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PART ONE 

SELECTION INDEX 

The following 22 chapters cover material needed for application of the selection 

index to nearly any imaginable selection problem. The initial chapters review or introduce 

expected values, probabilities for identity by descent, kinds of genetic values and genetic 

variances, and genetic covariances between relatives. These tools and definitions provide 

the foundation for deriving and applying the selection index and its properties. Much of this 

material was developed by Dr. C.R. Henderson who began such a course in 1948 at Cornell 

University after studying at Iowa State University with Dr. Jay L. Lush and Dr. L. N. Hazel. 

For many years, I taught the course, also at Cornell University, with some new material 

based usually on the principles outlined by Henderson. The course has subsequently been 

given at the University of Nebraska-Lincoln. 



CHAPTERl 

PARAMETERS, STATISTICS, AND EXPECTED VALUES 

A review of some basic statistics may be useful before discussing selection for 

quantitative traits. Two important parameters for the description of continuous or 

quantitative traits are the mean ( or average) and the standard deviation. The usual Greek 

symbols for these are µ, "mu," and a, small "sigma." The square of the standard deviation, 

a2, is called the variance, "sigma squared." 

A subscript can be used to distinguish the means and variances for different 

populations or different traits; e.g., µ,x and ai would be the mean and variance for some 

trait called X. After this chapter when developing selection index procedures, means, 

variances, and covariances will be assumed to be known exactly. When true values are 

known exactly, they are called parameters. In the real world, parameters are never known 

exactly because the entire potential population is not known or measured. Then parameters 

such as the mean or variance must be estimated from a sample of the population. 

Technically, estimates are known as statistics. A statistic that estimates a parameter may 

be given the same symbol but with a hat or caret, A, to distinguish it from the parameter. 

Often parameters are designated with Greek letters and estimates by corresponding English 

letters in some way. Pretending that parameters are known can be justified in some cases 

because with large samples the error ( difference of estimate from parameter) will be very 

3 
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small. In the last part of the book on mixed model procedures, this pretence will be 

tightened so that means are estimated from the population jointly with predicting genetic 

values. Even then, variances and covariances will be assumed to be known exactly. 

Chapters 35-39 describe some simple ways of estimating variances and covariances. 

THE MEAN 

If Xi (i = 1, ... , n) is the observation on the i1h individual for trait X, then the estimate 
A 

of µx is µx or equivalently x, "x-bar". A simple estimate is 

n 
P.x = L xifn = (x1 + xz + • • • + Xn) /n which may also be called Xn, 

i=l 
n 

the average of n observations. The symbol E is mathematical notation that means to sum 
i=l 

everything that follows the !: for changes in the subscript i which changes by units of 1 from 

i = 1 (the first record) to i = n (the last record). If observations for the whole population, 
N 

N, were known, then µx = E xi /N. 
i=l 

VARIANCE 

Although the standard deviation is a more intuitive measure of variability, the usual 

measure of variability is the variance, ai, which is the standard deviation squared for trait 

X. Knowledge of variances is necessary in animal breeding for at least two reasons. 

Variances are useful in describing populations and, more importantly, are used along with 

covariances in developing procedures for predicting genetic values. The definition of ai for 

a population is 
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where N is the total number of observations in the population. The E stands for expected 

or average value and will be discussed later in this chapter. Thus, ai is a kind of average, 

i.e., is the average of the squared deviations of the observations from the mean for a 

variable named X. While the variance is in terms of units squared, the standard deviation 

is in terms of the units of measurement--the same as the mean, e.g., the mean of milk 

production may be expressed in lb. of milk, the variance in lb~ of milk, and the standard 

deviation in lb. of milk. 

Computing the Variance 

If Xi (i = 1, ... , N) is the observation on the i1h individual, then 

2 N 2 2 2 
ax = _:E (xi-µx) /N = (Dci -Nµ)/N. 

1=1 

The above procedure is appropriate when /.Lx is known exactly. When N includes the whole 

population, the computed value is the population variance, and when n is a sample of the 

population, the value is an estimate of the population variance and should be denoted as 

a;. If J.Lx is estimated from a sample of the data as x or µ,x, then ai is estimated as: 

cl= [Dc-2 - (Dc)(Dc)]/(n-1), 
X 1 n 

where n-1 is the degrees of freedom. 

The division is by n-1 so that E(a;) = a;, = ai, i.e., the average of estimates of ai will be 

ai· Thus, the estimate is said to be unbiased. Alternative computing procedures are listed 

in Table 1. 1. The following section on expected values will describe how to find the 

expected or average value of estimates such as a;. 
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The mean and standard deviation characterize a normal distribution of observations. 

The normal distribution follows the bell-shaped curve where the values along the horizontal 

axis are plotted against the frequencies of those values on the vertical axis. 

Frequencies 

- 00 I-Lx-20x I-Lx-0x µ.x µ.x + 0x 1-Lx + 20 x + 00 

values of~ 

The average of all the ~ is µ.x and lies at the center of the symmetrical distribution-­

one-half the Xi above and one-half the Xi below µ.x· The range µx - ax to µ.x + ax will 

contain 68% of the~; µx - 2ax to µ.x + 2ax will contain 96% of the~- Multipliers of ax 

for other frequencies are given in most introductory statistics books. 

The distribution of averages of n observations has mean µ.x· The variance of the 

averages is c/ /n, with the square root, a- = ax//n,called the standard error of the mean. 
X X 

COVARIANCE 

The variance and the corresponding standard deviation thus measure how one trait 

varies. The covariance, a measure of how two traits vary together (co-vary), is also needed 

in developing selection procedures. For example, the covariance between two traits 

measured on the same animal, e.g., height and weight, may be needed or the covariance 

between the same trait measured on two relatives may be needed. The definition and 

computing procedures for the covariance are analogous to those for the variance. 
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Suppose that the two measures are Xi and Yi (i = 1, ... , N) for the measurements on 

the i1h pair of relatives. The covariance has the symbol axy (sigma-x-y) and is defined as 

the average of products of deviations from the means of traits X and Y; 

axy = ~[(xi-1-Lx)(yi-1ry)] 

= [ (x1 -µxHY1 -1ry) + (xz-µx)(yz-1ry) + ... + (xN-µxHYN-1ry)] /N 

N 
= L [ (xi-µx)(Yi-~)] /N. 

i=l 

This computation is appropriate when µx and µ,y are known exactly and gives the 

population covariance when N includes the whole population and gives an estimate (axy) 

of the population covariance when n is a sample. 

If JJ.x and fJ.y are estimated from a sample of the population as x and y, (µ,x, ~), 

then 

oxy = L [ (xi-'1x) (yi-~)] / (n-1) 

= [~iYi - (~i)(LYi)]/(n-1). 
n 

Note the similarity of the computing procedures for variances and covariances. 

A positive covariance indicates that as the value for one trait increases, the value for 

the other trait also tends to increase. A negative covariance indicates that as the value for 

one trait increases, the other tends to decrease. The traits are not correlated when the 

covariance is zero. The units of a covariance are units of the first trait times units of the 

second trait. 
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FREQUENCY DATA 

Sometimes observations fall into discrete categories. An example is with two alleles 

at one locus which results in three genotypes--the two homozygotes and the heterozygote. 

Estimates of means, variances and covariances can be made with the previously described 

procedures where each observation is treated separately. For purposes of algebraic 

simplification or slightly less tedious computation, advantage can be taken of all observations 

in a category being the same. Suppose that the observations in c categories are 

Yi (i= 1, ... , c) with frequencies in each category of fi. Unless some categories are thrown 
C 

out, :E f i = 1. The formulas are given for cases where r:fi might not equal unity. Suppose 
i=l 

that the sample size is n. Then the number with observation Yi in category i is nfj, The sum 
C 

of all observations is L nfiYi. The estimated mean is the sum divided by the number of 
C i=l 

observations, :E nfi; 
i:l 

The definition of variance is the same as for non-categorized data but the squared 

deviations from the mean are identical for all observations in the same category, i.e., nf i wil1 

be (Yi - P.y)2 so that the sum of squared deviations is 

!:nfi(Yi - P-y)2 = n!:fj(Yi - P-y/. 

Division by number of observations minus one results in: 

a~= [n!:fi(yi - P-y)2]/(n!:fj-1) and for r:fi = 1 

a~ = [!:fi(Yi - P-y)2][n/(n-1)]. 

The preceding formulas are given in Table 1.1. Algebraically identical computing 

formulas which in most cases are easier to use are in the right column of Table 1.1. 



Expected Values 9 

CORRELATION 

The correlation coefficient is a standardized measure of the relationship between two 

traits which allows comparisons of correlations among different pairs of traits. The possible 

range is -1 to + 1 with no units involved for either trait. The correlation between traits X 

and Y or relatives x and y is defined as 

122 
~ axay 

If estimates of the covariance and variances are used in the formula, then rxy is an estimate 

of the population correlation coefficient. 

REGRESSION 

The selection index procedures that will be developed are related to regression 

equations. The simplest form of a regression equation is to predict the value of some trait 

for an animal i, e.g., Yi, when the measurement of another trait, Xi, is known. The statistical 

procedure of minimizing the squared error between Yi and the prediction, Yi results in the 
' 

equation for regression of trait Y on trait X. The basic principle is that a change in trait 

X results in a corresponding change in trait Y. The regression coefficient denoted as by. x 

(b-y-dot-x), describes the magnitude of the corresponding change. Least squares or 

minimization of i::(y i - y i)2 results in the solution for by• x = ayx /a;. The full equation 

also depends on P.y and P.x: 

As with the correlation coefficient, the covariance determines the direction of the change. 

Note that the covariance is in terms of units for x by units for y and the variance of X is in 



10 Selection Index 

the square of units for X so that by. x is in terms of units of Y divided by units of X, i.e., 

change in Y per unit change in X. The estimated means P.y and P.x are as described earlier. 

To estimate µy, µ.x and by. x• measurements on both traits are needed. Then, to predict Yi 

as Yi, only a measure on xi is needed. 

EXPECTED VALUES 

The use of expected values increases the powerful and flexibility of the selection 

index but at the expense of minor frustration of some students who initially have difficulty 

in developing a feeling for what they are doing. Experience has shown that most students 

overcome this difficulty after some practice and that they become much more adept at 

solving problems which involve more than the usual case of selection for additive genetic 

value. 

The symbol often used for the expected or average value of some expression 

involving constants and variables is E( ). Expected values of most expressions used in 

estimating genetic parameters are relatively easy to determine if six definitions are 

remembered. 

Let c = constant; Xi = variable from some distribution with mean µx and variance 

a~; and Yi = variable from some distribution with mean µy, variance a} and covariance 

with Xi, axy· 

Definition 1: E(c) = c. Certainly the average value of a constant is that constant. 

Similarly E(c2) = c2. 

Definition 2: E(xi) = µ.x· The average of all possible values of variable X is its 

average or mean, l-£x• 
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Definition 3: E( cxi) = c E(xi) = cµx· The average of all possible values of a 

variable times a constant is the constant times the mean of the variable. The principle is 

that for expressions involving a constant the constant can be taken outside the expectation 

operation. 

Definition 4: E(xi +yi) = E(xi) + E(yi) = µ.x + µ.y· The principle is that the 

expectation of a sum can be taken as the sum of the expectations of the parts. 

Definition 5: E[(xtµx}2] = ai. By definition, the variance of a variable X, ai, is the 

average squared deviation of the variable from its mean. Definition 5 leads directly to 

E(xT) = ai + µi. If the equation for definition 5 is expanded, the expectation of its parts 

is: 

2 2 2 2 
ax = E(xi-µx) = E(xi -2xiµ.x + µ.) 

2 2 = E(\ ) - E(2µ.xxi) + E(µ) from (4) 

2 2 
= E(xi ) - 2µ.xE(xi) + µx from (1) and (3) 

2 2 
= E(xi ) - (2µ.x) (µ.x) + µx 

2 2 
= E(xi ) - µ.x. 

2 2 2 2 2 
Therefore, E(xi ) = ax + µ.x. Note that E(xi ) = ax when µx = 0. Also, as a rule of 

thumb for finding the variance for a variable X, E(x?) = a; can be used since µ.x drops out 

of the variance. 

Definition 6: E[(xi-µ.x) (yi-J.Ly)] = axy. By definition, the covariance between 

variables X and Y, axy, is the average of the products of their deviations from their means. 

Thus, E(xiYi) = axy + µxµ.y which follows from definition 6. If the equation for definition 

6 is expanded, the expectation of its parts is: 
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axy = E[(xi-µx) (yi-JJ.y)] 

= E(xiYi - ~Yi - JJ.yXi + µ.xJJ.y) 

= E(xiYi) - µ.xE(yi) - JJ.yE(xi) + ~Jl.y from (1) and (3) 

= E(xiYi) - ~Jl.y - Jl.yµx + µxJJ.y 

= E(XiYi) - µxJl.y· 

Therefore, E(xiYi) = axy + µxJJ.y· Note that E(xiYi) = axy when either or both 

µ.x and µ.y = o. 
A general procedure that works well for applying these definitions to determine the 

expected values of more complicated sums of squares and products of variables is to use the 

following steps: 

Step 1. Substitute elements of the model into the function. 

Step 2. Expand the function in terms of the model. 

Step 3. Find the expected value of each term of the function. 

Step 4. The expected value of the function will be the sum of the expected values 

of the individual terms. 

Example 

Let Pij = µ. + Ai + Eij, where Pij is an observation on the fl! record in the µh class, 

µ. is a constant, Ai is a variable with µ. A = 0 and variance a f, Eij is a variable with 

µE = 0 and variance al, and the covariance between any two A's, any two E's or any A and 

any E is zero. 



The expected value of any observation is 

E(Pij) = E(µ + Ai + Eij) = E(µ) + E(Ai) + E(Eij) 

= µ. + 0 + 0 = µ. 

The expected value of any observation squared is: 
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2 2 2 2 2 
E(Pij) = E[(µ + Ai + Eij) ] = E(µ + Ai + Eij + 2µ.Ai + 2µ.Eij + 2AiEij) 

2 2 2 
= E(µ ) + E(Ai ) + E(Eij) + E(2µAi) + E(2µEij) + E(2AiEij) 

2 2 2 
= µ. + a A + aE + 2µ.E(Ai) + 2µE(Eij) + 2E(AiEij) 

2 2 2 
= µ. + a A + aE 

since E(Ai) and E(Ejj) both equal zero and E(AiEij) = a AE = 0. 

The expected value of the product of observations U ' "" j) in the same class 

( class i) is: 

E(Pifij') = E[(µ + ~ + Eij) (µ. + ~ + Eij')] 

= E(µ.2+ µA-+ µE .. , +µ.A,+ Af +A.£ .. ,+ µE .. + A.£ .. + E .. £ .. ,) 
• 1 lJ • 1. 1 • 1. lj lJ • 1. lJ lJ lJ 

= µ.2 + 0 + 0 + 0 + a i + 0 + 0 + 0 + 0 

= µ.2 + al 
because both E(~Eij') and E(~Eij) are equal to zero when a AE = 0 and E(EijEij') = 0 

when aE"E"' = 0. 
lJ IJ 

The expected value of the product of observations in different classes ( classes i and 

i') is: 

E(Pili'j') = E[(µ. + ~ + Eij) (µ + ~· + Ei'j' )] (i' ;cj' and r;.j' or j =j') 

= E(µ.2 +µA.,+ µE•,·, +µA.+ A-A·,+ A ,E,,,, + µE .. +A.,£ .. + E-·E·,··) 
·1. lJ •1 .. 1 1 •1 IJ IJ 'i IJ IJ IJ 

= µ2 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 

= µ2 

with most terms equal to zero. 
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Another Example 

Suppose a phenotypic observation on animal i is made up of a constant µ., a genetic 

value Gi, and an environmental effect Ei: 

pi = µ. + Gi + Ei 

where µ.G = µE = 0, E(G7) = a5, E(ET) = oi,, and no covariance between any G's, any 

E's, and any G with any E. 

Note that µp = µ, i.e., two symbols that are equal which will be convenient in the 

expectation for ap. 
E(P7) = E[(µ. + Gi + Ei)2] = E(µ2 + Gr + Er + 2µ.Gi + 2µEi + 2GiEi) 

= µ.2 + E(GT) + E(E7) + 2µ.E(Gi) + 2µE(Ei) + 2E(GiEi) 

= µ2 + a5 + ai, + 0 + 0 + 0 

If oGE * 0, then E(GiEi) would also be different from zero. 

With no G with E covariance: 

op = E[(Prµ) 2] = E[(µ + Gi + Ei - µ)2] = E[(Gi + Ei)2] 

= E(G7) + E(E7) + 2E(GiEi) 

= a5 + ai, + 0 

E(Plj) = E[(µ + Gi + Ei)(µ + Gj + Ej)l 

= E(µ 2 + µG• + µE• +µG• + G·G· + G-E· + µ.E• + G·E· + E·E·) J J 1 lJ lJ 1 JI lJ 

= µ2 

COV(Pi,P} = E[(Prµ)(Pfµ)] = E[(µ + Gi + Ei - µ)(µ + Gj + Ej - µ)] 

= E[(Gi + Ei)(Gj + Ej)l = E(GiGj + GiEj + GjEi + GjEj) 

= 0 + 0 + 0 + 0. 
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TABLE 1.1. SUMl\1ARY OF MEAN AND VARIAN CE 

Mean Variance Standard Deviation 

Symbols: 

Population µx 2 ax, V(x) Gx 

Sample µ.x, x A2 2 
<JX' SX ax, sx 

Units units units squared units 

Alternate Computing 
Computing formulas: Forms for Variance 

Nonfrequency data: 
2 2 2 

:Ex· I:(xi-µx) De- -Nµ 
Population 

l l X 

N 
= µx 

N N 

I:(xi-µ.x)2 
2 A2 

De· De, -nµ 
Sample 

1 
= P-x - 1 X = X 

n n-1 n-1 

2 (Dci)2 
I;x. -

1 n 
n-1 

Frequency data: 

I: fj(Yi-JLy)2 
2 2 

:Ef-y· I:f·y. -(:Ef·)µ 
Population 

I I 1 1 1 y. 
I:f· 

= JLy 
:E f· :Ef· 1 1 1 

if I: f- = 1 
2 2 

1 ' :EfiYi -µy 

As above, but multiply 

I:f·y· l :Efi (yi-Ay )2] (__E_) n 
Sample 

1 1 = JJ,y -= y by-
:E f- :Ef· n-1 n-1 1 1 



CHAPTER2 

A LITTLE ABOUT MATRIX ALGEBRA 

The algebraic description of selection index procedures is very easy with algebra of 

matrices and vectors. Matrix algebra is also very efficient for writing least squares and 

mixed model equations and describing the properties of mixed model procedures which will 

be introduced in the second section of the book. Computer packages are readily available 

for doing computations interactively using the notation of matrix algebra. Two obvious ones 

are MATLAB, a personal computer package, which is excellent for working problem sets 

on a scale not possible with desk calculators, and the IML routines in SAS, a statistical 

package used in many statistical methods courses. MATLAB is also available on many large 

computer systems. Although much of the detail of selection index and mixed model 

procedures is not efficiently done with matrix routines, the arithmetically difficult parts can 

be illustrated quickly with friendly matrix packages. This chapter will describe the basic 

rules for matrix algebra and later chapters will describe the computations both element by 

element and also in matrix form suitable for calculation with a matrix package. MATLAB 

terminology will be used although IML statements are similar. This chapter and summaries 

at the end of some chapters on matrix notation can be skipped without missing any of the 

basic ideas of selection index theory. Many illustrative problems, however, will become 

more valuable by combining the detail needed for deriving the expected variances and 

covariances with the ease of doing the final computations with a hands-on matrix package. 

17 
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The set of numbers such as the coefficients used later in the numerical example of 

the one-way fixed classification model: 

6 3 1 2 

3 3 0 0 
C = 

1 0 1 0 

2 0 0 2 

is called a matrix of 4 rows and 4 columns. Matrices do not have to be square or 

symmetrical as is C. A symmetrical matrix has columns equal to its corresponding rows. 

A matrix with only one column is called a vector; e.g., the right-hand sides for that example 

can be written as the vector, r: 

y .. 
YI. 

r = 
Y2. 
Y3. 

Notice that elements of matrices and vectors can be represented with numbers or symbols. 

Matrix arithmetic would require numbers. Matrix algebra may be done with a mixture of 

both. Matrix algebra is useful in working with and solving least squares and mixed model 

equations as well as selection index procedures. The notation of matrix algebra is especially 

convenient and concise for writing simultaneous equations both symbolically and 

numerically. 

The rules of matrix algebra are similar to those for scalar algebra with some 

important exceptions. Only four rules will be needed for most of this book. Other rules will 

be introduced when needed. 
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MATRIX MULTIPLICATION 

Rule 1) Matrix multiplication is accomplished by summing the products of each element 

of each row of the first matrix with the corresponding element of each column 

of the second matrix (thus the number of elements in each row of the first 

matrix must equal the number of elements in each column of the second matrix 

to be conformable for multiplication). A new matrix is formed from the sums 

of these row by column products; 

Sum of products of elements of 1st row x 1st column = new element 1, 1 
Sum of products of elements of 1st row x 2nd column = new element 1,2 

Sum of products of elements of 2nd row x 1st column = new element 2, 1 
Sum of products of elements of 2nd row x 2nd column = new element 2,2 

(The first subscript refers to the row; the second, to the column of the resulting matrix, or 

vector.) 

For example, examine multiplication of a matrix of numbers by column vector of 

symbols: 

6 3 

3 3 

1 0 

2 0 

1 2 

0 0 

1 0 

0 2 
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Sum for 1st row by 1st column; 

6µ + 3A1 + 1A2 + 2A3 (element 1,1) --> --> --> --> 

Sum for 2nd row by 1st column: 

3µ + 3A1 + oA2 + oA3 (element 2,1) 

--> --> --> --> 

Sum for 3rd row by 1st column; 

1µ. + oA1 + tA2 + oA3 (element 3,1) 

--> --> --> --> 
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Sum for 4th row by 1st column; 

2~ + oA1 + oA2 + 2A3 (element 4,1) 

--> --> --> --> 

The results are the left-hand sides (LHS) of the least squares equations for an example of 

the one-way classification model. This example is partially numerical, the elements of C, 

and partially symbolic, the elements of the solution vector: 

s = 

The coefficients of the effects on the left-hand sides (LHS) of least squares (LSE) 

or mixed model equations (MME) make up the coefficient matrix, for example, the matrix 

C. A similar matrix of coefficients for selection index equations will be denoted P. 

The sums on the right of the equal signs make up the right-hand side (RHS) vector: 

r = 

y .. 
YI. 
Y2. 
Y3. 

With selection index equations, the RHS vector will be made up of covariances of 

records in the index with the variable being predicted and may be denoted as g. 
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Thus, in matrix notation, the set of least square equations can be written: 

Cs = rand 

the set of selection index equations as: 

Pb= g 

where b is the vector of selection index weights. 

Multiplication of matrices is a simple extension of matrix by vector multiplication and 

can be thought of as multiplying the first matrix by a succession of vectors that make up the 

second matrix. MATLAB would produce the matrix product of A and B and put it in 

matrix E from E = A *B. Note that usually A *B ,;,. B* A. In fact, even if A *B is 

conformable, B* A might not be conformable for multiplication. 

SOLUTIONS WITH INVERSES 

Rule 2) If C or Pis square and composed of independent rows (columns), the matrix 

equivalent of division in scalar arithmetic can be used to solve for the solution 

vector s or b. 

In scalar (usual) arithmetic, 

2x = 4 

can be solved by premultiplying both sides by the scalar inverse of 2, that is by (2f 1; 

(2r 1(2)x = (2-1)(4) = 2 . 

Because (2r 1(2) = 1, then x = 2 is the solution. 

In matrix notation, premultiplying both sides by the matrix inverse of C produces the 

solution vector; 



If C can be inverted, i.e., is a nonsingular matrix, then; 

c-1c = I . 
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I is the matrix equivalent of the scalar 1. Note that as in scalar algebra, the identity 

(one) vanishes in multiplication: IC = C, Is = s, etc. In fact, I is a matrix with l's as 

diagonal (top left to bottom right) elements and O's as off-diagonal elements; e.g., 

1 0 0 0 

c- 1c = I 
0 1 0 0 

= 
0 0 1 0 

0 0 0 1 

Thus, to solve Cs = r, then c- 1cs = c- 1r is equivalent to Is = c- 1r so thats = c-1r. 

Note that c-1 -:1-I/C which has no meaning in matrix algebra. 

Finding the elements of the inverse, c-1, from C is usually accomplished by computer 

programs although students in matrix algebra courses often are required to practice on 

matrices of order 2x2, 3x3, 4x4, etc. In fact, the command in MATIAB, INV(C) will 

produce the elements of the inverse. 

Note that constraints often must be applied to LSE or MME to make the rows of the 

coefficient matrix independent so that an inverse of C can be obtained. If the rows are 

dependent, an inverse does not exist and the matrix is said to be singular. A special kind 

of inverse called the generalized or Penrose inverse can be used in those cases, although 

care must be taken in interpreting the resulting solutions. In MATLAB, use PINV(C). 

Thus, in MATLAB, b = INV(P)*g ands = PINV(C)*r. 
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ADDITION (SUBTRACTION) 

Rule 3) Addition (subtraction) of two matrices is accomplished by adding (subtracting) 

corresponding elements of the two matrices. Thus the matrices must have the 

same number of rows and columns to be conformable for addition. In 

MATLAB, D = A+B. 

SCALAR BY MATRIX MULTIPLICATION 

Rule 4) Multiplication of a scalar by a matrix is defined as the multiplication of each 

element of the matrix by the scalar. If the scalar is (1-h2)/h 2, which for 

h2 = .25 is (1-.25)/(.25) = 3, then, for example: 

31 = 

3 0 0 0 

0 3 0 0 

0 0 3 0 

0 0 0 3 

This operation in MATLAB would be: 

3*EYE(4). 



CHAPTER3 

QUANTIFYING THE SIMPLE MENDELIAN MODEL 

This chapter is not necessary for development of selection procedures for traits 

influenced by many genes and could be skipped. Nevertheless, examination of simpler 

models may provide insight into more complicated models which are based on the same 

principles. 

The usual genetic model is 

Phenotype = Genotypic effects + Environmental effects 

P = G + E. 

The simplest Mendelian model has E = 0 and only three possible genotypes and genotypic 

effects for one locus with two alleles, A and a. 

In a random mating population, if the gene frequency of an allele, A, at a particular 

locus is p and if there is only one other allele, a, with frequency, 1 - p = q, then the 

expected frequencies of the three possible genotypes are by the Hardy-Weinberg law 

Genotype Frequency = f i Value = Yi 

AA p2 u 

Aa 2pq [(u +v)/2) + d 

aa q2 V 

25 



26 Selection Index 

Abitrary symbolic effects can be assigned to the genotypes as shown. The value d 

represents the dominance deviation as a difference of the effect of the heterozygote from 

the average effect of the homozygotes. There are several possible kinds of dominance 

depending on the size of d: if d = 0, there is no dominance or equivalently there is lack 

of dominance or the model contains only additive effects; if d = (u-v)/2, there is complete 

dominance, that is, the value of Aa equals the value of AA; and if Id I > (u-v)/2, there is 

overdominance, that is, the value of the heterozygote is greater than the value of the AA 

homozygote or less than the value of the aa homozygote. 

POPULATION MEAN 

The definition of the population mean or average, µ., is as shown in Chapter 1: 
n n 

µ. == ( :E f iYi)/ :E fi , 
i==l i=l 

where n is the number of different genotypes. Usually, Efi = 1 but will not if certain 

genotypes are discarded due to selection. 

Application of this formula provides the symbolic mean for the simplest Mendelian 

model in the case of no selection: 

µ. = v + p(u-v), if d = 0; and 

µ. = v + p(u-v) + 2pqd, if d * 0. 

The population average will be maximum when p = 1, if u > v and d::::; (u-v)/2. 

If d > (u-v)/2 (overdominance), then the population average will be maximum when 

p = {[(u-v)/2] + d} /2d as can be found by equating the derivative ofµ. with respect to p 

to zero. 
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POPULATION VARIANCE 

The definition of the population variance, a2, as shown in Chapter 1 is: 

2 n 2 n 
a = [ :E fi(Yi-µ) ]/ :E fi 

i=l i-1 
If :Ef i = 1, then 

a2 = !: fi(Yi-µ)2 = "EfiY? - µ.2. 

Application of this formula will yield equations involving p, u, v, and d, as shown in standard 

text books on population genetics. 

BREEDING VALUE UNDER THE SIMPLE MENDELIAN MODEL 

Selection index procedures are primarily aimed toward predicting breeding value. 

Breeding value can be thought of as the part of the genotypic effects of an animal that can 

be passed to its progeny. In fact, breeding value is defined for quantitative traits as twice 

the superiority of an animal that is exhibited in its progeny. The same concept can be 

shown for effects at a single locus with two alleles. 

The frequencies of progeny of the three parental genotypes under random mating are 

described in the following table. 

Parent Parent Progeny Frequency 
Genotype Frequency AA Aa aa 

AA p2 p q 0 

Aa 2pq p/2 1/2 q/2 

aa q2 0 p q 

The progeny frequencies are from randomly mating a particular parent type to the rest of 

the population. For example, Aa x population gives from the gametic arrays the progeny 

frequencies, 
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[(1/2)(A) + (1/2)(a)] x [(p)(A) + (q)(a)] 

! 
(p/2)(AA) + (1/2)(Aa) + (q/2)(aa) . 

The progeny means in symbolic terms for the three parental genotypes are found by 

applying the formula for the mean with frequencies to be: 

µ. AA = pu + q{[(u +v)/2] + d}, 

µ. Aa = .5pu + .5{[(u +v)/2] + d} + .5qv, 

µ.aa = p{[(u +v)/2] + d} + qv. 

These expressions show: 

(1) that µ. Aa = (µ AA + µaa)/2 for any values of p and d, that is, the mean for progeny of 

heterozygotes is the average of the means of the progeny of the two kinds of homozygotes 

and (2) that breeding values (progeny means) of the parental genotypes depend on gene 

frequency ( even if u > v, µ. AA may be less than µ.aa when p is small). 

HERITABILI1Y FOR THE SIMPLE GENETIC MODEL 

For the simple genetic model (1 locus, 2 alleles, the heterozygote value equal to the 

average value of the homozygotes, i.e., d = 0) with no environmental effects, the regression 

of offspring mean on parental value is 1/2 (see formulas in Chapter 1). 

Parent Value 

AA u 

Aa (u+v)/2 

aa V 

Frequency 

p2 

2pq 

q2 

Progeny Mean 

pu + q(u +v)/2 

(pu/2) + [(u +v)/4) + (qv/2) 

p(u+v)/2 + qv 
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Here, the mean, µ. = v + p(u-v) and the variance of parents is pq(u-v)2 /2 = a~, which is 

the genetic variance since there are no environmental effects. The covariance of progeny 

means and parent values is pq(u-v)2 /4 = a~/2 and thus the regression of offspring mean 

on parent value is 1/2. 

The following principles should be noted: 

1. Any kind of dominance will decrease the regression coefficient. 

2. Selection on parents will not affect the regression if the heterozygote has a 

value which is the average of the values of the homozygotes (additive model). 

3. If there is some form of dominance, selection on the parents will, in general, 

affect the regression as can be seen by plotting progeny means against parental 

values. 

SIMPLE GENETIC MODEL WITH ENVIRONMENTAL EFFECTS 

Suppose to the simple genetic model that a random environmental contribution is 

added that averages zero but has variance a~. Then, phenotype = genotype + environment, 

or P = G + E. If there is no correlation between G and E, then phenotypic variance, 

2 2 2 
a p = a g + a e. In terms of selection, usually the components of P cannot be separated 

directly. The environmental effect, E, may mask what is to be evaluated, G. 

HERITABILI1Y DEFINED 

Heritability is defined in the "broad sense" as the ratio of all of the genetic variance 

to the total variance; 
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With additive gene action (the heterozygote intermediate in value between 

homozygotes) for the simple model the covariance between parent and progeny is 

(1/2)(a~A). This result can be shown to be true even if environmental variation exits 

because the environmental variation is assumed to be random with average value of zero. 

If d does not equal O (some form of dominance), part of the genetic variance will be 

due to the dominance effects, a!D and some to additive effects, a!A· 

If there is some form of dominance, the regression of progeny on parent is reduced. 

The covariance, however, between progeny and parent is 

dominance or with no dominance (see appendix this chapter). 

either with 

Heritability is defined in the "narrow sense" as the ratio of additive genetic variance 

to the total variance; 

Thus, twice the regression of progeny mean on parent value equals heritability in the 

"narrow sense" even with dominance in the simple genetic model with random 

environmental effects. The same will be true for quantitative traits influenced by genes at 

many loci. 

Later chapters show that additive genetic effects are most important since they have 

a much greater chance than dominance or epistatic effects of being transmitted from one 

generation to the next. 
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APPENDIX TO CHAPTER THREE 

DERIVATION OF u2g, 08
2 , o2 FOR 1 LOCUS WITH 2 ALLELES 
A 8D 

Let value of AA = 1, value of Aa = d, and value of aa = 0. The frequency of 

A is p and the frequency of a is 1 - p = q. Random mating is assumed. 

Total Genetic Variance, "i 
µ = p2 + 2pqd g 

a2 = p2 + 2pqd2 + 0 - (p2 + 2pqd)2 
g 

= p2 + Zpqd2 _ p4 _ 4p3qd _ 4pz(q2)d2 

;::: pq[p(l +p) + 2d(d - 2p2 - Zpqd)] 

If d = 1/2, a~ = pq/2. 

Regression of Genotypic 

(Depends on p) 

2 
Value, G, on Number of "+" Genes, X, to Define "gA 

The following table describes frequencies and genetic values associated with number 

of positive genes in the genotype: 

Genotype 

AA 

Aa 

aa 

FreQuen!4'. 

p2 

2pq 

q2 

G X 

1 2 

d 1 

0 0 

2 2 2 
a g A = r gxa g, the additive genetic variance, is defined as the variance in G due 

to additive gene effects (i.e., variance in G accounted for by regression of G on X): 

a2 = agxagx 
gA 2 

ax 
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Now evaluate a gx and a~. 

Thus 

J.Lx = 2p 

a; = p 2(2)2 + 2pq + 0 - (2p)2 

= 4p 2 + 2pq - 4p 2 = 2pq 

J.Lg = p 2 + 2pqd 

agx = 2p 2 + 2pqd + 0 - 2p(p 2 + 2pqd) 

= 2p 2 + 2pqd - 2p 3 - 4p 2qd· 

= 2pq(p+d-2pd) 

2 
(J = 
gA 

= [2pq(p+d-2pd)] 2 

2pq 

= 2pq(p+d-2pd) 2 

= 2pq(p 2 + d 2 + 4p 2d 2 + 2pd - 4p 2d - 4pd 2). 

The dominance genetic variance is variance in G not accounted for by regression on X: 

= p2q[l-p+4d(d-pd-1 +p)]. 

If d = 1/2, a!A = a!D = 0. With this assignment of genetic values, d = 1/2 corresponds 

to no dominance, i.e., (v AA + vaa)/2 = (1 +0)/2 = 1/2. 
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COVARIANCE (PROGENY, PARENT) WITH DOMINANCE 

The table summarizes parental frequencies and parent and progeny values when the 

genotypic values are defined as 1, d, and 0. 

Values 

Parents Frequency Parent 

AA 1 

Aa 2pq d 

aa 0 

1-Lprogeny = 1-Lparent = µpopulation = P2 + 2pqd 

Cov = p2(p + qd) + 2pqd(l/2)(p+d) - (p2 + 2pqd)2 

= pq(p + d - 2pd)2, 

2 
which is (1/2)(agA) no matter what the values of p and dare. 

Progeny Mean 

p + qd 

(1/2)(p) + (1/2)(d) 

pd 

In this derivation, the values of the genotypes (1, d, and 0) have been scaled from 

general phenotypic values of u, [(u +v)/2] + d', and v by subtracting v from each general 

value and then dividing by u-v. Note that the scaled d = (1/2) + [d'/(u-v)] in terms of the 

general values. To convert the above results (variances) back to general values, multiply 

by (u-v)2. 



CHAPTER4 

A SHORT SUMMATION ON POPUIATION GENETICS 

The principles of quantitative genetics and population genetics are closely linked. 

Population genetics is primarily concerned with identifiable alleles and their frequencies 

whereas quantitative genetics is primarily concerned with small effects of many 

unidentifiable alleles. Causes and effects of changes in frequencies of alleles is a major 

common concern of these two related fields of genetics. This chapter summarizes a few of 

the more obvious results from population genetics. Texts such as Doolittle (1987), Hartl 

(1980), Falconer (1989), provide much more complete development of the principles of 

population genetics. This chapter could be expanded in lectures if the topics of quantitative 

and population genetics are covered in one course. This chapter should be skipped if the 

course is limited to selection for quantitative traits. 

THE HARDY-WEINBERG LAW 

If in a large population, p is the frequency of gene A and q is the frequency of the 

other allele, a, then after one generation of random mating the genotypes will have and will 

continue to have in future generations the frequencies p2 for AA, 2pq for Aa, and q2 for aa. 

Note that p + q = 1. Hence, q = 1 - p. 

35 
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This principle can be extended to the case of n alleles, ~' (i = 1, ... , n), with 

frequencies Pi, by computing the frequencies of the genotypes obtained from multiplying the 

gametic array for males by the same gametic array for females, (p1A1 + ... + Pn~). 

The genotypes and their frequencies will be: 

homozygotes: ~~ with frequencies PT for i = 1, ... , n; 

heterozygotes: ~~ with frequencies 2PiPj for all i " j. 
n 

Again, E Pi = 1. 
i=l 

ESTIMATION OF GENE FREQUENCIES 

The general formula for the 

Number of that allele frequency of some allele = 
Total number of genes at that locus 

The problems of estimation are illustrated in the following special cases. 

(1) Dominance: 

The frequency of a recessive gene in a random mating population can be 

estimated from the knowledge that a fraction q2 of the population is expected 

to be homozygous recessive. Then, 

q = ✓number recessive types/total number of animals , 

and p = 1 - q. 

In the case of multiple alleles with complete dominance, the frequency of the most 

recessive allele is estimated first. For example, suppose A1 is dominant to A2 and A3, and 

A2 is dominant to A3 as shown below. 
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Genotype 

A1A1 
A1A2 
A1A3 

Phenotype Expected Frequency 

A2A2 
AzA3 

A3A3 

Then from the last equation, p3 = Jnumber A3 type/total number. Put the estimate 

of p3 into the second equation, p~ + 2p2p3 = number A2 type/total number, 

and solve for p2. Next substitute the estimates of p3 and Pz into the first equation, 

PI + 2P1P2 + 2P1P3 = number A 1 type/total number and solve for Pt or find Pt by 

difference since Pt + Pz + p3 = 1, or Pt = 1 - Pz - P3-

(2) Incomplete dominance: 

With incomplete dominance, heterozygotes can be distinguished from 

homozygotes so that the gene frequencies can be found from the general 

formula whether or not the population is randomly mating. For example, with 

three alleles, 

Number A 1 alleles 
Pt=-------------

Total number of genes at the A locus 

Each A1A1 genotype contributes two A1 alleles; each A1A2 genotype contributes 

one A1 allele; and each A1A3 genotype contributes one A1 allele to the number of A1 genes. 

Then, 

Pl = 
2(number of A1A1) + number of A1A2 + number of A1A3 

2( total number of animals) 

and Pz and p3 may be estimated similarly. 
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FREQUENCIES OF COMPOSITE GENO1YPES 

The frequencies of composite genotypes in a random mating population which is at 

equilibrium with respect to linkage are equal to the products of the single locus frequencies. 

For example, if the frequencies of A1 and A2 alleles are p1 and p2, respectively, and the 

frequencies of B1 and B2 alleles are r1 and r2, respectively, then the frequencies of the 

composite (two-locus) genotypes at equilibrium will be: 

Genotypes Frequencies 

A1A1B1B1 PTT! 

A1A1B1B2 2 P1(2r1r2) 

A1A1B2B2 Ptq 

A1A2B1B1 (2P1P2)rt 

A1A2B1B2 (2P1P2)(2r 1 r2) 

A1A2BzB2 (2P1P2)q 

A2A2B1B1 P~rt 

A2A2B1B2 2 
P2(2r1r2) 

AzA2B2B2 p~q 

Extension to more than two alleles per locus or more loci follows the same pattern. 

EFFECT OF SELECTION ON GENE FREQUENCIES 

Selection may change the frequency of a certain allele in a population. Gene 

frequency after selection ( among the survivors and with random mating of the survivors 

among the next generation) depends on the fitness of the genotypes and allelic frequencies 

in the current generation. Fitness of a genotype is defined as the proportion of the genotype 
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that reproduces relative to the other genotypes. Let s be the fraction of AA genotypes, r 

be the fraction of Aa genotypes, and t the fraction of aa genotypes that do not reproduce, 

where 1 ~ s, r and t ~ 0. By counting alleles, the frequency of allele a after selection is 

expected to be 

= number of "a" genes among survivors 
ql 2(number of survivors). 

This expression has specific forms for special kinds of selection as described later. The 

change in allelic frequency from one generation to another is the difference in allelic 

frequencies between the generations, i.e., 

where the subscripts refer to generations n and n-1. 

Special Cases 

In the following special cases, some simplifications may be made. 

(1) No homozygous recessive individuals reproduce (zero fitness for the aa 

genotype; s = 0, r = 0, t = 1). 

The composition of the initial generation (n = 0) can be described: 

Relative Frequency 
Genotype Frequency Fitness of Survivors 

AA p2 1-s = 1 p2 

Aa 2pq 1-r = 1 2pq 

aa q2 1-t = 0 0 

Total 1 p2 + 2pq = 1 - q2 
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Then, by the general equation because only the Aa genotype contains an a allele 

number of a alleles in survivors 
total number alleles in survivors ' 

ql = 2pq(number of animals) 

2(p 2 + 2pq)(number of animals) 
= q 

l+q 

If this procedure is followed through n generations, the frequency of the allele 

a will be qn = q/(1 + nq), where q was the original allelic frequency of 

the recessive allele. From this expression, the number of generations, n, 

required to go from an allelic frequency of q to one of qt is found to be 

(2) Selection in favor of heterozygotes (r = 0) 

The composition of the initial generation (n = 0) before and after 

selection is: 

Relative Frequency 
Genotype Frequency Fitness of Survivors 

AA p2 1-s p2(1-s) 

Aa 2pq 1 2pq 

aa q2 1-t q2(1-t) 

--
Total 1 1-sp2-tq2 

Application of the general procedure for finding the new allelic frequency, q1, 

gives 
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The change in allelic frequency from the zero generation to the next is: 

.6q = pq(sp-tq) 

1-sp 2-tq 2 

When .t..q = 0, there will be no change in allelic frequency from the (n-l)fil 

generation to the n1h generation and the population will be at equilibrium. 

As seen from the numerator, equilibrium occurs when sp - tq = 0. 

Thus, equilibrium allelic frequency will be reached when p = t/(s+t) and 

q = s/(s+t). 

(3) Partial selection against homozygous recessives (s = 0, r = 0, t > 0) 

The composition of the initial generation before and after selection is: 

Relative Frequency 
Genotype Frequency Fitness of Survivors 

AA p2 1 p2 

Aa 2pq 1 2pq 

aa q2 1-t q2(1-t) 

Total 1 1-tq2 

The allelic frequency, q1, in the survivors is by the general procedure 

ql = q(l-tq) ' and 

1-tq 2 

2 
AQ = ql - q = -tq (1-q) 

1-tq 2 
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(4) Selection against heterozygotes (s = 0, r > 0, t = 0) 

The composition of the initial generation before and after selection is: 

Relative Frequency 
Genotype Frequency Fitness of Survivors 

AA p2 1 p2 

Aa 2pq 1-r 2pq(l-r) 

aa q2 1 q2 

Total 1 1-2pqr 

By the general procedure, the allelic frequency, q1, in the survivors is 

Q1 = q(l-rp), and 
1-2rpq 

AQ = ql - q = rpq(2q-1). 
1-2rpq 

(5) Changes in allelic frequencies with other combinations of fitness values can be 

worked out similarly by the general procedure. 

DETECTION OF CARRIERS OF RECESSIVE ALLELES 

The confidence of detection of a heterozygote for a recessive allele (i.e., a carrier of 

the recessive gene) depends on the probability of obtaining at least one affected offspring 

in n offspring if the suspected carrier is actually a carrier. This probability is one minus the 

probability of obtaining all normal offspring in n offspring. 

A general testing procedure is to mate a suspected carrier to a group of females 

which produce a fraction, p, A alleles and a fraction, q, a alleles. Then, if the suspect is 

really a carrier, the probability that all n offspring will be normal is [1 - q/2)]n and the 

confidence of detection (i.e., proving the animal is a carrier) is 1 - [1 - (q/2)]n. Usually 

testing is for males because of their potentially high reproductive rate relative to females. 
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Some special cases are: 

(1) Mating a carrier male to known homozygous recessive females 

The probability of obtaining all normal offspring is (1/2)n. 

Therefore, the "confidence" of detecting him as a carrier is 1 - (1/2l. 

Note that q = 1 and that 1 - (q/2) = 1/2. 

(2) Mating a carrier male to known carrier (heterozygous) females 

The "confidence" of detecting him as a carrier is 1 - (3/4)n. 

Note that q = 1/2 and that 1 - (q/2) = 3/4. 

(3) Mating a carrier male to his own daughters. 

The "confidence" of detecting him as a carrier is 1 - (7 /8) 0 . Note that 

q = 1/4 and that 1 - (q/2) = 7 /8. This probability is calculated under the 

assumption that the dams were all homozygous for the normal allele. With this 

system, recessive alleles at all loci will have the same chance of detection. 

( 4) Mating a carrier male at random in a population where the frequency of the 

* recessive gene is q in the previous generation 

The "confidence" of detecting him as a carrier is 1 - [(2+ q *)/2(1 + q *)Jn. 

* * Note that q = q /(1 + q ) since none of the homozygous recessive females will 

be mated. 

What should be remembered about testing for carriers is that even one verified 

affected offspring marks a suspected carrier as a carrier. Even if all offspring are normal, 

that will never completely rule out the possibility a male is a carrier, even though the 

probability of detection may be quite high. 

Table 4.1 shows the confidence of detection of carrier males for the four testing 

systems. A further discussion of method 4 follows. 
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TABLE 4.1. CHANCES OF DETECTING A CARRIER MALE FOR VARIOUS TYPES OF MATINGS V) 
~ ...... 
~ 
r:, 

Detects all 
.... -. 
C) 

Detects only one lethal lethals carried Detects all lethals deQending on freguency 
;:: 

homozygous known random in o ulation ~ 
+ q* n ~ Number of recessive carrier own 1 -

2~1 +~*l Progeny females females daughters Lethal Gene Freguency = g* i Q e ious generation 
n l-(l/2)n l-(3/4)n l-(7/8)n .2 .1 .OS .01 .001 

--
1 .SO .25 .12 .08 .05 .02 .00 .00 
2 .75 .44 .23 .16 .09 .05 .01 .00 
3 .88 .58 .33 .23 .13 .07 .01 .00 
4 .94 .68 .41 .29 .19 .09 .02 .00 
5 .97 .76 .49 .35 .21 .11 .02 .00 
6 .98 .82 .55 .41 .24 .13 .03 .00 
7 .99 .87 .61 .46 .28 .16 .03 .00 
8 1.00 .90 .66 .so .31 .18 .04 .00 
9 .92 .70 .54 .34 .20 .04 .00 

10 .94 .74 .58 .37 .21 .OS .00 
15 .99 .87 .73 .50 .30 .07 .01 
20 1.00 .93 .82 .61 .38 .09 .01 
so 1.00 .99 .90 .70 .22 .02 

100 1.00 .99 .91 .39 .05 
200 1.00 .99 .63 .10 
300 1.00 . 77 .14 
400 .86 .18 
500 .92 .22 



Population Genetics 45 

ARTIFICIAL INSEMINATION AND UNDESIRABLE RECESSIVES 

Method 4 of the preceding section can be used to decrease the frequency of all 

undesirable genes by progeny testing all males at random in the population before heavy use 

through artificial insemination. The following describes how such a program would work 

for dairy cattle where AI is widely used. 

The essential question is, "Can AI be used to find carrier bulls before they spread 

undesirable genes?" The answer is yes since any good young sire sampling program will 

provide for each young bull producing at least 200 progeny. In the dairy situation, 200 

calves may yield 50 or so production-tested daughters. At the same time, the 200 progeny 

will provide an excellent test of whether the bull is a carrier of any undesirable recessive 

genes. 

What does this mean in terms of numbers of affected calves? An AI program which 

observes 200 tested progeny can be compared with what would happen without Al. The 

effect of AI testing with 200 progeny versus no testing is shown in the Table 4.2. 

With all the expressed fears that AI may sabotage a population by spreading an 

undesirable allele throughout the population. it is more than a little reassuring to know this 

is unlikely to happen. More reassuring is the knowledge that a properly set up young sire 

sampling program in AI will actually protect a population against undesirable genes and 

reduce the number of affected calves. 

A more technical description follows on how to calculate expected frequencies of 

affected calves of future generations with an AI testing scheme with various numbers of test 

matings and initial gene frequencies. 
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TABLE 4.2. NUMBER OF AFFECTED OFFSPRING WITII NO PROGENY TESTING AND WITII TESTING WITII 200 PROGENY 
~ 
<") .... -. a 
;:::i 

No. of affected progeny per million progeny born in generation :::-, 

Before Testing 1 2 3 4 5 - - - 10 ~ 
~ 

No testing 250,000 111,111 62,500 40,000 27,778 20,408 - - - 6,944 

AI test 250,000 0 0 2 28 55 - - - 9 

No testing 40,000 27,778 20,408 15,625 12,346 10,000 - -- 4,444 

AI test 40,000 0 2 28 55 43 - - - 7 

No testing 10,000 8,264 6,944 5,917 5,102 4,444 - - - 2,500 

AI test 10,000 1 23 55 46 29 - - - 6 

No testing 2,500 2,268 2,066 1,890 1,736 1,600 - - - 1,111 

AI testing 2,500 20 54 47 30 20 - - - 4 

No testing 100 98 96 94 92 91 - -- 83 

AI testing 100 37 23 16 11 8 - -- 3 
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THE EFFECT OF TESTING BULLS IN AI ON THE FREQUENCY OF RECESSIVE 

ALLELES 

As the frequency of a recessive allele drops under the conditions of AI, the 

confidence of detecting a carrier by random mating goes down. What will be the effect of 

the reduced confidence on selection against the gene? 

The solution can be obtained by computing the allelic frequencies for several 

generations. Males will be progeny-tested on n females. All males and females which are 

homozygous for recessive alleles will be culled. Heterozygotes have the same fitness as the 

"normal" homozygotes. Let Pj = frequency of the normal allele, A, in males surviving 

selection, qj = frequency of the other allele, a, in males surviving selection, Pj = frequency 

of A in females surviving selection, Qj = frequency of a in females surviving selection, and 

j is the generation number. The frequency of genotypes in the next generation can be found 

by expanding (pjA + qja)(PjA + Qja). The composition of the next generation before and 

after selection is: 

Males Females 

Frequency Frequency 
Genotype Frequency Fitness Survivors Frequency Fitness Survivors 

AA p·P· 
J J 

1 p·P· 
J J 

p·P· 
J J 

1 p·P· 
J J 

Aa p·O·+q·P· 
J J J J 

Q• 1 a•(p·O·+q·P·) 1 J J J J p·O·+q·P• 
J J J J 

1 p·O•+q·P· 
J J J J 

aa q•O· 
J J 

0 0 q•O· 
J J 

0 0 

Total 1 p·P· + a•(p·O· + q·P·) JJ lJJ JJ 
1 p·+q·P· 

J J J 
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ai(i=j+ 1) is the probability of not detecting a carrier by random mating to the 

population. Males are tested in the population of contemporary females. 

ai = (1 -.SQj + 1)n, where n is the number of progeny and Qj + 1 is the frequency of a among 

the surviving females. The frequency of a among the selected males is 

qj+l = (ai/2)(Pj0j+qjPj)/[PjPj + ai(PjOrqjPj)]. 

The composition of the next generation can be found by expanding 

(Pj+lA + qj+1a)(Pj+1A + Oj+1a). 

Note that this is a repeating pattern and can be easily programmed for a computer. 



CHAPTERS 

GENES IDENTICAL BY DESCENT--THE BASIS OF GENETIC 

LIKENESS 

Individuals may have genes in common from a common ancestor. Such genes are 

identical by descent. If genes are identical but not necessarily from a common ancestor, 

they are identical in state. The term allele may be more appropriate but the term gene will 

be used here. 

The concept of identity by descent is an approach to the complications of multi­

allelic, multi-loci gene systems which affect quantitative traits. With the identity by descent 

approach, there is no need to know how many alleles are at a locus, the value of each allele, 

the number of loci which have genes influencing the quantitative trait, or the gene 

frequencies. This approach was formulated by Malecot (1948) and about the same time by 

C. C. Cockerham and C. R. Henderson, who further developed the concept. The identity 

by descent approach is to calculate probabilities of genes, genotypes and non-allelic 

combinations of genes being identical because of common ancestors. 

Two limitations of the probabilistic method are: 

1. Calculations of probabilities must begin at a specified base period even though 

most life probably originated from a small number of genes. 

2. The method estimates how many genes are identical by descent between two 

animals only on a probability basis. 

49 
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The notation is that an animal will have genes bibj at the b locus where the subs~ript 

describes the origin of the gene. The basis for calculation of relationships is the probability 

that a random gene at any locus, say the b locus, is identical by descent for a pair of 

individuals. At some arbitrary base period, the b genes of the common ancestor are tagged 

and then the probability that the b genes of the two individuals will be common by descent 

is computed. 

Let the genotypes of two animals at the b locus be bibj and bmbn where the 

subscripts refer to the origin of the gene. The probability that the genes at a locus are 

identical by descent between two individuals is defined by comparing the origins of the first 

gene of the first animal with the first and second genes of the second animal, and the second 

gene of the first animal with the first and second genes of the second. 

Thus, for the four possible combinations: 

Probability (bi = bm) = 0 if i " m; = 1 if i = m , 

Probability (bi = bn) = 0 if i ~ n; = 1 if i = n , 

Probability (bj = bm) = 0 if j " m; = 1 if j = m , 

Probability (bj = bn) = 0 if j " n; = 1 if j = n . 

The probability that a random gene at this locus is identical in two animals is the average 

probability for these four comparisons, i.e., 

[P(i=m) + P(i=n) + P(j=m) + P(j=n)]/4. 

In fact, this expression is the same as the probability that a random gene from one animal 

and a random gene from the other animal will be identical by descent. 

As a specific example, suppose that two unrelated noninbred animals are mated, i.e., 

the mating is b1 b2 x b3b4. The possible offspring are b1 b3, b1 b4, b2b3, b2b4. The fraction 
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of random pairs of genes being identical between any progeny, say b1 b3, and any parent, 

say b1 b2, is: 

P(b1 = b1) = 1 

P(b1 = b3) = 0 

P(bz = b1) = 0 

P(bz = b3) = 0 

with the average being 1/4. 

ADDITIVE RELATIONSHIP 

The relationship of an individual with itself is considered generally to be one. The 

"a" or additive relationship between two individuals is defined as twice the fraction of genes 

identical by descent so that the additive relationship of a noninbred animal with itself is one. 

As shown in the appendix to Chapter 6, because each locus has two additive gene effects, 

the additive relationship is the measure of the fraction of additive gene effects in common 

between relatives. In a noninbred population, the additive relationship is equal to the 

coefficient of relationship. The coefficient of relationship is also equal to the correlation 

between additive effects as will be described in Chapter 6. 

The coefficient of relationship between animals i and j is: 

rij = aijl Jaiiajj , 

where aij is the additive relationship between i and j, aii is the additive relationship of i to 

itself (aii = 1 if noninbred) and ajj is the additive relationship of j to itself. Thus, the 

additive relationship is sometimes called the numerator relationship because the additive 

relationship is the numerator for the coefficient of relationship. The following table 
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describes the probabilities for most common kinds of comparisons for pairs of individuals. 

PROBABILITIES OF GENES IDENTICAL BY DESCENT 

Fraction Identical Additive 
Comparison by Descent Relationship 

b 1 bl with b 1 b1 
( completely inbred with self) 

1 2 

b1 b 1 with b1 b2 1/2 1 

b1 b1 with b2b2 0 0 

b 1 bz with b1 b2 
(noninbred with self) 

1/2 1 

b1 b2 with b1 b3 1/4 1/2 

b 1 b2 with b1 b4 1/4 1/2 

b1 bz with b3b4 0 0 

Parent-progeny Relationship 

Unrelated and noninbred parents, b 1 b2 and b3b4, have potential progeny b1 b3, b1 b4, 

b2b3, and b2b4. From the table above, the fraction of genes identical by descent for any 

one parent with b1 b3 is 1/4; with b1 b4, 1/4; with b2b3, 1/4; and with b2b4, 1/4. The 

average is (1/4 + 1/4 + 1/4 + 1/4)/4 = 1/4 and the additive relationship is 1/2. 

Grandparent-grandprogeny Relationship 

Two unrelated and noninbred animals, b1 b2 and b3b4, have potential progeny b1 b3, 

b1 b4, b2b3, and b2b4. One of these progeny chosen at random, say b 1 b3, is mated to an 

unrelated animal, b5b6, chosen from the population. The potential genotypes of their 
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progeny are b1 b5, b1 b6, b3b5, and b3b6. Now compare genes of either grandparent, say 

b1 b2, with genes of the grandprogeny. The fraction of genes of that grandparent that are 

identical by descent with b1 b5 is 1/4; with b1 b6, 1/4; with b3b5, O; and with b3b6, 0. The 

average is 1/8. 

The same average would be found for the grandparent, that is b1 b2, with the other 

12 possible grandprogeny types. In one-half the comparisons the grandprogeny and 

grandparent are unrelated in the sense that no genes are alike at that locus. Since the 

probability of no genes in common at one loci is 1/2, the probability of no genes in common 

at n loci is (1/2)n for grandparent and grandprogeny pairs which is not a very large 

probability, even for number of loci as small as four. The average identical by descent over 

all loci is likely to be quite close to the calculated probability of genes being identical by 

descent. 

Full sib Relationship 

Two unrelated and noninbred animals, b1 b2 and b3b4, have progeny b1 b3, b1 b4, 

b2b3, and b2b4. When the full sib progeny are randomly compared, there are 16 different 

combinations of pairs of full sibs, each having equal frequency. The values in the table are 

the probabilities of genes being identical for each of the 16 comparisons. 

Possible Genotypes of 

2nd Full Sib with Frequencies 

1/4 b1b3 1/4 b1b4 1/4 b2b3 1/4 b2b4 

Possible 1/4 b1b3 1/2 1/4 1/4 0 

Genotypes of 1/4 b1b4 1/4 1/2 0 1/4 

1st full sib 1/4 bzb3 1/4 0 1/2 1/4 

with frequencies 1/4 b2b4 0 1/4 1/4 1/2 
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The average will be ~fi~· For all 16 cells. fi = 1/16. The average fraction of genes 

identical by descent = (1/16)[(4)(1/2) + (8)(1/4) + (4)(0)] = 1/4 as before. Note that 

although the average fraction of genes identical by descent is 1/4 that 1/4 of the 

comparisons have probability 1/2 (an identical genotype). 1/2 have probability 1/4, and 1/4 

have probability 0. One-fourth of the comparisons have no genes in common at one locus, 

and therefore the probability of no genes in common at n loci = (1/4)n for full sibs. 

Half-sib Relationship 

and b2b4 with equal frequencies. When animal b1 b2 is also mated to b5b6, they have 

potential progeny b1 b5, b1 b6, bzbs, and bzbfr The values in the table are fractions of genes 

identical by descent for each of the 16 possible pairs of half-sibs. 

Possible Genotypes of 

1st Half-Sib with Frequencies 

1/4 b1b3 1/4 b1b4 1/4 bzb3 1/4 b2b4 

Possible 1/4 b1 bs 1/4 1/4 0 0 

Genotypes of 1/4 b1 b6 1/4 1/4 0 0 

2nd Half-Sib 1/4 bzbs 0 0 1/4 1/4 

with frequencies 1/4 b2b6 0 0 1/4 1/4 

The average fraction of genes identical by descent is: 

(1/16)[(8)(1/4) + (8)(0)] = 1/8, and the additive relationship is 1/4. One-half of the 

comparisons have no genes in common at one locus. and the probability of no genes in 

common at n loci = (1/2)n. 



Summary of Most Common Relationships 

Ave. Fraction 
Relationship Identical 

Parent-progeny 1/4 

Grandparent-grandprogeny 1/8 

Full sibs 1/4 

Half sibs 1/8 

DOMINANCE RELATIONSHIP 

Probability 
of Genotype 

Identical 

0 

0 

1/4 

0 
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Probability No 
Genes Identical 

at n Loci 

0 

(1/2l 

(1/4)n 

(1/2)° 

The probability of an identical genotype at one locus by descent is the probability 

that the pair of genes at one locus for two animals identical by descent, i.e., for relatives 

with genotypes bibj and bmbn, P(genotype identical) = P(bibj = bmbn). The only pairs 

in the above table that can have a genotype at one locus identical by descent are pairs of 

full sibs, e.g., b1 b4 with b1 b4. The dominance relationship between a pair of animals is 

defined as the probability of genotypes being identical by descent. 

The following is an example of computing average probability of genotypes in 

common for full sibs. 

Let the parents be unrelated so that their symbolic genotypes and those of their full 

sib progeny can be represented as: 

Parents: b1 b2, b3b4 

Full Sib Progeny (with frequencies): 

1/4 b1 b3, 1/4 b1 b4, 1/4 bzb3, 1/4 bzb4 

The average probability that bibj = bmbn is the average of all 16 comparisons as shown in 

the following table. 
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Possible 

Genotypes of 

1st Full Sib 

with Frequencies 

1/4 b1b3 

1/4 b1b4 

1/4 b2b3 

1/4 b2b4 

Possible Genotypes of 
2nd Full Sib with Frequencies 

1/4 b1b3 1/4 b1b4 1/4 bzb3 1/4bzb4 

The frequency of each comparison is 

(1/4)(1/4) = 1/16. 

Then, the average P(genotypes identical at the "b" locus) is: 

= (1/16)[P(b 1b3=b 1b3) + P(b1b3=b 1b4) + P(b1b3=b2b3) + P(b1b3=bzb4) + 

P(b1b4=b1b3) + P(b1b4=b1b4) + P(b1b4=bzb3) + P(b1b4=bzb4) + 

P(bzb3=b1b3) + P(bzb3=b1b4) + P(bzb3=bzb3) + P(bzb3=bzb4) + 

P(bzb4=b1b3) + P(bzb4=b1b4) + P(bzb4=bzb3) + P(bzb4=bzb4)] 

= (1/16)(1 + 0 + 0 + 0 + 0 + 1 + 0 + 0 + 0 + 0 + 1 + 0 + 0 + 0 + 0 + 1) = 1/4. 

Only one of four comparisons are expected to have genotypes at the "b" locus 

identical by descent. The average fraction of all loci with genotypes identical for pairs of 

full sibs is also one-fourth. 

Dominance effects are defined as the interaction of two genes at one locus. Of the 

relatives shown in the summary table, only full sibs can have dominance effects contribute 

to likeness of pairs of relatives. Dominance effects occur when the value of bibj is not the 

average value of bi plus the average value of bj. The dominance relationship between 

noninbred animals A and B, d AB• can be found from the additive relationships among the 

parents of A and B as will be seen. 
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INBREEDING COEFFICIENT 

The coefficient of inbreeding, F, is defined as the probability that two genes at one 

locus will be identical by descent when averaged over all loci, i.e., for an animal with one 

locus and genotype bibj, F = P(bi = bj)- The two genes will be identical only if the parents 

have genes identical by descent. The expected frequency of two genes identical by descent 

at one locus is equal to the probability that each parent will contribute an identical gene, 

i.e., the probability of pairs of single genes being identical between the parents. Therefore, 

F p = (1/2)(asd) where p, s, and d refer to the progeny, sire, and dam, respectively, and 

app = 1 + (1/2)(asd). F p is the inbreeding coefficient which also corresponds to the 

fraction of loci having both genes identical by descent. 

SOME USEFUL IDENTITIES IN WORKING WITH ADDITIVE AND DOMINANCE 

RELATIONSHIPS 

If animals A and B have parents As, Ao and Bs, B0 , respectively, then usually 

aAB = (1/4)(aAsBs + aAsBo + aAoBs + aAoBo). 

As shown in the appendix, 

aAB = (1/2)(aABs + aAB0 ) if A is older than B. 

or equivalently aAB = (1/2)(aBAs + aBAo) if B is older than A. 

These equalities are the basis for computing additive relationships by the tabular 

method. 

The dominance relationship can also be computed from the additive relationships 

among the parents even when the parents are inbred if the animals are themselves 

noninbred. As shown in the appendix, 
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dAB = (1/4)(aAsBs a AoBn + aAsBn aAnBs). 

Also as just seen, the inbreeding coefficient for an animal is one-half the additive 

relationship between its parents, 

FA = (1/2)(aAsAo) ; FB = (1/2)(aBsBo), 

and an animal's additive relationship to itself is 

EXPANSION TO MORE THAN ONE LOCUS 

The probability of a pair of nonallelic genes being alike in two individuals by descent 

is P(genes at first locus are identical by descent) x P(genes at the second locus are identical 

by descent). This pattern can be expanded to trios, etc., of nonallelic genes. 

The probability of a particular combination of an allelic pair of genes (a genotype) 

and a gene at another locus being identical by descent in two individuals is 

P(the genotypes at one locus are identical) x P(genes at the other locus are identical). 

The probability of a genotype at one locus and a genotype at another locus being 

common by descent in two individuals is P(first locus genotype is alike) x P( other locus 

genotype is alike). However, these probabilities are equal. Thus, the probability of 

genotypes being common at two loci is P(genotype in common) squared or the square of the 

dominance relationship. 

The expansion to higher order combinations can be done similarly. 

To apply these principles, only two measures of relationship are needed: 

aij' the additive or a relationship between individuals i and j which is twice the fraction of 

single genes which are identical by descent ( this will be the numerator of the coefficient of 
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relationship), and dij' the probability that individuals i and j have a genotype at one locus 

(an allelic pair of genes) identical by descent (this is called the dominance or d 

relationship). 

Many introductory texts describe how to calculate relationships by the method of 

tracing paths. That method is quick and easy for simple relationships and for few animals. 

A more powerful method described next is the tabular method (Cruden, 1949; Emik and 

Terrill, 1949). 

TABUIAR METHOD OF COMPUTING aij AND dij 

The easiest and safest method of computing additive relationships is the tabular 

method: 

1. Determine which animals to include in the table. Include all animals after the 

oldest or base generation is chosen. Put them in order by date of birth, oldest 

first. 

2. Write the names or numbers of the animals in order of birth across the top of 

the table (the columns) and along the side of the table (the rows) as shown in 

the example which follows. 

3. Write above the number of the animals the numbers of their parents, if known. 

4. Put a 1 in each of the diagonal cells of the table, such as row 1, column 1; row 

2, column 2; etc. The one is the animal's basic relationship to itself unless it 

is inbred. For the base generation animals, enter their relationships to each 

other or assume them to be zero, and if known, add their inbreeding 

coefficients to the diagonals. 
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5. Begin at the diagonal of each row which now has a 1 in it. Add to this 1, one­

half of the relationship between the animal's parents. This is the inbreeding 

coefficient which will often be zero. Compute the off-diagonal cells by rule 6. 

6. Compute entries for each off-diagonal cell of row 1 according to the rule of 1/2 

the entry for the first parent in this row plus 1/2 the entry for the second parent 

in the row. When the first row is finished, write the same values down the first 

column. 

7. Continue as before for the next rows and columns until finished, always 

remembering to do a row at a time and to put the same values down the 

corresponding column before going to the next row. 

Example 

The following is an example of the aij and dij relationships for paternal half-sibs A 

and D. 
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B-C B-E 

B C E A D 

B 1 0 0 1/2 1/2 

C 0 1 0 1/2 0 

E 0 0 1 0 1/2 

A 1/2 1/2 0 1 1/4 

D 1/2 0 1/2 1/4 1 

aBA - (1/2) (aBB + asc) - (1/2) (1 + 0) - 1/2 

aBD = (1/2) (aBB + asE) - (1/2) (1 + 0) - 1/2 

acA ~ (1/2) (acs + ace) - (1/2) (0 + 1) - 1/2 

aco ~ (1/2) (acB + acE) - (1/2) (0 + 0) = 0 

aEA = (1/2) (aEB + aEc) - (1/2) (0 + 0) - 0 

aED - (1/2) (aEB + 8 EE) - (1/2) (0 + 1) ~ 1/2 

aAA = 1 + (1/2) (asc> - 1 + (1/2) (0) - 1 

aAD - (1/2) (aAB + aAE) - (1/2) (1/2+0) - 1/4 

aoo = 1 + (1/2) (aBE) - 1 + (1/2) (0) - 1 

The dominance relationship for non-inbred animals can be found from the additive 

relationships among the parents, e.g., 
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APPENDIX TO CHAPTER FIVE 

PROOFS OF IDENTITIES FOR PROBABILITIES BY DESCENT 

A. Probability of genes identical by descent: (Malecot, 1948) 

1. Definition: Let the pair of animals, A and B, have genotypes bibj and bkbt 

representing symbollically all loci, then 

P(random pair of genes identical) = 

aAB == ~ [P(i==k) + P(i=t) + P(j=k) + P(j=t)] 
4 

2. Definition: The additive relationship, aAB = 2 a AB. 

B. Probability of genotypes identical by descent: 

1. Definition: Let As and Ao be the parents of A and Bs and Bo be the parents 

of B with genotypes bibj for A and bkb t for B, then 

P(genotype identical) = d AB = P(bibj = bkb 1). 

2. Computationally, dAB = 1/4 (aAsBs x aAoBo + aAsBo x aAoBs) for 

non-inbred animals: 

P(bibj = bkbt) = P(As contributes bi to A and Bs contributes bi=k to B) x 

P(Ao contributes bj to A and BA contributes bj = t to B) 

+ P(As contributes bi to A and Bo contributes bi= k to B) x 

P(Ao contributes bj to A and Bs contributes bj = t to B) 

But, P(As contributes bi to A and Bs contributes bi to B) 

= P(genes identical by descent for As and Bs)) = a AsBs . 

Similarly for the other probabilities. 
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Thus 

The four additive relationships can be found from the relationship table. 

C. The inbreeding coefficient, FA• is the fraction of loci with genes identical by descent for 

animal A. 

By definition, F of the loci of A have a = 1 and 1 - F of the loci have a = 1/2, 

i.e., F of the loci are of the form bibi with a = 1 and 1-F of the loci are of the 

form bibj with a = 1/2. 

1. Thus the average fraction of genes identical for A with itself is: 

a AA = P(genes identical) = (F)(l) + (1-F) (1/2) = 1/2 + (1/2)F and 

a AA = 2a AA = 1 + F, that is, the numerator or additive relationship of an 

individual to itself is 1 + F. 

2. If Sis the sire of A and Dis the dam of A, then FA = (1/2) a50 . 

Let the genotypes be bibj for A, bkbi for S, and bmbn for D. 

By definition aAA = (1/4) [P(i=i) + P(i=j) + PU=i) +PU=j)) 

= 1/2 + (1/2) P(i =j) 

Thus FA = P(i=j). 

But P( i = j) is a 50 since bi must come from one parent and bj from the other, 

1.e., P(i=j) = (1/4) [P(k=m) + P(k=n) + P( i =m) + P( i =n)] 

= aSD 

Therefore, FA = a 50 = (1/2) a50 . 
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0. The tabular method of computing relationships depends on the fact that if B has 

parents Bs and B0 , then aAB = (1/2) (aABs + aAB0 ). 

Let the symbolic genotypes be bibj for~ bkbt for Bs and bmbn for B0 . 

The possible and equally likely genotypes of B are: 

B1, bkbm; 

Bz, bkbn; 

B3, be bm; and 

B4, bebn. 

By previous definition, 

aAB = (1/4) { (1/4) [P(i=k) + P(i=m) + P(j=k) + P(j=m)] 

+ (1/4) [P(i=k) + P(i=n) + P(j=k) + P(j=n)] 

+ (1/4) [P(i=t) + P(i=m) + P(j=t) + P(j=m)] 

+ (1/4) [P(i=t) + P(i=n) + P(j=t) + P(j=n)]} 

After combining and rearranging: 

aAB = (1/8)[P(i=k) + P(i=t) + P(i=m) + P(i=n) + P(j=k) + P(j=t) + P(j=m) + P(j=n)] 

But aABs = (1/4)[P(i=k) + P(i=t) + P(j=k) + P(j=t)] and 

aABo = (1/4) [P(i=m) + P(i=n) + P(j=m) + P(j=n)]. 

Thus aAB = (1/2) (aABs + aAB0 ) and aAB = (1/2) (aABs + aAB0 ). 



CHAPTER6 

GENETIC VALUES AND GENETIC COVARIANCES 

Quantitative geneticists have followed the nomenclature of statistics and the logic of 

effects of different types of gene combinations to define several kinds of genetic effects. 

These types include single gene effects which generally are most important and effects of 

gene combinations such as a gene pair at one locus (the genotype) and a gene pair with the 

genes at different loci. The potential number of combinations of more genotypes and genes 

at separate loci is nearly infinite. In introductory texts the combinations are put into two 

groups: 1) single gene effects which together sum to breeding value or additive genetic 

value and 2) all other genetic effects which are called epistatic or interaction effects. In this 

chapter the theoretical partition of genetic effects into as many combinations as might be 

needed will be discussed, even though one type of effect is usually of primary importance, 

the additive gene effects. Two other kinds of effects have received some practical attention, 

dominance (the gene pair at one locus) effects, and additive by additive (gene pairs with the 

genes at different loci) effects. The definitions also lead directly to describing the genetic 

covariance between records of relatives with specified additive and dominance relationships. 

DEFINITION OF GENETIC VALUES 

An additive gene effect is defined as the average replacement value of that gene, i.e., 

if that gene replaces the average gene, the change in value is the additive genetic effect of 
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that gene. Thus, if two of that gene are added, the change in value will be twice the 

additive effect of adding one gene. The sum over all loci of all additive genetic effects is 

the additive genetic value, GA• of the animal. 

A dominance genetic effect is defined as the average replacement value of a 

particular gene pair at one locus as a difference from the additive genetic effects. The sum 

over all loci of all dominance genetic effects is the dominance genetic value, G0 , of the 

animal. 

An additive by additive genetic effect is defined as the average replacement value of 

a pair of non-allelic genes--the specific effect of a gene from one locus and a gene from 

another locus as a difference from the additive genetic effects of the genes. The additive 

by additive genetic value, G AA• of an animal is the sum of all specific effects of non-allelic 

gene paus. 

An additive by dominance gene effect is defined as the average replacement value 

of a gene at one locus and a gene pair (genotype) at another locus as a difference from the 

additive, dominance, and additive by additive genetic effects. The sum of all such effects 

is the additive by dominance genetic value, GAD• of an animal. 

Similarly, higher order genetic effects can be defined, e.g., additive by additive by 

additive and additive by dominance by dominance. These different types of genetic effects 

are defined to be independent and to have average values of zero in an unselected 

population. 

The total genetic value of an animal is the sum of the various genetic values: 

G = GA + G0 + G AA + GAD + G AAA + • • • 
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If these values could be measured separately, variances for each could be computed 

as for any other variable. Whether or not they can be measured, a variance can be 

hypothesized for each kind of genetic value. In fact, since the various genetic values are 

defined to be independent, total genetic variance is the sum of the variances of the 

component genetic values: 

2 2 2 2 2 2 
aG = aGA + aGD + aGAA + aGAD + aGAAA 

A simpler but less symbolic notation for the components of genetic variance is based 

on a~ where i refers to the number of single nonallelic genes and j refers to the number 

of allelic pairs (genotypes) contributing to the genetic effect. This notation is summarized 

as follows: 

Gene action Contribution to genetic variation 

sum of effects of 

single genes: a1, a3, b1, b10, etc. 

allelic pairs: a 1 a2 , c1 c5 , etc. 

single genes and allelic pairs: 
a1 b 1 b2, c1 d5d6, etc. 

two allelic pairs: 
a1a3b4b6, c1c2b2b3, etc. 

in general 

symbols 

2 
alO 

2 
0 01 

2 
0 20 

2 
all 

2 a .. 
lj 

Total genetic variance can then be written as: 

2 2 2 2 2 2 2 
a G = _"E.. "E. a i • = a 10 + a 01 + 0 20 + a 11 + a 02 

1+pO J 

jargon 

additive genetic variance 

dominance genetic variance 

additive by additive 

additive by dominance 

dominance by dominance 

where i refers to number 
of nonallelic genes 
acting together with j 
allelic pairs 
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GENE EFFECTS IN COMMON BY DESCENT 

Since there are two additive genetic effects at each locus, the fraction of additive 

gene effects in common for relatives A and B is the additive or numerator relationship, 

aAB, which equals twice the probability that a random gene from animal A is identical by 

descent to a random gene from relative B at a single locus. The appendix to this chapter 

contains a more mathematical explanation for using a AB rather than a AB/2 to describe 

additive effects in common by descent. 

The fraction of dominance effects m common will be d AB which equals the 

probability of genotypes identical by descent or equivalently the fraction of loci with 

identical genotypes for relatives A and B. 

Similarly, ah is the fraction of additive by additive genetic effects in common and 

a ABd AB is the fraction of additive by dominance genetic effects identical by descent. 

In general, ( a ABi( d AB~ gives the fraction of genetic effects in common by descent 

due to i non-allelic genes acting together with j allelic pairs (genotypes). 

GENETIC COVARIANCES BE1WEEN RELATIVES 

Genetic covariance between relatives depends on the fraction of different kinds of 

genetic effects which are common by descent. In fact, covariance due to additive gene 

effects in common is aABaio -- the product of the fraction of additive effects in common 

and additive genetic variance. Covariance due to common dominance effects is d ABa5 1; 

that due to additive by additive effects is a ha~ 0 and that due to additive by dominance 

effects is aABdABaf 1. These and others are summarized as follows: 
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Contribution to genetic covariance between individuals. 

Genetic components 
2 

0'10 

2 
0 01 

2 
0 20 

2 
0'11 

2 
0'02 

2 
0 12 

2 
O'•· 

1] 

Contribution to covariance 
between individuals A and B 

1 2 
(aAB) 0 10 

1 2 
(dAB) 0 01 

2 2 
(aAB) a20 

(aAB)l(dAB)l ail 

2 2 
(dAB) 0 02 

( a AB) 1( d AB)2 
2 

0 12 

for i = 0, ... , n; j = 0, ... , n with n loci, also i + j must be > 0 and i + j ~ n 

The total genetic covariance is the sum of the parts, that is, 

In summation notation the total genetic covariance can be written as 

i • 2 aa A GB = r: r: (a AB) (dABY O'·· • 
i+j>O IJ 

The subscripts of the genetic variance components correspond to the superscripts of 

the additive and dominance relationships. When j == 0, ( d AB~ = 1 for any d AB and when 

dAB = 0, (dAB)O = 1 but (dAB)1 = 0, etc. These simplifications are illustrated in the 

coefficients in the column for contribution to covariance between individuals. An important 

point is that as i increases, the coefficients of the higher order genetic components of 

variance decrease. Thus even if a~0 is large, the contribution to likeness by that 

• 2 
component, (aAB)1aiO, will be small if i is very large. For example, with aAB = 1/4 
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and i = 3, ah = 1/64 is the coefficient for variance due to additive by additive by additive 

effects as compared to the coefficient of 1/4 for variance due to additive genetic variance. 

EXPECTED VALUES TO SHOW CONTRIBUTION TO GENETIC COVARIANCE 

As shown in Chapter 1, the average or expected value of the product of two 

variables, ~ and Yi• is written E(~yi). If E(~) = 0 is the average of variable X, then 

E(~Yi) = axy. Similarly, E(xf) = a;, E(laq) 2 = k 2a; where k is a constant and 

This principle will be applied to the example of genetic covariance between relatives 

X and Y for only three kinds of genetic effects but this example will illustrate how the 

overall genetic covariance between relatives is determined. 

Let Gx = GAx + Gox + GAAx If Y is related to X, then a fraction of 

these gene effects also appear in Gy. Then write 

Gy = GAy +Goy+ GAAy 

2 
Gy =axyGAx +other GAy +dxyGox +other Goy +axyGAAx +other GAAy. 

The other genetic effects are due to genes from other sources and Mendelian sampling and 

are independent of the effects in common with Gx. 

Since the genetic effects are defined to be independent with zero means, then 
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Next, substitute for Gx and Gy, expand, and take expectations of the parts: 

0 GxGy = E[(GAx)(axyGAx)] + E[(GAx)(other GAy)] + E[(GAx)(dxyGox)] + 

2 
E[(G Ax)(other Goy)] + E[(G Ax)(axyG AAx)] + E[(G Ax)(other G AAy)J + 

E[(Gox)(axyG Ax)l + E[(Gox)(other G Ay)l + E[(Gox)(dxyGox)1 + 

2 
E[(Gox)(other Goy)] + E[(Gox)(aXYG AAx)] + E[(Gox)(other G AAy)] + 

E[(GAAx)(axyGAx)] + E[(GAAx)(other GAy)] + E[(GAAx)(dXYGox)] + 

2 
E[(G AA X)( other Goy)] + E[(G AA X)(axyG AA X)] + E[(G AA X)( other G AA y)] . 

After factoring constants outside the expected value operator, then according to the rules 

for expected values: 

2 2 
= axyaGA + 0 + 0 + 0 + 0 + 0 + 0 + 0 + dxy aGo + 

2 2 
O + O + 0 + 0 + 0 + 0 + 0 + a XYa G AA + 0 . 

The zero terms come from independence of genetic effects and the lack of genetic 

effects in common between terms such as (G Ax) and (other G Ay)· 

Example one: The contribution of all genetic components up to second order (i + j = 2) 

interaction components to the likeness between records of a parent (X) and its progeny (Y). 

1 The relationships are: axy = - and dxy = 0. 
2 

Therefore: 

Thus: 

a 1 2 1 2 2 
GxGy = (2) alO + (2) a20. 

(Note that (O)O = (N)O = 1 for any number (N), but that (O)N = O for N > 0.) 
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Example Two: The genetic covariance between full sibs, X and Y. 

1 1 
Because axy = 2 and dxy = 4 , 

then 

Although full sib pairs and parent-progeny pairs have the same additive relationship the 

likeness (genetic covariance) will be greater between full sib pairs than parent-progeny pairs 

if dominance effects, dominance by dominance effects, and additive by dominance effects 

contribute to genetic variation. 

ESTIMATION OF GENETIC VARIANCES 

These two examples also indicate how the components of genetic variance may be 

estimated. Covariances between pairs of relatives are computed and equated to their 

theoretical composition. In general, as many covariances as theoretical components are 

necessary. In the above two examples, only two components could be estimated but not 

oyo and o~o together since both the parent-progeny and full sib covariances have the same 

expectation for those components. Usually or 0 and 05 1 would be estimated for this case. 

Note that the other components usually must be assumed to be zero. 

For example, suppose that Cov(full sib one, full sib two) = 50, and also that 

2 2 2 
Cov(parent-progeny) = 40. Assume 0 20 = 0 02 = a11 = 0. 

Then, 

1 2 1 2 
50 = (2) 010 + (4) 001 

1 2 
40 = ( 2) 010 

Thus, estimates are oio = 80 and a-~1 = 40. 
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In general, for a random mating population, the additive fraction of genetic 

2 
variance, a 10, is about all that can be used for selection gains. Selection for gene 

combinations is ineffective because the contribution to descendants drops by a AB with each 

2 
generation. The usual goal is to select for additive merit--the part that contributes a 10 to 

genetic variance and the most to covariances between relatives. 

DEFINITION OF HERITABILI'IY 

2 2 2 2 
Heritability in the "broad sense" is defined as a0 /(a 0 +aE) where a0 is the total 

genetic variance, !:!: a~, and a~ is the variance due to non-genetic effects ( environmental 
ij lJ 

effects). 

2 2 2 2 
Heritability in the "narrow sense" is defined as a 10/(a 0 +aE) where a10 is the 

additive genetic variance and a~ + a~ is the total or phenotypic variance which is the 

total genetic variance plus the environmental variance. This form of heritability, sometimes 

called additive heritability, will be used again and again when methods of selection for 

additive genetic value are discussed. 
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APPENDIX TO CHAPTER SIX 

WHY aAB DESCRIBES GENETIC COVARIANCE RATHER THAN aAB/2 

2 
1. Additive Genetic Variance, a 10 

Consider one locus only. 

Let 

Then 

a·+ a·= GA 
1 J 

a•, + a-, = G8 1 J 

GA is additive genetic value of animal A due to 

effects ai and aj of genes ai and aj 

GB is additive genetic value of animal B due to 

effects ai' and aj' of genes ai' and aj' . 

COY (GA GB) = E(a•Ch + a-a•, + a•a•, + a•a•,) 
' 11 lJ Jl JJ 

But E(a~) = a2 for all m and E(amam,) = 0 

for all m -=f m'. 

Thus COY (GA,GB) = a2[P(i=i') + P(i=j') + P(j=i') + P(j=j')] 

but 

Thus 

= a2 [4P (random genes of A and B are identical by descent)] 

= a2 [4 (1/2)aAB] 

= a2 [2aAB] , 

2 2 2 
a 10 = E[G A] = E[ai + aj] 

2 2 
= E[ ai + aj + 2aiaj] 

= 2a2 + 0 since E(aj) = 0 

2 
alO = a2 

2 
and 

0 unless inbred. 

2 
alO 
2 (2a AB) = a AB'1.~- This procedure may be 

extended to many loci. 
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Consider the minimum of two loci and let ( aB)mn be the additive by additive effect 

of the m1h gene from the "a" locus and n1h gene from the "b" locus. Let the additive values 

of animals A and B be 

G lO,A = ai + aj + Bk + Be and 

G10,B = ai' + aj' + Bk' + Be, • 

Then let the corresponding additive by additive effects be 

Gzo,A = (af3)ik + (a13)ie + (aB)jk + (aB)je and 

G20,B = (af3)i'k' + (af3\•e• + (aB)j'k' + (aB)j'i' . 

Then COVzo(A,B) = (a13)2[P(i=i')P(k=k')+P(i=i')P(k= e.')+P(i=j')P(k=k')+P(i=j')P(k= e.') 

+ P(i=i')P( R. =k')+ P(i =i')P( e = e')+ P(i =j')P( e =k') + P(i =j')P( e = e') 

2 
But a20 

Therefore 

+ P(j = i')P(k = k') + P(j = i')P(k = i ') + P(j = j')P(k = k') + P(j = j')P(k = t ') 

+ P(j = i')P( e. = k') + P(j = i')P( e. = e ') + P(j = j')P( R. = k') + P(j = j')P( R. = i ')] 

= ( aB)2[P(i = i') + P(i =j') + P(j = i') + P(j = j')] 

x[P(k = k') + P(k = e. ') + P( e. = k') + P( R. = e ')] 

= (aB)2[4P(genes identical)x4P(genes identical)] 

= ( aB )2[ (2a AB)(2a AB)] 

= E[(G 20 A)2] = 4(aB)2 so that a~0/4 = (aB)2 
' 2 

0 20 cov20(A,B) = - (4~) = aisa~ 0 when all terms are evaluated. 
4 



CHAPTER 7 

THE SELECTION INDEX 

The basic problem in obtaining improvement through breeding is to choose animals 

that have the greatest genetic value to be parents of the next generation. The simplified 

model for a record, Pi, on animal i poses the problem: 

p. = µ. + G· + E-
1 1 l ' 

where µ. is the population mean, a constant, which may represent other fixed factors that 

influence Pi; Gi is the effect on Pi due to the animal's complete genotype, and Ei is the 

effect of the environment on Pi and is the effect that masks the evaluation of Gi. As was 

demonstrated earlier, only additive genetic effects have much chance of being transmitted 

over many generations. However, often Gi can be safely assumed to be due only to additive 

genetic effects. 

The problem is to maximize the average of G of the selected group, µ.Gs• where µ.G 

is the average G of the total group, i.e., 

Genetic improvement per year under normality and other assumptions, as will be derived 

later, is: 
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where .6.G is the genetic improvement per generation; ru is the correlation between the 

true additive genetic value and I, the index prediction of it; D is a factor related to selection 

intensity (value of O with no selection and a value of about 3 for selection of the top one­

half percent); a G is the genetic standard deviation, and Lis the generation interval in years 

defined as the average number of years between birth of parents and the birth of 

replacement offspring. The four parts of the key equation for genetic improvement will be 

discussed separately. 

What is a selection index estimate of genetic value? This question is, perhaps, best 

answered by an example. 

Suppose several animals each have three relatives with records; (X 1, X2, and X3). 

Relatives are known to have genetic effects in common by descent. Thus, the record of 

each relative should tell something about the genetic value of the animal being evaluated. 

A logical way to put the information together is to weight each record by its relative 

importance, i.e., estimate Gas I = b1 x1 + b2X2 + b3X3, where the b's are the appropriate 

weights and the X's are known records of the three relatives. The selection index prediction 

of true genetic value is I. The records are adjusted for any fixed factors such as µ, 

i.e., xi = Pi - µ,. 

WHAT SHOULD THE WEIGHTS (b's) BE? 

Some desirable properties of the index to predict some true value, T, should be: 

1. To minimize errors of prediction which is the average or expected squared 

difference between T and its predictor, I, i.e., MINIMIZE E(T-1)2. 
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2. To maximize rn, the correlation between true value and prediction of true 

value; this correlation is often called accuracy of prediction of T. 

3. To maximize the probability of correctly ranking the animals, and 

4. To maximize average true value of the selected group. 

The selection index procedure which will be described satisfies properties 1 and 2 and 

satisfies properties 3 and 4 if the records of relatives, the X's, and T, the true value, follow 

a multivariate normal distribution. These procedures were developed from work by Sewall 

Wright, Jay Lush, and C. R. Henderson. Henderson proved many of the properties. Most 

of the development that follows was taught for many years by C. R. Henderson at Cornell 

University, beginning in 1948. 

METHOD OF FINDING h's 

The general linear index is I = b1X1 + b2X2 + • • • + bNXN for predicting some 

true value, T, which often is, but is not necessarily, additive genetic value. The goal is to 

maximize rn, Maximizing the logarithm of rn, log (r11), is equivalent to maximizing r11 

but is easier to accomplish. Note that: 

log (rn) = log (aTI) - (1/2) log (of) - (1/2) log (ay). 

The rules for finding variances and covariances of linear functions (see Chapter 1) 

will give a11 and ay in terms of the unknown h's and known variances and covariances. 

Note that at is a constant and does not contribute to the equations. 

011 

2 
al 

= b10TX1 
2 2 

= bl aXl + 2b1b20X1X2 + ••• + 2b1bNaX1XN 

2 2 
2b2b3ox2X3 + ••• + bNaXN . 

2 2 
+b2aXz+ 
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These expressions are then substituted into log (rn), and the partial derivatives of log (rn) 

with respect to each of the h's are set equal to zero, i.e., 

2 
61 ( ) b1ax1 og rn = ax1T -

ob1 

+ ••• b1 ax1XN + bzaXzXN = axNT - ----------------an 2 
al 

= 0 

Rearrangement of these equations gives the selection index equations ( except for a 

constant, k = ay/an, on the right hand sides of the equations) which define the unknown 

selection index weights, the h's: 
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Some important points to notice about these equations are: 

1. The constant, k = ay/a11, will not change the relative sizes of the h's or the 

r11 so k can be set equal to 1, which as will be shown, will result in the same 

h's that minimize squared prediction error. In fact, when squared prediction 

. . .. d 2 error 1s mmmuze , a 1 = an. 

2. The equations are symmetrical, i.e., the coefficients of the unknown h's are the 

same in each column as the corresponding row. See, for example, the 

coefficients (the covariances) in row 1 and in column 1. 

3. The equations are similar to multiple regression equations except that the true 

variances and covariances are assumed known and replace the sums of squares 

and products used in multiple regression. 

4. If squared prediction error, E(T-1)2, is minimized, the same equations are found 

except that the constant, ay/a11, is not a multiplier of the right-hand sides of 

the equations. 

Average squared prediction error is 

2 2 The constants µT and J.LJ will not change differences in the I's. Thus, aT, a 1, and an can 

be expressed in terms of linear functions of the h's as for maximization of r11. Usually J.LT 

and µ 1 are assumed to equal zero. The partial derivatives of at + ay -2an with respect 

to b1, h2 • • •, hN equated to zero provide the following equations which define the b's 

which minimize prediction error squared and also maximize rn: 
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2 2 
6(a 1 + aT - 2an) 

= 0: 
2 

b2aX1X2 bNaX1XN b1ax1 + + •.. + = ax1T 
ob1 

. • • . 
. 

2 2 
6(a1 + aT - 2an) 

b10XNX1 bzoXNXz 
2 = 0: + + ... + bNaXN = axNT 

6bN 

These equations are the same as for maximizing ru when ay/an is set equal to unity. In 

this derivation, ay = aTI automatically as shown in the appendix to this chapter. 

OTHER PROPERTIES OF THE SELECTION INDEX 

1. The correlation between the index and true value is: 

The rules for expected values show: 

If an index is not the selection index, the definitional form of the correlation must be used 

to obtain accuracy: 

rn=an/fafaf, 

where aTI and ay can be calculated using expected values. 

If the index is the selection index, the definitional form of the correlation reduces to: 

~ an/ai because ay= aTI. 
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2. Because I = :Ebi~ and the ~ are variables, then the index values will also be 

variable. In fact, if I is the selection index: 

(]2 _ r2 a2 
1- TIT· 

This expression shows that ay corresponds to variation in T that is accounted for by I. 

When I is not the selection index: 

3. The variance of prediction errors (average squared difference of T from I) is: 

This expression corresponds to the variation in T not accounted for by I. 

When I is not the selection index, the variance of prediction errors must be 

calculated from expected values: 

4. The average of true values for animals with index value 10 is: 

With this property, the selection index procedure is unbiased. 

5. Intuitively, animals with the same index value would be expected to have 

different true values. In fact, the variance of true values for animals with the same index 

value, 10 , is: 

These properties will be used later to make probability statements about the true 

value of an animal with a certain index value. If I is not the selection index, r11 must be 

calculated from E(TI), E(l 2), and af. 
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APPENDIX TO CHAPTER SEVEN 

DERIVATION OF SELECTION INDEX WITH MATRIX ALGEBRA 

Let x be the information vector: 

T may be a true value for a trait, or, e.g., T may be a combination of a vector of 

genetic values, g, for several traits weighted by a vector of economic values, v, i.e.: 

T = v'g. 

T is to be predicted from a linear function of x; that is, each Xj is weighted by some 
A 

factor bi so that T = I = b'x. With no loss of generality, the Xj can be assumed to have 

zero means, i.e., have been adjusted for fixed effects such as µ.. The variance-covariance 

matrix of x is E(xx') = P. 

Then: 

ay = E[b'xx'b] = b'E[xx']b = bPb' . 

With T, the scalar variable to be predicted, aTI = E[Tb'x] = b'E[Tx] = b'c where 

c is the vector of covariances between the Xj and T, e.g.: 

Squared prediction error is: 

at + ay -2an = at + b'Pb - 2b'c. 
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To minimize squared prediction error, partial derivatives are taken with respect to b and 

equated to zero with rules for derivatives of matrices and vectors (Searle, 1982): 

Thus 

so that 

o(ai + b'Pb - 2b'c) 

ob 

o(b'Pb) 
ob 

o(b 'c) 
ob 

2Pb - 2c = 0 and Pb = c 

= 0, where by parts; 

= 0, because a:Y, is a constant; 

= 2 Pb and 

= C. 

For an animal with information vector, x, the index is: 

I= b'x. 

With the identity, b = p-lc, 

ay can be rewritten as : 

ay = b'Pb = c•p-lpp-lc = c'P-1c = b'c. 

The last expression in the series of equalities is the easiest to calculate. 

Similarly, aTI = b'c so that the correlation between I and Tis: 

rTI = aT1f(ayaf).5 = b'c/[(b'c)(ai)]' 5 = ~ b'c/a;,. 
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If derivation of the selection index equations is from maximizing r11 = a11/(ayaf)· 5, 

the logarithm of r11 is easier to work with. By remembering that 

c5[log(x)] ::; (I) c5(x), then the parts of 
6(y) X o(y) 

2 2 
c5[log(an) - .5 log(a1) - .5 log(aT)] 

ob 

can be differentiated separately as follows: 

o(b, c) 

Thus 

ob 

o[.5 log(b 'Pb)] 
ob 

= 0 

= c(l/an) 

2 
= Pb(l/a 1) and 

= 0. 

c(l/a 11) - Pb(l/ay) = 0 and Pb = c(ay/a 11) . 

If the constant, ay / a11, is set equal to 1, the equations are the same as for minimizing 

prediction error squared. A constant other than one could be chosen but would not change 

ranking by the index and would not change the r11. The calculations foray and a11 would, 

however, be different. 
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DETERMINING THE COEFFICIENTS FOR 

SELECTION INDEX EQUATIONS 

In matrix form, the selection index procedure is quite simple; an inversion and a 

matrix by vector multiply to solve for the weights, one vector by vector multiply for the index 

and another vector by vector multiply if accuracy or prediction error variance is wanted. 

These steps were shown in the appendix of Chapter 7. With or without matrix algebra, 

however, the difficult part of selection index procedures is to determine the numbers 

( coefficients in selection index jargon) that go into the left-hand sides (LHS) and right-hand 

sides (RHS) of the equations that must be solved to find the weights (h's) for the records 

(X's). This chapter will utilize expected values to determine these coefficients from a few 

genetic parameters, such as heritability (h2), repeatability (r), numbers of records for the 

different relatives, and the numerator relationships. 

The Xi used in the selection index are often averages of records. The variance of 

an average depends partly on the covariance between records making up the average. Such 

covariances will be between records on the same animal or between records on relatives 

such as paternal half-sibs. An important step in finding the variance is to determine the 

covariance between records in the average. 

87 
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MODELS FOR DETERMINING COVARIANCES BE'IWEEN RECORDS 

Traits that can be measured only once can be represented by the model: 

p. = G· + E· l I I 

where Pi is the phenotypic record adjusted for fixed effects such as the overall mean, 

Gi is the total genetic value, and 

Ei is the total of all environmental effects. 

The covariance between records on relatives i and j can be determined by expected 

values: 

Cov(Pi,PJ·) = E[(Gi + Ej)(GJ· + EJ·)] = aG·G· + aE·E·, 
l J l J 

under the usual assumption of no covariance between genetic and environmental effects. 

2 2 
Note that aGiGj = aija 10 + dija 01 + as developed in Chapter 6. 

For convenience of notation, the covariance between environmental effects on 

records of relatives i and j will be defined as: 

2 
aEiEj = CijOx 

where a~ = ai is the total or phenotypic variance. Thus, if only additive genetic effects 

are involved: 

Then 

Even if other genetic effects are involved, this expression is often a good approximation for 

the phenotypic covariance. 
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Multiple measurement traits are those that allow repeated records, as for example 

a first milk lactation, a second milk lactation, etc. The model for such records is: 

where 

P • • = G· + PE· + TE·· 
lj 1 1 IJ ' 

Pij is the jth phenotypic record of the ith animal adjusted for the mean and 

other fixed effects, 

Gi is the total genetic value, 

PEi is the total of all permanent environmental effects which affect each record 

the animal makes, and 

TEij is the total of all random temporary environmental effects which affect 

only the jth record of animal i. 

This model may be an over-simplification of the true model for some multiple 

measurement traits but is often a reasonable approximation. 

Because Gi and PEi repeat in every record of the animal, this is sometimes 

called the repeated records or repeatability model and sometimes the animal model. The 

sum of all permanent effects of the animal can be denoted as the animal effect: 

Repeatability, r, is defined as the fraction of the total variance which is due to animal 

effects: 

Note that CJ X = rn¾, an identity that is often useful. 
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The covariance between two records on the same animal is al = ra¾ and can be 

determined with expected values: 

under the assumption of zero covariances between animal effects and temporary 

environmental effects and between temporary environmental effects. Now the variance of 

an average which is the most important coefficient of the LHS's can be developed. 

THE VARIAN CE OF AN AVERAGE 

Let Xi be the average of ni records: 

Xil + + Xin· 
I 

xi=-------
ni 

If E(XTj) = a¾ for all i and j (that is, all records are from a distribution having the 

same variance) and if E(Xij~j') = aX'X for all j ~ j'; that is, all pairs of records with a 

common i subscript have the same covariance, then: 

= 

= 

~ E [xii + -~i + Xin{ 

2 
niax + ni (ni-l)aX'x 

2 n. 
1 

2 
aX + (ni-l)aX'X 

n· 1 



Coefficients 91 

In the following paragraphs when ~ is the average of records on the same animal, 

aX'X is the covariance between records on the same animal so that 

2 
ax•x = rax. 

When Xi is the average of single records on a group of equally related relatives (with 

additive and dominance relationships, aii' and dii' ), then aX'X is the covariance between 

records of any pair of relatives i and i', each contributing a record to the average so that 

2 
0 x·x = 0 G iGi' + Cii•O"x ' 

the sum of the total genetic covariance and the environmental covariance. 

2 2 If a G ·G., = ai i, h ax ( only additive genetic effects contribute to the genetic 
l 1 

covariance), then: 

2 2 ax•x = (a .. ,h + C" ,)a 11 11 X • 

COVARIANCE BETWEEN AVERAGES 

The covariance between averages is often equal to the covariance between any record 

in the first average and any record in the other average. Expected values can be used to 

determine when this is true. Let Xik be a record from average 

xi 1 + + Xin· 
X· 

l = 
l n. 

1 

and ~ .e be a record from average 

xjl + ... + Xjnj 

~ = 
n· J 
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If E(~k~t) is the same for all k and t, then the expected value shows that in the 

numerator of 

there are ~°j expected values with the same expectation, E(XikXj.e), and that the 

denominator is I½°j . Thus, if a representative record from Xi is Gi + Ei and a 

representative record from ~ is Gj + Ej , then 

Cov(Xi,Xj) = E[(Gi + Ei) (Gj + Ej )] 

2 
= aaiGj + CijGx • 

SUMMARY OF VARIANCE OF AN AVERAGE 

then 

1) If~ is the average of records on animal i, then aX'X = rai, 

2) If ~ is the average of single records of relatives of type i, 

2 
ox•x = oa ·G ., + Ci i •Ox' and 

I 1 

3) 

then also 

If ~ is the average of 1½ records on each of Pi relatives of type i, 

2 
ax•x = aG·G·, + cii'aX. 

1 1 

The derivation of the variance of an average of averages can be done with expected 

values using the often correct property that the covariance between averages is the same as 

the covariance between a record from one average and a record from the other average. 

Let~ = 
Xi 1 + ••• + Xip· 
------_..;;.~ 1 where 

Pi 

~j is the average of 1½ records on each animal j in relative group i. The number of animals 

in group i is Pi· 
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Then 

"~i • E [ X; 1 + '~i + Xi Pi r . [-(X_1_· 1_)2_+_•_·_•_+ _(X_P
1

-'.f--=-i)_2_+_a_ll_p_ro_d_u_ct_s] 

P ·V(X··) + p·(p·-l)Cov(X .. 5( .. ,) 
1 lJ 1 1 IJ' IJ ::: 

2 
Pi 

= 
Pi 

4) This formula allows calculation of the variance of the average of any number 

of animals, each with any number of records using just a few parameters, i.e., variances do 

not need to be estimated for all combinations of number of animals and number of records 

from sets of data if the assumptions are correct for the previous derivation. 

THE RIGHT HAND SIDES 

The selection index weights (h's) depend primarily on the variances of the averages 

and RHS's of the equations to find the selection index weights. If a~i' axixj' and 

ax •T are known for all i and j, the equations to find the appropriate weights for the 
1 

index can be set up easily; a~i and axixj can be estimated or derived as shown and do 

not depend on what is being predicted. The RHS's, ax •T• however, are the covariances 
1 

between what can be measured, the ~. and T, something that cannot be measured or seen. 

Therefore, ax ·T must be computed indirectly. If selection is for additive genetic value, 
1 

"XiT = aia"Io where aia is the additive relationship between the relative with record 
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Xi and the additive genetic value, G Aa, of the individual a that is to be evaluated. 

The additive genetic variance is ay0. The RHS is the portion of the genetic 

covariance between relatives i and a that is due to additive genetic effects in common. 

Recall that ay0/ a~ = h2, heritability m the "narrow sense". Thus, 

2 2 2 2 2 
a10 = h aX and axiT = aiah aX. 

Although the usual case is to select for additive genetic value the selection index is 

more general and can be used for most possible definitions of T, the true value to be 

predicted. The only part of the selection index equations to find the weights that changes 

when Tis redefined are the right-hand sides, the axiT· Of course, a{ changes and other 

parameters that depend on a{ and the RHS's will also change. Expected values and simple 

models can be used to find axiT and at- The expected values will be demonstrated for 

several definitions of T, including the usual one where T is additive genetic value. To 

simplify the expected values, all variables will be assumed to have zero means, although, as 

stated earlier, variances and covariances are not affected by the means. 

Case 1. T = GA , additive genetic value for animal a. 
a 

Let ~ be a representative record included m Xi with model 

Y. = G· + E· or Y. = G· + PE· + TE• where G· can also be separated •1 I I •1 1 1 I' 1 

into additive, dominance, additive by additive genetic values, etc; PEi is 

the permanent environmental effect on all records of animal i; and TEi 

is a temporary environmental effect on a specific record of i. 

Then, ax•T = E(XiGA ) = E[(Gi + Ej)(GA )] 
1 a a 

= E(GiGA ) + E(EiGA ) 
a a 

2 
0 ' = aiaa 10 + 
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unless a nonzero genetic by environmental covariance exists. Thus, the 

right-hand sides of the selection index equations will be 

2 h22 h 2 ·h h •• f aiaa 10 = aia ax, w ere ax 1s t e p enotyp1c variance o 

individual records. If ~ is a record on animal a (i=a), then 

aia = 1 + Fa· 

2 2 2 2 2 
Similarly, aT = E(GA ) = aaaa 10 = (l+Fa)h ax ifaisinbredand 

a 

T = Aa = Ga + PEa, real producing ability of animal a. 

If i = a, ax •T = E[(G
0 

+ PEa + TEa)(Ga + PEa)l 
I 

2 2 2 2 'f • b d = a0 + aPE = a A = rax, 1 not m re . 

If i * a, ax •T = E(Gi + PEi + TE iHGa + PE 0 )] 
I 

= E(GiGa + E(PEiPEa) 

= aG·G + aPE·PE which is the 
1 a I a 

total genetic covariance plus permanent environmental covariance that 

sometimes is assumed to be zero but is not necessarily so, e.g., for 

littermates. For all i * a, and at = ai 0 , the RHS's will be the same 

as for predicting additive genetic value and if a has no records, the index 

weights and index will be the same as for predicting additive genetic 

value. However, a:Y, will be different; 

2 2 2 2 
E(A

0

) = E[(G
0 

+ PE
0

) ] = a A = aG 

inbred. Recall that repeatability or the correlation between records on 
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Case 3. 

Case 4. 

the same animal is defined as : 

T = Go , dominance genetic value. 
a 

2 2 2 
aT = E(Go ) = aOl 

a 

T = GA + Go , additive plus dominance genetic value. 
a a 

2 2 = a 10 + a01 , if not inbred. 

Case 5. T :;; Ga• overall genetic value. 

Case 6. 

+ ••• 

+ • • • , if not inbred. 

If Ga = GA , then case 5 is the same as predicting additive genetic 
a 

value as in case 1. 

T = (1/2)G A , the average part of additive genetic value that is 
a 

transmitted to progeny--transmitting ability. Transmitting ability is usually 

reported by most national dairy and beef sire and cow evaluations under 

such names as expected progeny difference (EPD), predicted difference 

(PD), and predicted transmitting ability (PTA or ETA). 



Case 7. 

C oe.fficients 97 

ax•T = E[(Gi + Ej)(l/2)(GA )] = (1/2)E[(Gi + Ej )(GA )] 
I a a 

2 
= (1/2)aiaarn 

Thus, because all RHS's are one-half those for predicting additive genetic 

value, the index weights and index will only be one-half as large as when 

predicting additive genetic value. The variance of T is: 

2 2 2 2 2 
aT = E[(l/2) (GA)]= (1/4)E(GA) = (1/4)am>:al0 

2 a a 
= (1/4)a 10 for Fa = 0. 

Thus, the rn will be the same as for predicting additive genetic value. 

These first six definitions show the flexibility of the selection index if T 

can be defined. In the following cases, there is more difficulty in 

determining exactly what T is. 

T = Pa = Ga + Ea = G0 + PE 0 + TEa, a future record (this is 

probably what most breeders think is happening in cases, 1, 2, and 5). 

If i = a ( animal already has a record, e.g., record Pa 1 and want 

to predict from this record, record P a2), 

ax•T = E[(Ga + PE 0 + TE 0 1)(G 0 + PE 0 + TE 0 2)] 
1 

2 2 2 
= 0 G + 0 PE = rax, 

if not inbred. 

If i ,.. a, 

aX·T = E[(Gj + PEi + TEj)(Ga + PE 0 + TEa)] 
1 

= E(GiGa) + E(PEjPEa) + E(TEjTE 0 ) 

= Cov(GiGa) + Cov(EjEa). 
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The two environmental covariances sometimes can be assumed to be zero. 

The first term is the total genetic covariance and not just the covariance 

due to additive genetic effects. These right-hand sides and index weights 

are the same as for predicting real producing ability if E(TEiTEa) = 0. 

However, Gf is different; 
2 2 2 2 2 

GT = E(Ga + PEa + TEa) = GG + GPE + GTE 

the total or phenotypic variance of single records. 

Case 8. T = average of records of m future half-sib progeny of some sire 

Because the covariance between averages and between individual 

records is the same in this case, let 

Pa = G0 + Ea be a representative record in T; then 

GX·T = E[(Gi + Ei)(Ga + Ea)] = GG·G 
l l a 

( = aiaGio if Ga = GAa). 

However, 2 
2 I:(Gi + Ei) 2 aX + (m-l)Gx•x 

GT = E{ [---] } = -----
m m 

where GX'X is the covariance between pairs of records in the average T. 

This term can be evaluated as before and will have one or more genetic 

components and possibly an environmental covariance, 

GG·G·, + aE·E·,, 
l 1 1 1 

in which the genetic plus environmental covariance between i and i' are 

both included. 
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Case 9. T = average of records of an infinite number, co , of future half-sib 

progeny of some sire. 

ax ·T is as in ( case 8), but 
1 

2 2 2 
aT = (ax/m) + [(m-1) aX'x/m] and as m-+ co, aT-+ aX'X 

where 

0 x•x = 0 GiGi' + aEiEi' • 

When m = co, this case is the same as predicting (1/2)(G A ) of a sire 
Q 

Case 10. T = average additive genetic value of m or oo future half-sib progeny, 

(LGA . )/m. 
O:J 

axiT = aiaaio as in (case 8), and 
2 2 2 2 

aT = E{ [(:EGAa:)/m] } = [a10 + (m-l)a 00 1a 10]/m 

because ay0 is the variance of additive genetic values and 

the covariance between additive genetic values of a and a:', a 

• • • h "" 2 2 F representative pair m t e group. ~ m -+ oo, aT -+ aa:0 •a 10 . or 

noninbred half-sib progeny, aaa:' = 1/4 and at = (1/4)ay 0 as in case 6 

when predicting (1/2)(G A ) . In case 10, a: refers to a progeny 
sire 

group, and in case 6, a: designates a particular sire that has the progeny. 

These examples illustrate the power of the selection index method; T can be almost 

anything, even, for example, difference in additive genetic value between animals or linear 

functions of genetic values. The absolute necessity of clearly defining what T is should be 

clear. Precise definition of T would avoid much confusion. 
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AVERAGE OF RECORDS OF A SINGLE RELATIVE 

If ~ is the average of 11i records on an animal, then the variance of the average can 

be found as a function of variances and covariances of the records going into the average. 

If, as often is nearly true, the variance of first records equals the variance of second records, 

etc., and the covariances are all equal, then 

2 2 (1 + (ni-l)rl 
ax. :;:: ax ----- ' 

1 n i 

where a~ is the variance associated with single records and r is repeatability. Thus, the 

diagonal coefficient of the selection index equations to find the selection index weights is: 

2 (1 + (ni-l)rl 
ax----. 

n· 1 

Each off-diagonal coefficient is the same as the covariance between a single record of one 

animal and a single record of another relative. 

If, however, the only reason for likeness between relatives is common additive genetic 
2 2 2 

effects, then the off-diagonal coefficients are of the form axixj = aija 10 = aijh ax· 

If other components of genetic variance are important, this expression is not the true 

covariance but may be a reasonable approximation because the coefficients of the other 

components will be small. A more likely source of error is the possibility of an 
2 

environmental covariance among relatives. If cijax is the covariance between records 

of relatives i and j caused by common environmental effects, then the off-diagonal 

coefficients should be axixj = (aijh 2 + cij )ai. The equations to find the b's can be 

written ( assuming all cij = 0) to predict G Aa: 
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[
l+(n1-l)rl 2 2 2 2 2 2 2 

axb1 + a1zh axbz + ••• + a1Nh axbN = a1ah ax 
n1 

2 2 [ 
1 +(nz-l)rl 2 2 2 2 2 

a12h axb1 + axbz + ••• + azNh axbN = azah ax 
nz 

. • . . . • . • 

2 2 2 2 [
l+(nN-l)rl z 2 2 

a1Nh axb1 + azNh axbz + ••• + axbN = aNah ax 
nN 

Because a¾ appears in each equation, dividing each equation by a¾ will not change the 

solutions for the h's. 

Thus, the equations can be written as: 

1 +(n1 -l)r 
----b1 + 

n1 
2 a1zh bz + ••• + 

1 +(nz-l)r 
---- bz + ••• + 

nz 

Only r and h2 are necessary in order to set up the equations because the 

relationships can be computed and the n's will be known. These equations are sometimes 

called the simplified equations . Another simplification is to divide by h2ak 
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AVERAGE OF n RECORDS ON p EQUALLY RELATED RELATIVES 

Let ~ be the average of a genetic group of animals (pi) each with ni records ( e.g., 

a group of paternal half-sisters each with 2 records). Further, 1) each animal in the group 

has the same relationship, aii'• to all other animals in the group, and 2) each animal in 

group i has the same relationship to all animals in group j, i.e., aij is same for all pairs of 

animals; one from group i and one from group j. Then the diagonal coefficients become: 

[ 
l+(ni-l)r 21 

+ (Pi - l)aii'h 2 
2 ni 

ax, ----------- ax, 
1 Pi 

If other than additive genetic variance contributes to likeness between animals in the 

genetic group, the part of the numerator corresponding to the covariance within group will 

be greater. For example, if the environmental covariance is cii ,a~ and there is also 

likeness due to dominance genetic variance, the diagonal coefficients are: 
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After dividing by al and with the assumptions to be again stated, the simplified 

equations for finding the appropriate weights for the index 

N 
GA = I = :E biXi are: 

a i=l 

d1 b1 + a12h2b2 + • • • + a1Nh2bN = a1ah2 

where d· = 1 

1 +(ni-l)r 2 
+ (Pi - l)aii'h 

n· 1 

Pi 

The assumptions that are implied by this simplified set of equations are: 

1) selection is for additive genetic value, 

2) the variances of single records for all relatives are a~ , 

3) the covariance between records on an animal is ral for all relatives. 

4) only additive genetic variance contributes to the covariance among 

relatives. If this assumption is not true, the ~jh 2 terms should be 

modified to take into account other components of genetic variance and 

any environmental covariance, and 

5) each animal in group i has the same number of records. If not, the group 

should be divided so that each animal in a sub-group has the same 

number of records. 
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RECORDS FROM INBRED ANIMALS 

The variation among inbred animals will be greater than for non-inbred animals since 

the genetic variance of inbred animals is aiiai O == (1 +Fi)ai O when only additive genetic 

effects are considered. Thus, the phenotypic variance among single records of inbred 

2 2 2 2 2 2 animals is (1 +Fi)a 10 + aE == [(1 +Fi)h + (1-h )]ax, where ax is the variance of 

single records of non-inbred animals. The diagonal coefficients of the equations that 

determine the selection index weights will be increased. For single records, the increase will 

2 2 2 2 be Fib ax to (l+Fih )ax. For the average of records on the same animal, the 

diagonal coefficient will be: 

[ 
1 +( ni -1 )r 2] 2 
---- + Fih aX, 

ni 

2 2 because the covariance between records on the animal will also increase by Fib ax. 

For the average of single records on each of Pi animals in group i, the diagonal coefficient 

will be: 

Although that situation seems rather unlikely, in most such cases, aii' will be larger than 

if the animals were not inbred. For the average of ni records on each of Pi animals in 

group i, the diagonal coefficient becomes: 

[
l+(nj-l)r z] z 

ni + Fib + (pi-l)aii'h 2 

Pi 
ax. 

If animal a is inbred, the formula for the denominator of r11 will be a} = (1 + F a)h2ai 
when selecting for GA 

Q 
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COMPUTATION OF ACCURACY Wim SIMPLIFIED EQUATIONS 

The solutions for the b's will be the same for the simplified equations as for the 

regular equations if the assumptions are true. For the regular equations 

For the simplified equations, substitute aiah 2a~ = aiao-i O for o-xiT 
2 2 

and remember that aT = a 10 if T is additive genetic value. 

Then 

2 2 2 ~--
r TI = Lbiaiao-10/0 10 = !:biaia and ru = J!:biaia 

Thus, only r and h2 are needed to compute the h's and ru with the simplified 

equations when selecting for additive genetic value. 

VARIANCE OFT GIVEN THE INDEX Wlffl SIMPLIFIED EQUATIONS 

af O = a} will be needed since 

ADDITIONAL NOTE 

Often all animals will not have records available on the same types of relatives. Even 

when records are available on the same relatives, the relatives may not have the same 

number of records. The selection index procedure can still be used to compare animals, but 

then the weights for the index for each animal with a different set of records and types of 

relatives will have to be found from the set of equations corresponding to the Pi's and ni's 

associated with records of relatives of that animal. 
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APPLICATION OF THE INDEX TO CASES WHERE THE ASSUMPTIONS ARE TRUE 

1. One or several records on the individual being evaluated. 

Often individuals must be compared on the basis of their performance but with 

unequal numbers of records. The best procedure is to solve the index equations for each 

specific case (i.e., number of records per individual). If, however, all the variances = a~, 

all the covariances among the X's = roR, and the covariances on the RHS's all are equal, 

then the equations can be simplified. 

If the covariances between all records and the additive genetic value of the individual 

are all equal, as is a common assumption, the index becomes 

I= bX 

where X is the average of n records on the individual to be indexed for additive genetic 

value. 

The equation to find b for equal variances and covariances is: 

( l + ~ - l )r) b = h 2 so that b = 
1 +(n-l)r 

[ nh 2 l (h 2 2 /h 2 2 ) = 
1 +(n-l)r aX aX l+(n-l)r 

2 2 2 2 
because aT = a 10 = h ax. 

Then 

2 - [1 - nh 2 ] h 2a2 for animals with the same number of records and the 0 TII=l0 - l+(n-l)r X 

same index value, 10 . 

This procedure allows animals with varymg numbers of records to be ranked 

according to estimated breeding value so that the probability of correctly ranking the 

animals is maximized. 
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2. The case of using one record on each of many relatives to estimate the breeding 

value of animal a. 

The index equations will be: 

Only additive relationships and heritability are needed to set up the equations to 

solve for the selection index weights. 

3. The case where related individual i has more than one record (ni). 

Now the diagonal coefficient will be: 

The off-diagonals and RHS's will be the same as case 2. 

4. The case where the ~ are the averages of single records of Pi members of group 

i with relationship aii' with each other and all having the same relationship to a and to other 

groups or individuals used in the index. 

Now the diagonal coefficients will be: 

l+(pj-l)aii'h 2 

Pi 

The off-diagonals and RHS's will be the same as in cases 2 and 3. 
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5. The case where Pi members of group i have more than one record(~). 

The diagonal coefficients will be: 

l+(ni-l)r 2 
---+ (p·-l)a··,h n· 1 11 

l 

Pi 

The off-diagonal coefficients and RHS's are the same as before. This case provides the 

general form of the diagonal coefficients because when ni = 1, the diagonal is the same as 

for case 4; when Pi = 1, the diagonal is the same as for case 3 and when ni = 1 and 

Pi = 1, the diagonal coefficient is the same as case 2. 

6. If members of a group of related individuals have differing numbers of records, 

then each subgroup with different numbers of records per individual can be treated as a 

separate group. 

APPROXIMATION TO THE SELECTION INDEX WHEN h2 IS SMALL 

If heritability is small, a further approximation can be made to the selection index 

equations. The simplified equations have aijh2 as the off-diagonal coefficients. The aij's are 

less than or equal to 1/2 except for unusual situations. If h2 = .05, then all the off-diagonal 

coefficients are less than or equal to (1/2) (.05) = (1/40). The approximation is to set these 

small off-diagonal coefficients to zero. The equations then become: 

= a1ah2 

= <izah2 

dNbN = aNah2 

where d1, d2, • • •, dN are the diagonal coefficients after dividing by aJ . 
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With this approximation, the weights are proportional to the relationships when each 

relative has only one record. This procedure also provides an approximate computational 

check for cases where the off-diagonals are really greater than zero. The rn appears larger 

than it really is if the rti is computed as I:bi~a since the b's will be larger than they should 

be. 

The true rn will be an/(ai a;,)"s where aTI = E(TI) and ay =E(I 2). 

SELECTION INDEX NOT EXPRESSED IN DEVIATIONS 

So far the index has been expressed in deviations where I as well as the X's are 

deviations from their population averages. 

This is equivalent to 

!deviation = (I - µ.o) = b1(X1-µ.1) + b2(X2-µ.2) + •• • + bN(XN-µ.N) · 

If the index is desired as an actual value, then if the µ. 's are known, 

where I is not expressed as a deviation; µ.0 is the average of the population where the 

animals being indexed will make records; and µ.i, for i = 1, • • •, N, are the population 

averages associated with the records of the various relatives used in the index. 

Example: Suppose a dairy cow makes a record of 14000 in a herd that averages 

12000. A progeny record in that herd is to be predicted. 

Then if h2 = .25 

b = (1/2)h 2 = .125 

Iprogeny = 12000 + .125( 14000 - 12000) = 12,250 . 

Suppose instead that the herd average will increase to 13000 before the progeny 

makes a record. Then 

Iprogeny = 13000 + .125(14000 - 12000) = 13,250. 
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TABLE 8.1. WEIGHTS AND ACCURACY VALUES FOR PREDICTING ~DITIVE 
GENETIC VALUE FROM RECORDS OF VARIOUS RELATIVES. (h IS 

HERITABILI1Y; r IS REPEATABILITY). 

Selection Accuracy = r11 
Re~ords Index Weights 

Individual (1) h2 [t:i 
(n) nh2 /[1 + (n-l)r] Jnh 2/[1 + (n-l)r] 

Dam or sire (1) h2/2 .5~ 
or progeny (n) nh2 /[1 + (n-l)r](2) .SfJ/nh2/[1 + (n-l)r] 

Sire and dam (1) h2/2; h2/2 .11&_ 

(n) .5nh2 /[1 + (n-l)r]; .11Jnh 2 /[1 + (n-l)r] 

.Snh2 /[1 + (n-l)r] 

One grandparent h2/4 .25✓h 2 

Four grandparents All h2/4 .so{i:i 
One great-grand-

h2/8 .12s/h2 parent 

Eight great-
All h2/8 .35{t:f grandparents 

Individual and one [h2-(h2 /2)2]/[1 - (h2 /2)2]; 
parent or progeny [h2(1-h2)/2]/[1 - (h2 /2) 2] ✓(Sh 2-2h 4)/(4-h 4) 

Individual and h2(h2-2)/(h 4-2); 
both parents h2(h2-1)/(h 4-2) • • • ✓h 2(2h 2-3)/(h 4 -2) 

Individual and one 
grandparent or h2&h2-16)/(h4-16); ✓h 2(2h 2-17)/(h 4-16) 
grand progeny 4h (h2-1)/(h 4-16) 

Individual and four h2(h2-4)/(h 4-4); ✓h 2(2h 2-5)/(h 4-4) 
grandparents h2(h2-1)/(h 4-4) • • • 

Parent and progeny 2h2/(4+h 2); 2h2/(4+h 2) ✓zh 2 /( 4+h 2) 

Progeny (p half-sibs) 2ph2 /[4 + (p-l)h 2] ✓ph 2/[4 + (p-l)h 2] 
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TABLE 8.1 continued: 

Let A= [1 + (n-l)r]/n, D = {l + [(p-l)h 2/4]}/p, and C = AD - (h4/16). 

Records 

Individual (n) and 

paternal half-sibs (p) 

Individual (n) and his 

paternal half-sib 

progeny (p) 

Dam (n) and 

paternal half-sibs (p) 

Dam (1) 

sire ( 1 ), and 

progeny (1) 

Paternal half-sibs (m), 

dam (n), and dam's 

paternal half-sibs (p) 

Weights Accuracy 

[h2D - (h2 /4) 2]/C; Jb1 + (bz/4) 
h2(A-h2)/4C 

[h2D - (h2 /2) 2]/[C - (3h4 /16)]; ./b1 + (bz/2) 

.Sh2(A-h2)/[C - (3h4 /16)] 

.Snh2 /[1 + (n-l)r]; Jb1/2 + (b1/4) 

ph2 /[4 + (p-l)h 2] 

[h2 - (h4 /16)]/[2 - (h4 /64)]; 

[h2 - (h4 /16)]/[2 - (h4 /64)]; J(b1 + bz + b3)/2 

[h2 - (h4 /8)]/[2 - (h4 /64)) 

mh2 /[4 + (m-l)h 2]; 

h2[D - (h2 /16)]/(2C) .fo1/4 + b2/2 + b3/8 
h2(A-h2)/(8C) 
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SIRE EVALUATION, EXAMPLE OF APPLICATION OF 

SELECTION INDEX 

Many traits cannot be measured on males, thus genetic evaluation must be based 

either on records of female ancestors or on records of female progeny. Evaluation on the 

basis of progeny also usually results in much greater accuracy (rn) than pedigree 

evaluation, even with traits measured on both sexes. This method has received much use 

in dairy cattle and poultry breeding and also with other classes of animals. 

ESTIMATION OF BREEDING VALUE 

The problem of prediction of breeding value from progeny records in the simplest 

form is that the average of single records adjusted for fixed factors of p progeny all from 

different dams, x1, is known and the additive genetic value of sire, a, is to be predicted as: 

I = b1X 1. 

If the assumptions discussed earlier are true, the simplified equation to find the best 

weighting factor, b1, is: 

113 
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In the diagram 
X1 ◄ Sire 

X1• .A·········· 
____ ... --·· (a) 

x1 and X 1, are a representative pair of records in the progeny average and a: represents the 

animal to be evaluated. 

In this situation, a11' = .25 and a1a: = .5, so that: 

.5 ph 2 2 p 2 p 2 2 
b1 = ----- = --- = - for ). = (4-h )/h . 

1 +(p-1)(.25 h 2) 4-h 2 p+). 
p +--

h2 

As p --- oo , b1 --~ 2.0. 

For h2 = .25, 2p . --, 
p+15 

2p . 
--, 
p+7 

etc. 

- In general, r11 = Note that 

as the number of progeny, p --- co , r11 --- 1.00. 

Note: 1) a new equation is not needed for each sire with a different number of 

progeny, because h1 has been solved for in terms of p and h2, 

2) b1 depends on p, 

3) r11 depends on p, and 

4) b1 can exceed one. For most genetic evaluations, the b's are usually less 

than one except for sire evaluation from progeny records. 
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VARIATIONS ON SIRE EVALUATION 

The preceding section describes the basis for predicting additive genetic value of a 

sire from his progeny. Similar procedures that have been used will yield a weighting factor 

which is one-half this b1; for example, _P_ rather than ~ 
p+l5 p+lS 

The following two additional definitions of true value result in the smaller weight. 

Definition II. Rather than estimating the breeding value of the sire, the breeding value 

of a future progeny, a, is to be estimated. 

a .._______ 

X1 ◄ Sire 

al 1' = .25 as before, but a1a = .25 rather than .5. Again, l = ( 4-h2)/h 2. 

Now, b1 = 
p and, in this case, as p co, b1 1.0. 

p+A 

For h2 = .25, b1 = 
p for h2 = .5, b1 = 

p etc. --, --, 
p+l5 p+7 

Also r11 = J.zs (p~A] = .5~ p+A 

and, in this case, as p co, r11 .5. 

Note that this accuracy is for predicting the additive genetic value of an animal from records 

of p paternal half sibs. 
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Definition III. The daughter or progeny superiority of a sire (also called transmitting 

ability) is to be predicted. Progeny superiority is defined to be the average 

of an infinite number of future progeny which is equivalent to one-half the 

additive genetic value of the sire, i.e., T = .5 GsIRE . 

Then, 2 2 2 2 2 
ax 1T = .5 a10 h aX = .25 h ax= .25 a 10 because ala = .5. 

The equation to find b1 is: 

P as in definition II. 
p+i.. 

The accuracy, rn, however, will not be the same as in definition II but will be the same as 

for predicting the breeding value of the sire. 

Remember rn = b1aX1T 
2 

aT 

But T = .5 Gsire· Thus, because G is additive value: 

Thus, 
2 

[p/(p+i..)](.25 a10) 

2 
.2Sa10 

= 

(L) (.5) (.5) ay0. 
p+i.. 

which is the same rn as when estimating the additive genetic value of the sire. This result 

should be expected because the only change has been to divide what is to be predicted by 

a constant one-half. The only difference in the evaluations is a factor of one-half. Ranking 

will be the same. The important point is to define T exactly, since what T is, makes a 

difference in the weighting factor and may make a difference in rn . 
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ENVIRONMENTAL COVARIANCE IN SIRE EVALUATION 

If progeny are treated more alike because they are related than are unrelated 

animals, then an environmental covariance in addition to a genetic covariance will exist 

among animals in a progeny group. Assume that the environmental correlation among half­

sibs in the same environment is c11,a~. 

The equation to find b1 to evaluate the sire from p progeny with one record each is: 

where all' is the relationship among animals in the group, (all' = .25, if half sibs), 

c11,a¾ is the environmental covariance, and 

ala: is relationship of animals in the group to a:. If a: is the sire, then a1o: = .5 . 

Thus, b1 = 
.5 ph 2 

and r11 = . 25 ph 2 

2 1 + (p -1) ( .25 h + c 11') 2 1 + (p-1)(.25 h + cll,) 

If c11, = .25 h2 and h2 = .25 as is approximately true for lactation yield: 

b = __E_ or ~ rather than ~ with no environmental correlation, 
p + 7 p + 14 p + 15 

and r11 = ~ =.7lr-;-, ~0 ~0 

In this case as p --- oo, b1 --- 1, but r11 --- .71. 

The important point is if c11, * 0, then asp --- oo, r11 --~ 

depending on the ratio, cll,/a 11'h2. 

less than 1, 
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The following table compares the b1's and rn's when h2 = .25 with and without 

environmental correlation. 

No environmental correlation Environmental correlation 
Cll' = 0 c11, = .0625 

Number of 
progeny 

= --32_ r11 • J p = _L rn • . nj p p b1 b1 
p+15 p+15 p+7 p+7 

1 .125 .25 .125 .25 

3 .33 .41 .30 .39 

10 .80 .62 .59 .54 

20 1.15 .76 .74 .61 

50 1.54 .88 .88 .66 

100 1.73 .93 .93 .69 

1000 1.98 .99 .99 .70 

00 2.00 1.00 1.00 .71 

The previous table assumes the environmental correlation is the same for all pairs 

of progeny. The USDA dairy sire evaluation procedures in the past and now with mixed 

model methods, however, assume only records of daughters of a sire in the same herd have 

an environmental correlation. If there are Ilj daughters in the ±1Il herd, then: 

4:Eni (nj-1) cu• 
4 + (p-1) h 2 + ----­

p 

If h2 = .25 and c11, = .0625, 

2p 
:Eni (ni-1) 

p 

as compared to b1 = Zp with C11• = 0. 
p + 15 

p + 15 + 

As before, rTI = {5 b1 and for h2 = .25 and c11, = .0625, 

p+lS + 

p 
:Eni (nj-1) 

p 
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CORRECTION FOR LEVEL OF MATES 

If mates of one sire are much superior to the mates of another sire, then this 

knowledge could be used in evaluating the sires from their progeny averages to avoid bias 

from the selected mates. One approach is to set up one equation for each daughter 

and one equation for each dam record. For two dams and two daughters: 

b1 + 

2 .25 h bl + 

.5 h2b + 1 

0 b 1 + 

~ Dam 1 (X3) 

Daughter 1 
(X1) 

Daughter 2 

Sire (a) 

(Xz) ....____ 
Dam 2 (X4) 

2 .5 h2b + 0 b4 = .5 h2 .25 h b2 + 3 

bz + 0 b3 + .5 h2b4 = .5 h2 

0 bz + b3 + 0 b4 = 0 

2 .5 h bz + 0 b3 + b4 = 0 

As expected, b1 = bz = b. But, b3 = b4 = -.5 h2b; i.e., the weight for the dam is -.5 h2 

of that for the progeny. This weight is certainly different from weights of the historical 

daughter-dam comparison where: 

Sire value = Daughter average - Dams' average. 

With such a procedure, bz = -b1 rather than -.5 h2b1. 
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The equal parent or American index also weighted the dam record too much. 

The "logic" for the equal parent index was that 

Progeny value = .5 (Sire value) + .5 (Dam value). 

Rearrangement of the terms gives 

Sire value = 2 (Progeny average value) - Dams' average, 

so that bz = -.5 b1 rather than bz = -.5 h2b1. 

The correct procedure can be simplified if the dams (sire's mates) are assumed to 

be unrelated so that only two b's are needed because each daughter record receives the 

same weight as any other daughter record and each dam record receives the same weight 

as any other dam record. 

If x1 is the average of single records of p daughters and 

x2 is the average of single records of the p dams, 

the equations to find the weights are: 

[a12 h 2 ] 
b1 + 

p 

The off-diagonal coefficient corresponds to the average covariance between the 

daughters and dams. Each daughter has covariance a12h2oi with her dam but a 

covariance of zero with the other p - 1 dams resulting in Cov(X1,X2) = a12h2ai/p. 
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Usually a11, = .25, a 12 = .5, a10 = .5 and ½a = 0 so that 

2P andb2=-.5h 2b1. 
p+A-h 2 

Note the similarity to the b 1 when dams are not considered, e.g., if h2 = .25, 

2p 
p+14.75 

rather than b 1 = ~ when the dams' records are ignored. 
p+15 

Similarly, the rTI changes only slightly because ½a = 0. If h2 = .25, 

r------;;--rather than 'TI = r-----;;-when dams are ignored. 
~~ ~~ 

In other words, correction of a progeny proof for differences in mates does not 

increase accuracy of evaluation much. The advantage of correcting for differences in mates 

is to eliminate bias that would inflate proofs of sires mated to better than average dams. 

PROGENY WITH DIFFERENT NUMBERS OF RECORDS 

Often in evaluation of sires, progeny may have different numbers of records. A 

common example is that Standardbred trotting horses may have many more than one racing 

record. One solution to the problem of weighting these records is to set up one equation 

for each record. Then the correct weight would be found for each record, but many 

equations would be needed. If simplified equations are used, diagonal coefficients will 

be 1. RHS's will be aiah 2 as before for all i. In the case of half sibs for sire evaluation, 

RHS's will all be .5 h2. Off-diagonal coefficients will be of two kinds. Coefficients 

corresponding to covariances among records on the same animal will be repeatability, r, 

because the covariance, aX'X = rai. The other coefficients will be aijh2 as before where 
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aij is the relationship between pairs of animals that made the records. In sire evaluation 

from paternal half-sib records, these coefficients will be .25 h2. 

Example: Daughter 1 has two records X1 and X2 , 

Daughter 2 has one record x3 , 

Daughter 3 has three records x4 , X5 , and X6 . 

To estimate the additive genetic value of their sire from 

Daughter 1 ~ 
(X1,X2) ~ 

Daughter 2 ◄ / Sire (a) 

(X3) / 

Daughter 3 
(X4' X5, X6) 

The equations to find the b's are: 

2 2 2 2 _ 2 rb2 + .25 h b3 + .25 h b4 + .25 h b5 + .25 h b6 - .5 h 

rb1 + b2 + .25 h2b3 + .25 h2b4 + .25 h2b5 + .25 h2b6 = .5 h2 

.25 h2b1 + .25 h2b2 + b3 + .25 h2b4 + .25 h2b5 + .25 h2b6 = .5 h2 

.25 h2b1 + .25 h2b2 + .25 h2b3 + b4 + rb5 + rb6 = .5 h2 

.25 h2b1 + .25 h2b2 + .25 h2b3 + rb4 + b5 + rb6 = .5 h2 

.25 h2b1 + .25 h2b2 + .25 h2b3 + rb4 + rb5 + b6 = .5 h2 
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An easier way to obtain the same result is to divide the daughters into groups with 

the same number of records for each daughter in a group: 

x1 is the average of p1 daughters with n1 = 1 record, 

x2 is the average of p2 daughters with n2 = 2 records, 

XN is the average of PN daughters with nN = N records. 

The equations to find the weights for 

+ ••• + 

dzbz 

If all animals are half-sibs, 

d· = 1 

1 + (ni-1) r 
---- + (pi-1).25h 2 

Di 

Pi 

aijh2 = .25 h2 , and aiah2 = .5 h2 . 

with 

The r11 can be computed as usual as the square root of the sum of products of the b's and 

the corresponding additive relationships on the RHS. 
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EVALUATION WITH FULL SIB GROUPS 

Some species such as swine and poultry may have full-sib progeny groups. Each male 

may be mated to more than one female. If each female produces only one set of progeny, 

the animals in each group will be related as full sibs (aii' = .5) but also will be related as 

paternal half sibs ( ~j = .25) to animals in other groups. 

If Pi is the number in each full sib group, Ilj a:: 1 and the sire is to be evaluated, 

( aia = .5), the equations defining the b's are: 

d· = 1 

1 + (pi - 1) .5 h 2 

Pi 

where 

Modifications would, of course, have to be made for some I1j > 1, for other possible 

relationships such as maternal sibs and for any environmental correlation which is very likely 

for animals in the same litter as well as maternal effects in common as discussed in the 

chapter on imbedded traits. 

Use of other combinations of relatives in the selection index is illustrated in problem 

sets. Often the animal will have records (one or more), progeny with records and relatives 

with records through both the paternal and maternal sides of the pedigree. 
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PROBABILITY STATEMENTS ABOUT TRUE VALUES 

One property of selection index is that the average true value, T, for animals with the 

same index value, I= I0 , is I0 . Thus, I0 is the mean of a subdistribution of T for animals 

with the same index, I0 , i.e., the distribution is conditional on I0 and the accuracy of 

prediction of I, rn. The variance of T for I= I0 depends on rTI and af but not on I0 : 

2 
If T and I follow a bivariate normal distribution, I0 and o°T I l=lo determine the 

distribution of T for I= 10 . After a review of the normal distribution, how to use the 

conditional mean and variance to make probability statements about T for I= 10 will be 

described. 

THE NORMAL DISTRIBUTION 

The mean, µ., and the variance, a2, completely determine the normal distribution. 

The normal distribution follows the so-called bell shaped curve. 

Frequency of 
X values 

- 00 µ. +oo 
--- values of X ---

125 
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Let X be a set of values having a normal distribution. The mean is also the median of the 

X values, i.e., one-half the values of X are greater than µ. and one-half the values are less 

than µ. The distribution of values is also symmetrical. The curve on the right-hand side of 

µ. is the mirror image of the curve on the left-hand side ofµ.. The variance, a2, determines 

how flat or how peaked the curve is. A large a2 tends to flatten the curve and a small a2 

tends to peak the values about µ. The total frequency of X's is 1 or 100%. Thus, the area 

under the normal curve is also 1. The fraction of the area above µ. is 0.5 and the fraction 

belowµ. is also 0.5. 

A table of areas under the normal curve describes the fraction of the area between 

µ and µ + ta or equivalently betweenµ and µ - ta because the distribution is symmetrical. 

This fraction corresponds to the probability that a random value of X will be between 

µ. and µ. + ta . The values of t are multipliers of the standard deviation. 

These are two uses of such a table (e.g., Table 10.1): 

1) To find probabilities (fractions of total area) corresponding to truncation points 

which can be expressed as µ. + ta or µ. - ta depending on which side of µ. the 

truncation point is located and 

2) To find truncation points expressed as µ. + ta or µ. - ta corresponding to required 

probabilities. 

Examples of Finding Probabilities Corresponding to Specified Truncation Points 

Let a = 2 and µ = 10 for a distribution of values of X. The problem is to find the 

probability that a random value of X will be between 6 and 12. 
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TABLE 10.1. AREAS UNDER THE NORMAL CURVE 

t 
µ µ+ta 

Truncation Point 
t 

.0 

.1 

.2 

.3 

.4 

.5 

.6 

.7 

.8 

.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 

2.5 

3.0 

t 
µ-ta µ 

Area between µ. + ta and µ. 
or between µ.-ta and µ. 

.0 

.04 

.08 

.12 

.16 

.19 

.23 

.26 

.29 

.32 

.34 

.36 

.38 

.40 

.42 

.43 

.445 

.455 

.464 

.471 

.477 

.494 

.499 
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The first step in finding probabilities is to draw a picture to describe the problem as 

shown for this example. The picture usually will give an approximate answer as a way of 

checking the logic of the exact answer. 

t 
µ = 10 ,u + t 12a = 12 

Because the table gives the area between /J and µ+ta, the solution is to find the area 

between /J = 10 and /J + t12a = 12 and the area between /J = 10 and /J - t6u = 6. 

Subscripts on the t's are to identify the truncation points. Total area is sum of the two 

parts. In more formal terms: P(6 < X < 12) = P(6 < X < 10) + P(lO < X < 12) . 

To use the table, t12 and t6 must be calculated: 

µ. + t12a = 12 but /J = 10 and a = 2. Thus t12 = (12 - 10) / 2 = 1 . 

The corresponding area (Table 10.1) is .34 . 

The general method of finding a t corresponding to a positive truncation point, i.e., 

a point greater than the mean is to write the equality and solve for t: 

µ +ta-µ t = 
a 

= 
truncation point - µ 

a 

On the left side of ,u, µ-t 6a = 6 and thus, 10 - t6 (2) = 6 and t6 = 2. 

Fort = 2, the corresponding area is .477 between 6 and 10. 
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For t corresponding to truncation points less than the mean, 

t _ truncation point - µ I al t _ I truncation point - µ I 
- - --------. n gener , - ---------

a a 

The total area between 6 and 12 is .477 + .34 = .817, which is the fraction of X's 

expected to have values between 6 and 12 or equivalently the probability that any random 

X will be between 6 and 12. 

Another example is to find the probability of an X value above a truncation point, 

such as 12. Then,µ + ta = 12 withµ = 10 and a = 2 and P(lO < X < 12) = .34. 

Obviously, P(lO < X < oo) = .5. Thus, P(12 < X < oo) = .5 - .34 = .16. 

The probability of a random X less than 12 can be found by similar logic, i.e., 

P(-00 < X < 12) = P(-00 < X < 10) + P(lO < X < 12) = .50 + .34 = .84. 

Examples of Finding Truncation Points Corresponding to Specified Probabilities 

Find the region which includes 90% of values of X which is also the probability that 

a random value of X will be in that region. These ranges may be chosen so that they are 

symmetrical aboutµ, i.e., µ + ta is the upper limit, and µ -ta is the lower limit with t the 

same in both upper and lower limits. First, draw the picture which will show that the area 

from µ toµ + ta must be .90/2 = .45. The t corresponding to an area of .45 is about 

halfway between 1.6 and 1.7 so let t = 1.65. Ifµ = 10 and a = 2 as before, the upper limit 

is 10 + 1.65(2) = 13.30, and the lower limit is 10 - 1.65(2) = 6.70 . 

Next, find the truncation point which 90% of the values of X will exceed for the 

example with µ = 10 and a = 2 . 
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t 
µ-ta 

The t corresponding to an area of .40 between µ andµ - ta must be found. From 

Table 10.1, t • 1.3. Thus, the truncation point is 10 - 1.3(2) = 7.4. The probability of a 

random X having a higher value is 90%. Also, 90% of the values of X will be greater 

than 7.4. 

APPLICATIONS TO ESTIMATING TRUE VALUE 

One property of the selection index is 1-'TI I=Io = 10 . Thus, 10 corresponds to the 

mean of the distribution of T values for animals with the same index. Thus, I0 can be 

substituted forµ of the normal distribution. Similarly, aT I I -I will be substituted for a of -o 

the general distribution. A typical picture is: 

Io 

~-- Values of TI I =I0 ---
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EXAMPLES 

Probability Statements About Additive Genetic Values; T = GAa . 

A bull has 35 progeny with 1 record each averaging + 200; h2 = .25; uio = 1000000. 

What is the probability his true additive genetic value is greater than zero? 

For h2 = .25, .i.. = 15 so that 

Thus 

b = ~ = 7o, 10 = (1.4) (200) = 280, and riJ = _P_ = .70. 
p+15 50 p+15 

2 
aT I l=lo = (1 - .70) (1000000) = 300000 and aT I l=lo = 548. 

The picture is: 

t 
1o • t aT I I= 280 = O I = 280 

0 

Then, t = I O - 280 I = .51. The corresponding area gives the fraction between 
548 

0 and 280 as .19. Thus, the probability that T for the bull will exceed zero is 

.50 + .19 = .69. Correspondingly, the probability that his true value is less than zero 

is 1.00 - .69 = .31. 

Probability Statements About A Future Record 

The previous discussion was about the probability that an animal's additive genetic 

value was between, above, or below certain truncation points given the index estimate of 
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breeding value and the corresponding r11 and a3. In fact, if the animal actually makes a 

record, in addition to its genetic value, a new random environmental effect influences the 

record. Thus, variance of records for animals with a predicted genetic value depends on the 

variance of additive genetic values given the index plus the variance of environmental 

effects. In this case of predicting a future record, T = X0 = GA + Ea , I is the prediction 
Cl 

of a future phenotypic record of animal a that has no previous record. In this example, the 

assumption is that Ga = GA . The selection index equations to find the appropriate 
Cl 

weights for the X's are, as usual, on the left-hand sides, the variances and covariances of the 

X's. The right hand sides are: 

axiT = E{(Xi)(GAa +Ea)]= F{(GAi + Ei)(GAa + Ea)] 

= E(GA.GA + GA.Ea+ GA Ei + EiEa). 
1 Cl 1 Cl 

The middle two terms are genetic-environmental covariances which are usually assumed to 

be zero. The first term is 8iaay 0 for GA = G, and the last term is the covariance between 

environmental effects on a record of i and on a record of a which may or not be zero. With 

no environmental covariance, the right-hand sides are aiacio = aiah2ai as for predicting 

additive genetic value so that the index for predicting a future record is exactly the same as 

for predicting additive genetic value. The reason is that there is no way of predicting a 

random and independent Ea for the new record. 
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The rTI and G'f, however, are different from the case when I predicted G Aa. Now 

2 2 2 2 2 2 2 22 
GT = E(T ) = E(G Aa + Ea) = GG A + GE = aX rather than GG A = h GX. The 

numerator of rTI is I:bi3iah2Gi as before, but 

2 2 
I:biaiah ax 

2 
ax 

rather than JI:biaia because prediction of Ea is zero. Then a~ I l=lo = (1-h 2I:biaia)a~ 

rather than (1-I:biaia)h 2G~. Notice that many of the same quantities, I:biaia• h2, a~, are 

involved whether prediction is for GA or Xa = GA + Ea ; the arrangement, however, 
a a 

is different in important ways. 

Prediction of a Progeny Record from Prediction of Additive Genetic Values of the Parents 

The application of these distributional properties makes sense primarily when records 

of ancestors are used in estimating the animal's genetic value, as for example, if the sire's 

and dam's estimated additive genetic values are used in estimating the additive genetic value 

A (jsire + Odam 
of their progeny: uprogeny = 2 which also predicts a record of the progeny. 

The rfI for additive genetic value of a progeny equals one-fourth the sum of the rfI 

for additive genetic value of sire and dam. This equality can be shown by setting up the 

equations to predict the additive genetic values of sire and dam and then to predict the 

average of the additive genetic values of the sire and dam. Assume for milk yield that 

h2 = .25 and G~ = (2000 lb)2. 
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The following table shows the effect of increasing rfi for sire and dam onox I I=Io 

of the progeny. 

r2 0 XII-I 95% probability range = TI - 0 
Sire Dam Progeny (for progeny) Io ± 1.96 ax I I =IQ 

0 0 0 2000 lb. I0 ± 3920 

.25 0 .0625 1984 I0 ± 3889 

.25 .25 .1250 1968 I0 ± 3857 

.50 .50 .2500 1936 I0 ± 3795 

.75 .50 .3125 1920 I0 ± 3763 

.75 .75 .3750 1904 I0 ± 3732 

1.00 .75 .4375 1887 10 ± 3699 

1.00 1.00 .5000 1871 I0 ± 3667 

The obvious conclusion from this chart is that the average error of predicting a 

record of a progeny ( ox II =Io) does not decrease very much even with perfect prediction 

of the parents' genetic values when ai is relatively large. 

Probability Statements About Differences in Genetic Values for Unrelated Animals 

Assume animal 1 has index value I1 with riJ 1 and animal 2 has index value I2 with 

2 r112. Differences in true additive genetic values for animals with ~ndex values I1 and I2 

will have a distribution corresponding to the definition of T = GA 1 - G Az. The 

immediate problem is to determine the mean and variance for the distribution of 

T 1-T2 I Ii-Iz. The mean is the same as the mean of (T 1 I I = I1)-(T2 I I = Iz) and is 

E[(T11I=I 1)-(T 2 1I=Iz)l = E(T 11I=I 1)- E(T2 1I=I2) = I1 -I 2 . 
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The variance can be determined by the rules for the variance of a linear function or can be 

derived from the selection index procedure for 

T = G Ai - G Az with I = b1X1 + b2X2. By rules for variance of a linear function, 

V[(T 1 I I=I 1 ) - (T2 I I=Iz)] = V(T 1 I I=I 1 ) + V(Tz I I=Iz) 

because the covariance between T 1 I I= I 1 and T 2 I I= 12 is zero if the records in I 1 and 12 

are independent. Thus, 

2 2 2 
V[(T1 1I=I 1 )- (TzlI=Iz)] = (2 - rn

1 
- rn)a 0 . 

These parameters can be used to make probability statements about the difference in true 

values for animals with indexes 11 and 12. In this case, 11-12 replaces µ, of the general 

2 2 2 2 discussion and (2 - rTI
1 

- rTI2)a0 replaces a . 

As a numerical example, suppose 11 = 500 and 12 = 200, i.e., IrI 2 = 300 and 

riJ 1 = .75 and riJ 2 = .25 and a~ = (1000)2 What is the probability that the true 

difference in genetic values is zero or less, i.e., that an animal with 12 = 200 actually has 

equal or greater true value than an animal with 11 = 500? 

The picture is: 

t t 

0 11-12 = 300 

~--T 1 I 11 - T2 I 12 -----------
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The problem is to find Prob[(T 1111 - T2 I l2)~ OJ. 

Thus, 

Then, 

t = (300 -0)/[ ✓<2 - .75 - .25) (1000)] = .3. 

The corresponding area between O and 300 is .12 and the area below O is .5 - .12 = .38, 

which is the probability that the animal with the smaller index, 12 = 200, will have a higher 

additive genetic value than the animal with the larger index, 11 = 500. 

A more direct approach would be to define T = GA 1 - G Az, use all information 

to predict T, and then follow the general selection index procedure. 
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SUMMARY OF DISTRIBUTIONS ASSOCIATED WITH SELECTION INDEX 

Often there is some confusion about what µ. and a are. Actually neither µ. nor a has 

any meaning unless defined in terms of the variable they describe. In development of the 

selection index for a particular trait there are at least 6 variables. 

1) The basic distribution is of phenotypic records, the P's, or as they have also been 

called, the X's. The mean is µX and the variance is oi = 05 + a~ (the genetic plus 

environmental variance). 

2) For additive genetic values, the mean is µ.G = 0 and the variance is ay0 = h2ak 

3) The criterion for predicting a G is the index estimate, I. The mean 

is µ.I = 0 and the variance is ay = Tfia 5-. Note that ay ~ a 5-because rfi ~ 1. 

4) Animals with the same index value may not have the same true value. 

The distribution of true values given an index value has mean µ.TI I=I = I 0 and 
0 

5) Records of an animal with an index value I0 have a different distribution from 

records with no estimate of true value. The distribution of records for animals with an 

index of I0 has mean µ.XII=I = I 0 and variance a~II=I = (1-rfi)af when rti is for 
0 0 

predicting a future record, X. 

6) The difference in additive genetic values for animals with index values 

11 and I2 is distributed with mean µ.TilI=Il - µ.TzlI=Iz and 

0 ilI=Ii + a}II=lz = (2-riJ 1 -riJ 2)a~ when the indexes are independent. 

variance 
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The standard deviations for the six distributions are: 

1) X, ax = ~ a~ + a~ ; 

2) GA, aG = y'h1 ~ a~ + a~ ; 

4) G given 1=10 , aT I l=lo = ~ (1-rif) a~; 

5) X given I =10 when rti is for predicting X, ax I l=lo = ~ (1-rii) a~ 



CHAPTER 11 

SUPERIORITY OF SELECTED GROUPS 

AVERAGE OF SELECTED GROUP 

The basic principle in selection is to select the best and cull the rest. The selection 

index is the best linear method of evaluating animals to determine which to select or cull. 

The selection index is unbiased so an estimate of the superiority of the selected group is 

simply the average index of the selected group minus the average index of the whole group 

from which the selected group came. Another question, however, is how to determine how 

much better the selected ones are expected to be than the original group before the indexes 

are calculated? The answer to this question relies on theory based on the normal 

distribution of true values and index values. 

THE NORMAL DISTRIBUTION 

The basic problem is this. If a fraction, p, is selected from a normal distribution with 

mean, µ., and variance, a2, what will be the mean of the selected group, µ.5 ? The problem 

may be diagrammed as: 

z/a ➔ 

µ. 
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t t 
µ. +ta µ. =? s . 
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The truncation point, µ+ta, depends on p as in Chapter 10. 

The expected or average value of the fraction p can be found from integrating: 

a) 

f xf(x)dx = J..L+ Da where f(x) is the density function 
µ.+ta 

of the normal distribution. Fortunately, tables are available that give values of D given the 

fraction selected, p. 

The difference from µ, Da, is za / p where z/ a is the height of the normal curve at 

the truncation point and p is the fraction selected. Note that D = z/p, the height of the 

normal curve for a = 1. The tables of Dare based on the normal distribution with a = 1. 

To convert the table of D values to any other distribution, multiply by a. Many texts use 

i rather than D to describe the standardized selection differential. 

Note that I-Ls - µ = Da, which is sometimes known as the selection differential (not 

standardized for a). Ifµ = 0, µ.s = Da. 

The table of D for small samples is based on expected values of order statistics 

(Table 11.1 ). The values are not the same as z/p. The table of D for large samples is the 

same as z/p (Table 11.2). Dr. C. R. Henderson proposed an approximate correction for 

sample size for this table, i.e., D' = D - •25 , wheres is the number selected. Notes is not 
s 

the number available for selection. 

EXAMPLE OF SELECTION BIAS 

A breed organization reports a dairy bull has 100 daughters. The average of the top 

20 is + 1000 lb of milk. The standard deviation of records of cows by the same sire is about 

2000 lb. What would the average of the 100 daughters be expected to be? 

The fraction selected is 20 of 100 or, 20%. The corresponding value of D = 1.4. 

Thus, D' = 1.4 - .25/20 = 1.3875. 
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µ.s = µ. + Da , i.e., 
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1000 = µ. + 1.3875(2000) so that µ = 1000 - 1.3875(2000) = -1775 lb . 

Evaluation of the bull on his top 20 daughters would have been considerably 

misleading. An interesting question is what should be the number of daughters to use in 

the formula for estimating the genetic value of this bull--20 or 100 or something else? 

Schaeffer et al. (1970) developed a solution for this problem which depends mainly on the 

fraction selected. 

TABLE 11.1. EXPECTED AVERAGE OF A GROUP SELECTED OUT OF A SAMPLE 
FROM A NORMAL POPULATION WHEN THE SAMPLE SIZE IS SMALL 

(IN UNITS OF o = 1) 

Sample Number selected 
Size 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

2 .56 .00 

3 .85 .42 .00 

4 1.03 .66 .34 .00 

5 1.16 .83 .55 .29 .00 

6 1.27 .95 .70 .48 .25 .00 

7 1.35 1.05 .82 .62 .42 .23 .00 

8 1.42 1.14 .92 .73 .55 .38 .20 .00 

9 1.49 1.21 1.00 .82 .65 .50 .35 .19 .00 

10 1.54 1.27 1.07 .89 .74 .60 .46 .32 .17 .00 

11 1.59 1.32 1.12 .96 .81 .68 .55 .42 .29 .16 .00 

12 1.63 1.37 1.18 1.02 .88 .75 .63 .51 .39 .27 .14 .00 

13 1.67 1.42 1.23 1.07 .93 .81 .69 .58 .48 .37 .26 .14 .00 

14 1.70 1.46 1.27 1.12 .99 .87 .76 .65 .55 .45 .35 .24 .13 .00 

15 1.74 1.49 1.31 1.16 1.03 .92 .81 .71 .61 .52 .42 .33 .23 .12 
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TABLE 11.2. EXPECTED AVERAGE OF CERTAIN FRACTIONS SELECTED OUT 
OF A SAMPLE FROM A NORMAL POPULATION 

(IN UNITS OF a = 1) 

Table for .001-.099 Selected 

.000 .001 .002 .003 .004 .005 .006 .007 .008 .009 

.00 3.400 3.200 3.033 2.975 2.900 2.850 2.800 2.738 2.706 

.01 2.660 2.636 2.600 2.569 2.550 2.527 2.500 2.482 2.456 2.442 

.02 2.420 2.400 2.386 2.370 2.363 2.336 2.323 2.311 2.293 2.283 

.03 2.270 2.258 2.241 2.230 2.221 2.209 2.200 2.186 2.174 2.164 

.04 2.153 2.146 2.136 2.126 2.116 2.107 2.098 2.087 2.079 2.071 

.05 2.064 2.057 2.048 2.040 2.031 2.022 2.016 2.009 2.000 1.990 

.06 1.985 1.977 1.971 1.965 1.958 1.951 1.944 1.937 1.931 1.925 

.07 1.919 1.911 1.906 1.900 1.893 1.888 1.882 1.875 1.871 1.863 

.08 1.858 1.852 1.846 1.841 1.837 1.834 1.826 1.820 1.815 1.810 

.09 1.806 1.799 1.793 1.788 1.784 1.780 1.775 1.770 1.765 1.760 

Table for .10-.99 Selected 

.00 .01 .02 .03 .04 .05 .06 .07 .08 .09 

.10 1.755 1.709 1.667 1.628 1.590 1.554 1.521 1.488 1.458 1.428 

.20 1.400 1.372 1.346 1.320 1.295 1.271 1.248 1.225 1.202 1.180 

.30 1.159 1.138 1.118 1.097 1.078 1.058 1.039 1.021 1.002 .984 

.40 .966 .948 .931 .913 .896 .880 .863 .846 .830 .814 

.50 .798 .782 .766 .751 .735 .720 .704 .689 .674 .659 

.60 .644 .629 .614 .599 .585 .570 .555 .540 .526 .511 

.70 .497 .482 .468 .453 .438 .424 .409 .394 .380 .365 

.80 .350 .335 .320 .305 .290 .274 .259 .243 .227 .211 

.90 .195 .179 .162 .144 .127 .109 .090 .070 .049 .027 

If the number selected is less than 500, subtract from D the quantity .25 /s, where s is the 
number selected. 
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GENETIC SUPERIORI'IY OF SELECfED GROUP 

A fraction of animals is to be selected for T based on their index values. What is the 

expected superiority in T of the selected group? 

The selected l's, if normally distributed, will be expected to average µ.I = /JI + Dcr1. 
s 

Note that µI = 0 = µT before selection, cr1 = rTicrT, and µ.Ts = /Jis because I is unbiased. 

Then, making these substitutions, µT = µT + rncrTD as described in most animal 
s 

breeding literature. The same result can be obtained by the regression of Ton I: 

Thus, the genetic selection differential per generation will be aG = rnDcrT. If Lis the 

generation interval in years, then genetic progress per year, 

For any given set of animals, however, the best estimate of the genetic superiority of the 

selected group is µI -µ1, the difference in average index value of the selected and whole 
s 

population. The indexes are unbiased predictions of genetic value so that averages of these 

are also unbiased. In fact, the difference in the averages is the selection index prediction 

of the difference between the selected group and the group from which they were selected. 

The expression aG/yr = r11DcrT/Lcan be used to compare the potential of various 

selection programs. This equation is the key equation for designing breeding programs for 

genetic improvement. Sometimes the best balance of rn, D, and L will have to be found. 

Example of Finding Optimum Number of Progeny Per Sire and Number of Sires to Sample 

Suppose that only 1000 progeny are available each year for progeny testing. 

Two replacements are needed each year from the males that are progeny tested. 

Assume h2 = .25 and aT = 1000 lb. milk. The following table illustrates that neither the 

largest rTI nor the greatest selection intensity gives the highest genetic progress. 
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SOME POSSIBLE COMBINATIONS OF NUMBER OF .MALES PER SAMPLE AND 
NUMBER OF PROGENY PER SIRE 

Number/ Number Number progeny 
r = J¼s D'=D- .25 selected sampled % per male sampled aT AG 
TI p+15 2 

2 of 2 100 500 .985 0 1000 lb 0 lb 

2 of 5 40 200 .964 .84 1000 810 

2 of 20 10 50 .877 1.63 1000 1429 

2 of 50 4 20 .756 2.03 1000 1535 

2 of 100 2 10 .633 2.30 1000 1456 

2 of 200 1 5 .500 2.54 1000 1270 

Of the six combinations, testing 50 males each with 20 progeny seems to be best. In 

actual practice, income and cost values must be assigned to each plan. Since .ii G for 

selecting 2 of 20 sampled is nearly as great as .iiG for 2 of 50, that may be the most 

profitable plan. Other factors should also be considered in finding an optimum plan. The 

fraction of the population devoted to progeny proving is another variable in some cases. 

The generation interval may also be important. 

The preceding example ignored the fact that .iiG is usually different for males and 

females since r11, D, and generation interval all may be different for males and females. 

Total expected genetic response per year depends on both as will be seen, although the 

expected genetic superiority of the offspring is the average of the superiorities of the 

selected males and females. 

GENETIC V ALOE OF PROGENY 

Let .iiS = ru5D saG , where AS is the genetic superiority of selected sires, ms is 

the accuracy of the index for sires, and Ds is the selection intensity factor for sire selection. 

Similarly, let AD = rn 0 Doao , the genetic superiority of selected dams. Then, because 

progeny receive a sample half of the genetic value of each of their parents, the superiority 

of progeny as compared to randomly mating males and females is: 

Gprogeny = (AS + .'1D)/2. 
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GENETIC IMPROVE:MENf PER YEAR 

Let Ag be genetic improvement per year, Ls be the generation interval in years for 

sires, and Ln be the generation interval for dams. Then, Ag = (AS + AD)/(Ls + Ln), 

which is not [(AS/Ls) + (AD/Ln)l/2 unless Ls = L0 . The proof is somewhat circular: 

Let S be the genetic value of sires selected to produce the next generation and D be 

the value of selected dams. These selected sires are born Ls years before they produce 

replacement progeny with genetic value P. The genetic average of sires born Ls years ago 

is P - LsAg. The superiority of the selected sires over that average is AS. Thus, 

S = P - LsAg + AS. Similarly, D = P - L0 Ag + AD. Because P = (S + D)/2, 

then by substitution: P = (S + D)/2 = (1/2)(P - LsAg + AS + P - L0 Ag + AD). 

After subtracting P from both sides, 0 = -LsAg - L0 Ag + AS + AD. Rearranging gives 

Ag(¼ + Lo) = AS + AD, and finally: Ag = (AS + AD)/(Ls + Lo), a result due to 

Dickerson and Hazel (1944). 

Rendel and Robertson (1950) extended this procedure to consider four paths of 

selection: sires of sires (SS), dams of sires (DS), sires of dams (SD), and dams of dams 

(DD) with generation intervals Lss, Los, Lso, and L00 , respectively. 

Progeny 

~ss 
s 

~~DS 

~ ~SD 

D 

~DD 
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Let .6.SS, .6.DS, .6.SD, and .6.DD be the respective genetic superiorities of the 

selected grandparents as differences from their generation averages. For example, 

.6.SS = rnss Dssaa. By similar reasoning as before 

SS = S - ½,s.6.g + .6.SS , 

DS = s - LDs.6.g + .6.DS ' 

SD = D - LsD.6.g + .6.SD ' and 

DD = D - LDD.6.g + .6.DD . 

Because S = (SS + DS)/2 and D = (SD + DD)/2, then 

Gprogeny = (S + D)/2 = (SS + DS + SD + DD)/4. Thus, by substitution, 

S + D 
2 = (S - Lss.6.g + .6.SS + S - Lo5.6.g + .6.DS + D - Lso.6.g + .6.SD + 

D - Loo.6.g + .6.DD)/4. 

After rearranging and subtracting (S + D)/2 from both sides, 

.6.g(Lss + Los + Lso + Loo) = .6.SS + .6.DS + .6.SD + .6.DD, so that 

.6.g = (.6.SS + .6.DS + .6.SD + .6.DD)/(Lss + Los + Lso + Loo), 

Genetic progress per year, then, is equivalent to the average superiority of the 

selected grandparents divided by the average generation interval of the different 

grandparent paths. 

This expression or the preceding one involving just sires and dams can be used to 

compare expected genetic progress for different selection programs considering differences 

in generation intervals, selection intensities, and accuracies of prediction. 
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SELECTION INDEX FLOW CHART FOR SINGLE TRAITS 

The following six steps are a guide to using selection index for prediction of true 

value and design of optimum breeding programs. The various distributions involved with 

selection index properties and their means and variances also are described. 

1) Define T. 

2) t = I = b1 X1 + • • • + bNXN, X's are available records, I = b'x . 

3) Selection index equations determine b's which minimize E[(T-1)2] or maximize r11. 

In matrix notation: Pb = c , so that b = p· 1c. 

The aii' axixj' and axiT are determined from expected values, 

definition of T and models for~ . 

Models: X· = G· + £. or 
I I I 

~j = Gi + PEi + TEij for traits with repeated records. 

E( ) - 2 22 2 2 G·G· - a--a10 + a• -a20 + d--a01 + a .. d,-a 11 + • • • 
1 J lJ lJ IJ lJ IJ 

E(E·E·) = c .. ax2 
1 J IJ 

4) Rank animals using bi's and ~•s, I = b'x with actual X's. 

147 
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5) Probability statements when TI I= 10 has a normal distribution are based on: 

E(T I I = 10) = 10 

V(TI I = 10) = (1-r1J)a,y, 

Tfi = (LbiaXiT)/af; b'c/af. 

6) Theoretical comparison of selection programs 

One path; 

Two paths, additive genetic value; 

i1.5 + ID 
b.g/yr = ---- where b.S = rnsDsaG, etc. 

Ls+ Lo 

Four paths, additive genetic value; 

A / A.<iS + IDS + A.5D + IDO '-lg yr = 
Lss + Los + Lso + Loo 
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DISTRIBUTIONS INVOLVED WITH PREDICTING ADDITIVE GENETIC VALUE 

Distribution 

1) Pi, phenotypic 

2) ~' adjusted phenotypic record, Pi - µp 

3) GA., additive genetic value 
1 

4) Ia, prediction of additive genetic value 

5) GA I Ia = I 0 , additive genetic value for 
a 

animals with index = I0 

6) GA - 10 , prediction error 
a 

* rtJ depends on T, but for T = GA : 
a 

2 _ :Ebi0 X ·T 
rn - 1 if not inbred, and 

h 2 2 
ax 

:Eb·ax T 2 1 1· 'f. b d fTI = __ ___._ __ l 1n re , 

(l+F)h 2a~ 

Mean Variance 

µ.p a2 
X 

0 ai 
0 h2a2 

X 

0 r2 h2a2 • TI X 

Io (1-riJ)h 2a~ • 

0 * 
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SELECTION WITH MORE THAN ONE TRAIT MEASURED 

The contribution of genetic effects and environmental effects to the correlation 

between two traits can be described in the form of a simple model for phenotypic records 

of traits 1 and 2 expressed as differences from their means: 

X2 = p 2 - µ.2 = µ.2 + Gz + E2 - µ.2 = Gz + Ez with 

2 2 2 2 
which implies = 0; Opl = OX1 = OG1 + OE1' OG1E1 

2 2 2 2 which implies = 0; and Op2 = aXz = aG2 + OE2' aGzEz 

Note that a G 1 Gz is the genetic covariance and ae 1 Ez is the environmental covariance 

between traits 1 and 2. In this chapter additive genetic effects will be assumed to be the 

only genetic effects. If other than additive genetic effects are present, the procedures 

described in this chapter can be changed easily to account for the other genetic effects. 

The genetic correlation between traits 1 and 2 is: 

r = g 
~ 
~ aGI aGz 
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The environmental correlation is: 

r = e 

The phenotypic correlation is: 

r = p 

~ 
~ aE1 aE2 

SELECTION FOR MORE THAN ONE TRAIT 

= 

~ 
~ aXl aXz 

There are several reasons for considering more than one trait in a selection program. 

1. Records of other traits may be used in selecting for a single trait. 

2. Several traits may be economically important so that joint selection is desirable. 

3. Several economically important traits are to be improved but other traits are at 

an optimum level so that they should not be allowed to change. 

4. In all cases, the correlated response in many traits may be of interest even if 

selection is not for all traits. 

Definition of Overall Genetic Value and General Problem of Selection 

If m traits have linear economic value, then overall or aggregate genetic value for 

animal a can be defined as: 
m 

Ta = v1Gal + v2G02 + • • • + vmGa:m = I: vj Ga:j where 
j=l 

Ga:j is the additive genetic value of animal a for trait j, and vj is the net economic 

value per unit of trait j. As before, af = E[T2]. 
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Since the G's are in units of measurement and the v's are values per unit, the overall 

aggregate true or genetic value is in economic units -- for example, dollars or cents. 

Next, suppose records are available for N traits measured on the animal to be 

evaluated [X1, x2, • • •, XNl• These records may, but need not, be included in the m 

traits included in overall economic value. The case when records on relatives are available 

will be discussed in Chapter 14. Thus, records on several traits are available to estimate Ta· 

The problem is, as before, to weight each record to estimate Ta with an index of the traits, 

i.e., ta = I = 81X1 + 82X2 + • • • + BNXN, where the B's are the weights which will 

maximize r11 and !i T. Several approaches to estimating T are equivalent, although proving 

the equivalence is not always easy. The general selection index procedure and properties 

as described in Chapter 7 apply to the multiple trait case as well as to the single trait case. 

The appendix to this chapter describes multiple trait selection index procedures in the 

notation of matrix algebra. 

METHODS USING PHENOTYPIC RECORDS EXPRESSED AS DEVIATIONS FROM 

APPROPRIATE POPULATION AVERAGES 

Records expressed as differences from population averages were considered for 

selection using records on relatives for only one trait. All traits measured on an animal will 

also be expressed as differences from their population averages. 

Index Each Trait Separately 

This method is perhaps the easiest to apply and to understand. The genetic value 

for each trait is estimated separately using all the traits with measurements, ~ (i = 1, • • •, N). 



154 Selection Index 

Then the indexes, lj, for the traits are substituted for genetic values, Gj, in the definition of 

T. For example, estimate Gj by lj = bjl x 1 + bj2X2 + • • • + bjNXN. The first subscript 

on the b's refers to the trait being evaluated and the second subscript to the trait being 

weighted in the index. The equations which define the weights are the usual ones to 

maximize ru and to predict Gj : 

2 
aX1 bjl + ax1X2 bj2 + ••• + ax1XN bjN = ax1Gj 

2 
aXz bj2 + ••• + ax2XN bjN = axzGj 

This procedure is repeated for all m traits with economic values so that: 

l1 = b11 X1 + b12 Xz + ••• + b1N XN 

12 = bz 1 X1 + b22 Xz + • " • + bzN X N , 

Then because lj estimates Gj, the lj will be substituted for Gj in the economic 

equation; 

T = v1 G1 + v2 G2 + • • • + vm Gm so that the estimate of overall economic value 

t = I = v1 11 + v2 12 + • • • + vm Im where I is the overall index estimate of T. 
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In setting up the selection index equations to determine the weights for each index, 

2 
the coefficients of the weights are the same ( a X 1, ax 1 x2, etc.) no matter which trait is 

being indexed. The equations to find the weights change in the first subscript of the b's (the 

subscript for the trait being evaluated) and in the covariances on the RHS's. Depending on 

the trait to be evaluated, the RHS's correspond to the traits measured and are of the form: 

ax ·G · (i = 1, • • •, N) for evaluation of trait j. 
1 J 

Because in this example ~ is measured on animal a and Gj is the genetic value for 

trait j of animal a and Xi = Gi + Ei, then E(~Gj) = aX ·G· = aG·G· which is the 
1 J l J 

genetic covariance between traits i and j because aE ·G. is assumed to be zero. The 
l J 

covariance a G ·G. also can be written as rg .. ~ h ~h ~ ax. ax. where ax. and ax. 
l J lJ 1 J 1 J 1 J 

are the phenotypic standard deviations for traits i and j. 

Although I can be calculated as v 1 I 1 + • • • + v mlm, obviously the overall index can 

be rewritten as I = B1 x1 + B2X2 + • • • + BNXN because each Ij contains all the 

~- In fact, appropriate multiplications and grouping of coefficients show: 

-'\ = v1 bli + v2b2i + • • • + vmbmi , with, e.g., 

131 = v1b11 + vzb21 + ••• + vmbml · 

The advantage of this method over the next one is that if economic values change, 

the equations to find the b's do not have to be solved again. The new economic values are 

simply substituted in the last step of the procedure, i.e., I = v1I1 + • • • + vmlm. 

If vj = 0, there is no need to find the Ij to predict Gj since Ij will drop out of the 

overall index. The overall index, however, will include ~ if it is used in predicting genetic 

value of some other trait and, therefore, overall merit. If all vj = 0 except for one trait, 

then overall economic value is defined as equal to the genetic value for the one trait that 

is being predicted by all the traits. 
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Index Overall Genetic Value Directly 

The T in the general selection procedure to set up the index equations to find the 
m 

appropriate weights for the X's is Ta = _E vjGj. The equations that define the B's and 
J=l 

maximize rTI are as before: 

2 
axl .B1 + ax1Xz ,Bz + ••• 

The coefficients of the weights on the LHS's are the same as when finding the 

weights to index each trait separately. The RHS's (the ax,T, i=l, • • ·, N) are the 
1 

covariances between~ and the linear function, v1G 1 + • • • + vmGm. By the usual rules 

for finding the covariance between linear functions and by assuming no covariances between 

genetic values and environmental values: 

m 
= E VJ'O'G·G· 

j=l t J 

Recall that ao G - r ~ ax ax and also note when G1• = GJ·' that i j - gij ~ ni nj i j 
2 2 2 

O'GiGi = a0 i = hi axi . Solving the equations for the B's then gives the index 

I = B1X1 + B2X2 + • • • + f3NXN which is the same index as found earlier when indexing 

each trait separately and then weighting by economic value as I = v1I1 + • • • + vmlm. 

Proof of the equivalence of the two procedures is in the appendix. 
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EXPECIBD RESPONSE FROM SELECTION FOR ECONOMIC VALUE 

Total response in economic value can be determined as before by either 

AT = Da 1 or with more difficulty with AT = rTIDaTwhere ay can be found as the variance 

of the linear function: 

V(I) = E[( ~ .8iXi)2] and rTI = ~ l;6iaXiT/ ai 
i=l 

where the ax ,T (i= 1, • • •, N) are the covariances of linear functions and at is the 
1 

m 
variance of the linear function, T = . L v jG j. 

J=l 
Often the expected correlated response for one or more traits is of interest when 

selecting for some overall defined economic value. For any index, whether the selection 

index or any other, the expected correlated genetic response for any trait j can be found by 

the regression of Gj on I: 

where the average selected I, Isel• is: 

J.LI + Da1 and Gj = J.LGj + AGf thus, AGj = [Cov(Gj,l)]D/a 1 where 

Cov(Gj , I) = Cov(Gj, B1 X1 + • • • + BNXN) = 

J31°GjGl + " •• + J32°GjG2 + •"" + J3N°GjGN· 

This formula holds for any trait whether included in T or I. However, the correlated 

responses of the traits included in T when weighted by their economic values will equal 

total economic response; i.e., AT= v1AG1 + v2 AG2 + • • • + vm AGm. 

An example follows for selection for two traits. Included are examples of 

comparing expected correlated responses in the two traits when selection is for only one 

of them using either both traits or only one trait. 
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EXAMPLES 

Selecting For More Than One Trait 

Let milk yield = trait 1, type score = trait 2 

2 = (2000 lb)2 2 = (2%)2 = 400 lb% aXl aX2 ax1X2 
2 = (1000 lb)2 

2 = (1%)2 = 200 lb% aG1 aG2 aG1G2 

h2 
1 = .25 h2 

2 = .25 

Suppose v1 = $.025/lb and v2 = $50./%. 

Method 1. Find 11 = b11 X1 + b12 X2 

4,000,000 b11 + 400 b12 = ax 1a 1 = 1,000,000 

400 b1 l + 4 b12 = ax 2a 1 = aa2a1 = 200 

Thus, 11 = .2475 X1 + 25.2525 X2 . 

Then find 12 = b21 X1 + b22 X2 

4,000,000 b21 + 400 b22 = OX1G2 = 200 

400 b21 + 4 b22 = ax 2a2 = 1 

Thus, 12 = .00002525 X1 + .2475 X2 so that: 

I = (.025)11 + (50.)Iz 

rp = .1 

rg = .2 

= [.025(.2475) + 50(.00002525)]X1 + [.025(25.2525) + 50(.2475)]X2 

I = B1 x1 + B2x 2 = .00745 x1 + 13.006 x 2 will be the overall index. 

Total Response 

2 2 2 2 2 
"1G = D a1; a 1 = ,e1 ax 1 + .B2 ax 2 + 2P1.B2 ax 1x 2 = 976 and 

aG = D ./976 = 31.24 D ($), total expected economic response. 
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Co"elated Responses 

[Cov(Gz,I)] D wi'th 
AGz = 

a1 

2 
Cov(G2,I) = B1 aGzGl + /32 aG2 = .00745(200) + 13.006(1) = 14.5; 

and AG2 = 145 D = .464% (D). 
31.24 

1005l D = 321.7 lb (D) . 
31.24 

As it should, AG = v1 aG 1 + v2 aG 2 = .025(321.7 D) + 50. (.464 D) = 

8.04 D + 23.2 D = 31.24 D = Dal . 

If the correlated response in another trait, e.g., fat test = trait 3, is of interest, 

then: 

2 2 2 
If rg = -.6, rg = .1, aX3 =(.3%) , and h3 = .5; 

13 23 

then: 

2 
aG3 = .045, 

aG 1G3 = rg13 J a~ 1 a~ 3 = -.60 J(I000) 2(.045) = 127, and 

aG2G3 = rg23 J a~ 2 a~ 3 = .10 J(1)2(.045) = .02121. 
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Then: Cov(G3,I) = .00745(-127) + 13.006(.02121) = -.67 and 

((--67)] D = -.021 D (%). 
(31.24 

Selecting For One Trait Using Two Traits 

Suppose v2 = 0, then v1 can be any positive nonzero value because obviously v1 

will not change ranking based on I = v111; unity is a convenient value for v1 . 

If v1 ,. 1, then 

[Cov(G1 ,I)] 
----D but I= v1I 1 so that 

a1 

[v1Cov(G1,I1)] D = [Cov(G1,I1)] D 

v1a11 a11 
as for v1 = 1 . 

Thus for v1 = 1 and v2 = 0: I = 11 = .2475 x 1 + 25.2525 x 2 . 

Response 

i:1G1 = AI1 = D a11 ; 

af 1 = (.2475)2ai 1 + (25.2525)2a~ 2 +2(.2475) (25.2525) ax 1x 2 = 250,556 and 

ar 1 = 500.56 . Thus, AG1 = 500.56 D (lb) 

Co"elated Responses 

When selecting for G1 using X1 and Xz= 
2 

[Cov(Gz,l1)] [bu aa2G1 + b12 aGz] 74.75 
i:1G2 = ----D = -------D = --D = .149 D (%) 

a11 a11 500.56 

[Cov(G3,I1)] D = [bu aa 3a 1 + b12 aG3Gz] D = some practice ? 
~1 ~1 
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Comparison With Selecting For One Trait Using Only Record of That Trait 

Suppose 11 = b1 x1 = hyX1 = .25 X1 

Response 

AG1 = D011 ; all = 

aG 1 = 500 D (lb) 

Co"elated Response 

2 2 (.25) ax 1 = 500; thus, 

This correlated response is the same response expected as when selecting indirectly 

for trait 2 using only trait 1 because the genetic covariance is positive. 

Comparison With Selecting For One Trait Using A Record of Another Trait 

Response 

(200) 
4,000,000 

= .00005 

= .1 

Thus, aG 2 = .1 D (%) as with selecting for G1 using x 1 . 
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Summary 

These examples illustrate the method of comparing different selection systems: 

AT for 
Selection for Based on AG1 AG2 .025 = Vl & 50 = V2 

.025 G1 + 50 G2 X1, X2 321.7 lb .464 % 31.24 $ 

G1 X1, X2 500.6 lb .149 % 19.96 $ 

G1 X1 500.0 lb .100 % 17.50 $ 

G2 X1 500.0 lb .100 % 17.50 $ 

G2 X2 100.0 lb .500 % 27.50 $ 

* All expected responses should be multiplied by D. 

APPROXIMATE PROCEDURE FOR SELECTING FOR MORE THAN ONE TRAIT 

Often the genetic correlations needed to find the weights for the index to estimate, 

T = v1G1 + • • • + vmGm, are not known or are estimated with not much reliability. In 

addition, the equations to determine the weights may be difficult to solve if many traits are 

included in the index. An approximation which is easy to use is to index each trait using 

only records for that trait; then substitute those indexes into the economic value equation. 

This approximation can also be used when records of relatives are available as will be 

discussed later. The approximation is the same as the exact procedure when the phenotypic 

and genetic correlations among the traits are all zero. In fact, the assumption made to 

obtain the approximate index is that phenotypic and genetic covariances are very small. 

When only one record is available on each trait of the animal to be evaluated, the 

indexes for each trait using only that trait are: 
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The approximate overall index is: 

The phenotypic records are weighted by the product of their economic values and 

heritabilities which would be the weights found by solving the equations for the B's when all 

the phenotypic and genetic correlations are zero: 

2 
+ O's ax /31 

1 

2 
ax 

O's + 

2 
/32 + O's 

2 
ax 13m m 

2 2 
+ O's = v1h1 aX 

1 

2 2 
+ O's = v2h2 ax 

2 

= O's + v h 2 a 2x mm 
m 

Some research has indicated that this approximation may be better than using poorly 

estimated genetic and phenotypic correlations to determine the weights for the "exact" 

procedure. Even if the correct genetic and phenotypic correlations are known, the 

approximate procedure may be nearly as good as the exact procedure and will be much 

easier to apply. In such cases, how good the approximation is may be found by calculating 

the correlated responses expected for each economic trait when selection is by the 

approximate method. The response in each trait can be compared to the response expected 

from the exact procedure. The responses for individual traits can be weighted by economic 

values to compare economic responses expected by the exact and approximate procedures. 
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* ... + Bm ~ be the approximate index. Then the correlated 

response for trait j using the approximate index is: 

.:\G, = 
J 

[ Cov( G j, I *)] D 

a1* 
where 

2 
a I will be determined by the variance of a linear function. Care should be taken to 

* 
include the correct phenotypic covariances such as ax 1 x2 which were assumed to be zero 

in determining the approximate B's. 

Example of Approximate Procedure 

Suppose that the selection is for milk and type score with variances and covariances 

as in the previous example. In the example, v1 = .025/lb and v2 = $50./%. 

The approximate procedure assumes the phenotypic and genetic covariances are zero. 

Method 1: 

The equations to find the index for milk are: 

* * 4,000,000 b11 + 0 b12 = 1,000,000 

* * 0 b11 + 4 b12 = 0 ; and 

11* = .25 X1 + 0 Xz = hyX1 . 

The equations to find l2 , the index for type score, are: 
* 

* * 4,000,000 b21 + 0 b12 = 0 

* * 
0 b21 + 4 bzz = 1 ; and 

lz * = 0 X1 + .25 X2 = h~X2 . 

2 2 
Then I. = v1 l1 * + vz 12* = v1h1 X1 + v2hz X2 = .025(.25) X1 + 50(.25) Xz. 

Note I. = .00625 x1 + 12.500 x2 as compared to the optimum index of 

I = .00745 X1 + 13.006 Xz . 
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Total and Co"elated Responses 

Total response would be computed incorrectly as: 

AT = Do1* ; because u;,.. = (.00625)2 u~ 1 + (12.5)2 o~ 2 + 0 = 781.25 and 

01 * = 27.95 are not correct because ux 1 x 2 is not zero. 

2 2 2 2 2 Actually a1* = (.00625) aXl + (12.5) oX 2 + 2(.00625)(12.5) ax 1x 2 = 843.75with 

a1 = 29.05. 
* 

The correct expected total response can be computed as: 

[Cov(T,I.)] 
AT = ---- D where a1 is computed using the correct ax 1x2 and 

01 * 
* 

T = v 1 G 1 + v2G2 . The correct expected total response can also be computed from 

VI AG1 + V2 AGz where: 

2 
[Cov(G1 ,I.)] [.00625 aG + 12.5 aGiGzl 

AG1 = D = 1 D 
01 29.05 

* 

= 301.2 lb (D) and 

2 
[Cov(G2,I.)] [.00625 aG 1G2 + 12.S aG ] 

AG2 = D = 2D 

01* 29.05 
= .473 % (D) 

Thus, expected AT = .025(301.2 D) + 50(.473 D) = 31.18 D. If the correlated responses 

are computed assuming ox 1x2 and oGiGz = 0, the incorrect expected responses are: 

2 
AG1 = [Cov(G1, l.)]D/ O]* = (.00625 oG 1)D/27.95 = 223.6 lb (D) and 

2 
AGz = [Cov(Gz, l.)]D/ a1* = (12.5 oG2)D/27.95 = .447% (D). 

In the incorrect calculation, the genetic covariance term in the numerator was ignored and 

in the incorrect 01 , the phenotypic covariance was ignored. 
* 
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The three sets of calculated responses that were compared are summarized below: 

1) using the correct covariances, 

2) using zero covariances to approximate the index but usmg the correct 

covariances to compute response, and 

3) using zero covariances when really not correct. 

Computing of Expected response / D 
index response AG1 (lb) AGz (%) AT = v1 AG 1 +v2AG2 

correct correct 321.7 .464 31.24 

approximate correct 301.2 .473 31.18 

approximate incorrect 223.6 .447 27.95 
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APPENDIX TO CHAPTER 13 

MULTIPLE TRAIT INDEXES IN MATRIX FORM 

Finally, a place where matrix algebra and matrix computations make problems of 

selection index much easier. 

Let g = vector of genetic values of m economically important traits for animal a, 

x = vector of phenotypic records on the same traits (in general, the vector 

could include records on different traits from those in g; the algebra is a 

little more difficult so here x has same traits as g) , 

v = vector of economic values for the traits in g , 

G = (g1 g2 • • • gm), the genetic variance-covariance matrix with the 

~, the columns of G , 

G = E(gg') = E[xg'] when x and g are the same traits, and 

P = the phenotypic variance-covariance matrix of records in x, 

P = E(xx'). 

Define Overall Economic Values 

T = v'g = g'v 

Indirect Prediction of T 

Predict Tj , the additive genetic value of trait j; 

The RHS's: 

E[x (genetic value of trait j)] = gj 



168 Selection Index 

Then: 

Pb· = 2: h• = p-ll!: and I• = b'•x J -J' J -J' J J 

Note that for traits j = 1, • • • , m : 

Predict T from the Ij : 

l1 b' 1 
glP-1 

Iz b' ~p-1 
2 

I= v' = v' X = v' = v'GP-1x . . 
• 

Im 
b' g'mp-1 m 

b' 1 b' 1 

b' 2 b' 2 
Note from v' . X = 6'x that 6' = v' and 6 = (b1 bz • • • bm)v. 

• • 
. • 

b' m b' m 



Direct Prediction of T 

Predict T = g'v ; 

RHS's: 

E[xT] = E[xg'v] = Gv 

Then: 
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PB = Gv , 6 = p-lGv , and I = B'x 

Note: 

I = 8'x = v'GP-1x as with the indirect method. 

Calculations With I and T 

V(I) = E[B'xx'B] = B'E[xx']B = B'PB 

V(T) = E[v'gg'v] = v'E[gg']v = v'Gv 

Cov(l,T) = E[B'xg'v] = B'E[xg']v = 81Gv 

From PB = Gv , V(I) = B'Gv = Cov(l,T) 

From Gv = PB, Cov(l,T) = B'PB = V(I) 

rTI = (B'Gv /v'Gv)·S 
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USING RECORDS ON ALL TRAITS OF REI.ATIVES 

When all records of all traits are used to find the index for overall genetic value, 

covariances such as the one between a record for trait 1 of relative 1, P 11, and the record 

for trait 3 of relative 2, P 23, are needed to set up the equations to find the proper selection 

index weights. The usual models for such records are: 

P11 = G11 + Eu and P23 = G23 + E23 . Then, 

Cov (P11,P23) = Cov (G 11,G23) + Cov (E11,£n) + Cov (G11,E23) + Cov (G23,E11). 

All terms except Cov (G 11,G23) and, perhaps, Cov (E11,Ez3) usually are assumed to be 

zero. The remaining covariance is the covariance between genetic value for trait 1 on 

relative 1 and genetic value for trait 3 on relative 2. If these are measured on the same 

animal, i.e., if relative 1 is relative 2 then the covariance is the additive genetic covariance 

between traits 1 and 2. In general, the additive genetic covariance between relatives is 

a12aa 1 a3 , the product of the additive relationship between the relatives and the genetic 

covariance between the traits. This form of the covariance corresponds to the additive 

genetic covariance between relatives for the same trait, a12at . Thus, if only additive 

genetic effects are assumed, Cov (Gij•Gi'j') = aii' aa j Gj' where i and i' are relatives i and 

i' and j and j' are traits j and j'. If the further assumption of no covariances among genetic 

and environmental effects and among environmental effects on different relatives is true 

171 
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then, 

Cov(Pij,Pi'j') = aii' "G j Gj' but when i = i', 

Cov(PiJ',PiJ·,) = "G· G·, + "E· E-, as before, and when i = i' and j = j' , 
J J J J 

2 2 2 
Cov(Pij,Pij) = "P· = "G· + "E· 

J J J 
The notation has been changed so that Pij is a single phenotypic record for trait j on 

relative i since the selection index will use average records on all measured traits for all 

relative groups. Thus, Xk = ~j will be the average of records on relative group i for 

trait j (nk records for each of Pk animals in the group). The overall index for 
m N 

T = I: vi Gi will be I = I: Bk Xk . The equations which determine the B's come as 
i=l k=l 

usual from maximizing r11 or minimizing E(T - 1)2. 

As in Chapter 13, finding the index directly and weighting the separate indexes for 

each of the economic traits by its economic value are equivalent. The procedure for finding 

the index for each trait separately using all the X's and then putting them together as 
m 

I = I: vi Ii will be described. 
i=l 

The basic step is to estimate Gaj' the additive genetic value for trait j for animal a, 

from all X's (Xk, k= 1, ... , N) as Iaj = bjl X1 + bjz X2 + ••• + bjN XN. The 

relationships among the relative groups and the animal being indexed must be known. 

COEFFICIENTS OF THE SELECTION INDEX EQUATIONS 

The general equations to find the h's to predict Gaj are: 

2 
"Xi bjl + "X1 Xz bjz + ••• + "X1 XN bjN = "X1 Gaj 
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If the usual simplifying assumptions are true, the variances and covariances can be 

written in terms of phenotypic and additive genetic variances of the traits and of the 

phenotypic and additive genetic covariances among the traits. 

2 
Variances of the X's, axk: 

2 2 
ax = ax 

k ij 

ai. is the phenotypic variance for trait j, 
J 
rj is the repeatability for trait j, 

hf is the heritability for trait j, and 

aii is the additive relationship among animals in group i. 

Covariances among the X's, axk xk': 

There are three possible types of covariances: 

where 

1) If k = ij and k' = i'j ( different relative groups, same trait j), 

2) 

axkxk' = ax••X·•· = aii' a20 . asbeforewhere~i'istheadditiverelationship 
D lJ J 

between groups i and i'. 

If k = ij and k' = ij' (same group, different traits), 

ap.p., + (pk-l)aiiaG·G·, 
= ax .. x .. , = J J J J 

lJ IJ Pk 
where 

ap. p., is the phenotypic covariance between traits j and j' and 
J J 

aii is the relationship among animals in group i. 

3) If k = ij and k' = i'j' (different groups, different traits), 
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Covariances on the RHS's, axk G . : 
CXJ 

The covariances between the Xk and G aj will be of two types: 

1) If k = ij (same trait as Gaj) then, 

2 
axkG . = ax .. G . = aia aG . 

ClJ IJ CXJ j 

2) If k = ij' ( different trait from Gj) then, 

N 
Solving the equations gives the weights for Iaj = E bjkXk, the index for animal 

k=l 
a for trait j. This procedure is repeated for all economic traits. The coefficients of the b's 

are the same for all sets of equations but the RHS's change depending on the trait being 

indexed so that the b's are different. 
m N 

Finally, Ia = E vi Iai ::: E .6k Xk 
i=l k=l 

EXPECTED RESPONSE FROM SELECTION 

As usual a T = D a 1. Although af is messy to compute, all the terms are found in 

the coefficients in the equations to find the weights; af = B'PB. 

The correlated response for any trait c can be computed as usual as 

Cov(Gac, Ia) 
aGc = ----- D . 

a1 
Again Cov(Gac' Ia) is messy but can be computed as: 

Cov(Gac.la) = B1Cov(Gac•X1) + B2Cov(Gac,X 2) + ••• + BNCov(Gac'XN) 

where Cov(Gac•Xk) = Cov(Gac'~J·) = aiaaG G· and (if c = j) = aiaa 20 
C J C 

APPROXIMATE PROCEDURE WITH RELATIVES 

As before, approximate weights can be determined easily by assuming the phenotypic 

and genetic covariances among the traits are zero. Then many of the equations to find the 
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weights have zero off-diagonal coefficients, i.e., all those between different traits. The 

RHS's are relationships times genetic variance or are zero if indexing each trait separately 

or are economic values times relationships times genetic variance if obtaining the overall 

index directly. The approximate procedure is the same as using records of relatives for only 

the trait being indexed. Then the approximate indexes for each trait (based only on records 

for that trait) are weighted by their economic values. 

When the phenotypic and genetic covariances are really zero the approximate 

procedure is the same as the exact procedure. How much better the exact procedure is than 

the approximate procedure when the covariances are different from zero and are known can 

be detennined by calculating the correlated responses by both procedures as was illustrated 

when only records on the animal were considered. 

If the phenotypic and genetic covariances are estimated from a small amount of data 

so that they may be seriously in error, especially the genetic covariances, then the 

approximate procedure may be more accurate than using the exact procedure with incorrect 

covariances. The differences in the procedures, however, cannot be determined without 

knowing the correct covariances. 

EXAMPLE OF APPROXIMATE PROCEDURE WITII RELATIVES 

The following example with two traits measured on the animal and on 50 paternal 

half sibs (phs) will illustrate the exact and approximate procedures and will demonstrate 

how to compare the expected selection responses from both if the correct covariances are 

known. 
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Let: 

X 1 = a record on trait 1 of animal a 

x 2 = a record on trait 2 of animal a 

x3 = average of single records on trait 1 of 50 phs of a 

x 4 = average of single records on trait 2 of the same 50 phs 

2 2 2 2 2 2 Given: ap 1 = (2000 lb) , ap2 = (3%) , h1 = .25, hz = .36 

rg = .2, rp = .1, v1 = $.05/lb, v2 = $25./% 

Thus ap 1 p2 = .1(2000)(3) = 600, aG 1 G2 = .2 ✓(.25)(.36) (2000)(3) = 360, 

at 1 = .25(2000)2 = (1000)2, at2 = .36(3)2 = (1.8)2. 

Need: I = B1X1 + BzX2 + B3X3 + B4X4 . 

Exact Procedure 

To find 11 = b11X1 + b12x2 + b13x3 + b14x4 solve: 

(2000)2b11 +600 b12 + .25(1000)2b13 + .25(360) b14 = (1)(1000)2 

600 b11 +(3)2 b12 + .25(360) b13 + .25(1.8)2h14 = (1)(360); 

.25(1000)2b + .25(360) b + ( l + 3.o625) (2000)2b + ( 600 + 4410) b = .25(1000)2 
11 12 50 13 50 14 

.25(360) b11 + .25(1.8)2b12 + ( 600 ;; 410) b13 + ( 1 +5~
4l) (3)2 b14 = .25(360) 

Then, 11 = .209 X1 + 20.56 Xz + .604 x 3 - 6.22 X4. 

To find 12 = h21x 1 + h22x 2 + b23X3 + b24x 4, the equations have the same 

diagonal and off-diagonal coefficients but the RHS's become: 

(1) (360), (1) (1.8)2, .25 (360), and .25 (1.8)2 

Then, l2 = .000032 X1 + .306 X2 - .0000096 X3 + .575 X4 
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Thus, l = .05 11 + 25 12 

= B1X1 + B2X2 + B3X3 + 84X4 

= .01125 x1 + 8.68 X2 + .02998 X3 + 14.07 X4 

2 2 2 2 2 
a1 = B'PB = 8 1 (2000) + B2 (3) + ••• = 2314 and a1 = 48.10 . 

All of the terms, other than B's in af came from the coefficients of the b's in the equations 

to find the b's, i.e., from P, the variance-covariance matrix of the X's. 

Co"elated Responses 

.i T = al D = 48.1 D . 

Cov(G0 1,l) 
.iG1 = ---- D 

O'J 

[B1Cov(G0 1,X1)+ 8zCov(G 0 1,X2)+ B3Cov(G0 1,X3)+ 84Cov(Ga1,X4)] 
=---------------------D 

O'J 

(81(1)(1000)2+ Bz(1)(360)+ B3(.!.)(1000)2+ B4(.!.)(360)] 
4 4 

= -------------------D 

= 23145 D = 481.2 lb(D). 
48.10 

Cov(G zl) 
.iGz = a ' D = .962 %(0) 

O'J 

Toe terms in Cov(Gal•I) other than B's come from the RHS's of the equations to 

find 11 as do terms in Cov(Gaz,I). 
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Approximate Procedure 

Pretend rg = rp = 0 so that ap 1 p2 = aG 1 G2 = 0. 

The approximate procedure will be the correct procedure if r g = r p = 0. 

To find It = bi*l X1 + b12 X2 + b13 X3 + bi*4 X4 solve: 

(2000)2bt 1 + 0 biz + 0 b14 = (1)(1cro)2 

0 bi*1 + (3)2biz 

.25(1000)2bi*l + 0 biz 

+ .25(1.8)2b14 = O; 

Notice that: 

It = .212 x1 + .606 X3 uses only records on trait 1. 

To find 12* the RHS's change to 0, (1)(1.8)2, 0, and (1/4)(1.8) 2. Then, 

12* = .308 x2 + .575 x4 uses only records on trait 2. 

= 25(100l)2 

Then, I* = .05 Ii* + 25 Iz* = .0106 X1 + 7.71 Xz + .0303 X3 + 14.39 X4 

Note that B( = v1 b1\, Bi* = v2 b22, B3* = v1 b13 and B4* = v2 b24 . 

2 4 2 2 
If r8 = rp = 0 then a1* = :E (B.*) aX· = 1824.5 and ah = 42.71 . Then, 

i=l i 1 

COV(G 1 1*) Bi* (1)(1000)2 + B3* .25(1000)2 
.:1G1 = ___ a_,_ D = ---------- D = 425.7 lb (D) 

a1* 42.71 
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2 
If rg or rp :f 0, then a1* and the correlated responses as computed above are 

incorrect because the genetic and phenotypic covariances have been ignored. The correct 

correlated responses and correct af * can be computed if the correct covariances are known 

even if the index is not the best index: 

4 
= E (131-*)2a2x. + 2 E E 131-* BJ.* ax. x. [The correct covariance terms in 

i=l 1 i > j 1 J 

the variance of the linear function I* have been added]. 

2 
ah = 1824.5 + 595.3 = 2419.8 and a1• = 49.19. 

COV(G,x1,I*) = Bi* (1)(1000)2 + 132* (1)(360) + B3* (.25)(1000)2 + B4* (.25)(360) 

= 18181.8 + 4070,1 = 22252.5 and 

COV(Ga2,I*) = Bi* (1)(360) + B2* (1)(1.8)2 + B3* (.25)(360) + B4* (25)(1.8)2 

= 36.62 + 6.54 = 43.16 . 

These covariances now contain the genetic covariances between the two traits. 

Thus, the correct correlated responses are: 

AG1 = 22252•5 D = 452.4 lb (D) and AG2 = 43•16 D = .877 % (D) . 
49.19 49.19 

The three sets of calculated responses can be compared and are summarized below. 

AT= 
Computing of 

index response AG 1 (lb) AG2 (%) .05 AG 1 + 25 AG2 ($) 

Correct correct 481.2 .962 48.10 

Approximate correct 452.4 .877 44.55 

Approximate incorrect 425.7 .857 42.71 
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METHODS USING STANDARDIZED RECORDS 

All the procedures that have been described can be applied using standardized 

variables. Much of the early technical literature expressed records of all traits in a 

standardized form. In addition, the amount of relative economic emphasis on each trait 

expressed in value per standard deviation of the trait, vi• is appropriate when the records 

are standardized. As will be seen the final selection index is the same whether records are 

standardized or not. 

If records on the traits are standardized the equations to find the selection index 

weights can be written in terms of rp's, rg's, and h2's. Standardizing puts all variables on 

the same scale with mean, zero, and variance, 1. The standardized records are then 

expressed as fractions of standard deviations above or below the mean. 

Records on traits 1 and 2, say x1 and x2 are standardized as follows where Y 1 and 

Y 2 are the standardized records for traits 1 and 2: 

Y1 = and Yz = 

If E[ ] is the expected or average value of what is in the parenthesis then: 

Similarly, µ.y 2 = 0 . 

2 [X-µ.x] 2 1 2 By definition ay = E(Y - µ.y )2 = E --- = - E{x - µ.x) . 
ax 2 

ax 

But by definition 

2 2 2 2 2/2 E(X - µ.x) = ax so that ay = E(Y - µ.y) = aXI ax = 1. 
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Correlations And Genetic Variances or Standardized Variables 

Standardized records can be used for estimating overall genetic value or genetic value 

for a particular trait. If vi is the economic value per phenotypic standard deviation of trait 

i then: 

X· t = I' = Bi y 1 + Bz y 2 + ••• 
I 

where Yi = --
ax. 

1 

The equations to find the weights (Bi' i = 1, ... , N) are: 

a2 B' + ay y B' + ••• = ay 1 T Y1 1 1 2 2 

n, 2 n, 
ay 1 y 2 JJ 1 + a y 2 uz + ••• = oy 2 T 

The diagonal coefficients, at. , for single records are all 1. 
1 

The phenotypic covariances, ay. y, = rp .. : 
1 J lj 

ay. y. = Cov [-x_i ,_x_j l = __ 1_ oxi XJ· = r PiJ' . 
1 J ax, ax, ax.ax, 

1 J 1 J 

The covariances on the RHS's, oy. T, will be made up of functions of genetic covariances 
I 

and often a genetic variance of standardized variables, i.e., 

, [ G 1 G i l , [ Gz G i ] , [ Gm G i ] ayiT = v1 Cov --,-- + v2 Cov --,-- + ... + vm Cov --,--
axl ax. ax2 ox, ox ax, 

I 1 m 1 
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The genetic covariance between standardized variables i and j is: 

Cov [-G_i ,_G_j l = _1_ aG, G· 
ax, ax, ax.ax, 1 J 

1 J 1 J 

Multiplying both numerator and denominator by aG,aG· gives: 
1 J 

[ Gi Gj ]- ~2 Cov --,-- - rg.. h. h. . 
ax, ax, lj 1 J 

1 J 

When i = j, the equation shows that the genetic variance of a standardized variable is hT . 

Thus, the equations to find (Bi, i= 1, ... , N) can be rewritten in terms of genetic and 

phenotypic correlations and heritabilities. 

The genetic and environmental variances for a standardized variable, Y, can be 

shown in another way. 

y = 
X-µ.x Gx + Ex Gx Ex Gx Ex 

= Ey. = = + - so that -- = Gy and -
ax ax ax ax ax ax 

2 2 2 2 
2 aGx aEx aGx 2 aE 2 = 1 - h 2 ay = + -- where -- = aGy =h 2 and2 = aEy 

2 2 2 2 
ax ax ax ax 

Equivalences In Using Standardized And Un.standardized Records 

The value of a standard deviation of trait j is v j and the value per unit of trait j is 

vj which gives the equivalence, v j = v j axj . 

The indexes I' and I both estimate T and so are equal, i.e., 
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Thus BJ Yj = BjXj but Yj = Xj/axj so that Bj = Bj axj and Bj = Bj/axj 

If each standardized trait is indexed separately as: 

aj/axj = lj = bjl Y1 + ••• + bjN YN 

then, lj is in fractions of phenotypic standard deviations so that: 

I ! ax = I· = G • and I: = I ·/ax J j J J J J j" 

To estimate overall economic value: 

t = I' = v1• 11• + ••• + v' I' and t = I = v1I1 + ••• + v I so that v·l· = v ! I! mm mm• JJ Jr 

Because Ij axj = Ij and vj = vj axj ; then vj IJ = vj axj Ij/axj = vpj . 

When selection is for one trait using several traits, an economic weight of one is 

often assigned to the trait, say j, being evaluated. If standardized records are used, then 

v ! = 1 = vJ·ax. with vJ· = 1/ ox.. However, what is wanted in the nonstandardized index 
J J J 

is vj = 1. To convert the standardized index with v j = 1 to a non-standardized index with 

vj = 1, the standardized index must be multiplied by axj which would be equivalent to 

v j = oxj . Then, as stated, 

Ij = ax/j = oxj [(bi1X1/ax 1) + (bjzXz/ax 2) + ••• + (biNXN/ axN)] so that 

bjt = bj'1ox/ox1 ; bjz = bjzax/ax2 ; ... ; bjN = bJNax/axN . 

Equations To Find Weights 

As before, the overall index can be found either by indexing each trait or by indexing 

T directly. The equations to find the weights to index each trait separately are given below 

assuming one standardized record on each trait of the animal being evaluated. 
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To find the weights for Ij = bj'1 Y 1 + ••• + bj'N Y N solve: 

b-'1 + rp b.'2 + ••• + rp b.'N = rg ~ h12h ~ 
J 12 J lN J jl J 

rp b.'l + 12 J b-'2 + ••• + rp b-'N = rg ~ h22h.2 
J 2N J j2 J 

Repeat for each trait (j = 1, ... , m). Then the overall index: 

Note also that: 

If solving directly for I' then the equations are: 

where the typical RHS: 

ayiT = v1 rgil ~h~hf + v2rgi2 ~hihf + ... + v~rgim ~h~hf 

Correlated Responses 

Standardized correlated responses can be computed in terms of standardized 

covariances and then converted to the usual units by multiplication by the standard 
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deviation. For example, for trait c the standardized correlated response is: 

/iG' = 
C 

Cov(G~,I') D = [Bi rgcl ~ + ••• + BNrgcN W]D. 

<11' ar 

Then liG c = axe !iG ~ . 

If unstandardized genetic covariances are used and because the Bi can be determined: 

Cov(Gc,I) 
liGc = --- D = 

O'J 

Bt aa Gt + ••• + BN aa GN 
c c D as before. 

O'J 

Note a1 = al' since I = I' . 

The following example illustrates use of standardized variables when three traits are 

measured on the animal being evaluated and when the three traits have nonzero economic 

values. A part of the example also illustrates the consequences of assuming the genetic and 

phenotypic correlations are zero. 

Example 

Given: vi = 3, Vz = 2, vj = 1 (the relative economic values of phenotypic 

standard deviations of the traits) 

ax2 = 5, 
2 

h2 = .8, 

r P12 = .l, r P13 = .Z, r P23 = •3• r g12 = •6• r g13 = .5, r g23 = •4 

Find: I' =viii +v:P2 +vjlj =BiYt +BzY2 +BjY3. 
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For Ii solve: bi 1 + .1 b12 + .2 bi 3 = .7 

.1 bil + bi2 + .3 bi3 = .6 J(.7)(.8) 

.2 bi1 + .3 biz + bfa = .5 ✓(.7)(.9) , so that 

Ii = .632 Y1 + .335 Yz + .170 Y3 . 

For 12 the RHS's become .6 J(.8)(.7) , .8, and .4 J(.8)(.9) with: 

12 = .366 Y1 + .751 Yz + .041 Y3 . 

For 13 the RHS's are .5 J(.9)(.7) , .4 J(.9)(.8) , and .9 with: 

13 = .223 Y 1 + .066 Y 2 + .835 Y 3 . 

To find I' directly solve: 

Bi + .1 B2 + .2 B3 = 3(.7) + 2(.6) J(.7)(.8) + (1)(.5) J(.7)(.9) 

.1 Bi + B2 + .3 B3 = 3(.6) J(.8)(.7) + 2(.8) + (1)(.4) J(.8)(.9) 

.2 Bi + .3 B2 + B3 = 3(.5) J(.9)(.7) + 2(.4) J(.9)(.8) + (1)(.9) 

Then I' = 2.85 Y 1 + 2.57 Y2 + 1.43 Y3 = I and al' = 4.7 

The correlated response in trait 2 is: 

AG, = (2.85)(.6) ✓(.8)(.7) + (2.57)(.8) + (1.43)(.4) ✓(.8)(.9) D 
2 4~ 

= .813 D 

and AG2 = 5(.813)D = 4.065 D . 

Now assume rg's and rp's = 0 as for the approximate index. 

The overall equations reduce to Bi = 3(.7), B2 = 2(.8), and Bj = (1)(.9) 

so that I' = 2.1 Y 1 + 1.6 Y 2 + .9 Y 3, aii = 7.78 and ar = 2.79, 

Cov(G2,I') = 1.28 and AG2 = 2.29 D, if rg's and rp's are really zero. 
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If rg's and rp's are not zero but are as given above and if I' = 2.1 Y 1 + 1.6 Y 2 + .9 Y 3 

then ai, = 7.78 + 2.29, al' = 3.17; Cov(Gz,1') = 2.53 and ~Gz = (5) ~:~; D = 3.99 D 

as compared to 4.06 D using the best index and to the 2.29 D calculated by using 

zero correlations when calculating expected correlated responses. 

ANOTHER STANDARDIZATION 

Some research papers have used another standardization procedure which gives all 

of the standardized variables a genetic variance of 1 and a mean value of zero. The 

standardization is to subtract the mean and divide by the genetic standard deviation: 

X - µ.X 
Y=--­

aax 

V r~i = 1 and aax 

Ex + __ 

aax aax 

V [ Ex l = l-h 2 so that V(Y) = 
aax h2 

For standardized records on two traits, the phenotypic covariance is: 

1 
= rP12 
~ 
~ n1 nz 

Genetic covariance is Cov(Gy l'Gy 2) = Cov 1 , [ 
Gx 

aaxl 
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If records are standardized in this way, the equations that determine the correct 

weights (bR, i=l, ... , N) when selecting for trait j using standardized records on the animal 

to be evaluated, I j' = bj'i Y 1 + ••• + bjN Y N• are: 

1 b" - ·1 
h2 J 

1 

1 r b-'i + 1 r b.2 + ••• + 
["i""z PlN J ["i""z P2N J 

~nlnN ~h2hN 

Note that when j = i, rg.. = 1. 
11 

The extension of this procedure to T = ~ v j' G j is straightforward. Each economic 
J 

value is given in terms of value per genetic standard deviation, v j' . The index for trait j 

in standardized form can be converted back to non-standardized form as: 
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SELECTION INDEX FOR CATEGORICAL DATA 

Some traits are subjectively scored on an either-or basis; that is, they are assigned to 

a discrete category. For example, calving difficulty for a particular birth might be scored 

in one of three categories: 1, no difficulty; 2, some difficulty; or 3, great difficulty. 

One method of analysis is to simply assign a single score to each birth. Two simple 

ways of doing that have been used: a) the score is the same as the category, e.g., a some 

difficulty birth would be scored as a "2" and b) the categories are assigned economic values 

and the score is the economic value associated with the category, e.g., if category 2 has 

economic value -$20, then the score for a some difficulty birth would be -20. Note in case 

a) that a linear scale of 1, 2, 3 for economic value is implied. In both cases the usual 

selection index procedure can be used if the appropriate heritability is known. 

A better procedure, however, with the selection index is to consider each category 

being considered as a separate trait scored as zero or one. There will, however, be 

automatic covariances among the categories. Categorical data have a multinomial 

distribution. If there are only two categories the distribution is binomial. 

189 
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VARIANCES AND COVARIANCES 

The phenotypic variances of, and covariances among, the categories are determined 

by the probabilities of being scored in each category. These probabilities are also the 

population means when each category is scored as a zero (the attribute is absent) or as a 

one (the attribute is present). Suppose the fractions in each category (means) are 1r1, 1r2, 

and 1r3 (the Greek symbol pi is used here to denote proportion). Then the phenotypic 

variances and covariances are: 

2 
(J 

Y2 

2 
(J 

Y3 

The sum of the variance and covariances in any row ( or column) is zero because 

The genetic variances and covariances follow the same pattern although they are not 

determined by the means: 

2 
a 

gl agl gz agl g3 

2 
aglg2 agz agzg3 

2 
agl g3 agz g3 a 

g3 

The sum of the variances and covariances in any row (or column) is zero. Such a property 

results in what is known as a lack of independence and such variance-covariance matrices 

are singular. The practical result is that instead of using all the traits to predict the value 
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for any one trait as is usual for evaluation using multiple traits, all traits (categories) except 

one are used as will be illustrated. 

SELECTION INDEX TO PREDICT CATEGORY FREQUENCIES 

The selection indexes predict differences from the means as follows: 

l1 = gl - 1r1 = b11(X1 - 1r1) + b1z(X2 - 1rz) + b13(X3 - 1r3) 

Iz = gz - 1rz = bz1 (X1 - 1r1) + bzz(Xz - 1rz) + bz3(X3 - 1r3) 

l3 = g3 - 1r3 = b31(X1 - 1r1) + b3z(X2 - 1rz) + b33(X3 - 1r3) 

The probabilities can be predicted by adding the means to the indexes as follows: 

gl = 11 + ,rl 

gz = 12 + ,.,.2 

Note that g1 + gz + g3 = 1, and 11 + 12 + 13 = 0. The multiple trait observation 

(1, 0, 0) if scored in category 1 

(0, 1, 0) if scored in category 2, and 

(0, 0, 1) if scored in category 3. 

The same properties hold, for example, in the case of sire evaluation from p half sib 

progeny except that x1, x2, and x3 are the fractions of progeny scored in categories 1, 2, 

and 3. 2 
+ (p-1{-2s a!i) a 

Then, 
2 Yi 

and ax, = 
1 p 

0 X·X· = 
aYiYj + (p-1{2s agrnJ 

1 J p 
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3 

Again EXi = 1, and E ax, X · = 0 for all rows (or columns). The RHS's, ax• T• are 
j=l 1 J 1 

determined as usual as the additive relationship times the appropriate column of the genetic 

variance-covariance matrix. 

Because of the lack of independence one less equation than number of categories is 

used. The weight ( e.g., bi3) corresponding to the equation that is left out is set equal to 

zero. 

EXAMPLE 

An example may help clarify the procedure. Suppose for some trait with three 

categories that 1r 1 = .5, 1r 2 = .3, and 1r 3 = .2. Thus, the phenotypic variances and 

covariances are: 

[ 
.25 -.15 

-.15 .21 

-.10 -.06 

-.10] 
-.06 . 

.16 

Assume the genetic variances and covariances are: 

1
.05 - .03 - .02] 

-.03 .07 -.04 . 

-.02 -.04 .06 

When the equation for trait 3 1s set equal to zero, the selection index equations to 

determine the weights are: 

RHS's for 
gl g2 g3 

.25b1 - .15bz = .05 -.03 -.02 

-.15b1 + .21bz = -.03 .07 -.04 



The indexes are: 

For g1 : 11 = .20(X1 - ,rl) + O(X2 - 1r2) + O(X3 - 1r3) 

For g2 : 12 = .14(X1 - 1r1) + .433(X2 - 1r2) + O(X3 - 1r3) 

For g3 : 13 = -.34(X1 - ,r 1) - .433(X2 - 1r2) + O(X3 - ,r 3) 

and gl = l1 + 1r1, g2 = l2 + ,r2, g3 = l3 + 1r3 
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For an animal scored in category 1; X1 = 1, x2 = 0, and x3 = 0 so that: 

gl = .20(1 - .5) + 0(0 - .3) + 0(0 - .2) + .5 = .60, 

g2 = .14(1 - .5) + .433(0 - .3) + 0(0 - .2) + .3 = .24, and 

g3 = -.34(1 - .5) - .433(0 - .3) + 0(0 - .2) + .2 = .16 . 

For an animal scored in category 2; x1 = 0, x2 = 1, and x3 = 0 so that: 

g1 = .20(0 - .5) + 0(1 - .3) + 0(0 - .2) + .5 = .40, 

g2 = .14(0 - .5) + .433(1 - .3) + 0(0 - .2) + .3 = .5331, and 

g3 = -.34(0 - .5) - .433(1 - .3) + 0(0 - .2) + .2 = .0669 . 

For an animal scored in category 3; x1 = 0, x2 = 0, and x3 = 1 so that: 

gl = .20(0 - .5) + 0(0 - .3) + 0(1 - .2) + .5 = .40, 

g2 = .14(0 - .5) + .433(0 - .3) + 0(1 - .2) + .3 = .10, and 

g3 = -.34(0 - .5) - .433(0 - .3) + 0(1 - .2) + .2 = .50 . 
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If any other two equations had been used, e.g., x2 and x3 with b1 = 0, rather than 

b3 = 0, the evaluation would have been exactly the same. The appropriate RHS's to predict 

[
-.03 ; .07 ;-.041 

-.02 -.04 .06 

The procedure for finding the weights for sire evaluation would be similar. The 

RHS's would be divided by one-half and the LHS's computed as indicated earlier. 

PREDICTION OF PROGENY FREQUENCIES 

Prediction of progeny frequencies from a particular mating would be the same as 

averaging the evaluations of the sire and dam: 

glS + glD 
Fraction in category 1 = 

2 

gzs + gzo 
Fraction in category 2 = 

2 

F . . 3 g35 + g30 
ract10n m category = 

2 

Economic weights for any of the three cases, animal, sire, or progeny, can be assigned 

after the frequencies have been predicted. Suppose v1 = 60, v2 = -5, and v3 = -100. Then, 

in the previous example, for an animal scored in category 2, (0, 1, 0), the aggregate 

economic value is predicted to be: 60(.40) - 5(.5331) - 100(.0669) = -45.5655. 
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SELECTION FOR EMBEDDED TRAITS: 

MATERNAL EFFECTS 

Some traits cannot be measured directly. An example is a maternal trait which 

makes up part of the environmental effects on the record of an offspring. Such traits are 

embedded traits. Selection for embedded traits, however, can be accomplished with the 

selection index. The procedure appears to be somewhat of a hybrid between single trait and 

multiple trait selection. The general selection index procedure can certainly be applied. 

Four examples of embedded traits will be discussed: in this chapter, the maternal effects 

model and in the following chapters, the grandmaternal effects model, the fetal effects 

model, and the cytoplasmic effects model. 

SELECTION WHEN TRAITS ARE INFLUENCED BY MATERNAL EFFECTS 

The maternal effect of the mother often has an effect on the phenotype of the 

offspring. This effect is genetic with respect to the mother but acts as an environmental 

effect on the offspring. This effect of the mother is in addition to the genetic effect of the 

sample one-half of her genes transmitted to her offspring. In turn, part of the maternal 

effect may be genetic and part may be environmental. See Willham (1963) for a complete 

development. 

195 
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The following diagram illustrates the various effects when W is the dam of X. 

Eox 

( 
GOW __ .s_---11..,► G DX ~ p 

___ ..,_ X 

G .5 
MW 

Px is the phenotype of animal X, Eox is the non-maternally caused environmental 

effect, Gox is the direct genetic effect associated with the genotype of X, GMW is the 

genetic maternal effect of W, EMW is the environmental effect on maternal ability of W, 

GMX is the genetic maternal ability of X which is not measured, and Gow is the 

direct genetic effect associated with W, the dam of X. Note that Gox = Gx and 

GMW + EMW + Eox = Ex of the usual model, Px = Gx + Ex. 

The direct trait, D, and the indirect maternal trait, M, can be considered to be two 

traits which may be correlated. The genetic value for trait M is measured one generation 

later than the direct effect D and is embedded in the phenotypic measurement of the animal 

that carries the direct effect. 

GENETIC COVARIANCES BE1WEEN RELATIVES WITH MATERNAL EFFECTS 

Let the model for a record on animal X be, 

and the model for a record on animal Y be, 

where animal Z is the mother of Y and W is the mother of X. 
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The rules for the covariance of linear functions provide the genetic covariance 

between Px and Py. If all environmental covariances are zero: 

COV(Px, Py) = COV(Gox, Goy) + COV(Gox, GMz) + COV(GMw, Goy) 

+ COV(GMW• GMz). 

These terms involve covariances between genetic effects for the same trait on relatives and 

covariances between genetic effects for different traits on relatives. 

In terms of genetic variance and covariance components: 

COV(Gox, Goy) 
2 2 2 2 

= aXY 0 010 + axy 0 020 + dXY0 001 + ••• 

2 2 2 2 
COV(GMW• GMz) = awz 0 Mt0 + awz 0 M20 + dwz 0 M01 + ..• 

COV(Gox, GMz) = axz 0 0M10 + ah 0 0M20 + dxz 0 0M01 + •.• and 

COV(GMW• Goy) = aWYaOMlO + ah 0 0M20 + dWY O'D MOl + • • • · 

The a's and d's are the usual additive and dominance relationships. The genetic 

variances are labelled with the trait, e.g., at10 is the additive genetic variance of the direct 

trait, 0. The genetic covariances are labelled with both traits, e.g., O'O MlO is the covariance 

between the additive genetic effects for trait O and trait M. 

If only additive genetic effects are considered, a simpler notation will be: 
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EXAMPLES OF COVARIANCES BE1WEEN RELATIVES 

Animal With Itself 

This covariance is a variance that contains the genetic variance plus 

environmental variance. 

Note: X = Y, W = Z, and aXY = 1, awz = 1, ax_w = .5, and ayz = .5 so that: 

In terms of the usual P = G + E model: 

Dam-progeny Covariance Considering Only Additive Genetic Effects 

Then: 

Xis the progeny, Wis the dam, Z is the dam's dam, Y is also the dam of X: 

X ◄ w ... -◄---z 
(Y) 

The genetic parts of the models for Px and Py are: 

Px = Gox + GMW and Py = Goy + GMZ . 

axy = .5, 
(XW) 

(MY) (W) (DW) 

awz = .5, axz = .25, 
(YZ) 

aWY = 1. 
(WW) 
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The covariance between relatives may contain a genetic covariance between the direct and 

maternal traits. This covariance can be negative and, if so, would mask part of the additive 

genetic variances for the direct and maternal traits. 

The additive genetic correlation between D and M is: 

aGnGM 
r 8D M = ---:======== 

' JatD atM 

Since the maximum absolute value of rg is 1: 

J atD a~M 2: I aGoGM I • 

Thus, a negative estimate of the offspring-dam covariance is possible if the negative value 

of aGDGM is large enough. 

If maternal effects are not zero, the usual procedure of doubling the offspring on dam 

regression to estimate heritability can give a biased estimate of heritability of the direct trait; 

i.e., 

2[.s atD + .5 atM + 1.25 aGDGM] 

2 
Cip 

2 
a GM + 2.5 aaDGM 

2 
Op 

There may also be other possible genetic causes for bias in this estimate due to higher 

order genetic variances, such as a~0 . 
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Sire-progeny Covariance 

Now X is progeny of dam W and sire Y which has dam Z: 

/ W(damofX) 

X 

~v◄ ... ----- Z (dam of Y) 

Because axy = .5, awz = 0, axz = .25, aYW = 0, 

2 
then Cov(Px,Py) = .5a00 + .25aGoGM which is quite different from the offspring-dam 

covariance. 

PRACTICE PROBLEMS FOR COVARIANCES WITH MATERNAL EFFECTS 

The following problems illustrate some concepts of covariance among relatives when 

maternal traits are important. 

Problems 

2 
1. Estimate a G 0 , 

From: Covariance between paternal half sibs = 20 

Covariance between full sibs = 30 

Covariance between offspring and sire = 30 
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2. Given: 
2 

a00 = 80, 
2 

a0 M = 40, 

Show all calculations in computing the covariances between: 

a) offspring and dam 

b) offspring and sire 

c) full sibs 

d) maternal half sibs 

e) paternal half sibs 

f) X and Y in diagram 

Y ◄ D ,.. B 

Solutions 

1. Cov (phs) 
2 2 

= 25oGD + OoGM + OaGDGM = 20 (1) 

2 2 
Cov (full sibs) = .5 oGD + laGM + laaDGM = 30 (2) 

Cov (offs, sire) = .5 at 0 + OotM + .25aaDGM = 30 (3) 

2 
From [phs]:aG O = 4(20) = 80 

From [phs] and [offs, sire]: .5(80) + .25oGoGM = 30; aGDGM = -40 

2 2 
From [full sibs]: .5 (80) + oGM + (-40) = 30; aGM = 30 
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2. a) X ◄◄._ __ y -◄--- z aXY = .5 awz = .5 axz = .25 aYW = 1 
(W) 

Cov (offspring-dam) = .5(80) + .5(40) + (.25 + 1) (-20) = 35 

./ w 
b) ~ 

X ◄ .,,. z a:xy = .5 awz = 0 

Cov (offspring-sire) = .5(80) + 0 + (.25 + 0) (-20) = 35 

X ◄ ■Ire 

axz = .25 avw = 0 

c) >< aXY = .5 awz = 1 axz = .5 avw = .5 

Y ◄ dam(W•Z) 

Cov (fullsibs) = .5(80) + (1)(40) + (.5 + .5) (-20) = 60 
X 

d) ~ 
y~ 

dam (W • Z) aXY = .25 awz = 1 axz = .5 aYW = .5 

Cov (mat. half sibs) = .25(80) + (1) (40) + (.5 + .5) (-20) = 40 

e) x ◄ W (dam of X) 

~ 
~Sir• 

Y ◄ Z (dam of Y) 

a:xy = .25 awz = 0 axz = 0 avw = 0 

Cov (pat. half sibs) = .25(80) + 0 + (0 + 0) = 20 

•Ir• 
f)X ◄ C ◄ A >< >< aXY = .75 awz = 1 axz = .75 aYW = .75 

dam 
y ... D ◄◄a---B 

W•Z 

Cov ( X and Y) = .75(80) + 1(40) + (.75 + .75)(-20) = 70 
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The following table gives the additive relationships that are coefficients of 

at 0 , aiM' and aGoGM in the covariances between the pairs of relatives in the 

previous problem under the assumption that only additive genetic effects contribute to dir~ct 

and maternal genetic effects. 

CONTRIBUTION OF DIRECT AND :MATERNAL ADDITIVE GENETIC VARIAN CE 
AND COVARIANCE TO THE COVARIANCE BE1WEEN RELATIVES 

Genetic Cov(Px,Py) 
2 2 

= axvaGD + awzoGM + (axz + ayw) oGoGM 

Px,Py axy awz axz ayw 

Px,Px {with self) 1 1 .50 .50 

Progeny, dam .50 .50 .25 1 

Progeny, sire .50 0 .25 0 

Full sibs .50 1 .50 .50 

Maternal sibs .25 1 .50 .50 

Paternal sibs .25 0 0 0 

SELECTION FOR THE DIRECT AND MATERNAL TRAITS 

Selection For The Direct Trait 

The records used for the selection index will correspond to ~. the average of single 

records of Pi animals in relative group i. 

where Wi is the dam of i and a is the animal being evaluated. 
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Diagonal Coefficients 

The variance of an average will be expanded by the maternal variance and maternal­

direct covariance: 

2 2 2 2 
aXi = {ap + (pi-l)[aii'aGD + awiWi,aGM + (aiwi' + ai'wi) aGoGM]}/p; 

where a_.., is additive relationship among members of the group, aw •W·, is additive 
71 I 1 

relationship among dams of the group, andaiw.,is relationship of animal in group to 
I 

another's dam. 

Off-diagonal Coefficients 

The off-diagonal coefficients will be expanded similarly: 

2 2 
ax•X· = aiJ'ClG + aw,w,aG + (aiw• + a1·w.)aGoGM· lJ D IJ M j 1 

Selection For The Maternal Trait 

2 
RHS's: axiGMa = ~aoGDGM + awiaaGM 

Diagonal and off-diagonal coefficients will be as in selection for the direct trait. 

Correlated Responses When Selecting For G0 Or GM 

If selection is for Goa and ~(i = 1, ... , N) is the average of relative group i and the 

relationship of darn of relative i to a is aw ·a then the response in Go will be 
I 

dGD = a1 D D (the selection differential Dis different from the subscript D which refers 

to the direct trait), where 10 = b10x1 + ••• + bNDXN . 



Maternal Effects 205 

The response in GO can also be computed as: 

= Cov (Goa,I o) 0 = 

010 

N 
_I: biD Cov (Goa,Xi) 
t=l D 

010 

Similarly the correlated response in GM can be predicted as: 

= Cov (GMa,1 o) D = 
a1D 

N 

N 
_I: bio Cov (GMa,Xi) 
1=1 D 

a1D 

If selection is for GMa by IM = 1': biM Xi , then: 
i=l 

t:.Go 
= Cov (Goa,I M) D = 

a1M 

N 
.r: biM Cov (Goa,xi) 
1=l D and 

a1M 

N 
. E biM Cov (GMa,Xi) 
1=1 

=---------D. 
a1M 

The following examples illustrate computations for these concepts and also show how to 

compute the effect of bias in heritability estimates if maternal effects are ignored. 
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PROBLEMS OF SELECTION FOR DIRECT GENETIC EFFECTS 

2 2 2 
Assume: a Go = 80, a GM = 40, aGo GM = 40, ap = 500 

Also assume heritability is estimated in the usual way as twice the regression of offspring 

record on dam's record. 

Problems 

1. a) Use this biased estimate of heritability (genetic variance) to find the usual weights 

for indexing additive genetic value ignoring maternal effects from the animal's own 

record, x1, and the sire's record, x2. 

b) What is the bias in the calculation of expected response due to selection by the 

usual but now biased procedure of calculating genetic gain? 

c) Use the incorrect index found in la) but the correct variances and covariances to 

find the expected correlated responses in G0 and GM. 

2. a) Use the correct variances and covariances as given to find weights for indexing 

direct genetic value (G0 ) from x1 and x2. 

b) Use the correct index for G0 and the correct variances and covariances to find the 

expected correlated responses in G0 and GM. 

3. Repeat 1) and 2) when aG 0 GM = -40. 

Solutions 

Heritability is incorrectly estimated from twice regression of offspring on dam record: 

h; = 2 Cov (offspring, dam)/ai = 2[.5(80) + .5(40) + 1.25(40)]/500 = .44 
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1. a) 

b2 = .5(.44) 

I = .4115 x1 + .1295 x2 = d-a, o-1 = 10.24 is the apparent standard deviation of 

index. 

The actual o-1 is 9.92 since ax1 x2 = 50 while h; = .44 implies ox 1 Xz = 110. 

b) aG = 10.24 D would be the usual prediction based on h; = .44 . 

.4115[(1)(80) + (.5)(40)) + .1295[(.5)(80) + (.25)(40)] D = 4.80 D 
9.92 

b1Cov(GMa,X1) + b2Cov(GMa,X2) 
aGM = ----------~ D = 

UJ 

.4115[(1)(40) + (.5)(40)] + .1295[(.5)(40) + (.25)(40)] D = 2_88 D 
9.92 

2. a) 500 b1 + [.5(80) + (.25)(40)] b2 = (1) 80 + (.5)(40) 

500 b2 = .5 (80) + (.25)(40) 

I = .1919 X1 + .0808 Xz = d-oa and ul = 4.82 

b) aGo = b1Cov(Goa,X1} + b2co~Goa,Xz) 0 
O'J 

= .1919(100) + .0808(50) D = 4_82 D 
4.82 

L\GM = b1Cov(GMa,X1) + bzCo~GMa,Xz) D 

a1 

= .1919(60) + .0808(30) D = 2_89 D 
4.82 
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2 2 2 
3. a GD = 80, a GM = 40, aa 0 GM = -40, ap = 500 

Now the biased heritability from twice offspring on parent regression is: 

h; = 2 Cov(offspring, dam)/ai = 2[.5(80) + .5(40) + 1.25(-40)]/500 = .04 

(La) b1 + .5(.04) b2 = .04 

.02 b1 + bz = .5(.04) 

I = .0396 X1 + .0192 X2 = Ga; 

a1 = .9918 is apparent a1, but the correct a1 = 1.007. 

(1.b) dG = .9918 Dis the usual prediction with h; = .04 

( 1.c) The correct expected responses are: 

(2.a) 

b1Co·1Goa,X1) + b2Co·1Goa,X2) AGo = __ v_\ _____ v_\ __ D = 
O] 

.0396[(1)(80) - .5(40)] + .0192[.5(80) - .25(40)] D = 2_931 D 
1.007 

.0396((1)(-40) + .5(40)] + .0192[.5(-40) + .25(40)] D = __ 977 D 
1.007 

500 b1 + [.5(80) + .25(-40)] bz = (1)(80) + .5(-40) 

30 b1 + 500 bz = .5(80) + .25(-40) 

I = .1168 x1 + .0530 X2 = Goa and a1 = 2.932. 



(2.b) 
aGo = b1Cov(Go 0 ,X1} + b2Cov(Go 0 ,X2) D 

C1J 

= .1168(60) + .0530(30) D = 2_932 D 
2.932 

aGM = b1Cov(GMa,X1) + b2Cov(GM0 ,x2) D 

CJJ 

= .1168(-20) + .0530(-10) D = __ 977 D 
2.932 
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JOINT SELECTION FOR THE DIRECT AND MATERNAL GENETIC EFFECTS 

For one phenotypic trait assume the overall economic value is determined partly by 

the direct genetic component and partly by the maternal genetic component so that 

aggregate genetic economic value for animal a is Ta = v0 G00 + vMGMa where v0 is 

the net economic value for the direct contribution and vM is the net economic value for the 

maternal contribution. These economic values are not necessarily the same because, 

although the gross price is the same for the total product, the cost of production may be 

different for the direct and maternal portions. 

The usual selection index procedure for selecting for overall genetic value can be 

used except that records on at least two relatives are needed because the maternal and 

direct traits are measured jointly. In addition the two kinds of relatives must be such that 

(aal• a0 w1) is not proportional to (a0 2, a0 w2). This restriction will be illustrated later. 

The procedure for joint selection for direct and maternal genetic value will be 

illustrated for one trait and using records on only two relatives, x1 and x2. The index will 



210 Selection Index 

The general equations which determine the h's are: 

2 
aXl b1 + axl X2 bz = axl Ta 

2 
axl X2 b1 + aX2 b2 = axz Ta 

The coefficients of the b's are the same as for selection for Goa or GMa::· The 

covariances between the X's and Ta: can be computed as: 

axi Ta: = vnaxi Goa: + VMCJXj GMa:: 

= vD["iaatD + awiaaGDGM] + vM[aic,aGDGM + •wi"atM]­

An alternative procedure would be to index Goa and GMa:: separately and then weight each 

by vo and VM, i.e., Ia: = voloa:: + vMIMa:: where loo: = lino: and IMa:: = GMa::· 

The expected response by selection can be computed as before: 

The following example problems illustrate the computations for selecting for both the 

direct and maternal genetic traits. Example 1 illustrates the futility of trying to select for 

both when(a1a::, aw 1a) and (az 0 , aw 2a) are proportional. Example 3 shows the effect of 

changing the sign of the genetic covariance between the direct and maternal genetic values. 

Example Problems Of Selecting For G0 And GM Simultaneously 

Problems 

G• 2 80 2 40 40 2 500 IVen: CJGo = ' aGM = ' CJGoGM = ' O'p = 

1. Suppose x 1 = record on the sire, x 2 = record on the dam. 

If v0 = 4 and vM = 1 can selection be for T0 = (4)G00 + (l)GMa ? 
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2. a) Suppose x1 = record on dam, x2 = record on a paternal half sib 

What is the index for selecting for Ta = ( 4 )Goa + ( 1 )GM a ? 

b) What is the expected correlated response in G0 and GM ? 

3. Repeat 2a and b when aGo GM = -40. 

Solutions 

1. x1 = record on sire and x2 = record on dam 

(a1a , aw1a) = (.5 , .25); 

(aza , aw 2a) = (.5, .25). These are 

proportional so selection cannot be for 

For example: 

if vO = 4 and vM = 1, then I = .46X1 + .46Xz and a1 = 14.55 with 

flG = .46(50) + .46(50) 0 = 3.16 0 
O 14.55 

t:,.G = .46(30) + .46(30) O = 1.go O 
M 14.55 

If v0 = 1 and vM = 4, then I = .34X1 + .34Xz and a1 = 10.75 with 

t:,.G = .34(50) + .34(50) O = 3_16 o 
O 10.75 

t:,.GM = .34(30) + .34(30) 0 = 1.90 0 as before for v = 4 and v = 1. 
10.75 0 M 
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2. x1 = record on dam and x2 = record on a phs 

500b1 = 4[.5(80) + .25(40)] + 1[.5(40) + .25(40)] = 230 

500b2 = 4[.25(80) + 0] + 1[.25( 40) + O] = 90 

I = .46 X1 + .18 X2 with a1 = 11.05. 

b) AGo = COV(Goa, I) D = .46[.5(80) + .25(40)] + .18[.25(80) + O] D = 2_407 D 
O] 11.05 

AGM = COV(GMa, I) D = .46[.5(40) + .25(40)) + .18[.25(40) + O] D = l.4l 2 D 
01 11.05 

3. a) 500 b1 + 0 b2 = 4[.5(80) + .25(-40)] + 1[.5(-40) + .25(40)] = 110 

0 b1 + 500 b2 = 4[.25(80) + 0] + 1[.25(-40) + O] = 70 

I = .22 X1 + .14 X2 with u1 = 5.83. 

b) AG = .22[.5(80) + .25(-40)] + .14[.25(80) + 0] D = 1.612 D 
D 5.83 

AGM = .22[.5(-40) + .25(40)] + .14[.25(-40) + 0] D = __ 617 D. 
5.83 
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SELECTION WHEN TRAITS INFLUENCED BY 

GRANDMATERNAL AND MATERNAL EFFECTS 

The granddam may, for some traits, affect her daughter's maternal ability which in 

turn influences the record of the grandprogeny. Beef cattle breeders have reported that 

cows that were heavy themselves at weaning tend to wean calves that are lighter than cows 

that were not so heavy at weaning. A grandmaternal effect can be postulated as a cause of 

this phenomenon. 

MODEL WITH MATERNAL AND GRANDMATERNAL EFFECTS 

This grandmaternal effect may have a genetic basis in the grandmother (i") but is an 

environmental effect on the maternal ability of the mother (i') and on the actual phenotype 

of the calf (i). In fact, the model including maternal effects can be expanded so that the 

maternal effect is made up of a direct maternal effect and an environmental effect from the 

grandmother: 

PM., = GM., + Ei' = GM., + GN. 11 + EM., + EN . ., , 
l 1 1 1 1 1 

where GM., is the genetic maternal effect, GN.,, is the genetic grandmatemal effect, 
1 1 

EM., is the maternal environmental effect other than that with grandmaternal causes, and 
1 

EN . ., is the nongenetic (environmental) grandmatemal effect. 
1 

213 
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Then, the model for a record on animal i can be partitioned as: 

Pi = Go, + Ei where Go. is the genetic ability of i, 
1 1 

Pi = Go, + PM., + En, where PM., is the total maternal effect of i' on P1·, and 
1 1 1 1 

Only Pi can be measured. The diagram illustrates, as before, that the maternal 

genetic ability of the mother is expressed only in her progeny. Similarly, the grandmaternal 

genetic effect is expressed only in the grandprogeny. The double-headed arrows represent 

a possible covariance due to pleiotropic genetic effects. A sample one-half of the genes for 

the direct, maternal, and grand.maternal effects are transmitted in each generation from 

parent to offspring. 

sample .5 r~ sample .5 r· 
sample .5 

GMi' 
sam le .5 

GMI" 

t t 
sample .5 

GNr ◄ 
sample .5 

COVARIANCES BE1WEEN RELATIVES 

The covariances among relatives ( e.g., X and Y) can be determined as before from 

E(PxPy) where: 

Px = Gox + GMx• + GNx" + Enx + EMx• + ENx" and 

Py = Goy + GMy, + GNy" + Eoy + EMy, + ENy" 
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To simplify the expectation, consider only Gx = Gnx + GMx• + GNX" and 

Gy = Goy + GMy• + GNy" where Gox is the genetic value of X for the measured 

trait, GMx• is the maternal genetic value of the dam of X, X', and GNX" is the 

grandmaternal genetic value of the maternal granddam of X, X". Thus; 

E(GxGy) = Cov(Gx,Gy) = Cov(GoX'Goy) + Cov(Gox,GMy,) + Cov(GoX'GNy 11) + 

Cov(GMx.,GDy) + Cov(GMx.,GMy,) + Cov(GMx••GNyu) + 

Cov(GNx 11,G0y) + Cov(GNx•,,GMy,) + Cov(GNx,.,GNy 11). 

Each of these terms can be evaluated in terms of additive, dominance, additive by additive, 

etc., components of genetic variance and covariance (where the direct, maternal, and 

grandmaternal components are considered separate traits). 

If only additive genetic effects are assumed, then: 

2 
Cov(Gx,Gy) = aXYuGo + (aXY• + ayx•)uGoGM + (aXY" + ayx11)aGoGN + 

2 2 
ax•y•uGM + (aX'Y" + ay•xu)aGM GN + ax"Y"o-GN ' 

where the variances are additive genetic variances and the covariances are additive genetic 

covariances among the direct (D), maternal (M), and grandmatemal (N) effects. 

The necessary additive relationships can be found from careful drawing of the 

pedigree of symbolic animals, X and Y; their dams, X' and Y'; and maternal granddams, 

X" and Y". For example, if Xis a sire and Y is the progeny, the diagram is: 

Sire ~----X" 
~ X ~--- X' ◄ 

Y--. 
◄11-----Y' -y 

Thus, aXY = .5, aXY' = 0, ayx• = .25, aXY" = 0, ayx" = .125, aX'Y' = 0, 

aX'Y" = 0, ay'X" = 0, and aX"Y" = 0. 
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However, if Xis a dam and Y is the progeny, the relationships are different: 

dam 
Y-4------ X ~---- X' .... ◄---- X" 

CY') CY") 

Now, a:xy = .5, a:xy, = 1, ayx• = .25, a:xy" = .5, ayx" = .125, aX'Y' = .5, 

aX'Y" = 1, ay'X" = .25, and aX"Y" = .5. The relationships which are coefficients of the 

variances and covariances for some common relatives are given below. 

Component 

Relatives 
2 2 2 

aGD oaoGM oaoGN aGM oaMGN aGN 

Coefficient 

Px,Py axv a:xy,+ayx' a:xy11 +ayx" ax'Y' aX"Y" + ay'X" aX"Y" 

With self 1 1 .500 1 1 1 

Sire, progeny .500 .250 .125 0 0 0 

Dam, progeny .500 1.250 .625 .500 1.250 .500 

Full sibs .500 1 .500 1 1 1 

Maternal sibs .250 1 .500 1 1 1 

Paternal sibs .250 0 0 0 0 0 

Granddam, .250 .625 1.062 .250 .625 .250 
grandprogeny 

SELECTION INDEX EQUATIONS 

The problem of selection is similar to that in the presence of maternal effects. The 

selection index equations are modified to take into account the direct, maternal, and 

grandmatemal components. 
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If, for example, selection is for T = Goa ( additive direct for animal a) then the 

right-hand sides become: 

If T = GMa• then: 

2 2 2 
axi T = aiaOGo GM+ ai•aOGM + ai"a0GM GN and OT= OGM • 

If T = GNa• then: 

2 2 2 
axi T = aiaOGo GN + ai'a0GM GN + ai"a0GN and OT ::: OGN • 

If some function T = v0 Goa + vMGMa + vNGNa is the overall merit where the v's are 

economic values of the components, then: 

The selection index weights also can be determined directly using the RHS's: 

axi T = E[(Gox. + GMx•. + GNX". + other E's)(voGoa + vMGMa + vNGNa)] 
l l 1 

2 
= vo(aiaOGo + ai•aOGo GM + ai"a<7GoGN) + 

2 
VM(aiaOGoGM + ai•aOGM + ai"a0GMGN) + 

2 
vN(aiaOGo GN + ai•aoGMGN + ai"aoGN) 

2 2 
and OT = E[(voGoa + VMGMa + VNGNa) ] . 

Records on at least three kinds of relatives (where the three additive relationships 

aia• ai' a and ai" a are not proportional for the three relatives) are necessary for selection 

with different economic values for the direct, maternal, and grandmaternal components. 
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FETAL EFFECTS MODEL (SIRE OF FETUS EFFECT) 

Some traits of a female may be influenced by the fetus she is carrying either during 

gestation or following gestation. An obvious example is the ease with which the mother 

gives birth. The genes of the mother directly affect ease of birth, but the size of the fetus 

also may affect the ease of birth by its mother. The size of the fetus is certainly partially 

influenced by the genes it carries. In some species there is speculation that hormones 

secreted by the fetus may influence the development of secretory tissue and thus influence 

milk production during the last part of gestation or during lactation which follows birth of 

the fetus. 

The fetal effects model is similar to the maternal effects model except that the 

embedded trait is a property of the fetus the animal is carrying rather than of the mother 

of the animal. Figure 18.1 shows that the animal making the record contributes a sample 

one-half of the fetal genes as does the sire of the fetus. If these genes contribute to the 

fetal effect (the embedded trait) then the sire, through those genetic effects, can influence 

the performance of his unrelated mate. The effect has been called the sire of fetus effect 

or the service sire effect. 

219 
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FETAL EFFECTS MODEL 

Figure 18.1 shows the genetic and environmental components for both the direct and 

fetal effects on records of relatives x and y. The fetal effect could be on the current record 

or on a subsequent record. The same model applies to calving difficulty. In fact, any trait 

that is influenced by the mate of the female can be described by such a model. Fixed effects 

on the records will be ignored here but would need to be considered in prediction 

procedures or in estimation of components of variance. 

Figure 18.1. Diagram of direct genetic and environmental effects (~ and e ) and fetal 
genetic and environmental effects (~ and ew) on the phenotypic record of animal, x, 
carrying fetus, w. The sire and dam of x are Xs and xd, w s is the sire of the fetus, and x is the 
dam of the fetus. A similar diagram is given for any potential relative, y, carrying fetus, z. 
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Linear models including effects shown in Figure 18.1 were presented by Willham 

(1963). His application was to a maternal effects model. 

The fetal effects model is: 

P x = gx + ~ + ex + ew and Py = ry + fz + ey + ez 

where the g's are genetic values for the direct effect on P, the rs are the genetic effects of 

the fetus on P, and the e's are corresponding environmental effects. The pair of animals 

with records are x and y; w and z are the fetuses having sires, w s and zs. In the usual 

P = G + E model, all the effects except g would be included in E. The f effects are 

environmental to the animal making the record but are, in part, genetically determined. 

If only additive genetic effects are considered or are assumed important, the covariances can 

be written as by Willham (1963) : 

Cov(P X'p y) = ¾ya~ + ~a7 + ( ¾z + ~)a gf 

where the a's are additive or numerator relationships. If r is a fetal effect, then a~ is the 

variance of direct additive genetic effects, a7 is the variance of additive fetal genetic effects, 

and a gf is the covariance between additive direct and additive fetal genetic effects. 

COVARIANCES BE1WEEN RELATIVES 

The previous expression can be used to determine the theoretical covariance between 

records of any pair of relatives, x and y, when influenced by fetuses of sires, ws and zs. For 

example, when calculating the covariance between records of a dam and her daughter when 

the dam's record was made with the influence of the fetus (her daughter), xis the daughter, 

y = xd is the dam, xs is the sire of x but is also zs, the sire of the fetus, x. 
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Then: 

Cov(daughter,dam) = .5 a~ + .5 aj + (1 + .25)agf. 

Expectations of covariances between typical pairs of records are given in Table 18.1. 

TABLE 18.1. COEFFICIENTS OF TIIE ADDITIVE GENETIC VARIANCES FOR THE 

DIRECT EFFECT, °i , FOR TIIE FETAL EFFECT, e7'i , AND OF THE ADDITIVE 

GENETIC COVARIANCE BE1WEEN THE DIRECT AND FETAL EFFECTS, <1 gf, 

FOR THE COVARIANCEa BE'IWEEN VARIOUS RELATIVES AND 

COMBINATIONS OF SIRES OF FETUSES 

Animals with Coefficient of 

records Sire of fetus a2 a2 agf g f 

Daughter, dam Daughter not from .500 .1250 .500 
service sire of dam 

Daughter, dam Daughter from service .500 .5000 1.250 
sire of dam 

Full sibs Different .500 .1250 .500 

Full sibs Same .500 .3750 .500 

Paternal or Different .250 .0625 .250 
maternal sibs 

Paternal or Same .250 .3125 .250 
maternal sibs 

Maternal sibs Sire of xis .250 .1875 .500 
service sire of y 

Unrelated Same 0 .2500 0 

aNote that these covariances may also include other components due to effects such as 
direct, dominance and maternal, additive genetic effects. 
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The practical implications are that the effect of the sire of a daughter includes the 

value of the sample one-half of his genes concerned directly with her production and a 

sample one-quarter of his genes associated with the fetal effect since he is the grandsire of 

every calf his daughter produces. Thus, the sire of daughter effect (which is thought of as 

the sire transmitting ability in absence of fetal effects) is: 

g/2 for production of daughter + f/4 for production of daughter. 

The mate effect, or the fetal effect of the sample one-half of the genes contributed 

by the mating sire to the fetus, is expressed in the lactation performance of the mother: 

Sire of fetus effect (mate of dam) = f/2 for production of dam (his mate). 

Note that the sire of fetus is also the sire of the replacement female, resulting from birth 

and survival of the fetus. Thus, in the next generation, the sire of the fetus becomes the sire 

of the daughter. If there is a negative relationship between direct and fetal effects, then 

effective selection may be difficult. The other dilemma is that even if the effects are 

unrelated, should more emphasis be placed on selection of a sire for his fetal effect, which 

almost immediately influences production of the mate, or on selection for his direct genetic 

value, which does not become expressed until the resulting offspring become productive? 

SELECTION INDEX EQUATIONS 

Selection index weights can be found as usual for selection for direct or fetal effects 

by modifying the coefficients on the LHS according to covariances such as those in Table 

18.1. The RHS can be found by the rules for expected values using the model for the 

records that includes fetal effects. These principles were demonstrated in Chapters 16 and 

17 for models including maternal and grandpatemal effects. 
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CYI'OPLASMIC EFFECTS MODEL 

Cytoplasm of the fertilized ovum comes primarily from the mother. Mitochondria 

in the cytoplasm are responsible for cellular metabolism. The DNA of mitochondria in most 

species is inherited primarily or entirely from the mother. Thus, cytoplasmic effects 

generally are considered to be maternal in origin and essentially to be unchanging along the 

maternal line (Figure 19.1). Males express the cytoplasmic effects received from their 

mothers but will not transmit their cytoplasm to their offspring (Figure 19.1). 

FIGURE 19.1 FRACTION OF ADDITIVE GENETIC (g) 

AND CYfOPLASMIC (c) EFFECTS IN DESCENDANTS. 

For female line of descent: 

Vo - --- ~ 
z" y" x" 

~: ~ ~/2 ~/4 
c: CZ CZ CZ 

With male in line of descent: 

V" ------> 

z" Yo-------;> X9 

~: ~ ~/2 ~/4 
c: CZ CZ Cy 
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Cytoplasmic effects can be incorporated easily into selection index procedures either 

in computing the variances and covariances among the X's or in computing the right-hand 

sides for selection of a function of direct, additive genetic and cytoplasmic effects. 

For the purpose of illustration, assume the only genetic effects other than cytoplasmic 

effects are additive direct effects. Maternal effects which may be confounded with 

cytoplasmic effects can be included in the model easily. 

COVARIANCES FOR MODELS WITII CYTOPLASMIC EFFECTS 

Models with cytoplasmic effects for records after adjustment for fixed factors on 

relatives x and y are: 

Px = gx + Cf + bxf + ex and Py = gy + Cf' + hyf' + ey 

where g is the additive genetic value for the direct effect on phenotype, c is the cytoplasmic 

effect originating in the female line with animal f or f' , h is the interaction between 

additive genetic and cytoplasmic effects, and the e's are random and independent 

environmental effects (may include random cytoplasmic effects). Then when covariances 

between g's and e's, g's and h's, g's and e's, e's and b's, e's and e's, and h's and e's are zero: 

Cov(Px,Py) = Cov(gx,8y) + Cov(cf,Cf•) + Cov(bxf' byf,) + Cov(ex,ey) . 

If f = f: Cov(cf,Cf') = a~ and = 0 otherwise, and 

Cov(bxf' byf,) = axya~ and O otherwise . 

2 
Let exyax be the environmental covariance between records of x and y. 

Thus for f = f' 

And for f "f f' 
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The table gives the expected composition of covariances of common relatives. 

Com12onent Environmental 
Relationship Cf2 Cf2 Cf2 covariance / a~ g C b 

Female parent, offspring .50 1 .50 cFPO 
' 

Male parent, offspring .50 0 0 cMP,0 

Maternal half sibs .25 1 .25 cMHS 

Paternal half sibs .25 0 0 cPHS 

Full sibs .50 1 .50 CFS 

Female grandparent, offspring .25 1 .25 CFG,O 

Animal with self 1 1 1 1 

Identical twins 1 1 1 CIT 

Unrelated nuclei in 
same cytoplasm 0 1 0 cNC 

If a~, a~, a~. and cxy are known, then variances and covariances can be calculated for the 

coefficients of the selection index equations to find the selection index weights. 

RIGHT HAND SIDES FOR SELECTION INDEX EQUATIONS 

If selection is for direct additive genetic value of animal a, then the right-hand sides 

of the selection index equations as usual will be: 

2 
axiT = aiaCTg 

where aia is the additive relationship between a and i. 
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If selection is for direct additive genetic value of animal a plus the cytoplasmic value 

of a plus the interaction, T = ga + ca + baf', then: 

if f = f' 2 2 2 d ' axiT = aicxag + ac + aiaab an 

l'f f .J. f' 2 
T ' 0 x-T = a· a 1 1a g 

In general, for T = ga + ca + baf•; axiT = cliaa! + P(f=f')[a~ + cliaa~] 

where P(f =f') is the probability that the cytoplasm of relative i with the record Xi and the 

cytoplasm of the animal being evaluated, a, is the same. 

If T = ga + c ex' and then: 

if f = f' , a T = a. a2g + a2c and X, lCl 
l 

if f .J. f' 2 T ; ""x.T = aia 0 g • 
1 

Unless a-~ is relatively large, selection for direct additive genetic value while ignoring 

cytoplasmic effects is likely to be nearly as effective as jointly selecting for direct additive 

and cytoplasmic effects. 

BIAS IN HERITABILI'IY ESTIMATES 

Heritability (additive direct) can be overestimated from covariances between relatives 

with the same cytoplasm if cytoplasmic effects on the trait are real and if those effects are 

ignored. Overestimates of heritability will lead to overestimates of the accuracy, r11, of 

evaluation and overestimation of expected superiority for additive genetic value from 

selection because both r11 and aT will be overestimated. 
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EXPECfED RESPONSE TO SELECTION 

Selection for cytoplasmic genetic value in addition to direct additive genetic value can 

be relatively important to total genetic gain only when the reproductive rate of females to 

produce female replacements is greatly increased. The reason is that of the four paths of 

selection (in the case of milk yield in dairy cows), cytoplasmic effects are transmitted only 

through the dam to female path. 

FIGURE 19. 2. THE FOUR PATHS OF SELECTION 

Nuclear inheritance 
ss------... 

s 

OS____,,~ 

so------... ~ 
D 

DD____,, 

Progeny 

cytoplasmic inheritance 
ss~ 

s 

OS _____,, ~ 

SD ~ ~ p,-ny 

D 

DD~ 

For sire to sire, dam to sire, and sire to dam paths, selection should be for additive 

genetic value with selection differentials of ASS, ADS, and ASD. 

For dam to dam path, selection can be for sum of direct additive and cytoplasmic 

effects with the selection differential partitioned into ADDg (direct additive) and ADDc 

(cytoplasmic). These two parts can be obtained theoretically by calculation of expected 

correlated response. If I is the index for the sum, g + c, then: 

ADD = [Cov(g,I)] D and ADD = 
g OJ C 

[Cov(c,I)] 0 
OJ 

where Dis the standardized selection intensity factor. Note that D and a1 are the same for 

both calculations. With no covariance between g and c, the only contributions to Cov(c,I) 

will be from females in direct female line of descent such as daughter, dam, maternal 

granddam, maternal half sisters, and full sibs. 
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The direct additive genetic differential applies to the usual formula for genetic gain 

from four paths of selection. 

The differential due to cytoplasmic effects contributes immediately to progeny and 

thus gain per year for cytoplasmic effects is the cytoplasmic differential divided by the 

generation interval for the dam of dam path. (Some scientists have reasoned that since 

females to be dams of dams are selected jointly for direct and cytoplasmic effects, the 

division should be by the sum of generation intervals.) Thus on a per year basis: 

A(g+c) = 
~S + IDS + ~D + IDDg 

Lss + Los + Lso + Loo 
+ 

IDDc 

Loo 

Because increased reproductive rate in females results in the same increase in selection 

intensity for ADD g and ADD c' the equation can be partitioned into the three paths, Ag3, the 

sum of paths that do not contribute cytoplasm to the population and the two parts due to 

dams of dams: 

For example, if a~ is 5% and a~ is 25% of the phenotypic variance for production of 

dairy cattle, the gain per year from increasing the standardized selection intensity factor will 

be somewhat greater from ADD gfr:.L than from ADD /Loo even though Loo is only 

about one-fourth of r:.L. The extra gain due to ADD c can be substantial if a~ is as great as 

5% of phenotypic variance and replacement females can be obtained from the top 10 to 

50% of the herd. Such an increase in reproductive rate would require sexing of semen or 

multiple ovulation and embryo transfer. The costs of those reproductive systems must be 

balanced against the value of the additional genetic gain. 
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Whether cytoplasmic effects can account for as much as 5% of variation is doubtful. 

Because cytoplasmic effects seem to be transmitted essentially as a whole, segregation and 

recombination are not available to maintain variability. Thus, cytoplasmic lines may soon 

be fixed because selection should be relatively effective. Not many combinations of 

mitochondrial DNA would be expected as compared to the combinations of nuclear DNA 

The few combinations of mitochondrial DNA that do survive after a number of generations 

of selection may all be nearly optimum for effects on production or reproduction. 

APPENDIX TO CHAPTER 19 

COVARIANCE BE1WEEN RELATIVES WITH SINGLE LOCUS FOR 

ADDITIVE EFFECTS AND CYTOPLASMIC EFFECTS 

Let records of relatives x and y be represented as: 

where each 

x .. t = a. + a. + rt + (ar).t + (ar).t + e 
lJ 1 J 1 J X 

Yk.eu = ak + a.e + ru + (ar)ku + (ar).eu + ey 

represents an additive genetic effect of gene m, 

r n represents a cytoplasmic effect of cytoplasm n, 

(ar)mn represents the interaction of the mth additive effect and nth 

cytoplasmic effect, and 

ew represents environmental effects. 
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Note: additive genetic value, ~j = ai + aj with a~ = E[a7] + E[a7]; 

cytoplasmic value, ct = rt with a~ = E[ri]; 

genetic by cytoplasmic interaction, bijt = ( a r \t + ( a 1 )jt 

with Ofi = E[(ar)Ttl + E[(ar)Jtl and 

by assumption; E[~ftl = 0, E[gijbijt] = 0, E[ ctbijt] = 0. 

Note: P(i=k) + P(i=t.) + P(j=k) + P(j=t.) = 2axy and P(i=k) = axy/2. 

Let P(t=u) be the probability that the cytoplasm of x is the same as the cytoplasm of y 

(probability is either 1 or 0). 

Cov(Xjjt•Ykt. u): 

E[~jgkt] = E[(ai + aj)(ak + at)] = E[aiak + aiat. + ajak + ajat.]. 

But E[aiak] = (axy/2)E[a2] = (axy/4)oi. 

Thus, E[gijgkt.] = axyoi . 

E[ etc ) = E[ rtr ] = P(t =u)o~; that is, either a~ or 0. u u ' 

E[bijtbktul = E{[(ar)it + (ar)j 1][(ar)ku + (ar)tu]} 

= E[(ar)it(ar)ku + (ar)iar)t.u + (ar)jt<ar)ku + (ar)jt<ar)eul• 

But fort = u; E[(ar\(ar)k] = (axy/2) E[(ar)2] = (axy/4)05. 

Thus, E[bijtbkt.ul = P(t=u)axyo6; that is, either axyofi or 0. 

Therefore, 
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SELECTION FOR TRAITS Wlffl NONLINEAR 

ECONOMIC VALUE 

Two general problems not covered by the usual selection index procedure involve: 

(1) the situation where the value of the product changes with the output of the product, e.g., 

the value of an additional pound of milk when the level is 109 lb per day is not the same 

as when the level is 19 lb per day, and (2) the situation where the value of a trait depends 

on the level of another trait, e.g., the value of milk depends on the fat test of the milk. 

NONLINEAR MERIT 

If costs and income for production are known for different levels of production for 

some trait, the net income curve may be approximated by some nonlinear or polynomial 

function, e.g., 

Net income = c + v1 (X1 + µ 1) + v2(X1 + µ 1)2 + v3(X1 + µ 1)3 + ... , where 

c is a constant, the v's are the appropriate polynomial regression coefficients from fitting net 

income to polynomials in total yield, X1 + µ 1, where µ 1 is a population constant and X1 

is the phenotypic deviation from µ 1. 

Thus, net genetic merit might be defined as: 

T = c + v1 (G 1 + µ 1) + v2(G 1 + µ 1)2 + v3(G 1 + µ 1)3 + ···, where G 1 is the 

233 
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usual additive genetic value for trait 1. The net genetic merit will depend on µ 1 as well as 

G 1. Animals could rank differently in populations with different average levels of 

production, µ 1. 

A possible procedure for use in selection for net genetic value is to estimate G 1 as 

usual by 11 and substitute it into the economic equation so that 

t =I= c + v1(l1+1-L1) + v2(11+J.£1)2 + v3(11+µ1)3 + •••. 

If only v1 and v2 are nonzero (linear and quadratic values), then this is an optimum 

procedure for minimizing E(T - t) 2 except for a constant. This has been called the 

quadratic index. The procedure may be nearly optimum for other cases although for the 

cubic case Mao and Henderson (personal communications) have shown mathematically that 

substituting 11 for G 1 is not identical to finding an index by minimizing E(T -t)2. 

This concept can be extended to more than one trait and to cases where levels of one 

trait determine the value of another trait. As long as terms in the economic equation are 

no higher degree than (X1 +µ 1)2 or (X 1 +µ.1)(X 2+µ 2), the procedure of substituting the 

index for each trait into the economic equation is optimum. 

For example, with two traits, if 

T = c + v1(JJ1 +G1) + v2(1-L2+Gz) + v3(JJ1 +G1)(µz+G2) + 

Vil-'1 +G1)2 + v5(1-'z+G2)2, 

then the best index for T where 11 = C1 and 12 = dz is: 

t = c' + v1(µ1+I1) + v2(µz+l2) + v3(JJ1+l1)(µ.z+Iz) + 

v4(J.£1 +l1)2 + v5(JJ2+I2)2, 

where c' is a constant for all t. Wilton showed that this is equivalent to 

2 2 
I = c + B1X1 + BzXz + B3X1X2 + B4X1 + B5Xz 
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where the B's are the solutions to the equations obtained from minimizing: 

E[(T-1) - E(T-1)]2. 

A special example is in the pricing of milk where the value of milk depends on the 

level of fat test. The example does not consider any other nonlinear economic value for 

milk. The income equation for milk can be written as: 

Income = (µ1 + X1)[vm + vf (µ2+ X2-base test)}, where µ 1 + x1 is the milk record, 

µ2 + x2 is the fat test, v m is the base price of milk per lb when the milk has the base test, 

and vf is the differential in price of milk for a change in fat test. The equation can be 

rewritten to compare with the quadratic income equation as: 

Thus, the best index is: 

where v1 = vm - vf (base test) and v3 = vf and 

In some cases a simpler approximation of 11 or 12 may be substituted especially when 

11 and 12 are based on many progeny, i.e., 11 may include only records for trait 1 on many 

progeny. In all cases with a quadratic index, correlated responses are difficult to compute 

2 
because of terms such as E(X 1 Xz). 

EXAMPLE OF SELECTION WHEN MILK PRICE DEPENDS ON FAT TEST 

The example demonstrates that an animal that ranks higher in one herd may not in 

another herd depending on the average milk yield and fat test in the two herds. 
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Two sires have been evaluated for milk, 11, and test, 12. The two sires are to be used 

in two herds with widely different average milk and test. 

Sire 

A 

B 

+2000 lb 

+ 1000 lb 

-.003 

+.003 

Herd 

1 

2 
12,000 lb 

18,000 lb 

.040 

.035 

Three pricing systems are compared where v m is the base price per lb of milk at a base test 

of .035 and vf is the fat differential--the change in price per lb of milk if fat content changes 

from none to all. The table gives the economic indexes for the six combinations. 

Sire 

A 

B 

Herd 1 

$717 

712 

Herd 2 

$964 

984 

Herd 1 

$722 

733 

Herd 2 

$952 

996 

Herd 1 

$951 

922 

GENERAL PROCEDURE FOR PREDICTING QUADRATIC MERIT 

Herd 2 

$1176 

1163 

As an example with only two traits assume that overall quadratic merit can be 

defined as: 

T = v1(µ1 +T1) + v2(µ2+T2) + v1z(µ1 +T1)(µz+Tz) + v11(µ1 +T1) 2 + 

v2z(µ2 + T 2)2, 

where the v's are economic values for linear, product, and squared increases in true value 

for traits 1 and 2 having means µ 1 and µ2. T 1 and T2 will have zero means and variances 

2 2 
aT 1 and aTz • 
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T can be rewritten as 

2 2 
T = ao + a1T1 + azT2 + a12T1T2 + a11T1 + az2T2' 

2 2 
where the constants are: ao = vlµl + v2µ2 + v12µ1µ2 + vll µ1 + v22µ2, 

al= vl + v12µ2 + 2V11µ1, ½ = v2 + v12µ1 + 2v22µ2, all= v11, a12 = viz 

and a22 = v22. 

Henderson has shown that the best unbiased predictor of T is t = c + I where the 

indexes for traits 1 and 2, 11 and 12, are substituted into the quadratic merit equation, 

2 2 
I = ao + a1I1 + azlz + a12I1I2 + all 11 + az2I2 , and c = E(T) - E(I). The constant, 

c, is the same for all animals and therefore will not change ranking and is necessary only 

to have unbiased predictions. 

Only one type of term in c = E(T) - E(I) is difficult to evaluate: 

2 2 
E(T) = E(ao + a1T1 + ctiTz + a12T1T2 + a11T1 + az2T2) 

2 2 
= ao + 0 + 0 + a12aT1 T2 + all aT1 + azzaT2 ; 

2 2 
E(I) = E(ao + a1I1 + azI2 + a12IiI2 + all 11 + azzlz) 

2 2 
= ao + 0 + 0 + a12E(I1I2) + a11 all + a22a12 . 

2 2 2 d 2 2 2 bf h 2 • h d 1. a11 = rT111aT 1 an a12 = rT212aT2 as eorew ere rTili 1st esquare correat1on 

between Ti and the index prediction, Ii. Thus, 

2 2 2 2 
E(T)-E(I) = a12[aT1T2 -E(l1Iz)] + a1laT/l-rT1I1) + azzaT2(l-rT2l2). 

Only E(I 1I2) must be evaluated from the linear functions of 11 and 12. If, for example, in 

the simplest case where x 1 and x 2 are the records for trait 1 and 2 on the animal being 

evaluated, 11 = b11X1 + b12x2 and 12 = b21x 1 + b22x2, then: 

2 2 
E(I1I2) = b11bz1ax 1 + (b11b22 + b12bz1) 0 X1X2 + b1zbzzax 2 • 
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RESTRICTED SELECTION INDEX 

Sometimes one trait is at an optimum level (when an intermediate is desirable) but 

is correlated with another trait of economic importance. Ordinary selection for the 

economic trait would lead to an unwanted correlated response in the trait which is at an 

optimum level. 

EQUATIONS TO FIND WEIGHTS WITH RESTRICTION 

The general problem is to maximize T = v1G 1 + v2G2 + ••• + vmGm but at the 

same time force the N - m other traits not to change from their present genetic level, 

i.e., L\.Gm+ 1 = 0 = L\.Gm+Z = ... = L\.GN . A solution to this problem is the restricted 

selection index given by Kempthorne and Nordskog (1959). 

In the simplest case T = v1G1 and the restriction is to be L\.G2 = 0. Available are 

measures on the two traits, x1 and x2. Selection for T = v1G 1 is by I* = bi X1 + b2 Xz 

where the * indicates the restricted selection index; restricted in that the index is to 

maximize L\. T with the restriction that L\.G2 = 0. 

The restriction, L\.G2 = 0, is equivalent to the equation for correlated response 

Cov(Gz,I*) 
O]* D = 0 so that Cov(Gz,1*) = bi ax l Gz + bz ax2 Gz must be zero and is 

the restriction. 

239 
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In addition, the equations for the b's to maximize r11• are: 

2 b* b* aXl 1 + axl X2 2 = axl T 

b* 2 b* ax1X2 1 + aX2 2 = ax2T 

Thus there are three equations including the restriction but only two unknowns. To find a 

solution a dummy unknown is added; the so-called LaGrange multiplier, ).. The three 

equations in three unknowns can now be solved. The coefficient matrix is symmetrical as 

before: 

bi ax 1 G2 + bi ax2 Gz + 0 = 0 

The restricted index will be I* = bjX 1 + bzXz. A solution for ). can be obtained but is 

not needed for the index. 

These equations can be derived by minimizing E[(T-1*)2] with the restriction that 

2). (bi ax 1 Gz + bi ax 2 a2) = 0, i.e., equate to zero the partial derivatives of 

2 2 
aT + a1• - 20-11• + 2laGzI* with respect to bi, b2, and l. 

If selection is for more than one trait with restriction of more than one trait the 

procedure can be expanded, instead of a single l there will be li (i = m + 1, ... , N) where 

N - m is the number of traits to hold constant and N is the number of economic traits. 

As an example consider m = 2, with T = v1G1 + v2G2, and N - m = 2 with 

the restrictions: aG 3 = O = aG 4. 

The restricted index will be I* = Pi X1 + ,e2 X2 + ,e3 X3 + .64 X4. 
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The restriction equations are: 

ao3I* = .Bi axl G3 + .Bz ax2 G3 + .83 ax3 G3 + .84 aXi G3 = 0 and 

ao4I* = .Bi axl G4 + .82 ax2 G4 + .83 ax3 G4 + .84 ax4 G4 = 0 

Thus, l 1 and l 2 will be the LaGrange multipliers in the equations to find the 

restricted selection index weights: 

* 2 
/31 aX1 + /32 axl X2 + .83 axl X3 + .84 axl Xi +11 axl G3 + "-2 axl G4 =ox1T 

* * 2 
+ .83 ax2X3 + .84 ax2 Xi +11 ax2G3 +l2ax2G4 /31GX1X2 + .82 aX2 = axzT 

f3i axl X3 + .ei OX2X3 
* 2 

+ /33 °X3 + .84 °X3Xi + l1 ax3G3 + l2 ax3G4 =ax3T 

.Bi axl X4 + l3z ax2X4 + .83 ax3X4 * 2 + 134 aXi + l1 ax4G3 + lzaX4G4 =ax4T 

.Bi axl G3 +,8zaX2G3 + .83 ax3G3 + .84 °Xi G3 + 0 + 0 = 0 

* + .Bi ax2 04 + .83 ax3G4 + .84 ax4G4 + 0 0 0 .81 axl G4 + = 

EXPECTED RESPONSES 

The expected response in selecting according to I* should be compared to the 

with no restriction on change in traits 3 and 4. Comparison could also be made with 

selection for Tusing just x 1 and x 2. Although G3 and G4 may be optimum, the restriction 

to maintain that optimum may be so costly in terms of AG1 and AG2 that a better 

procedure would be to let G3 and G4 change while selecting strongly for T. A look at the 

correlated responses may help to answer that question. 
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In the typical example total response: 

Cov(T, I*) 
AT= ---- D = v1 AG1 + v2 AG2 O'}* 

Cov(G1, I*) Cov(G2,I*) 
where as usual AG1 = ----- D and AG2 = ---- D. ~· ~· 
Because of the restriction, AG3 = AG4 = 0. These responses would be compared with 

v1A G1 + v2 AG2 + v3A G3 + v4 AG4 as calculated from using the unrestricted index 

where v3 and v4 are the losses in changing G3 and G4 from their present optimums. The 

losses in traits 3 and 4 may be different when the changes are negative from when the 

changes are positive, i.e., the economic values of traits 3 and 4 may not be linear. 

EXAMPLES USING THE RESTRICTED SELECTION INDEX 

Records On Animal Being Evaluated 

Assume trait 1, is to be improved and trait 2, is to be held constant. A record on 

each trait is available on all animals to be evaluated. 

Given: ail = (2500 lb/ 

a~ 1 = (1250 Ib)2 

2 2 
O'p2 = (.3%) 

2 2 
aG2 = (.21%) 

rp12 = -.2, rg12 = -.6, 
2 

h1 = .25, 

ap 1 p2 = -150 

aa 1 a2 = -157.5 

2 hi = .49. 

Let v 1 = 1 since selection is to improve only one trait. 
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The equations determining the weights are: 

I* 1 
2 

al* 
1 

(2500)2 bi -150 b2 -157.5>.. = (1250)2 

-150 bj + (.3)2 bz + (.21)2>.. = -157.5 

-157.5 bi + (.21)2 b2 = 0 so that 

= .1581 x1 + 564.52 X2, 

= (.1581)2 (2500)2 + (564.52)2 (.3)2 + 2(.1581)(564.52)(-150) = 158,065, and 

al* = 397.57. 

AGl = Cov(G1, 1i) D = .1581(1250)2 + 564.52(-157.5) D = 397_57 D (lb). 
OJ* 397.57 

1 

Cov(G2, 1i) D = .1581(-157.50) + 564.52(.21)2 D ,,,, o. AG2 = 
OJ* 397.57 

1 

If selection is for G1 with no restriction on Gz: 

11 = .2167 X1 - 1388.89 X2 with 01 l = 746.5, so that; 

AG1 = 746.5 D (lb) and 

AG2 = Cov(G2, 11) D = .2167(-157.5) - 1388.89(.21)2 D = __ 1278 D (%). 
011 746.5 

If selection is for G1 from x1 only: 

l1 = .25X1 with 011 = 625, so that; 

AG1 = 625 D (lb), and AG2 = •25(;~~7-5) D = -.0630 D (%). 

The expected responses for the indexes should be compared for their economic impact to 

determine if restriction is what is really wanted. 
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Records On Paternal Half-sib Progeny Of Sire Being Evaluated 

Evaluate sires by 3 procedures based on 

where x11 is the progeny average for trait 1, x12 is the progeny average for trait 2 with 1 

record per progeny and p = 20 progeny. I* for 1) is to improve G1 and not change G2. 

I for 2) is to maximize .t1G1 and I for 3) is to maximize .t1G1. 

Given: ap 1 = 2500 lb, ap2 = .3%, hi = .25, ~ = .49, r g12 = -.6, r p12 = -.2. 

Find the indexes and expected response in trait 1 for all 3 procedures. 

1) Restricted index: 

* 2 I* = bi X11 + bz x12 and Cov(Ga2, I*) = hi ala ao 2 o 1 + b2 a1a a02 = 0 

Equations: 

[ 1 +(p-1).25 hi] 2 apl Pz +(p-1).25 aol Gz 2 
Gp bi+--------- bz+,5ao102l=.5aa 

p 1 p 1 

apl Pz +(p-1).25 aol 02 [ 1 +(p-1).25 h~l 2 2 
---------bi+----- Gp bi+,5aa l=.5ao102 

p p 2 2 

0 l =0 
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Numerically: 

683,594 bi -45 bz - 78.75l. = 781,250 

-45 hi + .01497375 h2 + .02205.i.. = -78.75 

-78.75 bi + .02205 bz = 0 so that 

I* = .9039 X11 + 3228 x12, and af * = 451,951 with al* = 672.3. 

2 
Cov(Gal, I*) .9039(.5 aG ) + 3228(.5 aa1 a2) 

AG1 = ---- D = l D = 672.3 D (lb) 
~• 6TI3 

2 
Cov(Ga2, I*) .9039(.5 aa 1 G2) + 3228(.5 a0 ) 

AG2 = ---- D = 2 D = 0 (%) 
OJ* 672.3 

2) Unrestricted index: 

I = b1 x11 + b2 X12: equations are upper 2x2 for 1) with same 2 right-hand sides. 

Then: 

I = .9931 x11 - 2275 X12 and af = 955,003 with a1 = 977.2, so that 

2 
Cov(Gal• I) .9931(.5 aG ) - 2275(.5 aal G2) 

AG 1 = ---- D = l D = 977.2 D (lb) 
a1 977.2 

2 
Cov(Ga2, I) .9931(.5 aa1 a2) - 2275(.5 a0 ) 

AGz = ---- D = 2 D = -.1314 D (%) 
a1 977.2 
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3) Single trait index: 

I = b1 x11 : equation is first diagonal and first RHS of 1). 

2 
I = 1.1429 Xu and cr1 = 892,857 with a1 = 944.9, so that 

2 
Cov(Gal• I) 1.1429(.5 crG1) 
---- D = ---- D = 944.9 D (lb) 

a1 944.9 

Cov(Gaz, I) 1.1429(.5 aGl G2) 
AG2 = ---- D = ------ D = -.0952 D (%) 

a1 944.9 

SUMMARY OF EXAMPLE 

Female selection Male selection 

Procedure AG1/D AGz/D .AG1/D AG2/D 

Ii = bi X 11 + b2 X 12 398 lb 0% 672 lb 0% 

l1 = b1 Xu + bz X12 747 lb -.128 % 977 lb -.131 % 

l1 = b1 Xu 625 lb -.063 % 945 lb -.095 % 

OTHER RESTRICTIONS 

The theory and application of restricted selection indexes has been extended to cases 

other than forcing expected change in certain traits to be zero. These restrictions include 

directional restriction, proportional change, and specified change other than zero. These 

restrictions are somewhat more complicated to apply than the zero change restriction and 

are not be discussed here. 
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INDEX AND ECONOMIC VALUES IN RETROSPECT 

The index in retrospect is an index that might have been used for selection to 

produce gains that have occurred even though the weights for the index might have been 

unknown at the time of selection (Dickerson et al., 1954). Determining the index that might 

have been used depends on finding an index which would have given the set of phenotypic 

selection differentials actually observed. 
N 

Let I = L w l i be the underlying but unknown index that might have been used 
i=l 

for selection and D be the selection intensity factor. The phenotypic record for trait i 

measured on the animal being selected is Pi. 

INDEX IN RETROSPECT FROM PHENOTYPIC SELECTION DIFFERENTIALS 

If the underlying unknown index is I, the regression of Pj on I gives the expected 

phenotypic selection response ( differential) for trait j, (j = 1, ... , N): 

~P· J 
__ Cov(Pj, I) "I __ Cov(P·, I) 

2 a __ J - D = (D/a1) Cov(Pj, I). 
a1 

al 

Because D / a 1 is a constant for all traits, the proportionality of the right-hand sides for 

different traits will not change. Both D and I, however, may be different for males and 
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females and even from generation to generation. Indexes in retrospect can be computed 

separately for males and females and for each generation. If D / a1 is set to one, then the 

expectations of the N phenotypic selection differentials are; 

E[aP 1] = Cov(P1,I) 
2 

= w1apl + wzapl Pz + ... + wNapl PN 

E[aP 2] = Cov(P2,I) + 
2 = ~1apl Pz wzap + ... + w_NaPzPN . 2 

E[&PN] = Cov(PN,1) 
2 = w1apl PN + wzaPzPN + ... + WNOpN 

Note that the coefficients of the w's are the same as for finding the best selection index 

weights, i.e., the phenotypic variances and covariances. The selection differentials can be 

equated to their expectations, i.e., to the left hand sides of the usual selection index 

equations, to determine in retrospect the relative weights for the index. Here the symbol 

w is used for the weights for the index in retrospect. The phenotypic variances and 

covariances must be known as well as the phenotypic selection differentials. A linear index 

in the phenotypic values is assumed as is truncation selection based on the underlying but 

unknown index. 

In matrix notation w = p-lap where w is the vector of retrospective weights, P is the 

phenotypic variance-covariance matrix, and a p is the vector of phenotypic selection 

differentials. 

The relative expected correlated responses from using the retrospective index are as 

before: aGj = (D/a 1) Cov(Gj,I) (j=l, ... , N) which could be compared with the expected 

responses from the theoretically best index for which economic values are assumed known. 



Index in Retrospect 249 

INDEX IN RETROSPECT FROM GENETIC SELECTION DIFFERENTIALS 

Another approach for finding the index in retrospect depends on knowing the genetic 

selection differentials, Ii G j (j = 1, ... , N). Usually each genetic selection differential would 

be estimated as the difference in phenotypic means between animals of two generations. 

If breeding values can be estimated for all animals the genetic selection differential can be 

calculated from the difference in averages of estimated breeding values for the two 

generations. The underlying I and also D may be different for males and females which 

may cause a problem in assigning the fractions of Ii G due to male and female selection. 

Again let I = Ewli be the underlying index. The regression of Gj on I will give the 

expected genetic selection differential for trait j: 

Cov( G j, I) Cov( G j, I) 
= --- Iii= --- D = (D/a1) Cov(Gj,I) 

2 01 
al 

If D / a1 is set to 1, the expected values of the genetic selection differentials are: 

2 
E[liG 1] = Cov(G1,I) = w1aa 1 

2 
E[liGN] = Cov(GN,I) = w1 aa 1 GN + wzaa 2 GN + ••• + WNaGN 

Thus, if the genetic variance-covariance matrix is known as well as the genetic 

selection differentials, the weights for the underlying index can be estimated by equating the 

estimated genetic selection differentials to the right hand sides of the above equations as 

w = a· 111g. In most cases, however, the phenotypic variance-covariance matrix is much 

easier to estimate accurately than the genetic variance-covariance matrix, G. 
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ECONOMIC VALVES DETERMINED FOR fflE INDEX IN RETROSPECT 

After the retrospective index I = EwiPi is determined, the relative economic weights 

in retrospect can also be determined if the assumption is true that the retrospective index 

is the best index for some retrospective economic true value, T = EviGi. Thus, the usual 

equations to find the selection index weights (which now have estimates) can be used to find 

corresponding economic values. The calculated numerical values on the left-hand sides 

which depend on the phenotypic variance-covariance matrix are equated to the right-hand 

sides which are a function of the economic values to be solved for and the genetic variance­

covariance matrix: 

2 2 
aP1w1 + apl PzW2 + ••• + apl pNwN = v1aG1 

2 
apl Pzwl + aPzwz + ••• + ap2pNwN = v1aG2 G1 

+ ••• + VNO'G1 GN 

+ ••• + vNaGzGN 

This procedure is equivalent to equating the phenotypic selection differentials to the right­

hand sides of the selection index equations for predicting total merit, the ax. T, and then 
1 

solving for the economic values. Accurate estimates of the genetic variances and 

covariances are necessary for determining the economic values in retrospect: 

2 
AP1 = v1aa1 + ••• + VNO'G1 GN 
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In matrix notation v = o • 1 a p where v is the vector of economic values, G is the genetic 

variance-covariance matrix and d p is the vector of phenotypic selection differentials. 

AN EMPIRICAL SELECTION INDEX 

If the net value of each animal can be determined ( even with error if errors in 

determining economic value are uncorrelated with the X's), then an empirical selection 

index, I = 1:Bi~• can be found from the multiple regression of net value, y, on the 

phenotypic traits, ~ (i = 1, ... , N): 

2 
0 x 1 fJ1 + 0 X1 X2 fJ2 + ••• + 0 X1 XN fJN = 0 X1 y 

The variances and covariances can be estimated from the data which includes net 

value. The phenotypic variances and covariances also could be estimated from a larger 

sample of data, some of which does not include net value. In fact, the coefficients on the 

LHS are the same as for the selection index equations if the phenotypic variances and 

covariances are known exactly. Solving these equations will give the empirical selection 

index which is an unbiased estimate of the best index to predict overall economic value. 

The covariances between total economic value and phenotypic measurements can be used 

as follows to estimate linear economic values for each trait. 
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ECONOMIC V ALOES FROM EMPIRICAL COVARIANCES 

A linear model for total net economic value for animal m can be written as: 

Ym = EvjGjm + em where EvjGjm is overall economic value and em is a random error 

of measurement. Thus, if em is uncorrelated with the e's of the X's (perhaps a not very 

reasonable assumption), then equating: ox. y = L vJ·aG, G · for each trait i would give 
1 j 1 J 

these equations: 

If the genetic variances and covariances are known and the oxiY have been 

computed, the equations can be solved to find the economic values. 

If the empirical selection index weights are unbiased and because the right-hand sides 

equal EvJ·aG· G· for all i, the economic values can also be estimated from these equations 
1 J 

because I = EBi~ is a retrospective index: 

2 
a X l p 1 + ... + ax 1 X N J3N 

+ ... + 2 
axN13N 

If only the v's are unknown, the equations can be solved to find the economic values where 

the LHS's are axi y· 



PART TWO 

INTRODUCTION 

TO 

MIXED MODEL 

PREDICTION 

Chapters 23-33 introduce least squares and mixed model equations for prediction of 

breeding values, transmitting ability, and real producing ability. The correspondence of 

selection index and mixed model procedures is demonstrated. How to calculate the inverse 

of the numerator relationship matrix which is needed for best linear unbiased prediction is 

described for sire and animal models. The mixed model approach is how modem genetic 

evaluations are done. Properties of mixed model procedures, however, are not as easy to 

show as analogous selection index properties without a heavy dose of linear model theory 

and facility with matrix algebra. Therefore this section serves only as a brief introduction 

to mixed model methods with emphasis on application. 
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PREDICTION FROM LINEAR MODELS 

Selection index procedures described in Part I require the assumption that phenotypic 

measurements are perfectly adjusted for all nongenetic factors except the random permanent 

and temporary environmental effects; i.e., xi = Yi - µ., where Yi is the actual measurement 

and µ. is a symbolic representation of adjustment for all fixed nongenetic factors such as age 

effects, year effects, and management effects. 

In many situations, the adjustments for the fixed factors must be estimated 

simultaneously with prediction of genetic values. Some adjustments such as for age may be 

made from estimates obtained from previous sets of data. Effects of other fixed factors, 

however, may occur as the records are being made, as for example, the effects of year and 

management, so that prior estimates of those effects are not available to adjust the records. 

A procedure is available for such situations which has many of the properties of the 

selection index. The procedure is the same as the selection index if all fixed factors are 

known although the two procedures, at first, appear greatly different. 

BEST LINEAR UNBIASED PREDICTION 

The mixed model procedure was derived by C. R. Henderson about 1948. He 

generalized and proved its properties after that time (e.g., C. R. Henderson; 1975, 1984). 
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The procedure results in what is called best linear unbiased prediction (BLUP) of the 

random effects such as additive genetic value, transmitting ability, and permanent 

environmental effects. Best is defined as minimizing the variance of prediction error for 

procedures which are unbiased and use linear functions of the data. Best linear unbiased 

predictors can be obtained simultaneously with best linear unbiased estimates (BLUE) of 

fixed factors from solutions to what are often called Henderson's mixed model equations. 

With the mixed model equations the predictors of, e.g., additive genetic value are 

automatically adjusted for the fixed factors as well as possible. 

Both BLUP and selection index procedures require the assumption that variances and 

covariances such as genetic and phenotypic variances and covariances are known. The 

properties in common between BLUP and selection index are: 

1) both are unbiased; the selection index is automatically unbiased whereas BLUP 

solutions are forced to be unbiased, 

2) variances of prediction errors are minimized (the basis for obtaining the 

equations for both BLUP and selection index), 

3) the correlation between the prediction and what 1s predicted, rrt , is 

maximized, 

4) if the data and T follow a multivariate normal distribution, then the predictions 

maximize the probability of correct ranking, and 

5) the predictions are the same as selection index except that with BLUP the best 

linear unbiased estimates of fixed effects are used to adjust the records to a 

G + E basis whereas with the selection index the true values of the fixed effects 

are used for adjustment. 

The mixed model equations are derived after considerable algebra from minimizing 
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prediction errors squared and sampling variances of estimates of fixed effects with the 

condition that the predictions are unbiased. Variances and covariances among the records 

are considered in an optimum way. The procedure will be illustrated for a few models and 

will not be covered in general. A complete discussion would require knowledge of matrix 

algebra and several semesters of statistics (see Henderson, 1984). 

MIXED MODEL EQUATIONS 

When all observations have the same variance, the mixed model procedure simplifies 

to a simple set of equations involving all effects in the model except for the residual effects. 

The number of equations is the same as the number of effects in the model. The procedure 

is considerably more complex with multiple traits with different variances and covariances. 

Multiple trait applications will not be discussed. 

The equations are the same as ordinary least squares equations if all effects ( except 

residual terms) are fixed effects. The equations are called mixed model equations when 

random effects or when both random and fixed effects are in the model. The mixed model 

equations are obtained from simple modifications of the least squares equations. Effects 

are random if they come from a distribution with some variance such as would be the case 

for genetic values and real producing abilities. Fixed effects have no variance and 

theoretically can be repeated exactly. A wide range of effects combine some of the 

characteristics of both random and fixed effects. 

Rules for setting up the mixed model equations will be given for models where each 

effect in the model is a whole effect (i.e., gi not g/2 or a covariate). How to modify these 

simple rules can be found in most books on applied linear models or statistical methods. 
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RULES FOR WRITING MIXED MODEL EQUATIONS 

1. Compute a sum for each effect in the model excluding residual effects such that 

each observation that contains the effect is included in the sum. 

2. Equate each sum to its model considering all effects as fixed excluding the 

residual effects. The result is called the ordinary least squares equations (LSE). 

Put a hat, ("), on the effects to denote solutions to the equations and not actual 

effects. 

3. If an effect comes from a distribution of independent effects with variance, a~, 

then add the ratio, a;/ a~, to the diagonal coefficient of those equations where 

a~ is the variance of residual effects. Models where the random effects are 

correlated, e.g., genetic values when animals are related, will be considered by 

example. 

4. Constraints often must be imposed on the equations for fixed effects. The usual 

rule of thumb is that one nonestimable constraint is needed for all except one 

classification of fixed effects, e.g., if one constraint is on µ. then one 

classification of fixed effects should not have a constraint imposed. Typical 

constraints are µ. = 0 if there is only one fixed classification; µ. = 0 and 

the last level of each classification except for one classification also set equal to 

0 if there is more than one fixed classification. 

INTERPRETATION OF SOLUTIONS 

1. Solutions for fixed effects are best linear unbiased estimates (BLUE) of estimable 

functions of the fixed effects. The jargon concerns interpretation 2. 
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2. The expected values of the solutions corresponding to fixed effects for models 

without interaction terms usually have the properties: 

a) E[solution for a fixed effect] f actual fixed effect, 

b) E[ solutions for fixed effects] depend on the constraints imposed to obtain 

solutions, and usually 

r.( difference in solutions for two fixed) _ difference in the 
c) -'1_ effects in the same classification - actual fixed effects 

3. Solutions for effects randomly drawn from some distribution of effects such as 

genetic values are best linear unbiased predictors (BLUP) and have the selection 

index properties except that the observations have been adjusted for fixed effects 

with best linear unbiased estimates of the fixed effects rather than by actual 

values of the fixed effects. 
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DOT NOTATION 

Before the first example in Chapter 24, the dot notation will be introduced which 

makes writing the equations in a symbolic form less laborious. A more complete discussion 

of dot notation is in Chapter 34. A dot (period) in place of a subscript signifies summation 

has occurred over that subscript. Suppose observations are denoted symbolically as Pij 

where the i subscript refers to animal i and the j subscript refers to the jth record of the 

animal. Let Ilj be the number of records of animal i. As an example, let i = 1, 2, or 3, and 

n1 = 2, n2 = 1, and n3 = 4. Total number of records is: 

3 
!: Ilj = n1 + n2 + n3 = n . 

i=l 
n1 =2 

Similarly, the sum of all records of animal 1 is: Pi. = _!: P1j = P11 + P12. 
J=l 

The sum of all records is: 

3 ni 
P .. = P1. + P2. + P3_ = i:=1 j:=1 pij = P11 + P12 + P21 + P31 + P32 + P33 + P34 



CHAPTER24 

LEAST SQUARES EQUATIONS: ONE-WAY CLASSIFICATION 

MODEL 

The easiest way to describe ordinary least squares and mixed model equations is by 

example. The simplest example that illustrates least squares equations is the one-way 

classification model where the classification (sometimes called, factor) describes levels of 

some type of fixed effect. Suppose records are classified by the age of the animal when the 

record is made and that each animal has only one record. Then a model is: 

Yij = µ + ~ + wij 

where µ is a constant, 

~ is the fixed effect of the ith age, and 

wij is the random residual term associated with the record of the jth animal made at 

the ith age. 

Note that a record will always contain the G + E terms, whether stated or not. In 

this case, wij = Gij + Eij with two subscripts identifying the animal since the numbering of 

animals (j) begins at one for each age group (i). 

Further suppose the following records are available where the records are equated 

to their models to clarify rules 1) and 2): 
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115 = Y 11 = µ. + A1 + w 11 

85 = Y12 = µ + A1 + w12 

105 = Y13 = µ, + Al + W13 

95 = Y21 = µ. + A2 + w21 

90 = Y31 = µ. + A3 + W31 

llO = Y32 + µ. + A3 + w32 

Thus, i = 1, 2, or 3, the number of levels of the fixed factor, age; and n1 = 3, the number 

of records with age effect 1; n2 = 1; and n3 = 2. 

RULE ONE: SUMS 

Rule 1 is that a sum is computed for each effect in the model excluding the wij terms. 

The four effects in the model areµ,, A1, A2, and A3 although any record will contain only 

two terms; the µ, constant and one ~ effect. The sum for µ, includes each record having µ, 

in its model which is true for all records. Thus, the sum for the µ equation is Y .. = 600. 

The sum for the A1 equation includes each record containing A1 which is the case for the 

n1 records with subscript i = 1. Thus the sum for the A1 equation is: 

y 1. = 115 + 85 + 105 = 305. Similarly the sum for the A2 equation is Yz. = 95 and for 

the A3 equation is y3_ = 90 + 110 = 200. 

RULE 1WO: MODELS OF SUMS 

Rule 2 is to equate each sum to its model, excluding the wij terms. The model for 

Y .. is simply the sum of the models for all of then_ records included in the sum: 

n1 of the records have modelµ, + A 1, 

n2 of the records have model µ, + A2, and 

n3 of the records have model µ, + A3, 

so that the model for Y .. is (n1 + n2 + n3)µ, + n1A1 + n2A2 + n3A3. Similarly the model 
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for Y1, is the sum of the models for the n1 records included in Yi. where all n1 records 

containµ and A1 so the model for Y1, is n1µ + n1A1. 

The same pattern applies to the model for Yz. where all records contain µ, and Az 

so that the model, is n2µ. + n2A2 and for y3_ the model is n3µ + n3A3. 

Written in the usual symbolic form and with "'s to indicate solutions and not 

necessarily estimates of the effects: 

µ: nf-' + n1A1 + nzAz + n3A3 = Y .. 

A1: n1A 
,. 

+ n1A1 = Y1, 

Az= nzµ. + n2A2 = Y2. 

Af n3µ. + n3A3 = Y3_ 

For the example, the equations in numerical form are: 

6µ, + 
,. 

3A1 + tA2 + 2A3 = 600 

3µ, + 3A1 = 305 

1µ. + 1A2 = 95 

2µ, + 2A3 = 200 

Note: 1) The numerical coefficients are symmetrical; i.e., the coefficients in the first row 

are the same as the coefficients in the first column on the LHS's. The same is 

true for rows and columns two and three. 

2) The off-diagonal coefficients among the A equations are zero because, for 

example, a record made at age 1 cannot also be made at age 2 or age 3. 

RULE THREE: RANDOM EFFECTS 

Rule 3 does not apply in this example because the model does not include any 

random factors other than the residuals, the wij's. 
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RULE FOUR: CONSTRAINTS AND SOLUTIONS 

The three "A" equations sum to the"µ" equation. Thus, even though there are four 

equations in four unknowns, four solutions cannot be obtained because the equations are 

not independent. To obtain a set of solutions, one constraint must be imposed on the 

original four solutions. 

a) The constraint µ. = 0 is the easiest constraint to use for the computations. The 

equation for µ as well as P. is eliminated to maintain symmetry in the remaining 

equations which become: 

= Y1. 

= Y2. 

n3A3 = Y3_ 

b) Another possible constraint is to set A3 = O; in that case the equation for A3 is 

eliminated as well as A3 to maintain symmetry in the remaining equations (i.e., 

A3 vanishes as well as the equation for y3_): 

n.P. + n1A1 + nzA2 = y .. 

n1P. + n1A1 = Y1. 

nzP. + nzAz = Y2. 

c) A more complex constraint is to set A1 + A2 + A3 = 0. This equation is in 

addition to the least squares equations and to make the numerical coefficients 

of the equations symmetrical a dummy unknown (called in statistical jargon, a 

Lagrange multiplier, A) is added to each equation so that: 
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nf1, + n1A1 + n2A2 + n3A3 + 0.\ = Y .. 

n1A + n1A1 + 1.\ = Y1. 

+ l.\ = Y2. 

n3A + n3A3 + 1.\ = Y3_ 

op, + 1A1 + 1A2 + 1A3 + Oi.. = o 

The solutions with constraint P, = 0 are the easiest to use to discuss the principle involved. 

The solutions, as can be seen from examining the equations when P, = 0 and the Y .. 

equation is eliminated, are: 

P. = 0, A1 = Y1/n1, Az = Y2/n2, and A3 = y3/n 3 . Note that the constraint, 

P, = 0 is one of the solutions. 

EXPECTATIONS OF SOLUTIONS 

A result of having to impose a constraint is the necessity to be careful in 

interpretation of the solutions. Obviously in most cases E[P,] 'f µ, because E[0] = 0. The 

E[A1] can be found easily for the one-way classification model with the constraint P, = 0. 

Notice that E[yij1 = µ. + ~ for all subscripts j. Thus, 

E[A1] = E[y1/n1] = (l/n1)E[y11 + Y12 + Y13 + · · · + Y1n11 

= (1/n 1)[n1(µ, + A1)] = µ. + A1 . 

Similarly, 

E[Az] = µ. + A2 and E[A3] = µ. + A3 . 

These results show that µ, cannot be estimated, and also that none of the A's can be 

estimated. What can be estimated are functions of µ, + ~. the models for the records. 
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For example, A1 - A2 can be estimated by A1 - A2 because: 

E[A1 - A2] = E[A11 - E[A2] = [(µ + A1) - (µ + Az)] = A1 - A2 . 

The important principle is that solutions obtained using other constraints will have different 

expectations but that the same estimates of differences can be obtained. For the constraint, 

A3 = 0, E[A3] = E[O] = 0. In fact, with that constraint: 

As with the µ = 0 constraint, the same estimates of differences can be obtained. The 

estimate of A1 - A3 is Ai, the estimate of A2 - A3 is A2, and the estimate of A1 - A2 is 

A1 - A2. For the sum to zero constraint, A1 + A2 + A3 = 0, the expectations of solutions 

are a little more difficult to find, but the result is that onlyµ + ~ and differences among 

the A's can be estimated. Estimability is defined as the property that a function of the 

records can be found that has the expected value desired, e.g., A1 - A2 orµ + A1. 

Finding the expectations of solutions for more complicated models is more difficult 

and for ease of computation requires some knowledge of matrix algebra. Those techniques 

are taught in courses in linear models and are beyond the scope of this book. 



CHAPTER 25 

THE ANIMAL MODEL 

THE ANIMAL MODEL WITHOUT REPEATED RECORDS 

A simple one-way random classification model results when records are classified by 

the animal making the record when no fixed classification effects or other random effects 

are included in the model. If each animal has only one record, each record is assigned to 

a separate classification. This model can be used to illustrate the similarity between 

selection index and BLUP. The cases where each animal can have more than one record 

and where the animals are related will be discussed later. 

The model for a record of animal i is: 

Y• = µ. + g· + W• l 1 1 

where µ. is a constant (several fixed factors could be in the model with equations 

developed as in Chapter 24 ), 

gi is the effect on the record of the animal's genotype, usually assumed to be 

additive genetic effects, with E[gi] = 0 and E[g{] = a! = h 2a~, and 

wi is the residual effect of the sum of environmental effects on Yi, with 

2 2 2 2 2 
E[wi] = 0 and E[wi] = aw = aE = (1-h )ay. 

The mixed model equations are obtained by setting up the least squares equations 

(same as considering each animal's additive genetic value as a fixed effect) and then adding a; /a! 

to the diagonal of the coefficent matrix of each animal ( additive genetic value) equation. 
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Note that a;,fa~ = (1-h2)a~/h 2a~ = (1-h2)/h 2. Let).= (1-h2)/h 2. 

Because each animal has only one record, the mixed model equations are especially 

easy to write and are as follows for three animals: 

3µ. + 

µ, + 

µ. + 

(1 + '-)gz 

= Y1 

= Y2 

The four equations in four unknowns (P., gl, gz, g3) can be solved without imposing 

a constraint because when ).. is added to the diagonal coefficients, the three animal 

equations do not sum to the µ. equation. The solution, µ., will be BLUE of µ. because for 

this model E[ P.] = µ.. The solutions, g1, gz, and g3 , will be BLUP and correspond to 

selection indexes for additive genetic values of animals 1, 2 and 3. 

The correspondence to selection index can be shown by examining any of the animal 

equations (e.g., animal 3): 

µ. + (l +)..)g3 = Y3; 

(l +).)g3 = Y3 - p,; 

g3 = h 2(y3 - µ,) 

Note that (1 + '-) = 1 + (1-h2)/h 2 = [h2 + (1-h2)]/h 2 = 1/h2 

Thus g3 is the same as selection index, 13 = h2(y3 - µ. ), except that BLUE of µ., µ., is used 

to adjust the animal's record rather than µ. With only three records, as in this example, P, 

may be poorly estimated. 
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To show that P. = Y., the average of the 3 records, substitute gi = h 2(y i - µ.) for 

i = 1, 2, 3 into the first equation and then do some simplification: 

3P. = Y. 

= y_(l - h2) and thus 

p. = y /3 = y . . 

ANIMAL MODEL WITH REPEATED RECORDS 

Although the records will be classified in only one way, by animal, the effects 

associated with animal i on its record are of two kinds, gi and Pi, where gi is the additive 

genetic value and Pi is the effect of permanent environmental factors which affect each 

record of the animal. This model with the permanent environmental effect corresponds to 

the repeatability model introduced in Chapter 8. Again for simplicity assume no fixed 

effects except µ in the model for y ij the jth record of animal i: 

where 

Yij = µ + gi + Pi + wij 

µ is a constant, 

gi is the additive genetic value with a! = h 2a~, 

Pi is the permanent environmental effect associated with all records of 

animal i with a~ = (r - b 2)a:, and 

wij is the residual effect (temporary environmental effects) associated with 

the jth record of animal i with a;, = (1 - r)a~. 
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2 2 2 2 2 2 2 
Note that ag + ap + aw = ay and that ag + ap = ray. 

2 2 2 2 2 2 
Thus aw /a g = (1 - r)/h = A and aw /ap = (1 - r)/(r - h ) = y. The sum of I1j_ records 

on animal i will be Yi: As an example, consider two animals with n1 and n2 records. Five 

equations will be needed corresponding to the five effects; µ., g1, g2, p1, and p2. The least 

squares equations will be identical for g1 and p1 and for g2 and Pz but A will be added to 

the diagonal coefficients of the g equations and y will be added to the diagonal coefficients 

of the p equations: 

µ.: n_µ. + n1g1 + nzgz + n1P1 + nzpz = Y .. 

gl: n1P. + (n1 + l)g1 + n1P1 + =Yl. 

gz: nzP. + (nz + l)gz n2Pz = Y2. 

P1: n1P. + n1g1 + (n1 + Y)P1 =Yl. 

P2= nzP. + nzgz + (nz + y)pz = Y2. 

Again, no constraints are needed because the g equations do not sum to the µ 

equation or to the sum of the p equations because of the nonzero ratios ). and y added to 

the diagonal coefficients. Thus E[ µ.] = µ.. Solutions, g 1 and gz , correspond to selection 

index predictions of additive genetic values of animals 1 and 2. Similarly, gi + pi estimates 

producing ability of animal i and corresponds to selection index for producing ability. Both 

correspondences can be shown by examining the mixed model equations. For example, 

consider the equations for animal 1, the g1 and p1 equations. Because the right-hand sides 

of the two equations are the same, Yi., the left-hand sides must also equal each other. 
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Terms in µ and n1 drop out to leave: 

lg1 = Yl'l so that Pl = (l/y)g1 = [(r - h 2)/h 21g1. 

Now substitute this expression for Pl into the g1 equation: 

Thus with reordering: 

[n1 + l + n1 (i../y)]g1 = Yl. - n1A 

Replace ). with (1 - r)/h 2, y with (1 - r)/(r - h2) and y1_ with n1Y1. (the average times n1 

is the sum) and with some algebra: 

and 

which is the selection index for g1 for n1 records on animal 1 with µ. replaced by P,. 

Because producing ability is g1 + p1, add gl and Pl to estimate g1 + p1: 

n h 2 2] ,.. ,.. 1 r;-; "] r - h 
gl + Pl = -1-+(_n_l ___ l)-r ul. - µ. + h 2 

n h 2 
1 [y1 - P.] so that 

l+(n1 - l)r • 

which is the selection index for producing ability with µ. instead ofµ. 
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SIRE MODELS 

ONE-WAY RANDOM CLASSIFICATION SIRE MODEL 

The one-way random classification model applies when the data can be classified 

according to effects which can be thought of as coming randomly from a distribution of 

effects. For example, the records may be grouped according to the sires of the animals with 

records. 

Suppose the model is: 

where µ. is a constant, 

Y .. = µ. + S· + w .. 
lJ 1 lJ 

si is an effect common to all animals having sire i; (this effect is equivalent to 

transmitting ability or one-half additive genetic value of the sire because a sample 

one-half of his genes are transmitted to each of his °i progeny), E[si] = 0 and 

E(s7) = a~ = paternal half-sib covariance, h2a~/4, and 

wij is an effect associated with the record of the jth progeny of the ith sire. 

Note si + wij = Gij + Eij so that E(wij) = 0 and a; = a~ - ai = a~(l - h2 /4). Thus, 

a;f at = (1 - h2 /4)/(h 2 /4) = (4 - h2)/h 2. Let l = (4 - h2)/h 2 . 
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The mixed model equations now are appropriate and are obtained by setting up the 

least squares equations (same as considering sire effects as fixed effects) and then adding 

a;/ a~ = l to the diagonals of the coefficient matrix corresponding to the sire equations 

when the sires are assumed to be unrelated. The l term essentially takes into account the 

additive relationships among animals with the same sire as does the selection index 

procedure. 

The mixed model equations become (for the case of three sire groups): 

n/1. + + 

= Yz. 

+ (n3 + l)s3 = y3_ 

and if h2 = .25, then l = (4 - h2)/h 2 = 15. Note that er~ is not required although the ratio 

a;Jat must be known. 

If n1 = 11, n2 = 4, and n3 = 15, the numerical equations except for the sums are: 

30µ + 

11µ + (11 + 15)s1 

4µ + 

= Yi. 

= Y2. 

Because of the extra diagonal terms, l = 15, the sire equations do not sum to the µ, 

equation as was also true with the animal models in Chapter 25. The four equations in four 

unknowns can be solved without imposing a constraint. The solution, µ , is BLUE of µ, 

since for this simple model E[µ] = µ. Solutions, s1, s2, and s3 , are BLUP and correspond 

to selection indexes for transmitting ability of sires 1, 2, and 3. 



Sire Models 275 

The equivalence of BLUP to selection index can be shown by looking at any of the 

sire equations, e.g., the equation for sire 1, and noting that Yl. = y1/n 1, the average of 

progeny of sire 1: 

n1P. + (n1 + 15)s1 = Y1. 

(n1 + 15)s1 = n1 CY1. - µ.) . 

Thus: S1 = [ nl ] CY1 - P.) 
n1 + 15 • 

which is the same prediction as with the selection index except that the BLUE of µ,, P., 

instead of µ, is subtracted from the progeny average to adjust for the fixed constant in the 

model of each record. 

1WO-WAY FIXED AND RANDOM (SIRE) CLASSIFICATION MODEL 

Most mixed model analyses are for models that contain both fixed and random 

effects. The sire model with one fixed factor, such as management effects, is an example. 

where: 

Yijk 

~ 
S· 
J 

Assume the model is: 

is the record of progeny k of sire j made in management level i, 

is the fixed effect of management i, 

is an effect common to progeny of sire j with variance ai, 

with ai = paternal half-sib covariance = h2a~/4, and 

is a random residual effect associated with the record of progeny k of sire j made 

in management level i, with variance a; = a~- ai = (1 - h2 /4)a~. 

For example, assume h2 = .25, then a;./ai = A = 15. 
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As an example, assume the following observations have been made: 

Y111 = 530 

Y112 = 520 

Y121 = 460 

Y131 = 350 

Y132 = 340 

Y133 = 300 

Y211 = 380 

Y212 = 400 

Y213 = 410 

Y221 = 410 

Y222 = 44o 

The first subscript (i) denotes the management level and the second subscript (j) 

identifies the sire of the animal. The largest value of the third subscript (k) for a particular 

combination of i and j denotes the number of observations for that combination, Iljj• 

For this example: i = 1 or 2; j = 1, 2, or 3; and 

nu = 2, n12 = 1, n13 = 3, n21 = 3, n22 = 2, n23 = 0. 

There are 6 effects in the model: µ., m1, m2, s1, s2, and s3. 

Equation for µ: 

All the observations contain µ. so that the sum for µ. is Y... = 4540. 

Equation for m1: 

All observations with i = 1 contain m1 so that the sum for m1 is Y1.. = 2500. 

Equation for m2: 

The sum of observations with i = 2 is Yz .. = 2040. 

Equation for s1: 

All observations with j = 1 contain s1 so that the sum for s1 is Y.1. = 2240. 

Equation for s2: 

The sum for observations with j = 2 is Y.z. = 1310. 

Equation for Sf 

The sum for observations with j = 3 is y_3_ = 990. 
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Usually the easiest way to set up the equations with pencil and paper is to make 

tables of the subclass numbers and sums: 

~j Y" lJ. 

1 2 3 1½. 1 2 3 Y· 1 .. 

1 2 1 3 6 1 1050 460 990 2500 

2 3 2 0 5 2 1190 850 2040 

Il· .J 5 3 3 11 y• .J. 2240 1310 990 4540 

The least squares equations in symbolic form are: 

µ,: nJ1. + n1,m1 + n2.m2 + n.1s1 + n.2s2 + n_3s3 = Y ... 

m1: n1.A + n1,m1 + n11s1 + n12s2 + n13s3 = Y1.. 

mz: n2.f-' + + nz.mz + nz1s1 + n2252 + nz3s3 = Yz .. 

s1: n.1A + n11m1 + nz1m2 + n_1s1 

sz: n.zA + n12m1 + nz2m2 + 

Sf n_3A n13m1 + nz3m2 + 

= Y.l. 

n.252 = Y.2. 

n_3s3 = Y.3. 

The 1½j table summarizes the number of each effect in each sum. For example, the 

sum for m1 includes n1. records. Each of those records containsµ and m1. Obviously none 

contains the m2 effect. The number of records with m1 also containing s1 is n11, n12 

contain s2 and n13 contain s3. Note that the first row (i= 1) of the ~j table consists of n11, 

n12, and n13. Similarly the sum for s1 includes n_1 records each containingµ and s1. The 

first column (j = 1) of the ~j table consists of n11 and n21, the number of records containing 

s1 which also contain respectively, effects m1 and m2. 
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To convert the least squares equations to mixed model equations, the ratio, 

a~/ aI = 15 for heritability of .25, is added to the diagonal coefficient of each of the s 

equations so that they become (n.l + 15)s1, (n_2 + 15)s2, and (n.3 + 15)s3. 

In numerical form the mixed model equations are: 

11µ + 6m1 + 5m2 + 5s1 + 3s2 + 3s3 = 4540 

6µ. + 6m1 + 2s1 + lsz + 3s3 = 2500 

5µ + sm2 + 3s1 + 2s2 = 2040 

5µ. + 2m1 + 3m2 + (5 + 15)s1 = 2240 

3µ + lm 1 + 2m2 + (3+ 15)s2 = 1310 

3µ + 3m1 + (3 + 15)s3 = 990 

One constraint must be imposed on either µ. or one of the m's to obtain a set of 

solutions. For example, let P. = 0 and also eliminate that equation to maintain symmetry 

of the coefficient matrix. The equations to solve are: 

6m1 + 2s1 + sz + 3s3 = 2500 

5.mz + 3s1 + zs2 = 2040 

2m1 + 3m2 + zos1 = 2240 

m.1 + 2m2 + 1ss2 = 1310 

3m.1 + 18s3 = 990 

Solutions are: p, = 0 s1 = 10 

m.1 = 420 sz = 5 

Iilz = 400 s3 = -15 



Sire Models 279 

Note that g1 + g2 + g3 = 0. This property holds for any classification of random effects 

that are uncorrelated such as unrelated sires. 

The unbiased estimate of m1 - m2 is m1 - m2 = 420 - 400 = 20. 

Although how to find expectations of solutions is generally beyond the scope of this 

book, it is known E[,u] f µ., E[m1] -:f m1 and E[m2] -:f m2. Obviously E[.u1] = E[0] = 0. 

Actually E[m1] = µ. + m1 and E[m2] = µ. + m2 when the constraint fJ, = 0 is used so 

that E[m1 - mz] = ml - mz. 

If management levels were considered random effects, then changes in the example 

would be these: 

a;/a~ would be added to the diagonals of the management equations, 

a;/ ai would be added to the diagonals of the sire equations as before, 

no constraints would be imposed, 

rti1 + m2 = o, and 

E[Jl] = µ. when no other fixed effects are in the model. 

In this case a~ = a~ + ai + a; so that a;/ai may be different from when 

management levels are considered to be fixed effects. 
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COMPUTING THE INVERSE OF THE ADDITIVE 

RELATIONSHIP MATRIX 

When genetic values are to be predicted with mixed model procedures the inverse 

of the additive relationship matrix is used to account for the covariances among the genetic 

effects among the animals in the model. A logical procedure would seem to be to first 

calculate the relationship matrix using the tabular method and then have a computer 

program calculate the inverse. The problem is that even the most powerful computer 

cannot calculate the inverse for more than 10 to 20 thousand animals in a reasonable 

amount of time. Henderson (1976) solved the computing problem by finding a rapid way 

of calculating the inverse of the relationship matrix directly without ever calculating the 

relationship matrix. If the animals are not inbredt or are assumed not to be inbredt the 

procedure is very easy. Ignoring a small amount of inbreeding probably is a good 

approximation in most prediction problems. The exact procedure that accounts for 

inbreeding is easy with a computer but the explanation is beyond the scope of this book. 

The computing steps for each animal with the assumption of no inbreeding involve 

adding from one to nine values for each animal to different elements of the inverse of the 

relationship matrix depending on how many parents are known. After all animals have been 

processed in this wayt the result is the inverse of the relationship matrix. Then the inverse 

elements are multiplied by the proper variance ratiot a;/ a;, depending on the model, and 
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are used to modify the least squares equations to construct the mixed model equations; for 

animal models a; = a! and for sire models a; = a; = a!/4 and a; is the corresponding 

residual variance in each case. 

The animals can be processed in any order if inbreeding is ignored. Base animals 

must be included even though they may not have records. Base animals are animals that 

establish relationships among other animals but are not themselves related. 

Because the base animals and some other animals to be evaluated such as sires for 

sex-limited traits may not have records, the mixed model equations will be augmented as 

will be illustrated in Chapter 28 to include an equation for each base or other animal 

without a record with a zero sum on the right-hand-side. The coefficients on the left-hand­

sides for those animals will consist only of terms from the inverse of the additive 

relationship matrix multiplied by a;/ a;. Because the model for the zero right-hand-side 

is zero there are no least squares coefficients for the base animal equations. 

Any base animal with only one descendent with records (for the sire model only one 

son with progeny with records) need not be included in the inverse calculation or in the 

augmented mixed model equations. Such a base parent would be listed as unknown in the 

calculation of the inverse of the relationship matrix. If such a base animal is included in the 

inverse of the relationship matrix, then an equation must be included in the mixed model 

equations for that animal as for any other base animal. Solutions for animals with records 

will be the same either way if the correct additive relationships are used. 

Because the computing procedure can accept animals in any order, putting the base 

animals at the end of the inverse matrix, rather than the beginning when calculating 

relationships, may make setting up the equations easier to set up than putting them first or 

ordering by age. 
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RULES WHEN SIRES AND DAMS ARE KNOWN 

The simple rules for building the inverse of the relationship matrix for non-inbred 

animals from pedigrees with sires and dams are: 

If known 

Animal Sire Dam 
Then add what to where J!/ p s d 

Yes No No 1 to (p,p) 

Yes Yes No 4/3 to (p,p); -2/3 to (s,p); 1/3 to (s,s) 

Yes No Yes 4/3 to (p,p); -2/3 to (d,p); 1/3 to (d,d) 

Yes Yes Yes 2 to (p,p); -1 to (s,p) and (d,p); 
1/2 to (s,s), (d,d), and (s,d) 

I!/ Symmetric; if -2/3 to (s,p), then -2/3 to (p,s), etc. 

Note that p, s, and d will be ordered animal numbers (from one to the last animal) 

and that each (p,p), (s,p), etc., combination is a location in the inverse of the relationship 

matrix. 

In the example that follows, three animals are base animals: GSl, D1, and GSZ. 

The other five animals are related through those three animals. Animals GSl, D1, and GSZ 

must be included in building the inverse even if predictions of breeding values are wanted 

only for Sl, ... , SS. 
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The relationships for the example are as diagrammed: 

GS1 01 GS2 

/ \/lXl 
$1 S2 S4 $5 

~ 
S3 

The table will be computed beginning with the information for S 1 where a blank 

indicates the parent is not known or does not need to be included as a base animal. 

Animal Sire Dam 
p s d What is added to where (symmetric) 

S1 GSl 4/3 to (S1,S1);-2/3 to (GSl,S1); 
1/3 to (GSl,GSl) 

S2 GSl D1 2 to (S2,S2);-1 to (GS1,S2) and (Dl,S2); 
1/2 to (GSl,GSl), (D1,D1) and (GSl,D1) 

S3 S1 4/3 to (S3,S3);-2/3 to (Sl,S3);1/3 to (Sl,S1) 

S4 GS2 Dl 2 to (S4,S4);-1 to (GS2,S4) and (D1,S4); 
1/2 to (GS2,GS2), (D1,D1) and (GS2,D1) 

S5 GS2 D1 2 to (S5,SS);-1 to (GS2,S5) and (Dl,S5); 
1/2 to (GS2,GS2), (Dl,D1) and (GS2,D1) 

GSl 1 to (GSl,GSl) 

D1 1 to (D1,D1) 

GS2 1 to (GS2,GS2) 
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Note that the base animals are included with unknown parents so that a one is added to the 

diagonal corresponding to each base animal. 

After all eight animals have been processed the inverse of the additive relationship 

matrix is: 

S1 

S2 

S3 

S4 

S5 

GSl 

D1 

GS2 

S1 

10/6 

S2 

0 

12/6 

S3 

-4/6 

0 

8/6 

S4 S5 GSl D1 GS2 

0 0 -4/6 0 0 

0 0 -6/6 -6/6 0 

0 0 0 0 0 

12/6 0 I O -6/6 -6/6 
I 

12/6 I O -6/6 -6/6 
----------------------------------+---------------------

11/6 3/6 0 

Symmetric 15/6 6/6 

12/6 

When animals are inbred the procedure is more complicated although Quaas (1976) 

developed a method of computing the diagonals of the relationship matrix from which the 

inverse of the whole additive relationship matrix can be computed relatively easily although 

not as easily as when inbreeding is ignored. The animals must be ordered by age when 

inbreeding is considered. 

A similar set of rules can be developed for relationships among males; i.e., when the 

maternal grandsire is used in the calculation rather than the dam. Most relationships in a 

population are due to males rather than to females. 
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RULES WHEN SIRES AND MATERNAL GRANDSIRES ARE KNOWN 

Most relationships among sires that are evaluated from progeny records are due to 

male relatives because few dams have more than one son with progeny. Rules for building 

the inverse of the relationship matrix from known sire and maternal grandsire are similar 

to those using known sire and dam. Base animals with more than one related collateral 

descendent must be included as before. With the following rules inbreeding is again 

ignored. 

...----------- Sire 

Anlmal~ 

If known 

Animal Sire 
p s 

Yes No 

Yes Yes 

Yes No 

Yes Yes 

----- Dam~----­
(Ignored) 

Maternal grandslre 

Maternal 
grandsire 

m Then add what to where (symmetric) 

No 1 to (p,p) 

No 4 /3 to (p,p ); 1/3 to (s,s); -2/3 to (s,p) 

Yes 16/15 to (p,p); 1/15 to (m,m); -4/15 to (m,p) 

Yes 16/11 to (p,p); -8/11 to (s,p); -4/11 to (m,p) 
4/11 to (s,s); 2/11 to (m,s); 1/11 to (m,m) 
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MODELS WITH ANIMALS REIATED 

THE ANIMAL MODEL WITH ANIMALS RELATED 

The selection index takes advantage of records of relatives to improve predictions. 

Records of relatives are partial replicates of some of the same genetic effects. The mixed 

model procedure can also be improved by using the numerator relationships for partial 

replication. Instead of adding a;,/ a! to the diagonal of least squares equations of each g 

equation, a function of the additive relationship matrix and a;, /a! = i.. is added to the 

block of coefficients for the g equations. The additive relationship table can be considered 

as a matrix of additive relationships with the symbol, A The function of A used in the 

mixed model equations is its inverse, A-1, multiplied by the scalar, a;,/ a~. 

For this example, the least squares and mixed model equations will be written in 

matrix notation. 

Assume animals 1, 2, 3 each have a record and are related through S and D as 

diagrammed: 

1 ◄ S 

>< 2 ◄ D 

3~ 
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Thus, the additive relationships among animals 1, 2, and 3 are: 

[ 
1 1/2 1/4] 

A = 1/2 1 1/4 

1/4 1/4 1 

[
15/11 -7 /11 

with A -l = -7/11 15/11 

-2/11 -2/11 

-2/111 
-2/11 . 

12/11 

Let y1, Y2, Y3 be single records of the 3 animals. When the only fixed effect in the model 

is µ, the least squares equations are: 

3 1 1 1 µ, Y. 

1 1 0 0 gl Yl 
= 

1 0 1 0 g2 Y2 
1 0 0 1 g3 Y3 

To convert the least squares equations to mixed model equations, J..A-1 is added to the 

block of coefficients for the g equations. For example, if a; /a! = (1-h2)/h 2 = 3, then 

[
15/11 

lA -l = 3 -7/11 

-2/11 

-7 /11 -2/11] 
15/11 -2/11 

-2/11 12/11 

and the mixed model equations become: 

3 1 1 1 p. 

1 1+45/11 0-21/11 0-6/11 gl 
1 0-21/11 1+45/11 0-6/11 gz 
1 0-6/11 0-6/11 1+36/11 g3 

Y. 

Yl 
= 

Y2 

Y3 
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EQUATIONS AUGMENTED FOR RELATIVES WITHOUT RECORDS 

Calculation of A with many animals is difficult. After A has been calculated, the 

calculation of A-1 for many animals is usually prohibitive because computing time for A-1 

from A is proportional to n3 where n is the number of animals. In 1975 C. R. Henderson 

made a remarkable discovery that allows rapid and direct calculation of elements of A-1 

without calculation of A. (See Chapter 27 for rules for calculation of A-1.) The method, 

however, requires including in A-1 the ancestors that create the relationships. In the 

previous example, Sand Das well as animals 1, 2, and 3 must be included in A- 1. 

To use the rules for rapid calculation of A- 1, the mixed model equations for animals 

with records are augmented with equations for the ancestors without records (also a result 

due to C. R. Henderson). Let A; 1 be the inverse of A+ which includes the ancestors 

without records that create relationships among the animals with records. The right-hand 

sides of the least squares equations for animals without records are all zero (the model for 

zero is zero) as are the coefficients of the least squares equations. The g's for the ancestors 

are included in the solution vector. When l.A; 1 is added to the block of coefficients for 

the animals including the ancestors without records, the coefficients are not all zero for the 

ancestor equations although the right-hand sides are zero. 

The equations for animals with records and the equations for their ancestors without 

records are tied together by the inverse of the full relationship matrix. 
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The procedure will be illustrated with the previous example. The least squares 

equations with equations for gs and g0 added are: 

3 1 1 1 0 0 µ. Y. 

1 1 0 0 0 0 gl Yl 

1 0 1 0 0 0 g2 Y2 
= 

1 0 0 1 0 0 g3 Y3 

0 0 0 0 0 0 g5 0 

0 0 0 0 0 0 go 0 

Using the rules for calculating A; 1 with S and D included at the end to agree with the 

order of the solution vector of the least squares equations: 

2 0 0 -1 -1 

0 2 0 -1 -1 
-1 

0 0 4/3 0 -2/3 A+ = 

-1 -1 0 2 1 

-1 -1 -2/3 1 7/3 

Then lA; 1 is added to the block of coefficients corresponding to the equations for the g's. 

A somewhat surprising result is that the solutions for µ., gl, g2, and g3 from the 

augmented equations are exactly the same as when lA- 1 is added to equations for g1, g2, 

and g3 in the previous example. That result becomes less unexpected after considering that 

exactly the same records are available and relationships in both cases were calculated using 

S and D. Even though more equations must be solved with the augmented procedure, the 

total computing time is usually much less than calculating A, then A-l for animals with 

records and finally solving the equations. If, in the augmented equations, the equations for 

gs and g0 are absorbed into the equations for g1, g2, and g3, the equations will be identical 
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to those set up directly for g1, g2, and g3. Thus, mathematically, the solutions must be 

equal. The solutions for gs and g0 are based on their relationships to the animals with 

records as will be illustrated with a simpler example. Assume C has n records with parents 

S and D not having records. With animals ordered C, S, D: 

[ 
2 -1 

-1 
A+ = -1 3/2 

-1 1/2 

-11 1/2 . 

3/2 

For the model: Y •• = µ. + g· + p· + w .. with i. = a2 /a 2 = (1-r)/h 2 and 
lj 1 1 lj W g 

2 2 
y = awfap = (1-r)/(r-h 2), the augmented equations are: 

n n n 0 0 " Yl. µ. 

n n+y n 0 0 Pc Yl. 

n n n+2l -i. 
_,. ... 

gc = Yl. 

0 0 -i.. 3i,../2 i,../2 A 0 gs 

0 0 -i,.. i,../2 31/2 go 0 

Note that g5 = gD because each has the same relationship to their progeny which has 

records. Let a parent solution be gp. Then from either of the last two equations: 

(3/2 + 1/2) i,..gp = i.gc 

so that as might be expected: 

gp = gc/2 . 

Substitute gc/2 for gs and go in the equation for gc and: 

nµ. + nf>c + (n+2i,..)gc - (i../2)gc - (i,../2)gc = Yl. 

This equation, on combining terms, is the same as the equation for gC if relationships to 

parents Sand D had been ignored: nP, + nf>c + (n+i.)gc = Yl. 

This result is expected because S and D did not contribute information to evaluate C. 
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In general, the reasons to include animals with no records are 1) that such so-called 

base animals establish relationships among animals with records, e.g., if a full sib of C had 

a record, S and D create the relationships needed to use that record in the evaluation for 

C and 2) that calculating A; 1 is much, much easier than calculating A and then A-1 for 

animals with records. 

This example suggests that an animal model can be used to evaluate sires that have 

many progeny. In the simple example the evaluation of S was obtained and was based on 

the records of only one progeny. 

SIRE EVALUATION WITH ANIMAL MODEL 

The animal model is ideal for evaluating sires from their progeny records because 

the merit of the mates of the sires (dams of the progeny) will be adjusted for automatically 

through the relationship matrix in the same way that the selection index can be used to 

account for association of some sires with better than average mates and other sires with 

poorer than average mates. The disadvantage of the animal model for large data sets is that 

a large number of equations must be solved. The number of equations is somewhat larger 

than the number of animals and depends on whether repeated records are used, how many 

animals without records are included (base and sires) and on the number of other factors 

in the model to account for such factors as management and seasonal effects. 

In the augmented procedure, a base animal that has only one relative to be evaluated 

does not have to be included in A; 1, e.g, a sire that has a son with progeny but has no 

progeny with records nor any other sons with progeny or descendants in the group of 

animals to be evaluated can be, but does not need to be, included in the augmented 

equations. 
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The example which follows shows the equations for sire evaluation with an animal 

model for the situation where all of the mates of sires are unrelated to each other and to 

the sires. Thus, parents of the mates are assumed not to have records and do not need to 

be included in A: 1. They could be included and the solutions would be the same for the 

other animals but more equations would need to be solved. To further simplify the 

example, only females will have records and each will have a single record. 

C11 C22 

All C and D animals have a single record. 

There will be: 

10 equations for animals with records, 

4 equations for sires including S that has two sons with progeny, and 

1 equation for µ for the simple animal model. 

Let the animals be ordered: 

D1, Dz, D3, D4, D5, C11, Ciz, C33, C34, C35, S, 51, Sz, S3 

The mixed model equations for the simple animal model with a; /a! = (1-h2)/h 2 = .i.. are 

shown on the next page. 



N 
\0 
~ 

~ 
~-
~ 

10 I I I I I I I I I I 0 0 0 0 I Iµ Y. ~ 

~ . 
1+31/2 0 0 0 0 -l 0 0 0 0 0 1/2 0 0 I I gD1 YDt 1%-~ "" . 

1+3'-/2 0 0 0 0 
_,. 

0 0 0 0 0 "-/2 0 I I gD2 YDz 

1+31/2 0 0 0 0 -l 0 0 0 0 0 l/2 go3 I I YD3 

1+31/2 0 0 0 0 -l. 0 0 0 0 J./2 gD4 I I YD4 

1+3A/2 0 0 0 0 -,. 0 0 0 J./2 I I gD5 I I YD5 
. 

1+21 0 0 0 0 0 
_,. 

0 0 I I gc1 "" YC11 

1+21 0 0 0 0 0 -l. 0 I I gc2 YCz2 
. 

1+21 0 0 0 0 0 -l I I gc3 YC33 

1+2"- 0 0 0 0 
_,. 

I I gc34 I YC34 

SYMMETRIC 
1+21 0 0 0 -l. 8C3~ I YC35 

(coefficients in a column 
8S I below the diagonal are the Sl./3 0 -21/3 -2l./3 I 0 

same as those in the row to 
the right of the diagonal) 31/2 0 0 is1 I I 0 

11 J./6 0 I I is 2 I I 0 

1n;6 I I is 3 I I 0 
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Examination of the solution for a sire shows the weight for each mate is minus one­

half (-1/2) of that for each progeny. In other words, an estimate of one-half of the dam's 

genetic value is subtracted from the estimated genetic value of the progeny to account for 

the mate's merit to leave only the part of the progeny's genetic value contributed by the sire. 

For example, for Sf 

(171/6)gs3 = (2)./3)gs + i.(gC33 + gC34 + gC35) - (l/2)(gn3 + gD4 + gn5) 

(17i../6)gs3 = (2J./3)gs + l[(gc33 - gn3/2) + (gc34 - gn4/2) + (gc35 - gns/2)] 

And for s1: 

SIRE EVALUATION WITil ANIMAL MODEL IGNORING MATES AND 

RELATIONSHIPS THROUGH FE1\1ALES 

In the past, sire evaluations generally were done ignoring records on mates because 

of the computing time required. The animal model can be used with the same 

approximation; that all mates are unrelated to each other and to the sires. This 

approximation to the full animal model is equivalent to assuming that only relationships 

from males to males are important. 

Consider the following example where c11, c12, and Cit have single records, Y11, 

Y12, and Y21· 
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In calculating A; 1, all dams are considered to be unknown so that for animals ordered 

C11, C12, Czi, s1, s2, and S (notice that each term in A; 1 when the dam is missing 

contains a 3 in the denominator): 

4 0 0 -2 0 0 

0 4 0 -2 0 0 

-1 0 0 4 0 -2 0 
A = (1/3) + -2 -2 0 6 0 -2 

0 0 -2 0 5 -2 

0 0 0 -2 -2 5 

For a;, /a! = 1, the mixed model equations are: 

3 1 1 1 0 0 0 µ. y .. 
1 +4A/3 0 0 -2A/3 0 0 gll Y11 

1+41/3 0 -21/3 0 0 g12 Y12 
1+41/3 0 -21/3 0 gz1 = Y21 

61/3 0 -2i../3 g5l 0 

51/3 -21/3 g52 0 

Symmetric 5'J../3 gs 0 

The solutions predict genetic values simultaneously for animals with records (the 

progeny) ignoring relationships arising from females, and for animals without records, in this 

case, the sires. 
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SIRE MODELS WITH SOME RELATIONSHIPS 

IGNORING MATES AND FEMALE RELATIONSHIPS 

The approximate animal model described in the last section of Chapter 28 that 

ignores relationships through females requires an equation for each progeny. An equation 

is included for each animal which in some cases may be many. The number of equations 

can be reduced essentially to the number of sires by using the sire model. With the sire 

model, only male to male relationships will be considered (assumes dams are unrelated to 

sires and to each other). The sire model is the same as in Chapter 26 except that now 

relationships among sires are used: 

Yij = µ, + si + wij 

where si = g/2 is the transmitting ability of sire 1. Note that oi = o~/4 and 

a; = er~ - cr~/4 or equivalently oi = h2o;/4 and a; = (1 - h2 /4)o~ so that 

a;/cri = (4 - h2)/h 2 = y. The previous example from Chapter 28 will be used. With the 

-1 
sire model, only relationships among S 1, s2, and Swill be considered in calculating A+ : 
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With the sire model, yA; 1 is added to the block of the coefficient matrix corresponding 

to the sire transmitting abilities. The least squares equations are augmented by equations 

for sires that have no progeny with records but which create relationships among sires with 

progeny with records. The mixed model equations for the example are: 

3 2 1 0 p. Y .. 

2+4y/3 0 -2y/3 gl Yl. 
= 

1+4y/3 -2y/3 sz Y2. 
Symmetric 5y/3 ss 0 

The solutions for s1, s2, and s5 are exactly one-half those for the previous example 

(gsl' gs2, and gs) that had equations for each progeny and augmented equations for 

the sires that had no records themselves. That s1 = gs1/2 can be shown by absorbing 

equations for g11 and g12 in the last section of Chapter 28 into the equation for g5 . The 
1 

equation for gs will be the same as for s1 except that the coefficients for gs and gs are 
1 1 

one-half as large as the coefficients for s1 and ss. The advantage of the sire model as 

compared to the equivalent approximate animal model is that many fewer equations need 

to be set up and solved. 

RELATIONSHIPS FROM SIRES AND MATERNAL GRANDSIRES OF MALES 

Most relationships among males arise from male ancestors. Even if dams of males are 

not included in calculation of A: 1 among males, sires of the dams (maternal grandsires 

of males) can be used in calculation of A; 1 and if they have no progeny with records can 

be evaluated from the augmented equations. The increased ties among males will result in 
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slightly increased accuracies of evaluation. Only maternal grandsires that have more than 

one male descendent in the list to be evaluated or those with progeny with records need to 

be included in calculating A; 1 . Rules developed by C. R. Henderson for calculating 

A: 1 from sires and maternal grandsires are similar to the rules using sires and dams, and 

-1 
are given in Chapter 27 for calculating A+ . 

For this sire model, a;/ er~ = Y. 

Assume as an example the same animals and records as in the previous example 

except that Sx is the maternal grandsire of both s1 and Sz: 

-1 
Females D1 and D2 are not included in A+ . With males ordered s1, s2, S, Sx: 

16 0 -8 -4 

-1 0 16 -8 -4 
A+ = (1/11) 

-8 -8 19 4 

-4 -4 4 13 
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For the sire model and with a;/ai = (4- h2)/h 2 = y; the elements of yA; 1 are added 

to the coefficients of the least squares equations corresponding to equations for s1, s2 and 

the augmented equations for S and Sx. The augmented mixed model equations are: 

3 2 1 0 0 " µ Y .. 

2+16y/11 0 -8y/11 -4y/11 s1 Yl. 

1+16y/11 -8y/11 -4y/11 s2 = Y2. 

19y/11 4y/11 ss 0 

Symmetric 13y/11 ss 
X 

0 

The variance of prediction errors, e.g., V(si - si), will be decreased as compared to 

ignoring Sx. 
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VARIANCE OF PREDICTION ERRORS 

Calculation of rri and variance of prediction error, V(T - T) = {l - r,y,1.)af can be 

done for solutions from mixed model equations as from selection index theory. How to do 

these calculations will be described for models including: genetic value, i.e., when T = g; 

transmitting ability, when T = s; and producing ability, when T = g + p; as well as for 

" 
variances of estimates of fixed effects estimated from data. The calculation for V(T - T) 

first requires the inverse of the coefficient matrix for the mixed model equations and a~. 

The second step is to calculate r'jf from V(T - T) which will also require the ratio of 

a~/ at, For example, assume the repeated records model: 

y .. = µ. + g. + P· + w .. 
lj I I lj ' 

Let i.. = a 2 / a2 and y = a 2 / a 2 The symbolic mixed model equations are: w g w p· 

cµ.,µ Cµ,pl 
. . . 

Cµ,gl . . . " Y .. µ 

Cpl,µ Cpl,Pl 
. . . 

Cpl,gl 
. . . Pl Yl. 

• • 
::;: . 

Cgl,µ Cg1,P1 
. . . 

Cgl,gl . . . gl Yl. 

. . 
. 
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n1 0 • • • 

0 nz 

and the egg block = . • 

• • 

+ lA -l 

In matrix terms Cs = r where the solution vector: s = c-1r . 

Let the elements of the inverse of C be: 

cµ,µ cµ,pl . . . C µ,gl . . . 
cPl,µ cPl,pl . . . cPl,gl . . . 

. 
c-1 = . 

cgl,µ cgl,pl . . . cgl,gl . . . 

These terms when multiplied by a; correspond to prediction error variances and 

covariances: 

V(gl - g1) = ~l,gla; , V(pl - Pt) = cpl,pla; and 

Cov(gl - g1, P1 - P1) = ~1,pla; 

so that for producing ability; 

= (~1,gl + cpl,pl + 2~1,pl)a;,. 
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VARIANCE OF PREDICTION ERROR OF GENETIC V ALOE 
.. 2 

Because V(gi - gi) = cgi,giow and also from the selection index property 

2 2 • • 2 2 2 V(g· -g·) =(1-r A)o then cgi,gto =(1-r )a 
1 1 gg g' W gg g • 

2 
The equation can be solved for r gg as: 

2 • • 2 2 r A = 1 - cgi,gi(o /a ) 
gg w g 

The ratio, a;,Ja; = (1 - r)/h 2 , is known and is used in calculating C. The other 

term, c g i' g i, is the appropriate element from the inverse of C. If animal i is inbred, 

2 2 2 2 
then the ratio awfag becomes awfog (1 + Fi) . 

VARIANCE OF PREDICTION ERROR OF PRODUCING ABILITY 

Because from mixed model theory 
. . . . . . 2 

V[(gi + Pi) - (gi + Pi)] = (cgi,gi + cP 1,P 1 + 2cg 1,P 1)ow equals 

(1 - r: +p,g+p) (a; + o~) from selection index theory, then: 

2 • • • • • • 2 2 2 r = 1 - (cgr,gi + cP 1,P1 + 2cg 1,P 1)0 /(o + a ) g+p,g+p w g p • 

The ratio a;,f(a! + o~) = (1 - r)/r is known when calculating C. The other terms are 

appropriate elements of the inverse of C. 

VARIANCE OF PREDICTION ERROR FOR OTHER MODELS 

For other models, calculations are similar to those described in previous paragraphs. 

The appropriate elements from c-1 are multiplied by a; for that model. For the sire 

model, a; = (1 - h2/4)o~ and a;,/oi = (4 - h2)/h 2. For the animal model with a single 

record per animal, a; = (1 - h2)o~ and a;/ai = (1 - h2)/h 2. 
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VARIANCE OF PREDICTION ERROR FOR MODELS WITH MORE FIXED EFFECTS 

The elements of c· 1 corresponding to random effects such as, g, p, and s, are used for 

calculating variances and covariances of prediction errors for those effects. 

These inverse elements, however, depend partially on the fixed effects in the model 

and on the distribution of records among the levels of the fixed factors. With several fixed 

factors in the model, C is singular so that an inverse cannot be obtained. If constraints are 

imposed so that the constrained c. is nonsingular, then c: 1 can be obtained but will 

depend on the set of constraints chosen. The expected values of solutions for ftxed effects 

depend on the constraints. 

Nevertheless, solutions for random effects, such as g, p, and s, will be the same for any 

set of permissible constraints. Similarly, prediction error variances for the random effects 

do not depend on the constraints chosen, i.e., the block of elements of C: 1 corresponding 

to the random effects is unique and does not depend on the constraints. 

VARIANCES OF ESTIMATES OF FIXED EFFECTS 

Estimates of ftxed effects also have variances. For example, the variance of P. is 

cµ.,µ.a; for models in whichµ. is the only fixed effect. For models with more fixed factors, 

the variances of the estimates are determined similarly from the inverse of C: 1 . The 

problem, however, is that because of the constraints needed to obtain solutions, the expected 

values of the solutions are not the effects represented by µ., etc. Generally differences 

between levels of a factor are estimable. For example, depending on the model and 
,._ A 

constraints, E[f 1 - f2] may equal f1 - r2 for levels 1 and 2 of fixed factor f. Then the 

A A A A flfl f2f2 flf2 2 
variance of the estimable difference, f 1 -f2 is V(f 1 - f2) = (c ' + c ' - 2c ' )aw· 
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NUMERICAL EXAMPLE OF ANIMAL MODEL WITH 

DIFFERENT CONSTRAINTS 

This chapter will demonstrate the effect of constraints on solutions to the mixed 

model equations for a repeated records animal model. 

The model for a record k of animal j affected by level i of fixed factor f is: 

Yijk = µ. + fi + Pj + gj + wijk • 

2 2 2 2 2 Let "w = (2000) and with r = .6 and h = .4, aw fag = ( 1 - r) /h 2 = A = 1 and 

o2 /o 2 = (1 - r)/(r - h2) = y = 2. w p 

The animals with records are c1 (2 records), Cz (1 record), and c3 (3 records). The 

parents of c1 and Cz are S and D, and one parent of c3 is D with the other parent 

unknown and not needed because it has only one relative with a record. (See Chapter 28 

for example of animal model with equations augmented for relatives without records.) 
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AUGMENTED MIXED MODEL EQUATIONS 

The records for the animals are distributed in the levels of the fixed factor as follows: 

Fixed Animal Fixed factor 
factor 1 2 3 totals 

f1 10,000 9,000 19,000 

f2 12,000 10,000 22,000 

f3 15,000 12,000 27,000 

Totals 22,000 15,000 31,000 68,000 

The augmented mixed model equations are: 

2 2 2 2 1 3 2 1 3 0 0 
A 

68,000 µ. 

2 0 0 1 0 1 1 0 1 0 0 f1 19,000 

2 0 1 0 1 1 0 1 0 0 f2 = 22,000 

2 0 1 1 0 1 1 0 0 f3 27,000 

2+2 0 0 2 0 0 0 0 P1 22,000 

1+2 0 0 1 0 0 0 P2 15,000 

3+2 0 0 3 0 0 P3 31,000 

2+2 0 0 -1 -1 gl 22,000 

1+2 0 -1 -1 g2 15,000 

symmetric 3+(4/3) 0 -2/3 g3 31,000 

+2 +1 g5 0 

+2(1/3) gn 0 

CONSTRAINTS 

One constraint will be needed because the f equations sum to the µ. equation. 

With the constraint f 1 = 0, the inverse of the coefficient matrix is obtained by 

zeroing the row and column coefficients for f 1 and then inverting the remaining matrix. 
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In the inverse the row and column of zeros for f 1 are shown: 

1.310 .000 -.500 -.657 -.222 -.065 ·-.213 -.616 -.458 -.569 -.287 -.500 

.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

-.500 .000 1.000 .500 .000 .000 .000 .000 .000 .000 .000 .000 

-.657 .000 .500 1.296 .139 -.157 .019 .130 -.167 .028 -.019 .000 

-.222 .000 .000 .139 .417 .028 .056 -.111 .000 .083 -.056 .000 

-.065 .000 .000 -.157 .028 .435 .037 .009 -.083 .056 -.037 .000 

-.213 .000 .000 .019 .056 .037 .407 .102 .083 -.139 .093 .000 

-.616 .000 .000 .130 -.111 .009 .102 .838 .458 .403 .398 .500 

-.458 .000 .000 -.167 .000 -.083 .083 .458 .875 .375 .417 .500 

-.569 .000 .000 .028 .083 .056 -.139 .403 .375 .792 .139 .500 

-.287 .000 .000 -.019 -.056 -.037 .093 .398 .417 .139 .907 .000 

-.500 .000 .000 .000 .000 .000 .000 .500 .500 .500 .000 1.000 

With the constraint µ. = 0, coefficients for the µ. row and column are zeroed. 

The inverse is: 

.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

.000 1.310 .810 .653 -.222 -.065 -.213 -.616 -.458 -.569 -.287 -.500 

.000 .810 1.310 .653 -.222 -.065 -.213 -.616 -.458 -.569 -.287 -.500 

.000 .653 .653 1.292 -.083 -.222 -.194 -.486 -.625 -.542 -.306 -.500 

.000 -.222 -.222 -.083 .417 .028 .056 -.111 .000 .083 -.056 .000 

.000 -.065 -.065 -.222 .028 .435 .037 .009 -.083 .056 -.037 .000 

.000 -.213 -.213 -.194 .056 .037 .407 .102 .083 -.139 .093 .000 

.000 -.616 -.616 -.486 -.111 .009 .102 .838 .458 .403 .398 .500 

.000 -.458 -.458 -.625 .000 -.083 .083 .458 .875 .375 .417 .500 

.000 -.569 -.569 -.542 .083 .056 -.139 .403 .375 .792 .139 .500 

.000 -.287 -.287 -.306 -.056 -.037 .093 .398 .417 .139 .907 .000 

.000 -.500 -.500 -.500 .000 .000 .000 .500 .500 .500 .000 1.000 
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With the constraint f3 = 0 the inverse is: 

1.292 -.639 -.639 .000 -.083 -.222 -.194 -.486 -.625 -.542 -.306 -.500 

-.639 1.296 .796 .000 -.139 .157 -.019 -.130 .167 -.028 .019 .000 

-.639 .796 1.296 .000 -.139 .157 -.019 -.130 .167 -.028 .019 .000 

.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

-.083 -.139 -.139 .000 .417 .028 .056 -.111 .000 .083 -.056 .000 

-.222 .157 .157 .000 .028 .435 .037 .009 -.083 .056 -.037 .000 

-.194 -.019 -.019 .000 .056 .037 .407 .102 .083 -.139 .093 .000 

-.486 -.130 -.130 .000 -.111 .009 .102 .838 .458 .403 .398 .500 

-.625 .167 .167 .000 .000 -.083 .083 .458 .875 .375 .417 .500 

-.542 -.028 -.028 .000 .083 .056 -.139 .403 .375 .792 .139 .500 

-.306 .019 .019 .000 -.056 -.037 .093 .398 .417 .139 .907 .000 

-.500 .000 .000 .000 .000 .000 .000 .500 .500 .500 .000 1.000 

PREDICTION ERROR VARIANCES 

Notice that with any of the three constraints that the blocks of the inverses 

corresponding to p1, p2, p3, g1, g2, g3, gs and g0 are the same. The solutions for those 

effects are also the same as is shown in Table 31.1. In technical jargon, this means that the 

predictors of the random effects are invariant to (do not depend on) the choice of 

constraints. 

For example with all three sets of constraints: 

V(g1 - g1) = c gl,gla;, = .838(2000)2. 

V(go - 8D) = cgD,gDa;, = 1.000(2000)2 

V[( + ) ( It A )] ( P1,P1 g1,g1 2 P1,g1) 2 
gl P1 - el + Pl = c + c + c aw 

= [.417 + .838 + 2(-.111)](2000) 2 
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VARIANCES OF ESTIMATES OF FIXED EFFECTS 

Because what f i estimates depends on the constraint, V ( f i) is different from constraint to 

constraint although the variance of an estimable function of the fs is the same with any of 

the constraints. 

With all 3 sets of constraints f2 - f3 estimates £2 - f3, i.e., E[f2 - f 3] = f2 - £3. For 

all three cases, V(fz - f 3) are the same. 

For f 1 = 0: 

2 2 = [1 + 1.296 - 2(.500)]aw = 1.296aw 

For P. = 0: 

A A 2 2 
V(fz - f3) = [1.310 + 1.292 - 2(.653)]aw = 1.296aw 

For f3 = 0: 

1>- 2 2 
V(r2 - f3) = [1.296 + 0 - 2(0)] aw = 1.296aw 

In the last case, f 3 = 0. Note that a constant (implied by the constraint) has no 

variance and similarly the covariance of a constant, f 3 = 0, with an estimate, fz, also is 

zero. 

In all three cases the variance of the estimated difference between £2 and f 3 is the 

same, l.296a!. From Table 31.1 the estimate of the difference, f2 - £3, is -2278, i.e., £3 is 

estimated to be larger than £2 by 2278 no matter which constraint is used to obtain a set of 

solutions. 
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Table 31.1. Solutions for augmented and nonaugmented mixed model equations with 
different constraints 

Solution t1=0 

Augmented 
µ=0 

Nonaugmented 

t3=0 

P. 9,806 0 13,583 13,583 

f 1 0 9,806 -3,778 -3,778 

t2 1,500 11,306 -2,278 -2,278 

_____ !~-------!~?7_~ _______ 13,583 ---------~--------------~---------

P1 

P2 

P3 

gl 
g2 
g3 

gs 
go 

83 

306 

-389 

278 

500 

-583 

389 

0 

83 

306 

-389 

278 

500 

-583 

389 

0 

EQUIVALENT MIXED MODEL EQUATIONS 

83 

306 

-389 

278 

500 

-583 

389 

0 

83 

306 

-389 

278 

500 

-583 

If the mixed model equations had not been augmented but S and D had been used 

to calculate the relationship matrix, A, for c1, Cz, and c3, then 

[ 
1 1/2 

A = 1/2 1 

1/4 1/4 

1/4] [l.364 -.636 
1/4 and A -l = -.636 1.364 

1 -.182 -.182 

-.182] 
-.182 

1.091 
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With }. = 1, the equivalent mixed model equations are: 

6 2 2 2 2 1 3 2 1 3 A 68,000 µ. 

2 0 0 1 0 1 1 0 1 f1 19,000 

2 0 1 0 1 1 0 1 f2 22,000 

2 0 1 1 0 1 1 f3 = 27,000 

4 0 0 2 0 0 P1 22,000 

3 0 0 1 0 P2 15,000 

5 0 0 3 f,3 31,000 

3.364 -.636 -.182 gl 22,000 

2.364 -.182 g2 15,000 

symmetric 4.091 A 31,000 
g3 

The solutions as shown in Table 31.1 are identical to those from the augmented 

equations. Similarly the variances of prediction errors are also the same as can be seen 

from the inverse with f 3 = 0: 

1.292 -.639 -.639 .000 -.083 -.222 -.194 -.486 -.625 -.542 

-.639 1.296 .796 .000 -.139 .157 -.019 -.130 .167 -.028 

-.639 .796 1.296 .000 -.139 .157 -.019 -.130 .167 -.028 

.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

-.083 -.139 -.139 .000 .417 .028 .056 -.111 .000 .083 

-.222 .157 .157 .000 .028 .435 .037 .009 -.083 .056 

-.194 -.019 -.019 .000 .056 .037 .407 .102 .083 -.139 

-.486 -.130 -.130 .000 -.111 .009 .102 .838 .458 .403 

-.625 .167 .167 .000 .000 -.083 .083 .458 .875 .375 

-.542 -.028 -.028 .000 .083 .056 -.139 .403 .375 .792 
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CREATING AND SOLVING 

LEAST SQUARES AND MIXED MODEL EQUATIONS 

ALGORITHM TO CREATE THE LEAST SQUARES EQUATIONS 

Computing strategies to accumulate the coefficients and right-hand sides of the least 

squares equations depend on the amount of data, the model, and computer memory. 

Nevertheless, a symbolic algorithm can be used to remember which coefficients are involved 

for each record. Data can be presented for computing one record at a time. Coefficients 

and right-hand sides associated with each record are summed into computer memory that 

is assigned and initialized to zero before the first record is processed. 

As an example, the model, 

Yijk = µ. + fi + Pj + ~ + wijk' 

has four terms other than the residual. Thus each record is included in four sums 

corresponding to µ., fi, Pj and gj. Each record carries four elements of the model ( excluding 

wijk) to each sum. Therefore, each record contributes to 16 elements of the coefficient 

matrix of the left-hand-sides of the least squares equations. The locations in the coefficient 

matrix, C, can be determined by squaring the model (excluding wijk): 

(µ. + fi + Pj + gj)2 . 
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The 16 terms correspond to the subscripts of 16 elements in C where a 1 will be added for 

that record's contribution to the four sums: 

µ,µ, µ,4 µ,p, 
J 

µ,g, 
J 

f,µ, 
1 44 f·p· 

1 J 
f,g, 
1 J 

p•µ 
J Pj4 P·P· J J 

p•g• 
J J 

g•µ 
J 

g.f. 
J1 

g•p· 
J J 

g•g• 
J J 

For example, the diagonals c , cf f, c , cg g will have a 1 added and the offdiagonal 
µ,µ. i i PjPj j j 

coefficients represented by products such as µfi will also have a 1 added. The symmetry of 

the coefficients allows storing only the diagonal elements and one side of the off-diagonal 

elements. Optimum strategies for summing and storing the coefficients will depend on the 

data set and computing equipment. 

After the least squares coefficients are accumulated, the least squares equations can 

be modified to make them into mixed model equations by adding the ratios of residual to 

other variances to the proper parts of C. The mixed model or least squares equations can 

then be solved. One method of solving a large number of equations such as mixed model 

equations is by iteration (the method of successive improvement). 
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SOLVING EQUATIONS 

In many situations, the number of least squares or mixed model equations is so large 

that an inverse of the coefficient matrix cannot be computed even though many strategies 

have been developed to reduce the number of equations. If prediction error variances are 

not needed, solutions can be obtained by iteration. The most efficient computing strategy 

will depend on the model, the amount of data, and computing equipment. The augmented 

mixed model equations for the animal model are especially well-suited to innovative 

computing strategies. Nevertheless, the basic principle of Gauss-Seidel iteration will be 

demonstrated with three equations. Other methods of iteration follow a similar pattern. 

Let the equations be Cs = r, where C is the symmetric matrix of coefficients, s is the 

vector of solutions and r is the vector of right-hand sides. Then for three equations: 

cllsl + c1252 + c13s3 = rl 

CztSl + Cz2S2 + C23S3 = r2 

C3151 + C3zs2 + C33S3 = r3 • 

The method of Gauss-Seidel iteration will be illustrated for this set of three equations where 

the cij are known numerical coefficients of the unknown solutions, the si, and the ri are 

known numerical values in the RHS vector. The steps to obtain solutions by iteration are 

as follows. 
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ITERATION 

Step 1: To begin the iteration, guess a set of initial solutions for s; s~, s~, sl The starting 

values should approximate the expected values of the solutions. 

Step 2: The basic step for each equation is to solve for that solution after substituting 

solutions from the same or the previous round of iteration for the other solutions. 

Round 1 

i) Solve for s1 withs~ ands~: 

s} - (1/c 11)[r1 - c12s~ - c13s~] 

Replace the previous solution for s1 with sl-

ii) Solve for s2 with s} and sl 

s! - (l/cz2)[r2 - CZ18i - cz3s~] 

Replace the previous solution for s2 with sl 

iii) Solve for s3 with s} and s} 

s} - (1/c33)[r3 - c31s} - c32s}] 

Replace the previous solution for s3 with s} 

Round 2 to round n 

i) Sn n-1 n-1 - (l/c11)[r1 - c1zs2 - c13s3 ] 1 

ii) Sn n n-1 - (l/c22)[r2 - cz1s1 - c23s3 ] 2 

iii) Sn n n 
3 - (l/c33)[r3 - c31s1 - c3zs2] 

Note that the most current estimates ins are used to update each solution from its equation. 

For example, the Jacobi method does not update s until the end of the round. 
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An equivalent expression for sy is: 

n n-1 i-l n n-1 n-1 
S· - s- + (1/c:ii)[q - :E q·s. - 9.iS 1• - :E q•s. ] 
1 1 j = 1 J J j =i + 1 J J 

This expression requires an extra multiplication and two extra additions per equation per 

round. The advantages may outweigh the extra arithmetic. Solving equations by iteration 

requires a rule for stopping the iteration. Such a rule can be based on the expression in 

square brackets on the right which is zero when the solutions are exact. Thus, this 

difference between the right-hand side and the right-hand side regenerated from estimates 

in the most recent round of iteration is often the basis for the stopping criterion. One such 

criterion is (I:e7 )·5 / (!;rz)·5 where 

i-l n n-1 n-1 
ei=[q- L Cj'S• -CiiS1· - L q•s. ] 

j=l JJ j=i+l JJ 

Dividing by (I:f1)·5 scales the solutions for the trait being analyzed. Iteration is stopped 

when at the end of a round the stopping criterion is less than a pre-set value, e.g., .01 or 

.001. 

Another advantage of the second form is that a modification of Gauss-Seidel iteration 

called successive-over-relaxation (SOR) is easy to implement: 

n n-1 i-l n n-1 n-1 
S· = s. + (w/cii)[q - :E q·s. - q•s, - :E q•s, ] 

1 I j=l JJ 11 j=i+l JJ 

where w is the relaxation factor. A relaxation factor larger than 1 but less than 2 is likely 

to result in faster convergence than with Gauss-Seidel iteration (w= 1). One difficulty with 

SOR is how to determine the optimum w before beginning to iterate. 
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MODELS FOR CROSSBREEDING 

Whether a chapter on crossbreeding should be in the part on selection index or 

among the chapters on mixed model methods poses a problem. In most introductory animal 

genetics textbooks the description of crossbreeding implies all effects in the model are 

constants depending on effects of breeds and heterosis effects. That approach fits completely 

neither Part I nor Part II. A true model for prediction of breeding values from crossbred 

data, however, also includes the genetic deviations of individual animals from the breed and 

heterosis constants. Because the breed and heterosis constants usually must be estimated 

from the same data used to predict the deviations, then the appropriate model is a mixed 

model including the breed and heterosis constants as well as the genetic deviations. This 

discussion, therefore, will assume that breed and heterosis constants have been estimated 

and genetic deviations predicted with mixed model equations for an animal model that 

might include both direct and maternal genetic effects as described in Part II. One difficulty 

is that choice of constraints might not be easy. With some designs complete confounding 

may occur between breed and specific heterosis effects. The goal of crossbreeding generally 

is to combine breeds to maximize the breed and heterosis effects. The goal of this chapter 

will be to show how to calculate combined breed and heterosis effects from known or 

estimated breed and specific heterosis effects. The predicted genetic deviations for direct 

319 
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and maternal effects can be added to predict direct and maternal performance of specified 

matings. Most introductory animal breeding textbooks describe typical mating plans for 

crossbreeding, such as two- and three-way rotations, terminal crosses, grading-up, and 

creation of composite or synthetic breeds. This chapter will not duplicate those tables. 

Instead the models and algorithms for computing the coefficients for the effects included 

in specific breed combinations will be developed. 

Crossbreeding theory can easily be put into the simple animal model. In fact, the theory 

needed is quite minor but the notation is horrendous!! The simplified model (subtracting 

out MANAGEMENT effects, etc.) will be used. A simplifying assumption made in the first 

part of this discussion, is that the average for the breed represents every animal of the 

breed, both for additive direct and maternal effects and also for heterotic direct and 

maternal effects. The breeding value for an animal, however, is its breed constants plus 

direct and maternal genetic deviations from those constants which will be added later in 

the discussion. 

HETEROSIS 

Heterosis arises from the crossing of breeds or inbred lines. The measure of heterosis 

is the difference in performance between the cross and the average of the parent breeds. 

Heterosis may be positive, negative or nil. Heterosis also can affect maternal traits. 

Several genetic mechanisms can explain heterosis. The most usual explanation involves 

dominance effects and the assumption that at some genetic loci, different genes have 

become fixed for different breeds. Fixation means that all genes at that chromosome 
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location are identical. Dominance means that at a chromosome location with two possible 

types of genes, one of the genes will dominate the other. An example is the gene for black, 

B, in cattle. The other gene at the same chromosome location is for red, b. The three 

possible genotypes and their phenotypes are: 

Genotype 

BB 

Bb or bB 

bb 

Phenotype 

Black 

Black 

Red 

Either a pair of B genes or a single B gene results in black. In genetic jargon, the gene 

for black, B, dominates the gene for red, b, i.e., B is dominant to b. Conversely, b is said 

to be recessive to B, i.e., hides when B is present. 

The important point for quantitative effects is that with desirable dominant genes, either 

one (heterozygote) or two (homozygote) of the desirable genes gives the same response. 

In rare cases for some traits the effect of the single dose, Bb, may exceed that of the double 

dose, BB. Then the term over-dominance is used. The simplified example for just four loci 

will involve only dominance. The idea is that desirable dominant genes at some 

chromosome locations have become fixed in one breed but that other, less desirable, 

recessive genes have been fixed at those chromosome locations in the other breed. At 

other chromosome locations, the reverse is true. As an example, assume four loci have 

become fixed in breeds I and II for the "A", "B", "C", and "D" loci. Upper case letters will 

indicate dominant alleles and lower case letters, the recessive alleles. Breed I is fixed as 

(AA, bb, cc, DD) and breed II is fixed as (aa, BB, CC, DD). The desirable genes are fixed 

at "A" and "D" for breed I and at "B", "C", and "D" for breed II. The genotype of the cross 
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will be (Aa, Bb, Cc, DD). Now assume that with at least one upper case gene, the effect 

at each locus is + 2; and that with no upper case genes, the effect is 0. 

Genes at Value of genes at 
chromosome location chromosome location 

Breed "A" "B" "C" "D" "A" "Bu "C" "D" Sum 

I AA bb cc DD 2 + 0 + 0 + 2 = 4 

II aa BB cc DD 0 + 2 + 2 + 2 = 6 

Cross Aa Bb Cc DD 2 + 2 + 2 + 2 = 8 

Heterosis = Cross - average (I and II) 

Heterosis = 8 - (4+6)/2 = 3 

In this example, the cross performance exceeds performance of both parents and the 

average of the parents by 60%. Heterosis is defined as a percentage of the average of the 

parent breeds: 

Heterosis (%) = (Cross - average of parents) x 100 
average of parents 

In the example 

Heterosis (%) = [8 - (4+6)12] x 100 = 60% 
(4+6)/2 

The example shows that the D locus does not contribute to heterosis because both 

breeds are fixed for the desirable dominant gene, i.e., both are DD. For many breeds, most 

gene locations probably do not have dominant alleles. Desirable dominant alleles may also 

be the same at many gene locations of most breeds. A few gene locations, such as 11A", "B", 

and "C", where different good dominant genes have become fixed in two breeds with 

recessive genes fixed in the other breed, however, can lead to heterosis percentages of 3 to 

15%, which are common for crosses among many breeds for many traits. 
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MODELS FOR BREED CROSSES 

The notation for models with breed crosses will be for upper case letters to indicate a 

breed. The breed constant for each animal of a breed represents the breed average. Let 

AA be the average of pure breeding of breed A Similarly, AB will represent the average 

of progeny of crosses from mating sires of breed A to dams of breed B. The usual 

convention in describing a breed cross is to write the sire breed first. In the model for cross 

performance, no heterosis is allowed within a breed, e.g., AA does not contain any heterosis 

effects. 

The notation used for describing cross performance will be illustrated with a two-way 

cross; records of progeny of sires of breed A and dams of breed B, with expected 

performance, AB. DIR in front of symbols will represent direct genetic effects and MAT 

in front of symbols will represent maternal genetic effects. 

The model for AB is: 

AB = DIR[AA/2 + BB/2 + H(AB)] + MAT[BB]. 

The DIR[AA/2] and DIR[BB/2] represent the additive genetic (breeding value) 

contributions of the parents to their progeny. The extra effect of heterosis from a breed 

A by breed B cross is denoted as H(AB). The first three terms correspond to the direct 

effects of the genotype of the animal model. A more complete model as described later 

includes those three terms as contributing to genetic means and also includes deviations 

from those means representing individual animal genetic differences from breed averages. 

The fourth term, MAT(BB), represents the breed average genetic maternal effect; in this 

case, the maternal effect of breed B, the dam breed. 
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MATERNAL HETEROSIS 

In many cases, an advantage of crossbreeding is due to heterosis for maternal effects. 

Crossbred dams can exhibit maternal heterosis. For such crosses, maternal heterosis must 

be incorporated into the model. Suppose the dams are from a cross of breeds C and D. 

The model for maternal effects is: 

MAT[(CD)] = MAT[CC/2 + DD/2 + H(CD)]. 

This model is the same as for direct effects, except that MAT has been put in front to 

indicate that CC/2 and DD /2 refer to average maternal effects of breeds C and D 

transmitted to their cross daughters, CD, and H(CD) refers to the maternal heterosis. 

With more than two breeds in a cross, the model becomes progressively more 

complicated. The additive direct effects of the breeds are weighted by the proportions of 

genes they contribute to the final cross. Similarly, breed contributions to additive maternal 

effects are based on the cross animals used as dams. Somewhat more difficult to calculate 

are fractions of specific heterosis effects contributed by the various breed combinations. 

COMPUTING BREED CONTRIBUTIONS TO CROSSES 

Two simple computing procedures can be used to calculate the correct fractions for 

breed direct effects and breed by breed heterosis effects, no matter how complicated the 

crossbreeding breeding plan is. Again. an example will describe intuitively how to do these 

simple computations. 
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Suppose the following crosses among breeds ~ B, and C are involved: 

A A C 

~~ 
------►► X2 ► X3 

Direct contributions of each breed to the crosses can be calculated by counting paths, 

but an easier way is to set up a simple table and remember a parent contributes one-half 

of its genes to its progeny. Simply treat each breed as a parent and use a modification of 

the tabular method of calculating relationships. The three steps are: 

1) Along the top of the table write the breeds and combinations with the parents of 

each cross listed above the combinations in the order they arise. Along the left side, write 

the breeds contributing to the breeding plan. 

A 

B 

C 

A B C 

2) Pretend relationships are to be calculated; this step corresponds to calculation of 

fractions of genes in each cross that trace back to parent breeds. 

A 

B 

C 

A 

1 

B C 

1 

1 
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3) Calculate entries to the right of the pure breeds as one-half the entry for the first 

parent in that row plus one-half the entry for the second parent in that row. 

For example, the (A, X1) entry is one-half of the (A,A) entry of 1 plus one-half of the 

(A,B) entry of 0: the (A, X1) entry = (1)/2 + (0)/2 = 1/2. 

The (A, X2) entry is one-half of the (A,A) entry of 1 plus one-half of the (A, X1) entry 

of 1/2 calculated above: the (A, X2) entry = (1)/2 + (1/2)/2 = 3/4. 

The completed table is: 

A B 

1 

1 

C 

1 

1/2 

1/2 

0 

3/4 

1/4 

0 

3/8 

1/8 

1/2 

The fractions in each column represent the breed contributions to that cross. For example, 

of the genes for x3, 3/8 are expected to come from breed A, 1/8 from breed Band 1/2 

from breed C. No surprises, as these could have been calculated by rough reasoning. The 

advantage of the table comes with more complicated crosses. Suppose x2 by x3 matings 

are made to produce x4? All that is needed is to add a column for x4 and follow the rule 

of the sum of one-half of the entries for each of the parents, x2 and Xf 

A 

B 

C 

Sum 

A B C 

1 

1 

1 1 

A-B 

X1 

1/2 

1/2 

1 0 

1 1 

A-Xl. C-X 2 X2-X3 
X2 X3 X4 

3/4 3/8 9/16 

1/4 1/8 3/16 

0 1/2 4/16 

1 1 1 
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The columns always sum to 1 or 100%. The direct additive effects and maternal 

additive effects for x4 are easily modeled from the table with x3 being the dam group: 

X4X4 = DIR[(9/16)AA + (3/16)BB + (4/16)CC] + MAT[(3/8)AA + (l/8)BB + (1/2)CC] 

COMPUTING POTENTIAL HETEROSIS FROM CROSSES 

The contributions to direct and maternal heterosis are still needed. This time the 

computing trick is intuitively a little more fuzzy, but it works! The computation is based 

on multiplying the gametic arrays (where genes come from and their proportions) of the 

two parent groups. The result shows how much heterozygosity and potentially how much 

heterosis to expect. 

For example start with a cross of A by B. Breed A contributes only A genes so the 

gametic array is lA Similarly, the gametic array for breed Bis lB. Now multiply and as 

expected: 

for Ax B -~> X1 ; {lA) x {lB) = 1 AB. 

All of the x1 cross are AB; the heterozygous condition is 100%. 

For the cross of A by X1, the gametic array for x1 can be obtained from the column 

of the table for x1. The fractions, 1/2 for A and 1/2 for B, represent the origins of the 

genes for X1 and make up the gametic array for X1: [(1/2)A + (1/2)B]. Thus: 

for Ax X1 -> X2; {lA) x [(1/2)A + (1/2)B] = (1/2)AA + (1/2)AB. 

By inspection, 50% of the cross is heterozygous, AB. The backcross to A has resulted in 

loss of one-half of the potential heterosis. 

What about the cross, C by x2? 
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For C x X2 ~ X3; (1C)[(3/4)A + (1/4)B] = (3/4)AC + (1/4)BC. 

The elements of gametic array, 3/4 and 1/4, come from the column for X2! Inspection 

shows heterozygosity is 100%; 75% of the heterosis is expected from AC and 25% of the 

heterosis is expected from BC. For practice try the x2 by x3 cross? The potential 

heterosis is 6/32 of AB heterosis, 12/32 of AC heterosis and 4/32 of BC heterosis. Note 

that the specific heterosis effects may not be equal, i. e., H(AB) may not equal H(AC) may 

not equal H(BC). 

HETEROSIS IN THE CROSSBRED MODEL 

Now heterosis can be added to the model. To make the computations a little easier, 

the simple cross of A (sire breed) by x1 (crossbred dams) will be examined. 

The fractions of direct heterosis effects come from the A by x1 gametic arrays: 

DIR[(l/2)H(AA) + (1/2)H(AB)]. 

By definition, heterosis within a breed does not exist, H(AA) = 0 and direct heterosis is: 

DIR[(l/2)H(AB)]. 

The maternal effects are contributed by X1: thus, heterosis comes from the gametic arrays 

that produced X1; (lA) x (lB) = 1 AB . 

The maternal heterosis is 100% of MAT[H(AB)]. 

The full model for x2x2 becomes: 

X2X2 = DIR[(3/4)AA + (1/4)BB + (1/2)H(AB)] + MAT[AA/2 + BB/2 + H(AB)] . 

This cross exhibits 50% of potential direct heterosis, DIR[H(AB)] and 100% of potential 

maternal heterosis MAT[H(AB)]. 
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SYNTHETIC OR COMPOSITE BREEDS 

Often breeds are crossed in various ways and at a certain stage, the crossbred animals 

are mated inter se (randomly among themselves) to develop after a few generations a 

synthetic or composite breed. The preceding model can be used to predict the average 

performance of a synthetic breed from the specific breed and heterosis effects. Suppose that 

x3 is chosen as the group to begin inter se mating: C x [Ax (AB)]. Contribution to both 

additive direct and maternal effects (x 3•s will also be the mothers) will be determined by 

the breed contributions of A, B, and C shown in the column for x3: 

DIR[(3/8)AA + (1/S)BB + (1/2)CCJ for direct effects and 

MAT[(3/8)AA + (1/8)BB + (1/2)CC] for maternal effects. 

Potential heterosis is computed from the gametic arrays: 

[(3/8)A + (1/8)B + (1/2)C) x [(3/8)A + (1/8)B + (1/2)C] 

= (9/64)AA + (1/64)BB + (16/64)CC + (6/64)AB + (24/64)AC + (8/64)BC. 

The expected model for x3x3 is: 

DIR[(3/8)AA + (1/8)BB + (1/2)CC 

+ (3/32)H(AB) + (12/32)H(AC) + (4/32)H(BC)] 

+ MAT[(3/8)AA + (1/8)BB + (1/2)CC 

+ (3/32)H(AB) + (12/32)H(AC) + (4/32)H(BC)]. 

Obviously this model is symbolic. What is needed are the numerical values associated with 

the specific symbols. Research at various experiment stations such as the USDA Meat 

Animal Research Center (MARC) has bad the goal of estimating those effects. 



330 Mixed Models 

RETENTION OF HETEROZVGOSITY 

The retention of heterozygosity in inter se mating of the x3 in the previous section is: 

6/64 of H(AB), 24/64 of H(AC) and 8/64 of H(BC). 

The loss of heterozygosity as a fraction of complete heterozygosity is: 

9/64 + 1/64 + 16/64 = 26/64. 

The formula for retention of heterozygosity and potential heterosis, if all heterosis effects 

are equal, is: 
2 2 2 

l - PA - PB - Pc 

where p A' PB• and Pc are the fractions of genes from breeds A, B, and C in the cross used 

for inter se mating. The general formula with n breeds involved is: 

n 2 
1 - Ep. 

. 1 
1 

when Pi is the fraction of genes contributed by breed i. 

COMPLEMENTARITY 

Complementarity is a potential benefit of crossbreeding that is not as glamorous as 

heterosis but which is often very important to the success of crossbreeding programs or of 

synthetic breeds. The term, complementarity, describes the concept. Weaknesses of one 

breed are improved by strengths of other breeds. A more exciting name for the result was 

coined by Moav -- economic heterosis. Economic heterosis can occur without heterosis of 

any single economic trait, although heterosis usually contributes to economic heterosis. 

Often positive complementarity arises because of a multiplier trait, e.g., percent calf crop, 

live pigs weaned per litter, fat percentage for dairy cows. Reproduction and viability traits 
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are multiplier traits and also often exhibit positive heterosis. As a simple example, 

suppose two breeds present the following profile. 

Breed 

A 

B 

AB 

Percent 
calf crop 

90 

70 

80 

Weaning 
weight 

500 

600 

550 

In this case, the economic heterosis is 440 - (450 + 420)/2 = 5 lb. 

Weight sold 
per cow 

450 

420 

440 

Economic heterosis 

is only about 1 % but in this example neither percent calf crop nor weaning weight exhibit 

heterosis. As with single trait heterosis, however, economic heterosis may be negative. 

PREDICTION OF PROGENY RESPONSE AND BREEDING VALUE 

The goal of this chapter was to predict performance of progeny from the mating of 

a particular sire of some breed or breedcross and a dam of some breed or breedcross. The 

difficult part of the theory has now been discussed. What is left to do is put together the 

breed and heterosis effects with the direct and maternal genetic deviations. The steps are: 

1) estimate breed constants for direct and maternal effects and specific 

breed by breed direct and maternal heterosis effects (not an easy task in many cases), 

2) predict direct and maternal genetic deviations for potential sires and dams 

either jointly with estimating the breed and heterosis constants or after adjusting records for 

those pre-estimated constants. 
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Expected progeny performance will depend on breed composition of the two parents 

as well as their predicted genetic deviations for direct and maternal effects; as and ms for 

the sire and a0 and m0 for the dam. The equation is for a single trait but in most cases 

economic heterosis (complementarity over all traits) should be considered. For example, 

assume the potential sire is of breed A and the potential dam is a cross of breeds B and C. 

Expected progeny performance is the sum of direct genetic breed and heterosis constants 

and genetic deviations associated with the sire and dam plus maternal genetic effects 

associated with the breed composition and genetic deviation of the dam. For the example: 

DIR[AA/2 + BB/4 + CC/4 + (1/2)H(AB) + (1/2)H(AC)] + (as + ao)/2 

+ MAT[BB/2 + CC/2 + H(BC)] + mo . 

The expected progeny performances for all potential sires when mated to all potential 

dams could be compared to determine the matings that would be expected to maximize 

expected progeny performance or economic heterosis. 

The breeder may be interested in the breeding value of the potential progeny rather 

than the progeny performance. The predicted breeding value of the progeny, however, does 

not depend on the heterosis effects which cannot be transmitted directly to its descendents. 

One-half of the breed effects are transmitted to the next generation and thus are included 

with the genetic deviations in the predicted breeding values. 

The direct breeding value for the example is: 

DIR[AA/2 + BB/4 + CC/4] + (as + ao)/2. 

The maternal breeding value for the example is: 

MAT[AA/2 + BB/4 + CC/4) + (ms + mo)/2 
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The maternal breeding value of female progeny would, in tum, be expected to be expressed 

in the performance of their progeny. 

The expected breeding value of progeny of a sire and dam is the average of the 

breeding values of the sire and dam with breed effects included in breeding values of both 

the progeny and its sire and dam. Progeny of an A by (B by C) mating would probably 

create some heterosis when they become parents. The potential heterosis should not be 

included as part of their breeding values because the heterosis effects will depend on the 

breed composition of the potential mates. 

LAST THOUGHTS ABOUT CROSSBREEDING 

The management aspects can be difficult. 

Choice of breeds is important. 

Heterosis and complementarity depend on breeds available. All breed crosses 

may not result in equal heterosis effects or average complementarity. 

The whole package -- specific direct and maternal additive genetic values, 

specific heterotic effects for direct and maternal effects of all traits, 

complementarity, management costs, and markets -- must be put together properly 

for crossbreeding programs to be successful. 

Progeny performance can be considered for short-term planning but progeny 

breeding values must be considered for long term breeding goals. 



CHAPTER34 

FLOW CHART FOR MIXED MODEL EQUATIONS 

I. Determine the model 

A Fixed factors, e.g., age, management group 

B. Random factors (other than G, G/2, PE) 

C G + E· a2 + a2 = a2• a2 = a2 + sum of other a2's • ' g e p, y P r 

1. Animal model: 

G; w = E, 

a~ = h2ai a; = (1 - h2)ap 

2. Repeated records animal model: 

G, PE; w = TE, 

a2 = h2a2 a2 = (r - h2)a2 a2 = (1 - r)o-2 g p, pe p, w P 

3. Sire model: 

s = G /2; w = other G + E, 

a; = h2ap/4, a; = (1 - h2 /4)ap 

II. Create Least Squares Equations from (rules: sums ➔ model, "'s) 

ill. Modifications for MME ( animals or sires unrelated) 

A Add a;/a~ to diagonal coefficients, other random factors 

B. Animals with records, unrelated 

1. Add a;/ a~ to diagonal coefficients of the G equations 

2. If repeated records, add a;/a~e to diagonals of PE equations 
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C. Sires with progeny with records, unrelated sires 

1. Add a;/ ai to diagonal coefficients of the sire equations 

IV. Modifications for MME (animals or sires related) 

A Add a;/a~ to diagonal coefficients of other random factors. 

B. Animals with records related through, A matrix. 

1. If repeated records, add a;/aie to diagonal coefficients of the PE 

equations. 

2. Add A-1 (a;/ai) to the g x g block of coefficients. 

or 

3. Calculate A; 1 directly by the Henderson rules (noninbred). 

a) Include base animals with no records if related to more than one 

animal with records. 

b) Augment equations to include animals with no records. 

i) sum = O; ii) no model; iii) tied by A; 1 ( a;/ a~) 

c) Jointly predict G; animals with records and base animals with no 

records. 

C. Sires with progeny with records. A is matrix of relationships. 

1. Add A-1 ( a;/ a;) to s x s block of coefficients. 

or 

2. Calculate A; 1 directly by rules for (noninbred) sire or for sire and 

maternal grandsire. 

a) Include base animals with no progeny with records if related to 

more than one sire with progeny. 

b) Augment equations to include animals with no progeny records. 

i) sum = O; ii) no model; iii) tied by A; 1 (a;/ai) 

b) Jointly predict G /2 for sires with progeny records and relatives 

with no progeny records. 



PART THREE 

ESTIMATING 

GENETIC PARAMETERS 

USING 

SIMPLE STATISTICAL MODELS 

The following chapters cover simple procedures used in estimating repeatability, 

heritability and genetic, environmental, and phenotypic correlations. In most cases, the 

complete statistical model is given including the expectations or average values of all 

relevant combinations of the observations, as well as a worked example. Methods of 

simulating the models are described in the last two chapters. 



CHAPTER35 

SUMMATION AND DOT NOTATION 

SUMMATION NOTATION 

Summation and dot notation are used in describing the computations for estimating 

genetic parameters. A I: indicates summation over what follows as the subscripts vary by 

1 from the lower limit of summation to the upper limit. For example, 

Similarly, 

3 
I: Xi = X 1 + X2 + X3 . 
i=l 

4 
I:j=1+2+3+4. 

j=l 

If there is no subscript in what follows, the quantity is simply repeated the number of times 

the limits of summation indicate: 

3 
I: c=c+c+c=3c. 

k=l 

If the summation limits are not given, the limits are usually obvious. 
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DOT NOTATION 

A dot in place of a subscript signifies summation over that subscript. As an example 

of this notation, consider a set of observations denoted as Pij· Let i = 1, ... , 3 and 

j = 1, ... , °i where n1 = 2, n2 = 1, n3 = 4. This arrangement could correspond to three 

animals (the first subscript) where the first animal has n1 = 2 records, the second animal 

n2 = 1 record, and the third animal n3 = 4 records. The various quantities to be written 

out in this example correspond to quantities which will be used later in estimating 

repeatability. Also keep in mind that each symbol corresponds to a number in an actual 

analysis, e.g., P 11 is the first record on the first animal. 

3 ni 
Then E E pij = P .. = Pu + P12 + Pz1 + P31 + P3z + P33 + P34. 

i=l j=l 

The subscript corresponding to the innermost I: usually varies first: 

3 ni 3 
E E Pij = E Pi. = P1. + Pz. + P3_ = P .. 

i=l j=l i=l 

n1=2 
P1. = _E P1j = Pu + P12 

J=l 

nz=l 
Pz. = E Pz • = Pz1 

• 1 J j= 

n3=4 
= E P3 j = P31 + P3z + P33 + P34 

j=l 

3 Ili 

P .. = P1. + Pz. + P3_ = Pu + P12 + P21 + P31 + P32 + P33 + P34 = _E _E Pij 
t=l J=l 
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The dot indicates that the corresponding ~nmmation has been finished before doing other 

operations such as further summation or squaring. 

Some examples with sums of squares used for estimating repeatability are as follows: 

~iPrr 3 p~ p2 p2 p2 2 2 
=1 J 

E~=-1:+2:. 3. (Pu+P12) (P21) (P31+P32+P33+P34) 
= +- = + + 

n· 1 i=l n· 1 n1 nz n3 2 1 4 

[ 3 Di r :E I: p.. P2 2 
i=l j=l lJ = _ = (P1. +Pz. +P3.) (P11+P12+P21+P31+P32+P33+P34)2 

=-------------3 n. n1 +nz+n3 
L Ili 

(1 + 1) + (1) + (1 + 1 + 1 + 1) 

i=l 

Note that there is nothing comparable to the dot notation for sums of squared quantities. 

The same procedure applies to functions of the n's. 

3 2 2 2 2 2 2 2 _I:1 ni = n1 + nz + n3 = 2 + 1 + 4 = 21 . 
1= 

n.2 = (n1 + nz + n3}2 = (2 + 1 + 4)2 = 49 

[ i: n ~i / n. = 21 /7 = 3 . 
• 1 1 1= 

2 
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EXPECTED VALUES 

The usual technique in estimating heritability, repeatability, and various correlations 

is to compute certain functions of the data ( usually sums of squares or sums of cross 

products corresponding to those computed for balanced analyses of variance) and equate 

the functions to their expected or average values. The sums of squares or crossproducts to 

be considered are the usual ones. An appreciation of how to find expected values, however, 

is needed. More complicated models including fixed effects will not be considered. Only 

models with all effects random will be discussed. The general method was described by 

Crump (1946, 1951) and Henderson (1953). 

The symbol most often used for the expected or average value of some expression, 

involving constants and variables, is E( ). Expected values of most expressions used in 

estimating genetic parameters are relatively easy to find if the following definitions are 

remembered. 

DEFINITIONS 

Let c = a constant; ,q = a variable from some distribution of trait X with mean, µ.x, 

and variance, a;; and Yi = a variable from some distribution of trait Y with mean µ.y, 

• 2 d • 'th vanance ay, an covanance Wl ,q, axy. 

Definition 1: E(c) = c. The average value of a constant is that constant. Similarly 
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Definition 2: E(Xj_) = µ,x· The average of all possible values of variable X is its average or 

mean, µ.x· 

Definition 3: E( CXj_) = c E(Xj_) = c µx· The average of all possible values of a 

variable times a constant is the constant times the expected value of the variable. The 

principle is that in expressions involving a constant the constant can be taken outside 

the expectation operation. 

Definition 4: E(Xj_ +yj) = E(Xj_) + E(yj) = µx + µy· The expectation of a sum can be taken 

as the sum of the expectations of the parts. The principle is that expectations of parts 

of a function can be done separately and then added together. 

Definition 5: E(~ - µx)2 = ai. By definition the variance of a variable X, ai, is the 

average squared deviation of the variable from its mean. 

Thus, E(x{) = a; + µ.; which follows directly from definition 5. Expand the equation 

for definition 5 and take the expectations of its parts: 

2 2 2 2 
ax = E(xi - ~) = E(xi - 2xi~ + µx), 

2 2 
= E(xi) - E(2 ~ xi) + E(µx) from (4), 

2 2 
= E(xi ) - 2 ~ E(xi) + µx from (1) and (3), 

2 2 = E(xi ) - 2 ~ ~ + µ.x, 

= E(x~) - µ2 so that 
1 X 

2 2 2 E(x,) = a + µ. 
1 X X 

2 2 
Note when µ.x = 0 that E(xi ) = ax 

Definition 6: E[(~ - µx)(Yi - µ.y)1 = axy. By definition the covariance between variables 

X and Y, axy' is the average of the products of their deviations from their means. 
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Thus, E("i_Yi) = axy + µ,xµ,y which follows from definition 6. Expand the 

equation for definition 6 and take the expectations of its parts: 

axy = E[(Xj - 1-'x)(yi - 1-'y)], 

= E["i_Yi - 1-'xYi - fJ.y'i + µ,xµ,y] , 

= E("i_Yi) - µ~(yi) - µ,yE(Xj) + µ.xl-'y, from (1) and (3), 

= E("i_Yi) - µ,xµ,y - µ,yµx + µ,Xµ,Y' 

= E("i_Yi) - µ,xµ,y so that 

E("i_Yi) = axy + µ.xµy . When either µ,x or µ,y = 0, then E("i_Yi) = axy. 

The general procedure for applying these definitions to find the expected values of 

more complicated sums of squares and products of variables is to use the following steps. 

Step 1. Substitute elements of the model into the function. 

Step 2. Expand the function in terms of the model. 

Step 3. Find the expected value of each term of the function. 

Step 4. The expected value of the function will be the sum of the expected values 

of the individual terms. 

EXAMPLE 

Let Pij = µ, + ~ + Eij where Pij is an observation (variable) on the j1h record in 

the ith class, µ is a constant, ~ is a variable with µ A = 0 and variance, ai, Eij is a 

variable with µ,E = 0 and variance a~, and the covariance between any two A's, any two 

E's or any A and E is zero. 
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The expected value of any observation: 

E(Pij) = E(µ + ~ + Eij) = E(µ) + E(~) + E(Eij) 

=µ+0+0 

= µ. 

The expected value of any observation squared: 

2 2 2 2 2 
E(Pij) = E[(µ+Aj+Eij) ] = E(µ +Ai +Eij +2µAi+2µEit2AiEij) 

2 2 2 
= E(µ ) + E(Ai ) + E(Eij) + E(2µAi) + E(2µEij) + E(2AiEij) 

2 2 2 = µ + a A + crE + 2µE(Ai) + 2µE(Eij) + 2E(AiEij) 

2 2 2 = µ + a A + aE because E(~) = 0, E(Eij) = 0, 

and E(~Eij) = a AE = 0 . 

The expected value of the product of observations in the same class: 

E(Pilij') = E[(µ + ~ + Eij)(µ + ~ + Eij')] for (j' :f j) 

2 2 
= E(µ +µAi+µEij'+µAi+Ai +AiEij'+µEitAiEitEijEij') 

= µ2 + 0 + 0 + 0 + a!_ + 0 + 0 + 0 + 0 

= µ2 + a!_, because E(~Eij') = 0 = E(~Eij) since a AE = 0 and 

E(EijEij') = 0 since aEij Eij' = 0 . 

The expected value of the product of observations in different classes: 

E(Pif i'j') = E[(µ + ~ + Eij)(µ + ~• + Ei'j' )] (i' :fi and j =j' or j fj') 

= E[µ2 +µA.,+ µE•,•t +µA.+ A. A.,+ A,£.,.,+µ£ .. + A.,£ .. + E .. £.,.,] 
•1 l] •1 •1•1 •1 l] lJ •1 lJ lJ 1] 

= µ2 + 0 + 0 +O + 0 + 0 + 0 + 0 + 0 

= µ2 for similar reasons as for the other expectations of the P's. 
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Two approaches can be used to define the model in terms of expected values: 

(1) in terms of Pij's and 

(2) in terms of the model underlying the Pij's. 

The second approach is usually used as in the example. In this case it is sometimes easier 

to write the model in terms of expected values of elements of the model. These can be 

found by implication from the model defined in terms of the Pij's. 

For example in this model only the following definitions are needed: 

E(Pi} = µ. 

2 2 2 2 
E(P ij) = µ. + a A + aE 

2 2 
E(PijPij') = µ. + a A , and 

E(P··P·,.,) = µ.2 
lj lJ • 

A second and more informative set of definitions is: 

E(~) = 0 , E(Eij) = 0 , 

2 2 2 2 
E(Ai ) = a A , E(Eij) = aE , 

E(A,A.,) = 0 E(E .. £··,) = 0 E(E··E·,·,) = 0 
• 1• i ' lj lJ ' lJ 1 J ' 

E(~Eij) = 0 , and E(~Ei'j) = 0 which are equivalent to the expectations in 

terms of the Pij· 

Fewer definitions are needed for the first method but the definitions are exactly 

equivalent. 

A third way of completing the model which implies stating the properties of the 

elements of the equation of the model is to say that: 1) the ~ are independent 

(a A ·A· = 0), identically distributed (all~ from distribution with same variance and mean) 
I J 

with meanµ. A = 0 and variance, ai,_; 2) the Eij are independent, identically distributed 
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with mean, µE = 0 and variance, a~; and 3) the A's and E's are independent. Thus 

the A's are IID(O, a;J; the E's are IID(O, a~) and E(~Ejk) = 0 for all possible A's and 

E's. This method is the usual one for describing the model in research papers although 

both the first and second methods are more informative for working with expected values. 
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REPEATABILITY 

Repeatability is defined as the ratio of the variance due to animal effects to the 

total, or equivalently, phenotypic variance, that is: 

Repeatability also represents the fraction of the difference from the mean in one record 

which is expected in another record on the same animal. Repeatability thus is the 

regression coefficient for a subsequent record on a previous record and with equal variances 

for all records is also the correlation between records on the same animal. 

The simple model is: 

Pij = µ + ~ + Eij, where 

p .. = J·th record on ith animal 
~ , 

~ = effect on Pij of the animal (genetic plus permanent environmental 

effects), and 

Eij = random temporary environmental effect 

i = 1, ... , B with B = number of animals 

j = 1, ... , ni with Ilj = number of records on ith animal. 
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With method two of completing the model: 

2 2 
E(~) = µ. A = 0 E(Ai ) = a A 

E(~Ei'j) = 0 E(Eij) = µ.E = 0 

E(E··E·,·,) = 0 
IJ I] 

E(~~) = 0 

2 2 
E(E .. ) = aE 

lJ 
E(£ .. £ .. ,) = 0 

lJ lJ 

These imply the following equivalent expressions for the first method of completing the 

model. 

2 2 2 2 
E(Pij) = /Jp = µ E(P i} = µ. + a A + aE 

2 2 2 E(P .. P··,) = µ + a E(p .. p.,.,) = µ 
lj IJ A IJ IJ 

The third way of completing the model is to state that the A's are IID(O, a;), the E's are 

2 
IID(O, aE) and the A's and E's are mutually uncorrelated. 

ESTIMATION OF REPEATABILI1Y BY REGRESSION 

The expectations of sums of squares and products used for estimating repeatability 

from regression and correlation coefficients are for °i = 2 records for each of B = n 

animals, i = 1, ... , n and j= 1 and 2: 

2 2 2 2 
E(~Pil) = nµ. + na A+ naE 

1 

2 2 2 2 
E(P_1/n) = nµ + a A + aE 

2 2 2 2 
E(:EPi2) = nµ. + na A + na E 

2 2 2 2 
E(P_2/n) = nµ + a A + aE 

E(:EPuPi2) = nµ.2 + nai 

E(P.1P.2/n) = nµ2 + ai 
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Thus, where " indicates an estimate, the estimates of variances and covariances are: 

The expectations are: E(a~ 1) = E(a~2) = e1i + e1~ and E(ap 1 p2) = e1i 

The estimate of repeatability by regression of second record on first record is: 

2 
C1 A 

where the expectation by parts is ----
2 2 

e1 A + 0 E 

The variance of the estimate is: 

The estimate of repeatability by correlation between first and second records is: 

r = --;::::====== where the expectation taken separately for each part is: 

= 

Although the expectations by parts are the same for both the regression and correlation 

coefficients, the regression and correlation coefficients are rarely equal. 
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If some animals are not allowed to have a second record because of a low first record 

then E( ai 1) from records of only animals that were allowed to have second records is less 

than ai + a~ by a factor, k < 1; i.e., E(ai 1) = k(ai +a~) where k depends on the 

intensity of selection. Fortunately E(ap 1 p2) is also less than al by the same factor, k; i.e., 

E(ap 1 p2) =k al. Thus the regression estimate is unbiased by selection on first records. 

The correlation estimate is biased since E(ai 2) from records of only animals allowed 

second records is not k( a 1 + oi) but is ka X + al 

In the unusual situation when the pairs of first and second records depend on the size 

of the second record both regression and correlation estimates of repeatability will be 

biased. 

Example of Computing Repeatability by Regression and Correlation. 

The following set of first and second records on 10 animals was drawn from a 

population withµ = 500, a A = 20, and aE = 10, i.e., r = 4oo = .80. 
400 + 100 

Animal (i) pil pi2 

1 504 533 
2 542 548 
3 523 522 
4 471 484 
5 505 495 
6 543 543 
7 500 495 
8 460 479 
9 474 449 

10 522 527 

P.l = 5044 P_2 = 5075 



10 
_E Pii = (504)2 + (542)2 + ••• + (522)2 = 2,551,784 
1=1 

10 
E P 1 = (533)2 + (548)2 + ••• + (527)2 = 2,584,803 

i=l 
10 
E Pi1Pi2 = (504)(533) + (542)(548) + ••• + (522)(527) = 2,567,202 

i=l 

a~1 : [2,551,784 - (5044)2 /10]/(10-1) = 843.6 

d-~2 = [2,548,803 - (5075)2 /10)/(10-1) = 1026.8 

ap 1 Pz = [2,567,202 - (5044)(5075)/10](10-1) = 819.2 
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8W2 8W2 By regression, r : --· = .97 and by correlation, r = - ,....-_________ -_- _-_-__ = .88 
843.6 ✓(843.6)(1026.8) 

ESTIMATION OF REPEATABILI1Y FROM VARIANCE COMPONENTS 

Now the ith animal has 11i records, j = 1, ... , 11i and n. = :E11i· The expectations of 

the usual sums of squares used in estimating ai and a~ are: 

i:l 2] 2 2 1rr pij = n.µ + n.a A 

i:l 2 l 2 2 17 Pi./ni = n.µ + n.a A 
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The variance components to be estimated are replaced in the expectations by estimates of 

the variance components (i.e., "'s are put on the symbols) and then equated to the computed 

sums of squares. The estimates are: 

Thus: 

The approximate variance of this estimate is: 

2(n.-1) (1-r)2 [1 + (k-l)r] 2 

k 2 (n.-B)(B-1) 

where k = [1/(B-1)] [n. - (1/n.) E nf] . 
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Example of Estimating Repeatability From Variance Components. 

The following set of 10 records on 5 animals was drawn from a population with 

µ = 1000, a A = 10, and aE = 10. 

Record G) 

Animal (i) 1 2 3 p. 
1. 

1 979 976 984 2939 
2 988 1007 1995 
3 994 994 
4 1004 1017 2021 
5 1015 1022 2037 

P .. = 9986 

5 n· 
L E PfJ. = (979)2 + (976)2 + (984)2 + (988)2 + ••• + (1022>2 = 9,974,516 

i=l j=l 

5 P.2 2 
E _1. = (2939)2 + _(1_995_)_ + 

j = 1 Ilj 3 2 

2 2 2 
(994) + (2021) + (2037) = 9,974,193 

1 2 2 

p2 
_·· = (9986)2/10 = 9,972,019 
n. 

Ilj 

3 
2 
1 
2 
2 

n.= 10 

2 
22 ; L ni /n. = 22/10 = 2.2 

a-~ = (9,974,516 - 9,974,193)/(10-5) = 64.6 

a-i = [9,974,193 - 9,972,019 - (5-1)(64.6)]/(10-2.2) = 245.6 

245.6 
r = ---- = .79 

245.6 + 64.6 
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HERITABILI1Y 

Heritability is defined as the ratio of the variance due to genetic effects to the 

phenotypic variance. That is, h 2 = a!f<a! + a;) . Mostmethodsofestimatingh 2 make 

the assumption that a! is the variance of additive genetic effects. Biased estimates may 

result if the assumption is not true. 

ESTIMATION OF HERITABILITY BY REGRESSION AND CORRELATION 

Estimation of heritability by regression uses n pairs of records of relatives X and Y 

which have additive relationship, ¾y· 

The model for the records is: 

Pxi = µ + gxi + ~ and Pyi = µ + gyi + ~ (i = 1, ... , n) 

E(P xi) = E(P yi) = µ 
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If other than additive gene effects contribute to genetic variance 

E(PxiPyi) = f r { { "~i + ,,Z where j+k ;e 1; d,.yisdominancerelationshipbetween 

relatives X and Y and a~j is the variance of specific genetic effects due to the action of 

single genes at k loci and genotypes at j other loci as in Chapter 6. 

The expectations of the sums of squares and crossproducts used to estimate h2 from 

regression and correlation coefficients are: 

= nµ.2 + na2 + na2 • g e' 
2 + a • 
e' 

2 2 2 = nµ. + no + ncr ; g e 
nµ.2 + a2 + a2· 

g e' 

Thus: 

2 2 
= a + a g e 

ay2 = ["E Py2, - p:.J / (n-1) where E(a 2) = a2g + cr2 and 
i 1 n Y e 

Remembe~ that in general E(axy) = axy crfo + dxy al1 + a! a~o + ... 

Then the regression of record of Y on record of X is: by ·x = axy / a; 
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The correlation of record of Y and record of X is: ryx = 

~ 
~ ax ay 

The estimate of h2 from regression of the record of relative Y on relative X is: 

2 
axy alO 

2 2 
(J + (J g e 

= 

where the expectation by parts ( expectation of numerator and 

denominator parts is done separately) gives: 

2 2 
2 2 

for CJ g = CJ 10 but otherwise gives 
(J + (J 

g e 

so that the bias will be : 

The variance of the regression estimate is (the square root is the standard error): 

.. 2 1 .. 2 b2 
(] (] -

V(h 2) = _l V(b) = _Y __ x __ 
2 2 

axy axy (n-2) 

From correlation the estimate of h2 is: 

2 1 
h = - ryx 

axy 

where the expectation by parts is the same as by regression. 
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As in the case of estimating repeatability by regression the estimate of heritability is 

unbiased by selection on relative X as to whether a record on relative Y will be available, 

e.g., by selection of potential parents, X, to have progeny, Y. 

Example Of Estimating Heritability By Regression And Correlation 

The following set of 20 paired records on progeny and parents was drawn from a 

population with µ. = 150, a g = 10, and a e = 20. 

Pair (i) 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Parent (X) 
194 
164 
147 
165 
181 
155 
142 
153 
159 
138 

Progeny (Y) 
172 
175 
142 
159 
148 
164 
157 
166 
144 
113 

Pair (i) 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Parent (X) 
168 
164 
202 
129 
194 
148 
171 
148 
167 
146 

Progeny (Y) 
148 
173 
169 
145 
184 
176 
169 
105 
162 
169 

PX. = 3235 Py. = 3140 

E P~ = (194)2 + (164)2 + ... + (146)2 = 530,505 
. XI 
1 

E P ~ = (172)2 + (175)2 + ••• + (169)2 = 500,806 
. y1 
1 

~ Pxlyi = (194)(172) + (164)(175) + ... + (146)(169) = 511,557 
1 

a; = [530,505 - (3235)2 /20]/19 = 381.3 

a~ = (500,806 - (3140)2 ;201/19 = 411.9 

elxy = (511,557 - (3235)(3140)/20]/19 = 192.7 
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S• 1/2 b • h 2 2(192•7) 1 01 • h d d 43 d mce axy = , y regression, = --- = . wit stan ar error . an 
381.3 

by correlation, h 2 = 2(192•7) = .97 . 
✓(381.3)(411.9) 

This example illustrates the fact that although the upper and lower limits of h2 are 

1 and 0, estimates from regression and correlation can be outside the limits. 

ESTIMATION OF HERITABILITY BY VARIANCE COMPONENTS 

One-Way Classification 

The one-way classification model is: 

p .. = µ. + b· + w.. where 
~ 1 ~· 

µ. is a constant, 

bi is an effect in common to members of the ith genetic group, 

wij is a random effect associated with the jth member of the ith group. 

i=l, ... , B; j=l, ... , 1½· 

The b's are nn(o,a~}. thew's are rro(o,o;,} and the b's and w's are mutually 

uncorrelated. The variance among groups, o~ = aiiaf 0 + diio~1 + ... , can be shown to be 

the covariance between animals in the same group with afr the additive relationship 

between pairs of the ith group, and dii, the corresponding dominance relationship. 

From genetic theory aiioi O + diio~1 + ... = Cov{Pij,Pij') which by definition 

2 2 2 equals E[(Pij - µ.)(Pij' - µ.)] = E(Pij•pij') - µ. • Thus ob + µ. = E(Pijpij' ). Note that 

dii' = aii' = 0 for i "f i', i.e., between groups that are not related to each other. Because 

2 2 2 2 2 2 2 2 2 2 
op = ab + aw and also op = ag + oe ; then aw = ag + ae - ob . 
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2 2 
If a g = a 10 , then, 

2 2 2 2 2 
aw = (1 - aii)a 10 + ae and ab = au0"10 

In terms of the P's the expected values are: 

E{Pij) = µ. ; ~PJ) = µ.2 + a~ + a; 

E(P .. P··•) = µ.2 + 0"2 • p/p.,.,P··) - ,L 2 p/p •• p.,-) - µ.2 . These definitions of the 
IJ IJ b ' \ 1 J IJ - ,. ' \ lj 1 J -

model lead to the following expectations of the three sums of squares ( also called 

quadratics) usually used to estimate O"~ and a;,: 

, 2] 2 2 2 E E P.. = n.µ. + n.ab + n.a 
• • IJ W 
1 J 

2 2 2 
= n.µ. + n.ab + B aw 

The estimates are obtained by equating the quadratics to their expected values: 
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The estimate of the intraclass correlation is: 

... z / ("2 "2 ) d h • f h • bill' • t = ab ab + aw an t e estimate o enta ty 1s: h 2 = (1/aii)t . 

The approximate variance of this estimate is: 

V(h 2) = V(t)/aiT where 

V(t) = 2(n.-1) (1-t)2 [1 + (k-1) t]2 with k = [n. - (Enf) / n.] / [B - 1] . 

k 2 (n. - B)(B - 1) 

Note that heritability is a simple multiple of the intra-class correlation coefficient, i.e., 

h 2 = _t_ which is the reason that this method is often called the intra-class correlation 
aii 

method of estimating heritability. 

The Intra-Class Correlation Coefficient 

The term, intra-class correlation coefficient, is, on examining all the adjectives, simply 

the correlation between records of any pair of animals in the same class--in this case in the 
Cov(P .. p .. ,) 

same genetic group, i.e., t = 1J' 1J 
Jvar(Pij) Var(Pij') 

2 
2 2 2 ab 

But Cov(P·· P··,) = ab and Var(P .. ) = Var(P··,) = ab + aw . Thus t = ---IJ' IJ lJ IJ 2 2 
ab+ aw 

The genetic groups will often be groups with the same sire (paternal sib groups, 

aii = 1/4, dii = 0), with the same sire and dam (full sib groups, aii = 1/2, dii = 1/4), or 

with the same darn (maternal sib groups, ¾i = 1/4, dii = 0). For this model to be correct, 

the groups cannot be related to each other, e.g., no sire can be the sire of more than one 

full sib group. 
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Example of Estimating Heritability for the One-way Classification Model 

The following set of 75 records from 25 paternal sib groups was drawn from a 

population with µ. = 150, a~ = 50, and a; = 450. 

Progeny Progeny 
Sire Sire 

(i) 1 2 3 4 5 p. 
1. 

(i) 1 2 3 4 

1 132 138 270 14 156 178 165 153 
2 115 135 156 406 15 125 172 142 117 
3 181 181 16 157 152 
4 146 133 165 144 163 751 17 152 142 161 
5 143 148 173 147 611 18 153 
6 128 113 241 19 152 140 170 165 
7 159 157 138 454 20 135 169 148 137 
8 175 175 21 156 151 
9 126 160 162 130 172 750 22 165 162 111 

10 170 129 134 165 598 23 160 
11 140 164 304 24 132 119 153 129 
12 138 168 128 434 25 138 150 144 152 
13 154 154 

I: I: p.~ = 1322 + 1382 + 1152 + ... + 1522 = 1663,334 . , IJ ' 
1 J 

p,2 
(270)2 (406)2 (181)2 

+ ... + (584)2 I: _1. = = 1,649,806.5 + + 

1 
n. 2 3 1 4 1 

p2 
(11098)2 

:E n~ = 22 + 32 + 12 + ••• + 42 = 275 
.. 

= 1,642,208.1, --
n. 75 1 

a-; = (1,663,334 - 1,649,806.5) / (75 - 25) = 210.s 

a~ = [1,649,806.5 - 1,642,2os.1 - (25-1)(270.5)) / [75 - 275/751 = 15.5 

Then, 

4(15.5) 
15.5 + 270.5 

= .22 . 

5 p· 1. 

145 797 
556 
3()() 

455 
153 

144 771 
589 
3(JJ 

438 
160 

117 650 
584 



Two-Way Nested Classification 

Estimation of Heritability 
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This model is appropriate when sires are mated to many dams, but each dam is 

mated to only one sire with one or more progeny per dam: 

p .. k = µ + s· + d·· + w .. k where 
IJ 1 lJ lJ ' 

µ. is a constant, 

si is the effect common to all animals with the µh sire, 

dij is the additional effect common to all animals with the j1h dam mated to the i1h 

sire, i.e., si + dij = ifh full sib effect so that dij = (full sib effect)ij - Sj, 

wijk is a random effect associated with the record of the k:th member of the ifil full 

sib group. 

i = 1, ... , S ; j = 1, ... , ~ ; k = 1, ... , ~f m. = D, the total number of dams, and with the 

s's, nn( O,a;} the d's, rm( O,a~} thew's, rrn( O,a;,) and the s's, d's, and w's mutually 

uncorrelated. 

Note that: 

2 1 2 1 2 • h • I h If "b as = 4 a 10 + 16 a20 + ••• IS t e covanance among paterna a SI s; 

2 2 2 12 1 2 12 .. 
ad = aFS - as = 4 a10 + 16 a20 + ••• + 4 a01 + ••• Is the covanance among 

full sibs, a}5, minus the covariance among paternal half sibs, a; (if maternal effects 

exist, then a~ also includes a~, the variance of maternal effects) and 

2 2 2 2 2 . al h . . 2 2 . 2 d 2 
aw = ag + ae - as - ad 1s tot p enotyp1c vanance, ag + ae, nunus as an ad. 

If 2 2 2 
ag = a 10 + a01 then 
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In terms of different combinations of the P's the expected values are: 

E(Pijk) = µ, 

2 2 2 E(P· "kp. "k') = IL + (J + (J IJ IJ ,- s d (records of full sibs) 

( records of paternal half sibs) 

(records of unrelated animals). 

These definitions of the model lead to the expectations of the four quadratics used 

. 2 2 d 2 to estimate a 5, ad' an aw 

2 n .. a5 + 

[ 2] p .. 
E~ ~ n1!_· 

I J IJ 

2 = n .. µ + 
2 n .. a5 + 

2 2 
n .. ad + D aw 

E[E Pt] 
• n· 1 1, 

2 = n .. µ + 
2 

n .. as + 

2 En .. 
'{"' j IJ 2 2 
LJ n· ad + S aw 
i 1. 

2 1 22 1 22 2 
= n .. µ + - E n- a + - E E n.. ad + a 

n , 1. S Il . , lJ W 
•• 1 •• 1 J 



Heritability 367 

When the quadratics are equated to their expected values the estimates are: 

2 2 P •• [ 2] a = EE E P .. k - EE__!!: / (n .. - D) 
w i j k lJ i j 11ij 

[ l [ 2] P2 p2 En .. 
ti = E E ij. - E _!:: - (D-S) a2 / n .. - }: j IJ 

d • • n·· • n· w • n· 1 J IJ 1 1. 1 1. 

' IJ 1 2 2 2 
E --= - E J - - E E n.. (Jd - (S-1) a 

P.2 p 2 [ E n-~ l 
• n· n • n· n • • 1J w ,.2 1 I. 1 1. ., 1 J 

a-----------------------
s [n -_!_}: n,2] •. n . I. 

.. 1 

If o~0 = a~0 = ••• = 0, the estimate of heritability from the sire variance is: 

4"2 2 as 
h =-

s .. 2 
op 

. ..2 4 .. 2 
1.e., a 10 = as 

If o~1 can be assumed to equal zero then two other estimates that use the dam component 

of variance are: 

2 
and h d = s+ 

If a~0 and other second and higher order components, ai1 etc., are zero then: 
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Example of Estimating Heritability by Variance Components for the Two-way Nested 

Classification Model: Progeny with One Record Each, Nested in Dams, Nested in Sires 

The following set of 50 records from 10 dams mated to 5 sires was drawn from a 

population with µ. = 150, a; = 50, a~ = 75 and a;, = 375. 

Sire Dam Prag Sire Dam Prag Sire Dam Prag 
(i) G) (k) p .. k IJ (i) G) (k) p .. 

IJ (i) (j) (k) p .. k IJ 
1 1 1 137 3 1 1 169 5 1 1 138 
1 1 2 166 3 1 2 1.63. 5 1 2 150 

P11_ = 303 P31. = 332 P51, = 288 

1 2 1 142 3 2 1 126 5 2 1 136 
1 2 2 103 3 2 2 173 5 2 2 142 
1 2 3 125 3 2 3 176 5 2 3 128 
1 2 4 153 3 2 4 154 5 2 4 145 
1 2 5 180 3 2 5 169 5 2 5 168 
1 2 6 170 3 2 6 179 5 2 6 149 
1 2 7 157 3 2 7 178 5 2 7 152 
1 2 8 .ill 3 2 8 .121 5 2 8 m 

P12. = 1183 P32_ = 1346 P52_ = 11s1 

P1., = 1486 P3 .. = 1678 p 5 .. = 1445 

2 1 1 110 4 1 1 144 
2 1 2 112 4 1 2 144 

Pz1. = 222 P41, = 288 

2 2 1 190 4 2 1 170 
2 2 2 199 4 2 2 147 
2 2 3 191 4 2 3 147 
2 2 4 171 4 2 4 161 
2 2 5 156 4 2 5 159 
2 2 6 158 4 2 6 125 
2 2 7 171 4 2 7 128 
2 2 8 184 4 2 8 128 

P22_ = 1420 P42_ = 1165 

P2 .. = 1642 P4 .. = 1453 p = 7704 ... 
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E E E P-~k = 1372 + 1662 + 1422 + ••• + 1532 + ua2 + ••• + 1372 = 1,211,444 
i j k lJ 

2 
~ ~ pij. = _30_3_2 + _1_18_3_2 + _22_2_2 + ... + _1_15_7_2 
LJ LJ = 1,199,037.4 
i j Iljj 2 8 2 8 

p,2 2 
E---= = 1486 + 
• n· 10 1 1. 

16422 

10 
+ ••• + 

p2 
... = -

2 
7704 = 1 187 032.3 

50 ' ' n .. 

Note n .. = 50, D = 10, S = 5. 

2 

2 
1445 = 1191 927.8 

10 ' ' 

E n .. 
. IJ 

E J 22 + 82 

10 

22 + 82 22 + 82 
+---+···+---=34 = 

I n· 1. 10 10 

E 1: n -~ = 22 + s2 + 22 + ••• + s2 = 340, 
' • lJ 
1 J 

E n.2 = 1a2 + ••• + 1a2 = 500 
1. 

a;, = (1,211,444 - l,199,037.4)/(50-10) = 310.2 

a~ = [1,199,037.4 - 1,191,927.8 - (10-5)(310.2)]/(50-34) = 347.4 

,..2 
C1 = s 

[1,191,927.8 - 1,187,032.3 - (34 - 340/50)(347.4) - (5-1)(310.2)] = -144.9 
[50 - 500/50] 

a~ = -144.9 + 347.4 + 310.2 = 512.1 

h; = 4(-144.9)/512.7 = -1.13 

This estimate illustrates the point that estimates of h2 by this method may be outside of the 

theoretical limits of 0 and 1. 
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In this case, af O = 4(-144.9) = -579.6 and a~1 = 4[347.4 - (-144.9)] = 1969.2, 

which is also obviously unreasonable because that is greater than the total phenotypic 

variance. 

Two-Way Nested Classification 

Joint Estimation of Heritability and Repeatability 

The model applies when a sire has many progeny each with one or more records and 

dams are assumed to be unrelated: 

µ, is a constant, 

si is the effect common to all animals with the i1Il sire, 

cij is the additional effect common to all records of the fh progeny sired by the i1h 

sire, i.e., si + cij corresponds to animal effect of repeatability model, 

wijk is what is left over, a random effect associated with the kth record of the j1h 

progeny of the µh sire. 

1 = 1, ... , S; j = 1, ... , ~; m. = C, the number of animals; and k = 1, ... , ~j . 

Note that this is the same statistical model as the previous one except that cij appears rather 

than dij and C rather than D. The assumptions about the elements of the model are the 

same except that now a~ is interpreted differently from a~ . 

Again, 

+ ••• 

But now, 

2 2 2 "h 2 2 2 h 2 . h . a c = a A - as wit a A = a g + a PE w ere a PE 1s t e vanance of permanent 

2 2 2 
environmental effects. Thus, a A = as + a c· 
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N 2 2 • th • f • al f£ h • h • ow, aw = aTE1s e vanance o temporary envrronment e ects w ere mt e previous 

heritability models, a;, = aiE; + aiE + some genetic variance. 

2 2 2 3 2 2 
If a g = a 10 ' then a c = 4 a 10 + a PE 

The expectations of different combinations of the P's are: 

E(Pijk) = µ. 

E(P-~k) = µ.2 + a2 + a2 + a2 
lJ S C W 

E(Pijkpijk') = µ.2 + a; + a~ (records on the same animal) 

2 2 
E(PijkPij'k') = µ. + as (records of paternal half sibs) 

E(Pijkpi'j'k') = µ.2 (records of unrelated animals). 

2 2 2 
The same four quadratics as before are used to estimate as, a c' and aw . Their 

expectations lead to the estimates: 

[ l [ 2] P2 P2 En .. 
&2 = E E ij. - E ~ - (C - S) a2 / n .. - E j lJ 

c • • n" • n· w • n· 

,.2 

1 J lJ 1 I. 1 1. 

p,2 
E-=. 
. n· 
1 1. 

-= - E j - J_ E E n-~ a2 - (S-1) a2 
n • n· n . . lJ c w 

" 1 1. " 1 J 

p2 [ Enif l 
<JS = ..;..._ _____ _;.... ________ ..;.._ ____ ~ 

1 2 
(n .. - - L Il•) 

n . 1. 
.. 1 
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The estimate of phenotypic variance is: 

A2 A2 A2 A2 

ap = aw + ac + as . 

The estimate of heritability is: 

The estimate of repeatability is: 

The within sire estimate of repeatability is: 
el 

C 
rwithin sire = ----

.. 2 .. 2 
a + a 

C W 

Because the computing procedure is the same as for the previous example no 

example is given. Instead, as an exercise in simulating models and in computing estimates 

for the two-way nested model for joint estimation of h2 and r the following problem is given. 



Heritability 373 

Simulate the Repeatability and Heritability Model; Two-way Nested Classification 

Assume: 

Pijk = µ + si + cij + wijk' where 

µ is a constant, 

si is a random effect common to all animals with the µh sire, 

c• • is a random effect common to all records of the fh animal sired by the IJ 

µh sire, and 

wijk is a random effect common to the kth record of the ifll animal. 

2 2 2 2 
os = (1/4) o 10 = (1/4) h op 

2 2 2 2 2 2 
oc = (r - h /4)op, where os + oc = oA , and 

2 2 
0 w = 0 e 

2 2 2 (2 2) 2 Note that as+ ac = rap and r = as+ ac /ap . 

For the simulation problem let: 

µ = 500, 

2 
as = 400, 

2 
a c = 2500, and 

2 
uw = 1600. 

Generate a sample of records for this model (see, Chapters 40 and 41) using random 

numbers and random normal deviates(µ. = 0, o = 1) according to the pattern indicated on 

the following page. From these records estimate a;, a~, a;,, h 2 and r . 
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Table for simulating two-way nested classification: 

Random Numbers Random Values 
( nearest whole number) 

I J k s. c .. w .. k µ + S· + c .. + wijk = p .. k 
1 IJ lJ 1 lJ lJ 

1 1 1 

1 1 2 

1 2 1 

2 1 1 

2 2 1 

2 2 2 

2 2 3 

2 3 1 

2 3 2 

3 1 1 

3 1 2 

3 2 1 

3 2 2 

3 3 1 

3 4 1 

4 1 1 

4 1 2 

4 2 1 

4 3 1 

4 3 2 



Heritability 375 

Two-Way Cross Classification Model 

The mating pattern for this model is that sires are mated to many dams, dams are 

mated to many sires, and each progeny has only one record. 

µ. is a constant, 

si is the effect common to all animals with µh sire, 

dj is the effect common to all animals with jID dam, 

(sd)ij is the effect (difference from si + dj) common to all animals in the ijID full sib 

group so that (sd)·· = (full sib effect) .. - s• - d· and 
' lj lJ 1 J' 

wijk is a random effect associated with the record of the kth member of the ifh full 

sib group. 

i = 1, ... , S; j = 1, ... , D; k = 1, ... , °if and C = no. of matings or °ij's > 0. 

The s's are IID(O,a;), the d's are IID(O,a~), the (sd)'s are IlD(o,afsd)), 

2 thew's are IlD(O,aw) and the s's, d's, (sd)'s and w's are mutually uncorrelated. 

2 1 2 1 2 • h • 1 half "b as = 4 a 10 + l6 a20 + ••• , 1s t e covanance among paterna s1 s; 

2 1 2 1 2 • h • 1 h lf "b ad = 4 a lO + l6 a20 + ••• , 1s t e covanance among materna a s1 s; 

2 2 2 2 12 1 2 12 .. 
a(sd) = aFS - as - ad = 4 a01 + l6 a02 + 8 a 11 + ... , isthedifferencebetweenthe 

covariance among full sibs and the covariances among paternal sibs and among 

maternal sibs, (a} 5 = a; + a~ + afsd) is the covariance among full sibs); 

2 2 2 2 2 2 h alb ... 2 
aw = ag + ae - as - ad - a(sd) , t e tot p enotyp1c vanance mmus aFS' 

Note that a~ of the two-way nested classification model includes both a~ and af sd) of the 

two-way cross classification model. 
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In terms of different combinations of the P's the expected values are: 

( ) 2 2 2 2 
EPijkpijk' = µ. + as +ad+ a(sd) (records of full sibs) 

u/p .. kp .. ,k,) - µ.2 + a2 \ lJ lJ - S 

u/p .. kp.,.k,) - IL2 + a2 \ lJ lJ - ,- d 

(records of paternal half sibs) 

(records of maternal half sibs) 

(records of unrelated animals) 

These definitions of the model lead to the following expectations of the five quadratics used 

. 2 2 2 2 
to estimate a5 , ad, a(sd) and aw : 

with 



2 :En .. 
• lj 

k12 = :E_ ...;;...J _ 
n· 1 1. 

2 :E n .. 
• lj 

, k21 = :E_ _1 __ 
n . 

J .J 
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1 2 1 2 1 2 
k1 = - :E n. , kz = - :E n . , and k3 = - :E :E n .. n . 1. n . ., n . . IJ 

·•1 "J 'J ''lj 

When the quadratics are equated to their expected values the estimates are: 

[ 2] 2 2 p .. 
a = :E :E :E P .. k - :E :E ~ / (n.. - C) 

w i j k lj i j 0 ij 

Let: 
p.2 p2 

RA = :E _=. - ......::.:. - (S - I) a2 
• n· n w 1 1. 

p~ p2 
R ~ .J. ... (D 1) "2 B=L,---- - a 

• n· n w J .J 

P-~ p.2 p~ p2 
RAB = :E I: -2J.: - I: _=. - I: _± + ......::.:. - (C - S - D + 1) ti 

• • n·· • n· • n • n w 1 J lj I I. J .] 

Then: 

[ kl -k21J [k2 -k12] [ kt -kzt - kz -k12] RA --- + Rn --- - RAB 1 - ---
n .. -k21 n .. -k12 n .. -k21 n .. -k12 
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Also: 

a; = (RA + RAB} / (n .. - kz1) - af sd) 

a~ = (RB + RAB) / (n .. - k12) - &~sd) 

If a! = aio + aii1 then there are three estimates of aio : 

The three corresponding estimates of heritability in the narrow sense are: 

Th o f 2 ' A2 4 A2 e estimate o a01 IS: a01 = a(sd) 

Variations Of Cross-Classified Models 

Often the two-way cross classified model is used when herds are considered as 

random effects and sires have paternal half sib progeny in more than one herd. If the herd 

effect is substituted for the dam effect in the model the corresponding variance component 

is due to herd differences and the interaction component is due to sire by herd interaction 

rather than dominance effects of the sire by dam model. 

Another variation of this model is to eliminate the interaction term and estimate 

2 2 2 2 
as, ad and aw only. The interaction variance, a(sd), maybe poorly estimated because 

of few filled subclasses and not many observations in each filled subclass. A method of 
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estimation for this model is to equate the total, sire, dam, and correction term 

sums of squares to their expectations which now do not contain c{sd) . For some 

traits, the dam component may include variance due to maternal effects, 

. 2 1 2 1 2 2 • h' h .. 2 b d • 1.e., ad = 4 a 10 + 16 a20 + ... + am m w 1c case ad cannot e use to estimate 

2 2 
0'10 or 0'2Q· 

Example of Estimating Heritability for the Two-way Cross Classification Model 

The following set of 10 progeny records from 3 sires and 4 dams was drawn from a 

population withµ. = 50, a; = 49, a~ = 49, alsd) = 25 and a;, = 377. 

Sire Dam Progeny p .. k IJ Sire Dam Progeny p .. 
IJ 
k 

(i) G) (k) (i) (j) (k) 

1 1 1 135 2 4 1 147 

1 1 1 ...22 2 4 2 140 

P11_ = 234 P24_ = 287 

1 2 1 153 3 2 1 193 

P12. = 153 P32_ = 193 

2 1 1 .li2 3 3 1 146 

P21, = 149 3 3 2 .ill 
P33_ = 302 

2 3 1 ill 
P23. = 157 

One way to set-up the subclass and class totals needed to compute the quadratics is 

to create a table of subclass totals as shown. 
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Table of subclass totals, Pij,' and numbers, nij 

Sire (i) 

1 2 3 p. 
.J. 

1 234 (2) 149 (1) 383 

Dam (j) 2 153 (1) 193 (1) 346 

3 157 (1) 302 (2) 459 

4 287 (2) 287 

p. 387 593 495 p 
1 .. . .. 

~- 3 4 3 n .. 

L L I: P-~k = 1352 + 992 + ••• + 1462 + 1562 = 222,395 
. . k lJ 
1 J 

2 
I: I: Pij. = 2342 + 1532 + ... + 3022 = 221,672.5 
i j Ilij 2 1 2 

P.2 2 2 2 
I: -= = 387 + 593 + 495 = 219,510_25 
• n· 3 4 3 1 I. 

p~ 2 2 2 2 
I: _:!: = 383 + 346 + 459 + 287 = 220,165_83 
j n.j 3 2 3 2 

p2 2 
= 1475 = 217 562.5 

n 10 ' 

S = 3, D = 4, and C = 7 

Il• .J 

3 

2 

3 

2 

= 1475 

= 10 
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k1 = _!_ [32 + 42 + 32] = 3.4, k2 = _!_ [32 + 22 + 32 + 22] = 2.6 
10 10 

22 + 12 12 + 12 12 + 22 22 
k21 = 3 + 2 + -3- + -2 = 6.33 

a-~ = (222,395 - 221,672.5)/(10-7) = 240.8 

RA = 219,510.25 - 217,562.5 (3-1)(240.8) = 1466.15 

RB = 220,165.83 - 217,562.5 (4-1)(240.8) = 1880.93 

RAB = 221,672.5 - 219,510.25 - 220,165.83 + 217,562.5 - (7-3-4+ 1)(240.8) = -681.88 

(k1 - k21)/(n .. - k21) = (3.40 - 6.33)/(10 - 6.33) = -.7984 

(k2 - k12)/(n .. - k12) = (2.60 - 4.83)/(10 - 4.83) = -.4313 

n .. - k1 - k2 + k3 = 5.6 

o}sct) = -[1466.15(-.7984) + 1880.93(-.4313) - (-681.88)(1 + .7984 + .4313)]/5.6 = 82.4 

a-; = [1466.15 + (-681.88)]/(10 - 6.33) - 82.4 = 131.3 

a-~ = [1880.93 + (-681.88)]/(l0 - 4.83) - 82.4 = 149.5 

a-~ = 131,3 + 149.5 + 82.4 + 240.8 = 604.o 

h 2 = 4(131.3) = _87. h 2 = 4(149.5) = _99. h(2s+d) = .87 + .99 = _93 
s 604.0 ' d 604.0 ' 2 

&~1 = 4(824) = 329.6 &io(s+d) = 2(131.3 + 149.5) = 561.6 
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Because of the small sample size these are not reliable estimates, e.g. 

af O + a~1 = 891.2 exceeds ai = 604. Even with many records the estimate of any 

2 b . component except aw may e negative. 



CHAPTER39 

GENETIC, ENVIRONMENTAL, AND PHENOTYPIC 

CORRELATIONS 

If X and Y denote the two traits then the genetic, environmental and phenotypic 

correlations are defined as: 

genetic, 

environmental, 

and 

phenotypic, 

= 

where 
2 2 2 

aG, aE, and op are genetic, environmental, and phenotypic variances and 

a G G , aE E and ap p are the corresponding genetic, environmental and 
X y X y X y 

phenotypic covariances between traits X and Y. Usually only additive genetic effects are 

assumed to contribute to the genetic variances and covariances. 

383 
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ESTIMATION FROM PARENT AND OFFSPRING COVARIANCE 

This method is comparable to regression and correlation methods of estimating 

heritability. The model is a two-trait version of the one used in Chapter 38 (see also Figure 

39.1 for diagram of the traits and their variances and covariances): 

Parent, p, Trait x: Pipx = µx + Gipx + Eipx 

Parent, p, Trait y: Pipy = µ.y + Gipy + Eipy 

Offspring, o, Trait x: Piox = µ.x + Giox + Eiox 

Offspring, o, Trait y: Pioy = µ.y + Gioy + Eioy 

with i = 1, ... , n where n is the number of sets of the four observations. A basic assumption 

is that all G's are additive genetic values and E's are random environmental effects. 

The G's and E's are rro( 0, a~ and a~) as before but now records on traits X and 

Y on the same animal have covariance, ap p = a G G + aE E ; records of the same 
X y X y X y 

traits on parent and offspring have covariance (1/2) a~, and records with one trait on the 

parent and the other trait on the offspring have covariance (1/2) aG G . In terms of 
X y 

expectations of the P's: 

2 2 2 
µ + 0 G + aE 

X X X 

2 
= 1-'x 



Epx 

a 
ExEy 

Epy 
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! 
G ! 

/' G 1/2 
Gpx Gox ), 

1/2 

G Gpy Goy > 

~G ! 
! 

Figure 38. 1. Diagram of the variable effects In the model for 

parent-offspring records on traits x and y. Only the phenotyplc 

records (boxes) are observed. Clrcled phenotyplc variances 

can be computed from the phenotyplc records. Phenotyplc 

covariances can be estlma ted from CPpx , P py) and from 

(Pox, Poy). 

< Eox 

~ Eoy 
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E(PipxPi'ox} 
2 

E(PipyPi'oy} 
2 = µx 

. = µy ' 

E(PipxPioy} E(PioxPipy} 
1 = = "'x.JJ.y + - a G G 2 X Y 

E(PipxPi'oy} = E{PioxPi'py) = "'x.JJ.y 

E(PipxPipy} = E{PioxPioy} = "'x.JJ.y + aa G + aE E 
X y X y 

E(PipxPi'py} = E{PioxPi'oy) = "'x.JJ.y 

The method of estimation consists of computing the variances and covariances among 

the four phenotypic measurements for the parent-offspring sets. The expectations of the 

total sums of squares and products and of the correction terms are shown on the next page. 



L Pipx 
I 

Pipx 
2 2 2 

µ. + 0G + 0E 
X X X 

Piox 

pipy 

Pioy symmetric 

P.px 

2 2 2 
P.px nµ +aG +aE 

X X X 

P.ox 

P.py 

P.oy symmetric 
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E [Total Sums of Squares and Products I 

(all times n) 

Piox Pipy 

2 2 
µ.x + .S 0G /J.xJ.£y + a G G + 0E E 

X X y X y 

2 2 2 
/J.xJ.£y + .5 a G G µ. + 0 G + 0E 

X X X X y 

2 2 2 
µ. +aG +aE 
y y y 

E[Correction Factors] 

P.ox P.py 

2 2 
nµ.x +.5 aG IlJJ.xJ.£y + O' G G + 0E E 

X X y X y 

2 2 2 
IlJJ.xJJ.y + .5 a G G nµ. + 0G + aE 

X X X X y 

2 2 2 
nµ. + 0G + 0E y y y 

Pioy 

/J.xJ.£y + .5 a G G 
X y 

/J.xJ.£y + 0G G + 0E E X y X y 

2 2 
µ. +.Sa 0 y y 

2 2 2 
µ. +aG +aE 

y y y 

P_oy 

IlJJ.xll-y + .5 a G G 
X y 

IlJJ.xll-y + a G G 
X y 

2 
Ilf..1.x.J.£y + .5 a G 

y 

2 2 2 
nµ. + a0 + aE 

y y y 



ppx 

pox 

ppy 

poy 
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The four variances are computed as usual as: 

&~ = (7 Pi! - p~~) / (n-1) where [u = px, ox, py, and oy]. 

The six covariances are computed as: 

where [(u,v) = (px,ox), (px,py), (px,oy),(ox,py), (ox,oy), and (py,oy)]. 

The expected values of these four variances and covariances as summarized below 

are then used to estimate the genetic, environmental and phenotypic covariances and 

correlations. 

Table of expected values of estimated variances and covariances 

(Diagonals are variances, off-diagonals are covariances.) 

ppx pox ppy Poy 

2 2 2 
.5 aa G aG + aE .5 aG aaxGy + aExEy 

X X X X y 

2 2 
.5 aa G aG + aE aaxGy + aExEy X X X y 

2 2 2 
aG + aE .5 aG 

y y y 

symmetric 
2 2 

aG + aE 
y y 
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There are several ways of combining these quantities. The usual ways are given here. 

Four Possible Estimates of rg 

1) r = g 0px,oy / D 

2) r = g aox,py / D 

3) r = g .5 (apx,oy + aox,py) I D (the arithmetic average of 1 and 2) and 

4) r = g J apx,oy e, ox,py I D (the geometric mean of 1 and 2). 

Note: 

a) The expected value by parts for each of the four estimates is: 

.5 ca G 
X y 

r g = -;::=========== 

I .s "~ .s "~ ~ X y 

= 

b) Estimates must be discarded if either or both covariances in D is negative (i.e., these 

covariances correspond to negative heritabilities). 

c) Estimates by method 4) must also be discarded if the signs of covariances in the 

numerator are different. 

d) If both covariances in the numerator of 4) are negative, assign a negative sign to rg. 
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The sampling variances of 3) and 4) are equal and are approximately one-fourth of 

those for 1) and 2). Method 3 probably is best since fewer estimates will be discarded than 

with method 4. 

Two Estimates of r p 

1) From parents: 2) From offspring: 

~ - apx,py 
1 p - -;::::::===== 

I A2 A2 

~ apx apy 

The arithmetic and geometric means of 1) and 2) can also be used. The expected values 

ap p 
by parts are: ITTx Y for any of these estimates . 

p y 
Estimate of re 

d'px,py + aox,oy - 2 (apx,oy + aox,py} 
re = -;::============================== 

Note as in a previous section on estimating heritability by regression and correlation: 

2 d'px,ox 

2 
apx 

2 apy,oy 

a2 
PY 

or 

or 

2 apx,ox 
and 

A2 A2 

apx aox 
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ESTIMATION FROM COMPONENTS OF VARIANCES AND COVARIANCES 

One-Way Classification (extension to more complex classification models is similar) 

The model for the two trait, one-way classification model is analogous to the single 

trait models used for estimating heritability with sires providing the group classification: 

Trait x: P .. = µ, + b • + w • • XIJ X XI Xlj 

Trait y: P yij = µ.y + byi + wyij both measured on animal ij, where 

µ. is a constant for the appropriate trait, 

bi is an effect common to i1Il genetic group for the appropriate trait, 

wij is an effect associated with jlll member of µh group, 

aii is the additive relationship among animals in group i with 

i = 1, ... , B; j = 1, ... , ~-

If all genetic effects are additive genetic effects then: 

2 2 2 2 
ab = aii aG ; ab = aii aG ; and ab b = a1·1· aa G x x y y xy xy 

2 2 2 2 2 2 
a = (1 - a") a + a • a = (l - a") a + a • and 

wx 11 Gx Ex ' Wy n Gy Ey ' 

0 w w = (l - aii) aa G + 0 E E 
X y X y X y 

The b's are IID(o, a~ or a~ ), thew's are 1mf 0, a; or a2 ), the bx's are uncorrelated 
X y ~~l X Wy 

with wx's, the by's and w 's are uncorrelated, b • and b • have covariance y XI Y1 

abx by = aii aax Gy ; and wxij and wyij (on the same animal) have covanance, 

apxpy - abx by • 
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In terms of the b's these definitions are: 

p/p ··P .. ,) = µ.2 + a2 
\ XIJ XIJ x bx 

E(P .. p ·•·•) = µ2 • 
XIJ XlJ X ' 

dp .. p .. ,) = µ,2 + a2 . 
\ ytJ ytJ y by' Pip .. p .. ,) = ~u.. + ab b 

\ XIJ )'lJ ' J X y 

These definitions lead to the following expectations of the six sums of squares and three 

sums of products used for estimating the variances and covariances. 

2 
+ n.a 

Wx 

2 
+Ba 

Wx 

~
p2 l x.. 2 1 2 2 2 
- = n.µ + - L n, ab + a 

n. X n. i l X Wx 

p( 2 l 2 2 1f T pyij = n.µy + n.aby 

Pyi. 2 2 1 2 l L ni = n.µy + n.aby 

2 
+ n.a 

Wy 

2 
+Ba 

Wy 

~
p2] y.. 2 1 2 2 2 
- = n.µ, + - L n- ab + a 

n. Y n. i 1 y Wy 
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~ p ·P • i L XI. yi. = Il.J.'x_JJ.., + Il.D'b b 
n· • J X y 

1 
+ B aw w 

X y 

~
Px . .Py .. l 1 T-- 2 

= n.J.'x_JJ.., + - L.. Il 1• ab b + aw w 
n. • J n. i x y x y 

The expectations of the quadratics are equated to their computed values to estimate 

the variances and covariances. Estimates of the variance components are as before: 

a2 =[EE p2.. - E p~i.1 / (n. - B) 
Wu • . UIJ • n· 

1 J 1 I 

a~ = [E p;i. - P,;:_ - (B-1) Ill / [n. - 2.. L n~] and 
U i Di Il. W Il. i 1 

Similarly the estimates of the covariance components are: 

[ 
p. p • 1 

CJ = L L P •• P · · - L XI. yi. / (n. - B) 
WxWy . . XIJ Y1J . n· 

1 J I I 

[ 
P·P· 

A XI. . 
ab b = E Y1 -

X y • n• I I 

CJ =ab b +a PxPy x y WxWy 

- _!_ En~] n . I 
• I 
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Then, 

and 

Estimates of variance components for the one-way classification model provide, as before, 

estimates of heritability: 

The expectations by parts of these estimates are rg, rp, re, h; and hr The estimates of 

heritability can be outside the parameter limits of O and 1. The estimate of genetic 

correlation may be, and with small data sets often is, outside the parameter limits of 

-1 and + 1. 

Example of Estimating Genetic, Phenotypic and Environmental Correlations 

In this example of genetic groups of paternal half-sibs, each has one record. 

The following set of 75 records from 25 groups was drawn from a population with 

2 2 2 2 
µx = 1500, u... = 200, ab = 2500, ab = 225, ab b = 375, a = 47,500, aw = 1,575, 

• J X y X Y Wx y 
2 2 

and aw w = 4,125 which 
X y 

rp = .47. 

correspond to hx = .20, hy = .50, r g = .50, re = .50 and 



J p .. 
XIJ p yij I j p xij pyij i j p .. 

XIJ pyij i j p .. 
XIJ pyij 

- - - - - - - - - - - - - - - -
1 1 1878 264 8 1 1499 211 15 1 1800 232 21 1 1375 202 
1 2 1542 289 8 1499 211 15 2 1342 216 21 2 1752 162 
1 3420 553 9 1 1328 208 15 3 1394 243 21 3127 364 
2 1 1493 151 9 2 1887 240 15 4 1339 175 22 1 1383 225 
2 2 1598 170 9 3 1498 154 15 5875 866 22 2 1595 189 
2 3 1727 176 9 4 1920 181 16 1 1800 198 22 3 1459 180 
2 4818 497 9 5 1785 169 16 2 1387 182 22 . 4437 594 
3 1 1371 190 9 8418 952 16 3187 380 23 1 1489 220 
3 . 1371 190 10 1 1854 238 17 1 1016 165 23 1489 220 
4 1 1453 173 10 2 1043 165 17 2 1324 229 24 1 1553 200 
4 2 1588 220 10 3 1509 91 17 3 1494 188 24 2 1527 188 
4 3 1207 146 10 4 1298 182 17 3834 582 24 3 1094 185 
4 4 1673 278 10 5704 676 18 1 1692 213 24 4 1410 178 
4 5 1373 217 11 1 1537 218 18 1692 213 24 5 1272 166 
4 7294 1034 11 2 1894 223 19 1 1177 134 24 . 6856 917 
5 1 1612 173 11 3431 441 19 2 1319 177 25 1 1657 160 
5 2 1402 172 12 1 1241 180 19 3 1928 260 25 2 1695 218 
5 3 1389 141 12 2 1204 176 19 4 1308 205 25 3 1722 236 
5 4 958 127 12 3 1534 156 19 5 1262 172 25 4 1420 199 
5 5361 613 12 3979 512 19 6994 948 25 6494 813 

<;') 
6 1 1444 230 13 1 1418 142 20 1 1555 182 . 112,269 14,669 ~ . ;: 

~ 

6 2 1719 184 13 1418 142 20 2 1775 189 ... -. 
~ 

6 3163 414 14 1 1667 264 20 3 1428 220 ("') 
<::) ., 

7 1 1552 212 14 2 1613 230 20 4 1597 172 
., 
~ 

14 3 1285 224 20 6355 763 
S' 

7 2 1327 206 ... --<::) 

7 3 1364 179 14 4 1404 230 :::! 

7 4243 .~.~597 14 5 1841 229 
w 
\0 
VI 

14 _7810 1177 
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:E :E P jj = 18782 + 15422 + 14932 + ••• + 142o2 = 171,709,893 

:E :E P~. = 2642 + 28g2 + 1512 + ••• + 1992 = 2,966,259 ; 
YIJ 

:E :E Pxij Pyij = (1878)(264) + (1542)(289) + ••• + (1420)(199) = 22,201,100 

p2 _'") 2 
E xi.= 342u- + 4818 
i Ili 2 3 

+ ••• + 
2 

6494 = 169,183,456.7 
4 

p~ 2 2 2 
E ~ = 553 + 497 + ... + 813 = 2,914,421.8 
• n· 2 3 4 1 1 

P·P· :E xi. yi. = 
n· I 

(3420)(553) + (4818)(497) 
2 3 

Pz 2 
x •• = <112269) = 168 057 711.5 
n. 75 ' ' 

p2 
J::.. = (14669)2 /75 = 2,869,060.8 
n. 

+ ... + -'-(6_4_94_)..;...(8_13_) = 22,064,326.9 
4 

Px •• Py •• = (112,269)(14669) = 21958 319.5 . 
n 75 ' ' ' 

n. = 75, B = 25, E nf = 22 + 32 + 12 + s2 + ... + 42 = 275 . 

The estimates of variance and covariance components are: 

a-;, = (171,709,893 - 169,183,456.7)/(75 - 25) = 50,528.7 
X 

a-;, = (2,966,259 - 2,914,421.8)/(75 - 25) = 1036.7 
y 

aw w = (22,201,100 - 22,064,326.9)/(75 - 25) = 2735.5 
X y 
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a-~ = [169,183,456.7 - 168,057,711.5 - (25-1)(50,528.7)1/(75 - 275/75) = -1218.8 
X 

a~ = [2,914,421.8 - 2,869,060.8 - (25-1)(1036.7)]/(75-275/75) = 287.1 
y 

ab b = [22,064,326.9 - 21,958,319.5 - (25-1)(2735.5)]/(75-275/75) = 565.7 
X y 

The estimates of the correlations and heritabilities are: 

565.7 r = 
g -;:✓ c=-=12=18=.8=)c=28=1.=1 )= 

(Imaginary estimate since a~ is negative.) 
X 

r _ (565.7 + 2735.5) = _41 
p - ✓(-1218.8 + 50,528.7)(287.1 + 1036.7) 

re = 2735.5 - [(1 - .25) / (.25)] (565.7) = 34 
✓r5o,528.1 - 3(-1218.8)1 r1036.7 - 3(287.l)l 

4(-l 2l8•8) = -0.10 (An estimate outside the lower limit.) 
(-1218.8 + 50,528.7) 

h 2 = 4(287.1) = _87 . 
Y 287.1 + 1036.7 
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MONTE CARLO SIMULATION 

Simulation of biological models often aids in understanding the simpler models and 

in building more complex models. Often simulation is a first step in finding out what 

happens when the usual assumptions are not fulfilled, e.g., when the data are selected. 

However, simulation has been used in PART ill to aid in understanding random chance 

associated with a set of data and the effects of random sampling on estimates of parameters 

from relatively small amounts of data. 

The procedures described in this chapter will simulate normal and multivariate 

normal distributions. The method of simulation is to obtain in some way pseudo-random 

values (also to be called random normal deviates) from a normal distribution with mean, 

zero, and variance, one. The pseudo-random standard normal values when multiplied by 

a constant, a, result in variables with mean, zero, and variance, a2. Adding a constantµ 

results in a variable with mean, µ, and variance, a2. For example, suppose vi is such a 

random variable from a distribution with mean, zero, and standard deviation, one. 

Then E(via) = aE(vi) = 0 ; E(µ + via) = E(µ) + E(via) = µ. ; 

E[(vio-)2] = E(vf a2) = a2E(vf) = a2 ; E[(µ + via - µ)2] = o-2. 

In the description of how to simulate the models described in chapters 37, 38 and 39, 

the lower case, primed and subscripted letters will represent normal deviates (0,1). 

399 
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REPEATABILI'IY MODEL 

p ij = µ. + ~ + Eij 

For each animal, i, draw a1 and eij• j = 1, ... , ~ random normal values and multiply 

as shown so that Pij = µ. + a1a A + e{fE Thus the ~ will have zero mean and 

variance, ai, and the Eij will have zero mean and variance, a~. The Pij will have mean, 

d . 2 2 2 
µ., an vanance, ap = a A + aE 

Example for animal 1 with n1 records: 

I I 

P1n1 = µ. + alaA + eln1o'E 

Note that the ~ + 1 random normal deviates are independently drawn so that the 

expectations of products of different combinations of A's and E's are zero. 

HERITABILI'IY MODEL 

Regression And Correlation 

P xi• P yi are the µh pair of records on relatives x and y. 

This model simulates statistically the genetic model but does not directly mimic 

Mendelian sampling. The second g term in P yi simulates Mendelian sampling due to 

segregation and recombination and maintains the genetic variance as a~ as can be seen by 

taking the expected value, E[(P yi - µ.)2]. 
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One-way Classification Model 

Simulation 401 

N h 2 2 d 2 2 1◄21 2 2 h • h dd' . ote t at ab = aiiaG an aw = aE + ~ 1-aii aG w ere 3ii 1s t e a 1tive 

relationship between animals in the µh group. For paternal half-sib groups, 3ii = 1/4. 

Two-way Nested Classification (Dams Within Sires) Model 

Pijk = µ. + s1 a5 + dijad + wijkaw where 

2 2 2 2 2 
as = (1/4) a10 ; ad = (1/4) a10 + (1/4)a 01 (if dominance is included); 

2 2 2 2 
aw = aE - as - ad 

Two-way Nested Model with Repeatability 

2 2 
a5 = (1/4) aG 

Two-way Cross Classification Model 

2 2 2 2 
as = (1/4) a10 ; ad = (1/4) a 10 ; 

(if dominance effects are included); 
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GENETIC, ENVIRONMENTAL, AND PHENO1YPIC CORRELATIONS 

Parent-Offspring Covariances 

where, 

[ ]
2 

2 aa 
a - xy 
Gy aax 

Ez = aExy 
aE 

X 

These constants allow simulation of a four-variate distribution with the genetic and 

environmental variances and covariances shown in the description of the model. 

Variance And Covariance Components 

One-way Classification Model 

ab 
PviJ' = u., + b'. ~ + b', 

r • J XI ab Y1 
X 

[ ]
2 

2 ab 
(] - xy 
by obx 

a 
' Wxy ' +w .. --+w .. 

XIJ a YIJ 
Wx 

2 2 
where, ab = aiioG ; 

X X 

2 2 a = a .. a 
by 11 Gy 

2 2 2 
a = (1-aii)a 0 + aE 

Wx X X 

2 2 2 
ow = (1-aii)aG + aE 

y y y 
a = (l -a 00 )aa + <JF_ __ Wxy 11 xy -xy 
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GENERATING RANDOM STANDARD NORMAL VARIABLES 

Procedures used in simulating records usually utilize pseudo-random, standard normal 

variables. There are many ways of obtaining such variables. Nearly all, if not all, utilize 

pseudo-random numbers as a first step in the process. 

The method described here starts with a random number. Each possible random 

number has a corresponding standard normal deviate to be multiplied by constants as 

described in Chapter 40. Random numbers can be obtained in many ways, usually with a 

computer routine that generates random numbers from a uniform distribution ( each number 

within the limits of the uniform distribution is equally likely). Not all computer routines, 

however, are equally successful in achieving randomness in the sequence of numbers. 

For practice work a table of two-digit random numbers from some source such as the 

table at the end of this chapter can be used which was generated by computer. A point is 

picked in the table by some random process. Then each succeeding two digit pair will be 

a random number. With this table each of 100 possible two-digit numbers from 00 to 99 

is equally likely. The accompanying table gives the corresponding random normal deviates 

for random numbers from 00 to 99. Note that the variance of the random values is one and 

the mean is zero. 
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The table is derived by dividing the area under the normal curve into 100 equal parts 

symmetrical around the mean. 

-2.73 -2.17 etc. µ.=0 2.17 2.73 

The segments closer to the mean will be narrower than those on the end points. 

The midpoint of each segment is taken to be the value representing that area. The 

extreme values may be fudged somewhat to give a standard deviation of one. 

Each random number corresponds to one of the segments, each of which is equally 

likely and results in simulation of drawing values from a random normal distribution with 

mean, zero, and variance, one. 

To simulate distributions with mean µ. and variance a2, the random values are 

modified by multiplying by a and by adding µ,. 

Many computer packages are available to simulate both random numbers and 

random normal deviations. For simulations that are scientifically or economically important 

the properties of the method used in the simulation should be investigated carefully; means, 

variance, distribution and correlations among consecutive deviations. 
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TABLE FOR SIMULATING RECORDS 

Random Number (00 to 9'J) Standard Random 
Normal Value Positive Values 

9') 

98 
97 
96 
95 
94 
93 
92 
91 
90 
89 
88 
87 
86 
85 
84 
83 
82 
81 
80 
79 
78 
77 
76 
75 
74 
73 
72 
71 
70 
69 
68 
67 
66 
65 
64 
63 
62 
61 
60 
59 
58 
57 
56 
55 
54 
53 
52 
51 
50 

Neaative Values 
00 
01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

2.73 
2.17 
1.96 
1.81 
1.70 
156 
151 
1.44 
1.37 
1.31 
1.25 
1.20 
1.15 
1.10 
1.04 
1.02 
.97 
.93 
.90 
.86 
.82 
.79 
.76 
.72 
.69 
.66 
.63 
.60 
51 
.54 
51 
.48 
.45 
.43 
.40 
37 
35 
32 
.29 
.27 
.24 
.21 
.19 
.16 
.14 
.11 
.09 
.06 
.04 
.01 

(- if random number 
between 00 and 49) 
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61 16 52 80 08 91 35 16 34 56 27 83 18 98 89 61 96 25 50 73 14 18 14 03 48 79 45 01 88 33 
83 28 65 29 46 92 49 67 87 84 18 22 06 68 39 90 73 25 52 80 15 57 27 11 62 17 54 86 14 30 .i,. 

81 43 25 33 22 69 44 25 12 96 43 12 09 56 88 11 40 24 73 26 06 61 54 27 68 02 13 25 43 33 
0 

°' 65 90 42 46 15 65 19 34 33 72 89 53 63 46 35 87 31 70 29 66 79 17 14 08 73 04 01 53 79 01 
"'t, 

43 17 35 96 84 99 83 72 72 37 88 99 53 62 83 59 83 30 86 23 52 76 92 35 19 51 97 37 23 39 s::i 

~ 
67 09 78 98 24 92 10 04 73 08 76 53 06 06 21 74 75 57 08 56 06 38 78 49 74 56 26 80 73 25 ;:= 

~ 

44 35 68 94 55 79 80 26 55 58 11 22 33 04 70 66 27 34 07 95 02 82 43 41 53 32 27 48 27 10 .... 
~ 

59 00 16 42 06 26 39 38 68 61 61 12 37 61 33 98 21 21 69 38 82 94 35 96 69 75 81 64 91 53 '"-: 

l:l"] 
97 39 01 36 53 84 44 15 50 70 26 67 78 55 33 42 48 05 94 37 49 41 70 28 51 50 97 45 04 80 "' .... 

59 76 56 94 46 -. 11 52 76 13 00 40 62 05 12 94 37 57 06 30 24 61 42 29 60 99 47 95 23 21 85 ~ 
s::i ... 

53 24 37 14 84 08 44 37 86 05 20 72 02 97 94 43 41 80 63 37 27 82 06 15 33 64 84 72 78 83 -. 
<::) 
;:s 

90 30 83 30 85 22 99 54 48 56 98 79 98 65 90 43 52 79 76 22 13 24 25 71 34 27 38 35 47 33 
30 09 33 98 02 46 87 75 38 19 92 71 35 83 73 88 86 31 74 37 97 78 70 34 67 97 19 26 76 32 
99 69 82 51 23 61 72 95 06 55 65 73 05 32 63 97 99 35 79 94 03 57 39 57 11 73 80 79 93 74 
94 42 77 93 61 51 92 06 97 19 07 88 80 13 41 06 45 91 63 78 16 91 59 89 76 12 04 54 55 95 

72 91 80 49 94 09 14 61 20 93 19 62 37 79 52 92 29 15 94 93 68 82 87 41 25 15 81 98 49 80 
95 16 07 96 54 81 43 32 71 59 81 45 17 02 47 42 89 98 73 98 28 33 54 36 02 85 23 97 11 77 
57 92 62 53 08 83 85 11 77 92 84 00 90 46 10 96 91 08 07 86 56 51 84 62 77 36 27 97 76 97 
21 62 71 33 74 63 33 71 36 99 10 66 15 73 73 32 46 09 37 49 19 79 74 01 66 31 14 63 07 35 
62 55 27 77 59 27 83 03 37 67 27 07 54 02 38 51 76 62 39 62 24 05 63 78 99 24 20 20 15 23 

02 55 59 56 89 24 77 82 86 22 98 28 24 67 83 82 16 94 94 13 55 76 08 34 89 77 81 94 16 14 
56 41 11 70 11 51 94 11 18 43 83 29 20 80 89 66 55 46 68 06 58 42 10 11 02 59 82 07 67 83 
00 52 68 66 08 00 07 47 38 19 74 14 69 40 17 57 25 98 55 42 07 69 25 07 71 00 64 79 75 06 
46 73 87 28 51 61 92 82 85 27 91 31 03 70 54 76 99 03 88 31 34 09 65 32 30 90 45 26 62 12 
08 67 35 51 15 42 57 66 42 61 22 81 74 00 76 37 53 19 83 72 59 13 27 63 03 66 81 65 86 87 

04 07 02 78 63 62 62 69 43 32 58 58 82 34 77 07 94 06 64 69 24 05 68 40 27 55 86 17 89 53 
93 18 34 39 70 07 74 04 74 05 63 79 26 41 19 17 25 08 18 38 60 20 86 69 42 52 64 97 00 26 
01 89 36 74 10 98 82 67 55 79 48 18 38 67 54 24 14 12 44 01 76 37 16 73 36 74 17 43 75 75 
26 08 64 78 60 71 35 87 54 94 54 18 09 50 36 93 40 74 99 47 99 03 58 90 17 63 39 33 77 21 
55 09 72 89 65 62 87 62 98 28 52 56 16 62 10 13 15 67 91 28 56 13 56 52 54 94 12 04 41 02 

25 53 35 12 40 31 43 24 30 40 07 65 53 42 81 80 70 46 32 82 14 40 08 95 50 18 50 25 68 88 
88 22 25 15 99 30 51 36 10 07 09 62 36 85 74 69 62 09 05 54 00 97 79 36 45 87 64 57 92 50 
18 48 65 26 81 06 05 26 42 13 47 59 40 12 32 45 13 18 24 55 74 61 19 75 22 35 93 47 07 37 
36 38 43 68 36 07 04 94 02 63 70 28 40 17 46 79 41 68 94 47 28 26 08 35 15 35 71 18 83 17 
82 85 24 00 23 16 60 43 27 29 42 09 69 40 75 40 72 71 36 79 91 21 81 89 11 38 14 04 98 48 
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