -t\l(z_r’rIl -I'rIvIZ)O'G .

Then,

t = (300 -0)/[y(Z - .75 - 25) (1000)] = 3.

The corresponding area between 0 and 300 is .12 and the area below 0 is .5 - .12 = .38,
which is the probability that the animal with the smaller index, 12 = 200, will have a higher
additive genetic value than the animal with the larger index, I; = 500.

A more direct approach would be to define T = G Aq~ G Ag» Use all information

to predict T, and then follow the general selection index procedure.
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SUMMARY OF DISTRIBUTIONS ASSOCIATED WITH SELECTION INDEX

Often there is some confusion about what 1 and o are. Actually neither p nor o has
any meaning unless defined in terms of the variable they describe. In development of the
selection index for a particular trait there are at least 6 variables.

1) The basic distribution is of phenotypic records, the P's, or as they have also been
called, the X's. The mean is By and the variance is 072( = oé + 0123 (the genetic plus
environmental variance).

2) For additive genetic values, the mean is bG = 0 and the variance is 0%0 = hzo)z(.

3) The criterion for predicting a G is the index estimate, I. The mean
is uy = 0 and the variance is o% = r%-loé . Note that o% < 0(2; because r%l <L

4) Animals with the same index value may not have the same true value.
The distribution of true values given an index value has mean pT|I=IO =1, and
variance o%ll:lo = (l—r%)o%;[(l—r.lz—[)oé, if T=G].

5) Records of an animal with an index value I have a different distribution from
records with no estimate of true value. The distribution of records for animals with an
index of I has mean “X|I=Io = 1, and variance a§(|1=10 = (1-r%1)o>2< when r%[ is for
predicting a future record, X.

6) The difference in additive genetic values for animals with index values
I{ and I, is distributed with mean KTy |I=11 - P14l and variance

°'2I‘|I=Il + a%|1=12 = (2—r%[1—r12-12)aé when the indexes are independent.
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The standard deviations for the six distributions are:

1) X,Gx= ‘Oé"'o%;
2) GA,aG=\jh2 02G+o%;

3) [Itopredict Gy, 01 = r[9G 5

4) Ggivenl=I,, OT|I-I, = l(l-r%l) oé;
. 2 . . . 2, 2
5) X given I=I, when r4y is for predicting X, oy 1=1, = (l—r—n) ox

2 2 2
6) GqlI=I; - G,|I=1,, 9G1-Go 141, = \I(Z-rnl-rrnz) 9G-




CHAPTER 11

SUPERIORITY OF SELECTED GROUPS

AVERAGE OF SELECTED GROUP

The basic principle in selection is to select the best and cull the rest. The selection
index is the best linear method of evaluating animals to determine which to select or cull.
The selection index is unbiased so an estimate of the superiority of the selected group is
simply the average index of the selected group minus the average index of the whole group
from which the selected group came. Another question, however, is how to determine how
much better the selected ones are expected to be than the original group before the indexes
are calculated? The answer to this question relies on theory based on the normal

distribution of true values and index values.

THE NORMAL DISTRIBUTION

The basic problem is this. If a fraction, p, is selected from a normal distribution with

2

mean, u, and variance, o, what will be the mean of the selected group, b ? The problem

may be diagrammed as:

139
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The truncation point, 4 +to, depends on p as in Chapter 10.

The expected or average value of the fraction p can be found from integrating:

by = — xf(x)dx = p+Do where f(x) is the density function
u+to

of the normal distribution. Fortunately, tables are available that give values of D given the
fraction selected, p.

The difference from p, Do, is zo/p where z/o is the height of the normal curve at
the truncation point and p is the fraction selected. Note that D = z/p, the height of the
normal curve for ¢ = 1. The tables of D are based on the normal distribution with o = 1.
To convert the table of D values to any other distribution, multiply by 0. Many texts use
i rather than D to describe the standardized selection differential.

Note that Mg - B = Do, which is sometimes known as the selection differential (not
standardized for o). If 4 = 0, by = Do.

The table of D for small samples is based on expected values of order statistics
(Table 11.1). The values are not the same as z/p. The table of D for large samples is the
same as z/p (Table 11.2). Dr. C. R. Henderson proposed an approximate correction for
sample size for this table, i.e.,, D' = D - g , where s is the number selected. Note s is not

s
the number available for selection.

EXAMPLE OF SELECTION BIAS

A breed organization reports a dairy bull has 100 daughters. The average of the top
20 is +1000 Ib of milk. The standard deviation of records of cows by the same sire is about
2000 Ib. What would the average of the 100 daughters be expected to be?

The fraction selected is 20 of 100 or, 20%. The corresponding value of D = 14,
Thus, D' = 1.4 - 25/20 = 1.3875.
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From the normal theory
B = B+ Do, ie,
1000 = p + 1.3875(2000) so that p = 1000 - 1.3875(2000) = -1775Ib .
Evaluation of the bull on his top 20 daughters would have been considerably
misleading. An interesting question is what should be the number of daughters to use in
the formula for estimating the genetic value of this bull--20 or 100 or something else?
Schaeffer et al. (1970) developed a solution for this problem which depends mainly on the

fraction selected.

TABLE 11.1. EXPECTED AVERAGE OF A GROUP SELECTED OUT OF A SAMPLE
FROM A NORMAL POPULATION WHEN THE SAMPLE SIZE IS SMALL
(INUNITSOF o = 1)

Sample Number selected

Size 1 2 3 4 s 6 7 8 9 10 11 12 13 14
2 S6 .00

3 85 42 .00

4 1.03 .66 34 .00

5 1.16 .83 S5 29 .00

6 1.27 .95 70 48 .25 .00

7 1.35 1.05 82 62 42 23 .00

8 142 1.14 92 J3 .55 38 20 .00

9 149 121 1.00 82 65 50 35 .19 .00

10 1.54 127 107 89 74 60 46 32 .17 .00

11 1.59 132 112 96 .81 .68 .55 42 29 .16 .00

12 163 137 118 102 .8 .75 .63 51 39 27 .14 .00

13 1.67 142 123 107 93 .81 .69 .58 48 37 .26 .14 .00

14 170 146 127 112 99 87 76 .65 S5 45 35 24 .13 .00

15 1.74 149 131 116 103 .92 81 .71 .61 .52 42 33 23 .12
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TABLE 11.2. EXPECTED AVERAGE OF CERTAIN FRACTIONS SELECTED OUT
OF A SAMPLE FROM A NORMAL POPULATION
(INUNITSOF ¢ = 1)

Table for .001-,099 Selected

000 001 002 .003 .004 .005 006 .007 _.008 .009
.00 3.400 3200 3.033 2975 2900 2.850 2.800 2738 2.706
01 [2660 2636 2600 2569 2550 2527 2500 2482 2456 2442
02 [2420 2400 2386 2370 2363 2336 2323 2311 2293 2283
03 2270 2258 2241 2230 2221 2209 2200 2.18 2174 2.164
04 2153 2146 2.136 2126 2.116 2107 2.098 2.087 2.079 2.071
05 2064 2057 2048 2040 2.031 2.022 2.016 2.009 2.000 1990
06 1985 1977 1971 1965 1958 1951 1944 1937 1931 1.925
07 | 1919 1911 1906 1900 1.893 1.888 1882 1.875 1.871 1.863
08 |[1.858 1852 1846 1.841 1.837 1.834 1.826 1.820 1.815 1.810
09 [1.806 1799 1793 1.788 1.784 1780 1.775 1.770 1.765 1.760

Table for .10-.99 Selected

.00 .01 .02 .03 04 05 06 07 .08 .09
A0 | 1755 1709 1.667 1.628 1.590 1.554 1.52.1 1.488 1458 1428
20 | 1400 1372 1346 1320 1295 1271 1248 1225 1202 1.180
30 | 1159 1138 1.118 1.097 1.078 1.058 1.039 1.021 1.002 .984
40 966 948 931 913 .89 880 863 .846 .830 814
S0 J98 182 766 151 73S 720 704 689 674  .659
.60 644 629 614 599 58 570 555 540 526 511
70 497 482 468 453 438 424 409 394 380 365
.80 350 335 320 305 290 274 259 243 227 211
.90 J95 179 162 144 127 109 090  .070  .049  .027

If the number selected is less than 500, subtract from D the quantity .25/s, where s is the
number selected.
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GENETIC SUPERIORITY OF SELECTED GROUP

A fraction of animals is to be selected for T based on their index values. What is the
expected superiority in T of the selected group?

The selected I's, if normally distributed, will be expected to average HI = ML Doy.
Note that By = 0= BT before selection, o1 = I and [.LTS = “Is because I is unbiased.
Then, making these substitutions, KT = BT * rriorD as described in most animal

breeding literature. The same result can be obtained by the regression of T on I:

2
T, = KT * br.1(by -#D) = kT + (oT1/0P)(K] + Doy - mp

pr + (oT1/0opPD = pr + rprorD by multiplying by o/o.

Thus, the genetic selection differential per generation will be AG = ryDop. If L is the
generation interval in years, then genetic progress per year,
AG/yr = ryDo/L.

For any given set of animals, however, the best estimate of the genetic superiority of the
selected group is “Is -ug, the difference in average index value of the selected and whole
population. The indexes are unbiased predictions of genetic value so that averages of these
are also unbiased. In fact, the difference in the averages is the selection index prediction
of the difference between the selected group and the group from which they were selected.

The expression AG/yr = ryDo/L can be used to compare the potential of various
selection programs. This equation is the key equation for designing breeding programs for

genetic improvement. Sometimes the best balance of ry, D, and L will have to be found.

Example of Finding Optimum Number of Progeny Per Sire and Number of Sires to Sample

Suppose that only 1000 progeny are available each year for progeny testing.
Two replacements are needed each year from the males that are progeny tested.
Assume h? = 25 and o = 1000 Ib. milk. The following table illustrates that neither the

largest ry nor the greatest selection intensity gives the highest genetic progress.
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SOME POSSIBLE COMBINATIONS OF NUMBER OF MALES PER SAMPLE AND
NUMBER OF PROGENY PER SIRE

Number / Number Number progeny p 25

selected / sampled % per male sampled rqy = '=D-=— op AG
\ p+15 2

20f2 100 500 985 0 10001b O1Ib

20f5 40 200 964 84 1000 810

2 of 20 10 50 877 1.63 1000 1429

2 of 50 4 20 756 2.03 1000 1535

2 of 100 2 10 633 2.30 1000 1456

2 of 200 1 5 500 2.54 1000 1270

Of the six combinations, testing 50 males each with 20 progeny seems to be best. In
actual practice, income and cost values must be assigned to each plan. Since AG for
selecting 2 of 20 sampled is nearly as great as AG for 2 of 50, that may be the most
profitable plan. Other factors should also be considered in finding an optimum plan. The
fraction of the population devoted to progeny proving is another variable in some cases.
The generation interval may also be important.

The preceding example ignored the fact that AG is usually different for males and
females since ry, D, and generation interval all may be different for males and females.
Total expected genetic response per year depends on both as will be seen, although the
expected genetic superiority of the offspring is the average of the superiorities of the

selected males and females.

GENETIC VALUE OF PROGENY

Let AS = r—nSD S0G , where AS is the genetic superiority of selected sires, ITig is
the accuracy of the index for sires, and DS is the selection intensity factor for sire selection.
Similarly, let AD = rTIDDD“G , the genetic superiority of selected dams. Then, because
progeny receive a sample half of the genetic value of each of their parents, the superiority
of progeny as compared to randomly mating males and females is:

Gprogeny = (AS + AD)/2.
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GENETIC IMPROVEMENT PER YEAR

Let Ag be genetic improvement per year, Lg be the generation interval in years for
sires, and Lpy be the generation interval for dams. Then, Ag = (AS + AD)/(Lg + Lp),
which is not [(AS/Lg) + (AD/Lp)}/2 unless Lg = Lpy. The proof is somewhat circular:

Let S be the genetic value of sires selected to produce the next generation and D be
the value of selected dams. These selected sires are born Lg years before they produce
replacement progeny with genetic value P. The genetic average of sires born Lg years ago
is P-LgAg. The superiority of the selected sires over that average is AS. Thus,
S=P- I_SAg + AS. Similarly, D = P - LpAg + AD. Because P = (S + D)/2,
then by substitution: P = (S + D)/2 = (1/2)(P - LgAg + AS + P -LpAg + AD).
After subtracting P from both sides, 0 = -LgAg - LpAg + AS + AD. Rearranging gives
Ag(Lg + Lp) = AS + AD, and finally: Ag = (AS + AD)/(Lg + Lp), a result due to
Dickerson and Hazel (1944).

Rendel and Robertson (1950) extended this procedure to consider four paths of
selection: sires of sires (SS), dams of sires (DS), sires of dams (SD), and dams of dams

(DD) with generation intervals LSS' LDS’ LSD' and LDD’ respectively.

SS

\

Progeny

/
\

A

DD
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Let ASS, ADS, ASD, and ADD be the respective genetic superiorities of the
selected grandparents as differences from their generation averages. For example,
ASS = I'Tigg Dggo. By similar reasoning as before

S§ = §-LggAg + ASS,

DS = S-LpgAg + ADS,

SD =D -LgpAg + ASD, and

DD = D -LppAg + ADD.

Because S = (SS + DS)/2 and D = (SD + DD)/2, then

Gprogeny = (S + D)/2 = (SS + DS + SD + DD)/4. Thus, by substitution,

S+D

= (S-LggAg + ASS + S-LpgAg + ADS + D - LgpAg + ASD +

After rearranging and subtracting (S + D)/2 from both sides,
Ag(Lgg + Lpg + Lgp + Lpp) = ASS + ADS + ASD + ADD, so that

Ag = (ASS + ADS + ASD + ADD)/(Lgg + Lpg + Lgp + Lpp)-

Genetic progress per year, then, is equivalent to the average superiority of the

selected grandparents divided by the average generation interval of the different

grandparent paths.

This expression or the preceding one involving just sires and dams can be used to

compare expected genetic progress for different selection programs considering differences

in generation intervals, selection intensities, and accuracies of prediction.
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SELECTION INDEX FLOW CHART FOR SINGLE TRAITS

The following six steps are a guide to using selection index for prediction of true
value and design of optimum breeding programs. The various distributions involved with
selection index properties and their means and variances also are described.

1) Define T.

2) T=1= b1X1 + oo + bNXN, X's are available records, I = b’x .

3) Selection index equations determine b's which minimize E[(T-I)z] Or maximize Iy

2
ox, 01+ oX X 02 + o = oxyT
2
OX1Xp 01 * ox, b2 F eer = oxoT,

In matrix notation: Pb = ¢, sothatb = P'lc.
The oii, UXin’ and oX,T are determined from expected values,
definition of T and models for Xl .
Models: X; =G, +E or

Xij = G; + PE; + TE;; for traits with repeated records.

ij
= 2 2.2 2 2

E(GIGJ) = alJO'IO + aljozo + dl_]OOI + aleIJ(Jll + -
= 2

4) Rank animals using b;'s and Xj's, 1 = b'x with actual Xs.

147
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5) Probability statements when T| I=1, has a normal distribution are based on:
E(T|I = Ip) =1,
= - 2\ 2
V(T|I = Iy) = (-rfpot

4y = (zbiaXiT)/a%; b'c/o%.

I0 IO + toT|] = 1,

6) Theoretical comparison of selection programs
One path;
AT = DUI = DI'TIOT

Two paths, additive genetic value;

AS + AD

Ag/yr = =~
g/yr Lo Lip

where AS = I'TIgDGOG » €t¢-

Four paths, additive genetic value;

ASS + ADS + ASD + ADD

Ag/yr =
Lss + Lps + Lsp + Lpp
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DISTRIBUTIONS INVOLVED WITH PREDICTING ADDITIVE GENETIC VALUE

Distribution Mean Variance
1) P;, phenotypic Fp 0}2(
2) X, adjusted phenotypic record, P; - bp 0 0)2(
3) Gp,, additive genetic value 0 h%0 %
4) L, prediction of additive genetic value 0 r%lhzo)z( *
5) Gp,lla = I, additive genetic value for 1, (1r3ph%ed  *
animals with index = I
6) G Ay ~ I,, prediction error 0 (l-r%l)hza)z( *

x 2 - .
1y depends on T, but for T = G A

=bhioy.

r%l = ;ZXZLT. if not inbred, and
h ox

) bjox.T

M = ._._....._1_2_ if inbred.
(1+F)h 205



CHAPTER 13

SELECTION WITH MORE THAN ONE TRAIT MEASURED

The contribution of genetic effects and environmental effects to the correlation
between two traits can be described in the form of a simple model for phenotypic records
of traits 1 and 2 expressed as differences from their means:

X1=P1-py =01 +G  +E{ -4 =G + E

X2=P2-[J.2=u2+G2+E2-MZ=G2+E2 with

01231 =o§<1 = oél + oél, which implies 9G{E; =0;
012)2 = oiz = °2G2 + oéz, which implies 9G,E, = 0;and

°P1P2 = OX1X2 = 0G1G, + UEIEZ’ which implies oGlEZ = GGZEI
Note that oG 1G2 is the genetic covariance and OE{E, is the environmental covariance
between traits 1 and 2. In this chapter additive genetic effects will be assumed to be the
only genetic effects. If other than additive genetic effects are present, the procedures

described in this chapter can be changed easily to account for the other genetic effects.
The genetic correlation between traits 1 and 2 is:
7G1G2

2 2

151
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The environmental correlation is:

?Eq1Ep
T =
02 02
E1 "Ep
The phenotypic correlation is:
. 7G1G; " 7E(Ep _ XX
p
(02 +02 )(02 +02 ) 02 02
Gq E{"VGy E, X17Xy

SELECTION FOR MORE THAN ONE TRAIT
There are several reasons for considering more than one trait in a selection program.
1. Records of other traits may be used in selecting for a single trait.
2. Several traits may be economically important so that joint selection is desirable.
3. Several economically important traits are to be improved but other traits are at
an optimum level so that they should not be allowed to change.
4. In all cases, the correlated response in many traits may be of interest even if

selection is not for all traits.

Definition of Overall Genetic Value and General Problem of Selection
If m traits have linear economic value, then overall or aggregate genetic value for

animal a can be defined as:

m
Tch = VlGal + v2Ga2 + eoe + VmGam = j?l vj Gaj where

Gaj is the additive genetic value of animal a for trait j, and Vi is the net economic
value per unit of trait j. As before, a% = E[Tz].
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Since the G's are in units of measurement and the v's are values per unit, the overall
aggregate true or genetic value is in economic units -- for example, dollars or cents.
Next, suppose records are available for N traits measured on the animal to be
evaluated [Xl, Xz, RN XN]. These records may, but need not, be included in the m
traits included in overall economic value. The case when records on relatives are available
will be discussed in Chapter 14. Thus, records on several traits are available to estimate T .
The problem is, as before, to weight each record to estimate Ta with an index of the traits,
ie., Ta =]= lel + BZXZ + e + BNXN, where the B's are the weights which will
maximize ry and AT. Several approaches to estimating T are equivalent, although proving
the equivalence is not always easy. The general selection index procedure and properties
as described in Chapter 7 apply to the multiple trait case as well as to the single trait case.

The appendix to this chapter describes multiple trait selection index procedures in the

notation of matrix algebra.

METHODS USING PHENOTYPIC RECORDS EXPRESSED AS DEVIATIONS FROM
APPROPRIATE POPULATION AVERAGES
Records expressed as differences from population averages were considered for
selection using records on relatives for only one trait. All traits measured on an animal will

also be expressed as differences from their population averages.

Index Each Trait Separately

This method is perhaps the easiest to apply and to understand. The genetic value

for each trait is estimated separately using all the traits with measurements, X; (i=1, « + +, N).
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Then the indexes, Ij, for the traits are substituted for genetic values, Gj, in the definition of
T. For example, estimate Gj by Ij = bJ-le + bj2X2 + c0e 4+ ijXN' The first subscript

on the b's refers to the trait being evaluated and the second subscript to the trait being
weighted in the index. The equations which define the weights are the usual ones to

maximize ry and to predict Gj :

2 b b bey =
9%y LT 9XXp Pt ottt O9XgXN PN T 9X4Gj

2
oXlXZ bjl + OX2 bj2 + e + OXZXN ij = Oszj

. .
. L] . L]

2
IX1XN bjl + IXHXN bj2 + e 4+ OXN ij = GXNGj

Then, Ij = bJIXI + b2X2 + oo + bNXN .

This procedure is repeated for all m traits with economic values so that:
11=b11X1+b12X2 +"'+b1NXN
Iz=b21X1+b22X2 +"'+b2NXN,

I,=b

m1X1+bm2X2+ eee +meXN

Then because Ij estimates G;, the Ij will be substituted for Gj in the economic
equation;
T = vq Gl + vy Gz +oeee vy Gm so that the estimate of overall economic value

T=1= vq 11 + vy 12 +oeee vy Im where I is the overall index estimate of T.
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In setting up the selection index equations to determine the weights for each index,
the coefficients of the weights are the same (og(l, ox 1Xp0 etc.) no matter which trait is
being indexed. The equations to find the weights change in the first subscript of the b's (the
subscript for the trait being evaluated) and in the covariances on the RHS's. Depending on
the trait to be evaluated, the RHS's correspond to the traits measured and are of the form:

OXiGj (i=1, + -, N) for evaluation of trait j.
Because in this example X is measured on animal a and G; is the genetic value for

J

trait j of animal @ and X; = G; + E;, then E(XiGj) = oxiGj = aGiGj which is the

genetic covariance between traits iand j because OE;G; is assumed to be zero. The

i i h2n2 h d
covariance cGiGj also can be written as rgij ihj oX; oxj where ox. an axj

are the phenotypic standard deviations for traits i and j.

Although I can be calculated as Vlll + oo + lem’ obviously the overall index can

be rewritten as I = B;X; + ByXy + +++ + B\Xy because each Ij contains all the
X;. In fact, appropriate multiplications and grouping of coefficients show:

Bl=V1b11 +V2b2i+ eee +v Db

mPmi with, e.g.,

B1 =vibyg + vobpy + oo + vpbog -
The advantage of this method over the next one is that if economic values change,
the equations to find the b's do not have to be solved again. The new economic values are
simply substituted in the last step of the procedure, i.e, I = viI; + «+« + v I .
If Vi = 0, there is no need to find the Ij to predict Gj since Ij will drop out of the
overall index. The overall index, however, will include XJ if it is used in predicting genetic
value of some other trait and, therefore, overall merit. If all Vj = 0 except for one trait,

then overall economic value is defined as equal to the genetic value for the one trait that

is being predicted by all the traits.
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Index Overall Genetic Value Directly

The T in the general selection procedure to set up the index equations to find the
m

appropriate weights for the X'sis T, = X VjGj . The equations that define the 8's and
21

J
maximize Iy are as before:

02 B1 +0 By + e+ +0 BN =0
X1 1 X1Xo P2 X1XN PN XIT

L] L]
L]

OX XN Bl * OXXn B2+ vt o BN = oXNT
14N 24N XN N

The coefficients of the weights on the LHS's are the same as when finding the
weights to index each trait separately. The RHS's (the OXT> i=1, -+, N) are the
covariances between X] and the linear function, VIGI + oo + Vme . By the usual rules
for finding the covariance between linear functions and by assuming no covariances between
genetic values and environmental values:

E(X;T) = OX.T = Cov(X;, v{Gy + =+ + v, ,G )

= vloGiGl + V2°GiG2 + e + vmaGiGm

m
P VjaGiGj

j=1

2,2 _
Recall that OGiGj = rgij hihj oxiaxj and also note when G; = Gy that

9G;G; = °2Gi = h; c%(i . Solving the equations for the B's then gives the index

N

[=8:X; + ByX5 + ++« + BXp which is the same index as found earlier when indexing
each trait separately and then weighting by economic value as I = vqI{ + ««« + v I ..

Proof of the equivalence of the two procedures is in the appendix.
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EXPECTED RESPONSE FROM SELECTION FOR ECONOMIC VALUE
Total response in economic value can be determined as before by either
AT = Doy or with more difficulty with AT = ryDowhere a% can be found as the variance

of the linear function:

N
V() = E[(.Z:1 ﬁixi)zl and rqq = \JzBiOXiT/O%
i= '

where the OX.T (i=1, »++, N) are the covariances of linear functions and o% is the
variance of the linear function, T = ‘r):nl VjGj.

Often the expected correlatedl;esponse for one or more traits is of interest when
selecting for some overall defined economic value. For any index, whether the selection
index or any other, the expected correlated genetic response for any trait j can be found by

the regression of Gj onk

Gj = “Gj * bGj~I(Isel - BD

where the average selected I, Ll is:

uy + Doy and Gj = KG; * AG;; thus, AG; = [Cov(Gj,I)]D/aI where

Cov(G;,I) = COV(Gj, lel + e + BNXN) =

ﬁl"Gle +oeee ﬁzoGsz +oeee 4 BN"GjGN'
This formula holds for any trait whether included in T or I. However, the correlated
responses of the traits included in T when weighted by their economic values will equal
total economic response; i.e., AT = v{AG] + v5 AGy + =+ + v, AG, .

An example follows for selection for two traits. Included are examples of

comparing expected correlated responses in the two traits when selection is for only one

of them using either both traits or only one trait.
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EXAMPLES
Selecting For More Than One Trait

Let milk yield = trait 1, type score = trait 2

2 _ 2 2 _ 2 _ _

Xy = (2000 1b) Xy (2%) OX X, =400 b % I = .
2 _ 2 2 _ 2 _ _

Gy = (1000 1b) G, = (1%) 9GG, =200 b % ry =
2 2

hi = .25 hs =.25

Suppose v, = $.025/Ib and v, = $50./% .

2

4000000 by + 400byy = ox,G, = oG, = 1000000
Thus, I; = 2475 X, + 252525 X, .
Then find 12 = b21 Xl + b22 X2
4,000,000 by; + 400byy = ox G, = 200

Thus, I, = .00002525 X; + 2475 X, so that:
1= (0251 + (501,
= [.025(:2475) + 50(.00002525)]X; + [.025(25.2525) + 50(.2475)]X,

I= lel + BZXZ = .00745 Xl + 13.006 X2 will be the overall index.

Total Response

2 2 2 2
AG =D op a% = ‘Gl °X1 + 32 °X2 + 28182 0X1X2 =976 and

AG =D 976 = 3124 D (3), total expected economic response.
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Correlated Responses

[Cov(G5,1)] D

AGz = O‘I

with
Cov(Gyl) = By 0G,G, * 2 asz = .00745(200) + 13.006(1) = 14.5;

14.5
dAG, = 19 p - 464% (D).
ame a2 = 3x; 64% (D)

[Cov(G ]

AG] = OI

with Cov(Gyl) = B10G;, + B2 9G,G, = 10051

and AG, = 01p - 3171p (D).
3124

As it should, AG = v; AG; + v, AG, = .025(321.7 D) + 50. (464 D) =

804D + 232D = 3124 D = Doj.

If the correlated response in another trait, e.g., fat test = trait 3, is of interest,

then:
_ [Cov(G3.D] )
AG; = O—ID with Cov(G3,I) = B 9G3G; * P2 9G3G,:
2 2 2
If r =-0,T1 =.1, oy. =(.3%)"°, and hy = .5;
then:
2
_ 2 2 _ 2 _
°G1G3 * Tgr3 |Gy %G = 60 V(1000)2(.045) = 127, and
i 2 2 e -
9G,G3 = Tgp3 N °G2 °G3 = .10 y(1)“(.045) = .02121.

159
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Then: Cov(G3,I) = .00745(-127) + 13.006(.02121) = -.67 and

I (X)) P .
AGj = (31‘24D 021 D (%).

Selecting For One Trait Using Two Traits
Suppose v, = 0, then vy can be any positive nonzero value because obviously v4
will not change ranking based on I = v{I;; unity is a convenient value for vy .

If vy ® 1, then

[Cov(G1,1)]

AG]. = —-C}—I--—D bUtI = Vlll SO that
v1Cov(G1,I Cov(G1,I
AGI = V1 G 1)]D =MD asforv1= 1.
V1 011 011
Thus for vi=1 and vy =0 I=1; = 2475 Xy + 25.2525 X2.
Response
AGl = AII =D O'Il y

2 2 2
of, = (.2475)20X1+(25.2525)20X2+2(.2475) (25.2525) 0¥ X, = 250,556 and

of, =500.56. Thus, AG{ = 500.56 D (Ib)

1

Correlated Responses

When selecting for G using X; and X,:

2
[Cov(Gy,14)] .. [0119G,G4 * P129G,)] o 4TS

o1 ~ 500.56

D =.149 D (%)
O'Il

[Cov(G3,17)] D = [b1] 9G3Gy + b2 0G3G2]D

AG
3 o1

= some practice ?
O'I 1
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Comparison With Selecting For One Trait Using Only Record of That Trait
Suppose I; = byX; = h9X; = .25 X;

Response

2
AGy = Doy 5 of, = (.25)2aXl = 500; thus,

\
AG; = 500 D (Ib)

Correlated Response

[Cov(Ga,1]
o]

_ 19G,Gyl ) _ 12520001 = 1D (%)

011 500

AG2=
1

This correlated response is the same response expected as when selecting indirectly

for trait 2 using only trait 1 because the genetic covariance is positive.

Comparison With Selecting For One Trait Using A Record of Another Trait

Select for G, using Xq by I, = byXy:

2 . _ b= UGG _ (00 _
lebl = UXIGZ = OGle ; bl = 5 = 27000,000 = .00005
9X
1
X _ . _ 22
12 = ,00005 Xl ; AGy = DOIZ ; 012 = \R.OOOOS) ox =.1

Response

Thus, AG, = .1D (%) as with selecting for G using X .
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Summary

These examples illustrate the method of comparing different selection systems:

AT for
Selection for Based on AGq AG, 025 = vy &50 = vy
025 Gy + 50 Gy X1 Xp 321.7 b 464 % 3124 §
Gq X1 Xy 500.6 1b 149 % 19.96 §
Gq X4 500.0 1b 100 % 17.50 §
G, X4 500.0 1b 100 % 17.50 §
Gy X5 100.0 1b 500 % 2750%

*All expected responses should be multiplied by D.

APPROXIMATE PROCEDURE FOR SELECTING FOR MORE THAN ONE TRAIT
Often the genetic correlations needed to find the weights for the index to estimate,
T =v{Gy + «++ + v,G,, are not known or are estimated with not much reliability. In
addition, the equations to determine the weights may be difficult to solve if many traits are
included in the index. An approximation which is easy to use is to index each trait using
only records for that trait; then substitute those indexes into the economic value equation.
This approximation can also be used when records of relatives are available as will be
discussed later. The approximation is the same as the exact procedure when the phenotypic
and genetic correlations among the traits are all zero. In fact, the assumption made to
obtain the approximate index is that phenotypic and genetic covariances are very small.

When only one record is available on each trait of the animal to be evaluated, the

indexes for each trait using only that trait are:

_ 2
I = hiX;.
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The approximate overall index is:
I = vihdX; + voh3Xy + +oo + v h2X .
The phenotypic records are weighted by the product of their economic values and
heritabilities which would be the weights found by solving the equations for the B's when all

the phenotypic and genetic correlations are zero:

ox Bp + 0 = Vlhl2 0; + 0's
1 1
og( By +0s = v2h22 og( + 0's
2 2
2

. 2 2
0's + vmhm oy

[

Os + o
X Pm

Some research has indicated that this approximation may be better than using poorly
estimated genetic and phenotypic correlations to determine the weights for the "exact"
procedure. [Even if the correct genetic and phenotypic correlations are known, the
approximate procedure may be nearly as good as the exact procedure and will be much
easier to apply. In such cases, how good the approximation is may be found by calculating
the correlated responses expected for each economic trait when selection is by the
approximate method. The response in each trait can be compared to the response expected
from the exact procedure. The responses for individual traits can be weighted by economic

values to compare economic responses expected by the exact and approximate procedures.
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Let I, = B; X{+ oo+ 31;1 X, be the approximate index. Then the correlated

response for trait j using the approximate index is:

Cov(G;,I
AG. = [Cov( j *)]D

where
.] (J‘I

*
* * *
E(Gj L) = Cov(Gj,I‘) = BloGle + B, oGsz + oo + BmanGm .
c%* will be determined by the variance of a linear function. Care should be taken to -

include the correct phenotypic covariances such as oy 1X2 which were assumed to be zero

in determining the approximate 8's.

Example of Approximate Procedure
Suppose that the selection is for milk and type score with variances and covariances
as in the previous example. In the example, v; = .025/Ib and v, = $50./% .
The approximate procedure assumes the phenotypic and genetic covariances are zero.
Method 1:
The equations to find the index for milk are:
4,000,000 by; + 0 by, = 1,000,000

0bjy + 4 by, 0 ;and

- _ 2
Il* - 25 Xl + O X2 = hlxl .
The equations to find Iz* , the index for type score, are:
4,000,000 by; + 0byy = 0
Oby; +4byy =1 ;and
- )
Iz* - 0 X1 + .25 XZ = h2X2 .
Then L =vy Iy, +vp I, = vihiXq + vahXp = .025(25) Xy + S0(25) X,

Note I. = .00625 X; + 12.500 X, as compared to the optimum index of

I =.00745 X; + 13.006 X, .
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Total and Correlated Responses
Total response would be computed incorrectly as:
AT = Doy, ; because o%* = (.00625)2 a§(1 + (12.5)2 c%(z + 0 = 781.25 and
oy, = 27.95 are not correct because OX1Xy is not zero.
2 _ 2 2 2 2 _ .
Actually o, = (.00625) oxl + (12.5) °X2 + 2(.00625)(12.5) OX1Xo = 843.75 with

o1.= 29.05.
*

The correct expected total response can be computed as:

[Cov(T,1,)] b

o1,
T = v4{G{ + v9G, . The correct expected total response can also be computed from

AT = where I, is computed using the correct oy 1% and

Vl AG]. + V2 AGZ where:

2
[Cov(Gy,1,)] [.00625 aGl + 125 UGlel
AG, = D = D = 3012 b (D) and
o, 29.05
2
.00625 o + 125 0~ ]
Cov(Go,1 [ G1G G
aG, = VO, 2 2D = 473 % (D)

o] 29.05

*

Thus, expected AT = .025(301.2 D) + 50(.473 D) = 31.18 D. If the correlated responses
are computed assuming 9X1Xo and oG Gy = 0, the incorrect expected responses are:
AG = [Cov(Gq, 1)ID/ o1, = (00625 oél)D/27.95 = 223.6 Ib (D) and

2
AG, = [Cov(Gy, Is)]D/ o1, = (125 OGZ)D/27'95 = 447% (D).
In the incorrect calculation, the genetic covariance term in the numerator was ignored and

in the incorrect of,, the phenotypic covariance was ignored.
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The three sets of calculated responses that were compared are summarized below:

1) using the correct covariances,

2) using zero covariances to approximate the index but using the correct
covariances to compute response, and

3) using zero covariances when really not correct.

Computing of Expected response / D
index response AG, (Ib) AG, (%) AT = v{AG+v5AG,
correct correct 321.7 464 31.24
approximate correct 301.2 473 31.18

approximate  incorrect 223.6 447 27.95
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APPENDIX TO CHAPTER 13

MULTIPLE TRAIT INDEXES IN MATRIX FORM

Finally, a place where matrix algebra and matrix computations make problems of

selection index much easier.

Let g = vector of genetic values of m economically important traits for animal «,
x = vector of phenotypic records on the same traits (in general, the vector
could include records on different traits from those in g; the algebra is a
little more difficult so here x has same traits as g) ,
v = vector of economic values for the traits in g,

G = (g1 g *°* gy) the genetic variance-covariance matrix with the
g the columns of G ,

G = E(gg) = E[xg] when x and g are the same traits, and

P = the phenotypic variance-covariance matrix of records in x,

P = E(xx').

Define Overall Economic Values

T=vg = gv
Indirect Prediction of T

Predict Tj , the additive genetic value of trait j;

The RHS's:

E(x (genetic value of trait j)] = g
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Then:
. =g b =Plg. . = b
PbJ g bJ P g and I_] b ix

Note that for traitsj = 1, -+« , m:

(b1 b2 brn) = P'1 (gl g gm) and

Il = b'lx, 12 =byx, eee I = b, x
Predict T from the Ij :
{ A _1
Iy | by 2P
12 . (] P—].
b, 9}
I=v ) =v . jx =V : = v'GP'lx
I L]
4 \ \
by by
b'2 b:z

Note fromv' | . |x =8'x thatB' =v | . | andB = (by b, -~

m) m,
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Direct Prediction of T
Predict T = g'v;
RHS's :
E[xT] = E[xg'v] = Gv
Then :
PB =Gv, 8 =PIGv,and I = 8%
Note :

I = 8'x = v'GP-1x as with the indirect method.

Calculations With I and T
V(I) = E[8'xx'8] = B'E[xx']8 = B8'PB
V(T) = E[v'gg'v] = vE[gg]v = V'Gv
Cov(I,T) = E[8'xg'v] = B'E[xg']v = B'Gv
From P8 = Gv, V(I) = B'Gv = Cov(I,T)
From Gv = P8, Cov(I,T) = B'PB = V(I)

I = (B'Gv/ v'Gv)-5

169
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USING RECORDS ON ALL TRAITS OF RELATIVES

When all records of all traits are used to find the index for overall genetic value,
covariances such as the one between a record for trait 1 of relative 1, Pips and the record
for trait 3 of relative 2, P4, are needed to set up the equations to find the proper selection
index weights. The usual models for such records are:

Pll = Gll + Ell and Py3 = 023 + E23 . Then,

Cov (Py1,Pp3) = Cov (G11,Gp3) + Cov (Eqq,Ep3) + Cov (Gyq,Ep3) + Cov (Gy3.Eqq)-
All terms except Cov (G11,G,3) and, perhaps, Cov (E{,E53) usually are assumed to be
zero. The remaining covariance is the covariance between genetic value for trait 1 on
relative 1 and genetic value for trait 3 on relative 2. If these are measured on the same
animal, i.e., if relative 1 is relative 2 then the covariance is the additive genetic covariance
between traits 1 and 2. In general, the additive genetic covariance between relatives is
120G, Gz » the product of the additive relationship between the relatives and the genetic
covariance between the traits. This form of the covariance corresponds to the additive
genetic covariance between relatives for the same trait, alzoé . Thus, if only additive
genetic effects are assumed, Cov (G;;,G;

iy

i’ and j and j' are traits j and j'. If the further assumption of no covariances among genetic

) = ap oGjGj' where i and i' are relatives i and

and environmental effects and among environmental effects on different relatives is true
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then,

COV(Plj’Pl'_]') = aii. OGJ GJ, but wheni = i,

Cov(Pij,Pij.) = °Gj Gj + 9E; Ej as before, and wheni =i'andj = j',
2 2 2
Cov(Pij’Pl_]) = O'Pj = OGj + UEj

The notation has been changed so that Pij is a single phenotypic record for trait j on
relative i since the selection index will use average records on all measured traits for all
relative groups. Thus, X} = X]-j will be the average of records on relative groupi for

trait j (ny records for each of py animals in the group). The overall index for

m N
T =X viG;willbel = ¥ By Xy . The equations which determine the 8's come as
i=1 k=1

usual from maximizing rqy or minimizing E(T - 1),

As in Chapter 13, finding the index directly and weighting the separate indexes for
each of the economic traits by its economic value are equivalent. The procedure for finding
the index for each trait separately using all the X's and then putting them together as
I= %1 viI; will be described.

i=1

The basic step is to estimate G, the additive genetic value for trait j for animal q,

aj

from all X's (Xk’ k=1, ooy N) as Iaj = bjl Xl + b2 XZ + -+ b'N XN. The

relationships among the relative groups and the animal being indexed must be known.

COEFFICIENTS OF THE SELECTION INDEX EQUATIONS

The general equations to find the b's to predict Gaj are:

02 bi1 + o biy + = + 0 b; =0
Xy 1 " Xy Xp P2 X1 XN "IN X1 Gyj

oX, Xn Bil * 9% Xn P2 * ~ * Ok DN = OXnGej -
14N 7] 24N ) XN ) N Yqj
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If the usual simplifying assumptions are true, the variances and covariances can be
written in terms of phenotypic and additive genetic variances of the traits and of the
phenotypic and additive genetic covariances among the traits.
Variances of the X's, og( :
k
1+(nk—1)rj 2

_1 a..h.
2 2 2 nk * Pl 2iihy

axk = axij = on o where

o%,, is the phenotypic variance for trait j,
J
I is the repeatability for trait j,

hj2 is the heritability for trait j, and
a;; is the additive relationship among animals in group i.
Covariances among the X's, OX Xyt

There are three possible types of covariances:

1) Ifk=ijand k'

ij (different relative groups, same trait j),
IXy Xpr = OXi Xy = Al chj asbefore where a;; is the additive relationship
between groups i and i'.

2) If k = ijand k' = ij' (same group, different traits),
ap.p., *+ -Dasioz. G
P] PJ (Px-Dajj GJ i
Pk

where

Xk Xk T XXy
°Pj Pj' is the phenotypic covariance between traits j and j' and
a;; is the relationship among animals in group i.
3) If k = ij and k' = iYj' (different groups, different traits),

OXy Xy = Xy Xyj = i 9G;Gy



174 Selection Index
Covariances on the RHS's, OXkGaj:

The covariances between the X and G aj will be of two types:

1) If k = ij (same trait as Gaj) then,
e 2
OXkGaj = aXij Gaj = Ajg oGj'
2) If k = ij' (different trait from Gj) then,

9Xk Gaj = OXij- Gyj = Aq oij Gj - N
Solving the equations gives the weights for I,; = x bjx Xk, the index for animal
k=1
a for trait j. This procedure is repeated for all economic traits. The coefficients of the b's

are the same for all sets of equations but the RHS's change depending on the trait being

indexed so that the b's are different.

m N
Finally, I, = ¥ vijIy = ¥ B Xg .
i=1 k=1

EXPECTED RESPONSE FROM SELECTION
Asusual AT =D o}. Although o% is messy to compute, all the terms are found in
the coefficients in the equations to find the weights; o% = B'PB.

The correlated response for any trait ¢ can be computed as usual as
Cov(G,, I
- (Gac 1a) D
o]

C

Again Cov(G,,, I,) is messy but can be computed as:

ac

Cov(Gac,Ia) = BlCov(GaC,Xl) + BZCov(Gac,Xz) + e+ BNCOV(GQC’XN)

where Cov(G ., Xy) = COV(Gac’Xij) = aiaaGch and (if ¢ = j) = aia"%}c .

APPROXIMATE PROCEDURE WITH RELATIVES
As before, approximate weights can be determined easily by assuming the phenotypic

and genetic covariances among the traits are zero. Then many of the equations to find the
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weights have zero off-diagonal coefficients, i.e., all those between different traits. The
RHS's are relationships times genetic variance or are zero if indexing each trait separately
or are economic values times relationships times genetic variance if obtaining the overall
index directly. The approximate procedure is the same as using records of relatives for only
the trait being indexed. Then the approximate indexes for each trait (based only on records
for that trait) are weighted by their economic values.

When the phenotypic and genetic covariances are really zero the approximate
procedure is the same as the exact procedure. How much better the exact procedure is than
the approximate procedure when the covariances are different from zero and are known can
be determined by calculating the correlated responses by both procedures as was illustrated
when only records on the animal were considered.

If the phenotypic and genetic covariances are estimated from a small amount of data
so that they may be seriously in error, especially the genetic covariances, then the
approximate procedure may be more accurate than using the exact procedure with incorrect
covariances. The differences in the procedures, however, cannot be determined without

knowing the correct covariances.

EXAMPLE OF APPROXIMATE PROCEDURE WITH RELATIVES
The following example with two traits measured on the animal and on 50 paternal
half sibs (phs) will illustrate the exact and approximate procedures and will demonstrate

how to compare the expected selection responses from both if the correct covariances are

known.
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Let:
X1 = a record on trait 1 of animal «a
X, = arecord on trait 2 of animal a
X4 = average of single records on trait 1 of 50 phs of «
X4 = average of single records on trait 2 of the same 50 phs
Given: of,l - (2000 1b)2, of,z - 3% he = 25, by = 36

rg =2, rp

Thus op, p, = -1(2000)(3) = 600, oG, G, = 2 Y(25)(36) (2000)(3) = 360,

2 2
%G, = 25(2000)% = (1000)?, %G, = 36(3)2 = (1.8)%.

=.1 vy = $.05/1b, vy = $25./%

Need: I = lel + BzXz + B3X3 + B4X4 .

Exact Procedure
To find II = b11X1 + b12X2 + b13X3 + b14X4 solve:
(2000)%b1,+600 by, + 25(1000)%b;3 + 25(360) bys = (1)(1000)2

600 byq+(3)% byy + 25(360) byg + 25(1.8)%by4 = (1)(360);

25(1000)2b,; +:25(360) b+ [1*3%625] (2000)2b13+[§20_;3;419] byg = 25(1000)2

25(360) b11+.25(1.8)2b12+[ﬂ‘%‘ﬁ] b13+[1*54641] (3)2 by = 25(360)
Then, I; = 209 X; + 20.56 X, + .604 X3 - 6.22 X, .
To find I, = by1X; + bppXy + by3X3 + byyXy, the equations have the same
diagonal and off-diagonal coefficients but the RHS's become:
(1) (360), (1) (1.8)2, 25 (360), and .25 (1.8)% .

Then, I, = .000032 X; + 306 X, - .0000096 X5 + .575 X,
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Thus, 1 =.051; + 25 1,
= 81X + ByXp + B3X3 + 84X,
= .01125 X{ + 8.68 X5 + .02998 X3 + 14.07 X,
oF = BPB = B2 (2000 + By (3)% + - = 2314 and of = 48.10 .
All of the terms, other than B8's in o% came from the coefficients of the b's in the equations

to find the b's, i.e., from P, the variance-covariance matrix of the X's.

Correlated Responses

AT =o;D=481D .
Cov(G, 1,1
of
_ [81Cov(Gy1,X1)+ B2Cov(Gy1,X)+ B3Cov(Gy1,X3)+ B4Cov(Gy1,X4)] -
_ -
(B1(1)(1000)%+ B2(1)(360)+ B3(5)(1000)+ B4(3)(360)]
_ D
o1
= B15 b _ 4312 (D).
23.10
Cov(Gn,]
AG, = CovGa2) [y | o6 %(D) .
o1

The terms in Cov(G,¢,I) other than B8's come from the RHS's of the equations to

find I; as do terms in Cov(G ,,,]).
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Approximate Procedure
Pretend fg = Tp = 0 so that 9P1Pp = °G{Gj = 0.

The approximate procedure will be the correct procedure if Tg =Tp = 0.

To find Il"‘ = bl’"1 Xq + blt? Xy + bl"é X3 + bl’z X4 solve:

(2000°bg + 0 b + 25(1000%bf5  + 0 b = (1)(1000)2
0bf + (3)%b5  +0bf + 25(18)°by = 0;
25(1000)%b;5 + 0 byl + 08125 (2000b % + 0 by = 25(1000)
0 b + 25(18)%bsh + 0 b +.1082 3)%bgy = 0.

Notice that:

I = 212 X; + .606 X5 uses only records on trait 1.
To find Ly the RHS's change to 0, (1)(1.8)?, 0, and (1/4)(1.8)%. Then,

L = 308 X, + .575 X, uses only records on trait 2.

Then, I* = .05 I;* + 25 L} = 0106 X; + 7.71 X, + .0303 X3 + 14.39 X,
Note that Bl* = vy bl"‘l, BZ* = vy b2*2, 133"‘ = vy bl’g and 84* = vy bz";r

Ifr, =1, =0 then o, = i§1 ® i*)%ii - 1824.5 and oy, = 42.71 . Then,

COV(Gqrl¥) B (1)(1000)? + 85" 25(1000)>
G, =
1

= D =425.71b (D)
OI* 42.71

B (1)(18) + 8] (%)(1.8)2

COV(Gyo,1*) D - D = 857 o
5= = =, 2 (D)
O] « 42.71




Traits of Relatives 179

If Tg O T # 0, then aiz* and the correlated responses as computed above are
incorrect because the genetic and phenotypic covariances have been ignored. The correct
correlated responses and correct a% , can be computed if the correct covariances are known

even if the index is not the best index:

2 -
O1x =,
i

Me

(Bi*)zog(, +2X X Bi"‘ Bj* °X1Xj [The correct covariance terms in
1 i >

the variance of the linear function I* have been added].

of, = 18245 + 505.3 = 2419.8 and oy« = 49.19,

COV(Gqyyd®) = B (1)(1000)% + B (1)(360) + B3* (:25)(1000)% + B,* (:25)(360)

18181.8 + 4070.1 = 22252.5 and

COV(Ggpl®) = B (1)(360) + B (1)(1.8)% + B (25)(360) + B (25)(1.8)?

36.62 + 6.54 = 43.16.

These covariances now contain the genetic covariances between the two traits.

Thus, the correct correlated responses are:
_ 222525

D = 4524 1b (D) and AG, = %-;%g_ D = .877 % (D) .

The three sets of calculated responses can be compared and are summarized below.

AT =
Computing of
index response AG (Ib) AG, (%) 05 AGqy +25 AG,(9)
Correct correct 481.2 962 48.10
Approximate correct 452.4 877 44.55

Approximate incorrect 425.7 857 42.71
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METHODS USING STANDARDIZED RECORDS

All the procedures that have been described can be applied using standardized
variables. Much of the early technical literature expressed records of all traits in a
standardized form. In addition, the amount of relative economic emphasis on each trait
expressed in value per standard deviation of the trait, v;, is appropriate when the records
are standardized. As will be seen the final selection index is the same whether records are
standardized or not.

If records on the traits are standardized the equations to find the selection index
weights can be written in terms of rp's, r,'s, and h2's. Standardizing puts all variables on
the same scale with mean, zero, and variance, 1. The standardized records are then
expressed as fractions of standard deviations above or below the mean.

Records on traits 1 and 2, say Xl and X2 are standardized as follows where Yl and
Y, are the standardized records for traits 1 and 2:

X1 exy

X2 - BX,
Yl = —— —  and Yz z: —_—
O’xl 0X2

If E[ ] is the expected or average value of what is in the parenthesis then:

I o . 1 i
E(Yy) = py, =E X = X [E(X1) - E(uxl)] = o [uxl - uxl] =0

Similarly, Ky, = 0.

X -px 2
oX

By definition U%{ = E(Y - “Y)z = E = Lz E(X - p.x)z . But by definition

ox

E(X - ux)? = 0% so that 0y = E(Y - uy)? = ox/ox = 1.
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Correlations And Genetic Variances Of Standardized Variables
Standardized records can be used for estimating overall genetic value or genetic value

for a particular trait. If vi' is the economic value per phenotypic standard deviation of trait

i then:
G G
T=vy 1+vé 2 . and
X4 .6)
Xj
T=I'=BiY1+BéY2+--- where Y; = —
oX;
The equations to find the weights (8;, i=1, .., N) are:
2 . ,
v, By+ oY1 Yo By + = = °Y;T
o Bl + o5 B +- =o T
Y1Y2 *1 Y, "2 YT -
The diagonal coefficients, ozY_ , for single records are all 1.
i
The phenotypic covariances, ;Y rPij:
X: X
oy.y. = Cov i 1 oX.X: =T
i11j i Pij

°xi’°Xj OXiOXj

The covariances on the RHS's, oYi T, will be made up of functions of genetic covariances
and often a genetic variance of standardized variables, i.e.,
Gy G Gy Gj Gm Gij

oy.T =Vvq Cov [—, + va Cov | ——, + = +v' Cov
o 9Ky OX;) 7X2 X ® “Xm 7Xj
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The genetic covariance between standardized variables i and j is:

Cov Gi,Gj = 1
oX; oxj oxioxj

Multiplying both numerator and denominator by oGioGj gives:

Cov Gi,_G_j =TIg.. h-zh.2 .
(:rxi OXj gU 1)

When i=j, the equation shows that the genetic variance of a standardized variable is h% .

Thus, the equations to find (8:, i=1, .., N) can be rewritten in terms of genetic and
phenotypic correlations and heritabilities.
The genetic and environmental variances for a standardized variable, Y, can be

shown in another way.

X-ux _Gx*+Ex _Gx  Ex

Y = sothat — =Gy and — =Ey
oX D, ¢ oX oX oX oX
0’2 0'2 02 02
G E G E
o%(= X+ there X=02G =h2and X=02E =1—h2
2 2 2 Y 2 Y
9x °¢ ox ox

Equivalences In Using Standardized And Un-standardized Records
The value of a standard deviation of trait j is v J' and the value per unit of trait j is
Vi which gives the equivalence, vjf = Vj oxj

The indexes I' and I both estimate T and so are equal, i.e.,

I' = Bin + e+ BNYN == lel + s+ BNXN .



Traits of Relatives 183

Thus 8!Y; = 8;X; but Y; = Xj/axj so that B; = Bjox; and 8; = Bj’/oxj

If each standardized trait is indexed separately as:
G; ox; =1j =bj Y1+ = + by YN ;
then, Ij is in fractions of phenotypic standard deviations so that:

Ljox; = 1j = G; and I =1 ox; -

To estimate overall economic value:

A

T=T = viIi o vI'nI;n and T = 1= Vlll + e 4 vam,so that VjIj = vJ! ij.

Because Ij’ oxj = Ij and vj' =V oxj ; then vJ! Ij =vj oxj Ij/axj = VjIj .

When selection is for one trait using several traits, an economic weight of one is
often assigned to the trait, say j, being evaluated. If standardized records are used, then
vj' =1= Vjaxj with vj = l/axj. However, what is wanted in the nonstandardized index

is Vj = 1. To convert the standardized index with vJ! = 1 to a non-standardized index with

vj = 1, the standardized index must be multiplied by °Xj which would be equivalent to
\ J = oxj . Then, as stated,
Ij = oijj' = oxj [(bj'lxl/oxl) + (bj'2X2/oX2) R (bj'NXN/GXN)] so that

bj1 = bf]"Xj/UXl ; b2 = bj'zoxj/oxz 5 ij = bj'NoXj/aXN .

Equations To Find Weights
As before, the overall index can be found either by indexing each trait or by indexing
T directly. The equations to find the weights to index each trait separately are given below

assuming one standardized record on each trait of the animal being evaluated.
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To find the weights for I; = bj'l Yq + -+ bj'N YN solye:

J
' ! ! = 2 2
b1 * Tpi2P2 * 7 ThINOiN T gy M1 P
' | Vo 2 2
1 * P2t Tpon DN = Tgp A B2l
r. b, +r gyt by =T hzh-2
PIN"j1 ~ "P2N j2 N~ BN NN

Repeat for each trait (j=1, ..., m). Then the overall index:
I'=1=v i+vé[é+"-+vl'nl;n
Note also that:
I'=1-= Bin + BiYZ o+ Bf\IYN = lel + BoXy + =+ BNXN -

If solving directly for I' then the equations are:

Bi + rPlZBé + o+ rP1NBN =0y, T

NP1 * TN B2t BN = ovNT

where the typical RHS:

, 22 22 2.2
oYiT=V1rgi1\lh1hi *Vzrgiz«thhi * " Vi Tgim N Pl

Correlated Responses
Standardized correlated responses can be computed in terms of standardized

covariances and then converted to the usual units by multiplication by the standard
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deviation. For example, for trait ¢ the standardized correlated response is:

. 22 . 3.2
Cov(Gel) Birgy JBihe * =+ BNTgon + PNPC

AG! =
¢ or oy

D.

Then AG, = oxc AG'c .

If unstandardized genetic covariances are used and because the B; can be determined:

_ Cov(GoD) B10G .Gy * " * BNIG .Gy

] ]

D as before.

C

Note o = o since I = T'.

The following example illustrates use of standardized variables when three traits are
measured on the animal being evaluated and when the three traits have nonzero economic
values. A part of the example also illustrates the consequences of assuming the genetic and

phenotypic correlations are zero.

Example
Given: vi=3, vy=2 wv3=1 (the relative economic values of phenotypic
standard deviations of the traits)
oX4 = 6, 9%, =3, °X3 =4, h1 =7, h2 = .8, h3 =.9
rp12 =1, rp13 = .2, rp23 =3, rg12 = .6, rg13 =5, rg23 =4
Find: I'=vilj +vyl5 +v3ls =81 Yq +BiY2 +BéY3
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For Ii solve: bil +.1 biZ + .2 bi3 =.7
1bi; + biy +3bj3 =6 (N(B)
2bj; +3bjy + by =5Y(N) , sothat
I = .632 Yp +.335 Yp +.170 Y3

For 12' the RHS's become .6 y(.8)(.7) , .8, and .4 (.8)(.9) with:
Iy =366 Yq + 751 Yo + .041 Y3

For I3 the RHS's are .5 VDT , 4 (9)(.8) ,and .9 with:

I = 223 Y1 + .066 Y, + 835 Y3 .

To find I' directly solve:

Bj +.1B5 + 283 =3(7) +2(6) Y(T)(B) + (1)S) V(DI
1B+ By +.3B3=3(6) V(87 +28) + (1)(4) V(8)I9)
28]+ 38+ r = 3(5) VCIOCT) + 2(4) V(I9)(8) + (1)(.9)

ThenI' = 285 Y; + 2.57 Y, + 143 Y5 = Iand oy = 47 .

w

The correlated response in trait 2 is:

AGj - (2.85)(.6) V(BY(T) + (257)(8) + (143)(4) V(BY(D) p
47
= 813D

and AG, = 5(.813)D = 4.065D .
Now assume rg's and rp's = 0 as for the approximate index.
The overall equations reduce to By = 3(.7), Bé = 2(.8), and B:;, = (1)(.9)

sothatI' = 21 Y, + L6 Y, + 9 Y3, o%. = 7.78 and oy = 2.79,

Cov(Gz',I') = 1.28 and AG, =229 D, if rg's and rp's are really zero.
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If rg's and rp's are not zero but are as given above and if I' = 2.1 Yy + 1.6 Y, + .9 Y3
2 o 2.53
then o, = 7.78 + 229, op = 3.17; Cov(G,,I') = 2.53 and AG; = (5) 377 D =399D
as compared to 4.06 D using the best index and to the 2.29 D calculated by using

zero correlations when calculating expected correlated responses.

ANOTHER STANDARDIZATION
Some research papers have used another standardization procedure which gives all
of the standardized variables a genetic variance of 1 and a mean value of zero. The

standardization is to subtract the mean and divide by the genetic standard deviation:

X—ux_Gx Ex

Y = +
°%Gx %Gx 9Gx
Gx Ex | 1-n2 1
\Y% =1 and V = so that V(Y) = —

For standardized records on two traits, the phenotypic covariance is:

X X 9X1 X
Cov(Y1,Yp) = Cov 1 , 2 = __1__2_ = Tpyp _1_
o o g o
Gx; “OX, Gx,76x, |h12h22
o
le GX2 GXIGXZ

Genetic covariance is Cov(Gy.,Gy,) =Cov , = =Tg. ..
r=r2 o o o o 812
G Xq ze G X4 ze
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If records are standardized in this way, the equations that determine the correct

weights (bj'i', i=1, ..., N) when selecting for trait j using standardized records on the animal
to be evaluated, I;' = bj'i Yq &+ bj'I'\IYN’ are:
___1_ b + 1 r 2+ + ; r Moo=
2 J1 P127j2 PINTIN " gj1
hy hZh? h2h2
172 1°N

I S S SR N e s Lopro=y
PIN °j1 P2N “j2 2 N &N
h2p 2 h2h 2 hn
10N 20N

Note that when j = i, Ig. = 1.

ji
The extension of this procedure to T = X v Jf' Gj is straightforward. Each economic
J
value is given in terms of value per genetic standard deviation, v;' . The index for trait j

J
in standardized form can be converted back to non-standardized form as:

I; = 9G; I . Similarly T=T=vily + = +vply.
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SELECTION INDEX FOR CATEGORICAL DATA

Some traits are subjectively scored on an either-or basis; that is, they are assigned to
a discrete category. For example, calving difficulty for a particular birth might be scored
in one of three categories: 1, no difficulty; 2, some difficulty; or 3, great difficulty.

One method of analysis is to simply assign a single score to each birth. Two simple
ways of doing that have been used: a) the score is the same as the category, e.g., a some
difficulty birth would be scored as a "2" and b) the categories are assigned economic values
and the score is the economic value associated with the category, e.g., if category 2 has
economic value -$20, then the score for a some difficulty birth would be -20. Note in case
a) that a linear scale of 1, 2, 3 for economic value is implied. In both cases the usual
selection index procedure can be used if the appropriate heritability is known.

A better procedure, however, with the selection index is to consider each category
being considered as a separate trait scored as zero or one. There will, however, be
automatic covariances among the categories. Categorical data have a multinomial

distribution. If there are only two categories the distribution is binomial.

189
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VARIANCES AND COVARIANCES

The phenotypic variances of, and covariances among, the categories are determined
by the probabilities of being scored in each category. These probabilities are also the
population means when each category is scored as a zero (the attribute is absent) or as a
one (the attribute is present). Suppose the fractions in each category (means) are 74, 7,
and w4 (the Greek symbol pi is used here to denote proportion). Then the phenotypic

variances and covariances are:

A

2
%y vz v3
, m1(l-mq) -mymo ~T{73
Y1y2 %y  %y2y3| =|™1m2 mo(1-1p) -mom3
-T17M3 EXE n3(1-73)

2
%Y1¥3 9v2¥3 ;3

/
The sum of the variance and covariances in any row (or column) is zero because

7Tl + 7!'2 + 1r3 = 1.
The genetic variances and covariances follow the same pattern although they are not

determined by the means:

2 )

9%, %8182 %8183

2
%182 %, ‘283

2
8183 %8283 g3

The sum of the variances and covariances in any row (or column) is zero. Such a property
results in what is known as a lack of independence and such variance-covariance matrices

are singular. The practical result is that instead of using all the traits to predict the value
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for any one trait as is usual for evaluation using multiple traits, all traits (categories) except

one are used as will be illustrated.

SELECTION INDEX TO PREDICT CATEGORY FREQUENCIES
The selection indexes predict differences from the means as follows:
I; =81 -7 = b1i(Xq - 71) + b12(Xp - 7m2) + by3(X3 - 73)
I =g - mp = bp1(Xq - mp) + bpa(X3 - M) + b23(X3 - 73)
I3 = g3 - 13 = b31(X1 - m1) + b3a(X - M) + b33(X3 - 73) .

The probabilities can be predicted by adding the means to the indexes as follows:

g1 =11 +my
gp =1y +mp
g3 = I3 + 3

Note that g1 + 82 + g3 =1, andIj + I, + I3 = 0. The multiple trait observation
(X1, Xp, X3) is:
(1, 0, 0) if scored in category 1
(0, 1, 0) if scored in category 2, and
(0, 0, 1) if scored in category 3.
The same properties hold, for example, in the case of sire evaluation from p half sib

progeny except that X;, X,, and X5 are the fractions of progeny scored in categories 1, 2,

and 3.
02, + (p-1)[.25 02.
Th 2 Vi gi
en, ox. = and
1 p
T (p—l)[.ZS "gigj]
Xin D
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Again XX; = 1, and éﬁl axixj = 0 for all rows (or columns). The RHS's, oxX; T are
determined as usual athhe additive relationship times the appropriate column of the genetic
variance-covariance matrix.

Because of the lack of independence one less equation than number of categories is

used. The weight (e.g., bj3) corresponding to the equation that is left out is set equal to

Z€ro.

EXAMPLE

An example may help clarify the procedure. Suppose for some trait with three
categories that T = 5, my = .3, and my = 2. Thus, the phenotypic variances and

covariances are:

25 -15 -.10
-15 21 -.06f.
-10 -.06 .16

Assume the genetic variances and covariances are:

05 -03 -.02
-03 .07 -.04{.
-02 -04 .06

When the equation for trait 3 is set equal to zero, the selection index equations to

determine the weights are:

RHS's for
g1 ) £3
.25b1 - .15b2 = .05 .-.03 . -02
-.15b1 + .21b2 = -.03 07 -4
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The indexes are:

For gl . Il .20(X1 - 7(1) + O(X2 - 1|'2) + 0(X3 - 7(3)
For g2 : 12 = 14(X1 - 7(1) + 433(X2 - 7[2) + 0(X3 - 1r3)
For g3 . 13 = -.34(X1 - 7!'1) - .433(X2 - 7I"2) + 0(X3 - 7T3)

and §1 =Ij +my, Bp=Ip +mp, g3 =13 + 73

For an animal scored in category 1; X{ = 1, X, = 0, and X3 = 0 so that:

g1 = 20(1-5)+ 00-.3)+00-2) +.5=.60,
8 = .14(1-.5) + 433(0- 3) + 0(0- 2) + 3 = 24, and
83 = -34(1-.5) - 433(0-.3) + 0(0-.2) + 2 = .16 .

For an animal scored in category 2; Xl =0, X2 = 1, and X3 = ( so that:

g1 = 2000-.5) + O(1-.3)+00-.2) +.5= .40,
gp = .14(0- 5) + 433(1- 3) + 0(0- .2) + 3 = 5331, and
g3 =-34(0-.5) - 433(1-.3) +0(0-.2) + .2 = .0669 .

For an animal scored in category 3; X1 =0,Xy =0, and X3 = 1 so that:

g1 = 2000-5)+ 00-3)+0(1-.2)+.5= 40,
8y = .14(0-.5) + 433(0- 3) + 0(1- 2) + 3 = .10, and
g3 = -34(0-.5) - 433(0-3) + 0(1-2) + .2 =.50.

193
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If any other two equations had been used, e.g., X2 and X3 with by = 0, rather than
by = 0, the evaluation would have been exactly the same. The appropriate RHS's to predict

81> 8, and g3 would have been:

-03 .07 -.04
-02 -.04 .06

The procedure for finding the weights for sire evaluation would be similar. The

RHS's would be divided by one-half and the LHS's computed as indicated earlier.

PREDICTION OF PROGENY FREQUENCIES
Prediction of progeny frequencies from a particular mating would be the same as

averaging the evaluations of the sire and dam:

A + a
Fraction in category 1 = §_15__2_g1_D
brq +
Fraction in category 2 = 32_3_2@_
+ A
Fraction in category 3 = %8—232

Economic weights for any of the three cases, animal, sire, or progeny, can be assigned
after the frequencies have been predicted. Suppose vq = 60, v5 = -5, and v3 = -100. Then,
in the previous example, for an animal scored in category 2, (0, 1, 0), the aggregate

economic value is predicted to be: 60(.40) - 5(.5331) - 100(.0669) = -45.5655.
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SELECTION FOR EMBEDDED TRAITS:
MATERNAL EFFECTS

Some traits cannot be measured directly. An example is a maternal trait which
makes up part of the environmental effects on the record of an offspring. Such traits are
embedded traits. Selection for embedded traits, however, can be accomplished with the
selection index. The procedure appears to be somewhat of a hybrid between single trait and
multiple trait selection. The general selection index procedure can certainly be applied.
Four examples of embedded traits will be discussed: in this chapter, the maternal effects
model and in the following chapters, the grandmaternal effects model, the fetal effects

model, and the cytoplasmic effects model.

SELECTION WHEN TRAITS ARE INFLUENCED BY MATERNAL EFFECTS

The maternal effect of the mother often has an effect on the phenotype of the
offspring. This effect is genetic with respect to the mother but acts as an environmental
effect on the offspring. This effect of the mother is in addition to the genetic effect of the
sample one-half of her genes transmitted to her offspring. In turn, part of the maternal
effect may be genetic and part may be environmental. See Willham (1963) for a complete

development.

195
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The following diagram illustrates the various effects when W is the dam of X.

E DX

G

GMW ———»GMX

Py is the phenotype of animal X, Epyy is the non-maternally caused environmental
effect, Gy is the direct genetic effect associated with the genotype of X, Gy is the
genetic maternal effect of W, Epry is the environmental effect on maternal ability of W,
Gppx is the genetic maternal ability of X which is not measured, and Gy is the
direct genetic effect associated with W, the dam of X. Note that Gy = Gy and
Gmw + EMw + Epx = Ex of the usual model, Py = Gy + Ex.

The direct trait, D, and the indirect maternal trait, M, can be considered to be two
traits which may be correlated. The genetic value for trait M is measured one generation
later than the direct effect D and is embedded in the phenotypic measurement of the animal

that carries the direct effect.

GENETIC COVARIANCES BETWEEN RELATIVES WITH MATERNAL EFFECTS

Let the model for a record on animal X be,
Py = Gpx + Epx + Gmqw + EMw
and the model for a record on animal Y be,
Py = Gpy + Epy + Gz + Emz

where animal Z is the mother of Y and W is the mother of X.



Maternal Effects 197
The rules for the covariance of linear functions provide the genetic covariance
between Py and Py,. If all environmental covariances are zero:
COV(Py, Py) = COV(Gpyx, Gpy) + COV(Gpx, Gpz) + COV(Gyw: Gpy)
+ COV(Gpwr Gumz)-
These terms involve covariances between genetic effects for the same trait on relatives and
covariances between genetic effects for different traits on relatives.

In terms of genetic variance and covariance components:

_ 2 2 2 2
COV(Gpx, Gpy) =2axy%p1o * 23Xy °D20 *+ 9xY°po1 *+ >

_ 2 2 2 2
COV(GMmw: Omz) = awzoM10 *+ 2WwzoMm20 t9wzOMo1 * °°° >
COV(Gpx, GMz) = 3xZ9DMI0 *+ 38Z0DM20 *+ dxzoDMo1 * *+* » and

COV(GMW, GDY) = aWYcDMlo + a\%/YoDMZO + dWYoDMOI + oo

The a's and d's are the usual additive and dominance relationships. The genetic
variances are labelled with the trait, e.g., O%)IO is the additive genetic variance of the direct
trait, D. The genetic covariances are labelled with both traits, e.g., opng is the covariance
between the additive genetic effects for trait D and trait M.

If only additive genetic effects are considered, a simpler notation will be:
2 2
COV(Px.Py) = axyopio * 2wzMm10 * @xz* 2wy)°DM10

2 2
= aXYoGD + awszM + (axz+ aWY)aGDGM .
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EXAMPLES OF COVARIANCES BETWEEN RELATIVES

Animal With Itself

This covariance is a variance that contains the genetic variance plus
environmental variance.
Note: X =Y, W = Z, and axy = 1, a7z = 1, ayw = .5, and ayz = .5 so that:

2 2 2 2 2

In terms of the usual P = G + E model:

2 2 2 2 2 2
UG —OGDa.n OE—OGM +UGDGM+UEM+OED.

Dam-progeny Covariance Considering Only Additive Genetic Effects

X is the progeny, W is the dam, Z is the dam's dam, Y is also the dam of X:

X -- W - 4
(Y)

The genetic parts of the models for Py and Py are:

PX = GDX + GMW and PY = GDY + GMZ'
(MY) (W) (DW)

aXY = .5, aWZ = .5, aXZ = .25, aWY =1.
(XW) (YZ) (WW)

Then: 5 5
COV(PX,PY) = .SoGD+ .SoGM+ (25 + DGGDGM'
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The covariance between relatives may contain a genetic covariance between the direct and
maternal traits. This covariance can be negative and, if so, would mask part of the additive
genetic variances for the direct and maternal traits.

The additive genetic correlation between D and M is:

°GpGMm

e M ~
2 2

Since the maximum absolute value of rg is 1:

02 02 > |o |
Gp Gy © '°GpGmMm'-
Thus, a negative estimate of the offspring-dam covariance is possible if the negative value

of 9GpGy is large enough.
If maternal effects are not zero, the usual procedure of doubling the offspring on dam

regression to estimate heritability can give a biased estimate of heritability of the direct trait;

ie.,
2 2 2 2
h2 ) 2.50GD + .5 OGM + 1.25 OGDGM ) OGD . OGM +25 OGDGM
2 2 2
9p op op

There may also be other possible genetic causes for bias in this estimate due to higher

order genetic variances, such as G%O .
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Sire-progeny Covariance

Now X is progeny of dam W and sire Y which has dam Z:

/ W (dam of X)

X

™

Y a4———— Z (damof Y)

BCC&USC&XY =5, aWZ =0, aXZ = .25, aYW = 0,
then Cov(Py,Py) = .5 oéD + 250G DG M which is quite different from the offspring-dam

covariance.

PRACTICE PROBLEMS FOR COVARIANCES WITH MATERNAL EFFECTS
The following problems illustrate some concepts of covariance among relatives when

maternal traits are important.

Problems

1. Estimate aéD, OzGM and OGDGM

From: Covariance between paternal half sibs = 20
Covariance between full sibs = 30
Covariance between offspring and sire = 30
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. 2 2
2. Given: °Gp ~ 80, %Gy 40, °GpGyM * -20

Show all calculations in computing the covariances between:
a) offspring and dam

b) offspring and sire

c) full sibs

d) maternal half sibs

e) paternal half sibs

f) X and Y in diagram

X <¢——— C — A

> >

Y «<— D «————8B

Solutions

2 2
256G+ 00, + 00GpGy =20 [

1. Cov (phs)

2 2
S5 oGD+ loGM + IOGDGM =30 [2]

Cov (full sibs)

Cov (offs, sire)

2 2
S OGD+ OOGM + .ZSUGDGM= 30 (3]
2
F hs]: = 4(20) = 80
rom {phs] OGD (20)
From [phs] and [offs, sire]: .5(80) + 250G G s = 30 0G Gy = 40

a . 2 - 20 42 =
From [full sibs]: .5 (80) + 0o+ (40) = 30; o5 =30
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2. a)x.. Y - 4 aXY=.5 aWZ=.5 axz=.25 aYW=1
(w)
Cov (offspring-dam) = .5(80) + .5(40) + (25 + 1) (-20) = 35
w
b) /
X ~— Y - z 3xy=- 3awz=0 axz=2 aywy=0

sire

Cov (offspring-sire) = .5(80) + 0 + (.25 + 0) (-20) = 35

X <ag¢—— sire

c)
>< aXY=.5 ayz =1 axz=.5 ayw = 3

Y «¢«———— dam(W=2)

Cov (fullsibs) = .5(80) + (1)(40) + (5 + .5) (-20) = 60
X

RN
/

dam (W =2) aXY = 25 aWZ =1 aXZ =5 aYW =5
Y

Cov (mat. half sibs) = .25(80) + (1) (40) + (5 + .5) (-20) = 40

e) x <¢——— W (dam of X)

a =25 a =0 a =0 a =0
Sire XY WZ XZ YW
-

Vo — Z (dam of Y)

Cov (pat. half sibs) = .25(80) + 0 + (0 + 0) = 20

sire
) X4¢—— C «——A

>< >< ayy = 75 aywz = 1 ayz = 75 ayw = 75
dam

Y————— D 4———8B
W=Z

Cov (X and Y) = .75(80) + 1(40) + (.75 + .75)(-20) = 70
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The following table gives the additive relationships that are coefficients of
°2GD’ GZGM, and IGDHG in the covariances between the pairs of relatives in the

previous problem under the assumption that only additive genetic effects contribute to direct

and maternal genetic effects.

CONTRIBUTION OF DIRECT AND MATERNAL ADDITIVE GENETIC VARIANCE
AND COVARIANCE TO THE COVARIANCE BETWEEN RELATIVES

. 2 2
Genetic Cov(Px,Py) = axy GGD + awzaGM + (axz + ayw) OGDGM

Px.Py axy awz axz. ayw
Py,Px (with self) 1 1 S50 S0
Progeny, dam S0 S0 25
Progeny, sire S0 0 25 0
Full sibs S50 1 S50 .50
Maternal sibs 25 1 S0 S0
Paternal sibs 25 0 0 0

SELECTION FOR THE DIRECT AND MATERNAL TRAITS
Selection For The Direct Trait
The records used for the selection index will correspond to X;, the average of single

records of p; animals in relative group i.

\ 2
RHS's: 9XiGpa = 2e°Gp * 2W;e°GpG

where W; is the dam of i and « is the animal being evaluated.
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Diagonal Coefficients

The variance of an average will be expanded by the maternal variance and maternal-
direct covariance:

02 = {02 + ( -—1)[awc:2 +a 02 + (a; +anw.) O ;

X; p * P i°Gp * AWiWioGy iw; i'W;) °GpGmlt/p’
where aj; is additive relationship among members of the group, awiwi' is additive
relationship among dams of the group, andaiwi, is relationship of animal in group to

another's dam.

Off-diagonal Coefficients

The off-diagonal coefficients will be expanded similarly:

2 2
OXiXj = Hj%Gp * AW WGy * W) * WG Gy

Selection For The Maternal Trait

' 2
RHS's: OX:GMq = 2a°Gp Gy * AWa%Gy

Diagonal and off-diagonal coefficients will be as in selection for the direct trait.

Correlated Responses When Selecting For Gp Or Gy,

If selection is for GDa and X;(i=1, ..., N) is the average of relative group i and the
relationship of dam of relative ito ais AW;a then the response in Gp will be
AGp = o D D (the selection differential D is different from the subscript D which refers

to the direct trait), where I = bipX; + = + bypXN -
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The response in Gy can also be computed as:

N

'): bip Cov (GDa’xi)

_ Cov (GpelD) 5 . it

9]

AGp

D
D “Ip

2
where Cov (GDoni) = aiaaGD + aWiaUGDGM .

Similarly the correlated response in Gy can be predicted as:

N
T bjp Cov (GMa,Xi)
D = =1
D I

AGM ) Cov (::IMQ,ID)

D
D

2
where Cov (GMa’Xi) = 2ja0GH Gy * aWiaoGM

N
If selection is for Gy, by Ipg = X by X, then:
i

N
= b X
AGp = Cov (GDa’IM) D . izl iM Cov (GDa Xl)

D and
“Im °Im

"Mz

biM Cov (GMa’Xi)
= _ 1
OIMD -

D .
UIM

The following examples illustrate computations for these concepts and also show how to

compute the effect of bias in heritability estimates if maternal effects are ignored.
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PROBLEMS OF SELECTION FOR DIRECT GENETIC EFFECTS
Assume: aéD - 80, oéM = 40, 0G Gy = 40, 0 = 500
Also assume heritability is estimated in the usual way as twice the regression of offspring
record on dam's record.
Problems
1. a) Use this biased estimate of heritability (genetic variance) to find the usual weights
for indexing additive genetic value ignoring maternal effects from the animal's own
record, X, and the sire's record, X2.
b) What is the bias in the calculation of expected response due to selection by the
usual but now biased procedure of calculating genetic gain?
¢) Use the incorrect index found in 1a) but the correct variances and covariances to
find the expected correlated responses in Gy and Gy.
2. a) Use the correct variances and covariances as given to find weights for indexing
direct genetic value (Gp) from X, and Xy
b) Use the correct index for G, and the correct variances and covariances to find the

expected correlated responses in Gy and Gy.

3. Repeat 1) and 2) when °GpGy = -40.

Solutions
Heritability is incorrectly estimated from twice regression of offspring on dam record:

hf = 2 Cov (offspring, dam)/a% = 2[.5(80) + .5(40) + 1.25(40)]/500 = 44



2.

¢) AGp =

a) 500 by + [.5(80) + (:25)(40)] by

b) AGp =
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by +.5(44) by = 44
22bq + by = .5(.44)

= 4115 Xy + 1295 X2 = Ga, oy = 10.24 is the apparent standard deviation of

The actual oy is 9.92 since OX Xy = 50 while hz = .44 implies 9X1Xp = 110.

b) AG = 10.24 D would be the usual prediction based on hf = 44,

b1CoY{GparX1) + baCov(GpaXa) |
o1

4115[(1)(80) + (.5)(40)] + .1295[(5)(80) + (25)(40)] 1 _ 400 b
9.92

_ b1Cov{GMeX1) + b2Cov(GMeX2) b

%1

AG

A115[(1)(40) + (5)(40)] + .1295[(5)(40) + (25)40)] [ . 288 D
9.92

(1) 80 + (.5)(40)

50 by + 500 by = .5 (80) + (:25)(40)

I=.1919 X{ + .0808 X, = Gp, and o] = 4.82

b1Cov(GpgX1) + b2Cov{GpeX2) 5
o1

_ -1919(100) +.0808(50) 1y _ 48 1
4.82 '

_ 21Cov{GuaX1) + b2Cov{GmaX)
o]

1919(60) + .0808(30) I, _ 529 p
4.82 '
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2 2 2
3. GGD = 80, OGM = 40, UGDGM = -40, OP = 500

Now the biased heritability from twice offspring on parent regression is:
hf = 2 Cov(offspring, dam)/o%, = 2[.5(80) + .5(40) + 1.25(-40)]/500 = .04
(1.a) by + .5(.04) by = .04
02bq + by = .5(.04)
I =.0396 X; + .0192 Xy = Gg;

oy = .9918 is apparent oy, but the correct oy = 1.007.
(1.b) AG = .9918 D is the usual prediction with hf = .04

(1.c)  The correct expected responses are:

AGp - bICOV(GDa,Xl) + b2Cov(GDa,X2) D -

o]

.0396[(1)(80) - .5(40)] + .0192[.5(80) - .25(40)] D
1.007

) b1COV(GMa,X1) + b2COV(GMa,X2) D -
91

=2931D

AG

0396{(1)(-40) + .5(40)) + .0192(.5(-40) + 25(40)] [ _

-977 D
1.007

(2.2) 500 by + [.5(80) + .25(-40)] by = (1)(80) + .5(-40)
30by + 500 by = .5(80) + .25(-40)
I =.1168 X; + .0530 X, = Gp, and oy = 2.932.
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b1Cov{Gpe:X1) + b2Cov(Gp e X2) b

2. AGD =
(2.b) D o1
_ -1168(60) +.053030) . 593 D
2.932 '
aGipg = b1Cov{GMe-X1) + b2Cov(GhreX2) 5

%1

_ :1168(-20) + .0530(-10) 1, _ _g77 p
2.932 '

JOINT SELECTION FOR THE DIRECT AND MATERNAL GENETIC EFFECTS

For one phenotypic trait assume the overall economic value is determined partly by
the direct genetic component and partly by the maternal genetic component so that
aggregate genetic economic value for animal a is T, = vp Gp, + VMO, Where vp is
the net economic value for the direct contribution and vy is the net economic value for the
maternal contribution. These economic values are not necessarily the same because,
although the gross price is the same for the total product, the cost of production may be
different for the direct and maternal portions.

The usual selection index procedure for selecting for overall genetic value can be
used except that records on at least two relatives are needed because the maternal and
direct traits are measured jointly. In addition the two kinds of relatives must be such that
(aq1, aaWI) is not proportional to (ayp, aawz). This restriction will be illustrated later.

The procedure for joint selection for direct and maternal genetic value will be
illustrated for one trait and using records on only two relatives, X; and X,. The index will

be ]a = bl Xl + b2 XZ to estimate Ta = VDGDC! + VMGMa .
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The general equations which determine the b's are:
2
le bl + Oxl X2 b2 = axl Ta
o b + 02 by =0
X1Xy "1 Xs 2 X2Ty -
The coefficients of the b's are the same as for selection for GDa or GMa' The

covariances between the X's and T, can be computed as:

OXiTa = VDGXiGDa * VMOXiGMa

2
=VD aia"GD T AW;e°GpGpm

2
* VM[aiaoGDGM T AWe9Gy |

An alternative procedure would be to index Gy, and Gy, separately and then weight each
by vp and vy, ie., Ia = VDIDa + VMIMa where I, = GDa and Iyf, = GMa-
The expected response by selection can be computed as before:

AT = VD AGD + VM AGM where

_ cov (Gpe 1) B el o= COV (GMe ) b
o1 o1

AGp

The following example problems illustrate the computations for selecting for both the
direct and maternal genetic traits. Example 1 illustrates the futility of trying to select for
both when(ay,, awla) and (azq, aWza) are proportional. Example 3 shows the effect of

changing the sign of the genetic covariance between the direct and maternal genetic values.

Example Problems Of Selecting For G And Gy Simultaneously
Problems
Given: 2 0 2 40 _ 2
iven: GGD = 80, UGM = 40, OGDGM = 40, op = 500
1. Suppose X; = record on the sire, X5 = record on the dam.

If vi = 4 and v; = 1 can selection be for T, = (4)Gp, + (DGpy ?
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2. a) Suppose X; = record on dam, X, = record on a paternal half sib
What is the index for selecting for T, = (4)Gp, + (1)Gp, ?
b) What is the expected correlated response in Gpy and Gy ?

3. Repeat 2a and b when °GpGy = -40.

Solutions

1. Xl = record on sire and X2 = record on dam

(ala ’ aWIQ) = (5 y -25);

W.
(22¢ » aW2a) = (.5, .25). These are . — 1
1
proportional so selection cannot be for o (sire)
Wa
vpGp + VMOM: \ Xo -—
For example: (dam)

ifvp =4and vy = 1, thenlI = .46X1 + 46X, and o] = 14.55 with

_46(50) + .46(50)
AGP = D =316 D
Sp 14.55

AGyy = 660+ 4660 g0
1455

If vp = 1 and VM = 4, then] = .34X1 + .34X2 and oy = 10.75 with

34(50) + .34(50)
AGTy = D =316 D
D 10.75

_ 34(30) + 3430) [ _

AG
M 1075

1.90 D as before for vp = 4 and M = 1.
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2. X = record on dam and X, = record on a phs
vp =4 vy =1 / W2
X2
> Sire
a
\

Dam, Xq -\w1

( \

2 2
a) 500b;+ 0by = vp alaoGD +aW1°‘°GMGDJ *VM{alaC’GMGD +aW1¢°GMW

0by +500b, = vio|agec?:  + | i
1 2= VD aZaUGD aWZQOGMGD v aZaoGMGD aWza GM
J .

5000, = 4[5(80) + .25(40)] + 1[.5(40) + .25(40)] = 230
500b, = 4[.25(80) + 0] + 1[.25(40) + 0] = 90

I=46X, +.18X,withoy = 1105.

b) AGp - COV(Gpe 1) [ _ .461.5(80) +.25(¢1(;)2)5+.18[.25(8O) +0) b - 2407 D
O'I o

_ COV(GMa D) D - 4615(40) +.25(i(i)2)5+.18[.25(40) +0l b . 1412 D
o1 ;

AG M

3. a) 500by+ O0b, =4[5(80) + 25(<40)] + 1[5(40) + .25(40)] = 110
0by + 500 by = 4[:25(80) + 0] + 1[25(40) + 0] =70

I =22 Xl + .14 X2 with o] = 5.83.

b) AGD = .22[.5(80) + .25('40)] + .14[.25(80) + O] D -

1.612 D
5.83

22[.5(-40) + .25(40)] + .14[.25(-40) + 0] D =
5.83

AG) = -617 D.
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SELECTION WHEN TRAITS INFLUENCED BY
GRANDMATERNAL AND MATERNAL EFFECTS

The granddam may, for some traits, affect her daughter's maternal ability which in
turn influences the record of the grandprogeny. Beef cattle breeders have reported that
cows that were heavy themselves at weaning tend to wean calves that are lighter than cows
that were not so heavy at weaning. A grandmaternal effect can be postulated as a cause of

this phenomenon.

MODEL WITH MATERNAL AND GRANDMATERNAL EFFECTS

This grandmaternal effect may have a genetic basis in the grandmother (i") but is an
environmental effect on the maternal ability of the mother (i') and on the actual phenotype
of the calf (i). In fact, the model including maternal effects can be expanded so that the
maternal effect is made up of a direct maternal effect and an environmental effect from the
grandmother:

PMi' = GMi' + Ep = GMi' + GNi" + EMi' + ENi" ,

where GMi' is the genetic maternal effect, GNi" is the genetic grandmaternal effect,
EMi' is the maternal environmental effect other than that with grandmaternal causes, and

ENi" is the nongenetic (environmental) grandmaternal effect.
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Then, the model for a record on animal i can be partitioned as:
P; = GDi + E{ where GDi is the genetic ability of i,
P; = GDi + PMi' + EDi where PMi' is the total maternal effect of i’ on P;, and
P; = GDi + GMi' + GNi" + EDi + EMi' + ENi"

Only P; can be measured. The diagram illustrates, as before, that the maternal
genetic ability of the mother is expressed only in he;r progeny. Similarly, the grandmaternal
genetic effect is expressed only in the grandprogeny. The double-headed arrows represent
a possible covariance due to pleiotropic genetic effects. A sample one-half of the genes for
the direct, maternal, and grandmaternal effects are transmitted in each generation from
parent to offspring.

EM l' ENr'

COVARIANCES BETWEEN RELATIVES
The covariances among relatives (e.g., X and Y) can be determined as before from
E(PxPy) where:
Px = GDX + GMX' + GNX" + EDX + EMX’ + ENX" and

PY = GDY + GMY' + GNY" + EDY + EMY' + ENY"
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To simplify the expectation, consider only Gx = GDX + GMX' + GNX" and

Gy = Gpy * GMy: * GNyn Where GDX is the genetic value of X for the measured

trait, GMX’ is the maternal genetic value of the dam of X, X', and GNX" is the

grandmaternal genetic value of the maternal granddam of X, X". Thus;

E(GxGy) = Cov(Gx,Gy) = Cov(GDx,GDY) + Cov(GDX,GMy,) + COV(GDx’GNY") +
Cov(GMyvGDy) *+ CoWGMyGMy) . Cov(G My ONyw) *
Cov(GNX,,,GDY) + Cov(GNX,,,GMY,) + Cov(GNx,,,GNY,,).

Each of these terms can be evaluated in terms of additive, dominance, additive by additive,

etc., components of genetic variance and covariance (where the direct, maternal, and

grandmaternal components are considered separate traits).
If only additive genetic effects are assumed, then:
Cov(Gx,Gy) = aXY°2GD + (axy' + ayx)oGp Gy * (@XY" * 3YX"9Gp Gy *
aX'Y"“ZGM + (axy" + aY‘X")"GM GN * aX"Y""ZGN J

where the variances are additive genetic variances and the covariances are additive genetic

covariances among the direct (D), maternal (M), and grandmaternal (N) effects.

The necessary additive relationships can be found from careful drawing of the
pedigree of symbolic animals, X and Y; their dams, X' and Y'; and maternal granddams,

X" and Y". For example, if X is a sire and Y is the progeny, the diagram is:

Sire
/x¢

X - X"

Thus, aXY = .5, aXY' = O, an- = 25, aXY" = 0, ann = 125, ax.Y. = 0,

aX'Y.. = 0, ayvxn = (, and aqu" = 0.
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However, if X is a dam and Y is the progeny, the relationships are different:

dam
Y - X —-— X' - x”
" )

NOW, aXY = .5, axy~ = 1, anv = .25, aXY-- = .5, ann = .125, aXaY' = ,5,
ayryn = 1, ayiyn = 25, and aywype = 5. The relationships which are coefficients of the

variances and covariances for some common relatives are given below.

Component
Relatives 02 o o 02 o 02
Gp °GpGM GpGN GM GMGN GN
Coefficient
Px.Py axy axy'‘tayx axy'tayxe axy' axy-tayyxe ax y"
With self 1 1 500
Sire, progeny 500 250 125 0 0 0
Dam, progeny 500 1.250 625 500 1.250 500
Full sibs 500 1 500 1 1 1
Maternal sibs 250 1 500
Paternal sibs 250 0 0 0 0 0
Granddam, 250 625 1.062 250 625 250

grandprogeny

SELECTION INDEX EQUATIONS
The problem of selection is similar to that in the presence of maternal effects. The
selection index equations are modified to take into account the direct, maternal, and

grandmaternal components.
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If, for example, selection is for T = Gp, (additive direct for animal ) then the

right-hand sides become:

axiT E[(GDXi + GMX'i + GNX"i + other Exi)(GDQ)]

2 2 2
= aiaoGD * 300G Gy * A"a®GpGN and or = OGD .
IfT = GMa’ then:
2 2 2
9X; T =2ia%Gp Gy * 3'aGyy * 2"a%G G N and o = Gy °
IfT = Gy them:

2 2 2
oX;T = %a®GpGyN * 4'2°GyGN * ainaaGN and o = OGN .

If some function T = VDGD ot VMGM ot VNGN a is the overall merit where the v's are
economic values of the components, then:
T = vD6pa * YMGMe * YNONq -

The selection index weights also can be determined directly using the RHS's:
OX;T = E[(GDX. + GMX'- + GNX"- + other E's)(vpGpqe * YMOMa * YNONo)!
i i i
2
= VD@ia9G * 3'e9Gp Gy * 4"a°GpGN) *
2
vM(aiaaGDGM * ai'aoGM * ai"aoGMGN) +
2
YN(@ia®Gp Gy * 329Gy GN * &'a?Gy)
2
and o = E[(vDGDg * VMOMa * VNGNQ)zl

Records on at least three kinds of relatives (where the three additive relationships

3, Qj'q and a;« , are not proportional for the three relatives) are necessary for selection

la’

with different economic values for the direct, maternal, and grandmaternal components.



CHAPTER 18

FETAL EFFECTS MODEL (SIRE OF FETUS EFFECT)

Some traits of a female may be influenced by the fetus she is carrying either during
gestation or following gestation. An obvious example is the ease with which the mother
gives birth. The genes of the mother directly affect ease of birth, but the size of the fetus
also may affect the ease of birth by its mother. The size of the fetus is certainly partially
influenced by the genes it carries. In some species there is speculation that hormones
secreted by the fetus may influence the development of secretory tissue and thus influence
milk production during the last part of gestation or during lactation which follows birth of
the fetus.

The fetal effects model is similar to the maternal effects model except that the
embedded trait is a property of the fetus the animal is carrying rather than of the mother
of the animal. Figure 18.1 shows that the animal making the record contributes a sample
one-half of the fetal genes as does the sire of the fetus. If these genes contribute to the
fetal effect (the embedded trait) then the sire, through those genetic effects, can influence
the performance of his unrelated mate. The effect has been called the sire of fetus effect

or the service sire effect.
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FETAL EFFECTS MODEL

Figure 18.1 shows the genetic and environmental components for both the direct and
fetal effects on records of relatives x and y. The fetal effect could be on the current record
or on a subsequent record. The same model applies to calving difficulty. In fact, any trait
that is influenced by the mate of the female can be described by such a model. Fixed effects
on the records will be ignored here but would need to be considered in prediction

procedures or in estimation of components of variance.

% 9 %  9yd

1/2 1/2 1/2 1/2

\\ 1/2\'/1/2 \ 1/2\'/1/2
/fz

Figure 18.1. Diagram of direct genetic and environmental effects (g, and e
geneuc and environmental effects (f, and e,) on the phenotypxc rccord o¥
carrying fetus, w. The sire and dam of x are x; and Xg» W is the sire of the fetus, and x is the
dam of the fetus. A similar diagram is given for any potentlal relative, y, carrying fetus, z.

) a.nd fetal
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Linear models including effects shown in Figure 18.1 were presented by Willham
(1963). His application was to a maternal effects model.
The fetal effects model is:
P, =g, +1f,+e +e, and Py=gy+fz+ey+cz
where the g's are genetic values for the direct effect on P, the f's are the genetic effects of
the fetus on P, and the e's are corresponding environmental effects. The pair of animals
with records are x and y; w and z are the fetuses having sires, Wy and Zq In the usual
P = G + E model, all the effects except g would be included in E. The f effects are
environmental to the animal making the record but are, in part, genetically determined.
The covariance is: Cov(Px,Py) = Cov(gx,gy) + Cov(f,f,) + Cov(g,f,) + Cov(gy,fw) .
If only additive genetic effects are considered or are assumed important, the covariances can
be written as by Willham (1963) :
Cov(Px,Py) = axyaé + awza% + (3, + ayw)ogf
where the a's are additive or numerator relationships. If f is a fetal effect, then oé is the

variance of direct additive genetic effects, o% is the variance of additive fetal genetic effects,

and O of is the covariance between additive direct and additive fetal genetic effects.

COVARIANCES BETWEEN RELATIVES

The previous expression can be used to determine the theoretical covariance between
records of any pair of relatives, x and y, when influenced by fetuses of sires, w and z.. For
example, when calculating the covariance between records of a dam and her daughter when
the dam's record was made with the influence of the fetus (her daughter), x is the daughter,

Y = X4 is the dam, Xg is the sire of x but is also zg, the sire of the fetus, x.
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Then:

2
g

Expectations of covariances between typical pairs of records are given in Table 18.1.

Cov(daughter,dam) = .5 of + .5 0% + (1 + 25)o,.

TABLE 18.1. COEFFICIENTS OF THE ADDITIVE GENETIC VARIANCES FOR THE
DIRECT EFFECT, aé , FOR THE FETAL EFFECT, % , AND OF THE ADDITIVE
GENETIC COVARIANCE BETWEEN THE DIRECT AND FETAL EFFECTS, o,

FOR THE COVARIANCE2 BETWEEN VARIOUS RELATIVES AND
COMBINATIONS OF SIRES OF FETUSES

Animals with ) Coeff1c1eznt of
records Sire of fetus Og of Ogf

Daughter, dam Daughter not from 500 1250 500
service sire of dam

Daughter, dam Daughter from service 500 5000 1.250
sire of dam

Full sibs Different 500 1250 500

Full sibs Same 500 3750 500

Paternal or Different 250 .0625 250

maternal sibs

Paternal or Same 250 3125 250

maternal sibs

Maternal sibs Sire of x is 250 1875 .500

service sire of y

Unrelated Same 0 2500 0

aNote that these covariances may also include other components due to effects such as
direct, dominance and maternal, additive genetic effects.
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The practical implications are that the effect of the sire of a daughter includes the
value of the sample one-half of his genes concerned directly with her production and a
sample one-quarter of his genes associated with the fetal effect since he is the grandsire of
every calf his daughter produces. Thus, the sire of daughter effect (which is thought of as
the sire transmitting ability in absence of fetal effects) is:

g/2 for production of daughter + f/4 for production of daughter.

The mate effect, or the fetal effect of the sample one-half of the genes contributed
by the mating sire to the fetus, is expressed in the lactation performance of the mother:

Sire of fetus effect (mate of dam) = f/2 for production of dam (his mate).
Note that the sire of fetus is also the sire of the replacement female, resulting from birth
and survival of the fetus. Thus, in the next generation, the sire of the fetus becomes the sire
of the daughter. If there is a negative relationship between direct and fetal effects, then
effective selection may be difficult. The other dilemma is that even if the effects are
unrelated, should more emphasis be placed on selection of a sire for his fetal effect, which
almost immediately influences production of the mate, or on selection for his direct genetic

value, which does not become expressed until the resulting offspring become productive?

SELECTION INDEX EQUATIONS

Selection index weights can be found as usual for selection for direct or fetal effects
by modifying the coefficients on the LHS according to covariances such as those in Table
18.1. The RHS can be found by the rules for expected values using the model for the
records that includes fetal effects. These principles were demonstrated in Chapters 16 and

17 for models including maternal and grandpaternal effects.



CHAPTER 19

CYTOPLASMIC EFFECTS MODEL

Cytoplasm of the fertilized ovum comes primarily from the mother. Mitochondria
in the cytoplasm are responsible for cellular metabolism. The DNA of mitochondria in most
species is inherited primarily or entirely from the mother. Thus, cytoplasmic effects
generally are considered to be maternal in origin and essentially to be unchanging along the
maternal line (Figure 19.1). Males express the cytoplasmic effects received from their

mothers but will not transmit their cytoplasm to their offspring (Figure 19.1).

FIGURE 19.1 FRACTION OF ADDITIVE GENETIC (g)
AND CYTOPLASMIC (c) EFFECTS IN DESCENDANTS.

For female line of descent:

Vo )

Z, > Y, =3y, > W,
& 2 &,/2 &,/ g,/8
C. CZ Cz Cz Cz
With male in line of descent:

VQ \

Z, > Yy —————— X, > W,
g g g,/2 8,/4 g,/8
¢ 2 z S S
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Cytoplasmic effects can be incorporated easily into selection index procedures either
in computing the variances and covariances among the X's or in computing the right-hand
sides for selection of a function of direct, additive genetic and cytoplasmic effects.

For the purpose of illustration, assume the only genetic effects other than cytoplasmic
effects are additive direct effects. Maternal effects which may be confounded with

cytoplasmic effects can be included in the model easily.

COVARIANCES FOR MODELS WITH CYTOPLASMIC EFFECTS

Models with cytoplasmic effects for records after adjustment for fixed factors on
relatives x and y are:

Px=gx+cf+bxf+exa_ndPy=gy+cfu +b}'f' +ey
where g is the additive genetic value for the direct effect on phenotype, ¢ is the cytoplasmic
effect originating in the female line with animal f or f', b is the interaction between
additive genetic and cytoplasmic effects, and the e's are random and independent
environmental effects (may include random cytoplasmic effects). Then when covariances
between g's and ¢'s, g's and b's, g's and e's, ¢'s and b's, ¢'s and e's, and b's and e's are zero:
Cov(Px,Py) = Cov(gx,gy) + Cov(cq,cp) + Cov(bxf,byf,) + Cov(cx,ey) .
Iff=1f: Covicgep) = 03 and = 0 otherwise, and
2 .
Cov(by e byf-) = ayyo, and 0 otherwise .
Let cxyoi be the environmental covariance between records of x and y.

Thus for f = ' :  Cov(Py, P

2 2 2 2

y) axyog * 0, * AgyOp + CxyOy -
. 2 2
And for f # f' : Cov(Py, Py) = axyag + CxyOy -
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The table gives the expected composition of covariances of common relatives.

Component Environmental

Relationship aé o% o} covariance /oy
Female parent, offspring S0 1 S0 CFP.O
Male parent, offspring S0 0 0 °MP.O
Maternal half sibs 25 1 25 CMHS
Paternal half sibs 25 0 0 CPHS
Full sibs S0 1 50 CEs
Female grandparent, offspring 25 1 25 CFG.O
Animal with self 1 1 1 1
Identical twins 1 1 1 T
Unrelated nuclei in

same cytoplasm 0 1 0 °NC
If oé, o%, og, and cxy are known, then variances and covariances can be calculated for the

coefficients of the selection index equations to find the selection index weights.

RIGHT HAND SIDES FOR SELECTION INDEX EQUATIONS
If selection is for direct additive genetic value of animal a, then the right-hand sides
of the selection index equations as usual will be:
. 2
aXlT B alaag

where a;, is the additive relationship between a and i.
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If selection is for direct additive genetic value of animal a plus the cytoplasmic value

of @ plus the interaction, T = g, + ¢, + baf- , then:
iff= £, ox = aiaoz ¢ 0% + ajqor and
iff# £, ox.T - aiaoz :

In general, for T = g, + ¢, + baf,; oX;T = aiaaz

g
where P(f=f') is the probability that the cytoplasm of relative i with the record Xi and the

¢ P(E=E)[o> + ajqor]

cytoplasm of the animal being evaluated, e, is the same.
T = g, t ¢, and then:
R a;,0% + 05 and
if f # f' ;oxiT = aiaog.
Unless o% is relatively large, selection for direct additive genetic value while ignoring
cytoplasmic effects is likely to be nearly as effective as jointly selecting for direct additive

and cytoplasmic effects.

BIAS IN HERITABILITY ESTIMATES

Heritability (additive direct) can be overestimated from covariances between relatives
with the same cytoplasm if cytoplasmic effects on the trait are real and if those effects are
ignored. Overestimates of heritability will lead to overestimates of the accuracy, I'Tp of
evaluation and overestimation of expected superiority for additive genetic value from

selection because both I and I will be overestimated.
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EXPECTED RESPONSE TO SELECTION

Selection for cytoplasmic genetic value in addition to direct additive genetic value can
be relatively important to total genetic gain only when the reproductive rate of females to
produce female replacements is greatly increased. The reason is that of the four paths of
selection (in the case of milk yield in dairy cows), cytoplasmic effects are transmitted only

through the dam to female path.

FIGURE 19. 2. THE FOUR PATHS OF SELECTION

Nuclear inheritance Cytoplasmic inheritance
e S~
s s
Ds — \ oS — \\
Progeny Progeny
so—_ / D~ /

D D

DD/ DD et

For sire to sire, dam to sire, and sire to dam paths, selection should be for additive

genetic value with selection differentials of ASS, ADS, and ASD.

For dam to dam path, selection can be for sum of direct additive and cytoplasmic
effects with the selection differential partitioned into ADDg (direct additive) and ADD c
(cytoplasmic). These two parts can be obtained theoretically by calculation of expected

correlated response. If I is the index for the sum, g + c, then:

app, = C¥@DIp apg app = [CVEDIL

where D is the standardized selection intensity factor. Note that D and oy are the same for
both calculations. With no covariance between g and ¢, the only contributions to Cov(c,I)

will be from females in direct female line of descent such as daughter, dam, maternal

granddam, maternal half sisters, and full sibs.
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The direct additive genetic differential applies to the usual formula for genetic gain
from four paths of selection.

The differential due to cytoplasmic effects contributes immediately to progeny and
thus gain per year for cytoplasmic effects is the cytoplasmic differential divided by the
generation interval for the dam of dam path. (Some scientists have reasoned that since
females to be dams of dams are selected jointly for direct and cytoplasmic effects, the

division should be by the sum of generation intervals.) Thus on a per year basis:

A ASS + ADS + ASD + ADD,  ADD,
+c) = +
gre) Lss +Lps +Lsp * Lpp  LpD

Because increased reproductive rate in females results in the same increase in selection
intensity for ADD g and ADD o the equation can be partitioned into the three paths, Ags, the
sum of paths that do not contribute cytoplasm to the population and the two parts due to

dams of dams:

ADD, ADD,
A(g+c) = Agy + + .
zL LpD
For example, if a% is 5% and oé is 25% of the phenotypic variance for production of

dairy cattle, the gain per year from increasing the standardized selection intensity factor will

be somewhat greater from ADDg/zL than from ADD c/ LDD even though Ly is only

2

¢ Is as great as

about one-fourth of L. The extra gain due to ADD o can be substantial if o
5% of phenotypic variance and replacement females can be obtained from the top 10 to
50% of the herd. Such an increase in reproductive rate would require sexing of semen or

multiple ovulation and embryo transfer. The costs of those reproductive systems must be

balanced against the value of the additional genetic gain.
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Whether cytoplasmic effects can account for as much as 5% of variation is doubtful.
Because cytoplasmic effects seem to be transmitted essentially as a whole, segregation and
recombination are not available to maintain variability. Thus, cytoplasmic lines may soon
be fixed because selection should be relatively effective. Not many combinations of
mitochondrial DNA would be expected as compared to the combinations of nuclear DNA.
The few combinations of mitochondrial DNA that do survive after a number of generations

of selection may all be nearly optimum for effects on production or reproduction.

APPENDIX TO CHAPTER 19

COVARIANCE BETWEEN RELATIVES WITH SINGLE LOCUS FOR

ADDITIVE EFFECTS AND CYTOPLASMIC EFFECTS

Let records of relatives x and y be represented as:

xijt =a + aj +T4+ (c:zr)it + (a'r)jt + e,
Yipu =@t @ t T, t (oz'r)ku + (C")P.u + ey

where each  « =~ represents an additive genetic effect of gene m,

T represents a cytoplasmic effect of cytoplasm n,

n
th additive effect and nth

(C!T)mn represents the interaction of the m
cytoplasmic effect, and

e represents environmental effects.
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. additi : - + a with 02 = Elo? 2,

Note: additive genetic value, &j = ¢ + o with oy E[af] + E[aJ],

cytoplasmic value, ¢, = T with a% = E[T%];

genetic by cytoplasmic interaction, bijt = (ozf)it + (azr)jt

with o = E[(ar)?,] + E[(a‘r)JZt] and

by assumption; E[gijct] = (), E[gijbijt] = 0, E[Ctbijt] = 0.
Note: P(i=k) + P(i=¢) + P(j=k) + P(j=¢) = 2axy and P(i=k) = axy/2.
Let P(t=u) be the probability that the cytoplasm of x is the same as the cytoplasm of y

(probability is either 1 or 0).
Cov(XijYken):

E[gijgkﬂ] = E[(e; + azj)(azk + a,)] = E[ejay + a0, + a0 + 2

e ] ] P.]‘
= 2] = 2
But E[aiak] = (axy/Z)E[a ] = (axy/4)og.
Thus, E[gijgkc] = axyoé .

E[ctcu) = E[TtTu] = P(t=u)a%; that is, eithgr o% or 0.

E[bijtbktu] = E{[(a7),, + (ar)jt][(ar)ku + (ar), I}
= E[(aT)it(aT)ku + (ozr)it(c:z‘r)eu + (cz'r)jt(ozr)ku + (ar)jt(aT)P.u]‘
But for t = u; E[(ar)i(ar)k] = (axy/2) E[(ar)z] = (axy/4)at2,.

Thus, E[bijtbk eu] = P(t=u)axyo%; that is, either axyo% or 0.

Therefore,

= 2 N - 2
Cov(xy) = axyog + P(t=u)oy + P(t—u)axyab.



CHAPTER 20

SELECTION FOR TRAITS WITH NONLINEAR
ECONOMIC VALUE

Two general problems not covered by the usual selection index procedure involve:
(1) the situation where the value of the product changes with the output of the product, e.g.,
the value of an additional pound of milk when the level is 109 Ib per day is not the same
as when the level is 19 1b per day, and (2) the situation where the value of a trait depends

on the level of another trait, e.g., the value of milk depends on the fat test of the milk.

NONLINEAR MERIT

If costs and income for production are known for different levels of production for
some trait, the net income curve may be approximated by some nonlinear or polynomial
function, e.g.,

Net income = ¢ + v{(X{+pq) + v2(X1+p1)2 + V3(X1+u.1)3 + -, where

c is a constant, the v's are the appropriate polynomial regression coefficients from fitting net
income to polynomials in total yield, X + pq, where u{ is a population constant and X
is the phenotypic deviation from u.

Thus, net genetic merit might be defined as:

T = ¢ + vy(Gy+4q) + vy(Gy+pq)? + v3(Gy+uy)® + -, where Gy is the
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usual additive genetic value for trait 1. The net genetic merit will depend on p as well as
G;. Animals could rank differently in populations with different average levels of
production, b1

A possible procedure for use in selection for net genetic value is to estimate G as
usual by I and substitute it into the economic equation so that
T =1 =c+ vy(+py) + voy+u? + vyy+p)’ + =

If only vq and v, are nonzero (linear and quadratic values), then this is an optimum
procedure for minimizing E(T —'T)2 except for a constant. This has been called the
quadratic index. The procedure may be nearly optimum for other cases although for the
cubic case Mao and Henderson (personal communications) have shown mathematically that
substituting I; for G is not identical to finding an index by minimizing E(T -T)z.

This concept can be extended to more than one trait and to cases where levels of one
trait determine the value of another trait. As long as terms in the economic equation are
no higher degree than (X1+u1)2 or (X;+#1)(Xy+n,), the procedure of substituting the
index for each trait into the economic equation is optimum.

For example, with two traits, if

T = ¢ + vi(41+Gy) + vo(up+Gy) + v3(u1+G)(up+Gy) +

V41 +G)? + vs(up+ Go)?,
then the best index for T where I; = Gq and I, = Gj is:

T=c+ vi(etl)) + Vol +ly) + v +I)(uy+1y) +

v4(u1+11)2 + v5(p.2+12)2,
where ¢' is a constant for all T. Wilton showed that this is equivalent to

2 2
I=c+ lel + 82X2 + B3X1X2 + B4X1 + BSXZ
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where the B's are the solutions to the equations obtained from minimizing:
E[(T-I) - E(T-)]2.

A special example is in the pricing of milk where the value of milk depends on the
level of fat test. The example does not consider any other nonlinear economic value for
milk. The income equation for milk can be written as:

Income = (1 +X )[vy, + vg(By+Xy-base test)], where pq + X is the milk record,
Ho + X is the fat test, v, is the base price of milk per Ib when the milk has the base test,
and vg is the differential in price of milk for a change in fat test. The equation can be
rewritten to compare with the quadratic income equation as:

Income = [v, - v¢ (base test)][(py+X ) + vp (mq+X (B +Xp).

Thus, the best index is:

I = [vp, - v¢ (base test)](sq+17) + vp (b +1)(y+1)),
where v = v, - v¢ (base test) and v3 = v; and

I; = by1X{ + bpXy and Iy = by Xy + bppXs.

In some cases a simpler approximation of I or I, may be substituted especially when
I and I, are based on many progeny, i.e., [; may include only records for trait 1 on many
progeny. In all cases with a quadratic index, correlated responses are difficult to compute

because of terms such as E(X12 X9).

EXAMPLE OF SELECTION WHEN MILK PRICE DEPENDS ON FAT TEST
The example demonstrates that an animal that ranks higher in one herd may not in

another herd depending on the average milk yield and fat test in the two herds.
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Two sires have been evaluated for milk, Iy, and test, I,. The two sires are to be used

in two herds with widely different average milk and test.

Sire Il 12 Herd #1 }Lg
A +2000 1b -.003 1 12,000 1b .040
B +1000 1b +.003 2 18,000 1b .035

Three pricing systems are compared where v, is the base price per Ib of milk at a base test
of .035 and v¢ is the fat differential--the change in price per Ib of milk if fat content changes

from none to all. The table gives the economic indexes for the six combinations.

vm=.05, vf=.6 vm=.05, vf=.8 vm=.06, vf=.4
Sire Herd 1 Herd 2 Herd 1 Herd 2 Herd 1 Herd 2
A $717 $964 $722 $952 $951 $1176
B 712 984 733 996 922 1163

GENERAL PROCEDURE FOR PREDICTING QUADRATIC MERIT
As an example with only two traits assume that overall quadratic merit can be
defined as:
T = vy(uq+Tp) + Vplip+Tp) + vipli +T (g +Ty) + vyq(w+Tp)? +
Vool + Tz)z,
where the v's are economic values for linear, product, and squared increases in true value
for traits 1 and 2 having means 1 and Bo- Tl and T2 will have zero means and variances

2 d 2
oTl an GTZ .
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T can be rewritten as
2 2
T = aO + alTl + asz + 3.12T1T2 + aHTl + 322T R
where the constants are: ag = ViHq + Vokip + Vlzﬂlﬂz + Vllli% + szﬂg,
a) = V] o+ Vighy T Vi 8 = Vot Vigky t VoK 311 = V11 312 T V12
and 822 = V22.
Henderson has shown that the best unbiased predictor of Tis T = ¢ + I where the
indexes for traits 1 and 2, I; and I,, are substituted into the quadratic merit equation,
2 2
I=ay+ aly + by + applyly + 31111 + a2212, and ¢ = E(T) - E(I). The constant,
¢, is the same for all animals and therefore will not change ranking and is necessary only
to have unbiased predictions.
Only one type of term in ¢ = E(T) - E(I) is difficult to evaluate:
2 2
E(T) = E(ao + alTl + 3,2T2 + 312T1T2 + allTl + 8.22T2)
= +0+0+ apyo + a 02 + a 02'
=20 12°T1 T, 1191 i 22 T22,
E(aO + alll + 3212 + 8121112 + allll + 8.2212)
2 2
aO +0+0+ ale(Illz) + allall + 3,220'

I -
0%1 = r.%l Ilo%l and aizz = r%z 120-21-2 as before where r%ili is the squared correlation

E(I)

between Ti and the index prediction, Ii' Thus,

E(T) - E() = apfo; T, - E(4L)] + alla%l(l-r%lll) N azzo?[-z(l-r%z 1)
Only E(I;1;) must be evaluated from the linear functions of I and I,. If, for example, in
the simplest case where X; and X, are the records for trait 1 and 2 on the animal being
evaluated, I, = b11X1 + b12X2 and 12 = b21x1 + b22X2, then:

2 2
E(Ij1p) = byjbyyox, + (byibyy + bioboy)ox; x, + byobpoy, -



CHAPTER 21

RESTRICTED SELECTION INDEX

Sometimes one trait is at an optimum level (when an intermediate is desirable) but
is correlated with another trait of economic importance. Ordinary selection for the
economic trait would lead to an unwanted correlated response in the trait which is at an

optimum level.

EQUATIONS TO FIND WEIGHTS WITH RESTRICTION

The general problem is to maximize T = v{Gy + v5Gy + = + v G, but at the
same time force the N - m other traits not to change from their present genetic level,
ie, AGp .1 =0=AG .5 = = AGy . A solution to this problem is the restricted
selection index given by Kempthorne and Nordskog (1959).

In the simplest case T = v;{G; and the restriction is to be AG, = 0. Available are
measures on the two traits, X; and X,. Selection for T = v{Gisby I* =b] X1 + b5 X2
where the * indicates the restricted selection index; restricted in that the index is to
maximize AT with the restriction that AG, = 0.

The restriction, AG2 = (), is equivalent to the equation for correlated response

Cov(Gyp,I™)

o D = 0 so that Cov(G,,I*) = b’i 9X1Gy * bE 9X, Gy must be zero and is

the restriction.
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In addition, the equations for the b's to maximize ryys are:
05(1 bI + 0X1X, ba = oxT
9X1 X5 b"l‘ + 03(2 b; = 0X,T
Thus there are three equations including the restriction but only two unknowns. To find a
solution a dummy unknown is added; the so-called LaGrange multiplier, A. The three
equations in three unknowns can now be solved. The coefficient matrix is symmetrical as
before:
b* 02 +blo + Ao =g
17Xy 29X1Xs X1Gy X, T
b’i 0X1 Xy * bi 03(2 + )'GXZGZ = 0X,T
b’f"Xle +b§ax262 +0 =0
The restricted index will be I* = b"l‘Xl + b§X2. A solution for A can be obtained but is
not needed for the index.

These equations can be derived by minimizing E[(T-I‘)z] with the restriction that
2A (bi 9X1Gp * b§ IX, Gz) = 0, ie., equate to zero the partial derivatives of
a%. + a%* - 20TT* + ZAoGZI* with respect to bj, b%, and A.

If selection is for more than one trait with restriction of more than one trait the
procedure can be expanded, instead of a single 4 there will be 4; (i = m+1, .., N) where
N - m is the number of traits to hold constant and N is the number of economic traits.

As an example consider m = 2, with T = VlGl + V2G2, and N-m = 2 with
the restrictions: AG3 = 0 = AGy.

The restricted index will be I* = 8} X1 + 85 Xz + 83 X3 + B} X4
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The restriction equations are:
9G4I* = B] 9X;G3 * B3 9X,G3 * B3 9X3G; * B4 9X,Gy = 0 and

UG4I* = BI 0X1G4 + BE 0X2G4 + ﬁ; 0X3G4 + ﬁz 0X4Gy ~ 0.

Thus, A; and A, will be the LaGrange multipliers in the equations to find the

restricted selection index weights:

2
Bl9%,  *P29X(Xp *P39X1X3 *B39X X4 **OXG3 *A29X Gy =X T

2
FIoX Xy *F30%,  *F39XyX3 *F3oXpXy *H9XyG3 *R29X,Gy =OXpT

2
B19X1X3 *F29XyX3 *F30X;  *B3oX3X4 *A19X3Gy *A20X3G4 =oX3T

2
B19X1Xg *P39XoXy *P30X3Xy *F30X,  *HM9X4Gy *220X,Gy
P19X1G3 *F29%;G3 *F39X3G3 *F3ox,G3 = 0+ 0

B1OX Gy *B39X, Gy *P39XaGy *B40X4Gy * O + 0
1G4 2Gy 3Gy 4Gy

EXPECTED RESPONSES

= 0X4T

0

0

The expected response in selecting according to I* should be compared to the

response in selecting directly for T = viG{ + v»G by I = B1X; + B8,Xy + B2Xs + (4X
& 1M1 7 V22 by 141 T R282 T R3A3 T B4y

with no restriction on change in traits 3 and 4. Comparison could also be made with

selection for T using just X; and X,. Although G3 and G4 may be optimum, the restriction

to maintain that optimum may be so costly in terms of AG; and AG, that a better

procedure would be to let G3 and G4 change while selecting strongly for T. A look at the

correlated responses may help to answer that question.
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In the typical example total response:
Cov(T, 1*) D

AT = = AG, + AG
or* V1 8451 T V2 4b2
Cov(Gq, I*) Cov(Gp,I*)
where as usual AGl = _ _— ~Dand A62 =~ "~ D.
aI* OI*

Because of the restriction, AG3 = AGy = 0. These responses would be compared with
viA Gy + vp AG, + v3A G3 + v4 AGy as calculated from using the unrestricted index
where v3 and v, are the losses in changing G3 and G4 from their present optimums. The
losses in traits 3 and 4 may be different when the changes are negative from when the

changes are positive, i.e., the economic values of traits 3 and 4 may not be linear.

EXAMPLES USING THE RESTRICTED SELECTION INDEX
Records On Animal Being Evaluated
Assume trait 1, is to be improved and trait 2, is to be held constant. A record on

each trait is available on all animals to be evaluated.

. 2 2
Given:  op = (2500 Ib) %, * (3%)* op,p, = -150
2 2
aG, = (1250 Ib) G, - (21%)? 0G,G, = ~1575
_ - - 2 _ 2 _
Py = -2 Ty, =6 by =25 hy = 49.

Let v; = 1 since selection is to improve only one trait.

Find: I} = b} X1 + b3 Xp.
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The equations determining the weights are:

(2500)2 b} -150 b3 -157.5h = (1250)2
1150 b% + (3)? b4 + (21)%A = -157.5
-157.5 b% + (21)% b} =0 so that

I’i 1581 X4 + 564.52 X,,

af,, = (.1581)2 (2500)% + (564.52)% (3)% + 2(.1581)(564.52)(-150) = 158,065, and
1
ops = 397.57.

CoviGy 1Y) | 1581(1250)% + 564.52(-157.5) [,

Ori 397.57

AGy = = 397.57 D (Ib).

Cov(Ga, 1) 1 1581(-157.50) + S64.52(:21)>

or* 397.57
1

D =0.

AG,

If selection is for Gl with no restriction on G2:
Il = 2167 Xl - 1388.89 X2 with oIl = 746.5, so that;

AG; = 7465 D (Ib) and

Cow(Gp, 1) ' 2167(-1575) - 1388.89(21) ) _

011 746.5

AG, = -.1278 D (%).

If selection is for Gy from X, only:

I; = 25X with o = 625, so that;

25(-1575) p _

AG,
625

625 D (Ib), and AG, = -.0630 D (%).

The expected responses for the indexes should be compared for their economic impact to

determine if restriction is what is really wanted.
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Records On Paternal Half-sib Progeny Of Sire Being Evaluated

Evaluate sires by 3 procedures based on
1) I"l‘ = b’;xn + bEXIZ’ 2) 1I; = byXy1 + byXyp, and 3) Iy = byXyy
where X is the progeny average for trait 1, X;, is the progeny average for trait 2 with 1
record per progeny and p = 20 progeny. I* for 1) is to improve G, and not change G,.
I for 2) is to maximize AGq and I for 3) is to maximize AGj.

2 2

Given: op; = 2500 1b, op, = 3%, h1 = 25, h2 = 49, =-6, T 2.

l'glz p12 = -

Find the indexes and expected response in trait 1 for all 3 procedures.
1) Restricted index:
2
I* = b] Xq1 + b3 X;p and Cov(Gyp, I*) = b] 214 9G, G, * b3 214 oG, =0

Equations:

2
1+(p-1).25 h1 2, 9p, P2+(p-1).25 9G1 Gy

op. bY+
P P P

2
bE +.5 9G4 GZA. =5 aG1

2
op. P, +*(p-1).250G, G 1+(p-1).25h
152 192 2| 2 2,
> b’i+ > aPZ b§+.5 an}.-.S 9G1Gy

-5°G102 bi + .507(‘}2 b§ + 0ArA=0
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Numerically:
683,594 b} -45 bi - 78.75A = 781,250
-45 b’i + .01497375 bi + .022054 = -78.75
-78.75 b"l‘ + .02205 b5 = 0 so that

I* = 9039 X;q + 3228 X p, and opx = 451,951 with ops = 6723 .

2
_ Cov(Ga1, I") 9039(5 o,) + 3228(5 0G; Gy

= D = 6723 D (Ib)
or* 6723

2
Cov(Gqp, 1I*) D 9039(5 0G, G,) * 3228(5 0g,)

= 2 D=0 (%)

AG
2 oy * 6723

2) Unrestricted index:

I = by Xy + by X equations are upper 2x2 for 1) with same 2 right-hand sides.
Then:

1= 9931 X, - 2275 X, and o5 = 955,003 with o = 977.2, so that

2
_ CovGap, D 99315 05.) - 2275(5 0G, G,)

= D = 9772 D (lb)
o] 977.2

2
Cov(Gyp, 1) b 9931(5 0G, G,) - 2275(5 an)

AG, o 9772
I .

D

-1314 D (%)
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3) Single trait index:

I = by X1 : equation is first diagonal and first RHS of 1).

1= 11429 X;; and of = 892,857 with of = 9449, so that
1.1429(.5 2
Cov(Gyp, 1) 142905 o))
AG = % ' D- D = 944.9 D (Ib)
oy 9449
Cov(G,», I 1.1429(.5 oG, G-)
AG, = Co2 D | 172 b - -952 D (%)
o1 944.9
SUMMARY OF EXAMPLE
Female selection Male selection
Procedure AG¢/D AG,/D AG¢/D AG,/D
I = b Xqq + b3 Xqp 398 Ib 0% 672 Ib 0%
[1 = b1 X311 + b Xg2 747 b -128 % 977 1b -131 %
I; = by Xq; 625 Ib -.063 % 945 1b -.095 %
OTHER RESTRICTIONS

The theory and application of restricted selection indexes has been extended to cases

other than forcing expected change in certain traits to be zero. These restrictions include

directional restriction, proportional change, and specified change other than zero. These

restrictions are somewhat more complicated to apply than the zero change restriction and

are not be discussed here.



CHAPTER 22

INDEX AND ECONOMIC VALUES IN RETROSPECT

The index in retrospect is an index that might have been used for selection to
produce gains that have occurred even though the weights for the index might have been
unknown at the time of selection (Dickerson et al., 1954). Determining the index that might
have been used depends on finding an index which would have given the set of phenotypic
selection differentials actually observed.

Let I = ‘I;:l w;P; be the underlying but unknown index that might have been used

i=

for selection and D be the selection intensity factor. The phenotypic record for trait i

measured on the animal being selected is P;.

INDEX IN RETROSPECT FROM PHENOTYPIC SELECTION DIFFERENTIALS

If the underlying unknown index is I, the regression of Pj on I gives the expected

phenotypic selection response (differential) for trait j, (j=1, ..., N):

Cov(P;, 1 Cov(P;, 1
P = ®; D Al = #

J 2 o
1
o1

D = (D/oy) Cov(Pj, I).

Because D/oy is a constant for all traits, the proportionality of the right-hand sides for

different traits will not change. Both D and I, however, may be different for males and
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females and even from generation to generation. Indexes in retrospect can be computed
separately for males and females and for each generation. If D/oy is set to one, then the
expectations of the N phenotypic selection differentials are:
2
E[AP;] = Cov(P{,I) = wlopl + W0p P, + '+ WNOP, Py

2
E[AP,] = Cov(P,,I) = wiop,p, + w20p, + *+ WNOP, PN

E[APyN] = Cov(Py,I) = W1op; Py t W20pP,PN t Ut wNo%,N

Note that the coefficients of the w's are the same as for finding the best selection index
weights, i.e., the phenotypic variances and covariances. The selection differentials can be
equated to their expectations, i.e., to the left hand sides of the usual selection index
equations, to determine in retrospect the relative weights for the index. Here the symbol
w is used for the weights for the index in retrospect. The phenotypic variances and
covariances must be known as well as the phenotypic selection differentials. A linear index
in the phenotypic values is assumed as is truncation selection based on the underlying but
unknown index.

In matrix notation w = P'lAp where w is the vector of retrospective weights, P is the
phenotypic variance-covariance matrix, and Ap is the vector of phenotypic selection
differentials.

The relative expected correlated responses from using the retrospective index are as
before: AG j= (D/oy) Cov(Gj,I) (j=1, ..., N) which could be compared with the expected

responses from the theoretically best index for which economic values are assumed known.
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INDEX IN RETROSPECT FROM GENETIC SELECTION DIFFERENTIALS
Another approach for finding the index in retrospect depends on knowing the genetic
selection differentials, AG j (i=1, ..., N). Usually each genetic selection differ;:ntial would
be estimated as the difference in phenotypic means between animals of two generations.
If breeding values can be estimated for all animals the genetic selection differential can be
calculated from the difference in averages of estimated breeding values for the two
generations. The underlying I and also D may be different for males and females which
may cause a problem in assigning the fractions of AG due to male and female selection.
AgainletI = Y w.P; be the underlying index. The regression of G; on I will give the

J

expected genetic selection differential for trait j:

Cov(Gj, I) AL = Cov(Gj, I)

2 o1
o1

E[AG] = D = (D/oy) Cov(G} 1) .

If D/oy is set to 1, the expected values of the genetic selection differentials are:

E[AG{] = Cov(Gy,))

2
WloGl + WzoGle + + WNOGI GN

2
E[AG,] = Cov(G,]) = W10G1Gy w20G2 + -+ WNIG, G\

E[AGN] = Cov(GNl) = Wi0G, Gy + W29G,Gy * ™ * wNoéN

Thus, if the genetic variance-covariance matrix is known as well as the genetic
selection differentials, the weights for the underlying index can be estimated by equating the
estimated genetic selection differentials to the right hand sides of the above equations as
w = G'lAg. In most cases, however, the phenotypic variance-covariance matrix is much

easier to estimate accurately than the genetic variance-covariance matrix, G.
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ECONOMIC VALUES DETERMINED FOR THE INDEX IN RETROSPECT

After the retrospective index I = X w;P; is determined, the relative economic weights
in retrospect can also be determined if the assumption is true that the retrospective index
is the best index for some retrospective economic true value, T = EviGi. Thus, the usual
equations to find the selection index weights (which now have estimates) can be used to find
corresponding economic values. The calculated numerical values on the left-hand sides
which depend on the phenotypic variance-covariance matrix are equated to the right-hand
sides which are a function of the economic values to be solved for and the genetic variance-
covariance matrix:

2 2

alel T OP PyW2 * " * 0P PNWN T V1°G1 *V29G1Gy * " T YN9G1GN

2 2
Opl Pzwl + 0P2W2 + oo+ OPZPNWN = VIOGZGI + V20G2 + o 4+ VNUGZGN

2 2
9PIPNWI * TP, P\W2 * T * Op WN T VIOGN Gy * V2°GNGy * T VNIG Y

This procedure is equivalent to equating the phenotypic selection differentials to the right-
hand sides of the selection index equations for predicting total merit, the X T> and then
solving for the economic values. Accurate estimates of the genetic variances and

covariances are necessary for determining the economic values in retrospect:

2
AP, = vltJG1 * U+ VNOG; GN

. . . ?
APN = vlaGNGI + oo+ VNO'GN
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In matrix notation v = G'lAp where v is the vector of economic values, G is the genetic

variance-covariance matrix and Ap is the vector of phenotypic selection differentials.

AN EMPIRICAL SELECTION INDEX

If the net value of each animal can be determined (even with error if errors in
determining economic value are uncorrelated with the X's), then an empirical selection
index, I = =B;X;, can be found from the multiple regression of net value, y, on the
phenotypic traits, X; (i=1, ..., N):

2 —
O, F1 T OX; Xy P2t OX  XNAN = 9Xyy

2
OXNX1Pl * OXNXpP2 t tt ox BN = OXNy

The variances and covariances can be estimated from the data which includes net
value. The phenotypic variances and covariances also could be estimated from a larger
sample of data, some of which does not include net value. In fact, the coefficients on the
LHS are the same as for the selection index equations if the phenotypic variances and
covariances are known exactly. Solving these equations will give the empirical selection
index which is an unbiased estimate of the best index to predict overall economic value.
The covariances between total economic value and phenotypic measurements can be used

as follows to estimate linear economic values for each trait.
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ECONOMIC VALUES FROM EMPIRICAL COVARIANCES

A linear model for total net economic value for animal m can be written as:
Ym = EVjGjm + e, where zijjm is overall economic value and e, is a random error
of measurement. Thus, if e, is uncorrelated with the e's of the X's (perhaps a not very

reasonable assumption), then equating: oX;y = E VioG; Gj for each trait i would give

these equations:

2
VIOGI *V20G1Gy T " *VN9G1GyN T %Xyy

VISGNGy Y V29GNGy T T T VN"%}N = IXNY
If the genetic variances and covariances are known and the oX:y have been
computed, the equations can be solved to find the economic values.
If the empirical selection index weights are unbiased and because the right-hand sides
equal EvJ-chi Gj for all i, the economic values can also be estimated from these equations

because I = EBixi is a retrospective index:

2 _ 2
oxlﬁl + o 4+ axlxNBN = vlo'G1 + + VNOG{GN

2 _ 2
oXleﬁl 4 e oXNﬁN = VI(JGNG1 4 o 4 VNOGN

If only the v's are unknown, the equations can be solved to find the economic values where

the LHS's are IX;y-



PART TWO

INTRODUCTION
TO
MIXED MODEL

PREDICTION

Chapters 23-33 introduce least squares and mixed model equations for prediction of
breeding values, transmitting ability, and real producing ability. The correspondence of
selection index and mixed model procedures is demonstrated. How to calculate the inverse
of the numerator relationship matrix which is needed for best linear unbiased prediction is
described for sire and animal models. The mixed model approach is how modern genetic
evaluations are done. Properties of mixed model procedures, however, are not as easy to
show as analogous selection index properties without a heavy dose of linear model theory
and facility with matrix algebra. Therefore this section serves only as a brief introduction

to mixed model methods with emphasis on application.



CHAPTER 23

PREDICTION FROM LINEAR MODELS

Selection index procedures described in Part I require the assumption that phenotypic
measurements are perfectly adjusted for all nongenetic factors except the random permanent
and temporary environmental effects; i.e., x; = y; - u, where y; is the actual measurement
and u is a symbolic representation of adjustment for all fixed nongenetic factors such as age
effects, year effects, and management effects.

In many situations, the adjustments for the fixed factors must be estimated
simultaneously with prediction of genetic values. Some adjustments such as for age may be
made from estimates obtained from previous sets of data. Effects of other fixed factors,
however, may occur as the records are being made, as for example, the effects of year and
management, so that prior estimates of those effects are not available to adjust the records.

A procedure is available for such situations which has many of the properties of the
selection index. The procedure is the same as the selection index if all fixed factors are

known although the two procedures, at first, appear greatly different.

BEST LINEAR UNBIASED PREDICTION
The mixed model procedure was derived by C. R. Henderson about 1948. He

generalized and proved its properties after that time (e.g., C. R. Henderson; 1975, 1984).
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The procedure results in what is called best linear unbiased prediction (BLUP) of the
random effects such as additive genetic value, transmitting ability, and permanent
environmental effects. Best is defined as minimizing the variance of prediction error for
procedures which are unbiased and use linear functions of the data. Best linear unbiased
predictors can be obtained simultaneously with best linear unbiased estimates (BLUE) of
fixed factors from solutions to what are often called Henderson's mixed model equations.
With the mixed model equations the predictors of, e.g., additive genetic value are
automatically adjusted for the fixed factors as well as possible.

Both BLUP and selection index procedures require the assumption that variances and
covariances such as genetic and phenotypic variances and covariances are known. The
properties in common between BLUP and selection index are:

1) both are unbiased; the selection index is automatically unbiased whereas BLUP

solutions are forced to be unbiased,

2) variances of prediction errors are minimized (the basis for obtaining the

equations for both BLUP and selection index),

3) the correlation between the prediction and what is predicted, rTf , is

maximized,

4) if the data and T follow a multivariate normal distribution, then the predictions

maximize the probability of correct ranking, and

S) the predictions are the same as selection index except that with BLUP the best

linear unbiased estimates of fixed effects are used to adjust the records to a
G + E basis whereas with the selection index the true values of the fixed effects
are used for adjustment.

The mixed model equations are derived after considerable algebra from minimizing
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prediction errors squared and sampling variances of estimates of fixed effects with the
condition that the predictions are unbiased. Variances and covariances among the records
are considered in an optimum way. The procedure will be illustrated for a few models and
will not be covered in general. A complete discussion would require knowledge of matrix

algebra and several semesters of statistics (see Henderson, 1984).

MIXED MODEL EQUATIONS

When all observations have the same variance, the mixed model procedure simplifies
to a simple set of equations involving all effects in the model except for the residual effects.
The number of equations is the same as the number of effects in the model. The procedure
is considerably more complex with multiple traits with different variances and covariances.
Multiple trait applications will not be discussed.

The equations are the same as ordinary least squares equations if all effects (except
residual terms) are fixed effects. The equations are called mixed model equations when
random effects or when both random and fixed effects are in the model. The mixed model
equations are obtained from simple modifications of the least squares equations. Effects
are random if they come from a distribution with some variance such as would be the case
for genetic values and real producing abilities. Fixed effects have no variance and
theoretically can be repeated exactly. A wide range of effects combine some of the
characteristics of both random and fixed effects.

Rules for setting up the mixed model equations will be given for models where each
effect in the model is a whole effect (i.e., g; not g;/2 or a covariate). How to modify these

simple rules can be found in most books on applied linear models or statistical methods.
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RULES FOR WRITING MIXED MODEL EQUATIONS
1. Compute a sum for each effect in the model excluding residual effects such that
each observation that contains the effect is included in the sum.
2. Equate each sum to its model considering all effects as fixed excluding the
residual effects. The result is called the ordinary least squares equations (LSE).
Put a hat, (*), on the effects to denote solutions to the equations and not actual

effects.

2

3. If an effect comes from a distribution of independent effects with variance, 0y

then add the ratio, avzv/o%, to the diagonal coefficient of those equations where

o&, is the variance of residual effects. Models where the random effects are
correlated, e.g., genetic values when animals are related, will be considered by
example.

4. Constraints often must be imposed on the equations for fixed effects. The usual
rule of thumb is that one nonestimable constraint is needed for all except one
classification of fixed effects, e.g., if one constraint is on 4 then one
classification of fixed effects should not have a constraint imposed. Typical
constraints are 4 = Qif there is only one fixed classification; 4 = 0and

the last level of each classification except for one classification also set equal to

0 if there is more than one fixed classification.

INTERPRETATION OF SOLUTIONS
1. Solutions for fixed effects are best linear unbiased estimates (BLLUE) of estimable

functions of the fixed effects. The jargon concerns interpretation 2.
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2. The expected values of the solutions corresponding to fixed effects for models
without interaction terms usually have the properties:
a) E[solution for a fixed effect] # actual fixed effect,
b) E[solutions for fixed effects] depend on the constraints imposed to obtain

solutions, and usually

) difference in solutions for two fixed| _ difference in the
effects in the same classification ~ actual fixed effects

3. Solutions for effects randomly drawn from some distribution of effects such as
genetic values are best linear unbiased predictors (BLUP) and have the selection
index properties except that the observations have been adjusted for fixed effects
with best linear unbiased estimates of the fixed effects rather than by actual

values of the fixed effects.
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DOT NOTATION

Before the first example in Chapter 24, the dot notation will be introduced which
makes writing the equations in a symbolic form less laborious. A more complete discussion
of dot notation is in Chapter 34. A dot (period) in place of a subscript signifies summation
has occurred over that subscript. Suppose observations are denoted symbolically as Pij
where the i subscript refers to animal i and the j subscript refers to the jth record of the

animal. Let n; be the number of records of animal i. As an example, leti = 1,2, or 3, and

ny =2,ny = 1, and ng = 4. Total number of records is:

3
p>" n; =ny + 0y +n3=n.
i=1
n1=2
Similarly, the sum of all records of animal 1is: Py = X Plj =Py + Ppp.
j=1
The sum of all records is:
n

i

3
P =Py +Pp +P3 = El Pjj =Pyq + Ppp+ Pyy + Py +Pyp+ Pyg+ Py

j=1



CHAPTER 24

LEAST SQUARES EQUATIONS: ONE-WAY CLASSIFICATION
MODEL

The easiest way to describe ordinary least squares and mixed model equations is by
example. The simplest example that illustrates least squares equations is the one-way
classification model where the classification (sometimes called, factor) describes levels of
some type of fixed effect. Suppose records are classified by the age of the animal when the
record is made and that each animal has only one record. Then a model is:

yij =u + A1 + wij
where u is a constant,

A, is the fixed effect of the ith age, and

Wij is the random residual term associated with the record of the jth animal made at
the ith age.

Note that a record will always contain the G + E terms, whether stated or not. In
this case, Wij = Gij + Eij with two subscripts identifying the animal since the numbering of
animals (j) begins at one for each age group (i).

Further suppose the following records are available where the records are equated

to their models to clarify rules 1) and 2):
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115=yl1=u+A1+W11 95=yZ1=M+A2+W21
85=y12=[1+A1+W12 90=y31=[.l.+A3+W31
105=y13=u+A1+W13 110=y32+u+A3+W32

Thus, i = 1, 2, or 3, the number of levels of the fixed factor, age; and ny =3 the number

of records with age effect 1; ny = 1; and n3 = 2.

RULE ONE: SUMS

Rule 1 is that a sum is computed for each effect in the model excluding the Wij terms.
The four effects in the model are v, A1, Ay, and A, although any record will contain only
two terms; the u constant and one A effect. The sum for u includes each record having u
in its model which is true for all records. Thus, the sum for the p equation is y = 600.
The sum for the A, equation includes each record containing A, which is the case for the
nq records with subscript i = 1. Thus the sum for the A equation is:

y1, = 115 + 85 + 105 = 305. Similarly the sum for the A, equation is y, = 95 and for

the A3 equation is y3 = 90 + 110 = 200.

RULE TWO: MODELS OF SUMS

Rule 2 is to equate each sum to its model, excluding the Wij terms. The model for
y_is simply the sum of the models for all of the n_records included in the sum:

nq of the records have model p + Ay,

n, of the records have model u + Ay, and

ng of the records have model u + A3,

so that the model fory is (ny + ny + n3)u + njA; + myA, + n3zAs. Similarly the model
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for y; is the sum of the models for the n; records included in y; where all n; records
contain u and A1 so the model for y1. is np + nlAl'

The same pattern applies to the model for y, where all records contain y and A,
so that the model, is nyp + nyA, and for y3, the model is nap + n3A3.
Written in the usual symbolic form and with *'s to indicate solutions and not

necessarily estimates of the effects:

TR ng + nlAl + n2A2 + n3A3 =Yy,
A ng + nlAl =Y.
Ay mh + nyA, =¥y
Ag: n3f + n3A3 =Yy3

For the example, the equations in numerical form are:

62 + 3A;+ 1A, + 2A; =600

30+ 3A; = 305
lﬁ + ].AZ = 95
25 + 2A5 =200

Note: 1) The numerical coefficients are symmetrical; i. e., the coefficients in the first row
are the same as the coefficients in the first column on the LHS's. The same is
true for rows and columns two and three.

2) The off-diagonal coefficients among the A equations are zero because, for

example, a record made at age 1 cannot also be made at age 2 or age 3.

RULE THREE: RANDOM EFFECTS

Rule 3 does not apply in this example because the model does not include any

random factors other than the residuals, the wij's.
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RULE FOUR: CONSTRAINTS AND SOLUTIONS

The three "A" equations sum to the "u" equation. Thus, even though there are four

equations in four unknowns, four solutions cannot be obtained because the equations are

not independent. To obtain a set of solutions, one constraint must be imposed on the

original four solutions.

a)

b)

The constraint 4 = 0 is the easiest constraint to use for the computations. The
equation for u as well as 4 is eliminated to maintain symmetry in the remaining

equations which become:

~

n1Aq =1
nyA, =Y,
n3As =y;

Another possible constraint is to set A3 = 0; in that case the equation for Ay is
eliminated as well as A3 to maintain symmetry in the remaining equations (i. e.,

A5 vanishes as well as the equation for y; ):

D_ﬂ + DlAl + n2A2 = y“
nih + mA = YL
nzfl. + n2A2 = y2.

A more complex constraint is to set A; + Ay + A3 = 0. This equation is in
addition to the least squares equations and to make the numerical coefficients
of the equations symmetrical a dummy unknown (called in statistical jargon, a

Lagrange multiplier, A) is added to each equation so that:
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n.ﬂ + nlAl + D2A2 + 113A3 + 0A = y"

Illﬁ + nlAl + 1A = Y1,
llzﬂ + 112A2 + 1A = y2.
11313 + D3A3 + 1A = y3.

08 + 1A;+ 1A, + 1A3+00= 0

The solutions with constraint 4 = 0 are the easiest to use to discuss the principle involved.
The solutions, as can be seen from examining the equations when 4 = 0 and the y
equation is eliminated, are:

g =0,A; =y /ng, Ay =y, /ny, and Ay = y3 /ny. Note that the constraint,

4 = 0is one of the solutions.

EXPECTATIONS OF SOLUTIONS

A result of having to impose a constraint is the necessity to be careful in
interpretation of the solutions. Obviously in most cases E[fi] # u because E[0] = 0. The
E[Al] can be found easily for the one-way classification model with the constraint £ = 0.
Notice that E[yij] = u + A, for all subscripts j. Thus,

E[A{] = Elyy/nq] = (1/npElyyg + ¥ip + ¥13 + -+ + Y]

= (/np)ng(u + Al = & + Ay

Similarly,

E[Aj] = u + A, and E[A3] = 4 + A;.
These results show that u cannot be estimated, and also that none of the A's can be

estimated. What can be estimated are functions of u + A,, the models for the records.
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For example, A; - A, can be estimated by Al - Az because:
E[A; - Aj] = E[A{]-E[Ag] = [( + Ap) - (u + Ap] = Ay - Ay

The important principle is that solutions obtained using other constraints will have different
expectations but that the same estimates of differences can be obtained. For the constraint,

A3 =0, E[A3] = E[0] = 0. In fact, with that constraint:
E[A{] = A{ - A3, E[A)] = Ay - A, and E[3] = p + A3

As with the 4 = 0 constraint, the same estimates of differences can be obtained. The
estimate of A; - Ag is Al’ the estimate of Aj - A is Az, and the estimate of Aq - Ay is
Al - A2° For the sum to zero constraint, Al + A2 + A3 = 0, the expectations of solutions
are a little more difficult to find, but the result is that only ¢ + A, and differences among
the A's can be estimated. Estimability is defined as the property that a function of the
records can be found that has the expected value desired, e.g, A - Ajorp + Ay
Finding the expectations of solutions for more complicated models is more difficult
and for ease of computation requires some knowledge of matrix algebra. Those techniques

are taught in courses in linear models and are beyond the scope of this book.
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THE ANIMAL MODEL

THE ANIMAL MODEL WITHOUT REPEATED RECORDS

A simple one-way random classification model results when records are classified by

the animal making the record when no fixed classification effects or other random effects

are included in the model. If each animal has only one record, each record is assigned to

a separate classification. This model can be used to illustrate the similarity between

selection index and BLUP. The cases where each animal can have more than one record

and where the animals are related will be discussed later.

The model for a record of animal i is:

where u

iTHTETW
is a constant (several fixed factors could be in the model with equations
developed as in Chapter 24),

is the effect on the record of the animal's genotype, usually assumed to be

2 - h202’

additive genetic effects, with E[g;] = 0 and E[ giz] = 9 y and
is the residual effect of the sum of environmental effects on y;, with

_ 2, 2 2 2\ 2
E[w;] = 0 and E[w.] = o = o = (I-h )oy.

The mixed model equations are obtained by setting up the least squares equations

(same as considering each animal's additive genetic value as a fixed effect) and then adding o%v / oz

to the diagonal of the coefficent matrix of each animal (additive genetic value) equation.
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Note that o2, /aé = (1-h?) 03 /h 2032, = (1-12)/h2. Let & = (1-h2)/h2.
Because each animal has only one record, the mixed model equations are especially

easy to write and are as follows for three animals:

34 + g1 + B + B =y
A+ (1+1)§1 =¥
Ao+ (1+2)82 =Y,
o+ (1+4)83 =y3

The four equations in four unknowns (4, §1, &, £3) can be solved without imposing
a constraint because when A is added to the diagonal coefficients, the three animal
equations do not sum to the u equation. The solution, &, will be BLUE of p because for
this model E[4] = u. The solutions, §1, g, and §3 , will be BLUP and correspond to
selection indexes for additive genetic values of animals 1, 2 and 3.

The correspondence to selection index can be shown by examining any of the animal
equations (e.g., animal 3):

b+ (1+2)g3 =y3;

(1+2)g3 = y3 - &;
g = %3 - )

Note that (1+4) = 1 + (1-h2)/h? = [h% + (1-h%)]/h? = 1/h?
Thus 3 is the same as selection index, I3 = h2(y3 - 1), except that BLUE of y, 4, is used
to adjust the animal's record rather than p. With only three records, as in this example, i

may be poorly estimated.
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To show that i =y, the average of the 3 records, substitute g; = hz(yi - f) for

i = 1, 2, 3 into the first equation and then do some simplification:

3

~

34

34(1 - h?)

+ h3(y; +yy +y3-38) = y,
+ 03y - 3p) =y,

=y(1-b%)  and thus

ANIMAL MODEL WITH REPEATED RECORDS

Although the records will be classified in only one way, by animal, the effects

associated with animal i on its record are of two kinds, g; and p;, where g; is the additive

genetic value and p; is the effect of permanent environmental factors which affect each

record of the animal. This model with the permanent environmental effect corresponds to

the repeatability model introduced in Chapter 8. Again for simplicity assume no fixed

effects except u in the model for yij the jth record of animal i:

where

ij

Yij = Kt g T Pj T Wi
is a constant,
. s . oy 2 22
is the additive genetic value with o g = h oy
is the permanent environmental effect associated with all records of
animal i with 012) - (r - hz)oi, and
is the residual effect (temporary environmental effects) associated with

the jth record of animal i with o;zv =(1 - r)o?.
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Note that og + 012) + afv = 032, and that oz + og = rcr?.

Thus ofv /oz =(1- r)/h2 = A and a‘zv‘/og =({1-1)/(r- h2) = y. The sum of n; records
on animal i will be y; . As an example, consider two animals with n; and n, records. Five
equations will be needed corresponding to the five effects; u, g1, g7, 1, and pp. The least
squares equations will be identical for g; and p; and for g, and p, but A will be added to
the diagonal coefficients of the g equations and y will be added to the diagonal coefficients

of the p equations:

T nigp + nygy + nipy + nypp =Y.
gr M + (ng + M) + nipy + = Y1
gy moft + (ny + A)gp np2 =2,
py: nif + nigy + (ny + v)p1 = Y1
Py Mpf + npfy + (ny + v)P2 = y2.

Again, no constraints are needed because the g equations do not sum to the u
equation or to the sum of the p equations because of the nonzero ratios A and y added to
the diagonal coefficients. Thus E[4] = u. Solutions, §; and £, , correspond to selection
index predictions of additive genetic values of animals 1 and 2. Similarly, §; + p; estimates
producing ability of animal i and corresponds to selection index for producing ability. Both
correspondences can be shown by examining the mixed model equations. For example,
consider the equations for animal 1, the g; and p; equations. Because the right-hand sides

of the two equations are the same, Y1, the left-hand sides must also equal each other.

Thus, n14 + (ng + A)gg + nypy = 0y + ngdy + (o + ¥)Py.
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Terms in 4 and ny drop out to leave:
Ag1 = vby so that py = (/1)1 = [ - h)/h ey
Now substitute this expression for py into the g; equation:
nid + (o1 + A)81 + m(A/v)81 = y1.
Thus with reordering:
[n] + A + n9(A/¥)1g1 = y1. - D1k
Replace A with (1 -r1) /hz, y with (1 -1)/(r - h2) and y; with njy; (the average times n;

is the sum) and with some algebra:

nlh2 +1-71+nqr -111h2

3 g1 =n101. - A)
h
and
1+ -Dr G ) hat 3 n1h2 _ A
1 = - t = - s
h2 g1 = n1y1, — K4) so that g1 _1+(n1-1)r 1 1

which is the selection index for g; for ny records on animal 1 with u replaced by A.

Because producing ability is g; + py, add §; and py to estimate g{ + pq:

A nlh2 = o] + | 1= h? n1hz v 4] so that
+P1 = — - 4] + - fi] so tha
&1 * P1 1+(ny - I)r b1 -4 h2 | 1+(ng - r b1 - A
: L A
+ o -

which is the selection index for producing ability with 4 instead of u.
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SIRE MODELS

ONE-WAY RANDOM CLASSIFICATION SIRE MODEL

The one-way random classification model applies when the data can be classified
according to effects which can be thought of as coming randomly from a distribution of
effects. For example, the records may be grouped according to the sires of the animals with
records.

Suppose the model is:

Yij = Bt S5t Wy
where u is a constant,

s; is an effect common to all animals having sire i; (this effect is equivalent to
transmitting ability or one-half additive genetic value of the sire because a sample
one-half of his genes are transmitted to each of his n; progeny), E[s;} = 0 and
E(s%) = ag = paternal half-sib covariance, hzo§/4, and

Wij is an effect associated with the record of the jth progeny of the ith sire.

Note §; + Wl] = Glj + El] so that E(wlj = 0 and U&, = 03 -ag

02/0% = (1-12/4)/(h%/4) = (4 - W®)/h2. Let A = (4 - h%)/h?.

“ N

= 03(1 - h2/4). Thus,
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The mixed model equations now are appropriate and are obtained by setting up the
least squares equations (same as considering sire effects as fixed effects) and then adding
°v2v/ o% = A to the diagonals of the coefficient matrix corresponding to the sire equations
when the sires are assumed to be unrelated. The A term essentially takes into account the
additive relationships among animals with the same sire as does the selection index
procedure.

The mixed model equations become (for the case of three sire groups):

ng + n§; + sy 4+ n383 =y
nip + (ng + A)§; + =y
mi + (ny + 1)5, = Yy
n3g + + (n3 + A)53 = Y3,

and if h2 = 25, then A = (4 - h2)/ hZ = 15. Note that 03 is not required although the ratio

a\%,/ og must be known.

If ng =11,ny = 4, and ng = 15, the numerical equations except for the sums are:

306 + 118 + 45 + 1583 =y
118 + (11 + 15)3 =¥y
40 + 4 + 15)%, =y,
154 + + (15 + 15)83 = Y3,

Because of the extra diagonal terms, A = 15, the sire equations do not sum to the u
equation as was also true with the animal models in Chapter 25. The four equations in four
unknowns can be solved without imposing a constraint. The solution, £ , is BLUE of u
since for this simple model E[4i] = u. Solutions, 31, $, and §3 , are BLUP and correspond

to selection indexes for transmitting ability of sires 1, 2, and 3.
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The equivalence of BLUP to selection index can be shown by looking at any of the
sire equations, e.g., the equation for sire 1, and noting that y;, = y; /n;, the average of

progeny of sire 1:

Dlﬁ + (1’11 + 15)@1 yl.

(ny +15)8; = m(yq, - 8) .

n]
Thus: §1 =

I11+15

}()71, - B)

which is the same prediction as with the selection index except that the BLUE of u, f,
instead of u is subtracted from the progeny average to adjust for the fixed constant in the

model of each record.

TWO-WAY FIXED AND RANDOM (SIRE) CLASSIFICATION MODEL
Most mixed model analyses are for models that contain both fixed and random
effects. The sire model with one fixed factor, such as management effects, is an example.

Assume the model is:

yijk=u+m_i+8j+wijk
where:

Yijk is the record of progeny k of sire j made in management level i,

m; is the fixed effect of management i,

s: is an effect common to progeny of sire j with variance a%,

2.
s
Wijk is a random residual effect associated with the record of progeny k of sire j made

in management level i, with variance avzv = a% - a% = (1- h2/4)o§ .

with o¢ = paternal half-sib covariance = h203/4, and

For example, assume h? = .25, then o‘%/a% = A =15
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As an example, assume the following observations have been made:

Y112 = 520 Y132 = 340 Y212 = 400 Yo22 = 440
Y121 = 460 ¥133 = 300 ¥213 = 410

The first subscript (i) denotes the management level and the second subscript (j)
identifies the sire of the animal. The largest value of the third subscript (k) for a particular
combination of i and j denotes the number of observations for that combination, njj.

For this example: i = 1 or 2;j = 1, 2, or 3; and

ny1 =2,nyp = 1,013 =3,mp1 =3,09p =2,np3 =0.
There are 6 effects in the model: g, my, My, Sq, Sy, and 53
Equation for u:

All the observations contain g so that the sum for y is y = 4540,
Equation for my:

All observations with i = 1 contain my so that the sum for mq is y; = 2500.
Equation for my:

The sum of observations with i = 2is y, = 2040.

Equation for s;:

All observations with j = 1 contain s; so that the sum for s{ is y ; = 2240.
Equation for s,:

The sum for observations with j = 2isy, = 1310.

Equation for s3:

The sum for observations with j = 3 isy 3 = 990.
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Usually the easiest way to set up the equations with pencil and paper is to make

tables of the subclass numbers and sums:

B! %

1 2 3 |ng 1 2 3|y
112 1 3|6 1 | 1050 460 990 | 2500
23 2 o]s 2 | 119 850 - | 2040
|5 3 3| yj |2240 1310 990 | 4540

The least squares equations in symbolic form are:

p:on @+ ngmy +mpmpy + 098 +nzHp +n3s3 =y

m;: oy f+  npiy + ny18;  + mppSy + g3y =y
my: mpp + tmfy 4+ mppSy +onpS 4 ompl3 =y
sit nib +  ngqthy 4+ gy + ng8y =1
S): nNpfi + npothy  + mpothy 4+ n 28 =Y2
s3: n3f nq3h;  + np3hpy  + n3¥3 =y3

The Iy table summarizes the number of each effect in each sum. For example, the
sum for my includes n; records. Each of those records contains x and m;. Obviously none
contains the m, effect. The number of records with m; also containing s is nyq, ny;
contain s, and ny3 contain s3. Note that the first row (i=1) of the njj table consists of nj4,
Ny, and ny3. Similarly the sum for s, includes n ; records each containing s and s;. The
first column (j=1) of the njj table consists of nq; and ny, the number of records containing

s1 which also contain respectively, effects m; and m,.
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To convert the least squares equations to mixed model equations, the ratio,

ovzv/og = 15 for heritability of .25, is added to the diagonal coefficient of each of the s

equations so that they become (n | + 15)31, (ny + 15)8,, and (n 3 + 15)83.

In numerical form the mixed model equations are:

11
6

R =3 =)

wn
=

+

+

+ Sty + 58, + 38 +
+ 28 + 15, +
Sthy + 38 + 2%

+ 3, + (5+15)8
+ 2y + (3+15)8,
+

38
38

(3+15)55

One constraint must be imposed on either i or one of the rh's

= 4540
= 2500

= 2040
= 2240
= 1310

= 990

to obtain a set of

solutions. For example, let 4 = 0 and also eliminate that equation to maintain symmetry

of the coefficient matrix. The equations to solve are:

6rf11 +

261, + 3ty

31511 +

Solutions are:

Sty

g~

+

381 + 25
208,
183,
0
420
400

o
o0
w»

w

|

2500
2040
2240
1310

990
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Note that §; + §, + 83 = 0. This property holds for any classification of random effects
that are uncorrelated such as unrelated sires.
The unbiased estimate of my - m, is thy - iy, = 420 - 400 = 20.
Although how to find expectations of solutions is generally beyond the scope of this
book, it is known E[2] # u, E[th;] # m; and E[th,] # m,. Obviously E[2,] = E[0] = 0.
Actually E[fh;] = p + m; and E[r,] = » + my when the constraint 4 = 0 is used so
that E[rh - ] = mqy - m,.
If management levels were considered random effects, then changes in the example
would be these:
"%/"r% would be added to the diagonals of the management equations,
avzv/o% would be added to the diagonals of the sire equations as before,
no constraints would be imposed,
my + 1y = 0, and
E[2] = u when no other fixed effects are in the model.
2 2 2 2

In this case 0% = o + 0y + oy

y m so that ovzv/og may be different from when

management levels are considered to be fixed effects.



CHAPTER 27

COMPUTING THE INVERSE OF THE ADDITIVE
RELATIONSHIP MATRIX

When genetic values are to be predicted with mixed model procedures the inverse
of the additive relationship matrix is used to account for the covariances among the genetic
effects among the animals in the model. A logical procedure would seem to be to first
calculate the relationship matrix using the tabular method and then have a computer
program calculate the inverse. The problem is that even the most powerful computer
cannot calculate the inverse for more than 10 to 20 thousand animals in a reasonable
amount of time. Henderson (1976) solved the computing problem by finding a rapid way
of calculating the inverse of the relationship matrix directly without ever calculating the
relationship matrix. If the animals are not inbred, or are assumed not to be inbred, the
procedure is very easy. Ignoring a small amount of inbreeding probably is a good
approximation in most prediction problems. The exact procedure that accounts for
inbreeding is easy with a computer but the explanation is beyond the scope of this book.

The computing steps for each animal with the assumption of no inbreeding involve
adding from one to nine values for each animal to different elements of the inverse of the
relationship matrix depending on how many parents are known. After all animals have been
processed in this way, the result is the inverse of the relationship matrix. Then the inverse

elements are multiplied by the proper variance ratio, 0\2&1/ 03, depending on the model, and
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are used to modify the least squares equations to construct the mixed model equations; for

2

. 2 2 . 2 _
animal models o, = ag and for sire models o, = O

= 02/4 and 0‘2v is the corresponding
residual variance in each case.

The animals can be processed in any order if inbreeding is ignored. Base animals
must be included even though they may not have records. Base animals are animals that
establish relationships among other animals but are not themselves related.

Because the base animals and some other animals to be evaluated such as sires for
sex-limited traits may not have records, the mixed model equations will be augmented as
will be illustrated in Chapter 28 to include an equation for each base or other animal
without a record with a zero sum on the right-hand-side. The coefficients on the left-hand-
sides for those animals will consist only of terms from the inverse of the additive
relationship matrix multiplied by oi/ 03. Because the model for the zero right-hand-side
is zero there are no least squares coefficients for the base animal equations.

Any base animal with only one descendent with records (for the sire model only one
son with progeny with records) need not be included in the inverse calculation or in the
augmented mixed model equations. Such a base parent would be listed as unknown in the
calculation of the inverse of the relationship matrix. If such a base animal is included in the
inverse of the relationship matrix, then an equation must be included in the mixed model
equations for that animal as for any other base animal. Solutions for animals with records
will be the same either way if the correct additive relationships are used.

Because the computing procedure can accept animals in any order, putting the base
animals at the end of the inverse matrix, rather than the beginning when calculating
relationships, may make setting up the equations easier to set up than putting them first or

ordering by age.



Inverse Relationship Matrix 283

RULES WHEN SIRES AND DAMS ARE KNOWN

The simple rules for building the inverse of the relationship matrix for non-inbred

animals from pedigrees with sires and dams are:

If known
Animal Sire Dam
p s d
Yes No No

Yes Yes No
Yes No Yes

Yes Yes Yes

Then add what to where &/

1 to (p,p)

4/3 to (p,p); -2/3 to (s,p); 1/3 to (s,8)
4/3 to (p,p); -2/3 to (d,p); 1/3 to (d,d)

2 to (p,p); -1 to (s,p) and (d,p);
1/2 to (s,s), (d,d), and (s,d)

a/ Symmetric; if -2/3 to (s,p), then -2/3 to (p,s), etc.

Note that p, s, and d will be ordered animal numbers (from one to the last animal)

and that each (p,p), (s,p), etc., combination is a location in the inverse of the relationship

matrix.

In the example that follows, three animals are base animals: GS1, D1, and GS2.

The other five animals are related through those three animals. Animals GS1, D1, and GS2

must be included in building the inverse even if predictions of breeding values are wanted

only for S1, ..., SS.
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The relationships for the example are as diagrammed:

Vav4E
.

S3

GS2

S5

The table will be computed beginning with the information for S1 where a blank

indicates the parent is not known or does not need to be included as a base animal.

Animal Sire Dam
P s d What is added to where (symmetric)

S1 GS1 - 4/3 to (51,51);-2/3 to (GS1,81);
1/3 to (GS1,GS1)

S2 GS1 D1 2 to (82,52);-1 to (GS1,S2) and (D1,S2);
1/2 to (GS1,GS1), (D1,D1) and (GS1,D1)

S3 S1 -—- 4/3 to (S3,S3);-2/3 to (51,53);1/3 to (S1,S1)

S4 GS2 D1 2 to (S4,54);-1 to (GS2,54) and (D1,54);
1/2 to (GS2,GS2), (D1,D1) and (GS2,D1)

SS GS2 D1 2 to (S5,85);-1 to (GS2,S5) and (D1,SS);
1/2 to (GS2,GS2), (D1,D1) and (GS2,D1)

GS1 - — 1 to (GS1,GS1)

D1 - — 1to (D1,D1)

GS2 — — 1 to (GS2,GS2)
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Note that the base animals are included with unknown parents so that a one is added to the
diagonal corresponding to each base animal.

After all eight animals have been processed the inverse of the additive relationship

matrix is:

S1 S2 S3 S4 SS GS1 D1 GS2

S1 |10/6 0 -4/6 0 0 §-4/6 0 0
S2 12/6 0 0 0 i-6/6 -6/6 0
S3 8/6 0 0 i 0 0 0
S4 12/6 0 ' 0 -6/6 -6/6
S5 12/6 1 0 -6/6 -6/6
GS1 Tj11/6 3/6 0
D1 Symmetric i 15/6 6/6
GS2 i 12/6

When animals are inbred the procedure is more complicated although Quaas (1976)
developed a method of computing the diagonals of the relationship matrix from which the
inverse of the whole additive relationship matrix can be computed relatively easily although
not as easily as when inbreeding is ignored. The animals must be ordered by age when
inbreeding is considered.

A similar set of rules can be developed for relationships among males; i.e., when the
maternal grandsire is used in the calculation rather than the dam. Most relationships in a

population are due to males rather than to females.
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RULES WHEN SIRES AND MATERNAL GRANDSIRES ARE KNOWN

Most relationships among sires that are evaluated from progeny records are due to
male relatives because few dams have more than one son with progeny. Rules for building
the inverse of the relationship matrix from known sire and maternal grandsire are similar
to those using known sire and dam. Base animals with more than one related collateral

descendent must be included as before. With the following rules inbreeding is again

ignored.
/ Sire
Animal
\ Dam -= Maternal grandsire
(lgnored)
If known
Maternal
Animal Sire grandsire
P S m Then add what to where (symmetric)
Yes No No 1to (p,p)
Yes Yes No 4/3 to (p,p); 1/3 to (s,s); -2/3 to (s,p)
Yes No Yes 16/15 to (p,p); 1/15 to (m,m); -4/15 to (m,p)
Yes Yes Yes 16/11 to (p,p); -8/11 to (s,p); 4/11 to (m,p)

4/11 to (s,8); 2/11 to (m,s); 1/11 to (m,m)
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MODELS WITH ANIMALS RELATED

THE ANIMAL MODEL WITH ANIMALS RELATED

The selection index takes advantage of records of relatives to improve predictions.
Records of relatives are partial replicates of some of the same genetic effects. The mixed
model procedure can also be improved by using the numerator relationships for partial
replication. Instead of adding o%v / az to the diagonal of least squares equations of each g
equation, a function of the additive relationship matrix and ai, / az = A is added to the
block of coefficients for the g equations. The additive relationship table can be considered

as a matrix of additive relationships with the symbol, A. The function of A used in the
2
g
For this example, the least squares and mixed model equations will be written in

mixed model equations is its inverse, A'l, multiplied by the scalar, o\zv /o
matrix notation.

Assume animals 1, 2, 3 each have a record and are related through S and D as

diagrammed:

287
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Thus, the additive relationships among animals 1, 2, and 3 are:

1 1/2 1/4 15/11 -7/11 -2/11
A={12 1 14 withal=|7/11 15/11 -2/11
1/4 1/4 1 2/11 -2/11 12/11

Let yy, yp, y3 be single records of the 3 animals. When the only fixed effect in the model

is u, the least squares equations are:

(3 1 1 1\ r’ﬂ \ fy.\
11 0 o |g 1
10 1 o |&] |
Ll 0 0 1/ kg31 \y3J

To convert the least squares equations to mixed model equations, 2A1 is added to the
block of coefficients for the g equations. For example, if 03, / oz = (1-h2) /h2 = 3, then
15/11 -7/11  -2/11
a7l =31 1511 2/
-2/11 -2/11 12/11

and the mixed model equations become:

3 1 1 1) (a ) y.)
1 1+45/11 0-21/11 0-6/11 81 1
1 0-21/11 1+45/11 0-6/11 82 ) 2)

K1 0-6/11 0-6/11 1+36/11J \23 Y3)
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EQUATIONS AUGMENTED FOR RELATIVES WITHOUT RECORDS

Calculation of A with many animals is difficult. After A has been calculated, the
calculation of A™! for many animals is usually prohibitive because computing time for Al
from A is proportional to n3 where n is the number of animals. In 1975 C. R. Henderson
made a remarkable discovery that allows rapid and direct calculation of elements of Al
without calculation of A. (See Chapter 27 for rules for calculation of A'l.) The method,

however, requires including in Al

the ancestors that create the relationships. In the
previous example, S and D as well as animals 1, 2, and 3 must be included in A'l.

To use the rules for rapid calculation of A'l, the mixed model equations for animals
with records are augmented with equations for the ancestors without records (also a result
due to C. R. Henderson). Let A:l be the inverse of A which includes the ancestors
without records that create relationships among the animals with records. The right-hand
sides of the least squares equations for animals without records are all zero (the model for
zero is zero) as are the coefficients of the least squares equations. The g's for the ancestors
are included in the solution vector. When lA:l is added to the block of coefficients for
the animals including the ancestors without records, the coefficients are not all zero for the
ancestor equations although the right-hand sides are zero.

The equations for animals with records and the equations for their ancestors without

records are tied together by the inverse of the full relationship matrix.
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The procedure will be illustrated with the previous example. The least squares

equations with equations for gg and gpy added are:

3011 1 0 0 () y
110 0 0 of |g 1
10 1 0 0 of |g ¥2
10 0 1 0 o |g| |y
00 0 0 0 of |gg 0
o 0o 0o 0 0 o |gp 0

Using the rules for calculating A:l with S and D included at the end to agree with the

order of the solution vector of the least squares equations:

2 0 0 -1 -1)
0 2 0 -1 -1
Al lo o 43 o0 23
1 -1 0 2 1
1 -1 23 1 13,

Then lA:l is added to the block of coefficients corresponding to the equations for the g's.
A somewhat surprising result is that the solutions for 4, g1, §», and g3 from the

augmented equations are exactly the same as when aal

is added to equations for g4, g,
and g in the previous example. That result becomes less unexpected after considering that
exactly the same records are available and relationships in both cases were calculated using
S and D. Even though more equations must be solved with the augmented procedure, the
total computing time is usually much less than calculating A, then AL for animals with

records and finally solving the equations. If, in the augmented equations, the equations for

gg and gy are absorbed into the equations for g4, g5, and g3, the equations will be identical
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to those set up directly for gy, gy, and g3. Thus, mathematically, the solutions must be
equal. The solutions for gg and g, are based on their relationships to the animals with
records as will be illustrated with a simpler example. Assume C has n records with parents

S and D not having records. With animals ordered C, S, D:

e
Al = |-1 32 1/2
-1 1/2 3/2

For the model: yjj = 4 + g + pj + wj with & = o2 /oz = (1-r)/h2 and

y = o‘:’v /ag = (1-r)/(r-h2), the augmented equations are:

m o 0 0 o) f[a) yp |
n n+y n 0 0 e Y1,
n n n+2i - -A gct = |y
0 0 -A 302 A/2 gs 0

0 0 -+ a2 32 |gp, 0 |

Note that g5 = §p because each has the same relationship to their progeny which has
records. Let a parent solution be gp. Then from either of the last two equations:
(3/2 + 1/2)Mgp = M
so that as might be expected:
gp = 8c/2
Substitute /2 for g and g in the equation for g~ and:
ni + npc + (n+24)8c - (A/2)8c - (A/2&c =y1
This equation, on combining terms, is the same as the equation for g if relationships to
parents S and D had been ignored: ni + npc + (n+A)gc =y1.

This result is expected because S and D did not contribute information to evaluate C.
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In general, the reasons to include animals with no records are 1) that such so-called
base animals establish relationships among animals with records, e.g., if a full sib of C had
a record, S and D create the relationships needed to use that record in the evaluation for
C and 2) that calculating A:l is much, much easier than calculating A and then Al for
animals with records.

This example suggests that an animal model can be used to evaluate sires that have
many progeny. In the simple example the evaluation of S was obtained and was based on

the records of only one progeny.

SIRE EVALUATION WITH ANIMAL MODEL

The animal model is ideal for evaluating sires from their progeny records because
the merit of the mates of the sires (dams of the progeny) will be adjusted for automatically
through the relationship matrix in the same way that the selection index can be used to
account for association of some sires with better than average mates and other sires with
poorer than average mates. The disadvantage of the animal model for large data sets is that
a large number of equations must be solved. The number of equations is somewhat larger
than the number of animals and depends on whether repeated records are used, how many
animals without records are included (base and sires) and on the number of other factors
in the model to account for such factors as management and seasonal effects.

In the augmented procedure, a base animal that has only one relative to be evaluated
does not have to be included in A : 1, e.g, a sire that has a son with progeny but has no
progeny with records nor any other sons with progeny or descendants in the group of
animals to be evaluated can be, but does not need to be, included in the augmented

equations.



Animals Related 293

The example which follows shows the equations for sire evaluation with an animal
model for the situation where all of the mates of sires are unrelated to each other and to
the sires. Thus, parents of the mates are assumed not to have records and do not need to
be included in A:l . They could be included and the solutions would be the same for the
other animals but more equations would need to be solved. To further simplify the

example, only females will have records and each will have a single record.

NS

VSR

All C and D animals have a smgle record.
There will be:
10 equations for animals with records,
4 equations for sires including S that has two sons with progeny, and
1 equation for u for the simple animal model.
Let the animals be ordered:
Dy, Dy, D3, Dy, Ds, C11, 22 C33, C34, C35, S, 51, S5, S3
The mixed model equations for the simple animal model with o‘zy / 02 = (1-h2)/h2 = A are

shown on the next page.



1431/2 0 0 0
1431/2 0 0
1431/2 0
1432/2
SYMMETRIC

(coefficients in a column
below the diagonal are the
same as those in the row to
the right of the diagonal)

1431/2

1422

1422

0

1424

0

1+22

1422

0

51/3

A/2

34/2

0
-21/3
0

1112/6

A/2

A/2

A/2

-21/3
0

0

17476
]

gD,
£D)
£D3
8Dy
&Ds
8Cyy
8C2
£C33
BCaq
£C33

8S
£S,

gSz

853

YDy
YD,
YD3
YDy
YDs
YCn
YC22
¥Cs3
YC34

)'C35

SI2PON PXIN $6C
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Examination of the solution for a sire shows the weight for each mate is minus one-
half (-1/2) of that for each progeny. In other words, an estimate of one-half of the dam's
genetic value is subtracted from the estimated genetic value of the progeny to account for
the mate's merit to leave only the part of the progeny's genetic value contributed by the sire.
For example, for S3:

(174/6)gs, = (24/3)8s + MBCy; * £Cyy * BCsq) - (W/2(ED; * £D, * £Ds)
(17A/6)gs, = (24/3)8s + M(BCg3 = BD3/2) + (8Cyy -~ £D4/2) + (£Css ~ EDs/2)]

And for Slz

gs, = 2/3)(&cy; - €D,/2) -

SIRE EVALUATION WITH ANIMAL MODEL IGNORING MATES AND

RELATIONSHIPS THROUGH FEMALES

In the past, sire evaluations generally were done ignoring records on mates because
of the computing time required. The animal model can be used with the same
approximation; that all mates are unrelated to each other and to the sires. This
approximation to the full animal model is equivalent to assuming that only relationships
from males to males are important.

Consider the following example where C11> Cqp, and G, have single records, ¥11,

y12: and y7;.

T
/\ )

Ca1
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In calculating A:l, all dams are considered to be unknown so that for animals ordered

Cll’ C12, %1’ Sl, SZ’ and S (notice that each term in A:l when the dam is missing

contains a 3 in the denominator):

(4 0 0 2 0 o
0 4 0 -2 0 O
-1 0 0 4 2 0
A "= (173
+ (1/3) 2 -2 0 6 -2
0o 0 -2 0 § -2
L0 0 0 -2 -2 5
2,2 . .
For o, Jo g " A, the mixed model equations are:
( ) () ( )
3 1 1 1 0 0 0 i y.
1+41/3 0 0 21/3 0 0 g1 Y11
1+41/3 0 -21/3 0 0 g12 Y12
1+44/3 0 2A/3 0 g21 | = |y
61/3 0 2A0/3 gsl
54/3  -2A/3 gSZ
\ Symmetric 5)./3/ \8s \ 0 )

The solutions predict genetic values simultaneously for animals with records (the

progeny) ignoring relationships arising from females, and for animals without records, in this

case, the sires.
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SIRE MODELS WITH SOME RELATIONSHIPS

IGNORING MATES AND FEMALE RELATIONSHIPS

The approximate animal model described in the last section of Chapter 28 that
ignores relationships through females requires an equation for each progeny. An equation
is included for each animal which in some cases may be many. The number of equations
can be reduced essentially to the number of sires by using the sire model. With the sire
model, only male to male relationships will be considered (assumes dams are unrelated to
sires and to each other). The sire model is the same as in Chapter 26 except that now
relationships among sires are used:

yij=p+si+wij

where s; = g;/2 is the transmitting ability of sire i. Note that 0% = o§/4 and

s
ovzv = a% - a§/4 or equivalently ag = h203/4 and a\%, = (1 -h2/4)o§ so that

o\%/ag = (4- h2)/h2 = y. The previous example from Chapter 28 will be used. With the

sire model, only relationships among S;, S, and S will be considered in calculating A:lz

4 0 -2

-1

A = @/3)|0 4 =2
225

297
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. . -1 . . . .
With the sire model, YA~ is added to the block of the coefficient matrix corresponding
to the sire transmitting abilities. The least squares equations are augmented by equations
for sires that have no progeny with records but which create relationships among sires with

progeny with records. The mixed model equations for the example are:

(3 2 1 0 (b v )
2#4y/3 0 -2y/3| |8 y1.
1+4y/3 -2y/3| |5, i y2.

Symmetric Sy /3) ss | LO

The solutions for $;, §,, and §g are exactly one-half those for the previous example
(gsl, gsz, and §g) that had equations for each progeny and augmented equations for
the sires that had no records themselves. That §; = gsl/z can be shown by absorbing
equations for g1 and g4, in the last section of Chapter 28 into the equation for gsl. The
equation for gg_ Will be the same as for 51 except that the coefficients for gsl and gs are
one-half as large as the coefficients for §; and §. The advantage of the sire model as
compared to the equivalent approximate animal model is that many fewer equations need

to be set up and solved.

RELATIONSHIPS FROM SIRES AND MATERNAL GRANDSIRES OF MALES

Most relationships among males arise from male ancestors. Even if dams of males are
not included in calculation of A_:l among males, sires of the dams (maternal grandsires
of males) can be used in calculation of A:l and if they have no progeny with records can

be evaluated from the augmented equations. The increased ties among males will result in
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slightly increased accuracies of evaluation. Only maternal grandsires that have more than
one male descendent in the list to be evaluated or those with progeny with records need to
be included in calculating A:l . Rules developed by C. R. Henderson for calculating
A:l from sires and maternal grandsires are similar to the rules using sires and dams, and
are given in Chapter 27 for calculating A
For this sire model, ovzv/ o% =Y.
Assume as an example the same animals and records as in the previous example

except that S, is the maternal grandsire of both S; and S,:

¢ (D4)

1;>‘°‘1‘-<s \SX
/ /

-
c21<-——-sz ©2

c

Females D and D, are not included in A:l . With males ordered S1, 59, S, Sy

16 0 -8 -4
A L11) 0 16 -8 -4
. = -8 -8 19 4

-4 -4 4 13
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For the sire model and with avzv/ag =(4- h2) /h2 = y; the elements of yA:l are added
to the coefficients of the least squares equations corresponding to equations for S;, S, and

the augmented equations for S and S,. The augmented mixed model equations are:

(3 2 1 0 o | (&) [v.)
2+16y/11 0 -8y/11 -4y/11| |%1 y1.
1+16y/11 -8y/11 —4y/11| [$2 | = |y2.

19y/11  4y/11| |Ss 0

Symmetric 13y/11) |8s,| (0

The variance of prediction errors, e.g,, V(§; - s;), will be decreased as compared to

ignoring S,.
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VARIANCE OF PREDICTION ERRORS

Calculation of r and variance of prediction error, V(T - 'i‘) = (1- r%vi-)o% can be
done for solutions from mixed model equations as from selection index theory. How to do
these calculations will be described for models including: genetic value, i.e., when T = g;
transmitting ability, when T = s; and producing ability, when T = g + p; as weli as for

variances of estimates of fixed effects estimated from data. The calculation for V(T - ”i")

2

first requires the inverse of the coefficient matrix for the mixed model equations and oy,

The second step is to calculate r%f from V(T - 'i‘) which will also require the ratio of

ovzv/o%. For example, assume the repeated records model:

Yy T H T E TP Wy

Let A = o\%/aé and y = cr%/ crlz). The symbolic mixed model equations are:

W’ ) )

Cup Swpp " Cug il y.

ppi p1p1 T Sprer T 7| |P1 y1.

cgl,u Cgl’pl e o o Cgl,gl e o o gl yl.

. . * .
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where cu’“ =n, c””pl = 1y, c“’gl = ny, cpl’pl =ny + v
( \
nl 0 e o o
0 m
-1
d th block = |. . AA
and the cgg oc +
1

In matrix terms Cs = r where the solution vector: s = C 'r.

Let the elements of the inverse of C be:

(c#’# Cp"pl e o o c#’gl e o o
cpl’“ cpl’pl e o @ Cpl’gl * o o

cl=| .
cgl’# cgl’pl ¢ o o Cgl’gl " e o

. .

These terms when multiplied by °v2v correspond to prediction error variances and

covariances:

. 1,g1 A 2
V(g - 8y) = 8162, V(p, - py) = PLPLog 2nd
2
Cov(gy - 81, P1- D9 = Cgl’plaw
so that for producing ability;
Vi(gy + pp) - (&1 + P] = V(g1 - &) + V(py - Py + 2Cov(gq - &1, P1 - Pp)

_ (@81, LT, 58lPlod
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VARIANCE OF PREDICTION ERROR OF GENETIC VALUE
Because V(g - §;) = cgi’gio‘zw and also from the selection index property

5 2,2
V(gi - £1) = (1-1.5)0

N gi’gi 2 = 1— 2 2
5% then ¢ O ( rgg)ag.

The equation can be solved for r2

2 igi, 2,2
. as: . =1-c8L8l .
gg 3 Iy 1-c¢ (aw/ag)

The ratio, o\zv/az =(1 - r)/h2 , is known and is used in calculating C. The other

term, ¢8"8! s the appropriate element from the inverse of C. If animal i is inbred,

then the ratio o‘zv/oé becomes o‘zy/oz (1+Fy.

VARIANCE OF PREDICTION ERROR OF PRODUCING ABILITY
Because from mixed model theory
VI(gi + pi) - & + Pl = (cBLBl 4 (PLPI 2cgi’pi)afv equals
1 -

ré?' g +f>) (oz + 0123) from selection index theory, then:
. 2 2 )
g+p.£+p P
The ratio afv /(az + 012)) = (1 - r)/r is known when calculating C. The other terms are

=1- (cgi’gi + cPLPI 2cgi’pi)o‘zw/(o§ +0
appropriate elements of the inverse of C.

VARIANCE OF PREDICTION ERROR FOR OTHER MODELS

For other models, calculations are similar to those described in previous paragraphs.

2

W for that model. For the sire

The appropriate elements from ¢l are multiplied by o
model, °v2v =(1- h2/4)a§ and o&/ag = (4- h2)/h2. For the animal model with a single

record per animal, °v2v =(1- h2)o§ and a‘%, /aé =(1- h2) /h2.
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VARIANCE OF PREDICTION ERROR FOR MODELS WITH MORE FIXED EFFECTS

The elements of C'1 corresponding to random effects such as, g, p, and s, are used for
calculating variances and covariances of prediction errors for those effects.

These inverse elements, however, depend partially on the fixed effects in the model
and on the distribution of records among the levels of the fixed factors. With several fixed
factors in the model, C is singular so that an inverse cannot be obtained. If constraints are
imposed so that the constrained C. is nonsingular, then C;l can be obtained but will
depend on the set of constraints chosen. The expected values of solutions for fixed effects
depend on the constraints.

Nevertheless, solutions for random effects, such as g, p, and s, will be the same for any
set of permissible constraints. Similarly, prediction error variances for the random effects

do not depend on the constraints chosen, i.e., the block of elements of C;l corresponding

to the random effects is unique and does not depend on the constraints.

VARIANCES OF ESTIMATES OF FIXED EFFECTS

Estimates of fixed effects also have variances. For example, the variance of £ is
cH °v2v for models in which 4 is the only fixed effect. For models with more fixed factors,
the variances of the estimates are determined similarly from the inverse of C:l . The
problem, however, is that because of the constraints needed to obtain solutions, the expected
values of the solutions are not the effects represented by £, etc. Generally differences
between levels of a factor are estimable. For example, depending on the model and
constraints, E[%l - %2] may equal f; - f, for levels 1 and 2 of fixed factor f. Then the

variance of the estimable difference, %1 -1’2 is V(fl - %2) = (cfl’fl + 22 2cﬂ’f2)ov%.
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NUMERICAL EXAMPLE OF ANIMAL MODEL WITH
DIFFERENT CONSTRAINTS

This chapter will demonstrate the effect of constraints on solutions to the mixed
model equations for a repeated records animal model.

The model for a record k of animal j affected by level i of fixed factor f is:

yijk=u+fi+pj+gj+wijk.

Let o2 = (20002 and with r = .6 and h% = 4, o2 /o>

wlog = (1-r1)/h% = 4 = 1 and

I
N

oy /o5 = (1-D/( - 1) = ¥

The animals with records are Cy (2 records), C, (1 record), and C5 (3 records). The
parents of C; and C, are S and D, and one parent of C3 is D with the other parent
unknown and not needed because it has only one relative with a record. (See Chapter 28

for example of animal model with equations augmented for relatives without records.)
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AUGMENTED MIXED MODEL EQUATIONS

The records for the animals are distributed in the levels of the fixed factor as follows:

Animal

Fixed Fixed factor
factor 1 2 3 totals

fy 10,000 --- 9,000 19,000

15) 12,000 -—- 10,000 22,000

f3 - 15,000 12,000 27,000
Totals 22,000 15000 31,000 68,000

The augmented mixed model equations are:

2 2 2 2 1 3 2 1 3 0 0 a 68,000
2 0 0 1 0 1 1 0 1 0 0 t 19,000
2 0 1 0 1 1 0 1 0 0 fy [=] 22000
2 0o 1 1 0 1 1 0 0 ts 27,000
242 0 0 2 0 0 0 0 p1 22,000
1+2 0 0 1 0 0 0 1) 15,000
342 0 0 3 0 0 3 31,000
242 0 0 1 1 81 22,000
1+2 0 -1 -1 2} 15,000
symmetric 3+(4/3) 0 2/3 g3 31,000
+2 +1 gs 0
+2(1/3) gD 0
) J \
CONSTRAINTS

One constraint will be needed because the f equations sum to the p equation.
With the constraint £; = 0, the inverse of the coefficient matrix is obtained by

zeroing the row and column coefficients for f; and then inverting the remaining matrix.




Example with Constraints

In the inverse the row and column of zeros for f; are shown:

(
1310 .000 -500 -657 -222 -065 -213 -616 -458

.000 .000 .000 .000 .000 .000 .000 .000 .000
-500 .000 1.000 .500 .000 .000 .000 .000 .000
-657 .000 500 1296 .139 -157 019 .130 -.167
-222 000 .000 139 417 028 .056 -.111  .000
-065 .000 .000 -157 .028 435 037 .009 -.083
-213 .000 .000 .019 .056 .037 407 .102 .083
-616 .000 .000 .130 -111 .009 .102 .838  .458
-458 000 .000 -167 .000 -083 .083 458 .875
-569 .000 .000 .028 .083 056 -139 403 375
-287 .000 .000 -019 -056 -037 .093 398 417
-500 .000 .000 .000 .000 .000 .000 .500 .500

-.569
.000
.000
028
.083
056

-139
403
375
792
139
500

With the constraint & = 0, coefficients for the u row and column are zeroed.

The inverse is:

.000 .000 .000 .000 000 .000 .000 .000 .000
.000 1310 810 653 -222 -065 -213 -616 -458
.000 810 1.310 653 -222 -065 -213 -.616 -458
.000 653 653 1292 -083 -222 -194 -486 -.625
000 -222 -222 -083 417 .028 .056 -.111 .000
.000 -.065 -065 -222 028 435 .037 .009 -.083
.000 -213 -213 -194 056 .037 407 .102 .083
000 -616 -616 -486 -111 .009 .102 .838 458
.000 -458 -458  -.625 000 -083 .083 .458 .875
000 -569 -569  -542 083 .056 -139 403 375
.000 -287 -287 -306 -056 -.037 .093 398 417
.000 -500 -500 @ -.500 .000 .000 .000 .500 .500

.000
-.569
-.569
-.542

.083

056
-.139

403

375

792

139

500

-287
.000
.000

-.019

-.056

-.037
.093
398
417
139
907
.000

.000
-.287
=287
-.306
-.056
-.037

.093

398

417

139

907

.000

307

-500
.000
.000
.000
.000
.000
.000
500
500
500
.000

1.000

.000
-.500
-.500
-500

.000

.000

.000

500

500

500

.000
1.000
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With the constraint f3 = ( the inverse is:

1.292
-.639
-.639

.000
-.083
-222
-.194
-.486
-.625
-542
-.306
-.500

-639  -.639
1.296  .796
796 1.296
.000  .000
-139  -139
A57 157
-019 -019
-130  -.130
167 167
-028 -.028
019  .019
.000  .000

.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000

-.083
-.139
-.139
.000
417
.028
056
-111
.000
.083
-.056
.000

-222
157
157
.000
.028
435
037
.009

-.083
056

-.037
.000

PREDICTION ERROR VARIANCES

-.194
-.019
-.019

056
037
407
102
.083
-.139
.093
.000

-.486
-.130
-.130
.000
-111
.009
102
838
458
403
398
500

-625  -542  -306 -500
167 -.028 .019  .000
167 -.028 019  .000
.000 .000 .000 .000
000 .083 -056  .000f
-083 056 -037 .000
.083 -139 .093  .000
458 403 398 500
875 375 417 500
375 792 139 500
417 139 907  .000
500 500  .000 1.000

Notice that with any of the three constraints that the blocks of the inverses

corresponding to py, Py, P3» 81> 82 83, 8g and gy are the same. The solutions for those

effects are also the same as is shown in Table 31.1. In technical jargon, this means that the

predictors of the random effects are invariant to (do not depend on) the choice of

constraints.

For example with all three sets of constraints:

V(g1 -81) =¢

EDED 2
V(gp - £p) = ¢ D°Po’ = 1.000(2000)2

VI(g1 + pp) - (81 + P1)] = (c
= [417 + .838 + 2(-.111)](2000)2

gl’glaizv

= .838(2000)2.

P1,P1 . cgl’gl . 20P1>81)02

w
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VARIANCES OF ESTIMATES OF FIXED EFFECTS
Because what fi estimates depends on the constraint, V(fi) is different from constraint to

constraint although the variance of an estimable function of the fs is the same with any of

the constraints.
With all 3 sets of constraints Iy - f3 estimates f, - f3,i.e, E[f5 - f3] = f, - f3. For

all three cases, V(i - f3) are the same.
For fl = 0
f5,f: fa f fy f
V(fz—fg,): (c22+c33-2c23)ovzv
= [1 + 1296 - 2(500)]02, = 12960>
. . Y w - . w
For 4 = 0:
n o 2 2
V(t; - f3) = [1310 + 1292 - 2(653)]02, = 129602,
For ‘f3 = 0:

V(t; - 13) = [129 + 0- 2(0)]2, = 129607,

In the last case, f3 = 0. Note that a constant (implied by the constraint) has no
variance and similarly the covariance of a constant, f3 = (), with an estimate, fz, also is
zero.

In all three cases the variance of the estimated difference between f, and f; is the
same, 1.296 ovzv‘ From Table 31.1 the estimate of the difference, f2 . f3, is -2278, i.e., f3 is

estimated to be larger than f, by 2278 no matter which constraint is used to obtain a set of

solutions.
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Table 31.1. Solutions for augmented and nonaugmented mixed model equations with
different constraints

Augmented Nonaugmented
Solution  f1=0 =0 f3=0 f3=
[ 9,806 0 13,583 13,583
£y 0 9,806 -3,778 -3,778
) 1,500 11,306 -2,278 -2,278
f3 3,778 13,583 0 0
1 83 83 83 83
B 306 306 306 306
p3 -389 -389 -389 -389
81 278 278 278 278
g 500 500 500 500
83 -583 -583 -583 -583
gs 389 389 389
gD 0 0 0 -——-

EQUIVALENT MIXED MODEL EQUATIONS
If the mixed model equations had not been augmented but S and D had been used
to calculate the relationship matrix, A, for Cy OZ’ and C3, then
1 1/2 1/4 1.364 -.636 -.182

A=[1/2 1 1/4| and A7l ={-636 1364 -182
1/4 1/4 1 ~182 -182 1.091
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With A = 1, the equivalent mixed model equations are:

4 W 4 W 4 A
6 2 2 2 1 3 2 1 3 p 68,000
0 1 0 1 1 0 1 t 19,000

01 0 1 1 0 1 ) 22,000

2 0 1 1 0 1 1 3| = | 27,000

4 0 0 2 0 0 p1 22,000

3.0 0 1 0 ) 15,000

5 0 0 3 p3 31,000

3364 -636 -.182 81 22,000

2364 -.182 & 15,000

symmetric 4091 ) {4 31,000 |

The solutions as shown in Table 31.1 are identical to those from the augmented
equations. Similarly the variances of prediction errors are also the same as can be seen

from the inverse with f3 = 0:

1292 -639 -639 .000 -.083 -222 -194 -486 -.625 -542
-639 1.296 796 000 -139 157 -.019 -130 .167 -.028
-639 796 1296 .000 -139 .157 -.019 -130 .167 -.028

.000 .000 .000 .000 .000 .000 .000 .000 .000 .000
-083 -139 -139 .000 417 .028 .056 -.111 .000 .083
-222 157 A57 000 .028 435 .037 .009 -.083 .056
-194 -019 -019 .000 .056 .037 407 .102 .083  -139
-486 -130 -130 .000 -111 .009 .102 .838 .458 403
-625  .167 167 000 .000 -083 .083 458 .875 375
-542 -028 -028 .000 .083 .056 -139 403 .375 792




CHAPTER 32

CREATING AND SOLVING
LEAST SQUARES AND MIXED MODEL EQUATIONS

ALGORITHM TO CREATE THE LEAST SQUARES EQUATIONS

Computing strategies to accumulate the coefficients and right-hand sides of the least
squares equations depend on the amount of data, the model, and computer memory.
Nevertheless, a symbolic algorithm can be used to remember which coefficients are involved
for each record. Data can be presented for computing one record at a time. Coefficients
and right-hand sides associated with each record are summed into computer memory that
is assigned and initialized to zero before the first record is processed.

As an example, the model,

yijk=p+fi+pj+gj+wijk,

has four terms other than the residual. Thus each record is included in four sums
corresponding to y, f;, Pj and 8- Each record carries four elements of the model (excluding
wijk) to each sum. Therefore, each record contributes to 16 elements of the coefficient
matrix of the left-hand-sides of the least squares equations. The locations in the coefficient
matrix, C, can be determined by squaring the model (excluding wijk):

(u.+fi+pj+gj)2.

313
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The 16 terms correspond to the subscripts of 16 elements in C where a 1 will be added for

that record's contribution to the four sums:

i uf; KPj kg
fiu fifi fip; ig;
pj pifi PiPj Pig;
Bk 8ifi 8P 88

For example, the diagonals Cuw Sf.fo will have a 1 added and the offdiagonal
i

Py 8
coefficients represented by products such as uf; will also have a 1 added. The symmetry of
the coefficients allows storing only the diagonal elements and one side of the off-diagonal
elements. Optimum strategies for summing and storing the coefficients will depend on the
data set and computing equipment.

After the least squares coefficients are accumulated, the least squares equations can
be modified to make them into mixed model equations by adding the ratios of residual to
other variances to the proper parts of C. The mixed model or least squares equations can

then be solved. One method of solving a large number of equations such as mixed model

equations is by iteration (the method of successive improvement).
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SOLVING EQUATIONS
In many situations, the number of least squares or mixed model equations is so large
that an inverse of the coefficient matrix cannot be computed even though many strategies
have been developed to reduce the number of equations. If prediction error variances are
not needed, solutions can be obtained by iteration. The most efficient computing strategy
will depend on the model, the amount of data, and computing equipment. The augmented
mixed model equations for the animal model are especially well-suited to innovative
computing strategies. Nevertheless, the basic principle of Gauss-Seidel iteration will be
demonstrated with three equations. Other methods of iteration follow a similar pattern.
Let the equations be Cs = r, where C is the symmetric matrix of coefficients, s is the
vector of solutions and r is the vector of right-hand sides. Then for three equations:
‘St tCS2 T 3837 N
3151 + CopSp + €383 =Ty

3181 + €38 + C3383 = 1I3.

The method of Gauss-Seidel iteration will be illustrated for this set of three equations where
the G are known numerical coefficients of the unknown solutions, the s;, and the r; are
known numerical values in the RHS vector. The steps to obtain solutions by iteration are

as follows.
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ITERATION
Step 1:  To begin the iteration, guess a set of initial solutions for s; s$, 9, s§. The starting
values should approximate the expected values of the solutions.
Step 2: The basic step for each equation is to solve for that solution after substituting
solutions from the same or the previous round of iteration for the other solutions.
Round 1
i) Solve for s with sg and sg:
st (Ueyplry - ¢p88 - ¢1353]
Replace the previous solution for s; with s%.
ii) Solve for s, with s% and s$:
1 1 0
53 = (1/ep)lry - cp187 - €353
Replace the previous solution for s, with s%.
iii) Solve for s; with s and s:
s = (/e33)lrs - 3357 - ¢383]
Replace the previous solution for s3 with 531,.
Round 2 to round n

. n-1 n-1
i) sf ~ (1/e1plry - cqp8y = - c1383 ']

.. n n-1
ii) s « (l/cp)lry - c18y - 0383 |
n n
iii) Sg - (1/C33)[r3 - 31817 - C3252]

Note that the most current estimates in s are used to update each solution from its equation.

For example, the Jacobi method does not update s until the end of the round.
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s . n [
An equivalent expression for s is:

- i-1 . -
N 1/ - X ci-s-n - ciis.n 1. ci‘s-n 1]
i i . 3 i . 1)
j=1 j=i+l

This expression requires an extra multiplication and two extra additions per equation per
round. The advantages may outweigh the extra arithmetic. Solving equations by iteration
requires a rule for stopping the iteration. Such a rule can be based on the expression in
square brackets on the right which is zero when the solutions are exact. Thus, this
difference between the right-hand side and the right-hand side regenerated from estimates
in the most recent round of iteration is often the basis for the stopping criterion. One such
criterion is (}..“e%)'5 / (zrzi)'5 where

i-1

n n n-1

e =[rj - .):1 Gijs; - GiiS; - > j9; ]
J=

j=i+l

Dividing by (Er%)'5 scales the solutions for the trait being analyzed. Iteration is stopped
when at the end of a round the stopping criterion is less than a pre-set value, e.g., .01 or
.001.

Another advantage of the second form is that a modification of Gauss-Seidel iteration

called successive-over-relaxation (SOR) is easy to implement:

-

n n-1 ! n n-1 n-1

so-sp o s /el - T oy - esp - T g
j=1 J=i+1

]
where w is the relaxation factor. A relaxation factor larger than 1 but less than 2 is likely
to result in faster convergence than with Gauss-Seidel iteration (w=1). One difficulty with

SOR is how to determine the optimum w before beginning to iterate.



CHAPTER 33

MODELS FOR CROSSBREEDING

Whether a chapter on crossbreeding should be in the part on selection index or
among the chapters on mixed model methods poses a problem. In most introductory animal
genetics textbooks the description of crossbreeding implies all effects in the model are
constants depending on effects of breeds and heterosis effects. That approach fits completely
neither Part I nor Part II. A true model for prediction of breeding values from crossbred
data, however, also includes the genetic deviations of individual animals from the breed and
heterosis constants. Because the breed and heterosis constants usually must be estimated
from the same data used to predict the deviations, then the appropriate model is a mixed
model including the breed and heterosis constants as well as the genetic deviations. This
discussion, therefore, will assume that breed and heterosis constants have been estimated
and genetic deviations predicted with mixed model equations for an animal model that
might include both direct and maternal genetic effects as described in Part II. One difficulty
is that choice of constraints might not be easy. With some designs complete confounding
may occur between breed and specific heterosis effects. The goal of crossbreeding generally
is to combine breeds to maximize the breed and heterosis effects. The goal of this chapter
will be to show how to calculate combined breed and heterosis effects from known or

estimated breed and specific heterosis effects. The predicted genetic deviations for direct
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and maternal effects can be added to predict direct and maternal performance of specified
matings. Most introductory animal breeding textbooks describe typical mating plans for
crossbreeding, such as two- and three-way rotations, terminal crosses, grading-up, and
creation of composite or synthetic breeds. This chapter will not duplicate those tables.
Instead the models and algorithms for computing the coefficients for the effects included
in specific breed combinations will be developed.

Crossbreeding theory can easily be put into the simple animal model. In fact, the theory
needed is quite minor but the notation is horrendous!! The simplified model (subtracting
out MANAGEMENT effects, etc.) will be used. A simplifying assumption made in the first
part of this discussion, is that the average for the breed represents every animal of the
breed, both for additive direct and maternal effects and also for heterotic direct and
maternal effects. The breeding value for an animal, however, is its breed constants plus
direct and maternal genetic deviations from those constants which will be added later in

the discussion.

HETEROSIS
Heterosis arises from the crossing of breeds or inbred lines. The measure of heterosis
is the difference in performance between the cross and the average of the parent breeds.
Heterosis may be positive, negative or nil. Heterosis also can affect maternal traits.
Several genetic mechanisms can explain heterosis. The most usual explanation involves
dominance effects and the assumption that at some genetic loci, different genes have

become fixed for different breeds. Fixation means that all genes at that chromosome
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location are identical. Dominance means that at a chromosome location with two possible
types of genes, one of the genes will dominate the other. An example is the gene for black,
B, in cattle. The other gene at the same chromosome location is for red, b. The three

possible genotypes and their phenotypes are:

Genotype Phenotype
BB Black

Bb or bB Black

bb Red

Either a pair of B genes or a single B gene results in black. In genetic jargon, the gene
for black, B, dominates the gene for red, b, i.e., B is dominant to b. Conversely, b is said
to be recessive to B, i.e., hides when B is present.

The important point for quantitative effects is that with desirable dominant genes, either
one (heterozygote) or two (homozygote) of the desirable genes gives the same response.
In rare cases for some traits the effect of the single dose, Bb, may exceed that of the double
dose, BB. Then the term over-dominance is used. The simplified example for just four loci
will involve only dominance. The idea is that desirable dominant genes at some
chromosome locations have become fixed in one breed but that other, less desirable,
recessive genes have been fixed at those chromosome locations in the other breed. At
other chromosome locations, the reverse is true. As an example, assume four loci have
become fixed in breeds I and II for the "A", "B", "C", and "D" loci. Upper case letters will
indicate dominant alleles and lower case letters, the recessive alleles. Breed I is fixed as
(AA, bb, cc, DD) and breed I is fixed as (aa, BB, CC, DD). The desirable genes are fixed

at "A" and "D" for breed I and at "B", "C", and "D" for breed II. The genotype of the cross
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will be (Aa, Bb, Cc, DD). Now assume that with at least one upper case gene, the effect

at each locus is +2; and that with no upper case genes, the effect is 0.

Genes at Value of genes at
chromosome location chromosome location
Breed "A" "B" "C" "D“ "All "B" "C" "D" Sum
I AA bb ¢ DD 2 + 0 +0 + 2 = 4
I aa BB CC DD 0O + 2 +2 + 2 =6
Cross Aa Bb Cc DD 2 + 2 4+ 2 4+ 2 =8

Heterosis = Cross - average (I and II)

Heterosis = 8 - (4+6)/2 = 3

In this example, the cross performance exceeds performance of both parents and the
average of the parents by 60%. Heterosis is defined as a percentage of the average of the

parent breeds:

Heterosis (%) = [Cross - average of parents] % 100
average of parents

In the example
Heterosis (%) = [%i%/_z} x 100 = 60%

The example shows that the D locus does not contribute to heterosis because both
breeds are fixed for the desirable dominant gene, i.e., both are DD. For many breeds, most
gene locations probably do not have dominant alleles. Desirable dominant alleles may also
be the same at many gene locations of most breeds. A few gene locations, such as "A", "B",
and "C", where different good dominant genes have become fixed in two breeds with

recessive genes fixed in the other breed, however, can lead to heterosis percentages of 3 to

15%, which are common for crosses among many breeds for many traits.
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MODELS FOR BREED CROSSES

The notation for models with breed crosses will be for upper case letters to indicate a
breed. The breed constant for each animal of a breed represents the breed average. Let
AA be the average of pure breeding of breed A. Similarly, AB will represent the average
of progeny of crosses from mating sires of breed A to dams of breed B. The usual
convention in describing a breed cross is to write the sire breed first. In the model for cross
performance, no heterosis is allowed within a breed, e.g., AA does not contain any heterosis
effects.

The notation used for describing cross performance will be illustrated with a two-way
cross; records of progeny of sires of breed A and dams of breed B, with expected
performance, AB. DIR in front of symbols will represent direct genetic effects and MAT
in front of symbols will represent maternal genetic effects.

The model for AB is:

AB = DIR[AA/2 + BB/2 + H(AB)] + MAT[BB].

The DIR[AA/2] and DIR[BB/2] represent the additive genetic (breeding value)
contributions of the parents to their progeny. The extra effect of heterosis from a breed
A by breed B cross is denoted as H(AB). The first three terms correspond to the direct
effects of the genotype of the animal model. A more complete model as described later
includes those three terms as contributing to genetic means and also includes deviations
from those means representing individual animal genetic differences from breed averages.
The fourth term, MAT(BB), represents the breed average genetic maternal effect; in this

case, the maternal effect of breed B, the dam breed.
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MATERNAL HETEROSIS

In many cases, an advantage of crossbreeding is due to heterosis for maternal effects.
Crossbred dams can exhibit maternal heterosis. For such crosses, maternal heterosis must
be incorporated into the model. Suppose the dams are from a cross of breeds C and D.
The model for maternal effects is:

MAT[(CD)] = MAT[{CC/2 + DD/2 + H(CD)].

This model is the same as for direct effects, except that MAT has been put in front to
indicate that CC/2 and DD/2 refer to average maternal effects of breeds C and D
transmitted to their cross daughters, CD, and H(CD) refers to the maternal heterosis.

With more than two breeds in a cross, the model becomes progressively more
complicated. The additive direct effects of the breeds are weighted by the proportions of
genes they contribute to the final cross. Similarly, breed contributions to additive maternal
effects are based on the cross animals used as dams. Somewhat more difficult to calculate

are fractions of specific heterosis effects contributed by the various breed combinations.

COMPUTING BREED CONTRIBUTIONS TO CROSSES

Two simple computing procedures can be used to calculate the correct fractions for
breed direct effects and breed by breed heterosis effects, no matter how complicated the
crossbreeding breeding plan is. Again, an example will describe intuitively how to do these

simple computations.
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Suppose the following crosses among breeds A, B, and C are involved:

\\

X! — e X2 X3

Direct contributions of each breed to the crosses can be calculated by counting paths,
but an easier way is to set up a simple table and remember a parent contributes one-half
of its genes to its progeny. Simply treat each breed as a parent and use a modification of
the tabular method of calculating relationships. The three steps are:

1) Along the top of the table write the breeds and combinations with the parents of
each cross listed above the combinations in the order they arise. Along the left side, write
the breeds contributing to the breeding plan.

A"B A-Xl C"X2
A B o X1 X X3

2) Pretend relationships are to be calculated; this step corresponds to calculation of

fractions of genes in each cross that trace back to parent breeds.

A-B A-Xl C-XZ
A B c X1 X X3




326 Mixed Models

3) Calculate entries to the right of the pure breeds as one-half the entry for the first
parent in that row plus one-half the entry for the second parent in that row.

For example, the (A, X) entry is one-half of the (A,A) entry of 1 plus one-half of the
(A,B) entry of 0: the (A, X,) entry = (1)/2 + (0)/2 = 1/2.

The (A, X,) entry is one-half of the (A,A) entry of 1 plus one-half of the (A, X;) entry
of 1/2 calculated above: the (A, X,) entry = (1)/2 + (1/2)/2 = 3/4.

The completed table is:

A-B A-Xq c-X,
A B c Xy X5 X3

1/2 3/4 3/8

B 1 1/2 1/4 1/8
c 1 0 0 1/2

The fractions in each column represent the breed contributions to that cross. For example,
of the genes for X3, 3/8 are expected to come from breed A, 1/8 from breed B and 1/2
from breed C. No surprises, as these could have been calculated by rough reasoning. The
advantage of the table comes with more complicated crosses. Suppose X, by X4 matings
are made to produce X,? All that is needed is to add a column for X, and follow the rule

of the sum of one-half of the entries for each of the parents, X, and X5:

A-B A-X, C-X, Xp-Xj
A B c X X2 X3 Xy
1 1/2 3/4 3/8 9/16
B 1 1/2 1/4 1/8 3/16
c 1 0 0 1/2 4/16

Sum 1 1 1 1 1 1 1
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The columns always sum to 1 or 100%. The direct additive effects and maternal
additive effects for X, are easily modeled from the table with X3 being the dam group:

X,X4 = DIR[(9/16)AA + (3/16)BB + (4/16)CC] + MAT([(3/8)AA + (1/8)BB + (1/2)CC]

COMPUTING POTENTIAL HETEROSIS FROM CROSSES

The contributions to direct and maternal heterosis are still needed. This time the
computing trick is intuitively a little more fuzzy, but it works! The computation is based
on multiplying the gametic arrays (where genes come from and their proportions) of the
two parent groups. The result shows how much heterozygosity and potentially how much
heterosis to expect.

For example start with a cross of A by B. Breed A contributes only A genes so the
gametic array is 1A. Similarly, the gametic array for breed B is 1B. Now multiply and as
expected:

for AxB—— X;;(1A)x (1B) = 1 AB.
All of the X cross are AB; the heterozygous condition is 100%.

For the cross of A by X, the gametic array for X; can be obtained from the column
of the table for X;. The fractions, 1/2 for A and 1/2 for B, represent the origins of the
genes for X; and make up the gametic array for Xy: [(1/2)A + (1/2)B]. Thus:

for A x X1 —> X5, (1A) x [(1/2)A + (1/2)B] = (1/2)AA + (1/2)AB.
By inspection, 50% of the cross is heterozygous, AB. The backcross to A has resulted in
loss of one-half of the potential heterosis.

What about the cross, C by X2?
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For C x Xy —> X3 (10O[(B/4)A + (1/4)B] = (3/4)AC + (1/4)BC.
The elements of gametic array, 3/4 and 1/4, come from the column for X,! Inspection
shows heterozygosity is 100%; 75% of the heterosis is expected from AC and 25% of the
heterosis is expected from BC. For practice try the X, by X3 cross? The potential
heterosis is 6/32 of AB heterosis, 12/32 of AC heterosis and 4/32 of BC heterosis. Note
that the specific heterosis effects may not be equal, i. e., H(AB) may not equal H(AC) may

not equal H(BC).

HETEROSIS IN THE CROSSBRED MODEL

Now heterosis can be added to the model. To make the computations a little easier,
the simple cross of A (sire breed) by X; (crossbred dams) will be examined.

The fractions of direct heterosis effects come from the A by X; gametic arrays:
DIR[(1/2)H(AA) + (1/2)H(AB)].
By definition, heterosis within a breed does not exist, H{(AA) = 0 and direct heterosis is:
DIR[(1/2)H(AB)].

The maternal effects are contributed by X;: thus, heterosis comes from the gametic arrays
that produced X;; (1A) x (1B) = 1 AB..
The maternal heterosis is 100% of MAT[H(AB)].
The full model for )-22)_(2 becomes:
X,X, = DIR[(3/4)AA + (1/4)BB + (1/2)H(AB)] + MAT[AA/2 + BB/2 + H(AB)] .
This cross exhibits 50% of potential direct heterosis, DIR[H(AB)] and 100% of potential

maternal heterosis MAT[H(AB)].
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SYNTHETIC OR COMPOSITE BREEDS
Often breeds are crossed in various ways and at a certain stage, the crossbred animals
are mated inter se (randomly among themselves) to develop after a few generations a
synthetic or composite breed. The preceding model can be used to predict the average
performance of a synthetic breed from the specific breed and heterosis effects. Suppose that
X3 is chosen as the group to begin infer se mating: C x [A x (AB)]. Contribution to both
additive direct and maternal effects (X5's will also be the mothers) will be determined by
the breed contributions of A, B, and C shown in the column for X3
DIR[(3/8)AA + (1/8)BB + (1/2)CC] for direct effects and
MAT[(3/8)AA + (1/8)BB + (1/2)CC] for maternal effects.
Potential heterosis is computed from the gametic arrays:
[(3/8)A + (1/8)B + (1/2)C) x [(3/8)A + (1/8)B + (1/2)C]
= (9/64)AA + (1/64)BB + (16/64)CC + (6/64)AB + (24/64)AC + (8/64)BC.
The expected model for )_(3)_(3 is:
DIR[(3/8)AA + (1/8)BB + (1/2)CC
+ (3/32)H(AB) + (12/32)H(AC) + (4/32)H(BC)]
+ MAT[(3/8)AA + (1/8)BB + (1/2)CC
+ (3/32)H(AB) + (12/32)H(AC) + (4/32)H(BC)].
Obviously this model is symbolic. What is needed are the numerical values associated with
the specific symbols. Research at various experiment stations such as the USDA Meat

Animal Research Center (MARC) has had the goal of estimating those effects.
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RETENTION OF HETEROZYGOSITY

The retention of heterozygosity in inter se mating of the X5 in the previous section is:

6/64 of H(AB), 24/64 of H(AC) and 8/64 of H(BC).
The loss of heterozygosity as a fraction of complete heterozygosity is:
9/64 + 1/64 + 16/64 = 26/64.
The formula for retention of heterozygosity and potential heterosis, if all heterosis effects
are equal, is:
1- PA2 . pBZ . pCZ

where p As P, and pc are the fractions of genes from breeds A, B, and C in the cross used

for inter se mating. The general formula with n breeds involved is:

n
1- Epiz
i
when p; is the fraction of genes contributed by breed i.

COMPLEMENTARITY

Complementarity is a potential benefit of crossbreeding that is not as glamorous as
heterosis but which is often very important to the success of crossbreeding programs or of
synthetic breeds. The term, complementarity, describes the concept. Weaknesses of one
breed are improved by strengths of other breeds. A more exciting name for the result was
coined by Moav -- economic heterosis. Economic heterosis can occur without heterosis of
any single economic trait, although heterosis usually contributes to economic heterosis.
Often positive complementarity arises because of a multiplier trait, e.g., percent calf crop,

live pigs weaned per litter, fat percentage for dairy cows. Reproduction and viability traits
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are multiplier traits and also often exhibit positive heterosis. As a simple example,

suppose two breeds present the following profile.

Percent Weaning Weight sold
Breed calf crop weight per cow
A 90 500 450
B 70 600 420
AB 80 550 440
In this case, the economic heterosis is 440 - (450 + 420)/2 = 5 Ib. Economic heterosis

is only about 1% but in this example neither percent calf crop nor weaning weight exhibit

heterosis. As with single trait heterosis, however, economic heterosis may be negative.

PREDICTION OF PROGENY RESPONSE AND BREEDING VALUE
The goal of this chapter was to predict performance of progeny from the mating of
a particular sire of some breed or breedcross and a dam of some breed or breedcross. The
difficult part of the theory has now been discussed. What is left to do is put together the
breed and heterosis effects with the direct and maternal genetic deviations. The steps are:
1) estimate breed constants for direct and maternal effects and specific
breed by breed direct and maternal heterosis effects (not an easy task in many cases),
2) predict direct and maternal genetic deviations for potential sires and dams

either jointly with estimating the breed and heterosis constants or after adjusting records for

those pre-estimated constants.
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Expected progeny performance will depend on breed composition of the two parents
as well as their predicted genetic deviations for direct and maternal effects; ag and mg for
the sire and apy and my, for the dam. The equation is for a single trait but in most cases
economic heterosis (complementarity over all traits) should be considered. For example,
assume the potential sire is of breed A and the potential dam is a cross of breeds B and C.
Expected progeny performance is the sum of direct genetic breed and heterosis constants
and genetic deviations associated with the sire and dam plus maternal genetic effects
associated with the breed composition and genetic deviation of the dam. For the example:

DIR[AA/2 + BB/4 + CC/4 + (1/2)H(AB) + (1/2)H(AC)] + (ag + ap)/2
+ MAT[BB/2 + CC/2 + H(BC)] + mp

The expected progeny performances for all potential sires when mated to all potential
dams could be compared to determine the matings that would be expected to maximize
expected progeny performance or economic heterosis.

The breeder may be interested in the breeding value of the potential progeny rather
than the progeny performance. The predicted breeding value of the progeny, however, does
not depend on the heterosis effects which cannot be transmitted directly to its descendents.
One-half of the breed effects are transmitted to the next generation and thus are included
with the genetic deviations in the predicted breeding values.

The direct breeding value for the example is:
DIR[AA/2 + BB/4 + CC/4] + (ag + ap)/2.
The maternal breeding value for the example is:

MAT[AA/2 + BB/4 + CC/4] + (mg + mp)/2
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The maternal breeding value of female progeny would, in turn, be expected to be expressed
in the performance of their progeny.

The expected breeding value of progeny of a sire and dam is the average of the
breeding values of the sire and dam with breed effects included in breeding values of both
the progeny and its sire and dam. Progeny of an A by (B by C) mating would probably
create some heterosis when they become parents. The potential heterosis should not be
included as part of their breeding values because the heterosis effects will depend on the

breed composition of the potential mates.

LAST THOUGHTS ABOUT CROSSBREEDING

The management aspects can be difficult.

Choice of breeds is important.

Heterosis and complementarity depend on breeds available. All breed crosses
may not result in equal heterosis effects or average complementarity.

The whole package -- specific direct and maternal additive genetic values,
specific heterotic effects for direct and  maternal effects of all traits,
complementarity, management costs, and markets -- must be put together properly
for crossbreeding programs to be successful.

Progeny performance can be considered for short-term planning but progeny

breeding values must be considered for long term breeding goals.
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FLOW CHART FOR MIXED MODEL EQUATIONS

I. Determine the model
A. Fixed factors, e.g., age, management group

B. Random factors (other than G, G/2, PE)

C. G+E;a§+ag=ol%;a§=a%+sumofothero

1. Animal model:

2
r

's
G;w=E,
aé = hza%, o\% = (1- h2)0’12)
2. Repeated records animal model:
G, PE; w = TE,
oé = h2012>, age = (r- hz)olz,, Uv% =(1- r)012>
3. Sire model:
s = G/2; w = other G + E,
og = h2012>/4, a\% =(1- h2/4)a%
II. Create Least Squares Equations from (rules: sums - model, "'s)
III. Modifications for MME (animals or sires unrelated)
A. Add a\%,/ a% to diagonal coefficients, other random factors
B. Animals with records, unrelated
1. Add o‘%/ oé to diagonal coefficients of the G equations
2. If repeated records, add a\%/ Upz)e to diagonals of PE equations
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C. Sires with progeny with records, unrelated sires

1. Add avzv/og to diagonal coefficients of the sire equations

IV. Modifications for MME (animals or sires related)

A. Add ovzv/a% to diagonal coefficients of other random factors.

B. Animals with records related through, A matrix.

1. If repeated records, add ovzv/ag)e to diagonal coefficients of the PE

equations.
2. AddA’l (o&,/og) to the g x g block of coefficients.

or

3. Calculate A:l directly by the Henderson rules (noninbred).

a)

b)

©)

Include base animals with no records if related to more than one
animal with records.

Augment equations to include animals with no records.

i) sum = 0; ii) no model; iii) tied by A (62/2)

Jointly predict G; animals with records and base animals with no

records.

C. Sires with progeny with records. A is matrix of relationships.
1. Add A’l (°v2v/ og) to s x s block of coefficients.

or

2. Calculate A:l directly by rules for (noninbred) sire or for sire and

maternal grandsire.

a)

b)

b)

Include base animals with no progeny with records if related to
more than one sire with progeny.

Augment equations to include animals with no progeny records.
i) sum = 0; ii) no model; iii) tied by A_ " (62/02)

Jointly predict G/2 for sires with progeny records and relatives

with no progeny records.



PART THREE

ESTIMATING
GENETIC PARAMETERS
USING
SIMPLE STATISTICAL MODELS

The following chapters cover simple procedures used in estimating repeatability,
heritability and genetic, environmental, and phenotypic correlations. In most cases, the
complete statistical model is given including the expectations or average values of all
relevant combinations of the observations, as well as a worked example. Methods of

simulating the models are described in the last two chapters.
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SUMMATION AND DOT NOTATION

SUMMATION NOTATION
Summation and dot notation are used in describing the computations for estimating
genetic parameters. A T indicates summation over what follows as the subscripts vary by

1 from the lower limit of summation to the upper limit. For example,

X; = X1 + Xp + Xj3.

Tt

Similarly,

j=1+2+3+4.

P

J
If there is no subscript in what follows, the quantity is simply repeated the number of times
the limits of summation indicate:
3
Y c=c+c+c=3c.

k=1

If the summation limits are not given, the limits are usually obvious.

339
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DOT NOTATION

A dot in place of a subscript signifies summation over that subscript. As an example
of this notation, consider a set of observations denoted as Pij' Let i=1,.. 3 and
j =1, ., njwhere ny = 2, ny = 1, n3 = 4. This arrangement could correspond to three
animals (the first subscript) where the first animal has n; = 2 records, the second animal
ny = 1 record, and the third animal ny = 4 records. The various quantities to be written
out in this example correspond to quantities which will be used later in estimating

repeatability. Also keep in mind that each symbol corresponds to a number in an actual

analysis, e.g., Py is the first record on the first animal.

3 nj
Then i§1 j§1 Pij =P. = Pll + P12 + Py + P31 + P32 + P33 + P34.

The subscript corresponding to the innermost £ usually varies first:

3 0 3
)" Pij = X P, =Py +Pp +P3 =P.
i=1 j=1 i=1
nq=2
P = X P1j=P11 +Pp
j=1
np=1
Py = X Ppj= Py
j=1
n3=4
P3, = j§1 P3j = P31 + P3p + P33 + Py

300
P. =Py +Py +P3 =Pyg +P1p +Ppy + P31 +P3p + P33+ Py =X X Py .
i=1 j=1



Notation 341

The dot indicates that the corresponding summation has been finished before doing other
operations such as further summation or squaring.

Some examples with sums of squares used for estimating repeatability are as follows:

nj
T P;: 2 2 2 .2
3 =Y 3B PL Py Py (PP’ (Pp)” | (Paq+Pap+PazePag)’
y N - 7 =¥ = + + = + +
i=1 1 i=1 ;4 m; m D03 2 1 4
3 ¥
P 2
is1j=1 0 _PD_ (1ePa+P3)’  (P11+P1avPy1+Py1+Pap+Pa3+Py)
3 n. np+ny+ng 1+1D)+(Q)+AQ+1+1+1)
Y nj
i=1

3
2 2 .2 2 2 2 2 2

Note that there is nothing comparable to the dot notation for sums of squared quantities.
The same procedure applies to functions of the n's.

n.=n1+n2+n3=2+1+4=7.

: 1+n22+n32=22+12+42=21.
i=1

n.2=(n1+n2+n3)2=(2+1+4)2=49 .

3
[ nlz] /o =21/7=3 .
i=1



CHAPTER 36

EXPECTED VALUES

The usual technique in estimating heritability, repeatability, and various correlations
is to compute certain functions of the data (usually sums of squares or sums of cross
products corresponding to those computed for balanced analyses of variance) and equate
the functions to their expected or average values. The sums of squares or crossproducts to
be considered are the usual ones. An appreciation of how to find expected values, however,
is needed. More complicated models including fixed effects will not be considered. Only
models with all effects random will be discussed. The general method was described by
Crump (1946, 1951) and Henderson (1953).

The symbol most often used for the expected or average value of some expression,
involving constants and variables, is E( ). Expected values of most expressions used in
estimating genetic parameters are relatively easy to find if the following definitions are

remembered.

DEFINITIONS
Let ¢ = a constant; X; =a variable from some distribution of trait X with mean, Iys
and variance, 0}2(; and y; = a variable from some distribution of trait Y with mean Hys
variance 02 and covariance with Xjs Oy
y, ’ xy
Definition 1: E(c) = c¢. The average value of a constant is that constant. Similarly

E(?) = &

343
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Definition 2: E(x;) = py. The average of all possible values of variable X is its average or
mean, .

Definition 3: E(cx)) = ¢ E(x) = ¢ u,. The average of all possible values of a
variable times a constant is the constant times the expected value of the variable. The
principle is that in expressions involving a constant the constant can be taken outside
the expectation operation.

Definition 4: E("i"'yj) = E(x) + E(yj) = py + y- The expectation of a sum can be taken
as the sum of the expectations of the parts. The principle is that expectations of parts

of a function can be done separately and then added together.

2

Definition 5: E(x; - u.x)2 = oy

By definition the variance of a variable X, o%, is the
average squared deviation of the variable from its mean.
Thus, E(x 12 ) = ai + ui which follows directly from definition 5. Expand the equation
for definition 5 and take the expectations of its parts:
0)2( = E(x; - ux)z = E(xi2 - 2puy + #,2{),

= B(x]) - B2 iy x)) + E(uy) from (4),

= B(x)) - 2 py E(x)) + 4> from (1) and (3)

= E() - 2 iy iy + g

= E(xiz) - “)% so that

Bx() = o+ by

_ 2, 2
Note when p, = 0 that E(xi) =g, .
Definition 6: E[(x; - u,)(y; - uy)] = Oyy By definition the covariance between variables

X and Y, Ty is the average of the products of their deviations from their means.
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Thus, E(xiyi) = + "‘x“y which follows from definition 6. Expand the

xy
equation for definition 6 and take the expectations of its parts:
Oxy = El(xj - b - #y));
= E[xjyj - pyyj - Xt ighyl,
= E(qy)) - #EQy) - byEQ) + pyny, from (1) and (3),
= E(X;) - Hyhy - Byhiy + Byby,
= E(xiyi) - “x“y so that
E(xy;) = Oyy + Hyhy - When either p, or by = 0, then E(x;y;) = Ty
The general procedure for applying these definitions to find the expected values of
more complicated sums of squares and products of variables is to use the following steps.
Step 1. Substitute elements of the model into the function.
Step 2. Expand the function in terms of the model.
Step 3. Find the expected value of each term of the function.
Step 4. The expected value of the function will be the sum of the expected values

of the individual terms.

EXAMPLE

h

LetP; = u + A; + Eij where P;; is an observation (variable) on the jt record in

) ]
the ith class, u is a constant, A is a variable with u A = 0 and variance, ai, Eij is a

. . . 2 .
variable with BE = 0 and variance g and the covariance between any two A's, any two

E's or any A and E is zero.
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The expected value of any observation:

E(P

i) = B + A; + Ep) = E(n) + E(A) + E(Ey)

u+0+0

=u.
The expected value of any observation squared:

E(P; ) - E[(u+A; +E1J)2] - B(u +A2+EJZ

E(u?) + E(A] 2y, E(E; 2) + E(2uAj) + E(QuE; ) + EQA{E;)

+2uA; +2/.LE s+2A El])

= “2 + 02A + 0123 + 2uE(A;) + Z#E(Eij) + 2E(AiEij)
2 2 2
=u” +d, +op  because E(A) = 0, E(Ey) =

and E(AEy) =opap = 0 .

The expected value of the product of observations in the same class:

E(PPy) = Bl(s + A; + Ey)(s + A; + Eg)] for G # )

= E(u. +uA;+pE Jv+u.A +A2+A Elj'+""El_]+A iEji+E; El])

ij
=,,2+o+o+o+02A+0+0+0+0

= “2 + ai, because E(A1E1]) E(AiEij) since 0, = 0 and

E(El_]Elj') 0 SlI]CC E E J' =
The expected value of the product of observations in different classes:

E(PIJPI'J') = E[(Ht + Ai + Ei_])(”’ + A_iv + Eim)] (i'#i andj=j' Ol'j#j')

E[p +;;A1 +;;El .+;1A1+A1A1 +A1E..+uElj+A1.E .+ Elel']']

W+ 040404+ 0+0+0+0+0

“2 for similar reasons as for the other expectations of the P's.
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Two approaches can be used to define the model in terms of expected values:

(1) in terms of Pij's and

(2) in terms of the model underlying the Pij's.

The second approach is usually used as in the example. In this case it is sometimes easier
to write the model in terms of expected values of elements of the model. These can be

found by implication from the model defined in terms of the Pij's.

For example in this model only the following definitions are needed:
E(Py) = p
E(Pi?) =u2 s oi + a%
B(P;Pyy) = 4% + 0% , and
E(PPyy) = 1.
A second and more informative set of definitions is:
E(A) =0, E(Eij) =0,
A BE =g,
E(A;A;) =0, E(EijEij') =0, E(EijEi’j') =0,

E(AiEij) =0, and E(AiEi'j) = 0 which are equivalent to the expectations in

E(AD) = o

terms of the Pij'
Fewer definitions are needed for the first method but the definitions are exactly
equivalent.
A third way of completing the model which implies stating the properties of the
elements of the equation of the model is to say that: 1) the A; are independent

CIN ; Aj = 0), identically distributed (all A, from distribution with same variance and mean)

with mean u A = Oand variance, oi; 2) the Eij are independent, identically distributed



348 Parameter Estimation

with mean, yp = 0 and variance, 0123; and 3) the A's and E's are independent. Thus
the A's are IID(0, o ); the E's are IID(0, o) and E(A{E;,) = 0 for all possible A's and
E's. This method is the usual one for describing the model in research papers although

both the first and second methods are more informative for working with expected values.
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REPEATABILITY

Repeatability is defined as the ratio of the variance due to animal effects to the

total, or equivalently, phenotypic variance, that is:

2
A

2 2
°A " °E
Repeatability also represents the fraction of the difference from the mean in one record
which is expected in another record on the same animal. Repeatability thus is the
regression coefficient for a subsequent record on a previous record and with equal variances
for all records is also the correlation between records on the same animal.
The simple model is:

Plj =u + A] + Eij,Where
p.. < ith th

ij =1 record on i~ animal,

A; = effect on Pij of the animal (genetic plus permanent environmental

effects), and

Eij = random temporary environmental effect

i=1...,B with B = number of animals

j=1..,n th animal.

i with n, = number of records on i

349
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With method two of completing the model:

E(A) = up = 0 E(Af) - ai E(AiAj) =0 E(AE;) = 0
E(EIJEI'_]') = 0

These imply the following equivalent expressions for the first method of completing the
model.
2 2
E(Py) = up = E(P)-u2+aA+oE
2. 2
E(Pu 11) =K OA E(PIJPI'J') = #2
The third way of completing the model is to state that the A's are ITD(0, ozA), the E's are

IID(0, 0123) and the A's and E's are mutually uncorrelated.

ESTIMATION OF REPEATABILITY BY REGRESSION
The expectations of sums of squares and products used for estimating repeatability
from regression and correlation coefficients are for n; = 2 records for each of B = n

animals, i=1,.., n and j=1 and 2:

E(EP 11) = np?+ noi + no%3

E(P.l/n) = nuz + OZA + oé

E(EPé) = np.z + nazA + noé

E(P.‘zz/n) = nu.2 + ci + 0123

EQP;1Ppp) = npz + nai

E(P (P = m? + ol
(P1P2/n) = nu® + oy
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Thus, where * indicates an estimate, the estimates of variances and covariances are:

(
) X2 52 ) o 52 .2
0P1 = Li§1 Pil - P.l/l'l] / (Il-l) ; 0P2 = .21 Pi2 - P.z/nJ / (n"’l)

i=

( n
6p;Py = | T Pj1Pjp - P.1P.2/n] / (n-1)

\1=

: oAl oy a2y 2 2 . 2
The expectations are: E(apl) = E(aPZ) =0, +op and E(ap1 P2) =0 -

The estimate of repeatability by regression of second record on first record is:

A 2

P, P, °A
r = 5 where the expectation by parts is 5
%py %A * OE

The variance of the estimate is:
2 2 .2
Gr = [0P2/0P1 - bz] / (l'l-2) .

The estimate of repeatability by correlation between first and second records is:

6P1P2
r= where the expectation taken separately for each part is:
2002
2 2
2 2
J(ozAmé)(ozA*-o%) %A " %

Although the expectations by parts are the same for both the regression and correlation

coefficients, the regression and correlation coefficients are rarely equal.
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If some animals are not allowed to have a second record because of a low first record
then E(&%,l) from records of only animals that were allowed to have second records is less
than GZA + aé by a factor, k < 1; i.e, E(&%l) = k(02A+02E) where k depends on the
intensity of selection. Fortunately E(ép 1 P2) is also less than o% by the same factor, k; i.e.,
E(6p 1 PZ) =k a% . Thus the regression estimate is unbiased by selection on first records.
The correlation estimate is biased since E(&%Z) from records of only animals allowed
second records is not k(a%+ o%) but is ka% + a%.

In the unusual situation when the pairs of first and second records depend on the size

of the second record both regression and correlation estimates of repeatability will be

biased.

Example of Computing Repeatability by Regression and Correlation.

The following set of first and second records on 10 animals was drawn from a

. . . 400
population with 4 = 500, o A 20, and oF 10, ie., 1 00 = 100 .80

Animal (i) Pi1 L57)

1 S04 533

2 542 548

3 523 522

4 471 484

5 505 495

6 543 543

7 500 495

8 460 479

9 474 449

10 522 527
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10
T P2 = (502 + (5422 + = + (522)2 = 2,551,784

i=1

10
> piz2 = (533)2 + (548)2 + = + (527)2 = 2,584,803

i=1

10

T Py {Pip = (504)(533) + (542)(548) + ~ + (522)(527) = 2,567,202
i=1

&%1 = [2,551,784 - (5044)2/10]/(10-1) = 843.6

6%’2 = [2,548,803 - (5075)2/10]/(10-1) = 1026.8

6p, P, = (2,567,202 - (5044)(5075)/10](10-1) = 819.2

By regression, r = 3192 | .97 and by correlation, r = 8192 = .88

843.6 /(843.6)(1026.8)

ESTIMATION OF REPEATABILITY FROM VARIANCE COMPONENTS
Now the ith animal has n records, j=1, -, n; and n. = o, The expectations of

. L2 2
the usual sums of squares used in estimating o/, and of, are:

Ao rl] - cndk - 0dd
EJZIZ Pf/ni] = n.u.2 + n.azA + B oé
E| P"Z/n.] = n.yz + [i] z:nizazA + oé

n.) j
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The variance components to be estimated are replaced in the expectations by estimates of

the variance components (i.e., *'s are put on the symbols) and then equated to the computed

sums of squares. The estimates are:

Q»
les BN
[}

Thus:

( 2 2 2 2
x ’13 Pyj - % Pi,/ni] / (0. - B) where E(8%) = of,

L2 2 2
P /nj - P°/n. - B - 1) 85|/

n. - (1/n.) E ni2

1

where E(65) = o5

11

The approximate variance of this estimate is:

where

2n.-1) (1-1)2 [1 + (k-1)r)?
k2 (n.-B)(B-1)

-t N

k =[1/B-1)] [n. - 1/n) T nlz] .
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Example of Estimating Repeatability From Variance Components.
The following set of 10 records on 5 animals was drawn from a population with

p = 1000, 0o = 10, and o = 10.

Record (j)
Animal (i) 1 2 3 Py, oy
1 979 976 984 2939 3
2 988 1007 1995 2
3 994 994 1
4 1004 1017 2021 2
5 1015 1022 2037 2
P.. = 9986 n, = 10
5 n
21 z:l u = (979)% + (976)% + (984)% + (988)% + - + (1022)% = 9,974,516
= J:
2
5
3 i @392 | (19957 | 9947 | o21)? | (2037)% _ 0,974,103
21 3 2 1 2 2
p2
7 = (9986)2/10 = 9,972,019
n.
> 2 2 2 2 2 2 2
Sl =032 +@?+ % +@%+@% = 2; Ta/n=22/10 = 22
i=1

6% = (9.974,516 - 9,974,193)/(10-5) = 64.6

aZA = [9,974,193 - 9,972,019 - (5-1)(64.6)]/(10-2.2) = 245.6

_ 2456 _
245.6 + 64.6
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HERITABILITY

Heritability is defined as the ratio of the variance due to genetic effects to the

. . .2 2, 2 2 T
phenotypic variance. Thatis, h“ = og / (ag + oe) . Most methods of estimating h“ make
the assumption that 02 is the variance of additive genetic effects. Biased estimates may

result if the assumption is not true.

ESTIMATION OF HERITABILITY BY REGRESSION AND CORRELATION
Estimation of heritability by regression uses n pairs of records of relatives X and Y
which have additive relationship, axy

The model for the records is:

Pxi=p+gxi+exiandPyi=u+gyi+eyi i=1.,n)

E(Pyj) = E(Py) = 4 ;
2 2 202 ..
E[Pxi] = E{Pyi] = “2 +0g + O which imply E(gyey;) = E(gyieyi) =0 ;
Poo) = 2 Poo) = y2 P = 42 for | » i
E(Px]Pylv) = u” , EP4Py) = 6° , E(P),lef) = u“ for i » i

2
E(PyiPy;) = /42 * agy0y which implies E(gyjeyi) = E(gyiexi) = E(exieyi) = 0" .

357
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If other than additive gene effects contribute to genetic variance
E(PyiPy;) = > ? axl; d){y aij + u2 where j+k > 1; dxyisdominance relationship between
relatives X and Y and OLj is the variance of specific genetic effects due to the action of
single genes at k loci and genotypes at j other loci as in Chapter 6.

The expectations of the sums of squares and crossproducts used to estimate h? from

regression and correlation coefficients are:

( ) \
Ezi: szi = nuz + nag + nag; E[sz /n) = np.?‘ + az + oz;
/
2) 2 2 2 ) 2 2
= a2 . ) .
EE PyiJ = nu” + 0oy + nog; EPy. /n‘ = S+ 0y +og;
(P, P
2 2 x.y. 2
E% Pxipyi = nu“ + naxyag; EJ\ ny] = nu“ + axycrg
Thus:
4 P2\
2 2 X. 2 20 2
6, = Zi:PXi - / (n-1) where E(6)) = Oy * g
4 P2\
6)2, = fl: Pyzl - _;'_J / (n-1) where E(&i) = oz + az ; and
. Py Py, \ 2.2 2
Oxy = [E lePy - ] / (n-1) where E(axy) = axy O if o, =01 -

Remember that in general E(c‘rxy) = Ay 0%0 + Ay 0(2)1 + axzy G%O +

Then the regression of record of Y on record of Xis: by.xy = 0yy /6)2(



Heritability 359

QD

The correlation of record of Y and record of X is: Tyx = 5 _ .
l 2 A2
6, 0 y

The estimate of hZ from regression of the record of relative Y on relative X is:

h? - 1 by-x where the expectation by parts (expectation of numerator and

denominator parts is done separately) gives:

2 2
Ayy O o
1 X 101 . 10 for 02 = 02 but otherwise gives
Axy 02 + 02 02 +0 & 10
| 8 € g e

so that the bias will be :

P S 2
xy %01 * %y 920

2 2
axy (og + ae)

The variance of the regression estimate is (the square root is the standard error):

2, _ 1 6/ 8% - b
V(h4) = — V() = 2
a2 a2 (n-2)
Xy Xy

From correlation the estimate of h2 is:

2 1

he=_"r
yX

Axy

where the expectation by parts is the same as by regression.
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As in the case of estimating repeatability by regression the estimate of heritability is
unbiased by selection on relative X as to whether a record on relative Y will be available,

e.g., by selection of potential parents, X, to have progeny, Y.

Example Of Estimating Heritability By Regression And Correlation
The following set of 20 paired records on progeny and parents was drawn from a

population with u = 150, g, = 10, and o, = 20.

g

Pair (i) Parent (X) Progeny (Y) Pair (i) Parent (X) Progeny (Y)
11

1 194 172 168 148
2 164 175 12 164 173
3 147 142 13 202 169
4 165 159 14 129 145
5 181 148 15 194 184
6 155 164 16 148 176
7 142 157 17 171 169
8 153 166 18 148 105
9 159 144 19 167 162

10 138 113 20 146 169

P, =325 P, =3140

E P = (1942 + (164)2 + = + (146)% = 530,505
1

> Py2i = (1722 + (175)% + = + (169)% = 500,806
1

T PyiPy; = (194)(172) + (164)(175) + = + (146)(169) = 511,557
1

62 = (530,505 ~ (3235)%/20]/19 = 3813

A2

& = 500,806 - (3140)2/20)/19 = 411.9

byy = [511,557 - (3235)(3140)/20}/19 = 192.7
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Since 2y = 1/2, by regression, h2 = 2(31891237) 1.01 with standard error .43 and
by correlation, h2 - 2(192.7) 97 .
v(381.3)(411.9)

This example illustrates the fact that although the upper and lower limits of h? are

1 and 0, estimates from regression and correlation can be outside the limits.

ESTIMATION OF HERITABILITY BY VARIANCE COMPONENTS
One-Way Classification
The one-way classification model is:

PJ -p,+b +w1y where

4 is a constant,

b; is an effect in common to members of the i it genetlc group,

th th

w;:: is a random effect associated with the j member of the i group.

1
i=1,.,B;j=1, .., n;.
The b's are HD[0,0%], the w's are HD(O,O%V] and the b's and w's are mutually
uncorrelated. The variance among groups, og = aii"%o + diio(z)l + =, can be shown to be

the covariance between animals in the same group with a:., the additive relationship

th

11’

between pairs of the it group, and d::, the corresponding dominance relationship.

ii’

From genetic theory aii“%o + dii°g1 = Cov(PlJ,PlJ) which by definition

equals E[(Py;- u)(Pyy - w)] = E(PypPy) - w2 Thus ot + 2 = E(P;jP;i). Note that

l_]’

d;; = a;; = Ofori # 1, ie., between groups that are not related to each other. Because
2 _ 2 2 d al 2-2+2'th 2 _2_ 2_2
op = 0}, + 0y and also op = 0, + g, ; then oy, = 0, + 0 - 0O
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2 2
If og =d10 > then,

2 2 2 2 2
Ow = 1 - aii)"lo +d, and oy = ajjoy, .

In terms of the P's the expected values are:

2 2 2 2

Bfr) - : E{Pu] R
E(piiPii) = u? + o ; E{PyyPy) = w2, E[PyPy) = 42 . These definitions of the
model lead to the following expectations of the three sums of squares (also called

2

quadratics) usually used to estimate ag and Ca

2 2 2
E[E P Pl]] = np” + nop + no,

ij

(.2

P.
gy =n.u.2+n.al2)+B02

i 0 W

(2

P

. 2 2 2
E — =n. ):n

The estimates are obtained by equating the quadratics to their expected values:

2
2 P

B = 2EP / (n. - B)

ij §j i nl

2 2
P P

6§=E_1_-;-(B1) /[.-_1_an2]

i 0j n 0.
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The estimate of the intraclass correlation is:

2

. TR .
w] and the estimate of heritability is: h“ = (l/au)t .

A2 A2 A
t =& / [ob + 6
The approximate variance of this estimate is:

V(h 2) = V(t)/ai% where

/ B -1]

vy = 20D 1-0% [1 + (k-1) 1 I [n. ) [Eniz] n
k% (n. - BB - 1)

Note that heritability is a simple multiple of the intra-class correlation coefficient, i.e.,

h2 -t which is the reason that this method is often called the intra-class correlation
aji

method of estimating heritability.

The Intra-Class Correlation Coefficient
The term, intra-class correlation coefficient, is, on examining all the adjectives, simply

the correlation between records of any pair of animals in the same class--in this case in the

Cov(Pij,Pij-)

same genetic group, i.e., t = .
\/Var(Pij) Var(P;;)

2
2 2 2 i
But COV(Pij’Pij') = 0y and Var(Pij) = Var(Pij') = 0 * Oy - Thus t =
Ob + aw

The genetic groups will often be groups with the same sire (paternal sib groups,
a;; = 1/4, d;; = 0), with the same sire and dam (full sib groups, a;; = 1/2, d;; = 1/4), or
with the same dam (maternal sib groups, a;; = 1/4, d;; = 0). For this model to be correct,
the groups cannot be related to each other, e.g., no sire can be the sire of more than one

full sib group.
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Example of Estimating Heritability for the One-way Classification Model
The following set of 75 records from 25 paternal sib groups was drawn from a

population with 4 = 150, ag = 50, and o\zy = 450.

Progeny Progeny
Sire Sire

(i) 1 2 3 4 5 Pi. (i) 1 2 3 4 5 p;.
1 132 138 - e - 270 14 156 178 165 153 145 797
2 115 135 156 -~ - 406 15 125 172 142 117 --- 556
3 181 - e e e 181 16 157 152 = e eee 309
4 146 133 165 144 163 751 17 152 142 161 --- - 455
S 143 148 173 147 ---- 611 18 | K I e %
6 128 113 - e e 241 19 152 140 170 165 144 771
7 159 157 138 - - 454 20 135 169 148 137 --—-- 589
8 175 om0 meme e e 175 21 156 151 - e - 307
9 126 160 162 130 172 750 22 165 162 111 - - 438
10 170 129 134 165 ---- 598 23 160 -=e- e e e 160
11 140 164 - - - 304 24 132 119 153 129 117 650
12 138 168 128 == - 434 25 138 150 144 152 ---- 5S84
13 154 - e e e 154

Ty Pij? = 1322 + 1382 + 1152 + -~ + 1522 = 1,663.334

ij
p2 2 2 2 2
s i @10 | (406 | (8% | . (5897 || 108065
i 1 2 3 1 4 T
P’ (11098)2 2 2 2. 2 2
o2 SO0 16422081, T nf =22 432412 4w+ 42 =275
n. 75 1
afv - (1,663,334 - 1,649,806.5) / (75 - 25) = 270.5
aﬁ - [1,649,806.5 - 1,642,208.1 - (25-1)(270.5)] / [75 - 275/75] = 15.5
Then,

n2 . 4155  _
15.5 + 270.5
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Two-Way Nested Classification

Estimation of Heritability
This model is appropriate when sires are mated to many dams, but each dam is
mated to only one sire with one or more progeny per dam:
Pijk =p+s+ dij + wijk’ where
 is a constant,
s; is the effect common to all animals with the ith sire,
dij is the additional effect common to all animals with the ]m dam mated to the il
sire, i.e., §; + dij = Jﬂl full sib effect so that dij = (full sib effect)ij - S;,
Wijk is a random effect associated with the record of the k! member of the i@ full
sib group.
i=1,.,S8;j=1,.., m; ; k=1, .., nij; m.=D, the total number of dams, and with the

s's, IID(O,az]; the d's, HD[O,og]; the w's, IID[O,a%V} and the s's, d's, and w's mutually

uncorrelated.
Note that:
02 -] 02 + 2 02 + -~ is the covariance among paternal half sibs;
s 7 10 75 20 &P ;
02=02 _02=102+102+_"+10 + - isth o rce amon
d "FS “s 7710  Tg 20 7 01 is the covarian g

full sibs, O%S’ minus the covariance among paternal half sibs, 0‘82 (if maternal effects

. 2 . 2 .
exist, then o d also includes Oy the variance of maternal effects) and

ai, = az + oz - az - og is total phenotypic variance, az + az, minus oz and 0(21.
If 2_2 2 th 2 1 2 L3 2 2
% 910 T %1 " %% 359077 %1 "% -
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In terms of different combinations of the P's the expected values are:

E(Py) =

|
®

2 2. 2 2
E(Pijk) = uz +o  +aytay
2.2 2 :
E(PjjxPjjk') = u° + g + a4  (records of full sibs)
E(PijkPij'k’) = u.2 + ag (records of paternal half sibs)
E(PyxPijk) = u? (records of unrelated animals).

These definitions of the model lead to the expectations of the four quadratics used

. 2 2 2
to estimate g I and o w
E E E )} Pi?k = n..uz + n..ag + n..og + n..o%V
ijk
5 2
Ery U = m.u” o+ n.o. + n..ad+Do
i j M
( 2 P ng
P; 2 Y
EY = = M.u< + n.og + P ad+Saw
i 0, i 0
/
PZ
E| — =n“2+i2n.202+_1-22n20ﬁ+a
(o n. j » 8 oo Y
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When the quadratics are equated to their expected values the estimates are:

2 P
h=zzzpﬂ-;;_g/(m-m
ijk ij Dy
2
) Pl P} %y
6g==x 2L E__4D$ / |n.-X 3
ij nl_] i i i 0
2
SR N T 2| ;2
D L BN >} ) o N (R VR
T T P T
6° =
’ 2
[n - Llyn ]
n, j !
Then ‘%=6§+6(21+6‘2v
2 2 . - . . .
If 05 = 03y = = = 0, the estimate of heritability from the sire variance is:
A2
R R
s "2 710 s
°p

2 .
If 01 canbe assumed to equal zero then two other estimates that use the dam component

of variance are:

402 2[62 + &2]

2 _"d 2 s d

hd = — and hs+d -
6p &p

If ogo and other second and higher order components, 0?1 etc., are zero then:

2 _afs2 _ 52
%1 = %% ~ Y%
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Example of Estimating Heritability by Variance Components for the Two-way Nested

Classification Model: Progeny with One Record Each, Nested in Dams, Nested in Sires

The following set of 50 records from 10 dams mated to 5 sires was drawn from a

population with g = 150, a? =50, 0

Sire Dam Prog
(i) 0 & Py

1 1 1 137
1 1 2 166
Pll. = 303

1 2 1 142
1 2 2 103
1 2 3 125
1 2 4 153
1 2 S 180
1 2 6 170
1 2 7 157
1 2 8 153
P12' = 1183

Pl.. = 1486

2 1 1 110
2 1 2 112
Py, =222

2 2 1 190
2 2 2 199
2 2 3 191
2 2 4 171
2 2 5 156
2 2 6 158
2 2 7 17
2 2 8 184
P22. = 1420

P2“ = 1642

2 =75 and o2, = 375.
Sire Dam Prog
@ O ®& Py
3 1 1 169
3 1 2 163
P31. = 332
3 2 1 126
3 2 2 173
3 2 3 176
3 2 4 154
3 2 5 169
3 2 6 179
3 2 7 178
3 2 8 191
P32- = 1346
P3“ = 1678
4 1 1 144
4 1 2 144
P41. = 288
4 2 1 170
4 2 2 147
4 2 3 147
4 2 4 161
4 2 5 159
4 2 6 125
4 2 7 128
4 2 8 128
P42- = 1165

P4" = 1453

Sire

(i)

Dam Prog

0)

(k) Py

5
5

L bbb n n

1
1

(NS TN S 2N ST S 2N (S I SO I (S I o8}

T 138
2 130
Pg; = 288

1 136
2 142
30128
4 145
5 168
6 149
7152
8 137
Pg, = 1157

1445

"o
bl
[

P = 7704




YLy Pi?'k = 1372 + 1662 + 1422 + = + 1532 + 1102 + = + 1372 =

ijk
p2 2 2 2 2
yy i 3037 1185 2227 .., IBT" | 1990374
A 2 8 2 8 R
P’ 14862 16422 14452
y 2 + + 0+ =11919278
i nj 10 10
2
P 2
oo T7047 1 187,032.3
n..
Note n. =50, D=10, S = 5.
2
> n
y J Y - 2% + 8 + 2” + 8 P 2+ 8 = 34
i 0 10 10 10

EEni?=22+82+22+...+82=340,
i

znf=102+m+102=500

62 = (1,211,444 - 1,199,037.4)/(50-10) = 310.2

aﬁ = [1,199,037.4 - 1,191,927.8 - (10-5)(310.2)]/(50-34) = 347.4

»

2 _ [1,191,927.8 - 1,187,032.3 - (34 - 340/50)(347.4) - (5-1)(310.2)] _
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1,211,444

s [50 - 500/50]
6% = -144.9 + 3474 + 3102 = S12.7

2
h? = 4(-1449)/512.7 = -113

-144.9

This estimate illustrates the point that estimates of h? by this method may be outside of the

theoretical limits of 0 and 1.
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In this case, 65, = 4(-144.9) = -S79.6 and 67, = 4[3474 - (-1449)] = 1969.2,
which is also obviously unreasonable because that is greater than the total phenotypic

variance.

Two-Way Nested Classification
Joint Estimation of Heritability and Repeatability

The model applies when a sire has many progeny each with one or more records and
dams are assumed to be unrelated:

Pljk =4+ 5+ cl] + lek, where

L is a constant,

s; is the effect common to all animals with the ith sire,

¢ is the additional effect common to all records of the jt—h progeny sired by the ith

sire, i.e., s; + S corresponds to animal effect of repeatability model,

Wijk is what is left over, a random effect associated with the jth

18 record of the i

progeny of the ith gire,
i=1.,8j=1,., my; m. = C, the number of animals; and k = 1, ..., "ij .
Note that this is the same statistical model as the previous one except that ¢jj appears rather

than dij and C rather than D. The assumptions about the elements of the model are the

same except that now oz is interpreted differently from og
Again,
02_102 L 1 02 .
s 7 10 75 20
But now,

2.2 2 22,2 a2 . ¢ "
O'c —OA O’s wi O’A = O'g OPE where O’PE 18 € variance o permane

environmental effects. Thus, ai = ag + 0.
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Now, afv = o.2I.Eis the variance of temporary environmental effects where in the previous

heritability models, 2 . °'21'E + O%E + some genetic variance.

w

2 2 2 3 2 2
Ifog-cr10 ’thenoc'?{olO"'oPE .

The expectations of different combinations of the P's are:

E(Py) = 4
B2 « 2 o e 22
E(P;jkPjjk) = u? + a? + ag (records on the same animal)
E(PijkPij'k') = uz + og (records of paternal half sibs)
E(PjjkPijk) = u? (records of unrelated animals).
The same four quadratics as before are used to estimate ag, oz, and oi . Their

expectations lead to the estimates:

2

P..

AR 020208 Z-AED >5 >iuk 1t RV NS
- j =~ T
ijk 1 j M

[o}3

2 2 Eni‘;-}'

ag ;):i—;_i-(c-swfv / fn.-% 3

ij Dj i b i 0

2
p. P’ TN 2| .2 2

y o = _ixJ - — X Xnf| 6] - (S-1) &,
2 i o n.. i 0 Do o§ y
o =
s

(n -iEniz)
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The estimate of phenotypic variance is:

2 _ 2 2 .2
O’P— g, +0_ .

The estimate of heritability is:

The estimate of repeatability is:

The within sire estimate of repeatability is:

Iwithin sire = > 5

Because the computing procedure is the same as for the previous example no
example is given. Instead, as an exercise in simulating models and in computing estimates

for the two-way nested model for joint estimation of h? and r the following problem is given.
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Simulate the Repeatability and Heritability Model; Two-way Nested Classification

Pljk =u + 5 + Cij + lek, where

4 is a constant,
s; is a random effect common to all animals with the ith sire,
c;: is a random effect common to all records of the ]Lh animal sired by the

ith sire, and

..th

18 record of the if~ animal.

Wijk is a random effect common to the

Assume:
2 2 22
ag =(r - h2/4)a%,, where o? + 03 = oi , and
2 2
9w = %
Note that oz + 03 = ro%, and r = [og + oz] / o% .

For the simulation problem let:

p = 500,

2

o, = 400,

2

o, = 2500, and
2

Oy = 1600.

Generate a sample of records for this model (see, Chapters 40 and 41) using random
numbers and random normal deviates (4 = 0, 0 = 1) according to the pattern indicated on

the following page. From these records estimate ag, O o‘ZN, h2 and r .
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Table for simulating two-way nested classification:

Random Numbers Random Values
(nearest whole number)
i ] k Si Cij Wijk b+ s+ % + Wik = Pijk
1 1
1 2 - -
1 .
2 1 1
2 2 1 -
2 2 2 - -
2 2 3 - -
2 3 1 -
2 3 2 - -
3 1 1
3 1 2 - -
3 2 1 -
3 2 2 - -
3 3 1 -
3 4 1 -
4 1 1
4 1 2 - -
4 2 1 -
4 3 1 -
4 3 2 - -
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Two-Way Cross Classification Model
The mating pattern for this model is that sires are mated to many dams, dams are
mated to many sires, and each progeny has only one record.
Pijk =p+s+ dj + (Sd)ij + wijk' where
4 is a constant,
S is the effect common to all animals with ith sire,
dj is the effect common to all animals with _th dam,
(Sd)ij is the effect (difference from s; + dj) common to all animals in the ijt—h full sib
group, so that (Sd)ij = (full sib et'fect)ij -5 - dj, and
Wik is a random effect associated with the record of the k! member of the i@ full
sib group.
i=1,.,8j=1,.,D;k=1,.., nij; and C = no. of matings or nij's > 0.
The s's are IID(O,os), the d's are I'[D(O,a(zi), the (sd)'s are IID(O,o%S d))’

the w's are IID(O,a%V) and the s's, d's, (sd)'s and w's are mutually uncorrelated.

og = % O%O + % U%O + - is the covariance among paternal half sibs;
oﬁ = % 0%0 + '113 ago + + , is the covariance among maternal half sibs;

2 2 2 2 1 2 1 2 1 2 o )
Isd) ~9FS "% T % ° 7 %91 * T o2 * 3 o1t is the difference between the

covariance among full sibs and the covariances among paternal sibs and among

maternal sibs, (cx%S =05 * 04 * 9sq) is the covariance among full sibs);
a%v = oé + 02 - oz - 0(21 - a%s d) » the total phenotypic variance minus O%‘S’
Note that 0(21 of the two-way nested classification model includes both aﬁ and a%s d) of the

two-way cross classification model.
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2 2 1 2 2 1 2 3 2 2
If og =d70 +001,thcn, o(sd) _001 and ow-'§°10 *ZGOI + 0,

In terms of different combinations of the P's the expected values are:

E(Pyj) =
E[P2}=2+02+02+02 +02
ijk) = M s % T 9%sd) T w

E(Pijkpijk’) = #2 + af + afl + G%sd) (records of full sibs)

E(PijkPij'k') = #2 + a‘s?' (records of paternal half sibs)
E(PijkPi'jk') = “2 + crfl (records of maternal half sibs)
E( ijkPi _]'k') = w2 (records of unrelated animals)

These definitions of the model lead to the following expectations of the five quadratics used

to estimate og, 0(21, a%sd) and o%v :

E[ )fEPljk] -nu2+na;2 +nc:(2i +n‘°(sd) +noi
p2
ry _Uf. n..uz + n..o‘s?' + n..aﬁ + n..a%sd) +C afv
nij
P2
il 2 S S 2
- n.u” + n.og + kipoq + 12°(sd) + S Ow
i
4 P.2
Y | = 11..;1.2 + k21°§ + n..ai + k21°%sd) +D a‘zv
Y
P 2
E\—If =n.u“ +kjo +k20d+k3o(sd)+o with
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kjp =X Jn. , kgp =X ln. ’

i 0y i J

1 2 1 2 1 2
ki =—Xn", kn =—X¥Xn, ,and k3 = — ¥ ¥ n..
1= i b 27 m j J 37 ij ]

When the quadratics are equated to their expected values the estimates are:

2

P..

&2 -=zzzpl -T2 | / (@ -0
w T s ij - T T
ijk ij 4y

Let;
Pi2 p2 5
R = —_— - -(S -1
A i D n ( )w
p2 p? )
Rg=X - _=_-D-1)4
i By
5 P’ pZ p2 )
Rgp=Zr L -Xr =-¥ +. =_(-5-D+1)4
ij 0j i m jomj o
Then;

ky -k12

n_-kp1 n -kip n_-kp1

kq 'k21] . R [kz ‘k12] R [1 _kp kpp

n -kqp

g =
(sd) n_-ky - ky + k3
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Also:

5 = [Ra +RaB) / [ - ki) - 9

oannN

63 = (RB + Rag) / (n- - kq2) - 6%sd)

_a2, 2.2 a2
9% *93 " 9%sd) T w

Q>
N

If oé = 0%0 + agl then there are three estimates of 0%0 :

2 2 _ae2 . 52 52, 52
910 ©* 9% 910 7 “|% * %/

The three corresponding estimates of heritability in the narrow sense are:

2 .2 2 A2
hz _ 4 as ) h2 _ 4 Od . h2 _ 2[05 + Ud]
e a el S R m
op op p

N

The estimate of agl is: 601 =4 a%s d)

Variations Of Cross-Classified Models

Often the two-way cross classified model is used when herds are considered as
random effects and sires have paternal half sib progeny in more than one herd. If the herd
effect is substituted for the dam effect in the model the corresponding variance component
is due to herd differences and the interaction component is due to sire by herd interaction
rather than dominance effects of the sire by dam model.

Another variation of this model is to eliminate the interaction term and estimate

2 2 2

g 04 and o only. The interaction variance, U%s dy may be poorly estimated because

of few filled subclasses and not many observations in each filled subclass. A method of
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estimation for this model is to equate the total, sire, dam, and correction term
sums of squares to their expectations which now do not contain G%Sd) . For some
traits, the dam component may include variance due to maternal effects,
1 1 2

7 0%0 + T3 O * " * afn in which case &(21 cannot be used to estimate

.2
ie., oy =
2 2
0'10 or 020.

Example of Estimating Heritability for the Two-way Cross Classification Model
The following set of 10 progeny records from 3 sires and 4 dams was drawn from a

population with i = 50, 0> = 49, % = 49, o‘(zsd) = 25 and o2, = 377.

Sire Dam Progeny Pijk Sire Dam  Progeny Pij
k
@) G (k) (@) 1)) (k)
1 1 1 135 2 4 1 147
1 1 1 99 2 4 2 140
1 2 1 153 3 2 1 193
2 1 1 149 3 3 1 146
P33. = 302
2 3 1 157
P23. = 157

One way to set-up the subclass and class totals needed to compute the quadratics is

to create a table of subclass totals as shown.
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Table of subclass totals, Pii.’ and numbers, n

N

Sire (i)
1 2 3 P; n;
1 234 (2) 149 (1) 383 3
Dam (j) 2 153 (1) 193 (1) 346 2
3 157 (1) 302 (2) 459 3
4 287 (2) 287 2
P, 387 593 495 P = 1475
n; 3 4 3 n = 10
Yy Pi?k - 1352 + 992 + o 4 1462 + 1562 = 222,395
ijk !
Pi? 2342 1532 3022
ry U - + P = 221,672.5
i nij 2 1
Pi2 3872 5932 4952
y = + . = 219,510.25
i nj 3 4
2
P: 2 2 2 2
5 _d o 383% 3460 4597 8T o
"y 3 2 3 2
i
2
P 2
Ze o 14T 9175625
n 10

S=3 D=4ad C=7



Heritability 381

1[32+42+32] 34, ky 1[32+22+32+22] 26

kl =
k3=_1%[22+12+12+12+22+12+22]=1.6
2. 02 2..2..2 2.2
1(12=2 +1 +1 +1° +2 +1 + 2 - 483
3 4
2 02 2.2 2..2 .2
kyy = 2210, 1 12 27 633
3 2 3 2
= (222,395 - 221,672.5)/(10-7) = 240.8
= 219,510.25 - 217,562.5 - (3-1)(2408) = 1466.15
= 220,165.83 - 217,562.5 - (4-1)(240.8) = 1880.93

= 221,672.5 - 219,51025 - 220,165.83 + 217,562.5 - (7-3-4+1)(240.8)

(kq - kp1)/(n_-kpp)

(340 - 633)/(10 - 633) = -.7984

(ky - kp)/(n_-kyp) = (260 -4.83)/(10 - 4.83) = -4313

It

-[1466.15(-.7984) + 1880.93(-4313) - (-681.88)(1 + .7984 + .4313)]/5.6

-ky-ky + k3 = 56

= [1466.15 + (-681.88)]/(10 - 633) - 82.4 = 1313

— [1880.93 + (-681.88)]/(10 - 4.83) - 82.4 = 1495

= 1313 + 1495 + 82.4 + 2408 = 604.0

2 _ 4(1313) _ W2 A1495) g0 2 87 + 99
S 604.0 » d T 76040 (s+d) T T3

32 - 4(824) = 3296 &7 - 2(13 5) =5

001 = (8 ) = . 010(S+d) = ( 1.3 + 149. ) = 61.6

-681.88

=.93
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Because of the small sample size these are not reliable estimates, e.g.
6%0 + 6(2)1 = 891.2 exceeds 6%, = 604. Even with many records the estimate of any

2 .
component except o may be negative.



CHAPTER 39

GENETIC, ENVIRONMENTAL, AND PHENOTYPIC
CORRELATIONS

If X and Y denote the two traits then the genetic, environmental and phenotypic
correlations are defined as:

genetic, rg = Xy

environmental,

phenotypic,

where oé, 0123, and a%, are genetic, environmental, and phenotypic variances and
onGy » OB, Ey and op, Py are the corresponding genetic, environmental and
phenotypic covariances between traits X and Y. Usually only additive genetic effects are

assumed to contribute to the genetic variances and covariances.

383
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ESTIMATION FROM PARENT AND OFFSPRING COVARIANCE

This method is comparable to regression and correlation methods of estimating
heritability. The model is a two-trait version of the one used in Chapter 38 (see also Figure
39.1 for diagram of the traits and their variances and covariances):

Parent, p, Trait x: Py, = p, + G

ipx + Ej

px
py * Eipy
py + Gjox *+ Ejox

PX

Parent, p, Trait y: + Gi

py = My

I

Py
Offspring, o, Trait x: P;
P;

Offspring, o, Trait y: = “y + Gioy + E;

ioy

with i=1, ..., n where n is the number of sets of the four observations. A basic assumption

0x
oy
is that all G's are additive genetic values and E's are random environmental effects.

The G's and E's are IID[O, 02G and aé] as before but now records on traits X and

Y on the same animal have covariance, 9p, P, = 9G,G, * oExEy ; records of the same

y X~y
traits on parent and offspring have covariance (1/2) aé, and records with one trait on the

parent and the other trait on the offspring have covariance (1/2) anGy' In terms of

expectations of the P's:
EPipy) = Efio) = mx ; EPipy) = EfPioy) = my
e - Hen) - v b, v,
E{Pi%y] ) E(Pi%y] ) “3 ’ "sz ' °123y
E{PipxPipx) = ElPioxPiox) = ElPipxPiox) = K

E(PipyPipy) = E{PioyPioy) = E{PipyPiay) =



®ExEy

GxGy

:’ pr

_
Gpx > Ggy —>»
1\ A

172
Gpy > Goy ———>
\\\\* Ppy
>
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< Eox

PxPy

Figure 38.1. Diagram of the varlabie effects In the model for

parent-offspring records on traits x and y. Only the phenotypic

records (boxes) are observed. Circied phenotypic variances

can be computed from the phenotypic records. Phenotypic

covariances can be estimated from (Ppx ,Ppy) and from

(Pox

\ Poy) .

OexEy

<— Eoy



386 Parameter Estimation

E[PipePiox) = s * %"2(3,{ ; EfPipyPioy) = “3 * 359G

EPipPio) = #y  EPipyPioy) = 1
E(P ipxPioy) = E(Pioxpipy) = Hxhy * % 9G4 Gy
EPipxProy) = EfPioxPipy) = Axty

E(P ipxPipy) = E(P ioxPioy) T Bxby * onGy + clrEXEy

E(PipxPi'py) = E(PioxP i‘oy) e '}
The method of estimation consists of computing the variances and covariances among

the four phenotypic measurements for the parent-offspring sets. The expectations of the

total sums of squares and products and of the correction terms are shown on the next page.
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E[Total Sums of Squares and Products]

(all times n)

P

P;

- ipx iox ipy oy
i
P; 2+cr2 +0 2+502 +0 +0 +S50
ipx | #x *9G, *9E, Bx T 9G, Hxty *9Gy Gy " 9E4By  Kxly 09G4 Gy
Piox ”’2 + °2G + 0123 Fxby * S0G.G
X X X X~y Fxbhy *“GxGy +"'ExEy
Pipy uz + GZG + oé “2 +.5 oé
y By By y y
. 2 2 2
Pioy symmetric My + oGy + oEy
E[Correction Factors]
P.px P ox P.py P.oy
P nu, +0~ +0 nu2+502 n +0 +0
P | TG, "y X770y MY TIOKGy TOEEy mpy « oG, Gy
P ox Duy +0G, *OE, Dby *59G,G,  MHxhy *9G,G,
P np.z + 02 + 02 n +.5 02
Py y Gy Ey Hxby * - Gy
p . 2 2 2
0y symmetric nuy +og +0f

y y
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The four variances are computed as usual as:
2
P

2 2 u _
&, = ? P - — / (n-1) where [u = px, ox, py, and oy].

The six covariances are computed as:

P,P
Ouy = [}: Piy Py - .un .v} / (n-1)
i

where [(u,v) = (px,0x), (px,py), (Px,0y),(0x,py), (0x,0y), and (py,oy)].

The expected values of these four variances and covariances as summarized below
are then used to estimate the genetic, environmental and phenotypic covariances and
correlations.

Table of expected values of estimated variances and covariances

(Diagonals are variances, off-diagonals are covariances.)

PX

(0).4

Py

oy

P P P P

pXx ox py oy
02 + 02 S 02 o +0 So
G, E, ~ 9G, GXGy EXEy . GXGy
2 2
°Gy " Ey4 = 9Gy Gy 9G4 Gy * “ExEy
02 + 02 S 02
Gy Ey Gy
. 2 2
symmetric aGy + oEy
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There are several ways of combining these quantities. The usual ways are given here.

Four Possible Estimates of rg

Let D = /65y ox Opy,oy

1) Iy = 6px,oy /D
2) rg = 5ox,py /D
3) i,=.5 (6px,oy + 6ox,py) / D (the arithmetic average of 1 and 2) and

g
4) 1y = \/6px,oy doxpy / D (the geometric mean of 1 and 2).

Note:

a) The expected value by parts for each of the four estimates is:

i S anGy anGy

g
\J.S oé S 02 02 ozG
b) Estimates must be discarded if either or both covariances in D is negative (i.e., these
covariances correspond to negative heritabilities).
c) Estimates by method 4) must also be discarded if the signs of covariances in the
numerator are different.

d) If both covariances in the numerator of 4) are negative, assign a negative sign to Ty
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The sampling variances of 3) and 4) are equal and are approximately one-fourth of
those for 1) and 2). Method 3 probably is best since fewer estimates will be discarded than

with method 4.

Two Estimates of r

p
1)  From parents: 2)  From offspring:
) - Spx.py t - Box,0y
&2 &2 62 &2
N PX py N ox oy

The arithmetic and geometric means of 1) and 2) can also be used. The expected values

op.P
by parts are: — XY for any of these estimates .

2 2
on aPy

Estimate of r, . . .
] Spx.py * Sox,0y ~ 2(pxoy * Soxpy)

Te

J[az 6% -4 ][&2 8% -4 ]
pX ox pPx,0x} { “py oy PY,0y

Note as in a previous section on estimating heritability by regression and correlation:

26 26
2= ZPRox o 2l _TOPKOX g
&> 2 2
pX Ipx Yox
w2 - 2%y . 2. _2%yoy

y 2 y 7 2
py *j py “oy
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ESTIMATION FROM COMPONENTS OF VARIANCES AND COVARIANCES
One-Way Classification (extension to more complex classification models is similar)

The model for the two trait, one-way classification model is analogous to the single
trait models used for estimating heritability with sires providing the group classification:

Trait x: qu = py + in + an

Trait y: Pyij = by + byi + Wyii both measured on animal ij, where

p is a constant for the appropriate trait,

. .th . . .
b; is an effect common to ith genetic group for the appropriate trait,

. . 1 sth :th
wjj Is an effect associated with = member of = group,

ay; is the additive relationship among animals in group i with
i=1.,B;j=1,., n;.

If all genetic effects are additive genetic effects then:

R N R o
%, - %i %G, aby = 3 GGy » a0 9p,by = i 9G4 Gy
2 2 2 2 2 2

Ty " (1 - a;) °G, * 9E, ; awy = (1 - aj;) oGy + oEy ; and

Swywy = (1 - 3ii) 9G, Gy * 9E,Ey

The b's are IID|0, 02 or 02 , the w's are IID|0, 02 or 02 , the b,'s are uncorrelated
by by Wy Wy X

with wx's, the by's and wy‘s are uncorrelated, bxi and byi have covariance

obxby = 3jj 0G, Gy ; and Wyij and Wyii (on the same animal) have covariance,

Py Py ~ Obyby -
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In terms of the b's these definitions are:

B(Pyj) = iy E(Pyij) = ny
E[qu] I S T E[Pz] I
xij X by  “wy yij y by Wy

EPxiiPyij) = sy + ob, by * Twywy

E(PyijPyiy) = uy + "12; : EfPyiPyiy) = “ * °b : ElPiPyij) = mxty + op, by
E{PyiiPyir) = s E(PyijPyiy) = “3? E(PyijPyiy) = mxy

These definitions lead to the following expectations of the six sums of squares and three

sums of products used for estimating the variances and covariances.

i j Yy y y Wy
o2 :
EY | =npy + n.oy +BaW

L 0 y y
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/

El E h>; Px1] Pylj] = D.pyply + n'abxby * Oy w
j

y
o PPy B
=n + 0.0 +
"y Kxhy byby owxwy
(P, P
XLy | 1 2
o oy 2 B, e

The expectations of the quadratics are equated to their computed values to estimate

the variances and covariances. Estimates of the variance components are as before:

,
2
2 Pui
6 =EEP —1|/ (n. - B)
U olij uij - i 0j
2 2
P P
612) = &_&-(B—l)az/ -1%n?| and
u i D n w n ; !
& =62 + 0 whereu = xory
Pu by u

Similarly the estimates of the covariance components are:

/ (0. - B)

Gy = |5 T P Pyi -
J

P,; Py;
O, b, = |& ,yl
XYool 1

Py Py,

. A 1 2
- (B-1) owxwy / [n. "= ? ni.]

apxpy = abxby M 6wxwy
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Then,
N 2 .2 . A 2
Iy = 0h b & A 5 Iy =0 A S and
g X y/‘ by Crby P Pxpy/ opx apy
A 1-aj | |
"wxwy a abxby
Te =

52 - [La) ,2 f),2 L] 2
Wx aj; byl | Wy aj{ by
Estimates of variance components for the one-way classification model provide, as before,

estimates of heritability:

2 1 .2 ,.2 2 1
h = — &, /6 and h =_—24 .
X 3 bx/ Px Y aj Yy Py

The expectations by parts of these estimates are T Ipy Tes
heritability can be outside the parameter limits of 0 and 1. The estimate of genetic

hf and hf. The estimates of

correlation may be, and with small data sets often is, outside the parameter limits of

-1 and +1.

Example of Estimating Genetic, Phenotypic and Environmental Correlations

In this example of genetic groups of paternal half-sibs, each has one record.

The following set of 75 records from 25 groups was drawn from a population with

2

2 2 2
By = 1500,/.1.y = 200, obx = 2500, Op. = 225, obxby = 375, Ow. = 47,500, Ow. = 1,575,

2
y

X
= .50, r, = .50, Te = S0 and

y
and 0y, = 4125 which correspond  to b2 = 20, h

rp = 47,



-0

P B By
1 1 1878 264
1 2 1542 289
1 . 3420 553
2 1 1493 151
2 2 1598 170
2 3 17127 176
2 . 4818 497
3 1 131 190
3 . 1371 190
4 1 1453 173
4 2 1588 220
4 3 1207 146
4 4 1673 278
4 5 1373 217
4 . 7294 1034
S 1 1612 173
5 2 1402 172
5 3 1389 141
5 4 958 127
S . 5361 613
6 1 1444 230
6 2 1719 184
6 . 3163 414
7 1 1552 212
7 2 1327 206
7 3 1364 179
1 4243 597

8 1 1499 211
8 . 1499 211
9 1 1328 208
9 2 1887 240
9 3 1498 154
9 4 1920 181
9 5 1785 169
9 . 8418 952
10 1 1854 238
10 2 1043 165
10 3 1509 91
10 4 1298 182
10 . 5704 676
11 1 1537 218
11 2 1894 223
11 . 3431 441
12 1 1241 180
12 2 1204 176
12 3 1534 156
12 . 3979 512
13 1 1418 142
13 . 1418 142
14 1 1667 264
14 2 1613 230
14 3 1285 224
14 4 1404 230
14 5 1841 229
14 7810 1177

P B B
5 1 1800 232
15 2 1342 216
15 3 1394 243
15 4 1339 175
15 . 5875 866
16 1 1800 198
16 2 1387 182
16 . 3187 380
17 1 1016 165
17 2 1324 229
17 3 1494 188
17 . 3834 382
18 1 1692 213
18 . 1692 213
19 1 1177 134
19 2 1319 177
19 3 1928 260
19 4 1308 205
19 5 1262 172
19 . 6994 948
20 1 1555 182
20 2 1775 189
20 3 1428 220
20 4 1597 172
20 6355 763

LR
21 1 1375 202
21 2 1752 162
21 . 3127 364
22 1 1383 225
22 2 1595 189
2 3 1459 180
22 . 4437 594
232 1 1489 220
23 . 1489 220
24 1 1553 200
24 2 1527 188
24 3 1094 185
24 4 1410 178
24 5 1272 166
24 . 6856 917
25 1 1657 160
25 2 1695 218
25 3 1722 236
25 4 1420 199
25 . 6494 813

. 112,269 14,669

C6E UOND]ILIO)) I112UID)
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29 szij - 18782 + 15422 + 14932 + = + 14202 = 171,709,893 ;

) p}%ij - 2642 + 2892 + 1512 + = + 1992 = 2,966,259 :

vy Pxij Pyu = (1878)(264) + (1542)(289) + - + (1420)(199) = 22,201,100 .
p2 2 2

g oxi 3420° 4818 64947 [ oian s

i ;2 3 T
P (2 4972 813

E yi. = + 4 oo 4 = 2,914,421.8 s

i n 2 3 4

» Pxi Pyi. (3420;(553) . (48183)(497) s (64943'(813) - 220643269 :
i D

2

P 2
x. _ (112269)" _ 1680577115 ;
n. 75

b2

Y+ - (14669)%/75 = 2,869,060.8 ;
1.

Py. Py, _ (112,269)(14669)

= 21,958,319.5 ;
n 75

n.=75,B=25,En{2=22+32+12+52+...+42=275

The estimates of variance and covariance components are:

2

62 = (171,709,893 - 169,183,456.7)/(7S - 25) = 50,528.7
X

62 = (2966259 - 2,914,4218)/(7 - 25) = 10367
y

Swyw, = (22:201,100 - 22,064326.9)/(75 - 25) = 27355
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c‘rg = [169,183,456.7 - 168,057,711.5 - (25-1)(50,528.7)]/(75 - 275/75) = -1218.8
X

f%y = [2,914,421.8 - 2,869,060.8 - (25-1)(1036.7)]/(75-275/75) = 287.1

Sbyby = [22064,3269 - 21,958319.5 - (25-1)(2735.5))/(75-275/75) = 565.7

The estimates of the correlations and heritabilities are:

Tg = 2637 (Imaginary estimate since 6% is negative.)
v(-1218.8)(287.1) X

(565.7 + 2735.5) - a1

r =
P J(C12188 = 50,528.7)287.1 + 1036.7)

. 27355 - [(1 - .25)/(.25)] (565.7) - 34
® /50,5287 - 3(-12188)] [1036.7 - 3(287.1)]

h2 - _4C12188) . 10 (An estimate outside the lower limit.)
x ~ (121838 = 50,5287

2 42811) | o
Y = 2871 + 1036.7




CHAPTER 40

MONTE CARLO SIMULATION

Simulation of biological models often aids in understanding the simpler models and
in building more complex models. Often simulation is a first step in finding out what
happens when the usual assumptions are not fulfilled, e.g., when the data are selected.
However, simulation has been used in PART III to aid in understanding random chance
associated with a set of data and the effects of random sampling on estimates of parameters
from relatively small amounts of data.

The procedures described in this chapter will simulate normal and multivariate
normal distributions. The method of simulation is to obtain in some way pseudo-random
values (also to be called random normal deviates) from a normal distribution with mean,
zero, and variance, one. The pseudo-random standard normal values when multiplied by

a constant, o, result in variables with mean, zero, and variance, 02

2

. Adding a constant p
results in a variable with mean, p, and variance, 0“. For example, suppose A is such a
random variable from a distribution with mean, zero, and standard deviation, one.

Then E(vjo) = gE(vj) =0 ; E(u + vjo) = E(u) + E(vio) = u ;
E[(via)2] = E(vi2 02) = OZE(Viz ) = 0% ; E[(u + vio - ;1.)2] - o2,

In the description of how to simulate the models described in chapters 37, 38 and 39,

the lower case, primed and subscripted letters will represent normal deviates (0,1).

399



400 Parameter Estimation

REPEATABILITY MODEL

Pij=u+Ai+Elj
ij

! t .
as shown so that Pj; = p + ajop + &i%E - Thus the A; will have zero mean and

For each animal, i, draw ai' and e, j=1, .., n; random normal values and multiply

variance, oi, and the Eij will have zero mean and variance, oé. The Pij will have mean,
d vari 2 _ 2 2
u, and variance, op = 0, + op

Example for animal 1 with n; records:

P11 =u + aioA + eilaE
Pip=u+ aiOA + eiZOE
Pla, = # + 2104 + einloE

Note that the n;+1 random normal deviates are independently drawn so that the

expectations of products of different combinations of A's and E's are zero.

HERITABILITY MODEL
Regression And Correlation

| Pyi are the il pair of records on relatives x and y.

1 ' ' ' 2 1
Pyi = b + 8,;0G * €0 and Pyi=“+axygxi°G+gyi ll-axy 9G * € 9E -

This model simulates statistically the genetic model but does not directly mimic
Mendelian sampling. The second g term in Pyi simulates Mendelian sampling due to
segregation and recombination and maintains the genetic variance as oé as can be seen by

taking the expected value, E[(Pyi - u)z].
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Variance Components
One-way Classification Model

Pij = U+ bi'ab + wi'jow

Note that oo = ajjo% and o2, = o + |1-a§ 0%, where ay is the additive

relationship between animals in the ith group. For paternal half-sib groups, a;; = 1/4.

Two-way Nested Classification (Dams Within Sires) Model
Pijk =4+ siaS + di}ad + wi'-kaw where

o> = (1/4) 05y ; o5 = (1/4) a5, + (1/4)05; (it dominance s included);

2 _2 2 2
°w “%E T 9% " 9%

Two-way Nested Model with Repeatability

Pijk =u + sio::s + clj

]
-+ oo
o quoW where

2 2 2 2 2 . 2 2
os=(1/4)oG } 0. =0, -0 5 0, =0g

Two-way Cross Classification Model

1
.

Pijk =p o+ si'crS +d j°d * (sd)'ija(sd) + wi'jkaW where

2 2 . 2 2 .
o, = (1/4) 010 5 94 = (1/4) 910 3

o%sd) (1/ 4)031 (if dominance effects are included);

2_2 .2 _2_2_ 2
w9 "9 "% "% T 9sd)

g



402 Parameter Estimation

GENETIC, ENVIRONMENTAL, AND PHENOTYPIC CORRELATIONS

Parent-Offspring Covariances

1px = Hy gllGl + + ei'1El
Pipy = Hy * 8102 * £G3 + e;1Ep + 3
Piox - Ol 13 6y elE
lox‘”x*’gil—z—*gi:; 'Z 1+ &3k
. G2 \ ' I
Pi0y=”’y+gi1 2 +g12_ "'313 G2+gl4 G3 +C3E2+C4E3
where, Gy = 9G, > Gy = ; Eq = Ey > Exy
'-"G 9E
X X
oG 2 o
G3 = Ué - xY , E3 = 0'2E - Exy
N 7 %6k N7 Bk

These constants allow simulation of a four-variate distribution with the genetic and

environmental variances and covariances shown in the description of the model.

Variance And Covariance Components

One-way Classification Model

Pxij =y t+ b);iabx Jawx
2 2
% 2 v Ow ) Ow.
P.:: = +b'. Xy +b'. o - Xy W _xy +w'.. o - Xy
yij = Hy T o, yi by o, xij Ow yij | “wy Ow,
h 2 2
2 2 2
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GENERATING RANDOM STANDARD NORMAL VARIABLES

Procedures used in simulating records usually utilize pseudo-random, standard normal
variables. There are many ways of obtaining such variables. Nearly all, if not all, utilize
pseudo-random numbers as a first step in the process.

The method described here starts with a random number. Each possible random
number has a corresponding standard normal deviate to be multiplied by constants as
described in Chapter 40. Random numbers can be obtained in many ways, usually with a
computer routine that generates random numbers from a uniform distribution (each number
within the limits of the uniform distribution is equally likely). Not all computer routines,
however, are equally successful in achieving randomness in the sequence of numbers.

For practice work a table of two-digit random numbers from some source such as the
table at the end of this chapter can be used which was generated by computer. A point is
picked in the table by some random process. Then each succeeding two digit pair will be
a random number. With this table each of 100 possible two-digit numbers from 00 to 99
is equally likely. The accompanying table gives the corresponding random normal deviates
for random numbers from 00 to 99. Note that the variance of the random values is one and

the mean is zero.

403
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The table is derived by dividing the area under the normal curve into 100 equal parts

symmetrical around the mean.

T

1 | | !
| LB LI

-2.73 217 etc. p=0 2.17 273

The segments closer to the mean will be narrower than those on the end points.

The midpoint of each segment is taken to be the value representing that area. The
extreme values may be fudged somewhat to give a standard deviation of one.

Each random number corresponds to one of the segments, each of which is equally
likely and results in simulation of drawing values from a random normal distribution with
mean, zero, and variance, one.

To simulate distributions with mean g and variance 02, the random values are
modified by multiplying by o and by adding .

Many computer packages are available to simulate both random numbers and
random normal deviations. For simulations that are scientifically or economically important
the properties of the method used in the simulation should be investigated carefully; means,

variance, distribution and correlations among consecutive deviations.
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TABLE FOR SIMULATING RECORDS

Random Number (00 to 99) Standard Random
Positive Values Negative Values Normal Value
929 00 273

98 01 217 (- if random number
97 02 196 between 00 and 49)
9% 03 1.81
95 04 1.70
94 05 1.56
93 06 1.51
92 07 1.4
91 08 1.37
9% 09 131
89 10 125
88 1 1.20
87 12 115
86 13 1.10
85 14 1.04
84 15 1.02
83 16 97
82 17 93
81 18 90
80 19 86
79 20 82
78 21 .79
i 2 76
76 23 N/
75 24 69
74 25 66
73 26 63
2 27 .60
5! 28 57
70 29 S4
69 30 S1
68 31 48
67 32 45
66 33 43
65 34 40
64 35 37
63 36 35
62 37 32
61 38 29
60 39 27
59 40 24
58 41 21
57 42 19
56 43 .16
55 4 14
54 45 A1
53 46 09
52 47 06
51 43 04
50 49 .01
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04
93
01
26
55

25
88
18
36
82

16
28
43
90
17

09
35
00
39
52

24
30
09
69
42

91
16
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