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PREFACE

As you will soon realize, this material is simply a compilation
of mimeographed summary material which was prepared to take the
place of a textbook for an upper-class and graduate student course
in Animal Breeding. Consequently, these summaries are meant to
supplement lectures, not replace them. The coverage is also of
variable depth; the introductory summaries are quite sketchy while
the summaries covering the selection index are more complete than
can be found elsewhere. Most of the ideas expressed concerning the
selection index have been due, in chronological order, to Sewall Wright,
Jay Lush, and Charles Henderson, truly intellectual and practically-
oriented giants in the development of modern animal breeding. 1In
common with most written material, these pages will contain their
share of errors--both typographical and of substance. Hopefully, neither
category of error will be frequent enough to cause much harm. Finally,
a word about studying this type of material. Reading some of this
jargon will at first have little meaning to many people unfamiliar with
the terms and symbols. Working simple problems with pencil and paper
is for most people the only way to gain an understanding of thé concepts.
Laboratory exercises as well as the sample exam problems will aid in this
endeavor. And, do not be afraid to test your solutions by a time-
tried maxim--the answers should make sense.

Good 1luck.

Ithaca, New York
July, 1974

New topics which have been added in this revision include the
selection problem with categorical traits and the effect of the fetus
on performance of the dam. A major addition is an introduction to
best linear unbiased prediction using mixed model equations. After
working with expected values for some 12 weeks in studying the selection
index, least squares equations are easy to write. Modification of
these to obtain mixed model equations and, thus, best linear unbiased
predictions is also relatively easy. The use of mixed model equations
as ploneered by Henderson provide the statistical foundation for
modern animal breeding which must jointly estimate adjustments for
fixed effects and predict random effects such as transmitting abilities
of dairy sires. This introduction has been tried for three to four
lectures in three different years with variable success. An under-
standing of the ideas, however, is essential for professional animal
breeders.

January, 1979
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Summary I

QUANTIFYING THE SIMPLE MENDELIAN MODEL

The usual genetic model is

Phenotype = Genotype + Environment,
P = G + E.

The simplest Mendelian model has E = 0 and only three possible genotypes for
one locus with two alleles, A and a,

In a random mating population, if the gene frequency of an allele, A, at
a particular locus is p and if there is only one other allele, a, which has
frequency, 1 -~ p = q, then the expected frequencies of the three possible

genotypes are by the Hardy-Weinberg law

Genotype Frequency = fi Value = Yy
AA p2 u
Aa 2pq [(u+v)/2] + d
aa q2 v

We can assign arbitrary values to the genotypes as shown. The value d
is for the dominance deviation of the value of the heterozygote from the
average value of the homozygotes. There are several possible kinds of domi-
nance depending on the size of d: 1f d = 0, we say that there is no dominance
or that there is lack of dominance or that we have an additive effecgs‘ﬁodel;
1f d = (u-v)/2, we say that there is complete dominance; and if|d|> (u-v)/2,

we say that there is overdominance,

Population mean

The definition of the population mean or average, u (mu), is

_—1—
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n n
]J=(ny)/zfs
=1 U1yl
where n 1s the number of different genotypes. Usually, Zfi = 1 but will not

1f certain genotypes are discarded due to selection.

The mean for the simplest Mendelian model is, if there is no selection,

v + p(u-v), if d = 0; and
v + p(u-v) + 2pqd, 1if d # O,

= =
] it

The population average will be maximum when p = 1 1f u > v and d < (u-v)/2.
If d > (u-v)/2 (overdominance), then the population average will be maximum
when p = {[(u-v)/2] + d}/2d as can be found by equating to zero the deriva-

tive of p with respect to p.

Population variance

The definition of the population variance, 02 (sigma squared) is

n n
of = [ E £(y- w2/ Lt

i=1 4=1 1

If Efi =1, then

2 _ _ 2 _ 2 _ 2
o pX fi(yi ) b fiyi ue.

The variance 1is a standard method of describing variability which is recog-
nized by most, if not all, research workers. Note that the variance cannot

be negative since it is an average of squared deviations from the mean.

The variance will be more completely discussed in Summary V.
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Number of genotypes

If there are n alleles at a locus, the number of possible genotypes, N,
is N = n(n+l1)/2. Note that the number of phenotypes cannot be greater than

the number of genotypes and may be less.

Breeding value under simple Mendelian model

The frequencies of progeny of the three parental genotypes under random

mating are described in the following table.

Parent Parent Progeny Frequency
Genotype Frequency AA Aa aa
AA p? P q 0
Aa 2pq p/2  1/2  q/2
aa q? 0 p q

The progeny means of the three parental genotypes are

Myp = PU + q{[(utv) /2] + 4},
Mpo = .Spu + 5{[(utv)/2] + d} + .5qv ,
Mg = p{[(utv)/2] + d} + qv.

Note: (1) that Hag + uaa)/Z for any values of p and d, (2) that breeding

= (uyp
value (progeny mean ) of the parental genotype depends on gene frequency (even
if u > v, Hyp @AY be less than Hon when p 1s small), and (3) that the progeny
frequencies are from mating a particular parent type at random to the rest

of the population. For example, Aa x population gives from the gametic arrays

the progeny frequencies,

[(1/2)(a) + (1/2)(@)] = [(p)(A) + (9)(a)]

}

(p/2) (2A) + (1/2)(Aa) + (q/2)(aa) .



Summary of Mean and Variance

Mean
Symbols:
Population ux
Sample Hes X
Units units
Computing formulas:
Nonfrequency data:
ZXi
Population N =My
zxi A .
Sample N "M T X
Frequency data:
zf,y
171
Population T uy
i
Sample zfiyi su =3
P zfi uy y

.

Variance

o, V(x)

62, s2
X X

units squared

Y
E(Xi ux)

)
E(xi ux)
N-1

_1)2
Lt (v -w)
Lf

R
Lf, (yy uy) ‘
of

N-1

Standard Deviation

g, 8
x’ x

units

Alternate Computing
Forms for Variance

2_Ny, 2
ZXi Nux
N
2 2
ZXi Nux .

N-1 ’
2
ZXz_(ZK)

i N
N-1

2_ 2
bf,vy (£ u

5
Efi

= 2_,,2
1f 5f =1, 2f;y3-ul

As above, but multiply
by N
Y N1
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Summary II

SUMMARY OF MATERIAL ON POPULATION GENETICS

The Hardy-Weinberg law

If in a large population, p 1s the frequency of gene A and q 1s the fre-

quency of the other allele, a, then after one generation of random mating the

genotypes will have and will continue to have in future generations the fre-
quencies p? for AA, 2pq for Aa, and q2 for aa. WNote that p + q = 1. Hence,
q=1-p, etc,

This principle can be extended to the case of n alleles, A i=1, ..., n,

i)
with frequencies P> i=1, ..., n, by computing the frequencies of the geno-
types obtained from multiplying the gametic array for males by the gametic
array for females, (plAl + el + pnAn) x (plAl f ce. F pnAn)' The genotypes

and thelr frequenciles will be

homozygotes AiAi with frequencies pi for 1 =1, ..., n;

heterozygotes AiAj with frequencies 2pipj for all 1 # j.
n

Note that I Py = 1.
i=1

Estimation of gene frequencies

Generally,

No. of that allele
Total no. of genes at that locus

frequency of some allele =

However, the problem of estimation 1s 1llustrated in the following special cases.
(1) Dominance
We can estimate the frequency of a recessive gene in a random
mating population from the knowledge that a fraction q2 of the popula-

tion 1s expected to be homozygous recessive. Then,



(2)

caBem

q = Vno. recessive types/total no. of animals ,
and p =1 - q.
In the case of multiple alleles with complete dominance, we
have to estimate the frequency of the most recessive allele first.

For example, suppose Al dominant to A2 and A, and A, dominant to

3’ 2
A30
Genotypes Phenotypes Expected Frequency
AlAl
2
A1A2 Al Pl + 2plp2 + 2plp3
A3
AA
272 2 .
AA Ay Py + 2pyP3
273 )
A3y A3 P3

Then, Py = Yno. A, type/total no.. Plug the estimate of Py into the

3

next equation, p% + 2p2p3 = no, A2 type/total no., and solve for P,-
Substitute the estimates of Py and Py into the remaining equation,
p% + 2p1p2 + 2p1p3 = no. A1 type/total no., and solve for pl, or find

Py by difference since Py + p2 + Py = 1, or Py = 1 - Py - p3.
Incomplete dominance

In this case the heterozygotes are distinguishable from the
homozygotes and the gene frequencies can be found from the general

formula whether or not the population is randomly mating. For example,

with 3 alleles,

No. Al genes

P1 7 Total no. genes

genes; each A genotype contri-

Each AlAl genotype contributes 2A1 lA2

butes lA1 gene; and each A1A3 genotype contributes 1A1 gene, Then,



T

2(no. of A animals) + no. of AJA_ + no. of A A

1% 1% 183
2(total no. of animals) ’

pl_

and P, and p, may be estimated similarly.

Frequencies of composite genotypes

The frequencies of composite genotypes (in a random mating population

which is at equilibrium with respect to linkage relations) equal the products

of the single locus frequencies. For example, 1f the frequencies of Al and

A2 are p; and Pys respectively, and the frequencles of Bl and B2 are r, and

Tys respectively, then the frequencles of the composite (two-locus) genotypes

will be

Genotypes Frequencies
AA BBy PIt]

AjA BB, pi(Zrlrz)
A1A1ByBy piT)
A1AyB18y (2pyp,)r}
A1A2B1B2 (2p1p2)(2r1r2
A1ByByBy (2pp,)x5
AyhyB18y Pgri
A,A,B.B, p22(2r1r2
Ay898,8, Py

The extension to more than 2 alleles per locus follows the same pattern.

Effect of selection on _gene frequencies

Selection may change the frequency of a certain gene in a population.
Gene frequency after selection (among the survivors and in the next generation)

depends on the fitness of the genotypes and the gene frequencies in the
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current generation. Filtness of a genotype 1s defined as the proportion of the
genotype which reproduces relative to the other genotypes; s will be the frac-
tion of AA genotypes which do not reproduce, r the fraction of Aa genotypes,

and t the fraction of aa genotypes, where 1 > s, r and t > 0. 1In general, the

frequency of gene a after selection is

_ no. of a genes among survivors

9 2(no. of survivors)

The change in gene frequency from one generation to another 1s the difference

in gene frequencies between the generations, i.e.,

Aq = qI'l - qn_l ’

where the subscripts refer to generations n and n-1.
However, in the following special cases, some simplification may be made.
1) N6 homozygous recessive individuals reproduce (zero fitness for
aa type)

The composition of the initial generation (n = 0) is

Relative Freq.

Genotype  Frequency Fitness of Survivors
AA p? l-s = 1 p?
Aa 2pq l-r =1 2pq
aa q? 1-t = 0 0
Total 1 p? + 2pg =1 - q2

Then, by the general equation,

_ no. of a genes in survivors
ql total no. genes in survivors

2pq(no. of animals) __9
2(p2 + 2pq) (no. of animals) 1+q

9
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If this procedure is followed through n generations, the frequency
of the allele a will be q, = q/ (1 + nq), where q was the original

gene frequency of the recessive gene.

Corollary: The number of generations, n, required to
go from a gene frequency of q to one of q,

is given by n = (l/qt) - (1/q).

(2) Selection in favor of heterozygotes
The composition of the initial generation (n = 0) before and
after selection 1is

Relative Freq.

Genotype  Frequency Fitness of Survivors
AA p2 1-s p2(1-s8)
Aa 2pq 1 2pq
aa q2 1-t q2(1-t)

Total 1 1-sp2~tq?

Application of the general procedure for finding the new gene fre-

quency, ql, gives

. (1-t)q% + pq
1 1-sp4-tq?

The change in gene frequency from the zero generation to the next is

aq = RaLsp=tq)
1-sp2-tq? °

When Aq = 0, there will be no change in gene frequency from the (n—l}EE
generation to the nEB-generation and the population will be at equili-
brium. This will be true when sp - tq = 0. Thus, equilibrium gene

frequency will be reached when p = t/(s+t) and q = s/(st+t).
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(3) Partial selection against homozygous recessives
The composition of the initial generation before and after
selection is

Relative Freq.

Genotype Frequency  Fitness of Survivors

AA p2 1 p2

Aa 2pq 1 2pq

aa q2 1-t q2(1-t)
Total 1 1-tq?

The gene frequency, ;> in the survivors is by the general procedure

_ 9(1-tq)
qq 1-tq2 ° and

_ ~tq2(1-q)
1-tq?

Aq=q1-q

(4) Selection against heterozygotes

The composition of the initial generation before and after

selection is

Relative Freq.

Genotype Frequency  Fitness of Survivors

AA p? 1 p2

Aa 2pq 1l-r 2pq(1l-r)

aa q? 1 q?
Total 1 1-2pqr

By the general procedure, the gene frequency,

ql, in the survivors is

- 4{-rp)
91 T 1=2rpq and

_ _ . _r (2q-1)
ba =4q; -4 1-2rpq °

(5) Changes in gene frequencies with other combinations of fitness values

can be worked out similarly by the general procedure.
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Detection of carriers of recessive genes

The confidence of detection depends on the probability of obtaining at
least one affected offspring in n offspring if the suspected carrier is actually
a carrier. This is one minus the probability of obtaining all normal off-
spring in n offspring.

The general testing procedure is to mate a suspected carrier to a group
of females which produce a fraction, P, A genes and a fraction, Q, a genes.
Then, 1f the suspect is really a carrier, the probability that all n offspring
are normal is [1 - (Q/2)]n and the confidence of detection is 1 - [1 - (Q/2)]n.

Some special cases are:

(1) Mating a carrier male to known homozygous recessive females

The probability of obtaining all normal offspring is 1/2)".
Therefore, the '"confidence'" of detecting him as a carrier is 1 -~ (l/2)n.
Note that Q = 1 and that 1 - (0/2) = 1/2.

(2) Mating a carrier male to known carrier (heterozygous) females

The "confidence' of detecting him as a carrier is 1 - (3/4)n.

Note that Q = 1/2 and that 1 - (Q/2) = 3/4.

(3) Mating a carrier male to his own daughters.

The "confidence'" of detecting him as a carrier is 1 - (7/8)n.

Note that Q = 1/4 and that 1 ~ (Q/2) = 7/8. This is under the assump-
tion that the dams were all homozygous for the normal allele.

(4) Mating a carrier male at random in a population where the frequency

of the recessive gene 1s q in the previous generation

The "confidence" of detecting him as a carrier is 1 - [(2+q)/2(1+q)]n.
Note that Q = q/(l+q) since none of the homozygous recessive females
will be mated.

Note well that even one affected offspring marks a suspected carrier as a

carrier. All normal offspring will never completely rule out the possibility
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that a male is a carrier although the probability of detection may be quite
high.
Table 1 shows the confidence of detection of carrier males for testing

systems 1, 2, 3, and 4. A further discussion of method 4 follows.

AT and undesirable recessives

Method 4 of the preceding section can be used to lower the frequency of
all undesirable genes by progeny testing all males at random in the population
before heavy use through artificial insemination. The following describes
how such a program would work for dairy cattle where AI is widely used.

The essential question 1s, "Can AT be used to find carrier bulls before
they spread undesirable genes?" The answer 1s yes since any good young sire
sampling program will provide for each young bull producing at least 200 calves.
This should yield 50 or so production-~tested daughters. At the same time, the
200 calves will provide an excellent test of whether the bull is a carrier of
any undesirable recessive gene.

What does this mean in terms of numbers of affected calves? We can com-
pare an AL program which gets 200 tested calves with what would happen without
AT. The effect of AT testing with 200 calves versus no testing is shown in

the following table.

MUMBER OF AFFECTED OFFSPRING WITH NO PROGENY TESTING AND WITH TESTING WITH 200 PROGENY

Before Testing No. of afiected cﬂ;v-es per gillion e:lvu bor; in lomut!:no

No teating 250,000 111,111 62,500 40,000 27,778 20,408 ... 6,944

both 25%
Al test 250,000 0 0 2 28 55 e 9

(with 200 calves)

No testing 40,000 u 27,778 20,408 15,625 12,346 10,000 ... 4,444

Al test 40,000 0 2 28 55 43 L., 7

of red in

Al teat 10,000 ] Holstein 1 23 55 46 29 ... 6

No testing 2,500 2,268 2,066 1,890 1,736 1,600 .., 1,111

252

Al test 2,500 20 54 47 30 0 .., 4

98 96 94 92 9 ... 83

No testing 10,000 } 1% freq. 8,264 6,944 5,917 5,102 4,444 ... 2,500
Ko teeting 100
.01%

Al test 100 37 23 16 11 8 ... 3



Table 1. Chances of detecting a carrier male for various types of matings.

Detects only one lethal Detects_all lethals carried Detects all lethals depending on frequency
homozy gous Known random inzn-oi_gula;ion
Nmberof  Teemtlve | carter * - (aam)
progeny o " n Lethal Gene Frequency = g in Lr.e_vious generation
n 1-(1/2) 1-(3/4) 1-(7/8) .2 .1 .05 .01 - 001
1 .50 .25 .12 .08 .05 .02 .00 .00
2 .75 44 .23 .16 .09 ° .05 .01 .00
3 .88 .58 .33 .23 .13 .07 .01 .00
4 .94 .68 .41 .29 .19 .09 .02 .00
5 .97 .76 .49 .35 .21 .11 .02 .00
6 .98 -82 .55 .41 .24 .13 .03 .00
7 .99 .87 .61 .46 .28 .16 .03 .00
8 1.00 .90 .66 .50 .31 .18 .04 .00
9 .92 .70 .54 .34 .20 .04 .00
10 94 .74 .58 .37 .21 .05 .00
15 .99 .87 .73 .50 .30 .07 .01
20 1.00 .93 .82 .61 .38 .09 .01
50 1.00 .99 .90 .70 .22 .02
100 1.00 .99 .91 .39 -05
200 1.00 .99 .63 .10
300 1.00 .77 .14
400 .86 .18

500 .92 .22

__EL.__
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Some Hereford breeders were at one time getting up to one-fourth dwarf
calves. Dwarflsm 1s caused by a recessive gene. With an AI testing program,
that number could have been reduced to essentially none Iin a generation. The
beef industry had not developed AI so they were limited to pedigree analysis
to solve the problem. Such a system was better than no testing, but wouldn't
the solution have been easy with AI?

What can AI do for the breeders of black and white Holsteins? The third
line in the table shows that they can almost stop worrylng about red and white
calves—-if their AI stud is obtaining at least 200 calves from each young bull
before putting him Into heavy service.

Even when the undesirable character appears very rarely such as 100 times
in a million or once in every ten thousand calves, the AI testing program 1s
much superior to natural selection. A few generations of testing will very
much reduce the number of affected calves even though the reduction 1s not
as striking as when the numbers affected are originally greater.

Most undesirables probably occur 1n such low frequencles. Actually, we
do not worry too much about having one affected calf in ten thousand, but we
really do not want as many or more than one hundred in ten thousand. We can
see that an AI testing program for young sires will rapidly reduce the number
of affected calves to less than one in ten thousand even if the character is
very frequent before testing begins.

The reason why AI testing of young sires ylelds such good results is that
if the frequency of affected calves is high, practically no carrler young sires
wlll escape detection, Thus, only normal sires will be used heavily. There
is no way of getting affected calves 1f the sire has two normal genes.

If the number of affected calves is low, carrier bulls will not be detected
as well, but there will not be many carrier cows to produce affected calves so

again we will not get many affected calves. Even 1f undetected carrier bulls do
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spread the undesirable gene, almost all carriers in the next generation of
bulls will be detected and the number of affected calves will be reduced still
further,

With all the expressed fears that AI may sabotage a population by spreading
an undesirable gene throughout the population, it is more than a little reassuring
to know this is unlikely to happen. More reassuring is the knowledge that
a properly set up young sire sampling program in AI will actually protect a
population against undesirable genes and reduce the number of affected calves.

A more technical description follows on how.to calculate expected fre-
quencies of affected calves of future generations with an AI testing scheme

with various numbers of test matings and initial gene frequencies.

The effect of testing bulls in AI on the frequency of recessive genes

As the frequency of a recessive gene drops under the conditions of AI,
the confidence of detecting a carrier by random mating goes down. What will
be the effect of the reduced confidence on selection against the gene?

The solution can be obtained by computing the gene frequenciles for several
generations. Males will be progeny-tested on n females. All males and females
which are homozygous recessive will be culled. Heterozygotes have the same
fitness as the "normal" homozygotes. Let pj = frequency of the normal allele,
A, in males surviving selection, qj = frequency of the other allele, a, in males

surviving selection, P, = frequency of A in females surviving selection,

3
Qj = frequency of a in females surviving selection, and j is the generation
number. The frequency of genotypes in the next generation can be found by

expanding (ij + qja)(PjA + Qja). The composition of the next generation

before and after selection 1s
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Males Females
Frequency Frequency
Genotype  Frequency Fitness Survivors Frequency Fitness Survivors
AA .P 1 .P P, 1 P,
Pi%y P33 Pi"s 173
Aa .Q.+q.P a, ( +q . P, .Q.+q.P 1 .Q.+q. P,
P3y%947; % 1(PyQy*ayPy) pyQ*a P, P35794%y
aa . 0 0 .Q. 0 0
qJQj qJQJ
Total 1 P 4o .Q.+q,P, 1 P +p.0,+q.P,
P33 i(pJQJ 4 J) P3P

ai(i=j+1) is the probability of not detecting a carrier by random mating
to the population. Males are tested in the population of contemporary females.
is the frequency

a, = (1 ~.5Q )n, where n 1s the number of progeny and Q

i 9+1 41

of a among the surviving females. The frequency of a among the selected males 1is

Uy = (/D (pyQta P )/ [p By + oy (pyQ+a P O]

The composition of the next generation can be found by expanding

Pyph + 4508 By b+ Qupa)

Note that this is a repeating pattern and can be easily programmed for a
computer. The results for various combinations of n and initial gene fre-

quencies are shown in Tables 2, 3, and 4 and Figure 1,



-—17--

Table 2, Number of affected offspring per million in the population

after one generation of testing young sires.

Number of
test Initial Gene Frequency
offspring .5 .2 .1 .05 .02 .01 .001
0 111,111 27,778 8,264 2,268 384 98 .00
10 40,691 14,432 5,567 1,819 350 93 .99
25 3,422 4,478 2,952 1,297 303 87 .99
50 37 534 966 728 239 77 .97
100 0 7 96 223 147 60 .95
200 0 0 1 20 55 37 .90
500 0 0 0 0 3 8 78
1000 0 0 0 0 0 1 .61
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Table 3., Number of generations of testing young sires to reduce
frequency of affected offspring in the population to
various levels,

Frequency
of Initial Gene Frequency
affected
offspring .5 .2 1 .05 .02 .01
No Test Offspring
.1 2 1 1 1 1 1
.01 8 5 1 1 1 1
.001 30 27 22 12 1 1
.0001 >50 >50 >50 >50 50 1
.00001 >50 >50 >50 >50 >50 >50
10 Test Offspring
.1 1 1 1 1 1 1
.01 3 2 1 1 1 1
.001 10 9 7 4 1, 1
.0001 30 29 27 24 15 1
.00001 >50 >50 >50 >50 >50 >50
25 Test Offspring
.01 1 1 1 1 1 1
.001 6 5 4 2 1 1
.0001 16 15 14 12 8 1
.00001 46 45 44 42 38 31
.000001 >50 >50 >50 >50 >50 >50
50 Test Offspring
.001 1 1 1 1 1 1
.0001 10 9 8 7 4 1
.00001 26 25 24 23 20 17
.000001 >50 >50 >50 >50 >50 >50
100 Test Offspring
.001 1 1 1 1 1 1
.0001 7 6 5 4 2 1
.00001 15 14 13 13 11 9
.000001 42 41 40 39 37 35
200 Test Offspring
.001 1 1 1 1 1 1
.00001 10 9 8 7 6 5
.000001 24 23 22 21 20 18
500 Test Offspring
.00001 1 1 1 1 1 1
.000001 13 12 11 10 9 8
1000 Test Offspring
.00001 1 1 1 1 1 1
.000001 10 9 8 7 6 5
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Table 4, Number of affected offspring per million in the population after 35 generations
of testing young sires (number of tested offspring equal 200 per sire).
Initial
Gene Generation

Frequency 1 2 4 5 8 9 10 20 25 30 35
.5 .0 .0 1. 28.0 55.4 43.4 27, 18.1 12.5 9.1 4 .8 .6 L4
.2 .0 1.7 28. 55.4 43.4 27.7 18. 12.5 9.1 6.9 3 .8 .5 .4
.1 .9 22.9 54, 45,7 29.3 19.0 13. 9.4 7.1 5.6 .2 .7 .5 .4
.05 20.2 53.8 46. 30.2 19.5 13.4 9, 7.2 5.6 4.5 .0 7 .4 .3
.02 55.5 41.3 26. 17.3 12.0 8.8 6. 5.2 4.2‘ 3.5 9 .6 .4 .3
.01 36.8 23.4 15, 11.0 8.2 6.3 4, 4.0 3.3 2.8 .8 .5 4 .3
.001 .9 .8 .7 .6 .6 .5 .5 .4 2 .2 .2 .1
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Figure 1. Frequency of affected offspring per million by generation when males are tested

for heterozygosity on 200 offspring.
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Summary IIIL

REGRESSION AND CORRELATION--
DEFINING HERITABILITY FOR THE SIMPLE GENETIC MODEL

The linear regression line for predicting one varilable, y, when another
is known, x, is called "best'" when the sum of squares of deviations from the

line is minimized. The statistical equation for the regression of y on x 1is

A A

y o= + by_x(x-ux)

or equivalently

~

= + X
y = a by &

~

where a = u - b My and a 1s the intercept of the vertical axis, b

y y.x x is the

~ y.

slope of the regression line, x is a known value, and y 1is the predicted value.
Values of y are along the vertical axis and values of x along the horizontal
axls 1f the relationship is plotted. Also, y will be predicted from a given

A

value of x as y.

If the regresslion line 1is estimated from a sample of data} uy = y = average

value of y variable, ux =x = average value of x variable,
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i) i)/ () [y - ERED] o
b = =

= - where
E L pen )2/ (nn1) (22 - L2/ 1)

b

Z(x—ux)z/(n—l) estimates ci (variance of x), and Z(x-ux)(y—uy)/(n-l) estimates
ny (covariance of x and y). (See Sﬁmmary V.)
If we have all the values in the population, Ui = Z(x—ux)z/n, ny =

Z(x~ux)(y-uy)/n, and the true regression coefficient,

B =g [o2 .
V.x Xy x

(Note the similarity between estimating the regression and knowing the true

regression coefficient.) (Note also that b =b only if ¢2 = o2 or if
y'x x'y x y

A

ny = 0.)

The population correlation coefficient 1is

g

VB B with the si f

and 1s estimated as

where r must be between -1 and +1 and 1s a standardized measure of how two

variables tend to vary together.

Simple genetic model

For the simple genetic model (1 locus, 2 alleles, the heterozygote value =
the average value of the homozygotes, d = 0) with no environmental effects,

the regression of offspring mean on parental value is 1/2,
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Parent Value Frequency Progeny Mean

AA u p? pu + q(ut+v)/2
Aa (utv)/2 2pq (pu/2) + [(utv)/4] + (qv/2)
aa v q2 plutv)/2 + qv

Here, u = v + p(u-v); the variance of parents = pq(u—v)2/2 = 0;, the genetic
variance since there are no environmental effects; the covariance of progeny
and parents = pq(u-v)2/4 = 02/2; and thus the regression of offspring on
parent = 1/2,

The following rules apply:

1. Any kind of dominance will lower the regression coefficient.

2. Selection on parents will not affect the regression if the hetero-
zygote has a value which is the average of the values of the homozy-
gotes (additive model).

3. If there is some form of dominance, selection on the parents will,
in general, affect the regression. This can also be seen by plotting

progeny means against parental values.

Simple genetic model with environmental effects

Suppose for the simple genetlc model we add a random envirommental contri-
bution which averages zero but has variance 02. Then, phenotype = genotype +
environment, or P = G + E. If there is no correlation between G and E, then
02 = g2 + oé. Usually we cannot separate the compoments of P directly. If

P g
what we want to measure 1s G, we may be misled by E.

Herltability defined

Heritability is defined in the "broad sense'" as the ratio of genetic

varlance to the total variance;

K= 2f(a? + ¢2) .
og! (o5 + 09



(In this printing, heritability will be denoted by h? rather than by h. As
a result, there may be some misprints.)

We know that with additive gene action (the heterozygote intermediate
in value between homozygotes) for the simple model that the covariance between
parent and progeny is (1/2)(02) as shown on the previous page. This can be
shown to be true even 1if environmental variation exists since we assume that
the environmental variation is random with average value zero.

If d does not equal O (some form of dominance), part of the genetic vari-
ance will be due to the dominance effect, o2 , and some to additive effects,
o< . >

Ea

If there is some form of dominance, we know that this reduces the regres-
sion between progeny and parent. The covarilance, however, between progeny
and parent is (1/2)(0§A) either with dominance or with no dominance (Appendix).

Heritability is defined in the "narrow sense' as the ratio of additive

genetic variance to the total variance;

%
h2= A ,
02 + g2
g e
where 62 = g2 + g2 ,
g &a &p

Thus, twice the regression of progeny mean on parent value estimates
heritability in the "narrow sense" even with dominance in the simple genetic
model with random environmental effects.

Later we will see that additive genetic effects are most important
since they have a much greater chance than dominance or epistatic

effects of being transmitted from one generation to the next.
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Appendix to Summary III

s oé FOR 1 LOCUS WITH 2 ALLELES
D

DERIVATION OF o2, o2
G GA
Let B8A value = 1, Aa value = d, and aa value = 0. The frequency of A = p

and 1 - p = q with random mating assumed,

2

Total genetic variance, GG

w, = p2 + 2pqd
g2 = p2 + 2pqd2 + 0 - (p2 + 2pqd)2
= p2 + 2pqd? - p"* -~ 4p3qd - 4p?(q?)d?

= pqlp(l+p) + 2d(d-2p2~2pqd)]

If d = 1/2, oé = pq/2.

Regression of G on number of "+'" genes, X, to define Oé (depends on p)

A
Genotype Frequency G X
AA p? 1 2
Aa 2pq d 1
aa q2 0 0
oé = réxoé = variance due to additive gene effects (regression of G on X).
A
_ %6x%x
2
X
Wy = 2p
o§ = p2(2)2 + 2pq - (2p)?
= 4p% + 2pq - 4p? = 2pq
be = p2 + 2pqd as before.
oy = 2P + 2pqd + 0 - 2p(p? + 2pqd)

= 2p2 + 2pqd - 2p3 - 4p2qd

= 2pq(p+d-2pd)
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2
o2 - (03 _ [2pq(p+d-2pd) ]2
G 2 2pq
A Gx

2pq(p+d-2pd) 2

= 2pq(p? + d? + 4p2d? + 2pd - 4p2Zd - 4pd?) .

If d = 1/2, of = pq/2. Then,

A

oé = cé - cé = variance in G not accounted for by regression
D A on X.
= p2q[1-p+4d (d-pd-1+p) ]

If d = 1/2, 62 =0,

GD

Covariance (progeny, parent) with dominance)

Values
Parents Frequency Parent Progeny Mean
AA p? 1 p +qd
Aa 2pq d (1/2) (p) + (1/2)(d)
aa q? 0 pd

= = 2
uprogeny uparent P* + Zpqd

p2(p + qd) + 2pqd(1/2) (p+d) ~ (p? + 2pqd)?

Cov

]

pq{p + d - 2pd)?,

which is (1/2)(0é ) no matter what p or d is.
A
Note the values of 1, d, and 0 are scaled from general values of u,

[(utv)/2] + d', and v by subtracting v from each general value and then dividing

by u-v. Note that the scaled d = (1/2) + [d'/(u-v)] in terms of the general

values. To convert the above results (varilances) back to general values,

multiply by (u-v)?2.



Summary IV

GENES IDENTICAL BY DESCENT--THE BASIS OF RELATIONSHIP

Individuals may have genes in common from a common ancestor. Such genes
are identical by descent. If genes are identical but not necessarily from a
common ancestor, they are identical in state.

The concept of identity by descent is a modern approach to the complica-
tions of multi-allelic, multi-locl gene systems which affect quantitative
traits., With the identity by descent approach there is no need to know how
many alleles are at a locus, the value of each allele, the number of loci which
have genes influencing the quantitative trait, or the gene frequencies. This
approach was formulated by Malécot (1948) and about the same time by
C. C. Cockerham and C. R. Hendefson who have further developed the concept.

Two limitations are:

1. Calculations must begin at a specified base period but in all

likelihood most life has originated from a small number of genes. -

2., The method can only estimate how many genes are in common between

two animals by descent on a probability basis.

Notation: An animal will have genes bibj at the b locus where the sub-
script describes the origin of the gene. The basis for calculation of rela-
tionships is the probability that a random gene at any locus, say b, is identical
by descent between individuals. At some arbitrary base period, tag the b
genes of the common ancestor and then compute the probability that the b genes
of the two individuals will be common by descent,

An example at the "b" locus:

Let the genotype of two animals be b and bmbn where the

b
i3
subscript refers to the origin of the gene. We can define the

probability that the genes at a locus are identical by descent

Y -
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between two individuals by comparing the origins of the first gene
of the first animal with the first and second genes of the second
animal, and the second gene of the first animal with the first and

second genes of the second.

Thus, we have:

Probability (bi = bm) =0ifi#m;y=14f 1 =m ,
Probability (bi = bn) =01if 1i #ny; = 14f 1 = n , and
Probability (bj = bm) =04if j#my; =11f j =m ,
Probability (bj = bn) =04f j#n; =14f j =n .

The probability that a random gene at this locus is identical in two animals
is the average identical in these four comparisons, i.e., (1/4)[P(i=m) + P(i=n) +

P(3=m) + P(j=n)]. In fact, this is the probability that a random gene from one
animal and a random gene from the other will be identical by descent.

Specific example: _
Mate two unrelated noninbred animals, blb2 X b3b4. The possible

offspring are b1b3, b1b4, b2b3, b2b4. The fraction identical between
any progeny, say b1b3, and any parent, say blbz’ is

P(b, = b)) = 1
P(b, = by) =0
P(b, = b)) =0
P(b, =by) =0

Average = 1/4

Additive relationship

We normally think of the relationship of an individual with itself as
one so the a or additive relationship between two individuals is defined as
twice the fraction of genes identical by descent, and as shown in the appendix’ to VI,
since each locus has two additive gene effects this is the measure of the
fraction of additive gene effects in common between relatives. In a non=-

inbred population, the additive relationship is equal to the coefficient of

relationship.
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The coefficient of relationship between animals 1 and j is

-
R aij/‘aiiajj »

where aij is the additive relationship between i and j, ay 1s the additive
relationship of i to itself (aii = 1 if noninbred) and ajj 1s the additive

relationship of j to itself. The following table describes most common

kinds of comparisons for pairs of individuals.

POSSIBLE PROBABILITIES OF GENES IDENTICAL BY DESCENT

Fraction Identical "a"
Comparison by Descent Relationship
blbl with blbl 1 2
(completely inbred with self)
blb1 with blb2 1/2 1
blbl with b2b2 0 0
blb2 with blb2 1/2 1
(noninbred with self)
b1b2 with b1b3 1/4 1/2
byb, with b b, 1/4 1/2
blb2 with b3b4 0 0

Other examples follow:

Parent-progeny relationship

Parents,blb2 x b3b4,have progeny blb3’ blba’ b2b3, and b2b4' From the

table above, the fraction of genes identical by descent for any one parent

with b b, 1s 1/4; with blb 1/4; with b,b 1/4; and with b 1/4. The

13 4’ 273’
average 1s 1/4 and the coefficient of relationship is 1/2.

2b4’

Grandparent-grandprogeny relationship

Two animals, b1b2 x b3b4, have progeny b1b3, ble’ b2b3, and b2b4. One

of these progeny chosen at random, say b1b3 is mated to another animal, b5b6:
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chosen from the population. Thelr progeny are b1b5’ b1b6’ b bs,'and b

3 3b6'
Now compare genes of either grandparent, say b1b2’ with genes of grandprogeny.

The fraction of genes identical by descent with blb is 1/4; with blb 1/4;

5 6°

with b_b_, 0; and with b_b,, 0. The average 1is 1/8.

3°5° 36’
The same average would be found for the grandparent b.,b, with the other

172
12 possible grandprogeny types. Note that in one-half the comparisons the
grandprogeny and grandparent are unrelated in the sense that no genes are
alike at that locus. Since the probability of no genes in common at one
loci = 1/2, the probability of no genes in common at n loci = (1/2)n for grand-
parents and grandprogeny which 1s not a very large probability. The average
identical over all loci is likely to be quite close to the probability of

genes being identical by descent,

Full sib relationship

Two animals,blb2 x b3b4,have progeny b1b3, b1b4, b2b3, and b2b4.

There are sixteen full sib comparisons, each having equal frequency. The

values in the table are the probabilities of genes being identical for each

comparison.
Possible Genotypes of
2nd Full Sib with Frequencies
1/4 b1b3 1/4 b1b4 1/4 b2b3 1/4 b2b4
1/4 blb3 1/2 1/4 1/4 0
Possible
Genotypes of 1/4 b1b4 1/4 1/2 0 1/4
1st Full
Sib with 1/4 b,b 1/4 0 1/2 1/4
2°3
Frequencies
1/4 b2b4 0 1/4 1/4 1/2

The average will be If X For all 16 cells, f, = 1/16. The average fraction

171° 1
of genes identical by descent = (1/16)[(4)(1/2) + (8)(1/4) + (4)(0)] = 1/4 as
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before. Note that although the average fraction of genes ildentical by_descent
is 1/4 that 1/4 of the comparisons tmve probability 1/2 (an identical genotype),
1/2 have probability 1/4, and 1/4 have probability 0. One-fourth of the com-
parisons have no genes in common at 1 locus, and therefore the probability of
no genes in common at n loci = (1/4)n for full sibs.

Half-sib relationships

Animal blb2 1s mated to b3b4, and they have progeny b1b3, blbé’ b

and b2b4. Animal blb2 1s also mated to b5b6’ and they have progeny b

2P
1Ps»

b , and b_b

lb6’ b2bS 5P The values in the table are fraction of genes identical

by descent for each half-sib comparison.

Possible Genotypes of
lst Half-8ib with Frequencies

1/4'b1b3 1/4 b1b4 1/4 b2b3 1/4 b2b4
1/4 blb5 1/4 1/4 0 0
Possible
Genotypes of 1/4 blb6 1/4 1/4 0 0
2nd Half-
8ib with 1/4 b,b 0 0 1/4 1/4
5
Frequencies
1/4 b2b6 0 0 1/4 1/4

The average fraction of genes identical by descent is (1/16)[(8)(1/4) + (8)(0)] =
1/8, and the a relationship = 1/4. One-half of the comparisons have no genes

n
in common at one locus, and the probability of no genes in common at n loci = (1/2) .

Summary
Ave. Fraction Prob. Genotype Prob. No Genes in
Relationship in Common in Common Common at n Loci
Parent-progeny 1/4 0 0
Grandparent~grandprogeny 1/8 0 (1/2)n
Full sibs 1/4 1/4 /6"

Half-sibs _ 1/8 0 (1/2)n
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Dominance relationship

The probability of an identical genotype at one locus by descent is the
probability that 2 genes are in common at one locus, i.e., for relatives with
symbolic genotypes bibj and bmbn’ P(genotypes identical) = P(bibj = bmbn).
Only full sibs in the above table can have a genotype at one locus identical
by descent, e.g., ble and blbh' The dominance relationship between a pair
of animals is defined as the probability of genotypes being identical by
descent.

The following is an example of computing average probability of genotypes
in common for full sibs.

Let the parents be unrelated so that their symbolic genotypes and those

of their full sib progeny can be represented as:

Parents: b1b2’ b3b4

Full Sib Progeny (with frequencies):

1/4 b by, 1/4 bib,, 1/4 byba, 1/4 byb

4

To compute the average probability that bibj = bmbn’ we must find the average

of all 16 comparisons as shown in the following table.

Possible Genotypes of
2nd Full Sib with Frequencies

1/4 b.by 1/4 b,b, 1/4 b,by 1/4 b.b,
1/4 blb3
Possible The fre ncy of each comparison 1is
Genotypes of 1/4 b1b4 quency e p
1st Full
Sib with 1/4 b,b B
Frequencies 23 (1/4) (/4) = 1/16.
1/4 b2b4

Then, the average P(genotypes in common)
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= (l/l6)[P(b1b3=b1b3) + P(blb3=blb + P(b,b_=b b3) + P(b,b_=b b4) +

4) 13 2 13 "2

P(b1b4=blb3) + P(blb4=blb4) + P(b1b4=b2b3) + P(b1b4=b2b4) +

3=b1b3) + P(b2b3=blb4) + P(b2b3=b2b3) + P(b2b3=b2b4) +

4=b1b3) + P(b2b4=blb4) + P(b2b4=b2b3) + P(b2b4=b2b4)

= (1/16)(1+0+0+0+0+1+0+0+0+0+1+0+0+0+0+ 1)

P(bzb

P(bzb

= 1/4,

Note that only 1 of 4 comparisons are expected to havg'genotypes ag the
"B" locus in common, but 1/4 also is the average fraction of all loci with
genotypes in common for one full sib with another full sib.

Dominance effects are defined as the interaction of two genes at one
locus. Then dominance can contribute to likeness only between full sibs for
relatives in the summary table. (Dominance effects occur when the value of
bibj 1s not the average value of bi plus the average value of bj') The
dominance relationship between noninbred animals A and B, dAB’ can be found

from the additive relationships among the parents of A and B as will be seen,

Inbreeding coefficient

The coefficient of inbreeding, F, 1s defined as the probability that 2
genes at one locus will be identical by descent averaged over all loci, 1i.e.,
for an animal with one locus and genotype bibj’ F = P(bi=bj). The two genes
will be identical only 1f the parents have genes identical by descent. The
expected frequency of 2 genes identical by descent at one locus 1s equal to the
probability that each parent will contribute an identical gene, i.e., the
probability of genes being identical between the parents. Therefore, Fp =
(1/2)(asd) where p, s, and d refer to the progeny, sire, and dam, respectively,
and app =1+ (1/2)(asd). Fp 1s the inbreeding coefficient which corresponds

to the fraction of loci having both genes identical by descent.
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Some useful identities Iin working with additive and dominance relationships

If animals A and B have parents AS’ AD and BS’ BD’ respectively, then

usually

a . = (1/4)(a + a + a + a ) .
ak ASBS ASBD ADBS ADBD

Also as shown in the appendix,

N

4,8

or equivalently

(l/2)(aAB + ap } if A is older than B.

S
if B is older than A.
(1/2)(aBA + aB )

s B

This equality is the basis for computing additive relationships by the tabular

method.
The dominance relationship can also be computed from the additive rela-
tionships among the parents if the animals are themselves noninbred (the

parents may be inbred). As shown in the appendix,

d,, = (1/4)(a a + a a ),
AB ASBS ADBD ASBD ADBS

and as just seen, the inbreeding coefficient for an animal is one~half the

additive relationship between its parents,

F, = (1/2)(a Fy = (1/2)(ay ) »

) s
ASAD S D
and an animal's additive relationship to itself is

a,, =1+F, =1+ (1/2)(aASAD) jagg =1+ Fp=1+ (1/2)(aBSBD).

Expansion to more than one locus

The probability of a pair of nonallelic genes being alike in two indivi-

duals by descent = P(genes at first locus are identical by descent) X P{genes
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at the second locus are identical by descent). Expansion to trios, etc., of
nonallelic genes 1is obvious.

The probability of a particular combination of an allelic pair of genes
(a genotype) and a nonallelic gene being identical by descent in two indivi-
duals = P(the genotypes are identical) x P(the nonallelic genes are identical).

The probability of a genotype at one locus and a genotype at another
locus being common by descent in two individuals = P(first locus genotype is
alike) X P(other locus genotype is alike). However, these probabilities are
equal. Thus, the probability of genotypes being common at two loci is P(geno-
type in common) squared or the square of the dominance relationship.

The expansion to higher order combinations is obvious.

To apply these principles, we need only two measures of relationship:
aij = the additive or a relationship between individuals 1 and j which is
twice the fraction of single genes which are identical by descent (this will
be the numerator of the coefficient of relationship), and dij = the probabil-

ity that individuals i and j have a genotype at one locus (an allelic pair of

genes) identical by descent (this is called the dominance or d relationship).

Tabular method of computing aij and 41j

The easiest and safest method of computing additive relationships is the

tabular method:

1. Determine which animals you are going to include in the table.
Include all animals after the oldest is chosen. Put them in order
by date of birth, oldest first.

2, Write the names or numbers of the animals in order of birth across
the top of the table (the columns) and down the side of the table

(the rows) as shown in the example which follows.
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3. Write above the number of the animals the numbers of their parents,
if known.

4. Put a 1 in each of the diagonal cells of the table such as row 1,
column 1, ; row 2, column 2; etc., Thils 1is the animal's basic rela-
tionship to itself unless it is inbred. For the base generation
animals, enter their relationships to each other or assume them to
be zero, and if you know these, add the inbreeding coefficients to the
diagonal.

5. Begin at the diagonal which now has a 1 in it. Add to this 1, one-
half of the relationship between the animal's parents. This is the
inbreeding coefficient. It will often be zero. Compute the off-
diagonal cells by rule 6.

6. Compute entries for each off-diagonal cell of row 1 according to the
rule of 1/2 the entry for the first parent in this row plus 1/2 the
entry for the second parent in the row. When the first row is finished,
write the same values down the first column.

7. Continue as before for the next rows and columns until finished,
always remembering to do a row at a time and to put the same values
down the corresponding column before going to the next row.

The following is an example of the aij and dij relationships for paternal

half-sibs A and D.



--37--

B~C B-E
B C E A D
B 1 0 0 1/2 1/2
C 0 1 0 1/2 0
E 0 0 1 0 1/2
A 1/2 1/2 0 1 1/4
D 1/2 0 1/2 1/4 1
ag, = 1/2 (aBB + ch) = 1/2 1 +0) = 1/2
agy = 1/2 (aBB + aBE) = 1/2 A +0) = 1/2
8oy = 1/2 (aCB + aCC) = 1/2 (0 +1) = 1/2
dn = 1/2 (aqp + agy) = 1/2 (0+0) = O
Apy = 1/2 (aEB + aEC) = 1/2 (0 +0) = 0
app = 1/2 (aEB + aEE) = 1/2 (0 +1) = 1/2
app = 1+1/2 (aBC) = 1+4+1/2(0) = 1
8,p = 1/2 (aAB + aAE) = 1/2 (1/240) = 1/4
any = 1+ 1/2 (aBE) = 1+ 1/2 (0) = 1

The dominance relationship for non-inbred animals can be found from the

additive relationships among the parents, e.g.,

d + a

= l-(a x ;
AD 4 BB CE CB

R s -
X aBE> =3 (Ix 040 x0) =

0'
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Appendix to Summary IV

Probability of genes identical by descent:  (Malecot, 1948)
1. Definition: Let the pair of animals, A and B, have genotypes bibj and

bkbﬁ representing symbollically all loci, then

P(random pair of genes identical) = %5 =«% [P(i=k) + P(i=2) + P(j=k) + P(j=42)]

2, Definition: The additive relationship, Gp = 2Q
AB.
Probability of genotypes identical by descent:
1, Definition: Let AS and AD be the parents of A and BS and B, be the parents

of B with genotypes bibj for A and bkb for B, then

£
P(genotype identical) = qAB = P(bibj = bkbﬂ)'
2. Computationally, dAB = 1/4 (aASBsx aADBD + aASBDx aADBS) for non-inbred animals:
P(bibj = bkbz) = P(AS contributes bi to A and BS’ bi=k to B) X
P(AD contributes bj to A and BD’ bj:ﬂ to B)
+ P(A

S contributes bi to A and BD’ bi=k to B) X

P(AD contributes bj to A and BS’ bj=£ to B)

But P(AS contributes bi to A and B_ contributes bi to B)

S

=P(genes identical by descent for Asand BS) =

04 . Similarly for the other probabilities,
AgBg '



Thus
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B(b;b; = bb ) A B XA B A.B ApBg

it

1/4 [;ASBSX aADBD + aAsBD X aADBé]
The inbreeding coefficient, F,, is the fraction of loci with genes identical by
descent for animal A,
By definition F of the loci of A have @ = 1 and 1 — F of the loci
have @ = 1/2,
i.e., F of the loci are of the form bib‘ with @ = 1 and 1 — F of the

1
loci are of the form bibj with @ = 1/2,

1. Thus the average fraction of genes identical for A with itself is:

aAA= P(genes identical) = (F)(1) + (1-F) (1/2) = 1/2 4+ (1/2)F and

= (04 =
A 2 AA 1+ F.

2. If S is the sire of A and D is the dam of A, then F, = 1/2 ag

A D’

Let the genotypes be bibj for A, bkbg,for S, and bmbn for D,

By definition &

= 16 [P(i=i) + P(i=j) + P(j=i) + P(j=j):l

1/2 + 1/2 P(i=j)

Thus FA = P(i=j).

But P(i=j) is Q__ since bi must come from one parent and bj from the other,

SD

i.e. P@i=j) = 1/4 [P(kqn) + P(k=n) + P(4=m) + P(ﬁ‘—"n)]

a
SD

'
it

Therefore, a =1/2 ag

A SD D’
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The tabular method of computing relationships depends on the fact that if

d =
B has parents BS and B, then a B 1/2 (aAB

H + a )
D A ABD

S

\ i b .
Let the symbolic genotypes be bibj for A, bkbl for BS and bm n for BD

The equally possible genotypes of B are:

B bb

1’ k m
B2’ bkbn ;
B3, blbm ; and
B4’ bﬁbn

By previous definition,
Q, _ = average of O a_, @ , and O

AB AB,’ "AB,’ AB, AB,’
Opp = /4 { 1/4 [P=k) + P(i=m) + P(j=k) + P(j=m3]
+ 14 [P + P(i=n) + P(j=k) + P(j=n)]

+ 1/4 —P(i=£) + P(i=m) + P(j=8) + P(j=m2]

+ 1/4 |P(i=£) + P(i=n) + P(j=£) + P(j=n):|}

By combining and rearranging we have: )
OﬁB = 1/8 [P(i=k) + P(i=£) + P(i=m) + P(i=n) + P(j=k) + P(j=£) + P(j=m) + P(jznﬂ

But ozABq = 1/4|:P(i=k) + P(i=£) + P(j=k) + P(j=£)] and

o = 1/4 [P(i=m) + P(i=n) + P(j=m) + P(j=n)] .

ABy,

= (04 =
Thus aAB 1/2 (aAB + AB ) and an 1/2 (aAB + ap ).

S D S D



Summary V

QUANTITATIVE GENETICS: THE MEAN, STANDARD DEVIATION, AND EXPECTED VALUES

Before discussing selection for quantitative traits, a review of some
basic statistics may be needed. Two important statistics for the description
of continuous or quantitative data are the mean (or average) and the standard

deviation. The usual Greek symbols for these are u, "mu," and o, small "sigma."

The square of the standard deviation, ¢?, is called the variance, "sigma squared.”

Computing the mean

If xi(i=1, «vey N) is the observation on the iEE individual, then the

estimate of M is u or equivalently';, "x-bar";

™ =2

= L xi/N = (x1 + %, + ...+ xN)/N = Xy

N
the average of N observations. The symbol 151 is the mathematical notation
that means to sum everything that follows the I for changes in the subscript 1
which changes by units of 1 from i = 1 (the first record) to i = N (the last

record).

Variance

Although the standard deviation is more descriptive, the usual measure
of variability 1is the variance, oi—wthe standard deviation squared for trait X.
Knowledge of variances is necessary in animal breeding for at least two reasoms.
Variances are useful in describing populations and more importantly are used
along with covariances in developing procedures for predicting genetic values.

The definition of oi is

oi = E(Xi_“x)2 = [(xl'”x)z + (XZ-UX)Z Foeee F (xN_ux)Z]/N i

4] --
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where N 1is the total number of observations in the population. The E stands
for expected or average value. Thus, ci equals the average of the squared
deviations of the observations from the mean for a variable named X.

While the variance is in terms of units squared, the standard deviation
is in terms of the units of measurement-—the same as the mean, e.g., the mean
of milk production may be expressed in 1lb. of milk, the variance in 1b? of

milk, and the standard deviation in 1b. of milk.

Computing the variance

If X4 (i=1, ..., N) 1is the observation on the iEH-individual, then
2 N 2
= — 2 - 2_‘
oy 121 (xi ux) /N (in ﬂux)/N.

The above procedure is appropriate when My is known exactly. When N includes
the whole population, the computation is the population variance, and when

N is a sample of the population, the value is an estimate of the population
variance and should be dencted as Si. If Hy is estimated from a sample of

A~

the data as x or M then Ui is estimated as

’

- (Zx) (£x)
2= (zxf - 1/ (D)

where N-1 is the degrees of freedom.

The division is by N-1 so that E(;i) = oi, i.e., the average of estimates
of oi will be oi. Thus, the estimation procedure is said to be unbiased.
Some alternative computing procedures were listed earlier on page 4. The

section on expected values will describe how to find the expected or average

value of estimates such as oi.

The mean and standard deviation characterize a mnormal distribution of

observations in the following fashion. Since means of observations from
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other distributions approximate the normal distribution, there 1s sufficient
justification to examine the normal distribution. The normal distribution
follows the bell-shaped curve where the values along the horizontal axis are

plotted against the frequencies of those values on the vertical axis.

Frequencies

- -2 -g +o +2 +
® Yx7% My % Hx % MxT%

values = xi >

Mo is the average of all the x, and lies at the center of the symmetrical

i

distribution--one-half the Xy above and one-half the Xy below Hy s The range

uxiox will contain 68% of the x uxiZOx will contaln 96% of the xi; etc.

13
The distribution of averages of N observations will have Hee = s but
the variance of the averages will be 0%.= Ui/N.

The square root of that, Og = oﬁj/ﬁ; i1s often called the standard error

of the mean.

Covariance

The variance thus measures how one trait varies. The covariance, a
measure of how two traits vary together (co-vary), is also needed in developing
selection procedures. For example, the covariance between two traits measured
on the same animal, e.g., height and weight, may be needed or the covariance
between the same tralt measured on two relatives may be needed. The defini-
tion and computing procedures for the covariance are analogous to those for

the variance.
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Suppose that the two measures are X, and Yy (1=1, ..., N) for the

i
th th
measurements on the i{— individual or on the i— pair of relatives. The

covariance has the symbol Oxy (covariance between x and y) and 1s defined as

the average of products of deviations from the means of traits x and y;

Q
|

= ELGrymn) (y,-0.)] =

[(xl-ux)(yl-uy) + (xz-ux)(yz-uy) + ...+ (xN-ux)(yN-uy)]/N

Xy

N
z - - .
i=l[(xi ux)(y1 uy)]/N

The above procedure 1s appropriate when by and uy are known exactly
and gives the population covariance when N includes the whole population and
glves an estimate (ny) of the population covariance when N 1is a sample.

1f ux and uy are estimated from a sample of the population as X and ¥
(ux, uy), then

~

E[(xi—ux)(yi-uy)]/(N-l)

(2x,) (Ty,)
171~ N

g
Xy

[Zx 1/7(N-1).

Note the similarity in the computing procedures for variances and covariances.

A positive covariance indicates that as the value for one trait increases,
the value for the other trait also tends to increase. A negative covariance
indicates that as the value for one tralt increases, the other tends to decrease.
The traits are not correlated when the covariance is zero. The units of a

covarlance are units of the first trait times units of the second trait.

Correlation

The correlation coefficient is a standardized measure of the relationship
between two traits which allows comparisons of correlations among different

traits. The possible range is -1 to +1. The correlation between traits x and
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y or relatives x and y 1s defined as

If estimates of the covariance and variances are used in the formula, then

rxy 1s an estimate of the population correlation coefficient.

Expected values

After teaching selection procedures for several years and glving rules
of thumb for finding variances and covariances of combinations of variables,
some students suggested more facility with expected values would help in
understanding the procedures. Many classes have, since then, been taught the
selection index with extensive use of expected values. The use of expected
values increases the powerfulness and flexibility of the selection index but
at the expense of the initial frustration of many students who have difficulty
in developing a feeling for what they are doing. Experience has shown that
most students overcome this difficulty after some practice and that they become
much more adept at solving problems which involve more than the usual selection
for additive genetic value.

The symbol often used for the expected or average value of some expression
involving constants and variables is E( ). Expected values of most expressions
used in estimating genetic parameters are relatively easy to find 1f certain
definitions are remembered.

Let ¢ = constant; x = variable from some distribution with mean Mo and
variance oi; and y = variable from some distribution with mean uy’ variance
0;, and covariance with x, ny'

Definition 1: E(c) = ¢. Certainly the average value of a constant is

that constant. Similarly E(c?) = c2.
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Definition 2: E(x) = oo The average of all possible values of variable
x 1s 1ts average or mean By

Definition 3: E(ex) = ¢ E(x) = CH - The average of all possible values
of a variable times a constant is the constant times the mean of the variable.
In expressions involving a constant the constant can be taken outside the
expectation operation.

Definition 4: E(x+y) = E(x) + E(y) = My + uy' The expectation of a sum
can be taken as the sum of the expectations of the parts.

Definition 5: E(x-ux)2 = oi. By definition, the variance of a variable
X, oi, is the average squared deviation of the variable from its mean. Thus,
E(x%) = oi + ui which follows directly from definition 5. Expand the equation

for definition 5 and take the expectations of 1ts parts:

oi = E(x-ux)2 = E(x2—2xux+u§)
= E(x?) ~ E(2p %) + E(u2) from (4)
= E(x2) - ZuXE(x) + ui from (1) and (3)
= E(x?) - (2u)(u) + n2
= 2y — 4,2
= E(x°) M

Therefore, E(xz) = oi + pi. Note that E(xz) = oi when ux = 0. Also, as a
rule for finding the variance for a variable x, E(x?) = ci can be used since
. does not enter into the variance.

Definition 6: E[(x—ux)(y—uy)] = ny' By definition, the covariance
between variables x and y, oxy’ is the average of the products of thelr devia-
tions from their means. Thus, E(xy) = Oxy + uxuy which follows from defini-
tion 6. Expand the equation for definition 6 and take the expectations of

its parts:
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Q
3

Xy E[x-ux)(y-uy)]

- - +
E(xy = Wy - ux uxuy)

Yy
E(xy) - uxE(y) - uyE(x) + My from (1) and (3)

E(xy) - Mghy = Hghy + uu

E(xy) - HyHy e

y

Therefore, E(xy) = ny + ux“y' Note that E(xy) = oxy when either or both M
and uy = 0.

The general procedure for applying these definitions to find the expected
values of more complicated sums of squares and products of variables is to
use the following steps:

Step 1. Substitute elements of the model into the function.

Step 2. Expand the function in terms of the model.

Step 3. Find the expected value of each term of the function.

Step 4. The expected value of the function will be the sum of the

expected values of the individual terms.

Example

=u+ + P
Let Pij n Ai Eij’ where 11

jEE record in the iEh class, pu 18 a constant, A, 1s a variable with y, = 0
’ i ' A

is an observation (variable) on the

and variance oi, Eij is a variable with Mg = 0 and variance 0%, and the covari-

ance between any two A's, any two E's or any A and E 1s zero.

The expected value of any observation is

E(Pij) = E(p + A+ Eij) = E(p) + E(Ai) + E(Eij)

p+0+0=1yp.

The expected value of any observation squared is

2 . 21 = 2 2 2 +
g(pi E[(u + Ai + Eij) ] E(uc + Ai + E4, + zuAi + 2uE 2A.E, )

i3 ij 1714
E(u?) + E(A%) + E(Eij) + E(ZuAi) + E(2uEij) + E(ZAiEij)

j)

]
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2 2 2
+ o< + o0
¥ AT °E

2 2 3 g2
u< + CA GE

+ 2uE(Ai) + 2uE(Eij) + 2E(A1Eij)

since E(Ai) and E(Eij) both equal zero and E(AiEij) = GAE = 0.

The expected value of the product of observations in the same class 1s

P = + ] .
BP0 =BG +A FEDG+A +E D] Q1A D
= 2 2
E(u +uAi+pEij,+uAi+Ai+AiEij,+uEij+AiEij+EijEij,)
=2 +04+40+0+ oi +0+0+0+0
= 12 2
ue + OA
because both E(AiAij') and E(AiEij) are equal to zero since Opp = 0 and
E(E..E,.,) = 0 since ¢ _
ij 1] EijEij' 0.

The expected value of the product of observations in different classes
is

E( ) = E[(u+ A+ Eij)(u + A, FE )] (1'#1 and j#j')

i'j

2
E(u +pA1,+uEi,j,+uAi+AiAi,+A E j'+“Eij+A ,E j+E E i3 )

=12 +0+04+0+0+0+0+0+0

PiiFir;

i

=]_12

for similar reasons as for the other expectations of the P's.

Another Example

Suppose a phenotypic observation on animal i1 is made up of a constant u,

a genetic value Gi’ and an envirommental effect Ei:

Pi =u + Gi + Ei

where Wg = Mg = 0, E(Gi) = oé, E(Ez) E’ and no covariance between any G's,

any E's, and any G and any E.

E(Pi) =E(q + G, + Ei) = EQu) + E(Gi) + E(Ei)

Yp i

u+ Mo + Mg = M
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2 2] = 2 2 2
E(Pi) E[(u + Gi + Ei) ] = E(u¢ + Gi + ES + 2u6, + szi + 2G1E1)

i
E(u?) + E(G]) + E(Ei) + E(2u6,) + E(2uE)) + E(2G,E,)

2 4+ 62 4+ 42 +
u OG OE 0+0+0

If Ok # 0, then E(GiEi) would also be different from zero.

o = E[(P,-w?]) = E[(u+ 6 +E - w?] =E[( +E)?]

E(Gi) + E(Ei) + 2E(G1Ei)

fl

2 4 42 4
GG OE 0

E(Pin) = E[(n + Gi + Ei)(u +.Gj + Ej)]
- 2
= E(pc + qu + qu + uGi + uEi + GiGj + GiEj + GjEi + EiEﬁ)
= u2
Cov(Pin) = E[(Pi'“)(Pj"“)] =E[(u+ G, +E; - w(u + Gj + Eﬁ - w]
= E[(Gi + Ei)(Gj + Ej)] = E(Gicj + GiEj + GJ.Ei + GjEj)

0O0+0+0+0 from assumptions.

Practice problem

is an observation, p is a constant, and E, is

Let X, = u + E,, where X 1

1 i 1

a variable with Hg = 0 and variance oé and the covariance between any two E's

is zero. Forn =3, 1 =1, 2, 3, find expectations of the following. Show

all steps.
) ER® = u = 6) E[E(Xi-ux)zl =
2) EQX)) = 7 E[Z(X;-py)?/n] =
n - -
3) E(Z; X,/n) = ERX) = 8) E[Z(X;-X)] =
4) E(IX)) = 9) E[z(x14§)2] =

[}

5) E[Z(X;-uy)] 10) E[£(X;-X)?/(a-1)] =

More complicated expressions are done similarly as in the example and problem.
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GENETIC VALUES, COVARIANCES, AND EXPECTED VALUES

Definition of genetic values

An additiye gene effect 1s defined as the average replacement value of
that gene, i.e., 1f that gene replaces the average gene, the change in value
is the additive genetic effect of that gene. Thus, 1f two genes are added,
the change in value will be twice the additive effect of adding one gene.
The sum over all loci of all additive genetic effects is the additive

genetic value, G,, of the animal.

A

A dominance genetic effect is defined as the average replacement value
of a particular gene pair at one locus as a difference from the additive
genetic value. The sum over all loci of all dominance genetic effects is

the dominance genetic value, G_, of the animal.

D

An additive by additive genetic effect is defined as the average
replacement value of a pair of non-allelic genes-~the specific effect of a
gene from one locus and a gene from another locus in addition to the normal
additive gene effects of the genes. The additive by additive genetic value,
GAA’ of an animal is the sum of all effects of non-allelic gene pairs,

An additive by dominance gene effect 1s defined as the average replace-
ment value of a gene at one locus and a gene pailr (genotype) at another
locus as a difference from the additive and dominance effects. The sum of

all such effects is the additive by dominance genetic value, GA , of an animal.

D
Similarly, higher order genetic effects can be defined, e.g., additive

by additive by additive, additive by dominance by dominance, etc. These

genetic effects are defined to be independent and to have average values of

zZero.,
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The total genetic value of an animal is the sum of the various genetic
values:

G = GA + G+ GAA +G, +G + ...

D AD AAA

If these values could be measured separately, variances for each could
be computed. Whether or not they can be measured, a variance can be hypo-
thesized for each kind of genetic value. 1In fact, since the various genetic
values are defined to be independent, the total genetic variance is the sum

of the variances of the component genetic values:

2 - <2 2 2 2 2
g4 =g + g + g + 0 + O + ..
G GA GD G!! GAD G A A

A simpler but less symbolic notation for the components of genetic
variance is Uij where 1 refers to the number of single nonallelic genes
and j refers to the number of allelic pairs (genotypes) contributing to the

genetic effect. This change in notation is summarized in the following

table.
Gene action Contribution to genetic variation
sum of effects of symbols jargon
. 2 2 i 1
single genes: al, a3, bl’ blO’ etc. UGA 010 additive genetic variance
$ $ . 2 2
allelic pair : alaz, clcs, etc. UGD 991 dominance genetic variance
- fr 2 2 ‘ ' f
non-allelic pair : albl’ 2,Cs etc., %G 950 additive X additive
Slngl: Eege azddaélelichair : Ué 0%1 additive X dominance
17172 "175°6° ' AD
two ailzlicbpaiZSé b.b . ete oé 0%2 dominance ,\ dominance
1"3746” 172273 ' DD
in general Uij where 1 refers to number

of nonallelic genes
acting together with j
allelic pairs
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The total genetic variance can then be written as

2. 2L 2 _ 2 2 2 2 2
GG 14§>0 oij 010 + 001 + 020 + 011 + 002 + .00 .

Gene effects in common by descent

Since there are two additive genetic effects at each locus, the fraction

of additive gene effects in common for relatives A and B 1s a,, which equals

AB
2 times the probability that a random gene from A is identical by descent to
a random gene from B.

The fraction of dominance effects in common will be dAB which equals the

probability of genotypes ideatical by descent ar fraction of loci yith identical genotypes.

Similarly, a’

AB is the fraction of additive by additive genetic effects

in common; aABdAB is the fraction of additive by dominance genetic effects
alike.
In general, (aAB)i(dAB)j gives the fraction of genetic effects in

common due to 1 non-allelic genes acting together with j allelic pairs

(genotypes).

Genetic Covariances between relatives

The genetic covariance between relatives depends on the fraction of the
different kinds of genetic effects which are common by descent. In fact,
the covariance due to additive gene effects in common is aABO%O--the product
of the fraction of additive effects in common and the additive genetic
variance. The covarilance due to common dominance effects is dABoél’ that

due to additive by additive effects is a 0’ and that due to additive by

2 2
ABY2

2 .
dominance effects 1is aABdABcll° These and others are summarized below.
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Contribution to genetic covariance between individuals:

Contribution to covarilance

Genetic components between individuals A and B
°%o (aAB)l °%o
%61 (dAB)l %01
%0 (a,p)* 9%
) (ayp) (dAB) ot
%2 (dpp)? G,
°%) (aAB)l(dAB)2 P
ol (ayp) (dAB)j o}
1=0, ..., ny 3=0, ..., nwith n Iaci,

also 1 + j must be » 0 and 1 + j < n)

The total genetic covariance 1s the sum of the parts, i.e.

2 2
0GAGB 2,590 * 9an01 * 24520 * %apdaptil t v -

This can be written 1in summation notation as
_ I Z i 3
o = (aAB) (dAB) o

GGy  1+3>0

Note that the subscripts of the variance components correspond to the

superscripts of the additive and dominance relationships. When j = 0,

0

j_ = = 1:
(dAB) = 1 for any d,_ and when d 0, (dAB) 1 but (dAB) 0, etc.

AB AB
These values are somewhat 1llustrated 1n the coefficients in the above
column for contribution to covariance between individuals. (Note that as
i increases, the coefficlents of the higher order genetic components of

variance decrease.) Even if cio is large, the contributlon to likeness by

that component, (aAB)i OiO’ wlll be small 1f 1 1s very large.
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Use of expected values in showing contribution to genetic covariance

In brief, the average or expected value of two variables X and Y is
written E(XY). If E(X) = 0 = the average of variable X, then E(XY) = Oy
Similarly, E(X2) = o%, E(KX?) = Koi where K is a constant, E(KXXKYY) = KXKYOXY'
These rules are given in the appendix to Summary VII and pages 45-49.

This principle will be applied to the genetic covariance between
relatives X and Y for only 3 kinds of genetic effects which will illustrate
how the overall genetic covariance between relatives is determined.

Let G, =G, +G. . +G If Y is related to X, then a fraction of

N e 'Y

these gene effects also appear in GY' Then write

G G G
Ay Dy Ady
a_G :“ her G,  + d_.G i ther G_ ' + a2 G +A~’h G,
G, = a other other a other .
Y XY Ax AY XY Dx DY XY AA AAY

The other genetic effects are due to genes from other sources and Mendelian
sampling.
Since we have defined the genetic effects to be independent with zero

means, then

0.~ = E(G,G,)
GXGY XY

Substitute for GX and GY’ expand, and take expectations of the parts:

) + E(G other G, )+ E(G, d,.G_. ) + E(G. other G ) +

AX XY D Ax Y

g

6.G. - E(GAX XYGAX

XY
E(G, a2 G,, ) + E(G, other G, . ) + E(G G, ) + E(G, other G. )+
Ay XY AAy Ax Ady DXY Ay
E(G G ) + E(G other G_ ) + E(G. a2 Y + E(G other G,,6 )+
Dy D, D, Xy AAX A,
G ) + E(G,, other G, } + E(G G ) +

FCaay "y

E(G,, other G ) + E(G

Ay AAx‘“‘x

Ay Ay aaxen,

) + E(G,, other G, ).

Aby Ady
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(Constants can be factored outside.) Then,

= 2 2
o =a_c? +0+0+0+0+0+0+0+d,.05 +
GXGY XY GA XY Gy
2 .9
0+0+0+0+0+0+0+ axquAA + 0 .

The zero terms come from independence of genetic effects and the lack

of genetic effects in common between terms such as GAx and other GAY.

Example: We want to know the contribution of all genetic components up to
second order (1 + j = 2) interaction components to the likeness between a

parent (X) and its progeny (Y).

We know aXY = 7 and dXY = 0,
Therefore:
_ 1, 0 5 1,0,..1 » 1,2,...0 o
%6,y " O o7y + P (O) ogy + ()07 o5 +
1,0,..2 2 1,11 5
and so
I ) 1,2 o
%cc. =7 %0 " P 9%

XY

(N)0 = ] for any number (N), but that (O)N = 0 for N > 0.)

(Note that (0)°

Another example: The genetic covariance between full sibs, X and Y.

-1 -1
We know aXY =3 and dXY =%

Then
1 o .1 5 1,2 1,2 1.1y 2
© o opp t P9 T @ Q@ o1 -

+ o
GXGY 2 °10 4 701 02

Note that although full sib pairs and parent-progeny pairs have the same

additive relationship that the likeness (genetic covariance) will be greater

between full sib pairs then parent-progeny pairs if dominance effects,

dominance by dominance effects, additive by dominance effects, etc. contribute

to genetic varilation.
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These two examples also indicate how the components of genetic variance
may be estimated. Covariance between pairs of relatives are computed and
equated to their theoretical composition. In general, as many covarilances
as theoretical components are necessary. In the above two examples, only

two components could be estimated (and not © c%o since both covariances

2
10°
have the same expectation for those). The others usually must be assumed

to be zero.

E.g., suppose Cov(Full sibs) = 50, Cov(parent—progeny) = 40. Assume

0%0 = g2, = g2 =0, Then

02 11
50 =5 o2y + g o)
40=%c]2_0
Tﬁus, estimates are 0%0 = 80 and 081 = 40,

In general, for a random mating population, the additive fraction of
genetic variance, 0%0, 1s about all we can hope to use since selection for
gene combinations becomes unimportant after a few generations. Our usual

goal will be to select for additive merit--the part that contributes 0%0

to genetic variance.

Heritability in the 'broad sense" is defined as cé/(oé+o§) where cé

is the total genetilc variance, §§0fj’ and 0% 1s the variance due to non-

genetic effects (environmental effects).

Heritability in the "narrow sense" is defined as cio/(cé +0§) where

2
G

variance which is the total genetic variance plus the environmental

0%0 is the additive genetic variance and o2 + c% is the total or phenotypic

variance. This form of heritability will be used again and again when

methods of selection for additive genetic value are discussed.
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Appendix to Summary VI

1
¢ effects in common rather than 5 aAB'

1, Additive genetic varlance, 0%0

Consider one locus only

Let o, +a, =G

17 % 7
et age= Gy
Then cov (GAGB) =
Th =
us. cov (GAGB)

2 = 2
but %Yo E[Gm
T 2

hus o10 ) )
~5- =«

therefore COV (GAGB) =

to many loci.

additive genetic value of animal A due to
genes a, and a

i ]

additive genetic value of animal B due to
genes a, , and aj.

cov (aiai, + a , t o

iaj' + ajai jaj,)

2y = A2 =
But E(am) ac for all m and E(amam,) 0
allm $ m'.
a2{P(1=1') + P(1=3") + P(4=1i") + P(I=§"]
a2 [4P (random genes identical by descent)]

a2 {2a,.] »

AB
] = E[cti + aj]2

= 2 2
E[ai + aj + 2aiaj]
= 222 +0 since 'E(di) =0

and Ea,a, = 0 unless inbred.

173

2
o = 2
10 [ZaAB] aABolO . This procedure may be extended

2 J
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2, Additive x additive genetic variance, 0%0'

Consider the minimum of‘two loci
and let (otB)mn be the additive x additive effect of the m-tlll gene at the "a"
locus and n-g'l' gene at the '"b" locus.
Let the additive values of animals A and B be

GlO,A = ai + aj + Bk + Bg and

GlO,B = a;,t uj,+ Bk.+ Bgy

Then let the corresponding additive by additive effects be

G20,A = (aB)ik + (aB)y, + (aB)jk + (aB)jE and
G20,B = (aB)ilkl + (aB)illl + (GB)jtkt + (aB)J'E' .
Then COV,,(AB) = (aB)2[P(1=1")P(k=k')+ P(1=1')P(k=£")+ P(i=3")P(k=k')+ P(i=3")P(k=s")
+ P(i=1")P(2=k"')+ P(i=i')P(l=2')+ P(i=j")P(R=k")+ P(i=3")P(i=2")
+ P(3=1")P(k=k')+ P(J=1")P(k=2")+ P(j=3")P(k=k")+ P(j=3")P(k=2")
+ P(J=1")P(2=k")+ P(3=1")P(2=2")+ P(j=3")P(2=k')+ P(j=3")P(2=¢")]
= (aB)2[P(i=1")+ P(1=j")+ P(J=1")+ P(J=3")] x
[P(k=k')+ P(k=2')+ P(2=k')+ P(2=2")]
= (aB)2[4P(genes identical)#éP(genes identical)]
= (aB)2[(2a,,) (2a,,)]
But O%O = 4(aB)? and 0%0/4 = (aB)?2.
2
Therefore COV, (AB) = f%g (AaiB) = aiBO%O using similar assumptions as for

additlve effects.






Summary VII

THE SELECTION INDEX

The basic problem in animal improvement through breeding is to choose
animals which have the greatest genetic value to be parents of the next genera-

tion. The simplified model for a record (P) on an animal poses the problem;
P=u+G+E,

where y is the population mean, a constant; G is the effect on P due to the

animal's complete genotype, and E is the effect of the environment on P and

thus masks our evaluation of G. We have already seen that only additive genetic

effects have much chance of beirg transmitted from one generation to another.

Thus, we will usually assume that G is the additive genetic effect.
The problem is to maximize the average G of the selected group, Has?

where Ha is the average G of the total group, 1i.e.,

MAXIMIZE [AG = u ] .

Gs uG

We will see later that genetic improvement per year 1is

AG/yr = (rTIDoG)/L .

where AG 1is the genetic ilmprovement per generation; is the correlation

11
between the true additive genetic value and I, our index prediction of it;

D is a factor related to selection intensity (value of 0 with no selection
and a value of about 3 for selection of the top one-half percent); 9 is the
genetic standard deviation, and L is the generation interval in years defined
as the average number of years between birth of parents and the birth of

replacement offspring. The four parts of the key equation for genetic improve-

ment will be discussed separately.

-=59—-
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What is a selection index estimate of genetic value? This question is,
perhaps, best answered by an example.

Suppose we have several animals each with records on three relatives
(Xl, Xz, and X3). We know that relatives will have genetic effects in common
by descent. Thus, the record of each relative should tell us something about
the genetic value of the animal we are evaluating. A logical way would be to
weight each record by its relative importance, i.e., estimate of G =1 =
blxl + b2X2 + b3X3, where the b's are the appropriate weights and the X's are

known records of the three relatives. I 1s the selection index prediction of

true genetic value.

What should the weights (b's) be?

Some desirable properties of the index to predict some true value, T,
should be:
1. To minimize errors of prediction or the average or expected squared
difference between T and its predictor, I, i.e., minimlize E(T-I)2.

2. To maximize r the correlation between true value and prediction

TI’
of true value which is also called the accuracy of the prediction
of T.
3. To maximize the probability of correctly ranking the animals, and
4., To maximize the average true value of the selected group.
The selection index procedure which will be described satisfies properties
1 and 2 and satisfies properties 3 and 4 1f the records of relatives, the X's,
and T, the true value, follow a multivariate normal distribution. These pro-
cedures derive from work by Sewall Wright, Jay Lush, and C. R. Henderson.
Henderson has proved many of the properties. Most of the development that

follows was taught for many years by C. R. Henderson at Cornell University

beginning in 1948.
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Method of finding b's

= + ...
The general index 1is I blxl + b2x2 + bNXN for predicting some

true value, T, which will often be the additive genetic value but 1s not

necessarily that. We want to maximize Toe Maximizing log Tor is equivalent

= log o, -

to maximizing r TI

TI but is easier to accomplish. Note that log r

(1/2)1og 0% - (1/2)10g 0%.

TI

Use of the rules for finding variances and covariances of linear functions

(see Summary V) gilves us 62 and di in terms of the unknown b's and known

TI
variances and covariances. Note that O; is a constant;
a = + ... +
TI blch + b2OTX bNo , and

1 2 Xy

2 22 2,2
g = b40 + 2b.b, o + ...+ 2b.b o + béo + 2b_b. o + ...
I 1 Xl 12 X1X2 1N xlXN 2 X2 2°3 X2X3
b202

N XN°

These ekpressions are then substituted into log r 1’ and the partial derivatives

T

of log Top with respect to each of the b's are set equal to zero, i.e.,

o b. o2 b.o b o
dlog Top ~ XlT 1 X1 + 2 x1x2 + ...+ N XlxN o
-_— - 2 -_
aby 91 o1
g b,o b.,o2 b..o
dlog Tor _ X2T 1 xlxz + 72 X2 + ...+ N XZXN - o
= - 5 =
Bbz OTI GI
oo b, o b.o. b.o2
dlog Top ) XNT ) 1 XIXN + 2 XZXN + ...+ N XN o
: =
8by 911 o1

Rearrangement of these equations gives the selection index equations

(except for a constant, C = o% /o... , on the right hand sides of the equations).

TI
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b,o2 + b. o +b.o . + b.o = Co
1 X1 2 X1X2 3 X1X3 N XIXN XlT

b,o 4+ bo? +b.o +...+bo = Co
1 X2X1 2 X2 3 Xz)(3 N XZXN X2T

b,o + b o + b0 + .. .+bo?2 = Co
1 XNX1 2 XNX2 3 XN)(3 N XN XNT

Note:
1. The constant, C = G%/GTI’ will not change the relative sizes of the
b's or the Top so we will set C = 1, which we will see results in the

same weights which minimize squared prediction error. In fact, o% =g
2. The equationg are symmetrical, i.e., the coefficients of the unknown
b's are the same in each column as the corresponding row. See, for
example, the coefficilents in row 1 and in column 1.
3. The equations are similar to multiple regression equatlons except
the true varlances and covariances are assumed known and replace the
sums of squares and products used in multiple regression.
4. 1If E(T-I)2 is minimized, the same equations would result except that

no constant 0%/0 1s involved on the right-hand sides of the

TI

equations.

Average squared prediction error 1s

E{(T-1)2] = 0,% + 0% - 20, + p2 + 2 - 2p,

T I 1’

but Yp = pI = 0 or some constant that will not change differences in the I's;

0%, 0%, and OTI can be expressed in terms of linear functions as for the maxi-

mization of rTI' Equating to zero the partial derivatives of 0% + 0% - ZGT

with respect to bl’ b2’ ceey bN will provide the following equations which

I

define the b's which minimize prediction error squared;
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2 2 _
200p * o~ 20qp) =0: b0l +b.o + ...+ by =0
3b1 1 Xl 2 X1X2 N xlxN xlT
2 2 _
200r ¥ op  20qp) = 0: b0 + b0 + +bo? =0
BbN 1 xle 2 XNXZ N XN XNT
These are the same equations as for maximizing rTI when OiloTI is set equal

to unity. In this derivation 0; = GTI automatically.

Other properties of the selection index

The correlation between the index and true value is:

= Z = g
o /EbioxiT/oT /(bloxlT + bzosz + .. j/b%

Note by using expected values that:

Opy =E%ng
and that
Trp = Yor /0%

If the index is not the selection index, the definitional form of the
correlation must be used:

. =y
Trp = Opp/V010% ’

where o, and o2 are calculated from expected values.

TI I

If the index is the selection index, the definitional form of the

correlation reduces to:

/OTI70f

because ¢2 = g

I TI'

Because I = ZbiXi and the Xi are variables, then the index values

will also be variable. In fact, if I is the selection index:

o L2 2
o1 T Tr19T

2

I corresponds to the variance in T

This expression shows that o

which is accounted for by I.
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When I is not the selection index
o§ = E(I%) # r%IO%

The variance of prediction errors (average squared difference
of T from I) is:

V(T-1) = E[(T-1)?%] = (1-r;l)o;
This expression corresponds to the variance in T not accounted for
by I.

When I is not the selection index, the variance of prediction

errors must be calculated from expected values:
E[(T-1)%] = E(T?) + E(1®) - 2E(TT) # (l-ri;)ox

The average of true values for animals with index value I0
is:

E(T|I=IO] =1,

Thus the selection index procedure is unbiased.

Intuitively, we would expect animals with the same index value
to have different true values. In fact, the variance of true values
0’ is:
= (1-rpp)og

for animals with the same index value, 1

2
a
T|1=I,

If T is not the selection index, must be calculated from

1
E(TI), E(I1%), and G%. We will use this property later to make
probability statements about the true value of an animal with a
certain index value.

The Xi used in the selection index are often averages of records.

The variance of an average depends partly on the covariance between
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records making up the average. Such covariances will be between records
on the same animal or between records on relatives such as paternal
half-sibs.

Models for determinigg_covarianceS’between records

Single measurement traits that can be measured only once can be

represented by the model:

where Pi is the phenotypic record adjusted for fixed effects such as the
overall mean,

Gi is the total genetic value, and

Ei is the total of all environmental effects.

The covariance between records on relatives i and j can be determined
by expected values:

Cov(Pi,Pj) = E[(Gi + Ei)(Gj + Ej)] ='0GiGj + OEiEj ,
under the usual assumption of no covariance between genetic and environmental

effects. Note that ¢ = a,, +d . as developed in

2 2
6.G. - 245%0 * %3%1 * * -
i’

Section VI.
For convenience of notation we will define the covariance between

environmental effects on records of relatives i and j as

- 2
%.E. = Ci5%
i

where 0; = 0; is the total or phenotypic variance. Thus, if only additive
genetic effects are involved:

- 2 . 2 2
%.6, - 21310 © 213" 9x :
1)
Then
- 2 2
Cov(Pi,Pj ) = (aijh + Cij)ox .

Even if other genetic effects are involved, this is often a good approximation.
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Multiple measurement traits are those that allow repeated records, as

for example a first milk lactation, a second milk lactation, etc. The

model for such records is
Pij = Gi + PEi + TE.ij R
where P.lj is the jth phenotypic record of the ith animal adjusted for the
mean and other fixed effects,
G, is the total genetic value,
PE, is the total of all permanent environmental effects which affect
every record the animal makes, and
TE.. is the total of all random temporary environmental effects which
affect only the jth record of animal i.
This model may be an over-simplification of the true model for
multiple measurement traits but is often a reasonable approximation.
Because Gi and PEi repeat in every record of the animal, this is
sometimes called the repeatability model and sometimes the animal model.
The sum of all permanent effects of the animal can be denoted as the animal
effect
Ai = Gi + PE.1
Repeatability, r, is defined as the fraction of the total variance
which is variance due to animal effects.
2 2

o w2702 = (o2 2 2
r = 0,/0y = (0g + 0pp)/ (9 *+ Opp * Opy)

A - .
2

The covariance between two records on the same animal is OA = rG;

and can be determined with expected values:
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= = a2 = 2
Cov(pij’Pij') E[(Ai + TEij)CAi + TEij')] Op = TOy
under the assumption of no covariances between animal effect and temporary
environmental effects and between temporary environmental effects.

How to determine the variance of an average

Let Xi be the average of Ni records:

Xil + ... xiN.
i

i
If E(ij) = 0; for all ij (that is, all records are from a distribution

having the same variance ) and if E(Xin. for all j # j' (that

1j') = Oxx

is, all pairs of records have the same covariance), then from expected

values: (
2
2 2 [lxil oo Xy
o = E(X?) = E
Xy i | N,
2
_Nox t Ny (N;-1)0y,x
N2
) 1
O * ("i"l)OX'x
= N.

i
In- the following paragraphs when Xi is the average of records on the

same animal, Oyrx is the covariance between records on the same animal

and
= o2
Oyix = TOy .
When xi is the average of single records on a group of equally related

relatives (additive and dominance relationships a4 and dii')’ the

Oyrx is the covariance between records of any pair of relatives i and i'
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each contributing a record to the average and

— 2
%rx T 9%.6,, 1119 ’
1 1

the sum of the total genetic covariance and the environmental covariance.

+ C

If o a h20; (only additive genetic effects contributing to the

G.G., “ii!
11
genetic covariance), then

- 2 2
OX'X = (aii,h + Cii')OX

General form of the covariance between averages

The covariance between averages is usually equal to the covariance
between any record in the first average and any record in the other average.
Expected values can be used to determine when this is true. Let xik

be a record from average

Xil + ... XiNi
X, = »
j Ny
and ng be a record from average
le + ...+ XjN.
X, = 5 J
) j

If E(xikij) is the same for all k and £, then taking expected values shows

from .
Xil + ...+ XiN. le + ...+ xjN.
1 J
N. N.
1 J

Cov(Xi,Xj) = E

that there are NiNj expected values with the same expectation in the
numerator with a denominator of NiNj' Thus, if a representative record

from X; is Gi + Ei and a representative record from Xj is Gj + Ej then

i

Cov(Xi,Xj) E[(Gi + Ei)(,Gj + Ej)]

— 2
= 9.6, * ¢i;%
i
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Summary
1) 1If Xi is the average of records on relative i, the Oxix = roi,
2) If Xi is the average of single records of relatives of type i,
- 2
XX OGiGiv + Cii,cx, and
3) If )(.1 is the average of n, records on each of P relatives of

then o

= 2
%x = %.6,, * Cii%
11

The derivation of the variance of an average of averages can be done

type i, then also

with expected values utilizing the property that the covariance between
averages is the same as the covariance between a record from one average

and a record from the other average.

X.. + ... + X,

il ip, _

Let X, = L where X,, is the average of n, records on

i Pi ij i
animal j in relative group i. The number of animals in group i is P;- Then

o~ 3 V2 3§ 42 3 2

2 [ xil + ...+ xiPiJ ] [(xil) + ...+ (xipi) + all products

o, =E = E

X Pi P

p2
i

2 2
Oy + (n.-1)xro
- X 1 X. - 2
= = +(py-1(og ¢ Cii09%)
1 i1
P,
i
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How to determine the o

XiT
2
If we know oxi, oxixj, and UXiT for all 1 and j, we can easily set up
the equations to find the approprilate weights for the index; 0§ and 9% X
1 174
can be estimated or derived as shown, but o is the covariance between

X, T
1
something we can measure, Xi, and T, something we cannot measure or see,

Therefore, GX T must be computed Indirectly. If we are selecting for additive
i
= 2 .
genetic value, o T = 24,970 where ag, is the additive relationship between

1 and the individual o which we are evaluating for G, .
8]

oio is the additive genetic variance. We can see that thls is the portion

of the genetlc covarilance between relatives which 1s due to additive genetic

the relative with record X

effects in common between the relatives. Recall that Ufo/di = h2, heritability

- 2.2
- g .
XiT aiah X

in the "marrow sense.'" Thus, 0%0 = hzoi and o
Although the usual procedure is to select for additive genetic value,

the selection index 1s more general and can be used for most possible defini-~

tions of T, the true value, which we are trying to predict. The only parameters

of the procedure that change when T is redefined are the right-hand sides,

, and also 02 although other parameters that depend on these will,

the ¢ T

X, T
i
of course, also change, Expected values and simple models can be used to find
easily Oy T and 0%. The technique will be demonstrated for several definitions
i
of T including the usual one where T 1s additive genetic value, To simplify

expected values, all variables will be assumed to have zero means although
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as stated earlier the variances will be the same in either case.

1. T =G, , additive genetic value for animal o.

A
o
Let Xi be a representative record included in Xi with model
Xi = Gi + Ei or X1 = Gi + PEi + TEi’ where Gi can also be separated

into additive,dominance, additive by additive genetic value, etc.
PEi is a permanent environmental effect on all records of animal i,
and TEi 1s a temporary environmental effect on a specific record of 1.

Then,

i

Q
t

x,r = E&46y ) = BLEy + ED ()]

E(G,G, ) + E(EG, )
[¢ ¢

- 2
aiaclo + 0,

1f no genetic by environmental correlation. Thus, the right~hand

2 = 2,2 2 :
sldes will be a,.%70 aiah 0% where oy is the phenotypic variance

of individual records. If Xi is a record on animal o (i=a), then

aia

inbred and oio = h2o§ if o 1s not inbred.

- 2 = 2y = 2 _ 242 :
1+ Fa' Similarly, I E(GAQ) 340°10 (1+Fa)h oy if a 1is

2, T= Aa = Ga + PEa’ real producing ability (i.e., prediction of the

permanent ability),

= = = g2 2 = g2 =
If 1 = q, oxiT E[(G, + PE, + TE ) (G, + PE )] o + ob. = o2
2 = =
Ty, i1f not inbred. If 1 # «a, GXiT E(Gi + PEi + TEi)(Ga + PEa)]
E(GiGa) + E(PEiPEa) + others likely to be zero = OGiGa + 0PE1PEa

(total genetic covariance plus permanent environmental covariance
usually assumed to be zero but not necessarily so, e.g., for litter-
mates). If all 1 # o, the index weights will be the same as for

predicting additive genetic value, but 0% wlll be different; 0% =

E(Aé) = E[(G + PEa)z] = oﬁ = 02 + 02, if not inbred. Repeatability

G PE’

or the correlation between records on the same animal is defined as

= (02 + 62.)/62 = 52/s2.
r (OG + OPE)/OX OA/UX
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3. T = G_. , dominance genetic value.

D
ol
= = 2
°x,T E[(G, + Ei)(GDa)] 45,901
2 - 2 = g2
Or E(GDa) %1
4, T = GA + GD , additive plus dominance genetic value.
ol ol
= = 2 2
°%,T El(e; + B (GA; Gna)] 2;%10 * 440%1
2 - 21 = 42 2
o EE(GAG + GDa) ] 970 + 951° if not inbred.

5. T = Ga’ overall genetic value.

= = = 2 2
OXiT E[(Gi + Ei)(Ga)] OGiGa a,.%910 + dia001 + ...
o E(Ga) % = 9o + %1 S

if not inbred. If Ga = then everything is the samg as for pre-

A >
dicting additive genetic value.

6. T = (1/2)G, , the average part of additive genetic value that is
o
transmitted to progeny--transmitting ability.

%.T

E[(¢, + E,)(1/2)(G, )] = (/DEL(G; + E) (G, )]
i o

o

Il

2
(l/2)aia010
Thus, the index weights will only be half as large as when predicting

a's additive genetic value.

o2 E[(1/2)2<c§a)] = (1/&)E(EE ) = (1/M)a o

o

2 f -
(1/4)010 or Fa 0.

The six definitions above show the flexibility of the selection index as
long as T can be defined. 1In other cases, there is more difficulty in deter-

mining exactly what T is:

7. T=P =G +E =G + PE + TE , a future record (this is what most
o o o o o o

breeders think we are doing in cases, 1, 2, and 5).

If 1 = o (animal already has a record, e.g., record Pa and want
1
to predict from this record, record Pa ),
2
+ +
)<Ga PEa TEaz)]

+
oXiT E[(Ga PE + TEal

2 2 = 2 = <2
OG + OPE roX OA ’
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if not inbred. If 1 # «,

GXiT = E[(Gi + PEi + TEi)(Ga + PEa + TEG)]

= E(GiGa) + E(PEiPEa) + E(TEiTEa)

= Cov(GiGa) + COV(EiEa)
The last two terms are environmental covariances which often are
assumed to be zero. The first term is the total genetic covariance.
These right-hand sides and index weights are the same as for predicting

real producing ability if E(TEiTEa)

0, but 0% is different; 0% =

the total

2 . <2 2 2 2 2 = 52 = <2
E(Ga + PEa + TEa) 9% + bk + otE = % + Of = 0p = Oys

phenotypic variance of single records.
T = average of records of m future half-sib progeny of some sire =
[(26,)/m] + [(3E))/m]
Since the covariance between averages and between individual
records is the same, let Pa = Ga + Ea be a representative record in T.
= = = 2 =
O¢ T E[(Gi + Ei)(Ga + Ea)] OG G ( ay.970 if Ga QA
i 1o o
However,

(G

+ E,) 02 + (m-1)o
0% =E([ =

]
12} = X - XX , (see Appendix)

i

where Iex! is the covariance between pairs of records in the average T.
This term can be evaluated as before and will have one or more

genetic components and possibly an environmental covariance, % ¢ +
i1
g g L ? the genetic plus environmental covariance between i and 1' are

i1

both included in it.

T = average of records of « future half-sib progeny of some sire.

2 = 2 - ©
UXiT as in (8), but o% (OX/m) + [(m l)oxx,/m}, and as m + =,
2 ' = » i
or ¥ Iyx 0G1G1' + cEiEi'. This case is often similar to predicting
(1/2)(GA ) of a sire when Ga = GA"

o 8]
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10. T = average additive genetic value of m or « future half-sib progeny,

(3G, )/m.
3

Ay
o =a o2 as in (8); o2 = E{[(EGA Y/m]?} = [Ofo +

XiT ia¢ 10 T o
(m—l)aaa,oio]/m since Gio is the variance of additive genetic value
and aaa'dio is the covariance between additive genetic value of ¢
and o', a representative pair in the group. As m + «, 0% > aaa'oiO'
For noninbred half-sib progeny, a_ . = 1/4 and G% = (1/4)0%0 as 1in
case 6 when predicting (1/2)(GASire). Note that in (10), o refers
to a progeny group, and in (6), o designates a particular animal that
has the progeny.

These examples 1llustrate the power of the selection index method; T can
be almost anything, even, for example, difference in additive genetic value
between animals or linear functions of genetic values. The absolute necessity
of clearly defining what T is also should be clear and would avoid much of the

confusion among animal breeders who seem to be selecting for the same thing

when they actually are not.

Xi are averages of records of a relative i

If Xi 1s the average of n, records on an animal, then the variance of the
average can be found as a function of variances and covariances of the records
going into the average. If we can assume, as often is nearly true,
that the variance of first records equals the variance of second record, etc.,

and the covariances are all equal, then

1+ (n,-Dr
62 = g2 ___i“)_
X, X n ?
i i

where 0; 1s the varilance associated with single records and r is repeatability.
Thus, the diagonal coefficient of the selection index equations to find the

weights is
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42 1+ (ni—l)r
X n .
i

The off-diagonal coefficients are the same as the covariances between a single

record of one animal and a single record of another relative.

If, however, we can assume that the only reason for likeness between rela-

tives is common additive genetic effects, then the off-diagonal coefficients

- 2 o 2.2 .
are of the form cxixj aijclo aijhcx. If other components of genetic vari

ance are important, this will not be true but still may be a reasonable approxi-
mation 1f the true covariance is unknown because the coefficients of the other

components will be small. A more likely source of error 1s the possibility of

02 is the covariance between

]

records of relatives 1 and j caused by common envirommental effect, then the

an environmental covariance among relatives. If Ci

off-diagonal coefficient should be ¢

XX - (aijhf+vcij)0§. The equations to

173
find the b's can now be written (assuming all Cij = 0) to predict GA :
a
l+(n -l)r 1. .
1" |2 2 %) %2 - a 152
n cxb1 + alzhcxb2 + al3h0xb3 S althXbN ala UX
1+(n,~-1)r
L2 2 |52 22 22 - a. Hg2
alzhoxbl + n, oxb2 + a23hcxb3 + ... F aZNhobe 294 UX
, . N l+(nN-l)r ) 2,
-2 =) 2 N = h
alNhUXbl + aZNhUsz + a3Nhoxb3 + ...+ . obe aNa cx

We can see that 0§ appears in each equation so that dividing each equation

by o2

X will not change the solutions for the b's.

Thus, the equations can be written as:
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m b. + a h2b + a. _h?y + + a h2b = a. h2
nl 1 12 2 13 3 tee 1N N 1o
) 1+(n2—1)r ) ) ) )
alzh b1 + —w—E;~——— b2 + a23h b3 + ...+ a2Nh bN = azah
E 1+(n, -1)r E
a)h%b, + ayhZb, +amh?b+ L+ —-;§~———bN = ag h?

Only r and h? are necessary in order to set up the equations because the
relationships can be computed and the n's will be known.

Xi is the average of n, records on Py equally related relatives

Suppose Xi is the average of a genetic group of animals (pi) each with n,
records (e.g. a group of paternal half-sisters each with 2 records). - Further
suppose 1) each animal in the group has the same relationship, as s to all
other animals in the group, and 2) each animal in one group has the same
relationship to all animals in each other group, i.e., aij's are same for all

animals in groups i and j. Then the diagonal coefficients become

1+(ni-l)r ]
_ 2
+ (pi 1) aii' h

If other than additive genetic variance contributes to likeness between
animals in the genetic group, the portion (p:L - 1) aii'h2 will be greater. For

example, if the environmental covariance is Cii'6§ and there is also likeness due

to dominance genetic variance, the diagonal coefficient is:

l+(ni-l)r . ) ) )

ng + (g~ (ayyb% +dy o fog + Cyy) ,

2 =

g = g
1 X
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After dividing by qﬁ and with the assumbtions to be again stated, the

simplified equations for finding the appropriate weights for the index

N
GA =1 = iglbixi are:
a
1+(n,-Dr
1 + (p,~1)a,, ,h2
n, 1 11’ )
. . 24w
) b, + 812h2 b, +e.ut a;gh"by=a, N
1+(n2—1)r
. - 2
) ™ + (p2 l)azz.h , ,
h b + so e =
312 1 p2 b2 +...4+ aZNh bN 823h
: L+(n -Dr :
- 2
: : By APt
alNh b1+ aZNh b2 +o.ot . bN=amh

Py

The assumptions which are implied in using this set of equations are:
1) Selection is for additive genetic value,

2) The variances of single records for all relatives are oi .

3) The covarilances among records for each animal are ro§

for all relatives,

4) Only additive genetic variance contributes to the covariance among
relatives. If this assumption is not true ﬁhe terms aijh2 should be modified
to take into account other components of genetic variance and any environ-
mental covariance.

5) Each animal in group i has the same number of records. If not, the

group should be divided so that each new group has the same number of records.



Records from inbred animals

The variation among non-related inbred animals will be greater than for
non-inbred animals since the genetic variance of inbred animals is aiiG%O =
(1+Fi)oi0 when only additive genetic effects are considered. Thus, the
phenotypic variance among single records of inbred animals is (1+Fi)of0 +
oﬁ = [(1+Fi)h2 + (l-h2)]0§, where 0§ is the variance of single records of
non-inbred animals. Thus, the diagonal coefficients of the equations which
determine the selection index weights will be increased. For single records
the increase will be Fihzoi to (1+Fih2)o§. For the average of records on the
same animal the diagonal coefficient will be

Wb ] X
i J°x ’

n,
1

since the covariance between records on the same animal will be also increased
2.7
o
by Fih X
For the average of single records on each of Py animals in group i, the
diagonal coefficient will be
2 2
F . he) + - h
. J X '
i

This situation, however, seems rather unlikely. For the average of n, records

P

on each of Py animals in group i, the diagonal coefficient becomes

[ 1+(ni—l)r ) )
o + Fih + (pi-l)aii,h
i o2 .
Py X

2

will also have (1+Fa)h20x

If animal @ is inbred, in the denominator as

Tr1

0% when selecting for G

.

By

Computation of Top

The solutions for the b's will be the same for the simplified equations

as for the regular equations if the assumptions are true, For the regular

equations 2 )
= Lb. O g .
trr = "% /%1
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For the simplified equations substitute aiahzc2 =a, o2, for g and note

X 1a 10 XiT
that G% = ofo if T 1s additive genetic value.
Then )
= 2 /152 = =
Trr = Thy23,9707910 = P42, and rpp = Vibja, o
Thus, only r and h? are needed to compute the b's and Lo with the

simplified equations when selecting for additive genetic value.

: 2
Computation of OT]I=IO

2 - 42 .
010 OT will be needed since

2
OTI1=1 = (1-r2 )2 = (1- 2 = (1- 252
T|1 I, = (I-rf)oef = (1-tbia, JoZ = (1 tbja, Jh%Z .

Additional note

Often animals will not have records available on the same types of
relatives. Even when records are available on the same relatives, the rela-
tives may not have the same number of records. The selection index pro-
cedure can still be used to compare animals, but then the weights for the
index for each animal with a different set of records and types of rela-
tives will have to be found from a set of equations corresponding to the

pi's and ni's associated with that animal.

Application of the index to cases where the assumptions are true

1. One or several records per individual.

Of ten individuals must be compared on the basis of their performance but
with unequal numbers of records. The best procedure is to solve the index
equations for each specific case (i.e., number of records per individual). If,

all the covariances among the x's = ro2, and

however, all the variances = a2 X

x’

the covariances of the RHS's all are equal then the equations are simplified.
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Repeatability in the case of equal variances and covariances is defined
%% x
as r = i i, the regression of the jth record on the ith record or the
g2
X,
i
correlation between the i and jth records.
If the covariances between all records and the additive genetic value of
the individual are all equal, then the index becomes
I = bX
where X is the average of n records on an individual for which we want to

predict additive genetic value.

The equation to find b is:

l_i;éE:lLE] b = h? for equal variances and covariances
nh?
and b = 1+(n-1)r
- /|__oh® 2 2m2.2 - J_oh® 2 2 1242 = o2
11 //T;+(n—1)rJ x hfog/hToy Tr(n-1)r oSinee op = hioy = 0y
02 = |1 - ———EEE—— h2g2 for animals with the same number of records
T|I=I0 1+(n-1)r X

and the same index values.

This procedure allows animals with varying numbers of records to be
ranked according to estimated breeding value so that the probability of
correctly ranking the animals 1s maximized.

2. The case of using one record on each of many relatives to estimate
the breeding value of the oth individual.

The, index equations will be:

2 + 2 = 2

b1 + ath b2 ees + alNh bN alah

2 21 = 2
ath bl + b2 + ... F aZNh bN azuh
2 2 - 2
alNh bl + aZNh b2 + ... + bN aNah
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Only additive relationships and heritability are needed to set up the
index equations.

3. The case where some of the related individuals have more than one

record (ni).
1+(ni-1)r
Now the diagonals will be — bi instead of bi . The off~
i

diagonals and RHS's will be the same as before.

4. The case where we have the averages of single records of Py members
of groups with relationship aii' with each other, all having the same rela-
tionship to o and to other groups or individuals used in the index.

Now the diagonals become

1+(pi—1)aii.h2 X
Py 1 )

The off diagonals and RHS's are the same as before.

5. The case where members of the groups have more than one record (ni).

The diagonals now become

1+(n,-1)r

i - 2
bi L
Py

‘The off diagonals and RHS's are the same as before. This 1is the general
form of the diagonal coefficlents because when n, = 1, the diagonal is the
same as for case 4 and when Py = 1, the diagonal is the same as for case 3.

6. If members of a group of related individuals have differing numbers

of records, then each subgroup with different numbers of records per individual

should be treated as a separate group.
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Welghts and accuracy values for predicting additive genetic

value from records of various relatives,

r is repeatability.)

Records

Individual (1)
(n)

Dam or sire (1

or progeny (n)

Sire and dam (1)
(n)

One grandparent

Four grandparents

One great-grand-
parent

Eight great-

grandparents

Individual and one
parent or progeny

Individual and
both parents
Individual and one

grandparent or
grandprogeny

Individual and four
grandparents

Parent and progeny

Progeny (p half-sibs)

Selection
Index

Welghts
h2
nh?/[1 + (a-1)r]

h?/2
nh2/2[1 + (n-1)x]

h2/2; n?/2

oh?/2[1 + (a-1)r
nh?/2[1 + (p-1)z

13
]
h?/4

All h2/4

n2/8

All h?/8

[h2-(h?/2)2)/[1 - (h?/2)2];
[h2(1-h2)/2]/[1 - (h?/2)?]

h2(h2-2)/(h"-2);
h2(h2-1)/("*-2) ...

h2(h2-16)/(h"-16);
4n% (h%-1)/ (n"-16)

h2(h2-4)/ (hh-4);
h2(h2-1)/(h"-4) ...

2n2/ (4+h?); 202/ (4+h?)

2ph?/[4 + (p-1)h?]

(h? 1s heritability;

Accuracy (rTI)
/b2
/ah?/[1 + (a-1)r)

/n2/2
Ynh?/[1 + (n-1)r)/2

.71/h?

.71/nh?/[1 + (n-1)1]

/n2/4
/h2/2

/h2/8

.35/h2

Y (5h2-2h")/ (4-h*)

/h?(2h2-3)/(h"-2)

Vh2(2h?-17)/(h"-16)

/h2(2h2-5)/ (h"-4)

Y202/ (4+h?)

/ph?/[4 + (p-1)h?]
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Let A= [1 + (n-1)x]/n, D = {1 + [(p-1)h?/4]}/p, and C = AD - (h"*/16).

Records

Individual (n) and
paternal half-sibs (p)

Individual (n) and his
paternal half-sib
progeny (p) ’

Dam (n) and
paternal half-sibs (p)

Dam (1),
sire (1), and
progeny (1)

Paternal half-sibs (m),
dam (n), and dam's
paternal half-sibs (p)

Weights

[h2D - (h2/4)2]/cC;
h? (A-n?)74¢

[h2D - (h2/2)1/[C - (3h*/16)];
h7(a-h?)/2[c - (3h"/16)]

nh?/2[1 + (n-1)r];
ph2/[4 + (p-1)h7]

[h2- (h*/16)1/[2 ~ (h*/64)1;
(b2~ (h"/16)1/[2 - (B"/64)];
[h2- (h*/8)1/[2 - (h%/64)]

mh?/[4 + (m-1)h?];
hZ[D - (h?/16)]/2C
h?(A-h%)/8C

Accuracz
ST TR
b, + (5,/%)

/by + @ /0

/(b /2) + (by/4)

v/ (b +by+b,)/2

/by /4) + (by/2) + (by/8)






Summary VIII

SIRE EVALUATION

Many traits cannot be measured on males, thus genetic evaluation must be
based either on records of female ancestors or on records of progeny. Evalu-
ation on the basis of progeny usually results in much greater accuracy (rTI)
than pedigree evaluation. This method has received more use in dairy cattle
breesing and in poultry breeding than with other classes of animals.

The basic problem is simple:

GIVEN: X, the average of single records of p progeny all from different
dams,
ESTIMATE:  Additive genetic value of sire from I = bX.
Jf the assumptions discussed earlier are true, the equation to find the

best weighting factor, b, 1is:

1+ (p-1) all'hL i X, Sire
In this situation, ajqr = & and a1, = % . Thus,
1
2 P = 2p A > b > 2
I+(p-1)n> ~ 4-h*" s P 7 % :
P
2p 2 2p
1'= l = = l 22—
For I ) b pFl5 3 for h 5 b ot7 etc.
In general, L1 = alab = = p .
4~h*
p+ h 2.
As p ———> o, Lop ) .

Note: 1) That we don't have to set up a new equation for each sire with
different p since we have solved for b in terms of p and h%

2) b depends on p,

~-85--
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3 Lo depends on p, and
4) b can exceed 1. In genetic evaluation, the b's are usually less

than 1 except for sire evaluation from progeny records.

Variations on sire evaluation

The above is the basis for estimating the additive genetic value of the

sire. Some similar procedures will yield a b which 1s % the b we found.

For example, a Cornell Sire Evaluation Procedure which was called the Cornell

P rather than 2p
p+15 p+15

also uses a similar form although the heritability they use 1is slightly lower.

Daughter Level Report used . The U.S.D.A, procedure
These are two reasons for using the smaller weight:
A. Rather than estimating the genetic value of the sire, we are interested in-

estimating the genetic value of a future daughter, a.

Xl e ——= Sire
X, €7
ajgr = & as before, but a,, = & rather than % .
Now, b = AR and as p —> ®©, b ———> 1 .
P+ Tz
h
2.1 pa 2 o - .
For h , b T for h 2 b P ¥ 7 etc.
Also Top = %- P = %- P and as p —> ®,
+ 4-h + 4-hz
P h? p hZ
Tpp % . Note this is the accuracy of predicting the genetic value

of an animal from records of p paternal half sisters.

2'=l =l —p-—-—° ’L=l =l p M .
For N ) rTI 9 / >+ 15 ° for h >» rTI 2 e etc
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B. The daughter or progeny superiority of a sire (also called transmitting ability)
may be estimated. The daughter superiority is defined to be the average of an
infinite number of future daughters or one-half the additive genetic value of

the sire, i.e.,

= l = = l ’-2 = .l 1.2 - 2 = l .
T2 Ogpg + Them oy p = oy jo T 2214M0% = hO = 40Tg since ay, = 3
The equation to find b is:

1 + (p-1) dn*
L
- ] l l z
> b 3 (3) h
. p
and b = as in A
4-h*
I
Tpr oo however, will not be the same as in A.
b UXIT > .
Remember r, = [ —7"— . Note that b o, . = S CINEY Oio .
T 1 p + __-hz_J

But T = (1/2)G. Thus, by the rules, c?r = E(T2) = E[(G/2)2] = (1/4)E[ ¢ 2] =

(1/4)0%0 since G 1is additive genetic value. Thus,

(l 2
4-h* ll' °1o]
P + h%

p
= = o th
Ty 1 2 N Aohr which 1s the same as
[h 10} P h*

when estimating the additive genetic value of the sire. This is reasonable
since we have divided by a constant one-half.
Note well: It 1s important to define T exactly since what T is makes a

difference in both b and rTI .

Environmental covariance in sire evaluation

If progeny are treated more alike because they are related than are un-
related animals, then an environmental covariance in addition to a genetic
covariance exists among animals in a progeny group.

Suppose that there is an environmental correlation among half-sibs
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in the same environment, then the environmental covariance is c11'0§ .
The equation to find the b to evaluate the sire from p progeny with

one record each is:

1 + (p-1)[a,, ,h*+ ¢, ,]
11 11" b= a h*
p 1o

Fh

where a 1s the relationship among animals in the group, &,y =

I
1 1f half sibs.

cll,oiis the environmental covariance and

is the relationship of animals in the group to @. If @ is the

sire, then a, = 1 .

. 1
3 ph and r,__ = i ph
L+ (p-1) (zh*+ ¢ ) o) TI 1 + (p~1){zh%+ ¢yl

a4

Thus, b =

If = % h*and h*= % as 1s approximately true for dairy production:

€110

- P _ —2p —2p
b 5+ 7 or 5+ 14 rather than b + 15 and

= [—P . /2 - ——P__
71 \/p+7 2) T TE T

Note that in this case as p —>2¢> , b -— 1 but Top ——> .71.

If, cjyr # 0, then as p —>00, o — less than 1.

The following table compares the b's and r__'s when h*= 4 with and

TI

without environmental correlation.

Environmental covériance Ciyr T 0 € = 1/16
No_environmental correlation Environmental correlation

3 b = p—i% Tor= /;;*13-5— b = ;%7- Tpr= .71]5
.125 .25 125 .25
3 .33 41 .30 .39
10 .80 .62 .59 .54
20 1.15 .76 .74 .61
50 1.54 .88 .88 .66
100 1.73 .93 .93 .69
1000 1.98 .99 .99 .70
o0 2.00 1.00 1.00 71
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Note that the b's are smaller and Tor — .71 for cyyr = 1/16.

This table assumes the environmental correlation is the same for
all pairs of progeny. The U.S.D.A. sire evaluation procedure, however,
considers the situation where only daughters in the same herd have an
environmental correlation.

If there ére n; daughters in the iEh herd, then

2 ph%

- . Ifb*=Llandc,., =1/16
z - L ! s
4+ (p-1) b2 2Ey (1) ey, 1
b = 2p T (a.-1) as compared to b = ——%grg assuming no
p+15+ iy P

P

environmental correlation. As before,

[ P
=JIbv = b3 R Fald =
o 3 b \/p+15 + ni(ni 1) for W =4 and i 1/16
P

Correction for level of mates

If the mates of one sire are much superior to the mates of another
sire, then this knowledge could be used in evaluating the sires from
their progeny averages to avoild bias from the selected mates.

One approach would be to set up one equation for each daughter

record and one equation for each dam record. For two dams and two

- Dam 1 (X3)
Daughter 1 %:::::::::::::::
X

daughters we would have:

1 Sire (@)
Daughter 2
X9 Dam 2 (X,)
, . . ) - .
The equations to find the b's for I blx1 + b2x2 + b3X3 + b4x4 are:
1.2 1.2 _ 2
by, +¢hby +3h%by + 0 b, = L h
1 ; An? = 1lnpt
#b, + by + 0 by +in*b, = Lh
1 =
b, + 0b, + by + 0b, = 0
1} 2 -
Ob1 + sh b2 + 0 b3 + b4 0



-=90--

As expected b1 = b2 =b . But, b3 = b4 - -% h%*b . Thus, the weight for
the dam's record is -% h*of that for the progeny.

This is certainly different from the usual daughter-dam comparison
where:

Sire value = daughter average - dams' average
With such a procedure, bz = —bl rather than -% h7—b1

The equal parent or American index also weights the dam record too
much. The "logic" for the method is that

Progeny value = % Sire value + % Dam value,
Rearrangement of the terms gives

Sire value = 2 times Progeny average value - Dams' average.

= -1 = -1 p%
so that b2 % b1 rather than b2 5 h b1

The correct procedure can be simplified so that only 2 b's are needed
because each daughter record receives the same weight as any other daughter
record and each dam record receives the same weight as any other dam
record.

If Xl is the average of single records of p daughters and

X, 1s the average of single records of the p dams,

2

the equations to find the weights are:

1 + (p-1) a,,,h* a . hZ _
L1 b, + 12 b, = a, h”*
p 1 p 2 la
a,, h*
12 1 ~ 2
> b1 + . b2 = azzh .

The off-diagonal coefficient corresponds to the average covariance
between the daughters and dams. Each daughter has covariance alzthi with
her dam but covariance zero with the other p-1 dams.

= L ‘ = l = l =
Usually ajqs v oo dyg 5 41y 5 and A9y 0



)

2
_ . % ph 22 1 1.2
Then b, = = and b, = - 3 h'b
S | 1 + (p-1) $h*- (3h*2 4-h* 2 2 1

Note the similarity of bl to the b when dams are not considered. For

example, if h'= 1

b1 ;"I-%ZT7§ rather than b ;—;ETE .

Similarly, the ry changes only slightly since ag =0 . If W= 1/4,

TI

Y ) N . /__._P__._
rTI p + 14 .75 (2) + 0 p + 14.75 rather than
= , —pP .
rTI 5+ 15 when the dams are not considered.

Progeny with different numbers of records

Often in evaluation of sires the progeny will have different numbers
of records. A common example is that dairy cows may often have more than
one 305-day lactation record,

One solution to the problem of weighting these records would be to
set up one equation for each record. Then the weights would be found for
each record.

If the simplified equations are used, the diagonal coefficients will
be 1. The RHS's will be aiahlas before for all i. In the case of half
sibs for sife evaluation, these will all be % h> The off-diagonal
coefficients will be of two kinds. Tﬁe coefficients corresponding to
covariances among records on the same animal will be repeatability, r,

= 2 ici i z
Oyt rog . The other coefficients will be aijh

as before where a, . is the relationship between the animals that made the

since the covariance,

records. In sire evaluation from half-sister records, these will all be %h%
Example: Daughter 1 has two  records Xl and X2 ,
Daughter 2 has one  record X, ;

Daughter 3 has three records X4, X5, and X6



Y

Estimate the additive genetic value of their sire from
X, X

1> %, ‘L*\\N\\\\\\\*\
—

Sire (o)

X, €

3

Xyo X5 %g

I = lel + b2X2 + b3X3 + b4X4 + b5X5 + b6X6 .

The equations to find the b's are:

+ + + 4 + 1 + 1 =LK
bl rb2 &lﬁ3 q}ﬁ4 hlﬁs 4]%6 5 b
+ + 1 + 1 + 1 + 1 =4 n*
rb, b, 4]%3 q}ﬁ4 hl%S 41%6 3 h
+ + + + 1 + = z
z];hlbl ﬂ-ﬁ'bz b3 &hﬁ)A h}%b5}&l{b6"%h

1l # 1 1 : =1 p2
m hbl + m ﬁbz + i ﬁb3 + b4 + rb5 + rb6 5 h
1 14 - 2
m Hbl + m hb2 + & ﬁb3 + rb4 + b5 + rb6 % h
1l 1 _ 2
m ﬁbl + m ﬁbz + & ﬁbs + rb4 + rb5 + b6 = % h

An easler way to obtain the same result is to divide the daughters into

groups with the same number of records for each daughter in a group.

X is the average of Py daughters with n

1 1 record,

1

It

X, 1is the average of P, daughters with n, 2 records,

2

N records.

fl

Xn is the average of Py daughters with nyg

The equations to find the weights for

I = Zbix1 are:
- E—] L
dlb1 + alzﬁbz + ..+ alNﬁbN alah
2 _ z
alzﬂbl + dyb, + ... tayhb = a,h

alNﬁbl + aZNﬁbN + ..+ dpy = ayh”
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If all animals are half-sibs,

1+ (ni-l) r

- + (p,-Din?
d, = i
i pi
aijha'= L h* | and
aih?= sh2

The o will be computed as usual.

Evaluation with full sib groups

Some species such as swine and poultry may have full-sib progeny
groups. Each male may be mated to more than one female. Ordinarily
each female will produce only one set of progeny. The animals in each
group will be related as full sibs (a4 = 3) but will be related as

paternal half sibs (ai = %) to animals in other groups.

3
If Py is the number in each full sib group and n, = 1 and the sire
is to be evaluated, the equations defining the b's are:

3

1 i = 1
diby + 3 Wby + ... +4 b= Lh
i 1y = ip?
FRb, + dgby + ... + 3 Wb = Lh
1 1 _ 2
tHb + 4, + ...+ db = Ln"  where
1+ (Pi'l) % h* .
d, = . Modifications would, of course, have to be

i | P;
made for some n, > 1, and for other possible relationships and environmental

carrelation which is very likely for animals in the same litter.






Summary IX

PROBABILITY STATEMENTS ABOUT TRUE VALUES

We know that the average true additive genetic value, T, for animals
with the same index value, I = Io’ is Io. Thus, Io is the mean of a
distribution of T values for animals with the same index, Io. The variance

= 2
of T for I Io depends on Tor and or -

= (1-r.2) a2
T|1=1 (1-r }) o

If T and T follow a bivariate normal distribution, I0 and 0%11:1
0

determine the distribution of T for I = Io. We will see after a discussion
of the normal distribution how we can use these to make probability

statements about T for I = I0

The Normal Distribution

The mean, u, and the variance, 02, completely determine the normal
distribution. The normal distribution follows the so-called bell

shaped curve.

Frequency of

X values

- 00 p 4%
¢&— values of X —m>

=94 --
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We will let X be the set of values having the normal distribution. The
mean 1s also the median of the X values, 1.e., half the values are greater
than y and half the values are less than y.

The distribution of values 1s also symmetrical. The curve on the
right-hand side of u is the mirror image of the curve on the left-hand
side of u. The variance, 02, determines how flat or how peaked the curve
is. A large 0?2 tends to flatten the curve and a small 02 tends to peak
the values about u.

The total frequency of X's is 1 or 100%. Thus, the area under the
normal curve is also 1., The fraction of the area above u 1is 0.5 and
the fraction below u 1s also 0.5.

A table of areas under the normal curve tells us the fraction of the
area between y and p + to or equivalently between p and p - to since the
distribution curve is symmetrical., This fraction corresponds to the
probability that a value of X will be between p and u + to . The values
of t are multipliers of the standard deviation.

These are two uses of the table (following page):

A.) To find probabilities (fractions of total area) corresponding to
truncation points which can be expressed as u + to or U - to
depending on which side of u the truncation point is located.

B.) To find truncation points expressed as W + to or ¥ - to corres-
ponding to required probabilities.

Examples of A.

Let 0= 2 and p = 10 for distribution of X. Find the probability

that a value of X will fall between 6 and 12,



Table

=06 -

of areas under the normal curve.

Truncation Point

t

D b b= b e e e e e

QWM PWLWNHRHOOVEE~NOU LN~ O

Area between {+tg and u
or between H~-tc and p

0
.04
.08
12
.16
.19
.23
.26
.29
.32
.34
.36
.38
.40
42
.43
445
.455
464
.471
477

494

499
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u~t60=6 u=10 u+t12cr=lz

Since the table gives the area between tt and p+to, we have to find
the area between tt = 10 and p + tlzc = 12 and the area between p = 10
and u - tgd = 6 . (The subscripts on the t's identify the truncation

points.) The total area will be the sum of the two parts. In more

formal terms:

P(12 > X > 6) = P(10 > X > 6) + P(12 > X > 10)

To use the tables we must find t12 and t6' We know

M+t,,6=12 but P =10 and o= 2 . Thus

12

10 +t,,(2) = 12 and t;, = (12-10) /2 = 1

The corresponding area is .34 .
The general method of finding a t corresponding to a positive

truncation point greater than the mean is

t = to+pu-p = truncation point - N

: g a
We know u—tﬁo = 6. Thus, 10 =~ t6 (2) = 6 and ~te = (6 - 10)/2 = -2,

2 and the corresponding area 1s .477 between 6 and 10.

t
]

For t corresponding to truncation points less than the mean,

- t oint -
£ o= - truncation point - . In gemeral, t = |truncation p ul

ag ag
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The total area between 6 and 12 is .477 + .34 = ,817, which 1is the
fraction of X's expected to have values between 6 and 12 or equivalently
the probability that any random X will have a value between 6 and 12,

Another problem might be to find the probability of an X value above
a truncation point.

Example: p + to = 12, p = 10 and o = 2.

We know P(» > X > 10) = .5 ., Also, we have found P(12 > X > 10) = .34 .
Thus, P(e > X > 12) = .5 - .34 = .16 .

The probability of X less than 12 can be found by similar logic, i.e.,

P(12 > X > = ©) = P(10 > X > - =) + P(12 > X > 10)
Thus, P(12 > X > - =) = 5+ .34 = ,84 .
Examples of B

1. Find the region which includes 90% of values of X which 1s also
the probability that a random value of X will be in that region. These
ranges are usually chosen so that they are symmetrical about p. In that
case:

p + to d1s the upper 1limit, and

p ~ to 1is the lower limit
t will be the same in both.
We know the area from p to p + to must be .90/2 = .45, The t corresponding
to an area of .45 is about halfway between 1.6 and 1.7 so let t = 1,65.

If w = 10 and o = 2,

the upper limit is 10 + 1.65(2) = 13.30, and

)

the lower limit 1s 10 - 1.65(2) 6.70
2, Find the truncation point which 90% of the values of X will

exceed, u =10, o =2 .
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We must find the t corresponding to an area of .40 between M and W - to.

1.3 .

W

From the table t
Thus, the truncation point is 10 - 1.3(2) = 7.4. The probability of
a random X having a higher value is 90%. Also 90% of the values of X will

be greater than 7.4,

Applications to estimating true value

We have seen that Y I . Thus, Io corresponds to the mean of

T|1=1_~ "o
o

the distribution of T values for animals with the same index. We will

substitute I0 for 4 of the general discussion. Similarly we will substitute

0T|I=Io for o of the general discussion.

J

_

\

=

I +to
o]

o T|1=1
[e]

€&— Values of T]I=Io —
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1. Probability statements about genetic values: T = GA s I predicts additive
a
genetic value.

We have a bull that has 35 progeny with 1 record each averaging +200;
h?= 1/4; oio = 1000000. What is the probability his true additive genetic

value is greater than 0?

2 70
b = E‘iRTE -5 - %%‘(200) = 280 .

35
2 = —B_ - 22 2
It ¥ p+15 5 °T|1=10 = (- %% 1000000 = 300000 .

"N\

I I_ = 280
o

o~ % %rf1=280 ~

Then, t = B ;4380L ~.5 . The corresponding area gives the fraction
between 0 and 280 as .19. Thus, the probability of T for the bull exceeding
0is .5+ .19 = .69. Correspondingly there is a probability 1 ~ .69 = .31 |,

that is his true value is less than O,

The 95% confidence limits on the true value for this bull would be

280 - t(548) to 280 + t(548) . t ~2.0 for area .95 / 2 = .475 .

the upper limit is 280 + 1096 = 1376 , and

the lower limit is 280 - 1096 = -816 .
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Probability statements about a record.

We previously discussed the probability that an animal's genetic value
was between, above, below, etc., certain truncation points given the index
estimate and the corresponding Top and oé, but in fact when the animal
actually makes a record, in addition to its genetic value, a new random
environmental effect influences the record. Thus, the variance of records
for animals with a predicted genetic value depends on the variance of genetic
values given the index plus the variance of environmental effects.

In this case, T = Xa = GA + Ed’ where I predicts a future phenotypic
record of animal o that has noaprevious record. In this example, the

assumption is that Ga =G The selection index equations to find the

A
a
appropriate weights for the X's are, as usual, on the left-hand sides, the

variances and covariances of the X's. The right hand sides are

OX T E(Xi’ GA + Ed) = E[(GA + Ei)(GA + Ea)]
i o i o
E(GA GA + GA Ea + GA Ei + EiEa) .
i %o i a

The middle two terms are genetic-envirommental covariances which are

il

usually assumed to be zero. The first term is aiaofo for GA = G, and
the last term 1s the covarilance between environmental effects on a record
of 1 and on a record of o which may or may not be zero. If there 1is no

environmental covariance, the right-hand sides are a, 02, = a ho2 as for
1710 i X

predicting additive genetic value and the index for predicting a future
record is exactly the same as for predicting additive genetic value. The
reason, of course, 1s that there is no way of predicting Ea for the new

record.

The L. and 0%, however, are different from when I predicted GA .
o

2 = 2y = 2_ 52 2 = 52 2 = 1552
o7 E(T%) E(GAa + Ea) UGA + op = Oy rather than UGA hox. The

. &9
numerator of ro; 1is ZbiaiahcX as before, but
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rather than vEb.,a, since prediction of E 1s zero. Then o2 =
iia o T I=Io

_1.2 2 - 2.2 :
(1-h Ebiaia)cX rather than (1 Ebiaia)h OX . Notice that many of the same

quantities, Zbiai, h?, ¢2, are involved whether prediction is for GA or

a

2
X

X=6G, + E ; the arrangement, however, is different.
Aoz o

Example. The application of these distributional properties makes sense
primarily when records of ancestors are used in estimating the animal's

genetic value, as for example, the sire's and dam's estimated genetic value

~

are used in estimating the genetic value of their progeny: G =
progeny

A ~

sire + Gdam .

2
2 = 2 . 2 . .
The T for progeny l/4rTI for sire + 1/4rTI for dam if sire and dam
are unrelated. Assume for milk yield h? = 1/4 and o}% = (2000 1b)2. The

following table shows the effect of increasing r2._ for sire and dam on

TI
0x|1=10 .
I 9 x| 1=1 95% C.I. =
Sire Dam Progeny (for progeny) I, +1.96 Oy| 11
0 0 0 2000 1b. Io + 3920
.25 0 .0625 1984 I° 4+ 3889
.25 « 25 .1250 1968 IO + 3857
.50 .50 .2500 1936 I+ 3795
.75 .50 .3125 1920 Io 4+ 3763
.75 .75 .3750 » 1904 I° + 3732
1.00 .75 4375 1887 Io + 3699
1.00 1.00 .5000 1871 I + 3667
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The obvious conclusion from this chart is that the average error of pre-

dicting a record (o ) does not decrease very much even with perfect

X|1=I
o]

prediction of the parents' genetic valuesvwhen o% is relatively large.

Probability statements about differences in genetic values for animals

with indexes I1 and 12.

Suppose animal 1 has index value Il with r%I and animal 2 has index
1

value 12 with r%l ., Differences in true genetic values for animals with
2

index values I1 and 12 will have a distribution. The immediate problem
is to determine the mean and variance for the distribution of Tl-Tzlll—Iz.
The mean is the same as the mean of(I1|I = Il)—(T2|I = Iz)and is

E[(T, |T=1)) - (T2|1=12)] = E(T, |1=1,)- E(T2|I=12)= I,- 1L,
The variance can be determined by the rules for the variance of a linear
function.

V[(T1|I=Il) - (T2|I=12)] = V(T |T=1)) + V(T2|I=12)
since the covariance between T1|I=I1 and T2|I=I2 is zero if the records

in Il and 12
V[(T1|I I) (T2|I 1,01 = (2 rTIl rTIZ)oG .
These parameters can be used to make probability statements about the

are independent. Thus,

difference in true values for animals with indexes Il and 12. In this

- _ w2 _ 2 yq2
case, I1 12 replaces g of the general discussion and (2 rTIl rTIZ)oG

replaces ¢2.

Example: Suppose I1 = 500 and 12 = 200, i.e., 11—12 = 300 and

= 3/4 and r2

2
T
TIl TI2

the true difference in genetic values is 0 or less (i.e., animal with

= 1/4 and 0(2; = (1000)2. What is the probability that

12 = 200 actually has equal or greater true value than animal with I1 = 5007
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= 300

| 1,-1,
<~— 1|1~ 7|1, >

W -
e want to find Prob[(?ﬂll 1312)< 0].

-ri ~-1ri ¢
TIl T12 G

Thus 0 = (Il~ I,) -t V2

2)

and t = (300 - 0)/[v¥2 - 3/4 - 1/4 (1000)]=.3 .

The corresponding area between 0 and 300 is .12 and the area below O is

.5 - .12 = .38, which is the probability of the animal with the lower index,
12 = 200, actually having a higher true value than the animal with the higher
index, I1 = 500.

A more direct approach would be to define T = Tl-T2 and use all infor-

mation to predict T and then follow the general selection index procedure,

Summary of various distributions associated with the selection index

Often there is some confusion about what uy and ¢ are. Actually neither
u nor ¢ has any meaning unless defined in terms of the variable they describe.
In the development of the selection index for a particular trait there are
at least 6 variables.

1) The basic distribution is of the phenotypic records. The P's, or as

we have also called them, the X's. The mean is My and the variance is

Q
[N
|

X oé + cé (the genetic plus environmental variance).

2) 1If we are attempting to evaluate additive genetic values, the mean is

2

X since h2 <1.

=
It

2 = 42 = h2g2, 2
G 0 and the variance is 9% = %10 h Og+ Note that og Lo
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3) Our criterion for evaluating the G's 1s the index estimate, I. The

= ig g2 = y2 42 2 < g2 2
mean 1s u; 0 and the variance is 07 = r7.0ge Note that o1 2 0¢ since I < 1.

4) Animals with the same index value may not have the same true value.

The distribution of true values given an index value has mean uT[I=I = I0 and
o

. 2 - 2 2 o[ = - 2" =
variance o7 (1 rTI)oT 5[ (1-r% )o4 1f T=G].

|1=1 TG
(o]

5) Records of an animal with an index value I0 have a different distribution

from records with no estimate of true value. The distribution of records for

1 = i 2 =
animals with an index of I0 has mean HX|I=IO I0 and variance cxlI:Io
2 2 4 52 2 = 2 2 2 ;
(1 rTI)o'G GE when rTI is for predicting G or 1 rTI)ox when rTI is for

predicting X.

6) The difference in genetic values for animals with index values I1 and

I, is distributed with mean Ko ]I=I and variance @
1

2
(2-r2_ ~r2_)o2,
TIl TI2 G

Corresponding to the general o, the standard deviations for the six

2 2 =
= Moo= 1 Y 9= =
T,|1=1, Tj1=1; ~ “r|I=1,

1

distributions are:

1) X's , oy = /cé + 02

E

2) G's , On = /ﬁhfdé + 0%

t —_ .
3) I's, op = Trp 3

t 1 = =/_ a
4) G's given I I0 s OT|I=IO 1 r%I g 3

' = = 7 Va2 T = ST T . JTv2
5) X's given I I UX|I=IO Y (1 rTI)oG + og /GG +op Y1 rTIH‘when

r%I is for predicting G

6) G |I=I. - G, |I=I, , o ot = V2-rZ_ =2 g,

1771 T2 27 76 G2|Il I TI, TI, G
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SUPERIORITY IN T OF SELECTED GROUP

Average of selected group

The basic principle in selection is to select the best and cull the
rest. We have said the selection index is the best method of evaluating
animals to determine which to select or cull. How can we determine how much

better the selected ones are expected to be than the original group?

The normal distribution

The basic problem i1s this. If a fraction, p, are selected from a
normal distribution with mean, W, and variance o2, what will be the mean

of the selected group, e The problem may be diagramed as:

S RN

%41 .

. Z
u u+to usﬂ?

The truncation point, W+to, depends on p as before.

The expected or average value of the fraction p can be found from:
oo

Hy = i J[ xf(x)dx = p+HDo where £(x) 1s the
u+to

density function of the normal distribution.
Do 1is zo/p where yﬁ is the height of the normal curve at the

truncation point and p is the fraction selected. Note that D = z/p,

~~106--
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the height of the normal curve for ¢ = 1. The tables of D are based on
the normal distribution with ¢ = 1. To convert the table of D values to

any other distribution, multiply by o.

Note that ns—u Do, which is sometimes known as the selection

il

differential. If u G, us = Do,

The table of D for small samples is based on order statistics.
The values are not the same as z/p. The table of D for large samples is
the same as z/p. Dr. C. R. Henderson has proposed an approximate correc-
tion for sample size for this table, i.e., D' = D - 452 » where s is the

number selected. (Note s is not the number available for selection.)

Example

A breed organization reports a bull has 100 daughters. The average
of the top 20 is +1000 1b of milk. The standard deviation of records of
cows by the same sire is about 2000. What would we expect the average of
the 100 to be?

Fraction selected = 20/100 = ,20. The corresponding D = 1.4.

D' = 1.4 ~ .25/20 = 1.3875.

We know
M =y + Do,
s
1000 = p + 1.3875(2000), p = 1000 - 1.3875(2000) = ~1775 1b

We would have been misled considerably if we had evaluated the bull
on his top 20 daughters.
Question. What should be the number of daughters to use in the formula

for estimating the genetic value of this bull--20 or 100?
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Table of D (small samples)

Expected average of a group selected out of a sample from a normal population when
the sample size is small (in units of 0 = 1 )

Sample Number Selected

Size 1 2 3 4 5 6 7 8 9 10 11 12 13 14
2 .56 00
3 85 42 00

4 1,03 .66 .34 .00

5 1.16 .83 .55 .29 .00

6 1.27 .95 .70 .48 .25 .00

7 1.35 1.05 .82 .62 42 .23 .00

8 1.42 1.14 .92 .73 .55 .38 .20 .00

9 1.49 1.21 1.00 .82 .65 .50 .35 .19 .00
10 1.54 1.27 1.07 .89 .74 .60 .46 .32 .17 .00
11 1.59 1.32 1.12 .96 .81 .68 .55 .42 .29 .16 .00
12 1.63 1.37 1.18 1.02 .88 .75 .63 .51 .39 .27 .14 .00
13 1.67 1.42 1.23 1.07 .93 .81 .69 .58 .48 .37 .26 .14 .00
14 1.70 1.46 1.27 1.12 .99 .87 .76 .65 .55 .45 .35 .24 .13 .00

15 1.74 1.49 1.31 1.16 1.03 .92 .81 .71 .61 .52 .42 .33 .23 .12
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Table of D (large samples)

Expected Average of Certain Fractions Selected Qut of a Sample from a
Normal Population (in units of ¢ = 1)

Table for .001-.099 Selected

.000 .001 .002 .003  .,004  .005 .006 .007 .008 .009

.00 3.400 3.200 3.033 2.975 2.900 2.850 2.800 2.738 2.706
.01 | 2.660 2.636 2.600 2.569 2.550 2,527 2.500 2.482 2,456 2.442
.02 | 2,420 2.400 2.386 2.370 2.363 2.336 2.323 2.311 2,293 2.283
.03 | 2.270 2.258 2.241 2,230 2.221 2.209 2.200 2.186 2.174 2.164
.04 | 2,153 2.146 2.136 2.126 2,116 2,107 2.098 2.087 2.079 2.071
.05 | 2.064 2.057 2.048 2.040 2.031 2,022 2.016 2.009 2.000 1.990
.06 | 1.985 1.977 1.971 1.965 1.958 1.951 1.944 1.937 1.931 1.925
.07 1 1.919 1.911 1.906 1.900 1.893 1.888 1.882 1.875 1.871 1.863
.08 | 1.858 1.852 1.846 1.841 1.837 1.834 1.826 1.820 1.815 1.810
.09 | 1.806 1.799 1.793 1.788 1.784 1,780 1.775 1.770 1.765 1.760

Table for .10-.99 Selected

.00 .01 .02 .03 .04 .05 .06 .07 .08 .09

.10 | 1,755 1.709 1.667 1.628 1.590 1.554 1.521 1.488 1.458 1.428
.20 { 1.400 1.372 1.346 1.320 1.295 1.271 1.248 1.225 1.202 1.180
.30 | 1.159 1.138 1.118 1.097 1.078 1.058 1.039 1.021 1.002 .984
.40 .966 .948 .931 .913 . 896 .880  .863 . 846 .830 .814

.50 .798 .782 .766 .751 .735 .720 . 704 .689 .674  .659
.60 .644 .629 .614 .599 .585 .570 .555 540  .526  .511
.70 <497 482 .468 .453 .438 424 409 .394 .380  .365
.80 .350 .335 .320 .305 .290  .274 .259  ,243 .227 211
.90 195  .179 .162 144 .127 .109 .090 .070 .049 .027

If the number selected is less than 500, subtract from D the quantity
.25/8, where s is the number selected.
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Schaeffer (Biometrics, Dec. 1970) has developed a solution for this

problem which generally depends only on the fraction selected.

Genetic superiority of selected group

We have estimated T from I and have selected a fraction of animals based
on their index values. What will be the expected superiority in T of thé
selected group?

The selected I's will be expected to average Hp = Mg + DaI. Note that

s

uI because I 1s unbiased.
s

=0 = before selection, o , and “T =

M1 iy
s
Then, making these substitutions, we have Hp = Hp + rTIOTD as we stated
s
before. The same result can be obtained by the regression of T on I:

)

1 Tri%r

n

— = 2 -
up + bT,I(uIS up) = wp + (og /op) (up + Do = u

e + (UTI/UI)D = Uy + rTIoTD by multiplying by oT/oT.

Hp I
S

Thus, the genetic selection differential will be AG = r O Per generation.

TID
If I 1s the generation interval in years, then the genetic progress per year,
AG/yr = rTIDUT/L. For any given set of animals, however, the best estimate
of the genetic superiority of the selected group is Wy THps the difference
in average index value of the selected and whole populztion. The indexes
are unbiased predictions of genetic value so that averages of these are also
unbiased and in fact the difference in the averages is the selection index
prediction of the difference between the selected group and the group they
were selected from.

The expression AG/yr = rTIDoT/L can be used to compare various selection
programs. This is the key equation for genetic improvement. Sometimes the

best balance of r D, and [ will have to be found.

TI’
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Example:

There are only 1000 progeny available each year for progeny testing.
Two replacements are needed eachr year from the males which are progeny
tested. h'= .25, o, = 1000 1b. wilk. The folloving table illustrates

that neither the highest r, . nor the highest selection intensity gives

TL

the highest genetic progress.

Some possible
combinations of
no. males and no. progeny

Selected/sampled pA perNgélzrzgzgied r‘TI= Jg;%; szD-;gé OT &6
2 of 2 100 500 .995 0 1000 1b 0 1b
2 0f5 40 200 964 .84 1000 815
2 of 20 10 50 .877 1.63 1000 1429
2 of 50 4 20 .756 2.03 1000 1535%%
2 of 100 2 10 .633 2.30 1000 1456
2 of 200 1 5 . 500 2.54 1000 1270

These AG values suggest that of the six combinations, testing 50
males with 20 progeny each is best. In actual practice, income and cost
values must be assigned to each plan. Since AG for 2 of 20 is nearly
as great as AG for 2 of 50, this may be the most profitable plan.

Other factors should also be considered in finding an optimum plan.
The fraction of the population devoted to progeny proving is another
variable in some cases. The generation interval may also be important.

The preceding example ignored the fact that AG is usually different for

males and females since r D, and generation interval may all be different

TI’
for males and females. Total expected genetic response per year depends on
both as will be seen although the expected genetic superiority of the off-

spring 1is the average of the superiorities of the selected males and females.
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Genetic value of progeny

Let AS = rTISDSoG

is the accuracy of the index for sires, and DS is the selection

, where AS is the genetic superiority of selected

sires, rTIS

intensity factor for sire selection. Similarly, let AD = Top DDUG’ the
‘ D
genetic superlority of selected dams. Then, since progeny receive a sample

half of the genetic value of each of thelr parents, G = (AS + AD)/ 2.
. progeny

Genetlc improvement per year

Let Ag be genetic improvement per year, LS be the generation interval
in years for sires, and LD be the generation interval for dams. Then,
bg = (As + 4D)/(Lg + L), which is not [(4S/Ly) + (4D/1))1/2. Proof:
Let S be the genetic value of sires selected to produce the
next generation and D be the value of selected dams. These selected
sires are born Ly years before they produce replacement progeny
with genetic value P. The genetic average of bulls born LS years

ago is P - L_Ag. The superiority of the selected bulls over that

S
average 1s AS, Thus, S =P - LSAg + AS, Similarly, D =P - LDAg-+ AD,

We know P = (S + D)/2 so that by substitution P = (S + D)/2 = (1/2)(P -~
Lydg + 48 + P =~ LyAg+ AD). Then,subtracting P from both sides,
0= —LSAg - LDAg + AS + AD. Rearranging gives i\g(LS + LD) = AS + AD,

and finally Ag = (&S + AD)/(LS + LD).

This result is due to Dickerson and Hazel (1944).

Rendel and Robertson (1950) have extended this procedure to consider
genetic value of sires of sires (SS), dams of sires (DS), sires of dams (SD),
and dams of dams (DD) selected as grandparents each with different generation

intervals (LSS’ L LSD’ and 1

oD’ respectively).

DS’
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,T = = “ 0
E(X1 ) GxiT Cov(Xi, lel + + vMGM)
= Vv.,0 + v, o + ... +vo
1°G,G
. 181 2 GiGZ M GiGM
= I v,0
j=1 166
Recall that ¢ = /h*h* =
eca at G1Gj rgij hihj oxixj and also note that when Gi Gj’ then
o = 02 = h%*02 . Solving the equations for the B's then gives I = B_ X, +
G1Gi Gy i Xi 171
82X2 + ...+ BNXN which 1is the same index as found when indexing each trait
separately and then weighting by economic value as I = vlll + ...+ VMHﬂ.

Expected response from selection for economlic value. Total response 1in

economic value can be determined as before by either AT = DGI or with more

difficulty AT = rTIDc where o% can be found as the variance of the linear

T
function
N
V(D) = E[(z 8,X )2] and
i
i=1
T 2 = {
Tonp BiOXiT/GT where OXiT (1=1, ..., N) are the covariances ;f linear
functions and G% 1s the variance of the linear function, T = jgl ijj.

Often the expected correlated response for one or more traits is of
interest when selecting for some overall economic value. For any index,
whether the selection index or any other, the correlated genetic response

for any trait j can be found by the regression of Gj on I: éj =

qu + bGj.I(Isel - uI), where ISel = g + DcrI and Gj = qu +
AGj; t:hus,AGj = [Cov(Gj,I)]D/crI where Cov(Gj,I) = Cov(Gj, lel + ... +
BNXN) ='BlUGjG1 + BZUGsz + .00+ BNGGjGN. This formula holds for any trait

whether included in T or I. However, the correlated responses of the traits
included in T weighted by thelr economic values will equal total economic
response; i.e., AT = VIAG1 + VZAG2 + ...+ VMAGM.

An example follows for selection for two traits. Included are examples
of comparing correlated response in the two traits when selection is for only

one of them using either both traits or only one of them.
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Example of selecting for more than one trait

Let milk yield = Trait 1, type score = Trait 2

o = (2ooo‘;g)l o = (2%)2 Oy y =400 1b % x = .1
1 2 172 P
02 = (000 )% o2 = an® o, =2001b% r =.2
1 2 12 &
- 2 =
hi = 1/4 hj= 1/4
Suppose vy = $.025/1b v, = $50./%
Method 1, Find I, = by, X, + by, X,
= = 2 =
4,000,000 b, + 400 b, %6, = %, 1,000,000
400 b, + 4 b, =0 =g = 200
11 12 7 %%,6, 7 76,6,
Thus T, = .2475 X  + 25.2525 X,.
Then find 12 = b21 Xl + b22 X2
4,000,000 by, + 400 b,, = o, . = 200
172
400 by, + 4 b,, = %%, ° 1
Thus I, = .00002525 X, + .2475 X, .

I =.025 Il + 50. 12 = [.025(.2475) + 50(.00002525)]Xl+[.025(25.2525)+50(.2475)]X2

I = lel + 82X2 = .00745 Xl + 13.006 X2 will be the overall index.

= 976

D o_; g2 =g

. 2 L2
Total response: ZCX G I I 1 %

/\ 6

Correlated responses:

+ B2 62 4+ 28,8, 0
1 2 X, 1%2 XX,

D V976 = 31.24 D (§), total expected response,

Cov(Gz,I)

R - 2 -
A 6, . D5 Cov(G,,I) = B o, . + B, ci = .00745(200)
T 2°1 2
+ 13.066(1) = 14.5, = 4.5 g
(1) ; thus Zﬁ& G2 3120 D 4647 (D).
Cov(Gl,I) )
[\ 6 = ———1; Cov(e,1) = 8, o2 +8, 0y . = 10051
Thus /\ 6 = L0051, 3017 1 () b2
us 17 31.24 e

/\ G should = v, A\ G + v, [ G, = .025(321.7 D) + 50. (.464 D) =

8.04 D+ 23.2 D = 31.24 D ,
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Suppose another trait, e.g., fat test = Trait 3, is of interest, then

Zf& Cov(G ,I)
G ~————————-D; Cov(G,,I) = B + B
I 3 1 G3G1 2 G3G2
Ifr =-.6, r =.1, o2 = (.3%)2, n*-= .5; then 62 = ,045 %2
813 83 X3 3 Gy
Og.c. =T, Vo5 o2 = -.60 /(1000)7(.045) = -127 1b %¥, and
1’3 813 "1 3
0o = F, Yo& I =.10 /ID? (.0&5) = .02121 Ve
2°3 83 ©3 U3
Then Cov(G,,T) = .00745(-127) + 13.006(.02121) = -.67.
Thus /A G, .67 = -.021 D (%5).

T 31, 25 D

Example of selecting for ome trait using both traits

Suppose v, = 0, then v, can be any positive nonzero value; 1 is convenient,

2 1

i.e., I =v.I. .and obviously v. will not change ranking.

171 1

Cov(G,,I)
If v. # 1 then 1’
1 zc& G1 =-———1;;——— D but I = VlIl so that
v, Cov(G,,I )’ Cov(G,,I.)
Zﬁ& G, = 1 11 D = L D as for v. = 1.
1 vy UI OI 1
Bl 1
Thus for vy = 1, v, = 0: I-= I1 = ,2475 Xl + 25.2525 X2
Response: /NG, = /\ I =Do. ;02 = (.2475)% 2 + (25.2525)%0%
1 1 I I
1 1 1 2
+ 2(.2475) (25.2525) ¢ ,
X. X
172
02 = 250,556 and o. = 500.56 .
5 L

Thus  /\ G, = 500.56 D (1b)

.Correlated response: When selecting for G1 using Xl and X2
b

2
11 %.c. T P12 9%

Cov(G,,I,)
~ 2ol 261 2 7475 .
[\ 6, = — 0" o D= £l n = 149D (D)
1 1
Cov(Gy,T,) b1 %646, + by %646,
1 91

1 1
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Comparison with selecting for ome trait using only record of that trait

- - nEy o
Suppose I, = b X, = hiX; = .25 X;
Response: ZCX G, =D Oy 3 Oy = V(.25)20§ = 500; thus ZCX G, = 500D (1b)

1 1 1
Cov(G.,I.) b %.¢
Correlated response: ZCS c = © 2’71 D = 271 D = .25(200) D
2 OI Oy 500
1 1

.1 D (%)

This would be the same response as selecting for trait 2 using only trait 1
since the genetic covariance is positive.

Comparison with selecting for one trait using only record of another trait:

Select for G2 using Xl by 12 . lel
o
G,G

2 _ - _ 172 200 _
¢, b, =0 =g ; by = —— = = .00005
X1 X6, GG, 1 0X1 4,000,000
= . = . = 242 =
1, = .00005% 5 /\6,=D o1, °1, /(.00005) %, 1

Response: Thus ZCX G2 = .1 D (%) as above.

Summary

These examples illustrate the method of comparing different selection

ok
systems: fo G for

Selection For Based on ICX Gl ZC& GZ -025 = Y1 & 50 = V2
.025 Gl + 50 G2 Xl’ X2 321.7 1b YA 31.24 $

Gl Xl’ X2 500.56 1b 149 % 19.96 $

Gl Xl 500 1b 100 % 17.50 §

G2 Xl 500 1b 100 % 17.50 §

G2 X2 100 1b .500 % 27.50 §

%A1l expected responses should be multiplied by D.
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An approximate procedure for selecting for more than one trait

Often the genetic correlations needed to find the weights for the index
to estimate , T = lel + ... + VMGM, are not known or are estimated with
not much reliability. In addition the equations to determine the weights
are difficult to solve if many traits are included in the index. An approx-
imation which is easy to use is to index each trait using only the records
for that trait; then substitute those indexes into the economic value equation.

This approximation can also be used when records of relatives are avail-
able as will be discussed later, The approximaéion is the same as the exact
procedure when the phenotypic and genetic correlations among the traits are
all zero. In fact, that is the assumption made to obtain the approximate
index.

When only one record is available on each trait of the animal to be
evaluated, the indexes for the traits are

Ij = h%Xj and so the approximate overall index is

I= vlh X+ v,hEK, L +th{fo .

Note that the phenotypic records are weighted by the product of their

value and heritability which would be the welghts found by solving the

equations for the B's when all the phenotypic and genetic correlations

are zero:
2 [ = 2 t
oxl Bl + 0's vlh1 axl + 0's
2 ' = 2
sz 82 + 0's v2h2 oxz + 0's

' 2 =
0's + OXM BM 's + thM XM
Some research has indicated that thils approximation may be better than

using poorly estimated genetic and phenotypic correlations to determine
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the weights for the exact procedure.

If the correct genetic and phenotypic

correlations are known the approximate procedure still may be nearly as

good as the exact procedure and will be much easier to apply.

In such

cases how good the approximation is may be found by calculating the corre-

lated responses expected for each economic trait when selection is by the

approximate method.

response expected from the exact procedure.

The response in each trait can be compared to the

The responses for individual

traits can be weighted by economic values to compare economic responses

expected by the exact and approximate
A A
Let Ip = + ... +
et Ip Bl Xl BM XM be

correlated response for trait j using

Cov(Gj,IA)

fo G, = — D as before
J IA
A A
Cov(Gj,IA) = 8] % ¢ + B, % @
il 2

2
[0}
Ia

be taken to include the correct phenotypic covariances such as ¢

+ ..

will be determined by the variance of a linear function.

procedure.
the approximate index. Then the

the approximate index is

where E(Gj, Ip) =

A
+ 3.0 .
M GjGM

Care should

which
X%,

were assumed to be zero in determining the approximate ('s.

Example of approximate procedure

Suppose that the selection is for

and covariances as in the previous example,

v, = .025/1b and v, = $50./%.

1
The approximate procedure assumes

ances are zero.

Method 1:

milk and type score with variances

In the example,

the phenotypic and genetic covari-

The equations to find the index for milk are:
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A A
4,000,000 by, + 0 by,

A A _ ] _ - 1.7
0 bll + 4 b12 = 0 IlA— .25 Xl+ 0 X2 hlxl.

1,000,000

The equations to find I, are:

25
A A
4,000,000 by, + 0 by, = 0

Ay 4vd -1 H

0 b21 22

- - n¥x..
IZA- 0 X, + .25 X, = hyX,

= ’ = % > =
Then I, vy IlA+ v, I2A vlhlx1 + v2h2X2 .025(.25) Xl + 50(.25) Xz.

= ,00625 Xl + 12.5 XZ as compared to the optimum index of

I = .00745 Xl + 13.006 X2 .

H
=
!

Total and correlated responses:

Total response computed as usual as

/N\T=0. D; [02 = (.00625)2 02 + (12.5)2 02 + 0 = 781.25, o, = 27.95]

Ip Iy X X, Iy
would not be correct since the o really isn't zero. Actually o =

XX, Iy
(.00625)2 g2 + (12.5)2 02 + 2(.00625)(12.5) @ = 843.75; 0. = 29.05.
Xl X2 . X1X2 I
The correct expected total response can be computed as
ZC& T = Cov(T,Tp) D where o is computed using the actual o and
ag IA X. X
Ip 172

T = lel + v2G2 . The correct expected total response can also be computed
from vy AG]_+V2 AGZ .

Cov(Gy,I}) .00625 02 + 12.5 ¢

A
Ne =—F—"0- ! 16 = 3P0 p - 3012 15 ()
I, 29.05 )
2

Cov(G,,T,) .00625 9% ¢ + 12.5 96

A, = —2 A 172 2p =125 473 7 (1)
2 9y 29.05 29.05
A

Thus, expected AT = ,025(301.2 D) + 50(.473 D) = 31.18 D. 1If the correlated

responses are computed assuming o and ¢ 0, the Incorrect expected

XX, 6,6, -
responses are: AGl = [Cov(G,, Ip)ID/o_ = (.00625 ¢ )d/27.95 = 223.6 1b (D)
and AG, = [Cov(GZ,IA)]D/GI = (12.5 o )D/27.95 = .447% (D). Note that the

2 A 2
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genetic covariance term in the numerator 1is ignored and that the incorrect

o is used which ignores the phenotypic covariance,

& The three sets of calculated responses which can be compared are summar-
ized below:
1) wusing the correct covariances,
2) using zero covariances to compute the index but using the correct
covariances to compute response, and
3) using zero covariances when really not correct.
c g ; o Expecte? 5
omputing o esponse
index response ZCX Gl (1b) ZCX G2 (%) ICX T= V1 ZCX G1+v2 Zﬁx G2
correct, correct 321.7 464 31.24
incorrect, correct 301.2 473 31.18
incorrect, incorrect 223.6 447 27.95

Using records on all traits of relatives

Covariances such as the one between a record for trait 1 of relative 1,

PlP and the record for trait 3 of relative 2, P__, are needed to set up the

23

equations to find the proper weights.

P11 = Gll + E11 and P23 = G23 + E23 1s our usual model, Then

Cov (P = Cov (G ) + Cov (E ) + Cov (G + Cov (G

11 P23’ 11 %23 11 Ep3 11 Ea3 23 110+

All except Cov (Gll G23) usually will be assumed to be zero. Then the co-
variance is the covariance between the genetic value for trait 1 on relative

1 and the genetic value for trait 3 on relative 2. If these were measured

on the same animal, i.e., relative 1 was relative 2 then the covariance is
simply the additive genetic covariance between traits 1 and 2. But in general,

the additive genetic covariance is ; the additive relationship

a., o
12 G103
between the relatives times the genetic covariance between the traits. This

corresponds to the additive genetic covariance between relatives for the

same trait, a._. o2 .
> 712 g
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Thus, if only additive genetic effects are considered Cov (Gij Gi'j') =

a:v 9% ¢ where i and i' are relatives i and i' and j and j' are traits
i’j!
j and j' .

If the further assumption of no covariances among genetic and environ-

mental effects and among environmental effects on different relatives is true

then also

- + = !

COV(Pij Pi'j') a g OG,G., but when i = 1
1]

= Y | s st

Cov(Pij Pij') %.q., + op g, a8 before and when i = i' and j = j' ,
J ] J 1]

= g2 = g2 2

Cov(Pij Pij) 95 o4+ og -

3 | 3
The notation has been changed to let Pij be a single phenotypic record
for trait j on relative i since the selection index will use average records
on all measured traits for all relative groups.
Thus, Xk = xij will be the average of records on relative group i for
trait j (nk records for each of Py animals in the group).

M N
The overall index for T= L. v G will be I = _%. B8 X . The
m=l m m

k=1 "k "k
equations which determine the B's come as usual from maximizing Trp OF mini-
mizing E(T - I)2.
Again, either finding the index directly or weighting the indexes for
the economic traits by the economic values are equivalent. We will describe
the procedure of finding the index for each trait using all the X's and

M
then putting them together as I = E. v 1

m=l m m °
The basic step then is to estimate Gam the additive genetic value for
trait m for animal o from all X's (Xk, k=1, ..., N) as
= + LI 4 + .
Iam bml Xl + bm2 X2 me XN Note we now must keep track of

the relationships among the relative groups and the animal being indexed.
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The general equations to find the b's are:

2 =
o b + 0 b + ... +0 b = 0

X1 ml X1X2 m2 xlxN mN XlGam
o b + 0 b + ... +02 b = 0 .
xlxN ml XZXN m2 XN mN XNGam

If the usual simplifying assumptions are true the variances and
covariances can be written in terms of phenotypic and additive genetic
variances of the traits and of the phenotypic and additive genetic covar-

iances among the traits.

Variances of the X's , o2
X
k
l+(nk—l)r.
—_——— T — ’)‘
2 _ o B n + (Pk 1) aii'hj
g5 =0 = k 2
Xk X.. o where
1] Pk Pj
0% is the phenotypic variance for trait j,
J
rj is the repeatability for trait j,
h;‘ is the heritability for trait j, and
aii' is the additive relationship among animals in group 1.

Covariances among the X's, o

K K

There are three possible types of covariances.

1) If k = ij and k' = i'j (different relative group, same trait j)

= - 2 . .4

oﬁcxk' OX,.X.,. aj;e OG' as before where aii' is the additive
1] 1] J

relationship between groups i and i'.

2) If k =1ij and k' = ij' (same group, different traits)

%, T Dag 9 ¢
o =0 = 31 j 3 where
b~ Xy ;
k
UP p is the phenotypic covariance between traits j and j' and
i3’
a,,, is the relationship among animals in group {i.

ii
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3) If k =1ij and k' = i'j' (different groups, different traits)

o =0 =a,, A O
kak, Xijxi'j' 1i GjGj'

Covariances on the RHS's, o

ka om

The covariances between the Xk and Gam will be of two types:

1) If k = im (same trait as Gm) then

= = 2
%% ¢ °). ¢ 4ia %
k am im am m

and

2) if k = ij (different trait from Gm) then

o] =g =a, O© .
XkGam XijGam ia Gij .

Solving the equations gives Iam = kgl bkak for trait m. This procedure
will be repeated for all economic traits. Note that the coefficients of the
b's will be the same for all sets of equations, only the RHS's will change

depending on the trait being indexed.

M N
Finally, Ia = mél v Iam = kgl Bk Xk .

Response from selection

As usual ZCX T =D o_ although 0% is very messy to compute, all the

I
terms are found in the coefficients in the equatlons to find the weights.

The correlated response for any trait c can be computed as usual as

COV(Gac’ )

a . .
ICX GC = o D . Again Cov(Gac, Ia) is very messy but
can be computed:
Cov(Gac’Ia)= Bl Cov(Gac’Xl) + 82 Cov(Gac,Xz) + ... + BN Cov(GaC,XN)
where Cov(GaC,Xk) = Cov(Gac’xij) =
i = = 2
2. % ¢ and (if ¢ = j) a;, % -
cj c



—-131--

Approximate procedure

As before, approximate weights can be determined easily by assuming the
phenotypic and genetic covariances among the traits are zero. Then many of
the equations to find the weights have zero off-diagonal coefficients. The
RHS's are relationships times genetic variance or are zero if indexing
each trait separately or are economic values times relationships times
genetic variance if obtaining I directly.

The approximate procedure is the same as using records of relatives for
only the trait being indexed. Then the indexes for each trait (based only
on records for that trait) are weighted by their economic values as before,

When the phenotypic and genetic covariances are really zero the approxi-
mate procedure is the same as the exact procedure. How much better the exact
procedure is than the approximate procedure when the covariances are differ-
ent from zero and are known can be determined by calculating the correlated
responses by both procedures as was illustrated when only records on the
animal were considered.

If the phenotypic and genetic covariances are estimated from a small
amount of data so that they may be seriously in error, especially the genetic
covariances, then the approximate procedure may be more accurate than using
the exact procedure with incorrect covariances. The differences in the
procedures, however, cannot be determined without knowing the correct co-
variances.

Example

The following example with two traits measured on the animal and on 50
paternal half sibs (p.h.s.) will illustrate the exact and approximate pro-
cedures and will demonstrate how to compare the expected selection response

from both.



--140--

The following problem illustrates use of standardized variables when three
traits are measured on the animal being cvaluated and when the three traits
have economic value. A part of the problem also illustrates the consequences

of assuming the genetic and phenotypic correlations are all zero.

Problem
Given: vi = 3, vé =2, vé = 1 (the relative economic values of standard
deviation units)
o, =6, o, =5, o, =4, hi=.7, n¥=.8, hZ=.9
X1 X2 X3 1 2 3
r =.,1, r = .2, r = .3, r = .6, r O, r = .4
P12 P13 P23 812 13 23

Find I' =v! I +v! 1! + ! 1!

B! Yy +BéY2+B'Y

171 2 72 373 171 3°3°
! ] t ] -
For I1 solve b11 + .1 b12 + .2 b13 = .7
[} 1 L} —
.1 b11 + b12 + .3 b13 = .6 V(.7)(.8)
1 t ' = /
.2 b11 + .3 b12 + b13 S VGTYC9)

Ii = .,632 Y. + .335 Y2 + .170 Y

1 3

For I, the RHS's become .6 v(.8)(.7) , .8, and .4 /(.8)(.9) so that

[¢]

(-
12 = ,366 Yl + .751 Y2 + .041 Y3

For I the RHS's are .5 (NC7) , .4 /(.9)(.8) , and .9 and

Ié = .223 Yl + .066 Y, + .835 Y

2 3°
Or, to find I' directly solve

Bi + .1 Bé + .2 B! 3C.7) + 2.6)/(.7T)(.8) + (L)(.5)YV(.7)(.9)

3

3(.6)/(.8)(.7) + 2(.8) + (1)(.4)V(.8)(.9)

L} L} ]
.181+ 82+.383

3GV + 2.4)/(.9)8) + (1(.9)

' ' '
.2 31 + .3 82 + 33

- = =
and T 2.85 Yl + 2.57 Y2 + 1.43 Y3 I and o1 4.7 .
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The correlated response in trait 2 is

A - (2.85) 6T BYCT) + (2.57)(.8) + (1.43) (.4 THLD
2 4.7

.813 D

]

and ZCX G2

Now assume rg's and r

5(.813)D = 4.065 D .

's = 0as for the approximate index.

The overall equations reduce to Bi = 3(.7), Bé = 2(.8), and Bé = (1)(.9)

so that I' = 2.1 Y, +1.6 Y.+ .9 Y o%,= 7.78 and ¢

1 2 3 1!
Cov(G),I') = 1.28 and ZCS G, = 2.29 D if rg's and rp's are really zero.

= 2.79,

If r 's and rp's are not zero but are as given above and if I' = 2.1 Y1
+ 1.6 Yo + .9 Y,
then o%, = 7.78 + 2,29, o,y = 3.17; Cov(G), I') = 2.53 and

lﬁl G, = (5) %4%% D = 3.99 D as compared to 4.06 D using the best index

and to the 2.29D expected by assuming zero correlations.

Another standardization

Some research reports have used another standardization procedure which
gives all standardized variables a genetic variance of 1 and a mean value
of zero. The standardization is to subtract the mean and divide by the

genetic standard deviation:

. X = uy _ Gy . Ey
o o G :
Gy Gy Gy
G E
v =2 =1 and v [ =R g that
OC UG h
X X
1
V(Y) = "1;1_.

For standardized records on two traits the phenotypic covariance 1s

o
X X X X
Cov(Yl, Y2) = Cov S 1 P 2 = 3———162——- = rp . .
/th -
GY GY GX Gx 12 1h2

1 2 1 2



~-142--

The genetic covariance is Cov(GY s GY ) = Gov s = =r

1 2 % G ¢. G 812

If records are standardized in this way the equations which determine

the proper weights (h;i’ i=l, ..., N} when selecting for trait m using
standardized records on the animal to be evaluated, I" =b" Y. +...+b" Y , are
™ ml 1 mN N
%T b"l + 1 r b"2 + ... + 1 r b"N = r
1 " Vhthr Pz M AmE Piv " 81
. (when m = 1,
: r = 1)
Emi
L r P L r AP RS lz b" = r
/ahZ Piy ml /ny Pow m2 hy N By

The extension of this to T = E v; Gm is straightforward. The economic
values are given in terms of value per genetic standard deviation, v; . The
index for trait m in standardized form can be converted back to non-standard-

ized form as

— 1" e . - = =
I =o0 Im . Similarly T I vlll + ... + vMIM .



Summary XII

SELECTION INDEX FOR CATEGORICAL DATA

Some traits are subjectively scored on an either-or basis; that is,
they are assigned to a discrete category. For example, calving
difficulty for a particular birth might be scored in one of three
categories: 1, no difficulty; 2, some difficulty; or 3, very difficult.

One method of analysis is to simply assign a single score to each
birth. Two ways of doing that have been used: @) the score is the same
as the category, e.g. a some difficulty birth would be scored as a "2"
and b) the categories are assigned economic values and the score is the
economic value associated with the category, e.g. if category 2 has
economic value -$20, then the score for a some difficulty birth would be
-20. Note in case a) that a linear scale of economic value is implied.
In both cases the usual selection index procedure can be used if the
appropriate heritability is known.

The best procedure, however, is the selection index procedure with
each category being considered as a separate trait scored as zero or
one. There will, however, be covariances among the categories.
Categorical data have a multinomial distribution. If there are only
two categories the distribution is the usual binomial one.

The phenotypic variances of and covariances among the categories
are determined by the probabilities of being scored in each category.
These fractions are also the population means when each category is
scored as a zero (the attribute is absent) or as a one (the attribute is

present). Suppose the fractions in each category (means) are

--143--



--144--

ﬂl’ ﬂ2, and ﬂ3 (the Greek symbol pl is used here to denote proportion).

Then the phenotypic variances and covariances are:

[ -2 ) ( (1- - - )
o] g 4] m (1-%w,) ™ T, T
1
¥1 yly2 y1y3 1 1 12 3
2
o g o _ | T m,(1-m,) -m,7
1Y, Yy Yo¥q | = 12 2 2 23
2
o o s} -, -, w,(1-7,)
3 3
WRSTE TS5 TR £ T I U 2 7

There are some distinct properties to consider when dealing with
multinomial data. The sum of the variance and covariances in any row

(or column) is zero because T + T, + ﬂ3 = 1.

The genetic variances and covariances follow the same pattern although

they are not determined by the means. The sum of the variances and

covariances in any row (or column) is zero.

(o2 o o )
&1 €18 €183
o a2 o
£18; &y 8783
g g a2

| 8183 8283 B3

Such a property results in what is known as a lack of independence.
Such variance-covariance matrices are singular. The practical result
is that instead of using all the traits in predicting the value for any one
trait as is usual for evaluation using multiple traits, all traits except
one are used as will be illustrated.

The selection indexes predict differences from the means as
follows:

Ly =8y =7y = by (Kymmy) by (Xy=my) + by o (Xy=my)

by (Xp=mp) + byy(Xy=my) + by (Xy=my)

=
I
o]
w
=
|

= by (Xp=T) + by (Xp=m)) + byy(Xymmy)
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Then the probabilities can be predicted by adding the means to the

indexes as follows:

1 1
gz = 12 + “2
A _ 4o
gy T I3+ 7y

Note that él + éz + é3 = 1, and Il + I2 + 13 = 0, Remember that
the multiple trait observation (Xl, X2, X3) is
(1, 0, 0) if scored in category 1
(0, 1, 0) if scored in category 2, and
(0, 0, 1) if scored in category 3.
The same properties hold, for example, in the case of sire evaluation
from p hall sib progeny except that Xl’ X2, and X3 are the fractions of

progeny scored in categories 1, 2, and 3.

62 + (p-1) (402 )
y g

2 :
Then, °. = 2 L and
i P
o + (p-1) (40 .
y.Y. (p-1) (4 8.)
o - i 173
Xin 1%
: 3
Again ZXi =1, and L Oy x = 0 for all rows (or columns). The RHS's,
j=1 "1

OX T are determined as usual as the additive relationship times the
i
appropriate column of the genetic variance-covariance matrix.
Because of the lack of independence one less equation than number

of categories is used. The weight corresponding to the equation that

is left out is set equal to zero.
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Example

An example may help clarify the procedure. Suppose for some

= .5, %, = .3, and w, = .2,

trait with three categories that m 3

1 2

Thus, the phenotypic variances and covariances are:

.25 -.15  -.10
-.15 21 -.06
o -.10  -.06 .16

Assume the genetic variances and covariances are:
.05 -,03 -.02
-.03 .07 ~.04
-.02 -.04 .06
When the equation for trait 3 is set equal to zero, the selection index

equations to determine the weights are:

RHS's for
1 g 83
.25bl - .15b2 = .05 . -.03 . -.02
—.15b1 + .21b2 = =-,03 ’ .07 ' -.04

The indexes are:

For g, : I, = .20(xl—n1) + ‘O(Xz'"z) + 0(X3-—113)
For gy I2 = .14(X1-n1) + .433(X2-n2) + 0(X3-n3)
For g, : 13 = —.34(X1—ﬂl) - .433(X2—n2) + O(Xg—ﬂ3)

and g = Il + Tys 8y = I2 + Tys 8 13 + ﬂ3

When the animal is scored in category 1, Xl =1, X2 = (0, and X3 = 0 so that

él = .20(1-.5) + 0(0-.3) + 0(0-.2) + .5 = .60,
gz = .14(1-.5) + .433(0-.3) + 0(0-.2) + .3 = .24, and
6. = —.34(1-.5) - .433(0-.3) + 0(0~.2) + .2 = .16 .

83
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When the animal is scored 1n category 2, Xl = 0, X2 =1, and X3 = 0:
gl = .,20(0-.5) + 0(1-.3) + 0(0-.2) + .5 = .40,
gz = .14(0-.5) + .433(1-.3) + 0(0-.2) + .3 = ,5331, and
§3 = -.34(0-.5) - .433(1-.3) + 0(0-.2) + .2 = 0669 .
When the animal is scored in category 3, Xl =0, X2 = 0, and X3 = 1:
g, = -20(0-.5) + 0(0-.3) + 0(1-.2) + .5 = .40,
gz = .14(0-.5) + .433(0-.3) + 0(1-.2) + .3 = .10, and
g, = -+34(0-.5) ~ .433(0-.3) + 0(1-.2) + .2 = .50 .
If any other two equations had been used, e.g. X2 and X3 with
b, = 0, the evaluation would have been exactly the same. Note that

the appropriate RHS's to predict 81> Bys and 84 would have been

-.03 .07 -.04

. .

’ ’ .

-.02 -.04 .06
The procedure for finding the weights for sire evaluation would
be similar. The RHS's would be divided by one-half and the LHS's
computed as indicated earlier.
Prediction of progeny frequencies from a particular mating would

be the same as averaging the evaluations of the sire and dam.

" +'\
815 * 81p

Fraction in category 1

]

Fraction in category 2 éZS + éZD

It

S +,\
835 © B3p
2

Economic weights for any of the three cases, animal, sire, or progeny,

Fraction in category 3

can be assigned to the frequencies which have been predicted. Suppose

v, = 60, v, = -5, and vy = -100, Then, in the previous example, for an

animal scored in category 2 (0, 1, 0), the aggregate economic value is

predicted to be: 60(.40) - 5(.5331) - 100(.0669) = -45.5655.

11/21/78






Summary XIII
SELECTION FOR EMBEDDED TRAITS

Some tralts cannot be measured directly. An example 1s a maternal
trait which makes up part of the environmental effects on the record of
an offspring. Such traits are embedded traits. Selection for embedded
traits, however, can be accomplished with the selection index. The pro-
cedure appears to be somewhat of a hybrid between single trait and
multiple trait selection. The general selection index procedure can
certainly be applied. Three examples of embedded traits will be discussed
in this section: the maternal effects model, ehe grandmaternal effects

model and the fetal effects model.

Selection when tralts are influenced by maternal effects

The maternal effect of the mother often has an effect on the pheno-
type of the offspring. This effect 1s genetic with respect to the
mother but acts as an environmental effect on the offspring. This
effect of the mother is In addition to the genetic effect of the sample
half of her genes that the offspring has obtained. In turn, part of
the maternal effect may be genetic and part may be environmental.

(See Willham, Biometrics, 1963 for the complete development.)
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The following diagram illustrates the various effects when W is the dam of X.

DX
G } G \
DW —— 2 “DX
Oyw ———> Swx A

Px is the phenotype of animal X, EDx is the non-maternally caused

environmental effect, G is the genetic effect associated with the geno-

DX
type of X, GMW is the genetic maternal effect on X, EMw is the environ-
mental maternal effect on X, GMX is the genetic maternal ability of X
which is not measured, and GDw is the genetic effect associated with the

dam of X, W. Note that GMw + EMW + EDX = EX and GDX = Gx of the usual

model PX = GX + LX.

One can consider these to be two traits (a direct trait, D, and an
indirect maternal trait, M) which may be correlated. Trait M is measured

one generation later than the direct effect D.

The genetic covariances between relatives with maternal effects considered

Let the model for a record on animal X be

PX = GDx + EDX + GMw + EMw and the model for a record on animal Y be

PY = GDY + EDY + GMZ + EMZ where animal Z is the mother of Y and W

is the mother of X.

By the rules for the covariance of linear functions we can find the

genetic covarilance between X and Y. Assuming any environmental covariances

are zero, we find:

COV(PX, P,) = COV(GDX’ GDY) + COV(GDX’ GMZ) + COV (G,,.,, GDY) +

Cov (G

v

» Oyz)
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In terms of genetic variance and covariance components we have:

ofo %0 901
_ _10 2 _20 Jo1
COV(Gpys Gpy) = ayy T *Tagy tdyy 3 T
2 2 2
8] g ag
_ 10 , 920 01
COVGypr Oyz) = 2y F %z w tdyz toeees
Y10,10 %20, 20 901,01
= M LY 2 LIRS
COVGpys Gyz) =8y D Mtz D Mt e D u T - and
[0}
oL 10,10 , , %20, 20 %1, 01
COV(GMW, GDY) =an D M +aWY > dWY 5 -

The a's and d's are the usual additive and dominance relationships.
The genetic variances are labelled with the trait, i.e., (0 /D) is the addi-

tive genetic variance of the direct trait, D.

Z|o

The genetic covariances are labelled with both traits, i.e., —Bg
is the covariance between the additive genetic effects for trait D and
trait M.

If only additive genetic effects are considered,

2
o o
_ 10 10 10,10 _
COV(Ry Py) = ayy, =+ ayy 5 + (ag, +a) 577 =
F og + ) i impl ti
ayy GD + ay, GM + (axz 3y OGDGM in a simpler notation.

Example of genetic covariances between relatives considering only additive

effects

Animal with itself: This covariance will be the genetic variance plus

environmental variance.

1 _1
X=Y, W= 12, and ayy = 1, A = 1, ayu = 70 and ayy =5
1 2 2
COV(P,P,) = 02 + 02 + (5+ o +02 +g2 =92,
XX GD GM 2 2 GDGM EM ED P
In terms of the P = G + E model 02 = o2 and 02 =¢g2 +o¢ +
G GD E GM GDGM

02 + o2

By * 8y
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Dam—-progeny covariance considering only additive genetic effects:

X is the progeny

W is the dam Z

w/
x/(Y)

Z is the dam's dam
Y is also the dam of X

The genetic parts of the models for P, and P, are:

X Y
PX = GDx + GMw and PY = GDY + GMZ .
(Y) (W) (W)
ayy = 1/2, aug = 1/2, ay, = 1/4, Ay = 1.
(Y)
Then COV(P_,P ) = 1/2 62 + 1/2 62 + (1/4+ 1) o .
XY Gy Gy GGy

Note that the covariance between relatives may contain a genetic covariance
between the direct and maternal traits. This covariance can be negative-and
thus mask the additive genetic variances for the direct and maternal

traits.

Note that the additive genetic correlation between D and M 1is

o
r GDGM
g = ————— | Since the maximum absolute value of r is 1,
D,M o7 g
GD GM
/o2 g2 >

O, O
Cp Gy ~ GDGM"
Thus, there is a possibility of obtaining a negative estimate of the off-

spring-dam covariance if the negative value of ¢ is large enough,

SpCn

If maternal effects are important doubling the offspring on parent

regression can give a blased estimate of heritability of the direct trait;

i.e., 2 2 1 2 2 1
2[1/2 o +1/2 0 +1=0 ] g o + 250
G G 4 °cc, G 2 %66
Vo D M DM __D _M DM
2 2 2
5 Op o5

Of course there are also the other possible genetic causes for bias in

this estimate due to o%o etc,
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Sire-progeny covariance:
X 1s progeny of dam W and sire

/\

a = l = 0 - -!'—
XY "2 qzT % &z "B
1 1
then Cov(P,P,) = =02 + =0
XY 2 GD 4 GDGM

spring-dam covariance,

Practice Problems

Y which has dam Z.

W (dam of X)

Y ¢~—~—— Z (dam of Y)

which is quite different from the off-

The following problems illustrate some concepts of covariance among

relatives when maternal traits are important.

l. Estimate o2, o2, o«
€ G GpSy

Given: Covariance between paternal half sibs = 20

Covariance between full sibs = 30
Covariance between offspring & sire = 30

2. Given: 62 =80, 02 =40, o = «20
Sp Sy CpCy

Show all calculations (steps) in computing the covariances between:

a) offspring and dam
b) offspring and sire
c) full sibs

d) maternal half sibs

e)
f)

paternal half sibs

X and Y in diagram

Xéoooo C o A
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Solutions:
1. Cov (p h s) =1/4 62 +002 +0 o = 20 {1]
GD GM GDGM
Cov (full sibs) =1/2 02 + o2 + (o = 30 [2]
GD GM GDGM
Cov (offs, sire) =1/2 62 + 0 02 + 1/ho = 30 [3]
GD GM GDCM
From [1]: 0(2.; = 4(20) = 80
D
From [1] and [3]: 1/2(80) + 1/4 ¢ =30; o = =40
GDGM GDGM
From [2]: 1/2(80) + 02 + (-40) = 30; o2 =30
G G
M M
2, a) X *———}é)e———-z dyy = 1/2 a, = 1/2 ay, = 1/4 ayy = 1

Cov (offspring-dam) = 1/2(80) + 1/2(40) + (1/4 + 1)(-20) = 35
b) W

X ,_éxlfré__. Z ayy = 1/2 ay, =0 ay, = 1/4 agy = 0

Cov (offspring-sire) = 1/2(80) + 0 + (1/4 + 0)(-20) = 35

c) X¢—— _sire
agy = 1/2 ayy = 1 ayg = 1/2 agy = 1/2
Y dam (W & 2)
Cov (full-sibs) = 1/2(80) + (1)(40) + (1/2 + 1/2)(-20) = 60
d) x(;\\\‘
dam (W & Z) a..,.=1/4 a ., =1 a6 = 1/2 =1/2
o XY W X2 Ay
Cov (mat. half sibs) = 1/4(80) + (1) (40) + (1/2 + 1/2)(-20) = 40
e) Xﬁ‘i—w (dam of X)
A(///,Sire ayy = 1/4 Ay, = 0 ay, = 0 ayy = 0
Y ———e?Z (dam of Y)
Cov (pat. half sibs) = 1/4(80) + 0 + (0 + 0) = 20
£) x«-séreqr——-A
o agy = 3/4 ag, =1 ay, = 3/4 3y 3/4
Y € D & B
W&Z

Cov ( X and Y ) = 3/4(80) + 1(40) + (3/4 + 3/4)(-20) = 70



--154--

The following table gives the additive relationships that are coefficients

of 62 , 02 , and ¢ for the covariances between the pairs of relatives in
Cp' Oy CpCy

the previous problem under the assumption that only additive genetic effects
contribute to direct and maternal genetic effects.
CONTRIBUTION OF DIRECT AND MATERNAL ADDITIVE GENETIC VARIANCE
AND COVARIANCE TO THE COVARIANCE BETWEEN RELATIVES

= 2 2
Genetic Cov(Px,PY) XYOGD + aWZOG“ + (axz + an)OG G

DM

“xrPy ’xy vz Zxz (.
Px,Px(with self) 1 1 1/2 1/2
Progeny, dam 1/2 1/2 1/4 1
Progeny, sire 1/2 0 1/4 0
Full sibs 1/2 1 1/2 1/2
Maternal sibs 1/4 1 1/2 1/2
Paternal sibs 1/4 0 0 0

Selection for the direct and maternal traits

Selection for the direct trait. The records used for the selection index

will correspond to Xi, the average of single records of Py animals in relative

group 1.
RHS's: o -a 02 4 o
X6y 1a°Gp awia GGy
= BE(X,,G._ ) = E[(G + G + E + E (G )],
1’ Da Di Hw Di Hw Da

where wi is the dam of 1 and a is the animal being evaiuated.

Diagonal coefficients: The (pi-l) coefficient will be expanded by the

maternal variance and maternal-direct covariance.

2 2 2 2
0l = {02 + (p,~1)[(a,,,02 + ay 02 + (a + age, ) o, . )}/p where a__,
Xi P i i1 GD 1W1‘ G“ 1"1. "1 GDGH i1

is relationship among members of the group, auu . is relationship among
i1

dams of group, is relationship of animal in group to another's dam.

v,
Off-diagonal coefficients: These will be expanded similarly.

g = a . 02 + 02 + (a +a, )o .
X%, " %13 °6) awiwj Gy LA AR
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Selection for the maternal trait.

RHS's: o© =a, o + a A
xiGMa ia GDGM Wia »GM

Diagonal and off-diagonal coefficients will be as in selection for the

direct trait.

D_or GM'

If selection is for GD and Xi(i=l,...,N) is the average of relative
a

Correlated response when selecting for G

group i and the relationship of dam of relative i to o is ay then the
L0
i

response in GD will be [C§ GD =9 D (the selection differential D is
D

different from the subscript D which refers to the direct trait), where

I. =b X, + ... +b_X .

D 1071 ND™N
The response in GD can also be computed as usual as:
N
zﬁ& Cov (GDa’ ID) igl biD Cov (G o Xi)
G = D = D where
D OI OI
D D

Cov (G, , X.) = a, g% + a o .
Da i ia GD Wia GDGM

Similarly the correlated response in GM can be predicted as

N
_ Cov ( , I.) L b, Cov (G, , X.)
ZC& GM = GMa D D = i=1"4iD - o i D where
o
ID ID
Cov ( s, X,) = a2
GMa i DGM W o G .
. N
If selection is for GMa by IM = 1§1biM X
N N
Cov (G, , L,) Z. b, Cov (G, X.)
Zﬁl GD - ga M D = i=1 "iM — Do 1 D and
Ty | v
N
L, b, Cov (G, X,)
AGM= b or A g =1L M Mo 747
I M o}
M v

The following example illustrates computations for these concepts and
also shows how to compute the effect of bias in heritability estimates

if maternal effects are ignored.
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Example of selection for direct genetic effects

Given: o2 = 80, 02 = 40, ¢ = 40, 02 = 500
GD GM GDGM p
Also suppose heritability is estimated in the usual way by twice the regression

of offspring on dam record.

1. a) Use this biased estimate of heritability (genetic variance)to find
the usual weights for indexing genetic value from the animal's own
record, Xl, and the sire's record, Xz.
b) What is the expected progress by the usual procedure of calculating
genetic gain?
¢) Use the incorrect index found in (1 a) but the correct variances and
covarlances to find the expected correlated responses 1in GD and GM’
2. a) Use the correct variances and covariances as given to find weights
for indexing direct genetic value (GD) from Xl and Xz.
b) Use the correct index for GD and the correct variances and covariances

to find the expected correlated responses in GD and GM'

3. Repeat 1 and 2 when ¢ = —40,
GG
DM
Solutions
2 = 2 = = 2 - = =
o = 80, g% =40, o = 40, of = 500, X, = own record, X, =
GD GM GDGM P 1 2

sire's record.
Heritability from twice regression of offspring on dam record

h*= 2 Cov (offspring, dam)/c% = 2 [% (80)+ & (40)+ (14)(40)]/500 = .44

1. a) b, + (3) (.44) b, = .44
= 4
+22 by + b, 3 (.44)
I = .4115 X, + .1295 X, = G
1 2 o
op = 10.245 would be the apparent standard deviation of index. The
actual o_ is 9.92 since ¢ = 50 while h-= .44 implies
I X1X2
o = 110,

XlX2
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b) Zﬁ& G = 10.24 D would be the usual prediction based on h*= ,44.

by Cov(Gy ,X )+ b, Cov(G ,X,)

c) ZCX_GD = = = D =

I

L4115 (1) (80)+(3) (40) 1+.1295[ (3) (80)+(}) (40) ]

D =4.80D
9.92
b1 Cov(G a’xl)+ b2 Cov(GMa,Xz)
ZCX-GM - o D=
I
P4115[ (1) (40)+(3) (40) 1+.1295[ (3) (40)+ () (40) ]
D =2,80D
9.92
2. a) 500 by +[ 4(80)+(4) (40)] b, = (1) 80 +(3) (40)
=1
50 by + 500 b, =3 (80) +() (40)
I =.1919 X, + .0808 X, = G
op = 4,82
b, Cov(G. ,X )+ b, Cov(G. ,X,)
b A ¢ - 1 Do’"1 2 Da’72” ;) _ .1919(100)+ .0808(50) [ _ , o5
D oy 4,82
_ by CoviGy X )+ by Cov(Gy ,X,) .1919(60)+ .0808(30) . _
[ﬁ Gy = D = 5 D =2.89D
g .82
I
3. 02 =80 02 =40 o = -40, o2 = 500
G Gy GGy P
Now heritability from twice offspring on parent regression
h*= 2 Cov(offspring,dam)/o% = 2[2(80)+ 1(40)+ 11(-40)1/500 = .04
1 =
(L.a) by +2(.04) b, = .04
=1
.02 by + b, = 1(.04)
I =,0396 X1'+ .0192 X2 = Ga; op = .9918 1s apparent Ope The actual
op = 1.007,
(1.b) Zﬁ& G = .9918 D usual prediction with h = .04
b, Cov(G, ,X,)+ b, Cov(G, ,X.,)
(1.¢) Zﬁ& GD _ 1 a1l 2 Da’"2 D =
91
+0396( (1(80)~ £(40)]+.0192[1(80)-4(40)]
D =2,931D

1.007
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b1 Cov GM ,X1)+ b, Cov (G a,X

)
Zﬁl GM - o 2 2 D =

°1

-0396[ (1) (=40)+ 4(40)1+.0192[2 (-40)+ 1 (40)]
1.007

D=-.977D

(2.a) 500 b, + [3(80) + £(-40)] b, = (1) (80)+(}) (~40)

30 b1 + 500 b2

.1168 Xl + .0530 X2 = GDa

(3) (80)+ 1(-40)

I

Il

Ik

2,932

I
b, Cov(G, ,X.)+ b, Cov(G, ,X,)
2.0 A 6, - 1 Do’ P2 D72

o1

g

.1168(60) + .0530(30) D
2.932

bl Cov(GM ,X.)+ b Cov(GM . X

)
_ a 2 a’"2 _
A.GM" g D=

I

= 2.932D

.1168(-20) + .0530(=10)  _

7.932 =a2/4°D

Joint selection for the direct and maternal genetic effects

For one phenotypic trait assume the overall economic value is determined
partly by the direct genetic component and partly by the maternal genetic
component so that aggregate genetic economic value for animal a is

T =

o Vi GDa + VMG where

Ma

vy is the net economic value for the direct contribution and Uy is the
net economic value for the maternal contribution. These values are not
necessarily the same because, although the gross price is the same for the
total product, the cost of production may be greatly different for the direct
and maternal portions.

The usual selection index procedure for selecting for overall genetic

value can be used except that records on at least two relatives are needed

since the maternal and direct traits are measured jointly. 1In addition the
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two kinds of relatives must be such that (a au ) is not proportional to

al’ 1

(a a ), This restriction will be illustrated later.
a2’ aW2

The procedure for joint selection for direct and maternal genetic value
will be illustrated for one trait and using only records on two relatives,
Xl and X2. The index will be Ia = bl xl + b2 X2 which estimates

Ta = VDG

pa T iMa

The general equations which determine the b's are
b, 62 +b,o0 =g
1 Xl 2 XlX2 11

b, o + b, o2 .
1 X1X2 2 X2 XZTG

1l
Q

The coefficients of the b's are the same as for selection for GDa or GMa' The
covariances between the X's and Ta can be computed as

o =y a + v, 0
XiTa D XiGDoc M xiGMoc

) + v

v C

)
o +
(ai

e 13y

2
a g4 )
D 1 W,a

v
b i GM

o] a, a
o GDGM ia GDGM

Then I =b, X, +b, X,. An alternative procedure would be to index for G
o 171 272 Da

and GMa separately then weight by vp and Yy L.e., Ia = VDIDa + VMIMa where

IDa = GDa and IMa = GMa as in the preceding sections.

The expected response by selection can be computed as before
AT=VD AGD+VM AGM where

cov (G, , I) cov ( s, 1)
A G. = Da D and A G, = GMa D .
D GI M GI

The following examples illustrate the computations for selecting for
both the direct and maternal genetic traits. Example 1 illustrates the

futility of trying to select for both when (a )

1o’ awla) and (a2a’ awza

are proportional. Example 3 shows the effect of changing the sign of the

genetic covariance between the direct and maternal genetic values.
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and G, simultaneously

{) i
Given: oé = 80 oé =40 o, . =40, o§=500
D M DM
Xl = record on the sire, XZ = record on the dam.
1. 1If vy = 4 and VM = 1 can we select for

Ta = (4) GDa + (1) GMa ?

2. a) Suppose Xl = record on dam, X2 = record on a paternal half sib
- P P = G '?
What is the index for selecting for Ta (4) GDa + (1) Mo
b) What is the expected correlated response in GD and GM ?
3. Repeat (2 a and b) when o = =40,
G. G
DM
Solutions
¥
1. X. = record on sire X, = record on dam .
1 2 Xl (sire)
(ag, » ay ) = (172, 1/4); . .
1 f\\\\\ 2
X.° (dam)
(a2 ,a. ) =4(/2, 1/4). These are 2
o Wza
proportional so selection cannot be for VDGD + VMGM .

For example:

If vy =4 wv,=1 I=.46X +.46X,, o =14.55

|
i

ZC& G = .46[50] + .46(50]
D

14.55 D

3.16 D

- =46[30] + .46{30]  _
ANCY = D =1.90 D

If v, =1 v, =4 I=.,34 Xl + .34 X

D M o, = 10,75 and

2 I

_ .34[50] + .34[50] . _
AN TRE D =3.16 D

_ J34[30] + .34[30] ~ - =1
Zﬁ& GM = 10,75 D = 1.90 D as before for Vb 4 and Yy .
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2 X, = record on dam X, = record on p.h.s. WV
x. < 2
v, =& vy =1 zqg\\‘\.Sire
et
F\\\‘Dam,xl
a) 500b. + Ob,=v (a, 0%  a, © ) + v, (a, 0, , +a, 06%) M "
- 2 D la Gyt W,a GG M 1o 66" W e Gy
0 by + 500b, = v (a, 05 + a vy(a 0% )
ol 2 20 Gy Wya GMGD 2a GMGD W06y,
500b, = 4[3(80) + L(40)]+ 1[3(40) + L(40)1= 230
500 b, = 4[3(80) + 0 1 +1[1(40) + 0] = 90
I = .46X +.18X,
o = 11.05
cov(ey , I .46[3(80) + £(40)] + .18[1(80) + 0]
b) [\ G, = - D = D = 2,407 D
I 11.05
COV(Gy» D) .46[3(40) + 1(40)] + .18[4(40) + 0]
A Gy = —D = - D =1.412 D
OI 11.05
300 =-40
G Cy
(2.a) 500 by + 0 b, = 4[4(80) + $(-40)] + 1[1(=40) + 1(40)] = 110
0 b, + 500 b, = 4[£(80) + 0 ] +1[4¢-40) + 0] = 70
I=.22X +.l4X,
or = 5.83
.22[2(80) + £#(-40)] + .14[1(80) + 0 ]
20 A e, = ! u D = 1.612 D
5.83
L22[3(=40)+ 2(40)] + .14[1(-40)+ O ]
£\ 6, = — D = =617 D

5.83
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Selection when traits are influenced by grandmaternal as well as maternal
effects

The granddam may, for some tralts, affect her daughter's maternal ability
which in turn influences the record of the grandprogeny. Beef cattle breeders
have reported that cows that were large themselves at weaning tend to wean
calves that are lighter than cows that were not so heavy at weaning. A grand-
maternal effect can be postulated as a cause of this phenomenon.

This grandmaternal effect may have a genetic basis in the grandmother
(1'') but is an environmental effect on the maternal ability of the mother
(1') and on the actual phenotype of the calf (i). In fact, the model including
maternal effects can be expanded so that the maternal effect is made up of

direct maternal effect and an environmental effect from the grandmother;

P =G, +E,=6, +6G +E +E
Mi' Mi' i' Mi' Niu Mic Nin ’
where GM 1s the genetic maternal effect, GN 1s the genetic grandmaternal
1! AL
effect, EM is the maternal environmental effect other than that with grand-
il

maternal causes, and E 1s the nongenetic (environmental) grandmaternal

Ni|l
effect.

Then, the model for a record on some animal i can be expressed in

increasingly partitioned form as P, = G, + E, where GD is the genetic ability

i Di i i
of i, P, = G_ + P + E_ where P is the total maternal effect of 1' on
P and P, = G + G + G + E + E + E .
i’ i Di Mi' Ni" Di Mi’ Ni"
Only Pi can be measured. The diagram illustrates, as before, that the

maternal genetic ability of the mother is expressed only in her progeny.
Similarly, the grandmaternal genetic effect is expressed only in the grand-
progeny. A sample half of the genes are, of course, for the direct, maternal,

and grandmaternal effects transmitted,in each generation from parent to offspring.
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E B
Mil Ni!l
G «——Sample 1/2 e .
I 1] I
i & . sample 1/2 G sample 1/2 g
Mi IlMi, I#i"
Ggrjsample 1/2 GNQ_ sample 1/2 GN
i i | i

The covariances among relatives (e.g., X and Y) can be determined as

before from E(PXPY) where

P =G + G + G + E + E + E and
X Dx Mxl le ] Dx MX’ ) le L]
P =G, +6 + G +E. +E + E .
Yooy My Ny by My Nyer
To simplify the expectation, we will define Gx = GDX + GMx' + GNx" and GY =
G, +6G + G although only G 1s the genetic value of X for the measured
b My Ny Px
trait. GMx is the maternal genetic value of the dam of X,X', and GN is
1 xl!
the grandmaternal genetic value of the granddam of X, X''.
Thus,
E(G,G,) = Cov(G,G,) = Cov(G. G, ) + Cov(G_. G } + Cov(G G_ ) +
XY XY Dx DY Dx MY' MX' DY

C G. G + Cov(G_ G + Cov(G,, G ) +
OV( DX NY't) ( DY NX") ( , MY'

Cov (G G + Cov(G G + Cov(G G .
( MX' NY'[) ( MY' le') ( lel NY")

Each of these terms can be evaluated in terms of additive, dominance,
additive by additive, etc., components of variance and covariance (where the
direct, maternal, and grandmaternal components are considered separate traits).

I1f only additive genetic effects are assumed, then
G,) = 2.+ +
Cov(GyGy) = ayyo G, (ayye + aYX')OGDGM + (ayyre an")"chN +

2 2
Ay 110 + (a0 + aYl 11)0 t agy 1110 s
X'y GM X'y X GMGN X'y GN

where the variances are additive genetic variances and the covariances are
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additive genetic covariances among the direct (D), maternal (M), and grand-
maternal (N) effects.

The necessary additive relationships can be found from careful drawing
of the pedigree of symbolic animals X and Y, their dams X' and Y', and
grandams X'' and Y''. For example, if X 1s a éire and Y is the progeny, the

diagram 1is
Sire

X& X'« X"
e ,
\Y‘*"'_"_Y”

=1/2, a

Thus, ayy Xyt = 0, gy =.1/4, ayyrr = 0, ayyrr = 1/8, agryr = 0,

aX'Y" =0, aY'X" = 0, and axlerl = 0.

However, if X is a dam and Y is the progeny, the relationships are

different.
dam
Y< < X'e X'
(Yl) (th)
Thus, gy T 1/2, gyt =1, Ayt T 1/4, aXY" =1/2, Aygre T 1/8, aX'Y' =1/2,

=1, A iyt = 1/4, and a = 1/2. The relationships which are

aX'Y" X'yt

coefficlents of the varilances and covarlances for some common relatives are

given below.

Component
Relatives OéD 0GDGM 0GDGN GéM 0GMGN GéN
Pr'Py xy  Zxy'Pyxt Gxyrrtyxer gty Sxryrrteyrxer Spnign
With self 1 1 1/2 1 1 1
Sire, progeny 1/2 1/4 1/8 0 0 0
Dam, progeny 1/2 1 %- 5/8 1/2 1 %- 1/2
Full sibs 1/2 1 1/2 1 1
Maternal sibs 1/4 1 1/2 1 1 1
Paternal sibs 1/4 0 0 0 0 0
Granddam, 1/4 5/8 LI% 1/4 5/8 1/4

grandprogeny
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The problem of selection is similar to that in the presence of maternal
effects. The selection index equations are modified to take into account the
direct, maternal, and grandmaternal components.

Selection may be for T = GDa (additive direct for animal o) so that the

right-hand sides become

= +
OXiT E[(GDX + GMx' GNx"+ other EXi)(GDa)]
) i i i
=a, 07 +a,,6 o +a,,, 0
ia GD i'a GDGM i'tae GDGN
and 02 =02, IfT=6G, , 0 =a_ o +a,6 02 +a,,c0 and 02 = o2 ,
T GD Mo XiT ia,GDGM i z GM ; o SMGN T GM
IfT=G, , O = a, 0 +a,, o + a,,, 0, and 05 = 05 .
No XiT ia GDGN i'a GMGN i''a GN T GH

G. +v.G, +vG is the overall merit where

If some function T = VD Do M Mo N Na

the v's are economic values of the components, then

A~ ~

= + +
T = vpbpe ¥ "Oa t VaCha

or the selection index weights can be determined directly using the RHS's;

Oy T E[(GD +

+ other E's)(v.G., +v.G +v
o
i Xi

+
GMX. GNX,. D Do MM NGNa)]
i i

2
[of +a,, o +
ia GDGM i‘a GM

= 2 4
vplai9%. tale a3

Y + v, (a
D DM MGN M

a,,, 0 Y + v, (a, © +a,, o + a
i''e GMQN N ia GDGN i'a GMGN a Gy

2 _ 2
and GT E[(VDGDa + VMGMa + VNGNa) 1.
Records on at least three kinds of relatives (where a, , a,, , and a,,,
ia i'a i''a

are not proportional) are necessary for selection with different economic values

for the direct, maternal, and grandmaternal components.
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FETAL EFFECTS MODEL (Sire of Fetus Effect)

There are some traits of a female which may be influenced by the
fetus she is carrying either during the gestation or following the
gestation. An obvious example is the ease with which the mother gives
birth. The genes of the mother directly affect ease of birth, but the size
of the fetus also may affect the ease of birth by its mother. The size
of the fetus can most certainly be partially influenced by the genes
it carries. There is speculation that in dairy cattle, hormones secreted
by the calf may influence the development of secretory tissue and thus
influence milk production during the last part of gestation or during the
lactation which follows birth of the fetus.

The model is similar to the maternal effects model except that the
embedded trait is a property of the fetus the animal is carrying rather
than of the mother of the animal. The figure shows that the animal
contributes a sample half of the fetal genes as does the sire of the
fetus. If these genes contribute to the fetal effect (the embedded trait)
then the sire, through those genetic effects, can influence the performance
of his unrelated mate. The effect has been called the sire of fetus
effect or the service sire effect.

1. Model

Figure 1 shows the genetic and environmental components for both the
direct and fetal effects on records of relatives x and y. The fetal effect
could be on the current record or on a subsequent record. The same model
applies to calving difficulty as described by Bar-Anan et al. (1976).

In fact, any trait which is influenced by the mate of the female can be

described by such a model. Fixed effects on the records will be ignored
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g g g g
Xg X4 Vs Y4
3 ks » 3
rgf rgf
eX 8§\\\y
P

X

Figure 1. Diagram of direct genetic and environmental effects (g and e )
and fetal genetic and environmental effects (f_ and e ) on the phénotypi%
record of animal, x, carrying fetus, w. x , x are the sire and dam of X,
w_1is the sire of the fetus, and of course? X gs the dam of the fetus. A

S . . X X .
similar diagram is given for any potential relative, v, carryving fetus, z.
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here but would need to be considered in prediction procedures or in estima-
tion of components of variance.

Linear models including effects shown in Figure 1 are the same as used
by Willham (1963). His application was to a maternal effects model.

The model is

= + = + -+ -+ 1
P =g t+f te +e  and Py 9, £, e, te, (1]

where the g's are genetic values for the direct effect on P, the f's are the
genetic effects of the fetus on P, and the &'s are corresponding environmental
effects. The pair of animals with records are x and y; w and z are the
fetuses having sires,iws and Zg. In the usuai P =G + E model, all the

effects except g would be included in E. The f effects are environmental

to the animal making the record but are genetically determined.
Cov(P P = Co +C + +
( - y) V(gxgy) OV(fl,]fz) Cov(gxfz) Cov(gyfw)
and if only additive genetic effects are considered or assumed important,
the covariances can be written as by Willham (1963):

_ 2
Cov(PxPy) a + +

- awzo}+(am ayw)ogf 12}
where the a's are additive or numerator relationships. If f is a fetal
effect, then i; is the variance of direct additive genetic effects, f;
is the variance of additive fetal genetic effects, and Ggf is the covariance
between additive direct and additive fetal genetic effects.

This expression can be used to determine the theoretical covariance
between records of any pair of relatives, x and y, when influenced by
fetuses of sires, vy and z - For example, when calculating the covariance

between a record of a dam and a record of her daughter when the dam's record

was made with the Influence of the fetus which was her daughter, x is the
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daughter, y = xd is the dam, Xg is the sire of x but is also zgs the sire

of the fetus, x. Then

+ Lo

Cov(daughter-dam) = %o + {1 + %)ogf

2 2
g f
Expectations of covariances between usual combinations of records are given

in Table 1.

Table 1. Coefficients of the additive genetic variances for the direct
effect , o2, for the fetal effect, o%, and of the additive
genetic covariance between the direct and fetal effects, ogf,

for the covariance! between various relatives and combinations

of sires of fetuses.

Coefficient of

Animals with 2 2
records Sire of fetus 0g of - ogf
Daughter—dam Daughter not from 1/2 1/8 1/2
service sire of dam
Daughter-dam Daughter from service 1/2 1/2 5/4
sire of dam
Full sibs Different 1/2 1/8 1/2
Full sibs Same 1/2 3/8 1/2
Paternal or
(Ff p
naternal sibs Different 1/4 1/16 1/4
Paternal or Same 1/4 5/16 1/4
maternal sibs
Maternal sibs Sire of x is 1/4 3/16 1/2

service sire of y

Unrelated Same 0 1/4 0

I Note that these covariances may also include other more likely
components due to effects such as direct dominance and maternal
additive.



-=170--

The practical implications are that the effect of the sire of the
cow includes the value of the sample half of his genes concerned directly
with production and a sample quarter of his genes associated with the
fetal effect since he is the grandsire of every calf his daughter
produces. Thus,

Sire of cow effect (which we normally think of as the sire comparison)
= G/2 for production of cow + F/4 for production of cow.

The mate effect, or the fetal effect of the sample half of the
genes contributed by the mating sire to the fetus, is expressed in the
lactation performance of the mother:

Sire of fetus effect (mate of cow)
= F/2 for production of cow

Note, however, that the sire of fetus is also the sire of the
possible replacement heifer, resulting from birth and survival of the
fetus. Thus, in the next generation, the sire of the fetus has become
the sire of the cow. If there is a negative relationship between the
direct and fetal effects then effective selection may be difficult. The
other dilemma is that even if the effects are unrelated, should more
emphasis be placed on selection of a sire for his fetal effect, which
almost immediately influences the production of the mate, or for his
direct genetic value, which does not become expressed until the resulting

offspring becomes productive.
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CYTOPLASMIC EFFECTS MODEL
The cytoplasm of the fertilized ovum comes primarily from the mother.
Mitochondria in the cytoplasm are responsible for much of the cellular
metabolism. The DNA of mitochondria in most species is inherited primarily
from the mother. Thus, cytoplasmic effects generally are thought of as being
maternal in origin and essentially to be unchanging along the maternal line.
Males will express the cytoplasmic effects received from their mothers but

will not transmit their cytoplasm to their offspring.

FIGURE 1. FRACTION OF ADDITIVE GENETIC (g)
AND CYTOPLASMIC (c) EFFECTS IN DESCENDANTS.

For female line of descent:

Vo
S ~ -
29 > Yo > Xo —————=>¥o
8z 8z 8z/2 Bz/4 g,/8
€z €z ¢z Cz Cz

With male in line of descent:

Vo
Z2g ———>Yg — — — > X9 ———>Wo

gz & gz/2 gz/z" gz/8

(o4 c C

Z v v

Cytoplasmic effects can be incorporated easily into selection index
procedures either in computing the variances and covariances among the X's or
the right-hand sides for selection of a function of direct additive and

cytoplasmic effects.
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For the purpose of illustration, assume the only genetic effects other
than cytoplasmic effects are additive direct effects. Maternal effects which
may be confounded with cytoplasmic effects can be put in the model rather
easily.

The models with cytoplasmic effects for records on relatives X and y are:

PX'= g, *t ¢ + bxf t e, and Py - gy toeg, + byf: + ey
where g is the additive genetic value for the direct effect on phenotype, ¢ is
the cytoplasmic effect originating in the female line with animal f, or £', b
is the interaction between additive genetic and cytoplasmic effects, and the
e's are random and independent environmental effects (may include random
cytoplasmic effects). Then when covariances between g's and c’s, g's and b's,
g's and e's, ¢’'s and b’s, ¢’s and e's, and b’'s and e’s are zero:
cov(Px,Py) = cov(gx,gy) + cov(cf,cf,) + cov(bxf,byf') + cov(ex,ey)
If £ = £’,
cov(cf,cf,) - ag, and = 0 otherwise, and
covib. ,b ) = a, o2 and 0 otherwise.

£ Vg y b
As before, let e a; be the environmental covariance between a record of

x and a record of y.
Thus for f = f’;
cov(P ,P) =a 02 +0%? + a_ 02 +c__o02.
X'y Xy g c Xy b Xy X
And for £ # f':
cov(P. , P ) =a 0?2 + c_ 02,
X y Xy 8 Xy X

The following table gives the expected make-up of covariances of common

relatives.



Environmental , ,

2 2 2

Relationship fg* % f_g covariance /9%
Female parent - offspring 1/2 1 1/2 Crp o
Male parent - offspring 1/2 0 0 °Mp 0
Maternal half sibs 1/4 1 1/4 CMHS
Paternal half sibs 1/4 0 0 Cpys
Full sibs 172 1 1/2 Crg
Female grandparent - offspring 1/4 1 1/4 °rg o
Animal with self 1 1 1 1
Identical twins 1 1 1 Crp
Unrelated nuclei in

same cytoplasm 0 1 0 e

If o2, 02, a’b, and c,, are known, then variances, of, and covariances,
among, averages can be calculated for setting up the coefficients of the
selection index equations to find the selection index weights.

If selection is for direct additive genetic value of animal «, then the

right-hand sides of the selection index equations as usual will be:

- 2
“xiT %1a%g
where a. is the additive relationship between a and i.

If selection is for direct additive genetic value of animal a plus the

cytoplasmic value of a plus the interaction, T = 8, t ¢4t ba , then
ff
if £ =f£f';

2 2 2
o4 = a, 0% + ¢“ + a. 0% and
XiT ia’g c ia'b

if £ # £

- 2
aXiT aiaag
I 1 T = + .
n general, for &, * ¢, + baf:’
o =a, 02 + P(f=f')[0%2 + a
ia'g c

2
X.T iab
1
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where P(f=f’) is the probability that the cytoplasm of relative i with the
record Xi and the animal being evaluated, a, 1s the same.

If T = 8, * Sy then

if £ = £
o = a, 02 + 02 and
xiT ia g c
if £ # £/
- 2
axiT aiaag

Unless 02 is relatively large, selection for direct additive genetic
value while ignoring cytoplasmic effecté is likely to be nearly as effective
as jointly selecting for direct additive and cytoplasmic effects.

Heritability (additive direct) can be overestimated from covariances
between relatives with the same cytoplasm if cytoplasmic effects on the trait
are real and if those effects are ignored. Overestimates of heritability will

lead to overestimates of the accuracy, of evaluation and overestimation

r

TI’
of expected superiority for additive genetic value from selection because both
Lo and O will be overestimated.

Unless variance due to cytoplasmic effects 1s large, the only way that
selecting for cytoplasmic in addition to direct additive genetic value can be
relatively important to total genetic gain is if the reproductive rate of
females to produce female replacements 1s greatly increased. The reason is

that of the four paths of selection (in the case of milk yield in dairy cows),

cytoplasmic effects are transmitted only through the dam to female path.
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Figure 2. THE FOUR PATHS OF SELECTION

Nuclear inheritance
SS
\\‘\‘ﬁ-s
ps — > \
SD /
T~
DD Y

Progeny

Cytoplasmic inheritance
SS
s
DS X
SD /
*D

Progeny

For the sire to sire, dam to sire, and sire to dam paths, selection should be
for additive genetic value with selection differentials of ASS, ADS, ASD
for additive genetic value.

For the dam to dam path, selection can be for the éum of direct additive and
cytoplasmic effects with the selection differential partitioned into

ADDg (direct additive) and ADDc (cytoplasmic).

These two parts can be obtained theoretically by calculation of correlated

If I is the index for the sum, g + ¢, then

DD = Sov(g.I),
g (73

I

response.

and
ADD = cov(c . I) D
c o
I
where D is the standardized selection intensity factor. Note that D and o;
With no covarlance between g and c, the

are the same for both calculations.
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only contributions to cov(c,I) will be from females in direct female line of
descent--daughter, dam, maternal granddam, maternal half sisters, full sibs,
etc.

The direct additive genetic differential applies to the usual formula for
genetic gain from four paths of selection.

The differential due to cytoplasmic effects contributes immediately to
progeny and thus gain per year for cytoplasmic effects is the cytoplasmic
differential divided by the generation interval for the dam of dam path.
(Some scientists have reasoned that since females to be dams of dams are
selected jointly for direct and cytoplasmic effects, the division should be by

the sum of generation intervals.) Thus on a per year basis:

ASS + ADS + ASD + ADDg ADDc

+
Log ¥ Ipg + Lgp + Ly Ly

Because increased reproductive rate in females results in the same increase in

A(gt+c) =

selection intensity for ADDg and ADDC, the equation can be partitioned into
the three paths, Agj, that do not contribute cytoplasm to the population and

the two parts due to dams of dams.

DD ADD_
Algre) = g, + —E&
L Ly

For example, if ag is 5% and a; is 25% of the phenotypic variance for
production of dairy cattle, the gain per year from increasing the standardized
selection intensity factor will be somewhat greater from ADDg/EL than from

ADDC/LDD even though L. = is only about one-fourth of ZL. The extra gain due

DD
to ADDc can be substantial if ag is as great as 5% of phenotypic variance and
replacement cows can be obtained from the top 10 to 50% of the herd. Such an

increase in reproductive rate would require sexing of semen or multiple
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ovulation and embryo transfer. The costs of those reproductive systems is
likely to be greater than the value of the additional genetic gain.

Whether cytoplasmic effects can account for as much as 5% of variation is
doubtful. Because cytoplasmic effects seem to be transmitted essentially as a
whole, segregation and recombination are not available to maintain
variability. Thus, cytoplasmic lines may soon be fixed because selection
should be relatively effective. Not many combinations of mitochondrial DNA
would be expected as compared to the combinations of nuclear DNA. The few
combinations of mitochondrial DNA that do survive after a number of
generations of selection may all be nearly optimum for effects on production

or reproduction.
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APPENDIX: COVARIANCE BETWEEN RELATIVES WITH SINGLE LOCUS FOR ADDITIVE EFFECTS
AND MATERNALLY DERIVED CYTOPLASMIC EFFECT.
Let records of relatives x and y be represented as:

=a, +
Xije =ty +oy, + (av)g (07)jt t e

X

Yigu = % +toa, + Ty + (a-y)ku + (clz'y)zu + ey
where each a ~ Tepresents an additive genetic effect of gene m,
y represents a cytoplasmic effect of cytoplasm n,

(a—y)mn represents the Interaction of the mth additive effect and
th
n~ cytoplasmic effect, and

e, represents environmental effects.

Note: additive genetic value; gij =a aj with ag = E[az] + E[a?]

cytoplasmic value; c¢_ = Te with az - E[vi]

t
genetic by cytoplasmic interaction; bijt = (a—r)it + (a—y)jt
with og = E[(a7)it] + E[(av)gt] and

by assumption; E[gijct] =0, E{gijbijt] = 0, E[ctbijt] =0
Note: P(i=k) + P(i=£) + P(j=k) + P(j=2) = 2aXy and P(i=k) = axy/2.
Let P(t=u) be the probability that the cytoplasm of x is the same as the
cytoplasm of y (either 1 or 0).
Cov(x,y):

E[gijgkﬂ] = E[(ai + ozj)(ak + az)} = E[aiak + aa, + ajak + ajaz]

But E[aiak] = (axy/Z)E[az] = (axy/h)a;

Thus, E[gijgkﬂ} = axya;
E[ctcu) = E[1t1u] = P(t-u)ag; either az or 0,
Blbyybypy) = BUL@M, + @) 1lany, + @), 1)

= E[(a7) (a1 + (a1); (am)y + (av)jt(av)ku + (“7)jt(°7)2u]
But for t = u; E[{(a7);(a7),] = (axy/2) E{(e7)?] = (axy/4)0§

Thus, E{b = P(t-u)ax o2; either a o2 or 0.

ijtbkﬂu] y b’ Xy b
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Therefore,
= 2 - 2 - 2
cov(x,y) axyag + P(t u)oc + P(t u)axyab

Reference

Beavis, W. D., E. Pollak, and K. J. Frey. 1987. A theoretical model for
quantitatively inherited traits influenced by nuclear-cytoplasmic

interactions. Theoretical and Applied Genetics 74:571-578.






Summary XIV

NONLINEAR ECONOMIC VALUES AND
RESTRICTED SELECTION

Selection for trailts with nonlinear economic value,

Two general problems not covered by the usual selection index procedure
involve: (1) the situation where the value of the product changes with the
output of the product, i.e., the value of an additional pound of milk when
the level is 109 1bs per day is not the same as when the level is 19 lbs. per
day, and (2) the situation where the value of a trait depends on the level of
another trait, e.g., the value of milk depends on the fat test of the milk.

If costs and income for production are known for different levels of
production for some trait, the net income curve may be approximated by some
nonlinear or polynomial function, e.g.,

Net income = ¢ + vl(X1+ul) + vz(Xi+u1)2 + v3(X1+ul)3 + oun
where c is a constant, the v's are the appropriate polynomial regression
coefficients from fitting net income to polynomials in total yield, Xl + Hys

where Hy is a population constant and X, is the deviation from My

1

Thus, net genetic merit can be defined as

= 2 3
T=c¢c¢+ vl(Gl+ul) + v, (G +p ) + v, (G +ul) + ...,

27711 3( 1
where Gl 1s the usual additive genetic value for trait 1. The net genetic
merlt will depend on My as well as Gl. Animals could rank differently in
populations with different average levels of production, My

A possible procedure for use in selection for net genetic value is to
estimate G1 as usual by I1 and substitute 1t into the economic equations so

T=1-= + 2 3+ ... .
that T = I c + vl(Il “1? + v2(11+u1) + v3(I1+u1) +

If only vy and v, are nonzero (linear and quadratic values), then this

is the optimum procedure for minimizing E(T-T)2 except for a constant. This

—-180-~
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has been called the quadratic index. The procedure may be nearly optimum for
other cases although for the cubic case Mao and Henderson have shown mathematically

that substituting Il for G1 is not identical to finding an index by minimizing

E(T-T)2.

This concept can be extended to more than one trait and to cases where
levels of one trait determine the value of another trait. As long as terms in
the economic equation.are no higher degree than (Xl—pl)zor (Xl+u1)(X2+p2),
the procedure of substituting the index for each trait into the economic equation
is optimum.

For example, with two traits,if

T = ¢+ vy (ut6)) + vy (yG)) + vauy 46, (uy¥Gy) + v, (u+6)? +
Ve (1, +6,) 7,

A

then the best index for T where I1 = G1 and I2 = G2 is
5 = At = !
T=c' +I=c'+ vl(u1+11) + v, (uyt1,) + Vo (uy L) (uy+l,) +
2 2
where c¢' is a constant for all T. Wilton proved that this is equivalent to
= 2 2
I c + lel + 82X2 + B3X1X2 + 84X1 + BSX2

where the B's are the solutions to the equations obtained from minimizing
E[(T-I) - E(T-I)]2.

A special example is in the pricing of milk where the value of milk
depends on the level of fat test. The example does not consider any other
nonlinear economic value for milk. The income equation for milk can be written
as income = (ul+Xl)[vm + vf(u2+X2-base test)], where My + Xl is the milk
record, My + XZ is the fat test, v is the base price of milk per 1b. when
the milk has the base test, and \: ig the differential in price of milk for
a change in fat test. The equation can be rewritten to compare with the

quadratic income equation as income = [vm + vf(-base test)](ul+X1) +

Vf(p1+X1) (u2+X2) .
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Thus, the best index is

= + -
I [vm vf( base tesEL](p1+Il) + vf(p1+ 1)(u2+12) s

L
—
vy Vg
= + = .
where Il bllxl b12X2 and 12 b21Xl + b22X2
In some cases a simpler estimate of I1 or I2 may be substituted especially
when Il and 12 are based on many progeny, i.e., Il may include only records for

trait 1 on many progeny. In all cases with a quadratic index, correlated

responses are difficult to compute because of terms such as E(Xfxz).

An example of selection when milk price depends on fat test,

The example also demonstrates that an animal which ranks higher 1in one
herd may not in another depending on the average milk yield and fat test.

. Two herds with

Two sires have been evaluated for milk, Im’ and test, If

widely different average milk and test are used.

Sire Im If Herd um He
A 42000 1b. -.003 1 12,000 1b. .040
B +1000 1b. +.003 2 18,000 1b, .035

Three pricing systems are compared where v is the base price per 1b. of milk
at a base test of .035 and Ve is the fat differential--the change in price
per 1b., of milk if fat content changes from none to all. The following table

gives the results for the six combinations of herds and pricing schemes.

v =.05, v.=.6 v =,05, v.=.8 v =.06, v.=.4

m f m f m f
Sire Herd 1 Herd 2 Herd 1 Herd 2 Herd 1 Herd 2
A $717 $964 $722 $952 $951 51176
B 712 984 733 996 922 1163

General procedure for predicting quadratic merit

Suppose as an example with only two traits that overall quadratic merit
can be defined as
= 2
T vl(|.11+T1) + v2(u2+T2) + Vlz(u1+Tl)(p2+T2) + vll(p1+T1) +

2
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where the v's are economic values for linear, product, and squared increases
in true value for traits 1 and 2 having means My and By T1 and T2 will have

zero means and variances g2 and o2 .
T T
1 2

T can be rewritten as

T = a0 + alT1 + asz + alleT2 + allTl + aZZTZ ,

= 2 2 =
where the constants a, vi¥y + Voly + ViaH1Hg + Vi1 + VooWy s 2y vy +

Vighy F 2Vilys 8y = Vy Fviou F 2Voolgs 81y = Vygs 8y = Vpys and ay, = Vo

c+ I

]

Henderson has shown that the best unbiased predictor of T is T
where the indexes for traits 1 and 2, I1 and 12, are substituted into the
quadratic merit equation, I = a, + alll + a212 + a121112 + allll + a2212, and
¢ = E(T) - E(I). c is the same constant for all animals and therefore will

not change ranking and is necessary only to have unblased predictions.

Only one type of term in ¢ = E(T) -~ E(I) is difficult to evaluate;

E(T) = E(ao +a T +a,T, + a12T1T2 + all'l‘l + a22T2)
=a +0+0+a 0 +a 02 +a, 02 ;
0 12 T1T2 11 T1 22 T2
E(I) = E(aO + alll + a212 + 3121112 + allll + a2212)
= 2 2
ag + 0+ 0+ ale(Illz) +a,,07 *ay07 .
2 2 2 2 2 2 ! 2 2
gs =r g% and 0 =r 0% as before where r is the squared correla-
L T, 1,1y I, T,I, T, T;I,

tion between Ti and the index prediction Ii' Thus,

E(T) - E(I) = a,,[ - E(3yL,)] + a);07 (1-rZ 1)+ a,,02 (1-r .

a
21T, 1 §Ih 2 2

Only E(Illz) must be evaluated from the linear functions of I1 and 12. If,
for example, in the simplest case where Xl and X2 are the records for trait 1

and 2 on the animal being evaluated, Il = bllxl + b12X2 and 12 = b21X1 + b22X2,

- 2 2
then E(I,I,) b11b21°xl + (by1byy + b12b21)°x1x2 + b12b22°x2'
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Restricted Selection Index

Sometimes one trait is at an optimum level (when an intermediate is
desirable) but is correlated with another trait of economic importance.
Ordinary selection for the economic trait would lead to an unwanted corre-
lated response in the trait which is at an optimum level.

The general problem is to maximize T = lel + VZGZ + ... + VMGM but

at the same time hold N - M other traits at their present genetic level,
i.e., ZC&GM+1 =0 = ZCXGM+2 = ... ?[CXGN . A solution to this problem is
given by Kempthorne and Nordskog in Biometrics (1959).

In the simplest case T = v1G1 and we want jﬁLGZ = 0, Available are

measures on the two traits, Xl and X2. We will select for T = lel by

I* = bi Xl + bg X2 where the * indicates the restricted selection index--

restricted in that the index is to maximize[ﬁT with the restriction that
G, = 0.
Ac, - o

*
The restriction,fﬁG2 =0 = COV(GZ’I )

so that Cov(Gz, I*) =

% D
5i
b* o + b% o must be zero.
1 X102 2 X2 G2
In addition the equations for the b's to maximize Lopx 2T
2
Oy b*+ o b = o
Xl 1 XlXZ 2 XlT
* 2 * - . . .
oxlxz bl + oxzb2 szT - Thus there are three equations including

the restriction but only two unknowns.
In order to find a solution we must add a dummy unknown--the so-called

LaGrange multiplier, A. The equations can now be solved and are symmetrical

as before.
b% o2 + b* o + Ao = g
1 Xl 2 X1X2 X1G2 XlT
b* o + b* o2 + Ao = g
1 X1X2 2 X2 X2G2 X2T
* * -
bl 9% ¢ + b2 Oy G + 0 0
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b*X. + b#X,.

% 5%, The X can be found but is not

The restricted index will be I*
needed.
These equations can be derived by minimizing E[(T-I*)2] with the restric-—

% * = -
tion that 2)\(bch1G2 + bzoxzcz) 0, i.e., equate to zero the partial deriva

- 20 x Tt 2X0

TI , and A

tives of o2 + g2

T Tx & With respect to bf, b%

G, I 2

2
If selection is for more than one trait with restriction of more than

one trait the procedure can be expanded, instead of A there will be Ai’
1= M+1, .» N where N - M is the number of traits to hold constant and
N is the number of economic traits.

As an example consider M = 2,(T = v Gl + v, G2),and N-M = 2 (zﬁ} G3 =0 =

1
£c,).
i ; % = R% * % %
The restricted index will be I Bl Xl + 82 X2 + 83 X3 + B4 XA'
The restriction equations will be
o x = 0=8%0 + B% ¢ + B% o + B% ¢ and
GBI 1 XlG3 2 X2G3 3 X3G3 4 X4G3
o =0 =pR* g + B% ¢ + B% ¢ + B* o .
*
GAI 1 le4 2 X2G4 3 X3G4 4 X4G4
Thus, Al and Az will be the LaGrange multipliers in the equations to find
the restricted selection index weights:
Rk o2 + B% o + B% o + 8% o + A, O + A, 0 =0
1 Xl 2 X1X2 3 X1X3 4 Xlxh 1 X1G3 2 XlG4 XlT
B% ¢ + B% o2 + 8% o + B% o + A o + A, O =0
1 X1X2 2 X2 3 X2X3 4 X2X4 1 X2G3 X2G4 X2T
R + 8% ¢ + B% o2 + 8% ¢ + A, 0 + A =g
1 X1X3 2 X2X3 3 X3 4 X3X4 1 X3G3 X3G4 X3T
¥ + B% o + 8% o + B% o2 + A 0 + A = g
1 X1X4 2 X2X4 3 X3X4 4 X4 1 X4G3 XAG4 XAT
p¥% + B% o + 8% o + B% o + 0 + 0 =
1 XlG3 2 X2G3 3 X3G3 4 X4G3
BY o + B% o + B% o + B% o + 0 + 0 = 0
1 XlG4 2 X2G4 3 X3G4 4 X[{G4
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The response in selecting according to I* should probably be compared

to the response in selecting directly for T = VlGl + v2G2 by I = lel +

82X2 + B3X3 + B4X4 with no restriction on change in traits 3 and 4. Compar-

ison could also be made with selection for T using just Xl and X2. It may

be that although G3 and G4 are optimum that the restriction to maintain
that optimum will be so costly in terms onXGl andZSG2 that a better pro-
cedure would be to let G3 and G4 change while selecting strongly for T. A

look at the correlated responses may heln to answer. this nroblem,

( )
In the typical example above total response [%3 T = COVOT L D =

T*
Cov(G,,I*)
A ZCX G, +v Z@S G, where as usual Z@X G, = —-—-—!;———'D and
1 1 2 2 1 Oy
Cov(G,,I*%) L
Zﬁ& G2 =-———7;g————-D. Z%X G3 = [ﬁx G4 = 0. These would be compared with

I*
v [XG + v Z&G + v ZSG + v Z&G as calculated from using the unrestricted
11 2772 3773 4774
index where v, and A will depend on the loss in changing G3 and G4 from their
present optimums. It may be that the values of traits 3 and 4 will be different

when the changes are negative from when the changes are positive.

Examples using the restricted selection index

Records on animal being evaluated

Suppose milk yield, trait 1, is to be improved and fat test, trait 2,
is to be held constant. A record on each trait is available on all animals

to be evaluated.

Given: 02 = (2500 1b)2 02 = (.3%)2 g = -150
Py P, PPy
2 _ 2 L2 oy 2
02 = (1250 1b)2 02 = (.21%)2 o = -157.5
6 G, 6,6y
r = -2, r = -.6, h>= .25 n*= .49,
P19 817 1 4
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The equations determining the weights are:

(2500)2 b¥ ~150 b¥% ~157.5) = (1250)2

-150 b¥ + (.3)2 b% + (.21)2) = -157.5
~157.5 b% + (.21)2 b = 0 and
% =
I¥ = .159 X, + 566.67 X,
0, = (.159)2 (2500)2 +(566.67)% (.3)% + 2(.159)(566.67)(-150) = 159,876;
1
Ox = 399.84.
Cov(G,, I%) 2
~ 1° 1 _ .159(1250)2 + 566.67(=157.5) . _
A G, = 5 D = 39984 D = 398 D (1b).
1%
1
%
A e - CoviGy, T  159(~157.50) + 566.67(.21)2  _
. G, = D = - D = 0.
2 o, 399.84
I*
1
If selection is for G1 with no restriction on G2:
I, = .217 X, - 1388.9 X,, 011 = 747,
zfﬁcl = 747 D (1b) and
Cov(G,, I.) 2 2
zfo - 2° 17 o _ .217(-157.5) - 1388.9(.21)2 , _ _1277 D (D).
2 o 747
L

If selection is for G1 from Xl only:
I, = .25Xl, = 625,

JAN:

_.25(-157.5)  _ _ .
zﬁxcz - BEL13) 5 L 063 ().

o1
625 D (1b), and

1

Records on paternal half-sib progeny of sire being evaluated

Evaluate sires by 3 procedures based on

(2) I, =b, X

*
X + b¥ X 1 1 %1 +

X =
(1) If =bf X5+ X,

% =

7 b2 X12’ and (3) Il bl Xll
where X11 is the daughter average for milk, X12 is the daughter average for
test with 1 record per daughter and p = 20 daughters.

I* (1) is to improve G, and not change G,, I (2) to maximize Z§§¢3l, I (3) to

maximize Zﬁ&Gl.



Given: o_ = 2500 1b., o_ = .3%, h’= .25, hZ= .49, r = -.6, T
Py 2 2 81y Pya

as before.

Find the indexes and expected response in milk for all 3 procedures.

% = % %) = bk * 2 =
(1) 1 bi Xll + ba Xl2 thus want Cov(Gza,I ) bl aj, dGzGl + b2 a4 0G2 0
Equations:
1+ (p-1) + n2 0 + (p-1) a,,, o
i’ 1] 62 b+ 172 11" 7616y 1 )
P P, 1 2 +a, ¢ A = a ¢
1 p lo Gle la Gl
"Plpz + (- a2y OGle [1 + (p-1) %h’z‘J ,
b* + b% + a g% A = a g
P 1 P P, 2 “la G, la “G,6
* 2 % =
a, 9 G bl + aj, UG b2 + 0 A 0
172 2
Numerically:
683,594 bf ~-45 bE - 78.75x = 781,250
=45 bf + .01497375 bs + .02205x = ~78.75
~-78.75 bi + .02205 bg = 0
% =
I .9047 Xll + 3231 Xl2
2
Olx = 452,748
O = 673
Cov(G ., I*) 90472 02 ) + 3231 0. )
al’ ) 2 G 2 "G,G
Ae, = . D = 1 1°2 D =672 D (Ib)
I* 673
| 9047 o, )+ 3231 62 )
COV(GaZ’ I*%) ' 2 GlG2 2 G2
A G2 = o D . 673 D = 0 (A)

I*



—-189--

(2) I =50, X,;, +b, X,,: equations are upper 2x2 for (1) and same 2 RHS's.
1711 2 712

- _ 2 - _
I = .9943 Xll 2258 Xy o1 954,229, or 977

1 2 1
COV(Gal, 1) .9943(2 0G1) 2258(2 0G1G2)
c Gl = ____E;—___— D = 977 D= 977 D (1b)
1 - 1 2
Cov(py D 19943(; 0G1G2) 22583 Ocz)
AGZ = —-—-—-—0-;-“-—-—-D = 57 D =-.1311 D (%)
(3) I = bl Xll ¢ equation is first diagonal and first RHS of (1) or (2).
= 2 = =
I 1.1429 Xll o1 892,924 OI 945
1l 2
Cov(G L 1) 1.1429(2 0G1)
R = R, =
Ac, 5 D 575 D 945 D (1b)
1.1429(30,. )
Cov(Gaz, 1) ' 2 G1G2
AGZ=—-———;I—~—D= 5T D = -.0952 D (%)
Cow selection Bull selection
Procedure FAN G,/D VAN G,/D VAN G,/D A\ G, /D
Ii = b’l"_ xll + bE le 398 1b 0 7% 672 1b 07
Il = bl xll + b2 le 747 1b - 13 % 977 1b -.13 7
I, =0 X 625 1b -.06 % 945 1b -.10 %

1 1 11



Summary XV

INDEX AND ECONOMIC VALUES IN RETROSPECT AND SELECTION EMPHASIS

The index in retrospect

The Index in retrospect 1s an index that has been used for selection even
though the weights were unknown at the time of selection. Determining the
index that was used depends on finding the index which would give a particular

set of phenotypic selection differentials.

N
Let I = iél wiPi be the underlying but unknown index that was used for
selection and D the selectlion intensity factor. P, will be the phenotypic

i

record for trait 1 measured on the animal being selected.
With respect to the underlying unknown index, I, the regression of Pj

on I gives the expected phenotypic selection differential for trait j:

Cov (P, ,I) Cov(P,,I)
AP, = d— AT = i p= (p/o.) Cov(P,,I) .
b OI OI I ]

D/oI will be a constant for all traits, thus not changing the proportionality

of the right-hand sides for different traits although both D and I may be
different for males and females and even from generation to generation., Indexes
in retrospect may be computed separately for males and females . for each
generation. If D/oI is set to one, then the expectations of the phenotypic

gselection differentials are:

AP, = Cov(P,,I) = w 02 + w.o + ... +wo

1 1 1 Pl 2 Plzz N PlPN
AP, = Cov(P,,I) = w. O + w02 + ... +wo

2 2 1 Ple 2 P2 N PZPN
AP, = Cov(P _,I) = w.0O + w.o + oo +wo?

N N 1 PlPN 2 PZPN N PN

Note that the coefficients of the w's are the same as for finding the best

index weights, 1.e., the phenotypic variances and covariances. Equating the

-~190--
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selection differentials to these equations will determine in retrospect the
relative weights used in the index. The phenotypic variancgs,and covariances
must be known.
The proportionality of the w's does not appear to depend on the selection

intensity or © A linear index in the phenotypic values 1s assumed as is

I
truncation selection based on the underlying but unknown index.
The expected correlated responses from using the retrospective index are

AGj = (D/UI) Cov(Gj,I) {3j=1, ..., N] which can be compared with the expected

responses from the theoretically best index.

Index in retrospect from genetic selection differentials

Another approach for finding the index in retrospect depends on knowing
the genetic selection differentials, AGj (j=1, ..., N). Usually each would
be estimated as the difference in phenotypic means between two generations.

The underlying I and also D may be different for males and females which
may cause a problem in assigning the fractions of AG due to male and female
selection.

Again let I = ZwiPi be the underlying index. The regression of Gj on I

will give the expected genetic selection differential for trait j:

Cov(G,,I) Cov(G,,I)
AGj = ——0%—— AT = ——?j—— D = (D/OI) Cov(Gj,I) .
I I

Set D/oI = 1, and the expected values of the genetic selectian differentials

are:
AG, = Cov{(G,,I) = w02 + w0 + ... + w0
1 1 1 Gl 2 G1G2 N GlGN
AG, = Cov(G,,I) = w,o +w.ol2 + ...+ wo
2 2 1 GlG2 2 G2 N G2GN
AG,. = Cov(G,,I) = w0 + w0 + ... +wo? .
N N 1 GlGN 2 GZGN N GN
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Thus, if the genetic variance-covariance matrix is known as well as the
genetic selection differentials, the weights for the underlying index are the

solutions to the above equatioms.

Economic values determined for the index in retrospect

After the retrospective index I = Iw Pi 1s determined, the relative eco-

i

nomlc weights in retrospect can also be determined if the assumption is true

that the retrospective index is the best index for T = Iv.,G

164 Thus, the

usual equations to find the weights (which are now known) can be used to find
the corresponding economic values. The calculated numerical values on the

left-hand sides are equated to the right-hand sides.

2

csw, + o0 w, + ... +c w. = v,0%2 + v.0o + ... + v o0

P1 1 Plzz 2 PlPN N 1 Gl 2 Gle M G1GN
o w, +oc-w, + ... +0 W_ =vV.0 +v.o2 4+ ... +v.o
PlP2 1 P2 2 P2PN N. 1 G2Gl 2 G2 M GZGN
g w, + 0 W, + ... +02 w_=v.0 + v 0o + ... +v o2
PIPN 1 'P2PN 2 PN N 1 GNG1 2 GNGZ M GN

Eﬁén if the LHS}s are unknown, this would be equivalent to equating the phenotypic
selection differentials to the right-hand sides of the selection index equations
for predicting total merit and then solving for the economic values. The

genetic variances and covariances are necessary for determining the economic

values.

1 16 NG, Gy
AP.. = v.0o + . + v, 02
N 16,6, NGy -

An empirical selection index

If the net value of each animal can be determined (even with error un-
correlated with the X's), then the empirical selection index, I =EBiXi, can be

found from the multiple regression of net value, y, on the phenotypic traits,



—-193—-

i
62 B, + 0 B, + ... + ¢ B.. =0
X1 X X, 2 XX N UKy
o B, + o B, + veo + 02 8_=o0
X X "1 XX, 2 Xy N X

The varlances and covariances are all estimated from the data which includes |
net value. The phenotyplc variances and covariances could be estimated from

a larger sample of data, some of which does not include net value.. Solving
these equations will give the emplrical selection index which 1is an unbiased

estimate of the best index to predict overall economic value.

Economic values from empirical covariances

The model for net value for animal m is y_ = Iv,G, + e where Iv.G, 1is
m J Jm m J Jm
overall economic value and e is a random error of measurement. Thus, 1f e,

1s uncorrelated with the e's of the X's (not a very reasonable assumption),

then o =1 v,0 for all 1 which would give these equations:
Xi GiGj
2 =
v, 0 + v, 0 + ... +vo =0
1 G1 2 G1G2 N GlGN le
V.o +v,0 + ... +v o2 =0 .
1 GNG1 2 GNG2 N GN XNy
If the genetic variances and covariances are known and the Oy y have been

1
computed, the equations can be solved to find the economic values.

If the empirical selection index weilghts are unbilased and since the
right~hand sides should be ZvjoG G for all 1, the economic values can also be

i3

estimated from these equations since I =ZBiXi 1s a retrospective 1ndex:

2 = 2
gt B, + ... +0 By = V.0 + ... +v. o
X,"1 X XN 176, NG, Gy
o B, + ... + 02 8_=v.g + ... + v, o2
XX 1 XN 1°G,6; N Gy

If only the v'svare unknown, the equations can be solved to find the economic

values.
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Example of calculation of relative selection emphasis on traits other than a
major trait in selected matings

Cows for selected matings are often chosen from a list of the highest 5%
of cows evaluated for milk production when the highest 1% would be enough to
produce the required number of young bulls. Obviously traits other than milk
production are being considered. Some idea of the relative selection emphasis
on milk and other traits would be informative to those involved in sire selection.

Expected progress from selection for one trait can be written as AG = rTIDoG

where Top is the accuracy of evaluation, D is the selection intensity factor,

and % is the genetic standard deviation. The genetic standard deviation 1s a

constant for a trait., If rTI is assumed to be the same, then the relative

genetic progress for two selection intensities can be written as D2/D1 where

D1 is the selection intensity factor for the highest selection intensity and

D2 1s the other selection intensity factor.

If all traits are assumed to have equal heritabilities, hf are uncorrelated,
and are standardized, then expected progress for a tralt such as milk can be
calculated easily when selection is for milk and other traits.

Suppose that selection is for milk, Yy and another trait, Ygs with
relative selection emphasis of 1:m for milk and the other trait. Then the
index is proportional to Im =y + my, . The progress for milk when selecting
for milk from I = yy can be written as:thl. Progress for milk when selecting
by Im =Y + my, can be written as

Cov(Im,Gl)
> D1 =h2D1//1 + m2

I
L m

which results in relative progress for milk of
h?D, /1 + m? 1

hZDl 14 l + m2
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This relative progress can be equated to the same relative progress that
would result from decreased selectlon intensity, i.e., a selection intensity

factor of D, rather than D

2 1}
1.5
vl + m2 D1

From this, m = /(Dl/Dz)2 - 1, where m 1s the relative selection emphasis on
the trait other than milk,

Similarly, 1f selection 1is for milk, Yy and n other traits, Yo toe Yog1o
with equal selection emphasis on all traits, then the index is proportional to

In =y + Y, + ...+ yn+1. Expected progress for milk when selecting for the

n+l tralts can be written as
Cov(In,Gl)
—_—— D = hz%/Vl +n
G 1

with relative progress for milk of

h2D1//1 + n 1
h?D - .
1 V1l +n
Again this can be equated to relative progress for decreased selection intensity;
D
1 .2
Yl +n D1

which ylelds n = (Dl/D2)2 - 1, where n is the number of traits with the same
selection emphasis as for milk yield.
The table on the next page gives the m and n values corresponding to

decreasing selection intensity when enough matings can be made from the top 1%

of cows evaluated for milk yield.
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Table . m and n values corresponding to decreasing selection intensity when
enough matings can be made from the top 1% of cows evaluated for
milk yield.

Cows selected from Relative emphasis Number (n) of

this fraction when (1:m) on milk and other traits

only .0l needed one other trait with same emphasis
.01 1: 0.000 0.000
.05 1: 0.538 0.289
.10 1:0.718 0.516
.20 1: 0.949 0.900
.30 1:1.138 1.295
.40 1: 1.324 1.754
.50 1:1.527 2,333
.60 1:1.769 3.130
.70 1: 2,086 4,352
.80 1: 2.569 6.600
.90 1: 3,530 12.641






SUMMARY XVI

PREDICTION FROM LINEAR MIXED MODELS

Selection index procedures described in previous sections require the
assumption that phenotypic measurements are perfectly adjusted for all
nongenetic factors except the random permanent and temporary environmental
effects; i.e., x4y = y; - p, where y; is the actual measurement and u
represents adjustment for all fixed nongenetic factors such as age effects,
year effects, and management effects.

In many situations, the adjustments for the fixed factors must be
estimated simultaneously with prediction of genetic values. Some adjustments
such as for age may be made from estimates obtained from previous sets of
data. Effects of other fixed factors, however, may occur as the records are
being made, as for example, the effects of year and management, so that prior
estimates of those effects are not available to use to adjust the records.

A procedure is avallable for such situations which has many of the
properties of the selection index. The procedure is the same as the selection
index if all fixed factors are known although the two procedures at first
appear greatly different,

The mixed model procedure was derived by C. R. Henderson about 1948. He
has generalized and proved its properties since that time. The procedure
results in what is called best linear unbiased prediction (BLUP), where best
is defined as minimizing the variance of prediction error for procedures which
are unbiased and use linear functions of the data. Best linear unbilased
predictors can be obtained simultaneously with best linear unbiased estimates

(BLUE) of fixed factors from solutions to mixed model equations.

—197-~
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Both BLUP and selection index procedures require the assumption that
variances such as genetic and phenotypic varlances are known. The properties
in common are:

1) both are wunbiased; the selection 1index is automatically wunbiased

whereas BLUP solutions are forced to be unbiased,

2) variances of prediction errors are minimized (the basis for obtaining

the equations for both BLUP and selection index,

3) the correlation between the prediction and what is predicted, oo is

maximized,

4) if the data and T follow a multivariate normal distribution, then the

predictions maximize the probability of correct pair-wise ranking, and

5) the predictions are the same as selection index except that with BLUP

the best linear unbiased estimates of fixed effects are used to adjust
the records to a G + E basis whereas with the selection index the true
values of the fixed effects are used for adjustment.

The mixed model equations are derived after considerable algebra from
minimizing prediction errors squared and errors of estimates of fixed effects
with the condition the predictions are unbiased. Variances and covariances
among the records are considered in an optimum way. The procedure will be
illustrated for a few models and will not be covered in general. A complete
discussion would require knowledge of matrix algebra and several semesters of
statistics.

When all observations have the same variance, the procedure simplifies to
a simple set of equations involving all effects Iin the model except for the
residual effects. (The procedure is considerably more complex with multiple

traits with different variances and covarilances. Multiple trait applications
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will not be discussed.) The number of equations is the same as the number of
effects in the model.

The equations are the same as ordinary least squares equations if all
effects (except residual terms) are fixed effects. The equations are called
mixed model equations when random effects or when both random and fixed
effects are in the model. The mixed model equations are obtained from simple
modifications of the least squares equations. Effects are random if they come
from a distribution with some variance such as would be the case for genetic
values and real producing abilities. Fixed effects have no variance and
theoretically can be repeated exactly. A wide range of effects combine some
of the characteristics of both random and fixed effects.

The rules for setting up the mixed model equations will be given for
models where each effect in the model is a whole effect (i.e., g; not g;/2 or

a covariate).

Rules for writing mixed model equations

1. Compute a sum for each effect in the model excluding residual effects
such that each observation that contains the effect is included in the sum.

2. Write down the model for each sum (that is, the expected value of the

sum considering all effects as fixed) excluding the residual term. Equate
each sum to its model. The result is called the ordinary least squares
equations (LSE). Put a hat on the effects to denote solutions to the

equations and not actual effects.
3. If an effect comes from a distribution of independent effects with
variance, ¢2, then add the ratlo, o02/02, to the diagonal coefficient of those

equations. o2 is the variance of residual terms. Models where the random
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effects are correlated, e.g., genetic values when animals are related, will be
considered by example.

4. Constraints often must be imposed on the fixed effects equations. The
rule is one nonestimable constraint for all except one classification of fixed
effects, e.g., if one constraint is on fi then one classification of fixed
effects should not have a constraint imposed. Typical constraints are g = 0
if there is only one fixed classification; £ = 0 and the last effects in all
classifications except one also set equal to O if there are more than one
fixed classification.

Interpretation of solutions

1. Solutions for the fixed effects are best linear unbiased estimates
(BLUE) of estimable functions of the fixed effects, The jargon concerns
interpretation 2.

2. The expected values of the solutions corresponding to fixed effects
for models without interaction terms usually have the properties:

a) E{solution for a fixed effect] # actual fixed effect,
b) E(solutions for fixed effects] depend on the constraints imposed
to obtain solutions, and usually

c) difference in solutions for two fixed _ actual difference in
effects in the same classification the fixed effects

3. Solutions for effects randomly drawn from some distribution of effects
such as genetic values are best linear unbiased predictors (BLUP) and have the
selection index properties except that the observations have been adjusted for
fixed effects with best linear unbiased estimates of the fixed effects rather

than by actual values of the fixed effects.



-=201--

Dot notation

Before the first example, the dot notation will be introduced which makes
writing the equations In a symbolic form less laborious. A dot (period) in
place of a subscript signifies summation has occurred over that subscript.

Suppose observations are denoted symbolically as P where the i subscript

ij

refers to animal i and the j subscript refers to the jth record of the animal.

Let n; be the number of records of animal i. As an example, let i =1, 2, or

3
3, and n] = 2, ny = 1, and ng = 4, The total number of recoxrds is X nj = m
i=1
+ ny + n3. In dot notation this is written as n . Similarly, the sum of all

records of animal 1 is

n1=2
2 P,, =P + P = P
jop W12 T

The sum of all records is

3ni
= X P,. =P + P + P + P + P + P + P
i=1 j=1

EXAMPLES

Example 1: One-way fixed classification model

Suppose records are classified by the age when the record is made and
that each animal has only one record. Then the model is

= nu+ A, + w,

Yij i Vi

wvhere p is a constant,

is the fixed effect of the ith age, and
Wij is the random residual term assoclated with the record of the jth
animal made at the ith age.
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Note that a record will always include the G + E terms, whether stated or not.
In this case, wij = Gij + Eij with two subscripts identifying the animal since
the numbering of animals (j) starts at 1 for each age group (i).

Further suppose the following records are available (the record will be

equated to its model to clarify rules 1 and 2).

115 = Y11 = # + Al + Y11 95 = Yop ~ B + A2 + Yo
85 = Yyp = 8 % A1 + Wio 90 = Y3 = B+ A3 t Wy
105=y13=p+A1+w13 110=y32=p+A3+w32
Thus, 1 =1, 2, or 3; and n, = 3, the number of records for age group 1;
n, = 1l; and n, = 2.

Rule 1 states that a sum is to be computed for each effect in the model
(excluding w terms). The four effects in the model are gy, Al’ A2, and A3.
The sum for p includes each record having p in its model which is true for all

records; Thus, y = 600, The sum for Al includes each record containing A1

which 1s true for the n., records with subscript i = 1; thus, Y. = 115 + 85 +

1

105 = 305. Similarly the sum for A, is Y, = 95 and for Ay is Yy = 90 + 110

2
= 200.

The next step is to equate each sum to its model (excluding the w terms).

The model for y is simply the sum of the models for all records, n,

included in the sum:

n; of the records have model p + Al’

n, of the records have model u + A2, and

2
n, of the records have model p + A3,

so that the model for y is (n1 + n, + n3)p + nlAl + n2A2 + n3A3. Similarly

the model for Y1 is the sum of the models for the n, records included in the

sum: all ny records contain p and Al so that the model for Y1 is n g+ nlAl.
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The same pattern applies to the model for Yy which is nop + n2A2 and for
Y3 which is Nap + DA,

Written in their usual symbolic form and with "'s to indicate solutions:

A

B nph+n A+ nA, + nAy =y

11 272
A nlﬁ + nlal =y
A2: nzﬁ + + nzaz =Y,
Ay n3ﬁ + + n333 -3

For the example the numerical equations are:

6f + 331 + 1A, + 233 - 600

2
3+ 331 - 305
15+ 1&2 = 95
26+ + 233 = 200
Note: 1) The numerical coefficients are symmetrical; i.e., coefficients in

the first row are the same as in the first column, etec.

2) The off-diagonal coefficients among the A equations are zero
because, for example, a record made at age 1 cannot also be made at age 2.

3) The three A equations sum to the p equation. Thus, even though
there are four equations in four unknowns, the equations are not independent.
To obtain a set of solutions, one constraint must be imposed on the original
four solutions. (See rule 4.)

a) The constraint fi = 0 is the easiest to use computationally.
The equation for p is eliminated (to maintain symmetry) as

well as the j in the remaining equations which become:



The

b)

c)

solutions with the constraint i = 0 are the
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nA =N
n2A2 - y2
N3ty < Y3,
Another constraint is to set 33 = (0; the equation for A3 is
eliminated (to maintain symmetry) as well as A3 in the
remaining equations:
np + nlfl + n2A2 = y..
LR (1 RS
Nk * Nphy T Y,
A more complex restraint is to set 2 + A, + A, = 0. This

1 2 3

equation is in addition to the least squares equations and

to make the numerical coefficients of the equations

symmetrical a dummy unknown (LaGrange multiplier, X) 1is
added to each equation so that:
+ n 2 + 0OX

373
+ 1)

+ n2A2

+ 1) = Yy

b + n3A3 + 1

+ 1 A2 + 1 A3 =

]
«
(&% ]

op +1 A1

easiest to discuss:
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p-o 32 = Yy./my
Ay =yy /By =y /ng
Note that the constraint f = 0 is one of the solutions. Another result of
having to impose a constraint 1s the property stated under 2 in the
interpretation of solutions.
Obviously, and in many cases, E[f] # u since E[0] = O. E[Rl] can be

found easily with the one-way classification model. Note that E[yij} = u + Ai

for all j. Thus,

E[A;] = Bly, /ny] = (1/n)) Ely;) + ¥y + ¥yq + -« -+, ]

1

(/) [ nj (s + 4]
=-p+A1

Similarly

E[Az] u + A2 and
E[A3] = u + A3

These results show that g cannot be estimated, and also that none of the A’s
can be estimated. What can be estimated are functions of u + Ai' For

example, A1 - A2 can be estimated by A1 - A2 since E[Al - A2] = [(g + Al)‘

(p + A2)] = Al - A2. Solutions obtained using other constraints will have

different expectations. For the constraint 23 = 0, E[Aa] = E[0] = 0. 1In

fact, with that constraint, E[Al] - A - Ay, E[A)) = A, - A, and E[f] ~ 4 +

1 2

AB‘ As with the i = 0 constraint, exactly the same estimates of differences
can be obtained. For example, the estimate of A1 - A3 is Al’ the estimate of
A2 - A3 is A2 and the estimate of A1 - A2 is Al - A2.

Finding the expectations with more complicated models is more difficult

and for ease of computations would require some knowledge of matrix algebra.
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Matrix algebra is also useful for ease of writing least squares and mixed
model equations and properties of the mixed model procedure.
A LITTLE ABOUT MATRIX ALGEBRA
The set of numbers such as the coefficients in the numerical example of
the one-way fixed classification model:
[ 6 3 1 2 )

3 3 0 0

is called a matrix of 4 rows and 4 columns. Matrices do not have to be square
or symmetrical as is C. A matrix with only one column is called a vector;
e.g., the right-hand sides of the previous example can be written as the

vector, r:

r =

L Yy, )
Matrix algebra is useful in working with and solving least squares and mixed
model equations. The notation of matrix algebra is especially convenient and
concise for writing simultaneous equations both symbolically and numerically.
The rules of matrix algebra are similar to those for scalar algebra with
some important exceptions. Only four rules will be needed now.
1) Matrix multiplication is accomplished by summing the products of each
element of each row of the first matrix with the corresponding element
of each column of the second matrix (thus the number of elements in

each row of the first matrix must equal the number of elements in each
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column of the second matrix to be conformable for multiplication). A
new matrix is formed from the sums of these row by column products;

Sum of products of elements of lst row X lst column = new element 1,1
Sum of products of elements of lst row x 2nd column = new element 1,2

Sum of products of elements of 2nd row x lst column = new element 2,1
Sum of products of elements of 2nd row x 2nd column = new element 2,2

(The first subscript refers to the row; the second, to the column of the
resulting matrix, or vector.)

For example, let us examine the matrix by column vector multiplication:

(6 3 1 2 ) (5 )
3 3 0 0 Ay
1 o0 1 o A,

. 2 0 o 2 ] [ A, )

Sum for lst row by lst column;

65 + 321 + 132 + 223 (element 1,1)

G < G <G
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Sum for 2nd row by lst column;

3+ 321 + 082 + 0A. (element 2,1)

’ |
> > > >
Sum for 3rd row by lst column;
1p + 0A1 + lA2 + 0A3 (element 3,1) $
_—> —> —> —> ‘L
Sum for 4th row by lst column;
2% + 031 + 032 + 233 (element 4,1) $
> > > > $

The results are the left-hand sides (LHS) of the least squares equations for
the example of the one-way classification model. This example is partially
numerical, the elements of C, and partially symbolic, the elements of the

solution vector:
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s= [ A& )
By
A

[ Ay )

The coefficients of the effects on the LHS of LSE or MME make up the

coefficient matrix (for example, the matrix C).

The sums on the right of the equal signs make up the right-hand side

(RHS) vector.

r= y w
1.
Y2,

[ y3

Thus, in matrix notation the set of equations can be written:
Cs = r.
2) If C is square and composed of independent rows (columns), the matrix
equivalent of division in scalar arithmetic can be used to solve for
the solution vector, s.
In scalar arithmetic,
2% = 4
can be solved by premultiplying both sides by the scalar inverse of 2, that is
by (@)
@ H2x = 2714y =2
Note that (2)-1(2) = 1 so that x = 2.
In matrix notation premultiplying both sides by the matrix inverse of C
produces the solution vector;

1

le =C r

c
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If C is an invertible (i.e., nonsingular) matrix;
cle -1

I is the matrix equivalent of the scalar 1. Note that as in scalar
algebra, the identity (one) vanishes in multiplication: IC = C, Is = s, etc.
In fact, I is a matrix with 1l's as diagonal (top left to bottom right)
elements and 0's as off-diagonal elements; e.g.,
(1 0 o0 0 )
0 1 0 0
0 0 1 0

0 0 0 1

. P

Thus, to solve Cs = r, then C-lcs = C-lr is equivalent to Is = C'lr so
that s = C.lr.

) # I/C which has no meaning in matrix algebra.

Note that C’

Finding the elements of C'l from C is usually accomplished by computer
programs although students in matrix algebra courses often are required to
practice on matrices of order 2x2, 3x3, 4x4, etc.

Note that constraints often must be applied to LSE or MME to make the
rows of the coefficient matrix independent so that an inverse of C can be
obtained. If the rows are dependent, an inverse does not exist and the matrix
is said to be singular.

3) Addition (subtraction) of two matrices is accomplished by adding
(subtracting) corresponding elements of the two matrices (the matrices
must have the same number of rows and columns to be conformable for
addition).

4) Multiplication of a scalar by a matrix is defined as the

multiplication of each element of the matrix by the scalar. If the
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scalar is (1-h2?2)/h2?, which for h? = .25 is (1-.25)/(.25) = 3, then,
for example:

f 3 0 0 0 )

3] =
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Example 2; One-way random classification model--ANIMAL MODEL

A simple one-way random classification model results when records are
classified by the animal making the record. If each animal has only one
record, each record is assigned to a separate classification. This model can
be used to illustrate the similarity between selection index and BLUP. The
cases where each animal can have more than one record and where the animals
are related will be discussed later.

The model for a record of animal i is:

Yi =8 +g; t Wi
where p 1is a constant,
gi 1s the effect on the record of the animal’s genotype (usually
assumed to be additive genetic effects, with E[gi] - o; = hzo;, and
wi 1is the residual effect of the sum of the environmental effects on
yi» E[wiy] = 0 and E[wi] = a; = UE = (l-hz)o;.

The mixed model equations are obtained by setting up the least squares
equations (same as considering additive genetic values as fixed effects) and
then adding a;/a; to the diagonals of the animal (additive genetic wvalue)
equations. Let X\ = a;/a; - (1-h2)a;/h2o; = (1-h?)/hZ,

Because each animal has only one record, the mixed model equations are

especially easy to write and are as follows for 3 animals:

3B+ g1 + gy + g3 = vy,
i+ (1+A)§1 - N
i+ (1+)) g9 = Y2
i+ (1+M)83 = y3

where for h? = .25, A = 3.



—-213--

The four equations in four unknowns (#, g1, 82, £3) can be solved without
imposing a constraint because when X is added to the diagonal coefficients,
the 3 animal equations do not sum to the u equation. fi will be BLUE of u
because for this model E[f#] = u. g, 8, 83 will be BLUP and correspond to
selection indexes for additive genetic values of animals 1, 2 and 3.

The correspondence to selection index can be shown by examining any of
the animal equations (e.g., animal 3):

A

B+ (1+0)83 = y3

(14X)g3 = y3 - & {Note: (14A) = 1 + (1-h2?)/h?
g3 = h2(y3-i) = [h? + (1-h%)]/h?
= 1/h? )

Thus §3 1s the same as selection index, I3 = h2(y3-p), except that the BLUE of
p, fi, is subtracted from the animal’s record rather than u. In this example,
£ may be poorly estimated because only 3 records are used.

Note that fi = ;., the average of the 3 records. Substitute g; = h2(yi-4)

for i = 1, 2, 3 into the first equation:

35 + hZ(yp + yg +y3 - 38) =y,
3 + hi(y - 3B) =Y.
© 3fi(1-h?) = y (1-h?) and thus
h=y/3
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Example 3: ANIMAL MODEL with repeated records.

Although the records will be classified in one way, by animal, the
effects associated with animal i on its record are of two kinds, gj + py,
where g; 1is the additive genetic value and p;j is the effect of permanent
environmental factors which affect each record of the animal. Again assume no

fixed effects except p in the model for yij the jth record of animal 1:

Yig =B F By Y Pyt Yy,

where u is a constant,
g; 1s the additive genetic value with aé = h?g2,
p; 1is the permanent environmental effect associated with animal i with
2 _ (r-h2)g2 2 2Y /52 m
95 (r-h )ay, [Note that (ag + ap)/ay r.]
wij is the residual effect (temporary environmental effects) associated
with the jth record of animal i with o2 = (1~r)a§. [Note that
2 2 2 _ g2 2 2
gg + op t oy 9y and that og t+ op
Let a&/og = (1l-r)/h? = X and a%/as = (1-r)/(r-h?) = y. The sum of nj records

= ra%.]

on animal i will be Yi. As an example, consider 2 animals with n; and np
records. Thus, 5 equations will be needed corresponding to g, g1, 89, P1, and
p2. The least squares equations will be identical for g; and p; and for g
and pgp but X will be added to the diagonal coefficients of the g equations and

v will be added to the diagonal coefficients of the p equations:

ni+ mg + nygy + nify + ngby = ¥
nf + (n+A)gy + niby RS
ngh + (ng+\) 8y ngby = Yy,
nh o+ mgp + (n1+7)P1 = ¥

nzﬁ + n2§2 + (n2+7)f)2 = y2.
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Again, no constraints are needed because the g equations do not sum to
the p equation or to the sum of the p equations because of the nonzero ratios
X and vy added to the diagonal coefficients. Thus E[f#) = u. §; and g, will
correspond to selection index for additive genetic value of animals 1 and 2.
Similarly, g; + P; estimates producing ability of animal i and corresponds to
selection index for producing ability.

Both correspondences can be shown by examining the mixed model equations.
For example, consider the pair of equations for animal 1, the g; and p;
equations. Because the right-hand sides of the two equations are the same,
Yy the left-hand sides must also equal each other. Thus,

nifi + (n+0)By + n1Py = mp + nfy + (m+1)Py
Terms in 4 and nj drop out to leave:
Ag1 = 7Py
so that
p1 = (A/M)E; = [(x-h?)/h?]§

Now substitute this expression for p; into the g; equation:

nyid + (n+A)g) + ny(A/78 = Iy,
Thus with reordering

[n] + X +ny (A0 = 1. - nyj

Replace X with (1l-r)/h2?, vy with (l-r)/(r-h?) and y, with n (the average
1.

1.
times ny = the sum) and with some algebra
nh? + 1 - r + nr - njh?

[ . g1 = m@y; - @

and

1+ (nl-l)r _
[ 1 b= Gy B
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so that
1’111'12 -
g1 - ———) [y, - A&
1+(n1-1)r )

which is the selection index for gj for n; records on animal 1 with py replaced

by fi. Because producing ability is gy + pj;, add §; and P; to estimate

g1 * P1
np h? _ r-h? nyh? _
B +b - [ ——— 10y - A+ 1 I [y, - A
1+(ny-L)r ) h? 1+(ny-1)r )
1’111‘ _
[ —— 10y -A&]
1+(ny-Dr ’

which is the selection index for producing ability with 4 instead of u.
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Example 4: One-way random classification model. SIRE MODEL

This model applies when the data can be classified according to effects
which can be thought of as coming randomly from a distribution of effects.
For example, the records may be grouped according to the sire of the animal.

Suppose the model is

yij =pu + si + w,
where x 1is a constant,
is an effect common to all animals having sire 1i; (this is
equivalent to transmitting ability or 1/2 additive genetic value of
the sire since a sample 1/2 of his genes are transmitted to each of
his nj progeny). E[sy] = Q and E(s}) = ol = paternal half-sib
covariance, h2;§/4, and

wij is an effect associated with the record of the jth progeny of the

ith sire.
(Note s; + wij = Gij + Eij so that E(wij) = 0 and o2 = a§ - 02 = a§(1 - h2/4),
Thus, 0%/02 = XA = (1-h%/4)/(h2/4) = (4-h2?)/hZ,

The mixed model equations now are appropriate and are obtained by setting
up the least squares equations (same as considering sire effects as fixed
effects) and then adding 02/02 = X to the diagonals of the sire equations.
The XA term essentially takes into account the additive relationships among

animals in the same group as does the selection index procedure.

The mixed model equations become (for the case of 3 sire groups) :

n i + mE + g8y + n3d3 =y
njd + (np + A8 + = Y.
nop + (ng + X)§, = ¥y
mafi + + (n3 + )83 = Yy
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and if h? = .25, then X = (4-h%?)/h? = 15. Note that a§ 1s not required
although the ratio 02%/02 must be known.

If ny = 11, nyp = 4, and ny = 15, the numerical equations except for the

Sums are:
00+ 118 + 489 + 1587 = y
112+ (11 + 15)% -y
4+ (4 + 15)3, =y,
158 + + (15 + 15)83 = Y3

Note that because of the extra diagonal terms, A, the sire equations do not

add to the g equation.

The four equations in four unknowns can be solved without imposing a
constraint. f will be BLUE of u since for this model E[A) = pu. 8y, §y, 83
will be BLUP and correspond to selection indexes for transmitting ability of
sires 1, 2, and 3. The equivalence to selection index can be shown by looking

at any of the sire equations, e.g., sire 1, and noting that ;1 =y /nl, the

average of progeny of sire 1:

n]_ﬁ + (n]_ + 15)‘31 = yl
(np +15)8) = m@y; - A
and
n]_ _
1=l ——1 G, - B
ny + 15 ’

which is the same prediction as with the selection index except that the BLUE

of p instead of u is subtracted from the progeny average.
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Example 5: Two-way fixed and random (sire) classification model

Assume the model is

yijk = u + mi + sj + wijk

where yijk is the measurement of progeny k of sire ] made in management
level 1i,
mj 1is fixed effect of management i,
S s is an effect common to animals with the same sire (j) wich
variance o2 = the paternal half-sib covariance = h2o§/4, and
wijk is a random residual effect associated with progeny k of sire j
in management level i, with variance 02 = a§ - 0% = (1-h2/4)a;).
Note that a§ = aé + aE. Assume h? = 1/4. Thus, 02/02 = X = 15.

The following observations have been made:

Yi11 = 530 Y911 ™ 380
Y119 = 520 Yo19 = 400
Y191 = 460 Y913 = 410
Y131 = 350 Yon1 = 410
Y139 = 340 Y99 = 440
Y133 = 300

Note that the first subscript (i) denotes the management level and the
second (j) the sire of the animal. The largest third subscript (k) for a
particular combination of i and j denotes the number of observations of that
combination (nij)'

lor 2; j=1, 2, or 3; and n

For this example, i 1~

=2, n = 0. Thus there are 6 effects in the model:

3, n,, =3, n 23

21 22

B, mp, my, s1, sy, and s3
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for u:

the observations contain g so that the sum for u is y = 4540,

for my:

observations with i = 1 contain m; so that the sum for m; is
= 2500,

for my:

sum of observations with i = 2 is Yo = 2040,

for sy:

observations with j = 1 contain sy so that the sum for sy is
= 2240,

for sjy:

sum for observations with j = 2 is Yo = 1310.

for sj:

sum for observations with j = 3 is y 3 = 990.

Usually the easiest way to set up the equations is to make tables of the

subclass

numbers and sums:
REY Yij.
j - 1 2 3 n; j = 1 2 3 vi
1 2 1 3 6 .1 1050 460 990 | 2500
) 3 2 0 5 T2 1190 850 -- | 2040
n | 5 3 3 |11 §.j. | 2240 1310 990 | 4540

The least squares equations in symbolic form are:

n Ao+ ong By o+ omy By 08+ n B, ng8y -y
o B+ oy By *onggdy o onppf, 4 npady =y
n, ho+ + n, ﬁ2 + n21§1 + n22§2 + nys8, =y,

ngh o+ onpgfy o+ onyf, 4o g8 = Y.
L TP n 58 - Yo,

=
+
=

=>
+
=

n>
]
(o)

(%]

nogh +onyqmy 23M9 .3%3
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The n, . table summarizes the number of each effect in each sum. For

example, the sum for m; includes n, records. Each of those records contains

p and my. Obviously none contains my. The number of records containing sy is

nll' n, contain s, and N, contain s3. Note that the first row (i=1) of the

and n,,. Similarly the sum for sy includes

nij table consists of nll’ ny,s 13

n records each containing p and Sy The first column (j=1) of the nij table

consists of n, and Nyqs the number of records containing sy which also

contain my and m, .

To convert the least squares equations to mixed model equations, the
ratio, 02/02 = [1 - h2/4]o§/h20§/4 = 15, is added to the diagonal coefficients
of the s equations so that they become (n L+ 15)§1, (n , 15)8,, and (n 5+

15)83.

In numerical form the mixed model equations are:

115 + émp + 5fy + 581 + 38, + 383 = 4540
6 6y + 281 + 18, + 383 = 2500
54+ Sty + 38] + 28 = 2040
S+ 2y + 3y + (5+15)§ = 2240
3+ 1Ry + 2Ry + (3+15) 8y - 1310
3+ 3y + (3+15)83 = 990

A

One constraint must be imposed on either fi or one of the m's to obtain a
set of solutions. Let i = 0 and eliminate that equation. The equations to

solve become:

6f; + 28 + ) + 383 = 2500

5y + 38, + 28§ = 2040
2y + 3My + 208, = 2240
fiy + 2R, + 18s, = 1310
3y + 1883 = 990

Solutions are:



po= 0 &4 = 10
iy = 420 8, = 5
fi, = 400 83 = -15

Note that §; + Sy + §3 = 0. This property holds for any classification of
random effects, Note that the unblased estimate of mj; - mp is ﬁl - ﬁz =
420 - 400 = 20.

Although how to find expectations of solutions is generally beyond the
scope of this course, it is known E[#] # u, E[fy] # my and E[fip] # mp.
Obviously E[f1] = E[0] = 0. Actually E[f;] = p + m; and E[fip] = p + my with
the constraint g = 0.

If management levels were considered random effects, then changes in the

example would be these:

oZ2/0% would be added to the diagonals of the management equations,
02/02 would be added to the diagonals of the sire equations,

no constraints would be imposed, ﬁl + ﬁz =0, and

E[fi] = p but only when no other fixed effects are in the model.

Note that then a§ = 02 + 02 + 02 so that oZ/02 may be different from

when management levels are considered to be fixed effects.



~~223--

Example 6: The ANIMAL MODEL with animals related

The selection index takes advantage of records of relatives to improve
predictions. The mixed model procedure can as well. Instead of adding a&/aé
to the least squares diagonal of each g equation, a function of the additive
relationship matrix and a%/aé = ) is added to the block of coefficients for
the g equations. The additive relationship table can be considered as a
matrix of additive relationships with the symbol, A. The function of A used
in the mixed model equations is its inverse, A-l, multiplied by the scalar,
a&/aé.

For this example, the least squares and mixed model equations will be
written in matrix notation.

Assume animals 1, 2, 3 each have a record and are related through S and D
as diagrammed:

l<——s

>

2 €————=D

s

Thus, the additive relationships among animals 1, 2, and 3 are:

A = 1 12 1/ with ™' = [ 15,11 -7/11 -2/11
172 1 1/4 -7/11 15/11 -2/11
/6 1/4 1 -2/11 -2/11 12/11
Let y1, y2, y3 be single records of the 3 animals. The least squares
equations are:
" 3 1 1 1 5 . 4 \ ( y \
1 |1 0 0] 81 1
1 |0 1 0| g2 y2
1 | 0 0 L | g3 J y3
. L J \ ~ J
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To convert the least squares equations to mixed model equations, AA’l is added

to the block of coefficients for the g equations (outlined in broken lines).

For example, if o&/og = (1-h?)/h? = 3, then

1

AT = 3 (15,211 -7/11 -2/11
-7/11 15711 -2/11
-2/11 -2/11 12/11

and the mixed model equations become:

(3 1 1 1 1 ( & y
1 14+ 45/11 0 - 21711 O - 6/11 g1 y1
1 0-21/11 1 + 45/11 0 - 6/11 ) ) g
L 1 0- 6/11 0 - 6/11 1+ 36/11 ) | 83 | L y3 )
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Example 7: ANTMAT, MODEI, with equations augmented for relatives without

records
Calculation of A with many animals is difficult. After A has been

calculated, the calculation of A-1 for many animals is usually prohibitive
because computing time for A-1 from A is proportional to n® where n is the
number of animals,

In 1975 C. R. Henderson made a remarkable discovery that allows rapid and
direct calculation of elements of A.l without calculation of A. (See Rules
for Calculation of A-l.) The method, however, requires including the
ancestors that create the relationships. In the previous example, S and D as
well as animals 1, 2, and 3 must be included in A-l‘ The mixed model
equations for animals with records must be augmented with equations for the
ancestors without records. Let A;l be the inverse of A+ which includes the
ancestors without records that create relationships among the animals with
records. The coefficients of the least squares equations for animals without
records are all zero and the right-hand sides are also zero. When AA;l is
added to the block of coefficients for the animals including the ancestors
without records, then the coefficients are not all zero for the ancestor
equations although the right-hand sides are zero.

The procedure will be illustrated with the previous example. The least

squares equations are:

(3 1 1 1 0 o0 1 ] & ) ( y. )
1 |1 0 0 0 0 | g1 y1
10 1 0 0 0 | &2 Yo
1 ]0 0 1 0 0 | g3 i Y3
0 ]J]0O 0 0 0 0 | Bs 0

L0 o o o o o | J { & . 0
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Using the rules for calculating A;l with § and D included at the end to agree

with the order in the least squares equations:

A;l - ( 2 0 0 -1 -1 )
0 2 0 -1 -1
o 0 4/3 0  -2/3
-1 -1 0 2 1

a1 -1 w273 1 2413 |
Then AA;I is added to the block of coefficients outlined with interrupted
lines.

A somewhat surprising result is that the solutions for f, g;, gy, and g3
from the augmented equations are exactly the same as when AA-l was added to
equations for g;, gy, and g3 in the previous example. Even though more
equations must be solved with the augmented procedure, the total computing
time is usually much less than calculating A, then A.1 for animals with
records and finally solving the equations. If, in the augmented equations,
the equations for gg and g, are absorbed into the equations for gj, gy, and
g3, the equations will be identical to those set up directly for g;, gy, and
g3

A simpler example will illustrate. Assume C has n records with parents §

and D not having records. With animals ordered C, S, D:

a;l - 2 -1 -1
132 12
1172 3,2

For the model yij =ptog +p;F wij with ) = a%/ag = (l-r)/h? and v = a%/og

= (1-r)/(xr-h?), the augmented equations are:



([ n n n 0 6 ) ( A& ) ( Y1 ’
n nd n 0 0 B¢ ¥,
n n n+2x  -) -2 gc ) ¥y
0 0 -2 3x3/2  X/2 gs 0
[ O 0 -2 /2 3x/2 ) ( g J [ O J
Note that gg = gp because each has the same relationship to their progeny

which has the records. Let a parent solution be gP. Then from either of the
last two equations
(3/2 + 1/2)2gp = Mg

so that as might be expected

Bp = B¢/2
Substitute gs/2 for gg and §p in the equation for gg:

ni + npg + (208 - (A/2)gg - (A2 = i
This equation, on combining terms, is the same as the equation for gg if
relationships to S and D had been ignored:
ni + nfg + (ntX)ge = v

Such a result is expected because neither S nor D contributed any
information to evaluate C.

In general, the reasons to include animals with no records are 1) that
such so-called base animals establish relationships among animals with
records, e.g., if a full sib of C had a record, S and D create the
relationships needed to use that record in the evaluation for C and 2) that
calculating A;l is easier than calculating A and then A'1 for animals with
records.

This example suggests that an animal model can be used to evaluate sires
that have many progeny. In the simple example the evaluation of S was

obtained and based on only one progeny.
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Example 8: Sire evaluation with ANIMAI, MODEL

The animal model is ideal for evaluating sires from their progeny records
because the merit of the mates of the sires (dams of the progeny) will be
adjusted for automatically through the relationship matrix in the same way
that the selection index can be used to account for association of some sires
with better than average mates and other sires with poorer than average mates.
The disadvantage of the animal model for large data sets is that a large
number of equations must be solved. The number of equations is somewhat
larger than the number of animals and depends on whether repeated records are
used, how many animals without records are included (base and sires) and on
the number of other factors in the model to account for such factors as
management and seasonal effects,

In the augmented procedure, a base animal that has only one relative to

1

be evaluated does not have to be included in A; , €., a sire has a son that

has progeny but the sire of the son has no progeny with records nor any other
sons with progeny or descendants in the group of animals to be evaluated.

The example which follows shows the equations for sire evaluation with an
animal model for the situation where all of the mates of sires are unrelated
to each other and to the sires. Thus, parents of the mates are assumed not to
have records and do not need to be included in A;l. They could be included
but the solutions will be the same and more equétions would have to be solved.

To further simplify the example, only females will have records and each will

have a single record.
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«
S
<

11 22 €34 €34 35

All C and D animals have a single record.
There will be 10 equations for animals with records,

4 equations for sires including S, and

1 equation for u for the simple animal model.
Let the animals be ordered:

Dy, Dy, Dy, D, D S, S, S,, S

50 €110 Cgp» C33: Cg40 Cys 3

The mixed model equations for the simple animal model with a&/aé = (1-h?)/h?

= § are:
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10

143672

1 1 1 1 1
1+36/2 0 0 0 0
1+36/2 0 0 0
1+36/2 0 0
1+36/2 0

SYMMETRIC

(coefficients in a column below the

diagonal are the same as those in

the row to the right of the diagonal)

1 1 1 1 1 0 0
-5 0 0 0 0 §/2
0 -6 0 0 0 0

0 0 -$ 0 0 0
0 o o -5 o 0 0
o 0 0 0 -6 0
1+26 o o 0 0 0 -6
1+26 0 0 0 0 o
1426 © 0 0 0
1426 © 0 0
1426 © 0
56/3 O
36/2

-26/3

116/6
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Examination of the solution for a sire shows the weight for each mate is
-1/2 that for each progeny. In other words, an estimate of one-half of the
dam’'s genetic value is subtracted from the estimated genetic value of the
progeny to leave the part of the progeny’s genetic value contributed by the

sire. For example, for Sj:

(176/6)8, = (26/3)8, + 6(8 + 8 + 8. ) - (8/2)(E, + & + & )
Sq § C33  "C3,  C3s Dy = "D, "Dy

(176/6)8, = (26/3)8. + 6[(8 - 8. /2) + (g -8 /2) + (§ - 8y /2)]
Sq : Cy3 7Dy Cyp 7B Cy5  Dg

And for Sli

8. = (26/3)(§ - 8. /2)
51 i1 ™™
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Example 9: Sire evaluation with ANTMAL MODEL ignoring mates and relationships

through females

In the past, sire evaluations generally have ignored records on mates
because of the computing time required. The animal model can be used with the
same approximation; that all mates are unrelated to each other and to the
sires. This approximation to the full animal model is equivalent to assuming
that only relationships from males to males are important.

Consider the following example where Cll’ 012, and 021 have single

records, Y110 Y190 and Yo1-
/s
51 \
‘(//,/’ ‘\\\\\*T

11 12 21
1

w

2

(9!

C

In calculating A; , all dams are considered to be unknown so that for animals
. -1

ordered Cll’ 012, 021, Sl’ SZ’ and § (note that each term in A ~ when the dam

is missing contains a 3 in the denominator):

1 .

AL = (1/3) & 0 0 -2 0 0 )

0 4 o -2 0 0

For a%/ag = X, the mixed model equations are:
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(3 1 1 1 0 0 o Y(& ) [y )
1+4)2/3 0 0 -2)0/3 0 0 311 Y11
1+4)/3 0 -20/3 0 0 312 Y19
1+42/3 0 -2x/3 0 8,1 ) Y91
62/3 0 -2)0/3 gsl 0
5)/3  -2)/3 gsz 0

| Symmetric 533 ) ) &g | | 0 |

The solutions predict genetic values simultaneously for animals with
records (the progeny) ignoring relationships arising from females, and for

animals without records, in this case, the sires.
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Example 10: Sire evaluation with SIRE MODEL jignoring mates and female

relationships

The approximate animal model described in the previous example requires
an equation for each progeny which with many animals may be computationally
prohibitive. The number of equations can be reduced essentially to the number
of sires by using the sire model. Only male to male relationships will be
considered (assumes dams unrelated to sires and to each other). The sire
model is:
ij=“+si+wij
vhere s; = gi/2 is the transmitting ability of sire i. Note that 0k = aé/&

y

and o2 = a§ - a§/4 or equivalently oZ = h2a§/4 and g% = (1-h2/4)a§ so that

0Z2/oZ = (4-h?)/h? = 4. The previous example will be wused. Now only

relationships among S;, Sy, and S need to be considered in calculating A;l:

A;l = (1/3) 4 o -2
0 4 -2
-2 -2 5

With the sire model 1A;1 is added to the block of the coefficient matrix
corresponding to the sire transmitting abilities. The least squares equations
are augmented by equations for sires that have no progeny with records but
which create relationships among sires with progeny with records. The mixed

model equations for the example are:

(3 2 1 0o Y (A ) (y )
2+4v/3 0 -2v/3 81 Y1
1+by/3  -2v/3 8, Y,

| Symmetric 5v/3 ) | 8g J . 0 |

The solutions for §;, $5, and 85 are exactly one-half those for the

previous example (§. , £. , and g.) that had equations for each progeny and
Bs v Bs S
1 2



-=235--

augmented equations for the sires that had no records themselves. That 81 =

QSI/Z can be shown by absorbing equations for 811 and &1 in example 9 into
the equation for gsl. The equation for gsl will be the same as for s; except
that the coefficients for gsl and gs are one-half as large as the coefficients
for §1 and §g. The advantage of the sire model as compared to the equivalent

approximate animal model is that many fewer equations need to be set up and

solved.
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Example 11: Sire evaluation with SIRE MODEL ignoring female relationships

but calculating A;l from sires and maternal grandsires of males

Most relationships among males arise from male ancestors. Even if dams
of males are not included in calculation of A;lbamong males, sires of the dams
(maternal grandsires of males) can be used in calculation of A;l and and if
they have no progeny with records can be included as augmented equations. The
increased ties among males will result in slightly increased accuracies of
evaluation. Only maternal grandsires that have more than one male descendent
in the list to be evaluated or those with progeny with records need to be
included in calculating A;l. Rules developed by C. R. Henderson for
calculating A;l from sires and maternal grandsires are similar to the rules
using sires and dams, and are given in the section on calculating A'l.

For this sire model, ¢2/02 = 7.

Assume as an example the same animals and records as in the previous

example except that S; is the maternal grandsire of both S; and Sj:

C

1 (D7)

¢

1‘5\\- .
=
2

V!

€™ Sy (D,)
Dy and Dy will not be included in A;l. With males ordered Sy, S, 5, Sy:
alo iy (16 0 -8 & )
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As for the sire model and with 02/02 = (4-h2)/h? = y; the elements of 7A;1

are added to the coefficients of the least squares equations corresponding to
equations for Sy, S, and augmented equations for S and Sx. The augmented

mixed model equations are:

(3 2 1 0 0 Y (5 ) [y“ ]
2+16v/11 0 -8v/11  -4+/11 81 Y1
1+16v/11 -8v/11 -4v/11 § | = Yy

19v/11  44/11 §S 0
[ Symmetric 13v/11 J | 84 ) [ 0 )

The variance of prediction errors, e.g., V(§i—si), will be decreased as

compared to ignoring S,.
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VARIANCE OF PREDICTIQON ERRORS

Calculation of rT% and variance of prediction error, V(T-f) = (l-r%%)a%
can be done for solutions from mixed model equations as from selection index.
How to calculate them will be described for T in the model: genetic value,
T = g; transmitting ability, T -’s; producing ability, T = g + p; as well as
for fixed effects estimated from data. The first calculation is for V(T-%)
which requires the inverse of the coefficient matrix for the mixed model
equations and o%. The second step 1s to calculate r%% from V(T-%) which will
also require the ratio of o¢2/04. TFor example, assume the repeated records

model
Yig T HF 8 TPy ¥y
Let X = 0&/0%, and vy = o%/as and the symbolic mixed model equations be:

e c e c oY (A f ]
Hi B l‘»Pl /"’gl IJ y"
c c ... c B
P.B PP Py18 P1 1.
c c .o c g
B:H 8P 8,8 &1 1.
where ¢ =n, c =np, ¢ =np, C = n) + yand the ¢__ block =
BB : /-‘»pl I-‘tgl pl'pl &g
nj 0 Coe + XA-l
0 ny

In matrix terms

Cs = r

where the solution vector:

s=0C'r
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Let the terms of the inverse of C be

¢l ¢ Ml P A 81 3
cp]_}“ CP]_,P]_ . cp]_tg]_
PR:5 PN -3 3 o R c81:81

These terms when multiplied by ¢2 correspond to prediction error variances and
covariances:
V(g-81) = cFl8lo2
V(p-p1) = Pl Plyz
Cov(gy-81, p1-p1) = B1'Pls2
so that for producing ability;
VI(g1+p1) - (B1+P1)] = V(g1-81) + V(p1-P1) + 2cov(gy-81, p1-P1)

= (cB1'8l 4 (PLP1 2¢B1:Ply,2

Variance of prediction error of genetic value:

Because V(g;-g;) = cgi’giaﬁ and also V(gi-g;) = (l-rgé)aé. then Cgi'giaﬁ
= (1-r?,)02. The equation can be solved for r2-:
gg’ & 4
2An =1 - oB18i,,2/,2
rgg l-c¢ (aw/ag)
The ratio a&/aé = (1-r)/h? must be known and cPi'Bl is from the appropriate

element of the inverse of C.

Variance of prediction error of producing ability

Because V[(gi+pj) - (Bi+P;)] = (cBi'8i 4 (Pi/Pi 2cgi’pi)a§ and also

- (cgi:g]’_ + cp]‘_apj_ +

= (1- A)(Ué + 03), then r2

1'2 A ALA
gtp,gt+p &tp,gt+p
2cgi’pi)a§/(ag+05). The ratio a%/(aé+a§) = (l-r)/r must be known as well as

elements from C-l
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Variance of prediction error for other models

For other models calculations are similar to those described in previous
paragraphs. The appropriate elements from C-1 are multiplied by o2 for that
model. For the sire model, o2 = (1-h2/4)0§ and 02/02 = (4-h%)/h?. For the
animal model with a single record per animal, o2 = (1-h2)a§ and
a%/aé = (1-h2)/h2,

Variance of prediction error for models with more fixed effects

The elements of C-1 corresponding to the random effects, g, p, s, etc.,
are used for calculating variances and covariances of prediction errors for
those effects.

These elements, however, will depend on the fixed effects in the model
and on the distribution of records among the levels of the fixed factors.

With several fixed factors in the model, C 1s singular so that an inverse
cannot be obtained. If constraints are imposed so that the constrained é is
nonsingular, then 6'1 exists but will depend on the set of constralnts chosen.
The expected values of solutlons for fixed effects depend on the constraints.

Nevertheless, solutions for random effects, g, p, s, will be the same for
any set of permissable constraints. Similarly, prediction error variances for
the random effects do not depend on the constraints chosen, i.e., the block of
elements of 6-1 corresponding to the random effects are unique and do not
depend on the constraints.

Variances of estimates of fixed effects

Estimates of fixed effects also have wvariances. For example, the
varliance of ; is c”’“a& for models in which 4 1is the only fixed effect. For
models with more fixed factors, the variances of the estimates are determined
similarly from the inverse of C-l. The problem, however, is that because of

the constraints needed to obtain solutions, the expected values of the
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solutions are not the effects represented by ;:, etc. Generally differences
between levels of a factor are estimable. For example, depending on the model
and constraints, E[%i-%j] may equal fi’fj for levels 1 and j of fixed factor
f. The variance of the estimable difference, %i'%j 1s V(%i'%j) - (cfi'fi +

cfity - actitiyez,
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Numerical example of ANIMAT, MODEL with a fixed classification and augmented
equations with different constraints

The model for a record k of cow j affected by level i of fixed factor f

is:

yijk=p+fi+pj+gj+wijk
Let o2 = (2000)2 and with r = .6 and h2 = 4, a%/ag = (1-r)/h? = X = 1 and
a%/as = (1-r)/(x-h2) = 2,

The cows with records are C1 (2 records), Cp (1 record), and Cy (3
records). The parents of C) and Cy are S and D, and one parent of Cy is D
with the other parent unknown and not needed because it has only one relative
with a record. (See Example 7: ANIMAL MODEL with equations augmented for
relatives without records.)

¢, =———s5

Cq /

The records for the animals are distributed in the levels of the fixed

factor as follows:

Cow

Fixed c c c Fixed factor
factor 1 2 3 totals

£ 10,000 - 9,000 19,000

fs 12,000 -- 10,000 22,000

fa -- 15,000 12,000 27,000
Cow

totals 22,000 15,000 31,000 68,000

The augmented mixed model equations are:



2 2 2 2 1 3 2 1 3 0
2 00 1 o0 1 1 © 1 0
2 0 1 0 1 1 0 1 0
2 0o 1 1 o0 1 1 0
242 0 0 2 0 0 0
42 0 0 1 0 0
342 0 0 3 0
242 0 0 -1
142 0 -1
3+(4/3) O
SYMMETRIC
+2

One constraint will be needed because the f equations sum to the u

equation.

-2/3

+1

+2(1/3) )

F

.

68,000 )
19,000
22,000
27,000
22,000
15,000
31,000
22,000
15,000
31,000

0

o)

A
With the constraint f; = 0, the inverse of the coefficient matrix is

A
obtained by zeroing the row and column coefficients for f; and then inverting

the remaining matrix. In the inverse the row and column of zeros for f; are

shown:



.310

.000

.500

.657

222

.065

.213

.616

458

.569

.287

.500

.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000

.000

-.500

.000

1.000

.500

.000

.000

.000

.000

.000

.000

.000

.000

.657
.000
.500
.296
.139
.157
.019
.130
.167
.028
.019

.000

With the constraint j

The inverse 1is:

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000
.310
.810
.653
.222
.065
.213
.616
458
.569
.287

.500

.000

.810

1.310

.653

-.222

-.065

-.213

-.616

-.458

-.569

-.287

-.500

.000
.653
.653
.292
.083
222
.194
.486
.625
.542
.306

.500

-.222
.000
.000
.139
417
.028
.056

-.111
.000
.083

-.056

.000

= 0, coefficients for

.000
-.222
-.222
-.083

417

.028

.056
-.000

.000

.083
-.056

.000

Yy

-.065
.000
.000

-.157
.028
435
.037
.009

-.083
.056

-.037

.000

.000
-.065
-.065
-.222

.028

435

.037

.009
-.083

.056
-.037

.000

-.213
.000
.000
.019
.056
.037
407
.102
.083

-.139
.093

.000

.000
-.213
-.213
-.19%

.056

.037

407

.102

.083
-.139

.093

.000

-.616
.000
.000
.130

-.111
.009
.102
.838
458
.403
.398

. 500

-.458
.000
.000

-.167
.000

-.083
.083
.458
.875
.375
417

.500

-.569
.000
.000
.028
.083
.056

-.139
.403
.375
.792
.139

.500

.287
.000
.000
.019
.056
.037
.093
.398
417
.139
.907

.000

-.500
.000
.000
.000
.000
.000
.000
,500
.500
.500
.000

1.000

the 4 row and column are zeroed.

.000
-.616
-.616
-.486
-.111

.009

.102

.838

458

.403

.398

.500

.000
-.458
-.458
-.625

.000
-.083

.083

458

.875

.375

JL17

.500

.000
-.569
-.569
-.542

.083

.056
-.139

.403

.375

.792

.139

.500

.000
.287
.287
.306
.056
.037
.093
.398
417
.139
.907

.000

.000
-.500
-.500
-.500

.000

.000

.000

.500

.500

.500

.000

1.000

h'
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A
With the constraint f3 =0 the inverse is:

.292
.639
.639
.000
.083
.222
.194
.L86
.625
.542
.306

.500

.639
.296
.796
.000
.139
.157
.019
.130
.167
.028
.019

.000

.639
.796
.296
.000
.139
.157
.019
.130
.167
.028
.019

.000

.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000

.000

-.083
-.139
-.139
.000
L417
.028
.056
-.111
.000
.083
-.056

.000

-

.222
.157
.157
.000
.028
435
.037
.009
.083
.056
.037

.000

-.194
-.019
-.019
.000
.056
.037
407
.102
.083
-.139
.093

.000

486
.130
.130
.000
.111
.009
.102
.838
.458
.403
.398

.500

-.625
167
.167
.000
.000

-.083
.083
458
.875
.375
417

.500

.542
.028
.028
.000
.083
.056
.139
.403
.375
.792
.139

.500

-.306 -,
.019
.019
.000

-.056

-.037
.093
.398
L417
.139
.907

.000 1.

Notice that with any of the three constraints that the blocks of

inverses corresponding to p;, ps, P3, 81, £2, 83, gp and gg are the same.

solutions for those effects are also the same as is shown in the table.

technical jargon,

invariant to (do not depend on) the choice of constraints.

For example:

V(g1-81) = cB178loZ = .838(2000)2

V(gp-&p) = cBD'EDg2 = 1.000(2000)2

V[(g1+p1) - (E1+PD] = cP1:P1 4 (B1:81 4 2cp1'gl)a%

= [.417 + .838 + 2(-.111)](2000)2

500

.000

.000

.000

.000

.000

.000

.500

.500

.500

.000

000

the

The

In

this means that the predictors of the random effects are

A A
Because what f; estimates depends on the constraint, V(f;) is different from

constraint to constraint,

With all 3 sets of constraints %2 - %3 estimates f, - f3, i.e., E[%2'%3]

= fo - f3. For all three cases, V(%z-%3) are the same,
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For %1 = 0:
v(Ey-£y) = (cF2rf2 4 EE3 | pcfa 3y

[1 +1.296 - 2(.500)]0Z =~ 1.29602

1

For i = O:

V(Ey-£3) = [1.310 + 1.292 - 2(.653)]02 = 1.29602

For %3 = 0:

V(Ey-£3) = [1.296 + 0 - 2(0)]o3 = 1.29602

In the last case, %3 - 0. Note that a constant (implied by the
constraint) has no variance and similarly the covariance of a constant, %3 =
0, with an estimate, %2, also 1s zero.

In all three cases the variance of the estimated difference between )
and f5 is the same, 1.2960&. From the table the estimate of the difference,

f, - f5, 1s -2278, i.e., fy is estimated to be larger than fy, by 2278 no

matter which constraint was used to obtain a set of solutions.
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Solutions for augmented and nonagumented mixed model equations with different
constraints

Augmented Nonaugmented
Solution  £;=0  A=0 £4=0 £3=0
p 9,806 0 13,583 13,583
£ 0 9,806  -3,778 -3,778
£, 1,500 11,306  -2,278 -2,278
£y 3,778 13,583 0 0
By 83 83 83 83
By 306 306 306 306
B3 -389 -389 -389 -389
&1 278 278 278 278
&, 500 500 500 500
83 -583 -583 -583 -583
Bs 389 389 389 -
- 0 0 0 .-

If the mixed model equations had not been augmented but S and D had been

used to calculate A for Cy, Cp, and C3, then

A=( 1 1/2 1/6) and A"l = [1.364 -.636 -.182
12 1 14 ..636 1.364 -.182
16 16 1 -.182 -.182 1.091

With X = 1, the mixed model equations are:
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(6 2 2 2 2 1 3 2 1 3 YY1 4 ) (68,000 )
2 0 0 1 0 1 1 0 1 £1 19,000
2 0 1 o0 1 1 0 1 £, 22,000
2 0 1 1 0 1 1 £4 27,000
4 0 0 2 0 0 By 22,000
3 0 0 1 0 By 15,000
5 0 0 3 P3 31,000
3.364  -.636  -.182 & 22,000
2.364  -.182 &5 15,000
| SYMMETRIC 4.091 j | g3 ) L 31,000 |

The solutions shown in the table are identical to those from the
augmented equations. Similarly the variances of prediction errors are also
the same as can be seen from the inverse with %3 = 0,

.292 -.639 -.639 .000 -.083 -.222 -.194 -.486 -.625 -.542 .000 .000
.639 1.296 .796 .000 -.139 ,157 -.019 -.,130 .167 -.028 .000 .000
.639 .796 1.296  .000 -.,139 .157 -.019 -.130 .167 -.028 .000  .000
.000  .000 .000 .000 ,000 000 .000 .000 .000 ,000 .000 .000
.083 -,139 -,139 .000  .417 .028 .056 -.111 .000  .083 .000 .000
.222 .157 157 .000 .028 435,037 .009 -.083 .056 .000  .000
.194  -.019 -.019 .000 .056 ,037 407 .102  .083 -.139 .000 .000
.486 -.130 -.130 .000 -.111 .009 .102 .838  .458 .403 .000  .000
.625 .167  .167 .000 .000 -.083 .083 .458 .875 .375 .000 .000
.542 -.028 -.028 .000 .083 ,056 -.139 .403 375 .792 .000  .000
.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

.000 .000 .000 .000 .000  .000 .000 .000 .000 .000 .000 .000
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SOLVING LEAST SQUARES AND MIXED MODEL EQUATIONS

In many situations, the number of equations is so large that an inverse
of the coefficient matrix cannot be computed. If prediction error variances
are not needed, solutions can be obtained by iteration. The most efficient
computing strategy will depend on the model, the amount of data, and computing
equipment. The augmented mixed model equations for the animal model are
especially well-suited to innovative computing strategies. Nevertheless, the
basic principle of Gauss-Seidel iteration will be demonstrated with three
equations,

Let the equations be Cs = r, where C is the symmetric matrix of
coefficients, s is the vector of solutions and r is the vector of right-hand

sides. Then for three equations:

€151 F Cp2%p T C9383 7 4y

€3151 T ©32%2 * ©33%3 T T3

1) To start the iteration, guess a set of ilnitial solutions for s; s?,
sg, sg. The starting values should approximate the expected values of the
solutions.

2) The basic step for each equation is to solve for that solution after
substituting solutions from same or previous rounds of iteration for the other
solutions.

Round 1

i) Solve for sj with sg and sg:

1 . - o _ o
s7 = (I/eqlry - 985 - €1553]

Replace the previous solution for s; with si.
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1 0.
ii) Solve for s, with s] and s3:
1 . - 1 . o}
sy = (1/eyp)[x¥a - ep181 - €5353]
Replace the previous solution for s with sé.
: 1 1.
ii1) Solve for s3 with $1 and Syt
1 . - 1 1
s3 = (1/cyq)[r3 - cq98) = €458,]
1

Replace the previous solution for s3 with S3-

Round 2 —> n

. n-1 n-1

i) s? < (l/cll)[rl - €152 - ©1353 ]
- n - n - n'].
ii) Sy <— (1/c22)[r2 5151 9453 ]
i34 n .. . n . n
iii) Sy < (1/c33)[r3 C3157 Ca,8y

Note that the most current estimates in s are used., The Jacobi method does
not update s until at the end of the round.

An equivalent expression for s? is

oD = 01 4 (/e )y - iilc S P .59'1]
i i i1 =1 1177 1171 o141 1373

This expression requires an extra multiplication and two extra additions per
equation per round. The advantages may outwelgh the extra arithmetic.
Solving equations by iteration requires a rule for stopping the iteration.
Such a rule can be based on the expression in brackets on the right which
would be zero when the solutions are correct. Thus, the difference between
the right-hand side and the right-hand side regenerated from estimates in the

most recent round of iteration 1s often the basis for the stopping criterion.

One such criterion is (Eei)l/2 / (Eri)l/2 where
i-1
n-1 n-1
e = [ry - Zc,.sV-c..sy - = c..s7 ]
=1 ijivj ii jeitl i3”]

Dividing by (Er]?.)l/2 scales the solutions for the trait being analyzed.
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Iteration is stopped when at the end of a round the stopping criterion is less

than a pre-set value, e.g., .0l or .00l,

Another advantage is that a modification of Gauss-Seidel iteration called

successive-over-relaxation is easy to implement:

n-1 i-1 n-1 n-1
s =s; "+ (we,  )[r; - Zec, sT-c 8{ - T ec..s{ |
i ii =1 ij™] ii j=141 ij
where w is the relaxation factor; a relaxation factor larger than 1 but less

than 2 is likely to result in faster convergence than with Gauss-Seidel

iteration (w=l). The difficulty is to find the optimum w.
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COMPUTING ALGORITHM FOR LEAST SQUARE EQUATIONS

Computing strategies for accumulating the coefficients and right-hand
sides of the least squares equations naturally depend on the amount of data,
the model, and computer memory. Nevertheless, a symbolic algorithm can be
used to remember what coefficlents are involved for each record. Data usually
are presented for computing one record at a time. Coefficients and right-hand
sides for each record are summed into computer memory assigned and initialized
to zero before the first record is processed.

As an example, the model

yi:]k-p+fi+pj +gj +wijk
has four terms other than the residual. Thus each record is included in four
sums corresponding to u, fj, Pj and g - The record carries four elements of
the model (excluding wijk) to each sum. Thus, each record contributes to 16
elements of the coefficient matrix. The locations in the coefficient matrix C
can be determined by squaring the model (excluding wijk)
(p + £5 + py + g4)?

The 16 terms correspond to the elements in C where a 1 will be added for that
record:

po, By, BPj. BBy .

£ip, £ify, fipj’ figj R

Pj4, Pifi, PPy, Pj8§

8ik, 83Ei., 85Pj. ByBj

For example, the diagonals c#p, c will add a 1 and the

, € , C
£1£;° PyP;’  BjBj
offdiagonal coefficients represented by products such as pf; will also add a
1. Notice that the symmetry of the coefficients allows storing only the
diagonal elements and one side of the off-diagonal elements. Optimum

strategies for summing and storing the coefficients will depend on the data

set and computing equipment.






Flow chart for mixed model equations (MME)

I. Model

Fixed factors
B. Random factors (other than G, G/2, PE),

G+ E; 02 +0% =02 (62 = 0% + sum of 0?'s)
4 e P Y P T

. C U = 2 _ 2.2 2 _ (1 p2y.2
(animal model) 1. G; W = E, og h op, o, (1-h )0p
(repeated records) 2, G, PE; W= TE, o? = h?0%, 0? = (r-h?®)o?, o2 = (1-r)o?
g pe w p
(sire model) 3. s = G/2; W = other G + E,

02 =  h%202/4,0% = (1-h2/4)c?
s p' 7 v p-

II. L.S.E. (rules: sums - model, "'s)
III. Modifications for MME (animals or sires unrelated)
A, Add oéloi to diagonal coefficients, other random factors
B. Animals with records,unrelated
1. Add 0; /0; to diagonal coefficients,g equations
2. 1If multiple records, add Oéloge, diagonals of pe equatioms
C. Sires with progeny with records,unrelated sires

1. Add 03/0; to diagonal coefficients,s equations

IV. Modifications (animals or sires related)
A, Add Oildi to diagonal coefficlents,other random factors.
B. Animals with records related, A is table of relationships.
1. Multiple records, add Gilose to diagonal coefficients of

pe equations.

~=253-~
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2. Add A_l (Oi/O;) to g x g block of coefficients.
OR
3. Calculate A;l directly by rules (noninbred).

a) Include base animals with no records if related to more
than one animal with records.

b) Augment equations to include animals with no records.
1) sum = 0; ii) no model; 1ii) tied by A " (02/07)

¢) Jointly predict g; animals with records and base animals
with no records.

C. Sires having progeny with records. A is matrix of relationships.
1. Add A_1 (Oi/og) to s x s block of coefficients.
OR

2. Calculate A;l directly by rules (noninbred) (rules for sire

OR for sire and maternal grandsire).

a) Include base animals with no progeny with records if related
to more than one sire with progeny.

b) Augment equations to include animals with no progeny records.

i) sum = 0; ii) no model; iii) tied by A;l (o;/o;)

c¢) Jointly predict (/2 for sires with progeny records and
relatives with no progeny records.






Summary XVII

COMPUTING THE INVERSE OF THE RELATIONSHIP MATRIX

Mixed model procedures require the inverse of the relationship
matrix when genetic values are to be predicted (BLUP) to account for
the covariances among the genetic effects in the model. The usual
procedure would be to compute the relationship matrix (Table) and have
a computer program find the inverse. Henderson (1976) has found,
however, a rapid way of calculating the inverse of the relationship
matrix directly. 1If the animals are non-inbred or assumed to be non-
inbred, the procedure is very rapid. Ignoring a small amount of in-
breeding probably is a good approximation in most prediction problems.

The computing steps involve adding from one to six values to
different parts of the inverse of the relationship matrix for each
animal depending on how many parents are known. After all animals have
been processed, the result is the inverse of the relationship matrix.
The inverse elements each multiplied by the proper variance ratio,
03/03, are used to modify the least squares equations to make the mixed
model equations.

The animals can be processed in any order. Base animals must be
included even though they may not have records. (Base animals will be
those which establish relationships among other animals but are not
themselves related.)

Because the base animals may not have records the mixed model equations
are expanded as was illustrated in the cow evaluation model to include

an equation for each base animal with a zero sum on the right-hand

—=255-=
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side and coefficients on the left-hand side made up of inverse elements
of the relationship matrix multiplied by 0:/03.

Any base animal with only one relative [an animal with records (sire
with progeny with records for the sire model) or another base animal] need
not be included in the expanded mixed model equations. Thus, such a base
animal need not be included in the inverse of the relationship matrix and
can be listed as unknown. If such a base animal is included in the
inverse of the relationship matrix, then an equation for that animal must
be added to the mixed model equations as for any other base animal.

Because the computing procedure can accept animals in any order, putting
the base animals at the end of the inverse table (in contrast to the usual way

of computing relationships) may make setting up the equations easier.

The simple rules for building the inverse of the relationship

matrix for non-inbred animals are:

If known,
Animal Sire Dam a/
p s d Then add what to where —
Yes No No 1 to (p,p)
Yes Yes No 473 to (p,p); -2/3 to (s,p); 1/3 to (s,s)
Yes No Yes 4/3 to (p,p); -2/3 to (d,p); 1/3 to (d,d)
Yes Yes Yes 2 to (p,p); -1 to (s,p) and (d,p);

1/2 to (s,s), (d,d), and (s,d)

a/ Symmetric: for example, if -2/3 to (s,p), then -2/3 to (p,s).
Note that p, s, and d will be animal numbers, and (p,p), (s,p),

etc., combinations refer to a location in the inverse table.
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In the example that follows, three animals are base animals: GSI1,
Dl, and GS2. The other five animals are related through them. GS1,
D1, and GS2 must be included in building the table even though predictions
are wanted only for S1,...,S85. The relationships for the example are
diagrammed below.

GS2

SN X
\

S3

The table will be built beginning with the information for S1;
a blank indicates the parent is not known. Actually if an animal
is a parent of only one animal then that parent does not need to be

included as a base animal.

p s d What is added where

Sire 1  GS1 = -—- 4/3 to (51,81); -2/3 to (GS1,S81); 1/3 to (GS1,GS1)

Sire 2 GS1 Dam 1 2 to (82,52); -1 to (GS1,S82), and (D1,S2);
1/2 to (GS1,GS1), (D1,Dl), and (GS1,Dl1)

Sire 3 Sire 1 -- 4/3 to (83,S83); -2/3 to (S51,83); 1/3 to (S1,S1)

Sire 4 GS2 Dam 1 2 to (S4,54); -1 to (GS2,84) and (D1,S4);
1/2 to (GS2,GS2), (p1,D1), and (GS2,D1)

Sire 5 G52 Dam 1l 2 to (85,85); -1 to (GS2,85) and (D1,S5);
1/2 to (GS2,6S2), (D1,D1), and (GS2,D1)

GS1 - - 1l to (GSl,GSl)
D1 —_ - 1 to (D1,D1)
GS2 - - 1 to (GS2,GS2)
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After all 8 animals are processed the inverse of the relationship matrix

is as given below,

s1 s2 S3 S4 S5 GS1 D1 GS2
s1( 10/6 0 -4/6 0 0 | -4/6 0 0
S2 12/6 0 0 0 | -6/6 -6/6 0
S3 8/6 0 0 0 0 0
S4 12/6 0 0 -6/6 -6/6
S 12/6_ 1 0 -6/6__ -6/6
GS1 11/6 3/6 0
D1 Symmetric 15/6 6/6
GS2 L 12/6

When animals are inbred then the procedure is somewhat more com—
plicated although Quaas (1976) has developed a rapid method of computing
the diagonals of the relationship matrix (which are 1+F) from which the
inverse of the whole relationship matrix can be easily computed.

Most relationships among sires that are evaluated from progeny records
are due to male relatives because few dams have more than one son with
progeny. Rules for building the inverse of the relationship matrix from
known sire and méternal grandsire are similar to those using known sire and

dam. Base animals with more than one relative must be included. Inbreeding

is ignored.
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é/sj're
Animal

‘b‘-‘h“““-Dam &——— Maternal grandsire

(Ignored)
If known,
Maternal
Animal Sire grandsire v a/
P S m Then add what to where—
Yes No No 1 to (p,p)
Yes Yes No 4/3  to (p,p): +1/3 to (s,s): -2/3 to (s,p)
Yes No Yes 16/15 to (p,p): +1/15 to (m,m): -4/15 to (m,p)
Yes Yes Yes 16/11 to (p,p): -8/11 to (s,p): -4/11 to (m,p)
4/11 to (s,s): +2/11 to (m,s): +1/11 to (m,m)
a/ Symmetric: for example, if -2/3 to (s,p), then -2/3 to (p,s).
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EXAMINATION QUESTIONS

NOTE WELL: Show all work. Arithmetic errors will not cause you to lose full
credit for a problem unless you fail to show how you arrived at
the ansvers. If the correct answer 1s given but no work is shown,
you may lose part credit. Ansvers may be left in fractional
form. You need not find Bquare roots.

Firsct Exam, October 1972 6. The following are tables of additive and dominance relationships among
animals A, B, C, and D.

1. A trait has heritability in the narrow sense of .6 and phenotypic varifance .
of 49. What is the expected difference in progeny average between a Additive relationships Dominance rclationships
parent with a phenotypic record of 30 and a parent with a phenotyple A B C D A B c D
record of 20?

1 Fi
A u 0 3 g A 1 o 0 7

2, A researcher hae gathered the following pairs of records on a parent's B 0 1 42‘ z B 0 1 0 0

phenotypic record and its progeny phenotypic average.
. c ) 1 1 1 c 0 0 1 P
Prequency of Parent's 2 2 2 y
Pair no. parent phenotypes phenotypie record Progeny average F 1 1 1
1 .09 10 7.20 b . . 2 1 > |5 0 i L
2 .30 8 6.80
3 .37 6 6.34 : 02 2 2 2 . 2 -
4 .20 4 5.80 Given: o7, 64, 050 = 16, oy, = 48, of, = 8, snd ag = 64.
S .04 2 5,20 a) What is heritability in the narrov sense? In the broad sense?
u= 6.4 L= 6.40

b) What 13 the genetic covariance between A and D? Between C and D?
a) What 1s the phenotypic variance of this trait? Between B and C? Between A and A? Between B and B?
b) What 1s the additive genetic variance for this trait? (Assume only
2 alleles at one locus are involved.)
Second Exam, November 1972
3. The regregsion equation of genetic value on number of B alleles at one
locus 18 G = 4 + 2(No. of B alleles). What is the additive genetic

value for the folloving genotypes: BB, Bb, and bb? 1. The heritability of a trait is .3, repeatability is .4, and phenotypic
variance is 100. Set up equations (numerically, but do not solve) to
4, The following table showa the frequency of 3 genotypes at the B locus and find the weights to evaluate an animal that has records on the following
the corresponding additive and dominance genetic values. relatives:
Genotype Frequency Additive genetic value Dominance generic value xl, average of two records on the dam = 400 ;
BB .25 9 -1 xz, average of six records on the maternal granddam = 200 ;
Bb .50 7 +1 x3, average of two records on each of 20 paternal half-sibs = -300 ;
bb .25 5 -1 X;» average of single records on each of 10 full sibs = 500.
b, =7 b, =0
GA GD 2. The additive gemetic value for the following 6 animals has been predicted
Show numerically that the total genetic variance 1is equal to the additive by use of selection indexes. ' The Ty for each index is also given. h'= .4,
genetic varlance plus the dominance genetic variance. r = ,6, and variance of single recorss 1a 400.
5. The following 1s an arrow diagram of brother-sister mating. Assume that Aninal Index Value :‘E
the original parents (a and B) are not related but that A has an inbreeding A 40 .70
coefficient of .25 and B 15 not inbred. B 50 .60
A c £ ¢ c 10 .50
D -60 .40
B D F H E =40 .80
F 30 .60
a) Show all additive relationships among the 8 animals.
b) What is the inbreeding coefficient of C? Of E? Of G? a) Which two animals should be selected to give the greatest superiority
c¢) Suppose through artificial insemination A 1s mated to R to produce I. in predicted additive genetic value?
2
:lfuf\ izdtl;e? 1;::e::ﬁi15?21;52;:5;;: Hm:“:dgtive relationship b) What is the expected superiority in additive genetic value if those

two are selected out of the gix?
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The following additive relationship table i3 known.

A B C D

1 1/4 0 0
1

1/4 1 % ] 1]

0 1} 1 1/4

Q 0 1/4 1

The following records are available for the four animals.

hi= .25, T = .50, and variance of single records = 36.
additive genmetic value of animals B and D.

The following information is available to predict the additive genetlc

Animal

Dow»

value of a sire A.

!
2

%

D is oot related to A.

(100)2.

a) Predict the additive genetic value for sire A.
b) What 1is the t
c) what would be the r
A researcher has determined that the environmental covariance between

full sibs 1s (.2)oZ where 62 = 400 1s the pheaotypic variance for the

trait; heritability is .60.” A breeder wants to predict the additive

No. of Records

W N

Ave. of Records

3
4
-5
2

Predict the

= 100 = a single record of a progeny with sire A and dam D

= 200 = a single record of another progeny also with sire A and

= -300 = a single record of T

dam D

T

h= .4, r = .8, and variance of single records =

1 for this index? Note r

1"

1f the record of D 1s not considered?

TI

genetic value of an animal with the following informatfon.

X

%

a) Try to give the breeder what he wants.
b) How would you predict the additive genetic value of another of the
full sibs if its records was -10?

= 10, the average of single records of five full sibs of the
animal being evaluated.
= 20, a single record of the animal.

Asgume = 30 15 the average of single .records of 10 progeny (paternal
half-gibs) of sire A, and X, = 60 13 the average of single records of 5
progeny (patemd‘hnlf-sibé of sire B. The dams are all uorelated as are
sires A and B. h'= .4, r » .5, and variance of siagle records ~ 2500.

a) Fiond the weights for the index, I = "1‘1 + bzxz to predict the differ-
ence in additive genetic value between sires“Aand B, i.e., predict
T=7T,-T,.

b) Pred:l.ét Bl:luz difference in additive genetic value between sires A and B.

c) Calculate the r2  for this index.

d) Calculate the average squared prediction error for this index, {.e.,
Ef(I-T)2} = V[T - (T,-Tp].

Final Exam, December 1972

Some of the queations are rather lengthy and represent lectures more than

difficult problems so bear with them and do not give up.
3 are relatively easy.

Questions 1, 2, and
Part ¢ of P04, part 4 of #5, part b of F6, and half

of part ¢ of #6 are a little more difficult but do not account for many points.

1.

The heritabiliry of a trait is .3, repeatability is .4, and phenotypic .
variance i3 100.

a) Set up equations {(numerically, but do uot solve) to find the weights
to predict additive gemetic value for evaluating animals thar have
records on the following relatives.

Xl, average of three recorda on the sire = §00 ;

12, average of four records on the paternal granddam = 200 ;

Xs, average of single records ou each of 5 maternal half-sibs = 200 ;
3 average of two recorda on each of 8 full sibs = 500.

b) Can you compare predicted addicive generic values (indexes) of such
animals with those for animals that have only X, and X,? In words,
what is the procedure for evaluating animals that have only X. 2nd
xz 1f they are to be compare to animals having Xl, xz. xa, an 'X‘?

Additive genetic value for several unrelated males and females has been

predicted from records of relatives by the selection index procedure.

h*= .2, £ = .6, and of = (2000)Z,
Male Index i Female Index Trr
A 500 .90 3 100 60
B 1000 .70 Q -200 .50
c -500 .80 R 500 .50
S 300 .60
T =400 .50

a) What 1s the predicted difference in average additive genetic value
between progeny of males A and C 1f each sire were mated to all five
females, 1.e., A with P, Q, R, §, T; and C with P, ¢, R, S, I?

b) What is the predicted additive genetic value of a progeny obtained
from mating wale B to female R? B to female Q?

€49¢
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3.

4,
Two inbred lines have been developed so that all animals in line 1 have
inbreeding coefficient F, = .6 and all animals in line 2 have inbreeding
coefficient F, = .4. Thé lines have reached a constant inbreeding coeffl-
cient so that“all animals within a line are related to each other by 2F
so that mating of random males and females within a line results in a
progeny with inbreeding coefficient (1/2)(2F) = F. Assume that the two
lines are unrelated and are to be crossed as shown.
T
e p e
') ~
2 2 a)

A and B are random linecross progeny of the cross between lines 1 and 2
since we assume that each parent has only one progeny.

a) Complete the additive relationship table for F, = .6 and Fz = .4 b)

where &, and %! are animals from line 1 and 12 and zé are animals
fromw lipe 2.
L, 2, 2%, 2 <)
A L [ I3 12 12
1 2 1 2 A B
Tier = 27 =1.2
11 1+F1 1.6 0 0
12 0 1+g2=1_4 0 2F2= .8
3 - =]
11 zFl 1.2 0 1+I-‘1 1.6 o
1 - = 5.
12 0 ZFZ .8 0 1+F2 1.4
A
B

b) What 1s the additive relationship between linecross animals, e.g.,

A and B?
c) What is the dominance relationship between A and B?
2 2 o 2 a 2 = 2
d) Assume T 100, 951 50, °11 25, %0 60, and o5 265.

What is the genetic covariance between random linecross animals, 1l.e.,
between A and B? If you are not sure of the answer for parts b and ¢

use a, . = .25 and dAB = .12.

Often the purpose of measuring traits early in life is said to be that

they will predict performance for an economically important trait which
cannot be measured until later. If such prediction is reasonably accurate,
then the reduced generation interval will result in mote progress for the
economic ttait than will selection based on a record of the economic trait.
An example is mastitis in dairy cattle which becomes a major problem in
third and later lactations.

Assune X, and X, are measure of traies 1 and 2 early in life and X, is a
measure Of the &conomic tralt. Compare genetic progress per year genetically
in improving trait 3 from two plans:

(1) Select for additive genetic value of trait 3 based on X, and X,.
The top 70 of 100 will be selected and the genertation interval”is &
years.

(2) Select for trait 3 using only X_. Since many of the animals will
have died by then, the top 70 of 90 will be selected. The generation
interval is 8 years.

Also, what are the expected correlated genetic responses in trair 1 for
plans (1) and (2).

The following variance and eovariances are known.

Phenotypic: 02 = 64, g =12, ¢ = -13, 02 =144, o = 0, and
o} X%, X%, % XXy
= 196,
Genetic: 02 = ao, = -6, g = 18,02 = 36, o = 36, and 02 = 49.
Gl GIGZ GlGS Gz 6203 G3

Addit{ve genetic value has been predicted for a male from his progeny average
{paternal half- Sibs)i , and for a female from her record, X,, and her
dam's record, X.,. .4, r = .6, and the variance of single records is

c§ = (1000) , o0 ™ 400,000, cfo = 630. The index, index values, and r%l
ate given. )

Male: I = (5/8)X; = 810; r%I = 5/16

Female: I = (3/8)X, + (1/8)X; = 390; ‘%1 = 7/16

a) What is the predicted additive genmetic value for an unborn progeny of
mating this unrelated male and female?

b} The r for an_unborn pr_ggny of mating this unrelated male and female
is (l?}) ; for sire + r for dam. What is the probability that the
additive generic value of Ehe progcny will exceed -100? If you are mot
sure of the answer to patt a use = 400.

¢) What 1s the probability that the cho§3 Xf the progeny vill be less than
-1000? If you are not sure of the answer to part a, use 400,

d) Shew either numerically for this example or indicace algebgaggagxy why

the r2_ for a progeny with no records equals the sum of the r2 for the
sire and cthe r%l for the dam divided by four vwhen the sire and dam are
unrelated, i.e., r2 - (r2 + r%l }/4. Some of the follewing

square rootrs not 1ncPE388 ¢an be aE% oximate& From these.

H299¢
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1,

Predicrion error canm be defined as e = ra'Ia where Ta is true value and
Ic| 1s the index estimate of true value for animal .
Assume: o2 = 100, 02 = 100, o =26, 0
xl Xz xlxz xlr
a) The index which minimizes squared prediction error is I = (3/8))(]’ + (1/8))(2.
What is the average squared prediction effor for this best index?
b) What is the variance of prediction error for the index I = 6x1 + 2X,
vwhich ia obviously not the index that comwes from solving the selection
index equations? Compare the answers for parts a and b. Which is larger?
A short answer, why?
¢) Compare r2, for the indexes I = 6X, + 2X, and I = (3/8)X;, + (1/8)X,.
Why are tgey the same or why are tgiey different? Note r%_! rather ghan
r.n to make the computations easier.

- 2 .
= 40, UXZT 20, and or 40,

First Exam, October 1973

A dairyman has had some trouble computing the imbreeding to be expected
from some possible matings. Please compute the additive relationships
among the following animals. Also indicate to him which animals are imbred
and their inbreeding coefficients. Note well: A and B are full brother
and sister. C and D are identical twin bulls.

Db A
< I .

A
Tl
A
LE___
B
With the help of a miracle, the following genotypes for ten loci have
been determined for two animals. The genes are identified by their origin,

a) What 1s the estimate of inbreeding for animal X?
b) For animal Y?

¢) What 1a the additive relationshib between X snd Y?
d) What is the domlnance relationship between X and ¥?

Locus Aniwmal X Animal Y
A a.a a,a
; e s
C €5C4 €13
D dada d‘,‘dB
E ) egey
F £ f £f

1112 12
G 298 8689
8°6 6
H h h h_h
1,2 3,4
I i1 i24
N 1,048
7 310912 10712

3. To set up the selection index equations, the genetic covariances between
relatives are often deeded. Assume 02, = 32, cg = 16, 22 = 8, a-"l = 24,
and 02 = 120. The additive rela:ionsﬁgps and dominance rg}.ationsh}ps among
a group of beef animals are given in the tables below.

Additive Relationships Dominance Relationships
A B [ D E A B C D E
1 1 1 1 1
= = = = - = o
1 3 5 " 3 A i 0 0 .
1 1 5 1 1 1 - L
2 | % 3 3 8 Bl 2 ° L 7
1 5 1 _
2 s 1[. 0 0 c 0 0 0 0
1 1 1 1
i % ¢ 1 ” D 0 0 0 0 16
1 1 1 1 1 -
B 5 ° s 1 EL 0 | 3 o1 16
a) What 1s the genetic covariance between a record of A and a2 record of D?
b) Between A and B?
¢) Between C and D?
d) Suppose B and E were mated. What would be the inbreeding of the offspring?

4, 'nz1e mgel fog a regord on some traitzis P} = G, + E, where uc - ]"E = 03
UG-olo+czo+aOI-l6+8+4;aE-'i;a OGE-O'

a) What is the variance of single recodds, i.e., o%?

b) What 1s heritability for this trait?

c) Suppose o, = -16. What would be the variance of single records?

d) Suppose Mo ™ 120 and u_ = 0. What 1s the varisnce of single records?

e) Suppose ug = 40 and g = 110, What is the variance of single records?
5. The wodel for a record on some trait is P, = G, + E, where p = y_ = 0;

cé-cio+c§0+cgl=l6+8+4;c§=7};an ogg ™ 0 ¢ E
A horse breeder wants to select on an index which is the average of the
psrents’ single records plus the animal's own record, i.e., I = [(P,+P_ )/3] +
P3, where P, is the record of the sire, P2 is the record of the dam, and

1’3 is the record of the animal.

a) What 1is the variance of this index? Assume the sire and dam are
unrelated and are not inbred.

b) What is the covariance between the index and the genetic value of
the animal?

q/.97
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1.

DO
Second Exam, November 1973

Single records are available on animals A, B, D, E, and F. They are 3.
related to animal C as indicated in the arrow pedigree shown below. The
cords are: - - - -4 - - _
records xA 30 XB 10 XD ) KE 10 XF 5 .
E
c A
D B
F
Beritability of the trait is .4, repeatabllity is .6, and the phenotypic
varlance is 500.
a) Indicate clearly and numerically as much as possible, but without DO
solving any equations, how to ptedict the additive genetic value
of animal C. 4.
b) Bepeat a), but show how to predict the additive genetic value of
animal F.
¢) What assumptions are necessary so that your procedure will minimize
average squared prediction error?
A dairyman wante to predict twice the additive genetlc value for some
type trait for several bull calves from the type trait scores of each
t
calf's four unrelated grandparents. Let XFGS’ xFGD’ chs' and xHGD be
the recorda of the four grandparents. The best index is
- . . + . .
1 'laxPGS + laxPGD * lstGS laxHGD
Assume heritability = .36, repeatability = .48, and variance of single
records = 9.
a) What is the rp; for this index? 5.

b) What %s the average squared prediction error for this index?

Suppose six of the bull calves have grandparemts with records as shown:

.c:;sim_Sica’%_gsfn_@
0 -

A 3 3
B 0 2 1 0
c -2 -1 0 3
D -1 6 ~& -1
E 1 2 o 2
F -1 3 -2 -2

¢) Rank the six calves for twice their additive genetic value for the
type trait.

d) Suppose you choose what you think are the best two calves for this
trait. What is the expected superiority in twice the additive
genetic value for the selected two above the initial group of six?

EITHER QUESTION 3 OR QUESTION 4,

A svine breeder wants you to predict the average of single records of
10 unborn progeny from mating sire, S, and daw, D. Five previous full
sib progeny of S and D have averaged +5. Assume heritabilicy = .10,
repeatability = .15, the environmental covariance between the full sibs
already born 1is .20;, the environmental covariance between the unborn
progeny will be .20%, and the variance of single records, ci - .36.
Assume no environmental covariance between the 5 full sib progeny and
the unborn progeny.-

a) Predict the average of 10 future progeny.

b) What 1s the c% for this procedure?

EITHER QUESTION 3 OR QUESTIOR 4.

Suppose each animal to be evaluated has two records and that the average
of twenty full sibs each with two records 1s alsc known. You are to
predict a future record of each of the following four animals.

Ave. of animal’s Ave. of 2 records on
Animal two records each of 20 full sibs of the animal
A 4 3
B 2. 4
C -6 10
i} 8 -2

Beritability of the trait is .25, repeatability 1s .50, the environmental

covariance between full sibs is .2005, and the variance of single records
2 X

is 9% = 100,

A bull has sired a number of daughters resulting in a rather high {ndex
value for his additive genetic value. The breed organization, however,
wants Lo present a Breeder of Merit award to the bull's owner: but they
want to be 90 sure that 1f the bull sires an infinite number of additiomal
progeny that his additive genetic value will not fall below +600 pounds.
The additive genetie variance for the trait is (1200 1b.)2, and the
phenotypic variance is (2400 lb.)z. Suppose the r, i1s .8; how high

should the index value be before the award is presented?

989¢
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Final Exam, December 1973

a) Compute the additive relationships among the animals shown in the arrow
disgram. Indicate which are inbred and what their inbreeding coef fi-
clents are.

AT

cu/""Q”'é“‘ Ao
\DQ BY D?ZBQ

b) Assume that for some trait the direct additive genetic variancecé =~ 80;
the maternal additive genetic variance, oé = 40; and covariance Dbetween
the additive direct and additive maternal ngnetic effects o

3 = 200.
1) What is the environmental variance for this trait?

11) What is the covariance between a record of D and a record of E?
111) What is the covariance between a record of C and a recard of F?
iv) What 1s the covariance between a record of G and a record of F?

= -50,
Cpy
Also assume the variance of single record o

A breeder is selecting for a defined true value which has variance g2 = 52.5,
There are available three sources of information, X., X,, and X,. The

equations to find the selection index weights are: 1002}: + SO‘E + 25b, = 52.5;

50b, + 100b, + 50b, = 45; and 25 b, + 50b, + 100b_ = 30. 'The wefghts ade:
bl = .4, b2 = .2, and b3 = .1. Five animals have the following informationm.

Animal i]: i x_3
A 5 =4 3
B 3 3 -1
c 10 -5 -5
D -5 4 4
E 2 10 1

8} Rank the five animals for predicted true value.

b) What is the expected superiority in true value of the three you think
are best over the two you think are poorest?

c) What 1s the average squared prediction error for this index?

d) Suppose another animal, F, has an index value of 3.0, What is the
probability that the true value of animal F 1s between 0 and 4?

A sheepman has the following information for ome trait available on all
of his sheep. He wants you to develop an index to rank his animals for a

future record. X, = animal's own record, X, = average of two record of

the dam, X, = ave}age of aingle records of “two maternal half-sisters of
the animal; and X, = single record of a full sib of the animal. Variance
of single records = 100; heritability = ,40, and repeatability = .60.
Environmental covariance between a record of a mother and her progeny =

20X of the variance of single records, and envirommental covariance between
records of full sibs = 252 of the variance of single records.

Show clearly how to develop the desired index. Do not solve any equations.

5.

A breeder has decided that the economic value of trait 1 is $100 per
standard deviatior and of trait 2 is $49 per standard deviatioh.
Heritabilities of the traits are h* = .25 and h} = .50. He decides to
use the index for economic additive genetic valile I = ($10)(.25)X, +
(s7)(.5)x2. The phenotypic and genetic varifance and covarilances are:

o?a = 1005 c§ =49, o = 35, g2 = 25, aé = 24,5, and 9% = 15.

2 % 6 2 162
a) What is the r;y for che index?

b) What is the expected superiority in economic value for selection of
the top 2 out of 15 animals?

The govermment of a country with a shortage of fat and protein wants to
select dairy cows to improve yield of fat and yield of protein. They

have decided that a pound of protein is worth $6.00 and that a pound of

fat is worth $2.00 in their currency. The following variances and covariaaces
are known.

Permanent Temporary
. Phenotypic Genetic Eavirommental Environrmental
Protein-fat covariance 6400 1800 1400 3200
Protein variance 6400 1¢00 1600 3200
Fat variance 10,000 3600 2500 3900

a) As their coosultant you are asked to prepare an index to predict a
future economic record for cows that have a first record for both
fat and protein; that is, = first protein record and xz = first
fat record. Find the appropriate weights.

b} Describe clearly hov to determine the index to predict an economic

record for a daughter of cow with xl and xz. Do not solve the equations.

First Exam, October 1974

1. a) One horse breeder has followed a close linebreeding (inbreeding) program

by continued mating to sire A.
. A
A >E
A D
— c /
B-"/

Show all additive relationships among the five horses and give the inbreeding

coefficient for those that are inbred.
b) Another breeder follows a less intense linebreeding program to sire §.
S\%
v s
T'__,,-—a’ \ —— ¥
S\_)w
U/
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Show all additive velationships among the severn horses and give the
inbreeding coefficient for those that are inbred.

c) Another breeder likes the results both (a) and (b) have achieved. He
buys E and Y. He asks you what the inbreeding coefficient will be
for progeny resulting from mating E to Y. Your answer is?

Plant breeders have an advantage in developing inbred lines because of

the large number of plants that can be used, the shorter generation inter-
val, and the ability of selfing (same plant provides the male and female
gametes for fertilization). The closest analogy in animal breeding to
selfing would be if identical twins could be mated. Since identical twins
cannot be mated, the fastest practical method of inbreeding in animals

is to make c¢ontinuous full brother-full sister (full sib) matings. In

rhe following problems, assume the base population is noninbred and unre-
lated. Only half credit will be given for the correct answer unless all
work is shown.

a) Calculate the inbreeding coefficlent after 3 generations of full sib
matings.

b) Calculate the inbreediag coefficlent after 3 generations of selfing.

The following covarlances between 3 sets of relatives have been computed
for a trait: between parent and progeny, 56; between paternal half-sibs,
24; between full sibs, 64. From these values estimate:

a) @ b)

2
for 9B 30 oy 950 o1
Information for questions 4 and 5
The variances of averages are often needed tg set up the equations to
sglve for the selection index weights. For some trait, assume the
following: phenotypic variance = 400; additive genetic variance = 100;
dominance genetic variance = 60; additive by additive genetic variance =
40; environmental covariance between parent and progeny = 50; environ-
mental covariance between full sibs = 40; environmental covariance
between paternal half-sibs = 30; permanent environmental variance = 50;
temporary environmental varlance = 150; X; is the average of single
records of 10 full sib progeny of sire A and dam B; X, is the average
of single records of 5 paternal half-sib progeny of sire A {(all have
different dams, none of which is B); and X3 = (10X;+5X3)/15, 1i.e., the
average of the 15 progeny of sire A.

a) Compute the variance of Xl.

b) Compute the variance of Xz.

c) Compute the covariance between xl and xz.

d) Compute the variance of X,. (Note this kind of average is not used in
the selection ipndex since”all records do not have the same covariance
with true value.)

a) What is heritability for this trait?

b) What 1is repeatability for this traie?

c) What is the covariance between parent and progeny records?

d) What is the covariance between x2 and the genetic value of A?

Second Exam, llovember 1974

A and B are materral half-sibs. Two records of A averagce +12. Tour
records of B average +20. Assume h? = .4, 4 = .6, and phenctypic vari-
ance = (30)2.
a) Predict the difference in additive genetic value of A and B, i.e..

G -G .

A B

b) Predict a future record of A and a future record of B.

For scme trait, assume that: variance of single records = 100; environ-
mental covariance between identical twins = 30; envirommental covariance
between full sibs = 10; environmental covariance between half-sibs = 5;
additive genetic variance = 16; dominance genetic variance = &; additive
by dominance genetic variance = 4; permanent environmental variance = 32:
and temporary environmental variance = 40. You are to predict the genetic
value of animal 1 from: X; = record on the animal; X; = records on the
animal's identical twin; X3 = record on a full sib: and X4 = average of

2 records on each of 20 paternal half-sibs of the animal. Setr up, but

do not solve, the equations to find the weights for X, X3, X3, and X4-
You must show the coefficients both symbolically and numerically.

A breeder has available to use in selection a record, X1, on each animal

to be selected and a record, X, on the dam of each animal. You know

that of, = 25, of, = 25, 9X1Xp = 5, Oxy7T = 10, x,7 = 5, and 92 = 20.

This woild corresgond to T = additive genetic valle with h? = 4. You

tell him that the best index is I = (3/8)X; + (1/8)x2. He tells you

that he has been using the index I = (75X3+25X2)/100.

a) What is the r%l for the best index? For his index?

b) What is average of squared prediction errors for the best index? For
his index?

¢) What is the variance of the best index? Of his index?

d) What is the correlation between the best index and his index?

Sire A has an index of +200 lb for additive genetic value for milk yield.
The rfy is .84. Sire B has an index of +1200 1b for additive genetic
value for milk yield. The rfp is .64. Assume h? = 1/4, r = 1/2, pheno-
typic variance = (2000)2, and that A and B are unrelated as are their
daughters. Their index values are based on reccrds of daughters that
are related only through the sire.

a) What is the probability chat the additive gemetic value of A exceeds
1000 1b?

b) What is the probability that a record of a future daughter of A will
exceed +2500 1b?

¢) What is the probability that the additive genetic value of A exceeds
that of B?

d) What fraction of the records of future daughters of A would be expected
to be higher than the lowest half of future daughters of B?
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5. Cempare the following dairy breeding programs for yearly progress in addi- Assume heritability is .40, repeatability is .60, and the phenotvpic
tive genetic value for mllk yileld. Assume h' = 1/4, r = 1/2, and pheno- varjance is 2500. You want to buy 3 animals from a breeder. He witl

typic variance = (2500 1b) . sell you either Pen 1 containing A, B, and C or Pen 2 containing D, K.

a) The careful program? The Al stud will not use sires to sire sons until and F. You want to buy the pen having the greater average additive
the records of a second (large) group of daughters is available. genetic value. A records, Xg = 50, on animal B and a record, Xy = 100,
Assume T,y = 1. The generation interval for sires of sires is lengthened on animal N are available.
by 3 1/2°yr to 10 yr. Assume the best 5 of 75 are selected. They also a) Predict the difference in average additive genetic value between
will not select cows to produce new sons unless that have at least 5 Pen 1 and Pen 2.

Tecords. Assume selection is based on her own 5 records. The genera-— _
tion interval for dams of sires becomes about 8 1/2 yr. Assume selec- b) What is the variance of vhat is to be predicted?

tion of the top 5Z. Assume sires of replacement heifers are selected
on the basis of 35 daughter records and that only the best 5 out of
25 bulls are selected. The generation interval is 7 yr. Dams of
replacement heifers are selected on the basis of 2 records out of the
top 90Z. Assume a generation interval of 6 yr.

c¢) What 1s the variance of prediction error?

The following is information for questions 2 and 3:
Assume heritability = .25, repeatability = .40, variance of single records =

b) The dangerous program? The AL stud selects sires of sires on the basis (2000 1b)2. Assume also that animals A, B, C, D, and E are unrelared.
of single records of the first group of 35 daughters. The generation Animal Records Available

interval will be 6 1/2 yr. More bulls are alive to select from so assume
the best 5 of 100 are selected to be sires of sires, Dams of young
sires will be aelected on an average of only 2 of her records. Assume Record on dam of C = +2000

selection is from the top 32. The generation interval will be 6 yr. Record on dam of D = ~1000; average of single records of 20 paternal
Sires of dams and dams of dams will be selected as for the careful half-sibs of D = +500

program {(a).

Record on A = +3000; record on A's dam = -500C
Average of aingle recorda of 20 paternal half-sibs of B = +400

O Aawd

E Two record on dam of E average +500; record on a maternal half-sib
of E = -4000
F Prediction of future record = +5300; rr1 = .30
G Prediction of future record = +100; rpy = .30
Final Exam, December 1974 H Prediction of future record = -400; ryy = .30
I Prediction of future record = +1000; ryr = .30
1. Pedigree for this problem: J Prediction of future record = =300; rry = .30

2. a) Predict a future record for each of animals A, B, C, D, and E.
MG ¥ b) What 1s the probability that a future record of C will be less than +4000?
c) What is the probability that a future record of A will exceed a future
record of C by 3000 or more?

A 3. a) Suppose out of animals F, G, B,I, and J that 2 animals are to be selected.
o “~ What would you predict to be the average superiority in a future record
PEN 1 L R ——— e 4 of the selected 2 over the average of the group of 57
c/ b) Another breeder is going to use a selection index to predict future
records. The rpy of the index is .30. KHe will select the top 40% based
v on that index. What is the expected superiority in future records of
the selected group?
D\ 4., Falconer has pointed out that the expressions of a triat in 2 greatly
PEN 2 f—————————Y different enviromments can be considered to be 2 separate traits that
have a genetic correlation. Suppose that the 2 environments are: 1)
F the temperate US and 2) the tropical area of Puerto Rico, and that we

are interested in :I.xgproving milk production. Assume: hf = ,25; h2 = .20;

d%l = (2000 1bY?; o ap,= (1000 1b)2; Toyp ™ .90. Compare the folloving 2

bréeding plans for Puerto Rico. Assume the generation interval i1s the
N W same for both.
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a) Bulls are tested in the US on the basis of the average of single records
of 50 paternmal half-sister daughters. Each generation the best S bulls
out of 50 tested in the US are selected to be used in Puerto Rico.

b) Bulls are tested in Puerto Rico to be used in Puerto Rico on the basis
of the average of single records of 25 paternal half-sister daughters.
Each generation the best 5 bulls out of 15 tested in Puerto Rico are
selected to be used in Puerto Rico.

For weaning weight of beef calves, the follow}ng information is given: 2.
Gy = varlance of single rscorgs = (40 1b)?; OGn = additive genetic variance

for direct effgcts = .300p; oG, = additive genétic variance for maternal

effecrs = ,400p; UGDG§ -2addit1ve genetic covariance between direct and

maternal effects = -.30cp.

a) Find the weighting factors for predicting the additive genetic value
for direct effects from Xj, a bull calf's own weaning weight, and X2,
the average weaning weight of 35 of his paternal half-sibs.

b) Find the weighting factors for predicting the additive genetic value
for maternal effects from X3, a heifer calf’'s own weaning weight, and
X4, the weaning weight of her dam.

c) Assume bull calves are selected on the.basis of (a) from the top 5 of
of 50 and heifer calves are selected on the basis of (b) from the top
30 of 50. What would be the expected progeny average of mating the
top bulls to the top heifers?

First Exam, October 1975

Wednesday

A breeder of dogs wvants to develop an inbred line of dogs in spite of
all your protests about the dangers of inbreeding. He will practice
brother-sister (full sib) mating as described below. A and B are full
sibs (brother and sister) from mating of noninbred parents. The in=~
breeding coefficient of A is Fy = %. It is easier to express all cal-
culations as fractions rather than as decimal numbers.

B H
a) Show additive relationships among the eight animals. 3-
b) What will be the inbraeding coefficient of G?
c) What will be the inbreeding coefficient of progeny obtained from
pating G and H?

Thursday

A breeder of cats wants to develop an inbred line of cats in spite of
all your protests about the dangers of inbreeding. He will practice
brother~sister (full sib) mating as described below. A and B are full
sibs (brother and sister) from mating of noninbred pareants. The in-
breeding coefficient of B is Fp = %. It is easler to express all cal-
culations as fractions rather than as decimal npumbers.

ST

B D

a) Show addirive relationships among the eight animals.

b) What will be the inbreeding coefficient of G?

c} What will be the inbreeding coefficient of progeny obtained from
mating G and H?

A goat breeder believes that additive genetic effects, dominance
genetic effects, and additive by additive genetic effects are important
for some trait. The variances of these effects are assumed to be:

additive genetic variance = 64,

dominance genetic variance = 32, and

additive by additive genetic variance = 16; also,
variance of environmental effects = 88,

There are also no environmental covariances among records of relatives.
Covariances among relatives are needed in order to find the best index
for selection. Assume the following dominance and additive relation-
ships among relatives 1, 2, 3, and 4.

Additive Relatiouships Dominance Relationships

1 2 3 4 . 2 3 4
1 - 1/2 0 1/2 1 - 1/4 0 0
2| 1/2 = 1/8 1/4 2| 1/4 = /32 0
3 0 1/8 - 1/4 3 o] /32 - 0
4 | 1/2 1/4  1/4 - 4 0 4] 0 =

If X; is the average of 2 records on relative 1, X3 is a record on
relative 2, X3 is a record on relative 3, and Xj is the average of
3 records om relative 4,

a) What is heritabilicy for this traic?
b) What will be the appropr;ate covariances for the selection index

equations?

Tayxy ° X3 T Iyx, T
- a. - -

012X3 X2X|. °X3XJ,,

A swine breeder suspects that there is a strong environmental covariance
for some trait among full sibs (full brothers and sisters) in the same
licter. The breeder is willing to assume that the only genetic effects
are additive generic effects and that there is no environmental covariw-
ance among pigs with the same father but with different mothers (paternal
half-sibs) which are born at the same time of year.

A statisticlan has gathered some data and has calculated the covariance
between full sibs and the covariance between paternal half-sibs:

full sib covariance = 30,
paternal half-sib covariance = 10, and
variance of single records = 100.

H4¢/l¢



vele

Another breeder, however, believes that dominance effects are also

a) Estimate heritability.

b) Esctimate the enviroamental covarilance between full sibs.

important.

¢) Can dominance genetic variance be estimated from the data given
estimate? If no, what can be estimated?

4.

above? If yes, what 1s the

Wedneaday

The following animals all have relatives of type A and B with a single

record each, X, and Xg.

Record on_Relative

Aninal A B
1 +20 =10
2 +40 -30
3 +8 +20
4 -8 +50

The following Information is known:

2 -
o = 100 ;
Cov(X,,D = 22 ;

I= .20y + .1Xp .

a) Rank the animals dccording to the index.

b) Will your rank be the same as the rank for true value? Why or why not?
¢) What is the variance of this index?

d) What is the variance of predictiom errors, I-7, for this index?
Another breeder decides the selection emphasis in tha above index is

wrong and uses the index I* = X, + 2Xg.

Cov{(Xy,Xp) = 20 3

Cov(Xg,D) = 14 3

e) What is the varjance of his index?

f) What is the variance of prediction errors, I*-T, for his index?

Thursday

The following animals all have relatives of type A and B with a single

record each, Xj and Xp.

Record on Relative

Animal A

B

1 +20 -10
2 +40 -30
3 +8 +20
4 -8 +50
The following information is known:
a}( = 100 ; Cov(Xa,Xp) = 20 ;

Cov(X,,T) = 22 3

I = ,2X3 + .1Xg .

Cov{Xg, ) = 14

o2 = 50 .

T

ag,- 50

a) Rank the animals according to the index.

b) Will your rank be the same as the rank for true value? Why or why not?
¢) What is the variance of this index?

d) What is the correlation between this index, I, and true value, T?

Another breeder decides the selection emphasis in the above index is
wrong and uses the index I* = X, + 2Ag.

e) What 1s the variance of his index?
£) What is the correlation between his index, I*, and true value, I?

Secend Exam, November 1975

A dairyman friend knows that you are now an expert in determining genetie
meric of animals from their records and records of their relatives, He
wanta you te buy six cows for him that have highest possible genetic value
for milk yleld. The only cows available and information on their evalua-
tions are given below. The owner will sell you two groups, but you cannot
make any substitutions. All groups are equally priced. Heritability for

milk 13 .25, repeatability is .50, and the phemotypic variance is (2000 1b) 2

Seleceion Index
for Additive Average

Genetic Value - Index for
for Milk Yield Group

Low (1b) _(1b) Trr
Al +1000 .65
Group A A2 +500 {400} .60
A3 =300 .40
Bl +1200 .70
Group B B2 0 (300) .20
B3 -300 .35
Cl +2000 .50
Group € C2 +500 (500) .60
c3 ~1000 .25
D1 +450 .60
Group D D2 +450 (450) .50
D3 +450 <40
El +3000 .70
Group E  E2 -1200 (100) .70
E3 =-1500 .40

a) Which two groups will you purchase? Why?
b) What is the expected genetic superiority of the selected cows above
randoem selection in this situatioen?

q€L2
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Assume a trait has heritability of .30, repeatability of .50, and phenotypic
standard deviation of 400. The following information is available on 3
animals:

Animal Number of Records Average of Records
A 2 +800
B 1 +1000
o4 0 -

Predicted genetic value of C's sire is +1200 with ryy = .95, and
estimated transmitting ability of C's dam is -200 with rpr = .60.

a) Suppose you want to select for additive genmetic value. In what order
would you choose the animals to furnish herd replacements?

b) Suppose instead that you want to select for the sumof four future records.
(Assume all animals would survive for four more records.) In what order
would you cull?

The trait for the following problem can be measured on both males and
females, has heritability of .36, and the variance of single records is
1600. A breeder is considering two selection programs. All selection
is for additive genetic value.

Program 1: Males will be chosen on the bssis of their own single record.
Salection will be for the top 1 of 15 born each year. The
generation interval will be 2 years. Females will be chosen
on the basis of a single record of their sire and a single
record of their dam. The generation interval will be 4 years,
Selection will be for the best 18 of 20.

Program 2: Malees will be chosen on the basis of records of 10 paternal
half-gib progeny. Selection will be for the top 1 of 15
(possible by using artificial insemination). The generation
interval will be 3% years. Females will be chosen on the
basis of a single record of their sire and a single record
of theit dam. Selection will be for the best 18 of 20, and
the generstion interval will be 4 years.

a) Which selection program should the breeder use to maximize the additive
genetic value of the herd? (Show all calculations.)

b) Suppose that you could buy random progeny of the first generation of
selection to start your own herd. Which selection program would you
hope the breeder was following? (Show all calculatioms.)

The trait measured in this problem has heritability = .50, repeatability

of records on the same animal = .75, and phenotypic variance = (2000)2.

Two full sibs (A and B) have records XA = 3000 and X8 = -1500,

a) Predict the additive genetic value of A and of B.

b) What is the rgy for predicting the additive genetic value of A?

c) What is the probability that the additive genetic value of A is
greater than 400? (If unable to work a and b, assume G, = 1200
with rf; = .50.)

d) A future record of A is predicted by the selection index to be RA =
(8/15)(3000) + (1/15)(-1500) = 1500, and a future record of B is pre-
dicted to be RB = (1/15)(3000) + (8/15)(~1500) = ~600, The selection
index for difference in predicted future records of & and B is:

I = R, = [(8/15) - (1/15)](3000) + [(1/15) - (8/15)](~1500)
A7B L 2100 .

What 1s the probability that a future record of A, Rp, will exceed a
future record of B, Ry, by 1000 or more? The r%r is ,311,

Final Exam, December 1975
For a trait, the following is known:
heritability = .40 ;
repeatability = .60 ;
phenotypic variance = (90)2 .

Records and inbreeding ¢oefficients are available on the following unrelated
animals.

Average Number of
Animal Record Records Inbreeding
+100 1 0
B +100 1 A .25
c +50 1 : Q
D -100 2 0
E -100 1 0

a) Predict the additive genetic value 'for the five animals and rank them.
b} Predict a future record for each of the five animals and rank them.

c¢) What is the probability a future record of animal E will exceed +50?

You are selecting for traits 1 and 2 with an index:
I=6X1+5Xz

where X; and X, are records for traits 1 and 2 measured on the animal being
evaluated.

2 = 2
Assume crx1 100, o%

Assume the selection intensity factor is p = 1.5,

= = hy, = 4 = =
2 430, lexz 40, ny .25, hz .49, and X'g = -.50.

a) Calculate the expected genetic response per generation for trait 1.

b) Calculate the expected genetic response per generatiom for trait 2.

NV IRA

c) Suppose the economic values per unit are $6 for trait 1 and $5 for trait 2.

What is the expected economic gain per generation?
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3.

Predict the value of animal A for:
T = GGDA + G"A

where Gr, and Gyp are the additive genetic values of A for direct genetic
effects "hnd maternal genetic effects. Records are available on the sire
{X; = +40) and another relative (x2 = -10) as shown in the diagram.

o2 = 100, d§2 = 100,

X

axlx =0, 02 =40, c M = 20, and % g = -20.

DM

Sire of A

/(XI = 40)\
Dam of sire of A
‘-\ and of dam of A
Dam of A and __—

relative of A
Relative of A«
(xZ = '10)
Sire of
relative of A

You have decided since all your calves have the same breed and age of dam
that the proper model to describe weaning weight of a population of beef
cattle is:

Weaning Weight = Constant + Sex Effect + Herd Effect + Sire Effect
+ Residual Effect

which can be written in the usual notation as
Yigra T T Rt v ua, -

Assume sex and herd effects are fixed but unknown effects. The sire effects

(sire transm\ttmg abilities) are random effects with variance u2 = l:oé = 50.

The variance of residual effects is 02 = 950,
The following set of records is available:

(z) () (x (2) (’tﬂ’kl)
Sex Her ire Caif Weaning Weight {kg)

I
2 240
3 220
4
5
1
2
3
1
2

a
I

180
200
260
240
220
200
220

-—-—-n—-.—-—u—n—u—u—-»—{
wwNNNHP‘Hh‘~4

B0 4 BRI bt R 44 bt Bt b

Set up (numerically)’ the best linear unmbiased prediction equations to pre-
dict the effects of sires 1, 2, and 3 and to estimate the fixed effects for
which adjustments are needed.

Firsc Exam, October, 1976

In the following pedigree, assume E and E' are identical twins (in a
species where sex reversal is possible). Animals A and B are unrelated.

E-—\_‘_‘_ /-
/

a) Show the additive relationships among all eight animals.

b) What is the indreeding coefficient for C, for E, for E', and
for G?

c¢) Calculate the dominance relationship between A and D and between
C and D.

d) Suppose an unrelated animal is mated with E to produce another
progeny, H. What will be the dominance relationship between C
and H?

A dairyman believes that the first milk record of a cow is more impor-
tant than her second record which is more important than her third
record. Therefore, when he finds the average of three records, he
enters the third record once, the second record twice, and the first
record four times, and divides by seven, i.e., for cow 7:
X. +X, +X. +X. +X._ +X. +X,
Y. = &L il il 71,1 12 12 %3

Assume the X-J- have been measured as deviations from the populacion
mean so that ,"{1‘:‘7 = G + PE + ﬁ,‘ .

Assume :he phenotypic variance is (2000 1b)2, the genetic variance 1is
(1000 1b) , and the variance of permanent environmental effects is -
(900 1b)2. Note the phenotypic variance is (2000 1b)2 = «,000,000 1b2.
a) What 1is the variance of the "average" the dairyman {s using?

b) What is the covariance of that "average" with the genetic value
of the cow?

The usual average is X. = (X, +
z i1

Xip ¥t X./3.
¢) What is the varlance of the usual average?

d) What is the covarlance of the usual average with the producing
ability of the cow, A; = Gi + PEi ?

q6/2
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Given two equivalent models:

(1) Pi-up-fc_i +E‘1:
where Mg = 0, yg = 0, Uy # 0, and wvith no covariance
between Gi and E‘i;

{2) P:I -u+g£+e£

vhere Wy ¥ 0,u,% 0,y ¢ 0, and with no covariance
between 9; and ‘ei,

- - g2 - -
Assume that Var(Gi) Var(gi) g and Var(E'i) Var(ei) oi.

a) Show that og is the same for models (1) and (2).

b) If 0% = 0%o + 0%y + 03, + 03y = 30 + 20 + 10 + 40 and oF =
Fp + Ofp = 20 + B0 = 100, what 1s the heritability for this
trait; wvhat 1s the repeatability for this traic?

A logical way to estimate the environmental covariance between rela-
tives 1s to obtaln two groups of relatives such that in one group an
environmental covariance has a chance to be expressed (for example,
full brothers raised in the same litter of pigs) and such that in the
other group there is no chance for an environmental covariance to be
expressed (for example, between full brothers separated at birth and
raigsed in different litters). Suppose the following phenotyplc co-
variances have been computed for weaning weight in pigs:

Covariance between full sibs in same litcter = 5.625
Covariance between full sibe raised in different litrers = 2.625
Covariance berween paternal half-sibs in different litters = 1.000
Covariance between identical twins in same licter =11.000
Covariance between identical twins raised in different litters = 7.000
Variance of single records =25.000

a) What is the estimate of the environmental covariance between full
sibs raised in the same liteer?

b} What ie the estimate of the environmental covariance between
identical twins raeised in the same litter?

Asgume 0(2; = ofe + 0%, + 0%, .
c) Estimate of,. (Aint: afl =1.)

d) Estimare o3q.

Second Exam, November, 1976

this auestion.

Given: h% = .40 3 r= .55 3 a%g =400 : o% = 1000 .

1. Do
a)
b)
2. Do

a)

b)

The following unrelated animals are to be ranked for additive genetic
value. Thelr records and records of their relatives are given.

Single Records

Animal Own  Sire Dam
A I — —
B -— -15 10
[ 5 -10 —
D -10 - 20
E - 30
F 5 15 -

What would you expect the superiority ia additive genetic value to be
if two of these six animals are selected?

this question.
The selection index procedure has been used to evaluate an animal.

I=18 r;I-.aA iore 60 3 A2 = .36 5 o= (30)%
2 u 2

9% (50)< .

What is the probability the true value of the animal ig greater than
122 :

Given: aé - (30)2 afr'- (50)2 ; r = .60 3 hZ = .36
E(Xy) = 0 .

The Index for predictiag a future record of an animal from a record
of the sire, X;, is I = 3%h2X,. Suppose for an animal that I = 8.
What is the probability that a future record of the animal will ex-
ceed 487 What is the probability a future record will be less than
zero?

H9.¢
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Do either this question or question 4.

You are asked to compare two proposed boar testing procedures. Selectiom

1s for additive genetic value. Ten progeny are to be measured for gain

from 21 days to 60 days. Assume 100 litters are available each year.

Further assume thar all litters have five pigs, that the gains are ad-

justed for sex and for age of the sow, and that all sows are unrelated 1.
to each other and to the boars.

Procedure A is to measure two:pigs from each of five licters (20
boars can be tested). The other three pige from each litter are not
measured.

Procedure B is to measure five pigs from each of two litters (50
boars can be tested).

Assume the additive gemetic varlance is .3002, the environmental
covariance between full sibs is .2502, and the environmental covariance
between paternal half-gibs is zero.

2.

Note that the weighting factors will be the same for all five
licters in Plan A and similarly the weighting factors will be the same
for both litters in Plan B. Note that selection intensity will not be
the same for plame A and B.
Do either this question or question 3.
Since the progeny of inbred parents resemble ome another and their parents
to a greater degree than those from noninbred parents, inbreeding 1s
someeimes used for generating genetic uniformity.

A bull stud decides to progeny test 10 unrelated inbred bulls (F = k).
They obtain 20 progeny per bull. Assume the dams are unrelated to each
other and to the bulls, The bull stud plans to select the best two of

these bulls based on progeny records (single record on each progeny).

Compare this procedure with testing 10 noninbred bulls. The assump-
tions are the same except that F = 0. Selection 1s for additive genetic
value. Phenotypic variance = (20)2, additive genetic varilance = (10)2,
and variance of producing ability = (15)2.

3.

Final Exam, December, 1976

Animals A end B are unrelated.
Mating is done as follows:

A G
>==
3 D F.
a) Show the additive relationships among the seven enimals. Note especially
the relationship between A and G and also that between F and G.

Both have inbreeding coeificients of .50,

b} What are the inbreeding coefficients for the seven animsls?

A researcher hes caleulated the covariance between maternal half-sids to de
25. From the literature, he has estimates that the direct additive genetic
varisnce for the trait is 40, the maternal additive genetic variance is 20,
end the direct maternal genetic covariance is -10. The phenotypic variance
is 100.

a) What is the heritability for the direct trait?

B) What is the heritability for the maternal treit?

c) What is the environmental covariance between maternal half-sibs?

d) How much of the environmental covariance is not associated with genetic
effects?

Predict the value of animal A for:

T = 6Gpy + Guy
where Szp and Gup are the additive genetic values of A for direct genetic
effects and maternal genetic effects. Records are available on the sire
(X, = +40) and another relative (X, = -10) as shown in the diagram,

= 20, and 9 ¢ = 0.

2 2 =
UXl 100, GXZ 100, 9y x5

=0, 02 =4C, o2
iz ® 0%, 7 40

Sire of A
/(xl = 40)\
A O0am of sire of A
‘\ and of dam of A
Oam of A and /

Retative of A" relative of A

(xz = -10)
S~_Sire of

relative of A

q.L¢
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You have decided since all your calves have the same breed and age of dam
that the proper model to describe weaning weight of a population of beef
cattle is:,

Weaning Weight = Constant + Sex Effect + Herd Effect + Sire Effect
+ Residual Effect

which can be written in the usual notation as

= + k., LIV
Yggrg T vt ag YRy e v
Assume sex and herd effects are fixed but unknown effects. The sire effects
{sire transmitting abjlities) are random effects with variance o

. 4
The variance of residual effects is o2 = 950.

2
8
The following set of records is available:

() (3) (k) (1) (¥i5x1)

Sex Herd Sire Calf Heaning Weight (kg)

-
2 240
3 220
4 180
5 200
1 260
2 240
3 220
1 200
2 220

pa»a.a>J>A>ap<--up4
oucuhohohovupubd»oh4

TN R B b

Set up (numerically) the best linear unbiased prediction equations to pre-
dict the effects of sires 1, 2, and 3 and to estimate the fixed effects for
which adjustments are needed.

First Exam, October, 1977

1. A breeder has been told that inbreeding will result in more uniform
progeny. He decides to mate sire A with inbreeding coefficient of
1/2 to dam B which has inbreeding coefficient of 1/4. The parents of
A are unrelated to the parents of B, A breeding plan as shown in the
diagram is proposed. What will be the inbreeding coefficients of the
7 animals? What are the additive relatiomships of & with C, E, F, and G?

N

> C >F——>GC
= 24
><¢n/

= o2 = 50.

Environmental causes of likeness between relatives generally exist
only if the relarives are kept together. Thus, one way of estimating
the environmental covatiance is from the difference between the co-
variance of a pair of relatives kept together and the covariance of
the same pair of relatives kept apart.
The following six covariances have been computed.
Covariance (full sibs kept together) = 44
Covariance (full sibs kept apart) = 29
Covariance (paternal half sibs kept together) = 17
Covarfance (paternal half sibs kept apart) = 11
Covarfance {parent and progeny kept together) = 24

Covariance (parent and progeny kept apart) = 24

Additive genetic variance, additive by additive genetic variance, and

dominance genetic variance as well as possible environmental covariances

are to be estimated by you.

Known : phenotypic variance = 80
repeatab{lity = .60

hericability (marrow meunse) = .40
heritability (broad sense) = .40

xl is a record on an animal.

X, 1s another record on the animal.

X3 1is a record on a full sib of the animal.

xa 1s a record on another full sib of the animal.

One breeder (4) uses as an index:

IA - Xl + X2 + (X3 + XL)IZ

Another breeder (B) uses as an index:
= +

1z (X} + X)/2 4 (Xy + X,)/4
a) Whar is the covariance berween Xl and XZ?
b} The covariance between Xl and X3?
¢} The covariance between XZ and xa?
d) The covariance between X3 and XL?
e) Which iadex will spread out predictions'the most?
f) Give a numerical answer to (e).
g) Will rhere be any difference in ranking of animals if IA is used

as compared to using I.?

a8Le
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4, Although impossible, assume a molecular geneticist can measure precisely
additive, dominance, and additive by additive genetic effects. Further
assumes a8 cytogeneticist can identify exactly the origin of each geme at

each locus. For a pair of Cormellius wombatus, the obscure species with

five loci which has an affinity for adverse weather and ordimarily
resides only in lab exercise #3, the two geneticists have established

the following:

Molecular geneticist:

Additive gene effects associated with:

a4 = 4 bl - 1 e = 2 dl - -2 e = [
a - 2 bz = 0 ey ™ -1 d2 = -1 e, = 0
a =0 b3 - -1 ey = -1 d; = 3 e, = 0

Dominance genetic effects assoclated with:

aa, = -2 €64 = 4
aa = 1 €8, = [« all others = @
a,a, = 1 ee, = 0

Additive by additive genetic effects agsociated with:
bie, = -3 e, = 4
S N all others = 0
blcz - 3 cyey = -4

Cytogeneticist:

Genotype of animal A: ayay b1b3 e d1d3 €y24
Genocype of animal B: a,a, b1b2 ¢,e3 d2d3 eje,
Your task: Complete the following table
Genetic Value
Animal Additive Dominance Additive by Additive Total

Second Exam, November, 1977

1. An animal breeder (A) has devised a breeding plan which he feels is
optimum for a trair. He can select the best 10% of males and best 80% of
females with correlations between rrue and predicted genmetic values of
.90 and .45, respectively. The generation interval for males is 6 years
and for females is 5 years. The heritability of the trait is .30 and
repeatabilicy is .45.

Another breeder (B) thinks her plan is optimum for another tralt. She
can select the best 207 of males and best 70 of females. The correlations
with true genetic value are .85 and .50, and the generation intervals are
4 years and 6 years. The trait has heritability of .25 and repeatability of
.50.

a} How much gain per year can breeder A expect?
b) How much gain per year can breeder B expect?
c) Which breeder (A or B) can expect to make the most progress? Why?

2. The transmitting abilities (one-half additive genetic value) of the

following 3 sires are to be predicted. The 3 sires are unrelated to each
other. All of their mates are unrelated to each other and unrelated to the 2
sires. Heritability = 1/2; repeatability = 3/4; phenotypic variance = (2,000,

Sire Information available
A 10 progeny with one record each average +500.
B 5 progeny: first records average +400, second records average +600.
c 1 progeny with 1 record of +1000.

2 progeny, each with 4 records which average +500.

3. 1In herd 1, five daughters of sire A average 500 1b more than five daughters
of sire B; i.e., xA1 - XBl = 500 1b.

In herd 2, 10 other daughters of aire A average 200 1lb less than 10
daughters of sire C; i.e., X, - X, = -200 1b.
A C
2 2
Assume all daughters have unrelated dams. Heritabilicy = 1/4;
repeatabllity = 1/2; phenotypic variance = (2,000 1b)2.

a) Predict the difference in additive genetic value of sires B and C;

t.e., Gy - Gg.

b) What is the correlation between GB - GC and the prediction of GB - GC

from part a).
c) If the difference between GA and G 1s to be predicted, should EA - EC

B 2

be used. If ves, indicate why and how without solving any equatigns.

9642



V08¢

4. A cow has two records that averaged +.4%7 in fat percentage. What
is the probability that
.

a) the next record will be greater than .4X?
b) greater than 0.0Z?

What is the probability rhat the average of five future records will be
greater than

c) +.4%2
d) 0,027

2
Heritability = 1/2; repeatability = 6/10; phenotypic varilance = (.5%) .

Final Exam, December, 1977

1. The matings, indicated by the arrow diagram, are proposed as a

way of bullding up inbreeding.

A D

A\)C\ ™~ p

D E F

.B,,/” C////a E////ﬁ

Compute all additive relatiomnships.
Which animals will be inbred, and whar are the inbreeding coefficients?

16 points {“)
b)

2 points c¢) Suppose that A and B are breeds rather than individual animals. The
diagraw then describes a crossbreeding pattern. Can the usual
relationship table be used to indicate the fraction of genes each
parent breed contributes to each generation? For example, what

fraction of genes does breed A contribute to G?

2 points d) Derive a general formula to describe the comntribution of breed A
to progeny of the nth generation if the system of mating described
in the diagram 1s continued.

/
32 pointsga

6 points

2 points

NOTE THAT TH1S IS A DOUBLE CREDIT PROBLEM

2. The following records are available:

Milk {pounds)

Average of 20
balf-sib daughters of sire A = +1000

Average of 5
full-sib daughters of sire B = +1200

One record of
daughter D of sire C = +800

One record of
dam of animal D = +1600

The following information is also known:

Milk

Phenotyplc variance (2300)2
Heritabilicy .20
Repeatability .45
Environmental covariances

Between full sisters .16(2500)% =

Between half sisters .00(2500)2 =

Between daughter and .04(2500)2 =

dam

Fat_(pounds)
One record of a
full sister of sire A = +30

One record of
dam of sire B = +20

Average of 5 paternal
half sisters of sire B = +40

Average of 10 paternal

half-sisters of sire C = +10
Fat
(100)2
.25
.50
{1000)2 .16(100)2 = (40)2
0 .00(100)2 = 0
(500)2 .04(100)2 = (20)7

) Rank sires A, B, and C for additive genetic value for milk yield.

\P) Rank sires A, B, and C for additive genetic value for fat yield.

¢) Suppose fat has 10 times as much value per standard deviation as

milk. The value of milk is $.05 per pound. Rank sires A, B, and €

for their additive genetic economic value for milk and fat.

d) What information do you need to improve

rankirg 1if the same records are used?

the accuracy of the economic

408¢
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12 poiats

6 points

2 points

3. A specialist in animal breeding has provided the following

information to a bull stud:

Prediction of record

Prediction of Genecric Value of a furure daughter

Correlation with

Bull Index value Genetic Value Index value Record
A 2000 .30 1000 125
B 800 1.00 400 .250
C 600 1.00 300 .250
D -1000 .80 -500 .200

Phenotypic variance = (2000)2 Heritability = .25

The bull stud has employed you to interpret such results. You decide
to 1llustrate your knowledge (hopefully) by showing the manager that

you can tell the bull stud the probability that a bull has genetic
value greater than +1000 and thar you can tell a herd owner the
probability that a record of a daughter will be +1500 or greater.

a) What is the probability that the genetic value of A 1s greater

than +10007

b) What is the probability that the gemetic value of B is greater
than +1000?

c) What is the probability that a record of a daughter of B will be

greater than +15007
After you have done this, the manager also asks:

d) What is the probability that a record of a daughter of B will

exceed a record of a daughter of C by 500 or more?

Correlation with

4.

3 points a)

b)
c)

14 points

3 points d)

A breeder asks you which of two selection methods you would

recommend .

Merhod A: Inmdex ™ .9X - W4X
1, own 2, own
Method B: Index = .9X - .2X
1, owmn 2, dam
Xl’m and xz’ are traits 1 and 2 measured on the animal.

xz dam is trait 2 measured on the dam. Trailt 2 is measured at
’

a mature age while trait 1 is measured early in life. Thus, the
generation intervals are 5 years for Method A and 3 years for
Method B for both males and females. Assume selection intensities
are equal for males and females. Males and females are selected
by the same index. The situation in beef cattle where trait 1
would be yearling weight and trait 2 would be mature weight might
be similar to this.

The phenotypic and genetic variances and covariances are
shown below (variancee are on diagenals and covariances on the

off-diagonals) .

Phenotypic Genetic
xl xz Cl CZ
Xl 400 120 Gl 121 55
X, 120 100 G, | 55 36

The economic values are: for trait 1, $3/unic, and

for trait 2, -$l/unic

so that T = $3(G ~ S1(G )

l.an:l.mal) 2,animal

What 1s 0% ?

What are AG1 N ch2 , and AT for Method A?
What are AGl y AGZ , and AT for Method B?

Which method would you recommend to the breeder and why?

q187
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(5 points)

This is a bonus problem

Suppose the record on an animal (x) is influenced by the maternal
genetic ability of its dam (x') and by the value of the genotype
of the fetus (wx) born at the start of the Tecord. The model for
the record can be written as:

P =g 4+m, +f + e
x X x Yy x

where: 8, is the direct additive genetic value of x for the trait;

mx, 15 the maternal additive genetic value of x';

fu is the fetal additive genetic value of Y and
X

e, is the total of all other environmental effects.

The variances and covariances of the direct, maternal, and

fetal additive genetic and of & effects of the same animal are:

gx By f ®x

2, 40 -5 -10 0

m 20 5 ¢
x

f 30 Q
x

e 120
x

The diagonals are the variances and the off-diagonals are the

covariances.

a) Develop a general symbolic expression in terms of relationships
and genetic variances and covariances for the covariance
between animals x and y with dams x' and y' and with

records started by birth of fetuses v, and “y'

b) Calculate the covariance between records of two full sibs

both of which vere mated back to their fathers.

First Exam, October, 1978

(25 points)

1.

The following arrow diagram describes a set of matings a breeder has made.
Only E has a parent that was not related to the original parent pair,
A and B. Note that F_ = 1/4 is also known. Compute the complete additive
Telationship table foe the 7 animals.
€.z A
‘/,,unknoun
& L <
////// F «<—— E.< D <« B
¢ —
FD = 1/4
(20 points) A~-B c-D
A B c D E F
2. T
1 1 5 1
= 0 = a ES
A 14 2 ¢ 8 4
1 3 3 3
B 0 17 49 8 % 16
1 5 1 13
c 3 0 13 0 4 16
3 3] a2 1
D 0 8 ° 13 16 16
: | s 3 1 3
8 4 4 16
] L 3 1 1L
4 16 16 16

Given the partially completed table of additive relationships:

a)
b}
)

What is the inbreeding coefficient of E?
What is the additive relationship between E and F?

What is the dominance relationship between E and F?

478¢



vEge

(25 poince) (30 points)

3. The following tables of additive and dominance relationships are known: 4. The following imdex has been proposed to select for additive genetic
value of an animal when a record on the animal’s mother (x]) and also a
tecord on the dam of the mother (xz) are avallable.

Additive Domirance
Father
A B c D E F A B C D E F <
T 17T [1 Animal ¢
A 1 |0 z 718 3 A 110 0 0 o 0 Mother < Dam of mother
1]11t1 1 (XI) (XZ)
B o |1l |+ |+ !% =
il A 3 B 011 ] 0 0 o I=4%. + 2%
1 2
i 113 13 S I Given 02 = 02 =02 = 100
c z 1% 1 2 |3 3 C o |0 1 r xl xz
19191 313 1 -] - v = .40, r = .60
D s 1% 132 1|3 3 D 0o |0 % 1
No enviromnmental covariance between a mother and progeny.
el (2120212 L o to [~ |~ 1l11-
8 |8 1818 418 a) What is the varlance of true value?
b) What 1s the variance of the index?
i f11313¢3 2 - P ¢) What 1s the average squared prediction error of the index?
F 2 F 0 |0 1 >
8 |8 (8 818 4 d) What is the r2 ?

Tl
e) How could you determine if this is the "best" index?

The following is also known: Second Exam, November, 1978

Phenotypic variance = 100, {57 points)

(40 points) 1. a) A breeder has asked you to rank the following six unrelated animals
for additive genetic value.

Heritability (narrow sense) = .32,
Repeatability = .60,

Dominance genetic variance = 16, and Phenotypic variance = 100,000
Heritability = .20
Addirive by dominance - 8 . Repeatability - 40
genetic variance Envirommental covariances:
Full sibs = 4,000
a) What is the covariance between records of relatives C and D? Paternal half sibs = 1,000
Parent and progeny = 2,000

b) What 1s the covariance between records of relatives A and C?

¢) What is the variance of single records of animals such as A?

d) What is che variance of single records of animals such as E?

(10 points)

Animal Records available (difference from mean)
A Record on A = 400
B Record on B = 200
c 3 records on C ave. = 300
D Records on 2 full sibs ave. = 600 {one record each)
E Record on a paternal half sib = 1000
F Sire of F has 5 records ave. = 300;

Dam of F has 1 record = 400

b) Indicate clearly without actually ranking the animals how you would
predict a record for each of the six animals.

q9€£8¢



V%8¢

(25 points)

2

(10 points)
( 5 points)

{ 5 points)

( 5 points)

Selection indexes for two unrelated animals have been calculsted.

The animals were evaluated for genetic value, : 1

Phenotypic variance = 1000
Genetic variances:

Additive genetic = 200
Dominance genetic = 100
Additive by additive genetic = 100

Permanent environmental variance = 150

a)
b)

c)

d)

2
Animal Trr
A 15 .36
B 10 .91
What 1s the probability that the genetic value of A is greater
than 107
What 1s the probability that the genetic value of B is greater
thsn 10?
What is the variance of the difference between the indexes,
I, -1, 7
A B

What ia the varilance of prediction error for predicting the
difference in genetic valuea of animals A and B?
The prediction 1s I, = I.. a)

(25 points)

3.

Four sets of animals are available for sale. Each set includes two

b)

animals. Each animal has one record, but only the average for the
set is known. Rank rhe groups according to their predicted additive {30 points) 2.
genetic value. '

The following information 1s also known:

Phenotypic variance = 100
Heritability {(narrow) =- .36
Repeatabilicy = .60

Dominance genetiec variance = 12
Environmental covariances:

Full sibs = 30
Paternazl half siba = 0
Unrelated - 0
Parent-progeny = 5
Group Average Prediction
1) 2 full eiba 40
2) 2 paternal half sibs 40
3) 2 unrelated animals 40

4) parent and 1 progeny 40

Remember to write down what information is available and what the true value is
for each group.

Final Exam, December, 1978

(30 points)

The arrow diagram shows the relationships among all animals in a herd
which have records.

Dam E\ | C1 has 4 records = -200 (average)
D
Sire A Cl Dl | C2 has 1 record = 1050
\ Stee 57 | ¢y has 1 record = 400
o

| CA has 1 record = -600

D, has 2 records = 300 {(average)

.
7C2\
Y
>

b, I ny

> D, | D, has 1 record = 500

Y
/)

Sire B c — D ! D3 has 1 record = ~700
| D, bas 1 record = 800

Phenotypic variance = (400)2. heritability = .50, repeatability = .60,
The environmental covariance between animals with the same sire is 200.

Show numerically how to set up the selection index equations to predict
the additive genetic vslue for each of the animals which have records,
i.e., Cl’ CZ' C3, Cd, Dl’ Dz, D3, and DA .

Sire C does not have a record. Can the additive genetic value of
Sire C be predicted? If yes, what records would be used and how.

A breeder is convinced two traits (A and B) have economic importance
and that he should select jointly for both of them. He 1is currently
selecting on only onme trait (A) which is measured earlier in life
than the second trailt (B). 1If both traits are used in the selection
index, the generation interval will be increased by 2 years as
shown in the table. The fractions selected for breeding for the
two plans will be as shown:

Fraction selected

Traits used Generation out of survivors
in selection interval Males Females
A 3 yr .10 .40
A and B 5 yr .15 .60
The variances and covariances are:
Phenotypic Genetic
Trait | A B Trait [ A B
A | wom? o A 2000? 100
2
B 0 (10)2 B 100 {4)

Assume the correct economic values are $3 per unit of trait A
and $20 per unit of trait B; i.e., T = BGA + 20G_. Compare the two
selection procedures which are the same for hoth males and females:

First procedure is I = bX ~ (Note that b can be any number # 0.)

. - .
Second procedure is I beA bB

XB (bA and bB are to be 5.I. weiuhts,

ay8e
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(20
3.

(20

points)

Two unrelated sires are to be evaluated.

Sire A, by some miracle, is completely inbred, FA =1,
Sire B is not inbred, FB = 0,

Each sire has 20 progeny. The 40 mothers are unrelated and
unrelated to the sires. The progeny averages are:

Sire Progeny average (single records of 20 progeny)
A 400
B 400

Phenotypic variance = (200)2, additive genetic variance = (100)2,
repeatability = 1/2, hericability = 1/4.

a) Predict the additive genetic value for each sire.
b) Caleulate the correlation between true and predicted additive

genetic value (rTI) for each of the two sires. (You can leave the
answers as r%l 2

Now agsume for ¢) and d) that the environmental covariance among
records of progeny of sire B equals one~fourth the phenotypic
variance.

c) What 1s the prediction of the additive genetic value of sire B?
d) What is che r,, for sire B? (Or r%l 7)

points + 37}

Calving difficulcty is measured as a categorical trait. If cthe
only two categories are (1) difficult, and (2) not diffieult,

the model is the same as for traitse measured on a continuous scale.
In this case the measurements are 1, for a difficult birch, and

0, for a not difficult birth. The sire of the calf (mate of the
cow) can influence the birth through genes transmitted to the calf.
There may also be a need to evaluate the sire of the cow for the
ease which his daughters give birth. Thus, two predictions are
needed: effect of sire of calf and effect of sire of cow,

Separate predictions should be made for each sex of calf but for
this problem assume sex of calf is in the model as a fixed effect.

The model for this problem is

= + +
yijkl u o+ xi sj |r|.k + "ijkl R
where u 1s a comstanc,
3% and x, are effects of female and male births,

s. (§=1,2,3) 1s the effect of the sire of calf (o2 = .005)

m (k=1,2,3) is the effect of the sire of cow (ci = .002)
. 2.

"ijkl is the residual effect (0" .160), and

Yigkl is the observation on the lth cow (1 if a difficult
i

bircth and 0 if a not difficult bireh), (cj = .167) .

The following table summarizes a set of data. (A real set would
probably have quite a different pattern.)

Number of Number of
difficult births (yijk.) calvings (niik)
Sire (j) Sire (j)
Sex(i) A B c Sum A B c Total
~ D 10 5 0 30 40 10
Z
1 w E - 4 10 - 60 70
]
F 15 1 5 50 10 40
~ D |10 3 4 20 30 25
*
2 w E - 10 15 - 70 60
<
z
F 20 2 5 60 20 50
Sum
a) Set up the equations needed to predict the effects of sires
A, B, and C as sires of calves and the effects of maternal
grandsires D, E, and F as sires of cows giving birth. (Do
not attempt to solve the equations.)
b} Bonus of 3 points (Not credited if you obtain 20 points on part a)

How many equations should be set up before constraint{s) are applied?
How many constraints are needed?
Write down a set of equations to solve the desired predictions.

(Do not attempt to solve the equations.)
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A. S. 420
First Exam
October, 1979

30 points

1.

A and B are full sibs whose parents are related by 50%. Animals

A and B are the basis of a linebreeding program which has progressed

as follows:

a)
b)
c)

d)

A B A

\A \4 \_\
C E G > I
B > F > H > J

Which of the ten animals, A to J, are inbred?
What are the inbreeding coefficients?
Show the additive relationshins among the ten animals,

Can you calculate the dominance relationship between E and F?
If so, what is it?

40 points

2.

You are to rank animals A, B, and C. Each has the same kind of
available information, X, and X,.

1 2

The selection index equations are:

400 b1 + 40 b2 = 155

40 b1 + 400 b2 = 65

The selection index is:

1 = 3/8 X, + 1/8 X2

Can you compute the following? T€ yes, what are the numerical values?

a}

b)

c)

d)

If no , why not?

oi : yes no oi =

rz s 2
TI ye ne Tr1
V(T-1): yes no V(T-1) =

Can you evaluate animal D which has only Xl available? If so,
how would you do it?

A friend thinks the index should be

I=1/8 Xl + 3/8 XZ

Can you compute the following? If yes, what are the numerical values?
If no, why not?

e)

)

g)

h)

2 2 .
9% yes no o1 =

2 . 2 .
Tir : yes no L

Can you say which r2_ (the first index or the second) will be
larger? Why or why not?

It ves, how much larger?

298¢



V8T

30 points

5

The following were part of

o 0O w »

larger aij’ d.., and cij tables.

1j
By .Eij_ 55—
A B C D A B C D A B C D
1 0 1/2 1/2 1 0 1/4 1/4 .15 0 1/5
1% 0 5/8 0 1 0 o} o] .15 0 0
1/2 0 1 1/4 1/4 0 1 0 1/5 0 .15 1/8
1/2 5/8 1/4 o] 1/4 0 o} 1 0 0 1/8 .15

The following variances are also known:

a)
b)
<)
d)
e)
f)

g)

additive genetic variance

dominance genetic variance

additive by additive genetic variance
additive by dominance genetic variance
environmental variance

What
What
What
What
What
What

What

is
is
is

is

is

is

40
20
24
16
100

o o on

heritability of this trait?

repeatability of this trait?

the covariance
the covariance
the covariance
the covariance

the covariance

between a record of A and a record of C?
between a record of A and a record of D?
between a record of C and a record of D?
between a record of A and another record of A?

between a record of B and another record of B?

A. 5. 420
Second Exam
November, 1979%

30 points

1. The variances and covariances needed to derive selection indexes using

repeated records on an animal are given in the following table.

Record Covariances with
Future Additive Genetic

lst 2nd 3rd 4th Record of Value of

Animal Animal
1st 50 30 30 30 30 20
2nd 30 50 30 30 30 20
3rd 30 30 50 30 30 20
4ch 30 30 30 50 30 20

a) What is heritability of the trait?
b) What is repeatability of the crait?
¢) Predict a future record for che following four animals.
Animal A which has a first record of +15
Animal B which has two records, +10, +8
Animal C which has four records, the average is +5
Animal D which is che progeny of animal A.
2. 30 points
a) Your employer asks you as an expert in animal breeding to buy 3 animals
for his herd. The only animals available are owned by a progressive
farmer who has indexed his animals for additive gemetic value (which is
what you know you must select for).
However!! He will only sell one pen of animals and only the whole

pen. You cannot select animals from more than one pen. What is your
decision? Please state your reasons.

w2 = .25 r = .40 ci = (2000)2
Pen 1 Pen 2 Pen 3 Pen &
! o Y P I P T Ty
100 .50 300 .80 0 .20 600 .40
0 .10 300 .10 0 .20 -300 .20
-100 .40 -600 .10 0 .60 -300 .40

b) If you were allowed to buy 4 animals but only the best one per pen what
would be the expected additive genetic value of the selected animals?

q.8¢
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10 points

3.

[N

Records on relatives of an animal have been used to predict the additive
genetic value of an animal, the selection index is:

2
I =27.2 wich Tpy = .69
The same vrecords have been used to predict a future record of the same
animal; again the selection index is:
I=27.2

2
The computer, however, was not programmed to compute the 1y for a future
record.

The trait has heritability = .40 and repeatability = .60 .

a) Can the r2 for predicting a future record be computed from the
information given?
If no, why not?
If yes, do it and show the steps used in arriving at your answer!

b) Cen the variance of prediction error for predicting a future tecord
be computed from the information given?
If no, why noct?
If yes, do it and show the steps used in arriving at your answer:@

30 points

Selection indexes to predict future records for two unrelated animals,
A and B, have been computed from records of relatives.' (There is no
covariance between the index for A and the index for B.)

heritability = .30

repeatability = .40

phenotypic variance = 100

_ 2
IA- 25 rep = .19
2 A
IE =15 rTIB = .19

a) What 1Is the probability that the next record of animal A will exceed 257
b) What is the probability the next record of animal A will exceed 15?
¢) What is the probability the next record of animal B will exceed 257

d) What is the probability the next record of animal B will exceed cthe
next record of animal aA?

Final Exam, December, 1879

25 points

1.

X X  are measurements on an animal for traits A, B, C, and D.

X X
A” "B* "C” D
The phenotypic and genetic variances and covariances are:

Genetic variances
and covatiances

Phenotypic variances
and covariances

Xo o Xg X 6o G 6. 6
X, I}on -50 -20 -40 Gy Iggo 10 -10 -20
Xy i-S0 100 10 20 GB J 10 30 10 20
Xe [-20 10 300 80 Ge ’-10 10 50 30
X, |-40 20 80 400 Gy [-20 20 30 100

A breeder has been using the index

I= 3XA +* ZXB

You have discovered the correct economic value is

T = GB - GC + ZGD

a) Calculate the expectcd superiority in T if the best 20 out of 50
animals are selected based on I = SXA + 2xB where traits XA and XB
are measured on each animal,

b) Calculate the expected superiority in GD if selection is based on

i-= SXA + ZXB.

25 points

2.

Within the foresecable future it may be possible to obtain female
progeny of a bull for which, in a genetic sense, the sire is both

the mother and father. The process would be equivalent to joining

a pair of random gametes (X-carrying only) of the sire and then
incubating the zygote in a recipient female. This introduction applies
to part c.

What would be the accuracy (rTI) of predicting the additive genetic
value of a sire from:

a) 20 progeny which result from mating the sire to 20 unrelated
females.

b) 20 progeny which result from mating the sire to only one super-
ovulated female with the fertilized ova transferred to recipient
females.

c) 20 progeny for which the sire is genetically both the mother and
father.

o
i

n
[N]
ut

Q

w
1]
wm

:; = {2000 1b)~

488¢
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25 points 25 points

3. A breeder of Charolais cattle thinks age of the dam, sex of the q.

; 0 Many animal breeders have difficulty with inte ti hat has b
calf and sire of the calf affect the weaning weight of the calf. 7 Y rpreting what has been

estimated by solutions to least squares equations. As you know, the

The model would be y Hea ex a5 constraint(s) imposed on the equations in order to obtain solutions
s = s = w. .
ijk1 i j k ijkl determine what has been estimated. A popular constraint is the sum

where a, is the fixed effect of the ith age of dam, to zero constraint; that is, the sum of the solutions for a particular.
1
i . kind of effect are forced to sum to zero.
xj is the fixed effect of the jth sex of calf,

sk is the random effect common to calves of sire k with

Consider the model

i 2 = L= U ta, vow, .
mean zero, and variance P 600, and ylj uora ij
Y35kl is a random effect which includes the other genetic where i = 1, 2, or 3, and a, is the fixed but unknown effect of the
effects on the calf and environmental factors with mean K X 1 K
zero and variance 02 = 6000. ith age. yij is the record of animal j of the ith age. The "ij are
w

. . uncorrelated with variance o2 and mean zero. Let n, be the number of
The following data adjusted for days at weaning to a 205-day basis w 1

have been collected. records of animals of age i. Then the least squares equations with

the sum to zero constraint are

Calf Age of dam (yr) Sex of calf Sire of calf Weaning wt. {1b) - ~ ~ -
noWemay +mpa, *ongag =y

A 3 M Grandiose 400 R - o

B 3 F Grandiose 450 noH + D34 A= y1‘

C 3 M Grandiose 350 . N

D 3 M Bellicose 400 RN nya, *X= Yy

E 3 M Bellicose 500 - ~

E 3 F Comatose 300 ng y o+ ngag + A= Y3,

G 3 F Comatose 400 N - ~

H 3 M Comatose 500 4t g, ag =0

I 3 F Comatose 500

J 3 F Comatose 400 Notice the new expression, X, which has the official title of a

LaGrange multiplier, is added to maintain the symmetrical form of the

a) Show numerically how you would jointly estimate the effects of equations and to allow a solution to be obtained.

age of dam and sex of calf and predict one-half the genetic values
of the threc sires.

With this constraint when N =N, =ng=A, U=y =0, ap =y, -Y

~

b} How many constraints will be needed to obtain solutions? a5 = Yz_ - Y'., and 2z =Yg - Y.. , where the dot notation denotes
summation over that subscript and the bar denotes average; i.e.,
.y N
Answer the following when n; = o, and a, +a, vag= 0.
a) What function of the parameters (u, ay, a5, and a3) is estimated
by u?
a2
b) By a ?

¢) Can 2y be estimated?

d) Can U be estimated?

Hint: Try for Ny =M, T Rg = 3 if you have trouble with the idea of

n observations.
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ANTMAL SCIENCE 420

First Exam
October, 1980

You are to rank the following animals for additive genetic value

for some trait and explain the reasons for your decisions. Different
kinds of records are available for each animal, but a kind friend

has worked out the selection index weights and the rpp's for each
index.

Available records S. I. b's
or I
Animal 5 %5 X 5 5 X

A 45 -30 7/15 2/18 .73
B 80 1/4 .35
C -15 90 7/15 2/15 .73
D 40 1/2 .71
E -20 20 /4 1/4 .50
F 20 1/4 .35
G 30 -105 7/15 2/15 .73

The phenotypic variance for a trait is 100.

The covariance between a parent (X.) and progeny (X.,) record is 20.
The covariance between true value "(T) and X, is alfo 2n.

The covariance between T and X, is 40. !

The variance of T is also 40,

You decide to select on the basis of the index

Iyou = Xl + 2!2

Your friend prefers the index

a)
b}
<)

d)

erieng = 5% * 10%,
Yhat is the variance of your index?
What is the variance of vour friend's index?

What is the covariance hetween your index and your friend's index?

Which is the better index” Why?

Fathers are normally related to their daughters by 50%. Full brothers
and sisters are also normally related by 50%. Matings of related
animals Tesult in inbreeding. Two systems of increasing inbreeding
are:
1) to mate a sire back to his daughters, then his granddaughters,
etc. The system starts:

A\ A\

B————2(C ——— D ———3»etc.

2) to make continuous full brother/sister matings. The system

starts:
A > C E
E:f; Ezf; E:S; etc.
B D F

Which system will increase inbreeding the more rapidly? Explaint

Suppose the impossible happens and two completely inbred but unrelated
animals are mated as shown. The table of additive re-

lationships is:

A C
A B
B D

c D
A 2 0 1 1

Suppose for some trait:
upp T some tra s o 2 1 1
additive genmetic variance = 50 [ 1 1 1 1
dominance genetic variance = 20 b 1 1 1 1

additive by additive genetic variance = 30

permanent environmental! variance = 20
temporary environmental variance = 80

a) What is heritability of this trait?

b) What is repeatability of this trait?

¢) What is the covariance between a record of C and a Tecord of D?
d) The covariance between a record of A and a record of D?

e) The covariance hetween a record of A and a record of B?

£} The covariance hetween two records of A?

g) The covariance bhetween two records of C?
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Second Exam, November, 1980

DIAGRAM PROBLEM 1

PHS PGS
20 of these ~~
with an average ™.

of X% T~ sire
Animal “* e _ PGD
one record is xl :
. PHS of Dam
40 of these
: with an average
of X
VAN 5 \
/N .
/ AN MGS
g ) 4&—_/,-f—”"—
Full sibs <—-~—=————"Dam <
(none of these) 3 records

- -
_~" average = xs

/ MGD

MHS
2 of these
with an average
of X4

You are asked by a breeding organization to find the weights to be
given to records of various relatives for predicting a future record
of an animal. The organization has a computer to do the calculatiocns.
You only need to tell the computer programmer what must be computed.
The diagram on the facing page shows the relationships among the
animals and the records available. h® = .50, r = .60, O; = (2000)?

¥ S

00] = .10{2000}%, the environmental covariance between full sibs is

.05{2000)2, the environmental covariance between maternal half-sibs
is .00(2000)%, the environmental covariance between paternal half-sibs
is .01(2000)%.

A) You must show the programmer both symbolically and numerically
what must be done. You do not have to de any arithmetic calculations.

B) Show the programmer what must be changed if the animal has no
record, but the average of single records of two full sibs is
xl (i.e., replace the record of the animal with the average of

2 full sibs).
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Selection decisions usually can be reduced to the comparison of
pairs of animals--one to be culled and thc other to be selected
or to be compared with still another animal.

For the following 4 situations, predict the difference in additive
genetic value for the pair of animals involved. ——_—

A} A has a record of +200.
B has a record of -200.
They are not related.
Predict the difference between A and B.

B) A has a record of +100.
B has a record of -100.
They are paternal half-sibs (same father, but different
mothers which are unrelated).
Predict the difference between A and B.

C) Two full-sibs of A and B average +150.
Predict the difference between A and B.

D) The father of A and B has a record of +50.
A has a record of -100.
B does not have a record. The mothers of A and B are unTelated.
Predict the difference between A and B.

Heritability = .4, repeatability = .6, phenotypic variance = (100)2,
the environmental covariance between full sibs is .10(100)2, 2
the environmental covariance between paternal half-sibs is .02(100)".

A cow has a record of +4000 1b of milk.

A} What is the probability that her next record will be +4000 1b
or greater?

B) What is the probability that the average of her next five
records (after the first) will be +4000 or greater?

These problems may have several steps. If you are not sure of the
answer for a particular step, indicate symbolically the correct
answer, make a reasonable approximation, and proceed with the
problem.

Assume heritabilitv = .36 5
phenotypic variance = 4,000,000(1b%)

the covariance between records on the same animal = 2,000,000(1b2)

Perfect sexing of semen {i.e. into a part always producing males
and a part always producing females} could increase the selection
intensity factor for two of the paths of selection but may reduce
selection for another path.

E.g. a) cows to produce heifers top 45% rather than top 90%
b) cows to produce sons top 1% rather than top 2%
c) bulls to produce sons top 5% for both cases

d) bulls to produce heifers top 20% when not separating semen
too 25% for sexed semen because
of semen loss in processing

We will assume for purposes of this problem that sexing of semen
is possible although currently that is not true.

Assume the accuracies of evaluation for the four paths are for
a) .58 (based on 2 records/cow)
b) .61 (based on 3 records/cow)
e) .90 (based on 50+ daughters per bull)
d) .85 (based on 50 daughters per bull)
Also assume the generation intervals are S, 6, 8, and 6 years.

Heritability is 25%

A) Compare the expected genetic gain for perfect sexing of semen
with use of Tegular semen.

B) What two important factors must be considered before deciding
whether to recommend sexing of semen?
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Final Exam, December, 1980

Maximum loss of 16 points on this problem.

This is a selection index problem.

1. A professor from a university in Buenos Aires wrote on
November 4, 1980, that they intend to tegin calculating estimated
transmitting abilities (one-half of additive genetic value) of dairy
cows. le wants a complete set of weighting factors for calculating
the herdmate ETA of a cow. The word herdmate indicates that all records
are expressed as differences from herdmate averages. In that way the
records are corrected for management levels. Thus, the selection index
procedure can be used,

Since a complete table of weighting factors is unavailable, you
must show the professor how the weighting factors can be determined
for up to three kinds of records. The cow, herself, has at least one
record. Her mother may have none up to several records. Her sire may
have no other daughters up to several with one record each.

I other daughters
X, = ave. of Py other daughters

2
J‘//SIR}E
Cow
X, = ave. of Dam
n records If records available,
x3 = ave. of ng records

Assume heritability is .20
repeatability is .40
phenotypic standard deviation is 2000 1b

A) Indicate numerically how the weighting factors would be determined.
(Just set up the equations numerically, the computer programmer
can then calculate the weights for different My Pos and ng.

B) Suppose the professor then writes back and asks how to modify the
weights if there is dominance genetic variance and environmentat
covariances.

2
Dominance variance = (.1)(2000)°
Environmental covariances
full sibs .06) (2000)

paternal half sihs (.04)(2000)2
2
parent and progeny (.01)(2000)°

2

—~

Indicate numerically what must be changed to determine the weighting
factors.

Maximum loss
out of 25
points

¢)

(33

(2

)

16 points can be lost on this problenm.

This is a selection index problem and not a mixed model problem.

2. A bull has 40 daughters (all with unrelated mothers) which average

+2000.
The bull has an inhreeding coefficient of .25
Heritability is .40
Repeatability is .60
Phenotypic variance is 1,000,000
Dominance variance is 100,000
Environmental covariances are
Parent-progeny 50,000
Paternal half-sibs 10,000
Full sibs 200,000

A} What is the probability (chance) the transmitting ability of the
bull (one-half of his additive gemetic value) equals or exceeds the
average of his first 40 daughters? {Complete all numerical
computations.}

B) What is the probability (chance) that the record of the 41st daughter
will exceed the average of the first 40. {Set up numerically so that
anyone could do the calculations, but you do not need to complete
the calculations if the instructions are clear.)

C) What is the probability (chance) that the next 40 daughters will
average as much as the first 4n? (The next 40 have unrelated
mothers which are unrelated to the mothers of the first 40.)
(Set up numerically.)

D) Suppose the bull was mated back to the same cows and with much luck
40 more daughters were obtained. What is the probability (chance)
that they would average as much or more than the average of the
first 40? This problem violates some of the assumptions of the
selection index procedure, hut the S.I. orocedure can be used.

(Set up numerically.)
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16 points can be lost on this problem. 16 points can be lost on this problem,

This is a mixed model problem not a selection index problem.

3. Weights at various ages are the economically most important traits
of beef cattle.
A heavy birth weight (BW) may cause calving difficulty. If a The following set of S records is representative of a much larger
calf is too small, it may not be strong enough to live. set. To avoid a 16-point loss from your grade in this exam you
B must:
Weaning weight (W} is the saleable product of the rancher. . . )
A) write the model and equations to be solved to predict real
Yearling weight (YW) is an indication of weight at slaughter--the producing ability (G + PE) for the three animals which are
final marketable product. .
. . fqs PN N N 2
Mature weight (MW) must be maintained and thus heavy animals are Heritability = .40 Repeatability = .60 Phenotypic variance = (40)
more costly than smaller animals. .
Animal 104, first record at 24 months of age = 360
Assume T = -.036py + .60G,, + +40(Gyy - Ggy) - <056, Animal 104, second record at 36 months of age = 440
_ . L Animal X-3, first record at 24 months of age = 420
The variances (diagonals) and covariances (off-diagonals) are: i i
Animal HO6, first record at 24 months of age = 380
Phenotypic Genetic Animal HO6, second record at 36 months of age = 400
2 2 B) If the animals are related as shown in the diagram
BW: (10) 30 100 100 (S) 30 40 40
2 2 104 = Y02 «€ X11
Ww: (40) 2000 2100 (253" 1000 900
2 2 X-3
i (100)“ 5000 (70)¢ 2500 278
2 2 HO6
MW (120) (65)
. now indicate how the mixed model equations should be changed
Compare the economic gain expected from the use of three indexes. (numerically as far as you can).
(Assume an equal fraction selected and equal generation intervals.)
A) An approximate index (essentially heritability times economic
value} based only on BW and WW {when choice of replacement heifers
would be made).
IA = -.0075BW + 24wy
B} An approximate index (if YW were available).
IB = -.0075BW + 244w +,20(YW - WW)
Q) An‘approximate index at weaning time using the mother's mature

weight (divided by two).
Ir = -.0075B¥ + ,24WW - _015(mother's MW/2)
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Second Exam, November, 1982

1. The following records are available (all are adjusted for u):

Animal 1; single record = +10
Animal 2; single record = +12 -
Animal 3; single record = +l6 } average 14

The three animals are full sibs (same sire and dam).
There is a high environmental correlation among full sibs for this
trait, cpo = .40. Heritahility for the trait is h® = .20; the phenotypic

standard deviation is Oy = 5.

a) Predict the additive genetic value of animal 1.

b) What is the accuracy of the prediction, rTI?

The breeder discovers that there were really four full sibs in the

group but animal 4 was not recorded for that trait.

¢) Predict the record for animal 4.

2. Two bulls have been evaluated for additive genetic value:

- i 2 o
1A = 1200 with Ty .36

i 2
IB 800 with T .84

For this trait:

ol = (2000 )7

a) What is the probability the additive genetic value of A is greater
than 07

b) What is the probability the additrive genetic value of B is greater
than 07

3. Recent reports indicate that clones of animals can be obtained by
splitting off cells of a developing blastocyst. These cells are
genetically identical. Some of the cells can result in offspring which
have a record. Others of the cells can be frozen, and after their
clone mates have provided a "clone" test, can be thawed, grown in
culture, and resplit to obtain more clones. At least, that is what is
supposed to happen,

For the trait of interest:

2
alo = 40
2
Opp = 60
L2
Opg <100

Assume that single records of 5 members of the clone are used to 'prove”
the clone.

a) What is the index for predicting a future record of one of the

frozen cells?

b) what is the accuracy of predicting additive genetic value of one of
the frozen cells?

c) What is the accuracy of predicting additive genetic value of one of the

five of the clone that has a record?

.
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4. A beef cattle ranch wants to select for increased weaning weight
but also knows that increasing weaning weight may increase the size of
its cows and thus increase maintenance costs. Final Exam, December, 1982
Assume
T= (.300G_ - (.02)G
- mw 1. (30 points)
There is a problem in measuring mature weight but assume it can be

obtained reasonably well at 2 years of age. Given: G;O = 40 Ceul1 sips = 125
The parameters are: 2 S
o __Variance ] 91 = 20 Chaif sips =
Heritability Genetic Phenotypic 5 .
o =
Weaning weight (ww) .25 (15)2 (30)? 20
Mature weight (mw} .49 (63)? (90)? °12>1=_ - 8
The correlations are: genetic, .60; phenotypic, .40. G%E = 100
The index to predict T from an animal’s own weaning weight and mature a) Predict the genetic value for cach of the following animals:
weight is: I = .058286X  + .003429X . ) Predi genetic yooue &
. 1) Animal A: Sire’'s record = 8§, dam's record = 14
The Tr for this index is ,4883. |
ii) Animal B: Average of single records of 5 otherwise unrelated
s : . . . progeny = 15
Waiting to use the animal's own mature weight requires selection be
delayed fo; OvVer a year adding to the cost of maintenance and an increase iii) Animal C: own Tecord = 10, a full sib record = §
in generation interval (assume 6 years)
Onc way to make the sel?ction'at_weaning time wouid be to'predict iv) Animal D: own record = 12, F = .25
T from the animal’s own weaning weight and the dam's mature weighrt. h

b) i) What is the T, I for animal A?

a) Find the index to predict T from an animal's weaning weight and its T

dam's mature weight. (Assume generation interval is reduced to 5 years.) ii) For animal 8?7

iii) For animal C?
b) What is the Try for this index?

iv) For antmal D?

c) If rhe intensity of selection is the top 30% for both indexes, and if the
generation intervals are S years for a} and 6 years using the animal's own
mature weight, what is the expected economic progress by using the index
using the dam's mature weight (a) as compared 10 the index using the

animal's own mature wcight?
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2. (30 points) 3. (25 points)
Trait A cannot be measurcd until 2 years of age. The model for a record is:
Trait B cannot be measured until 3 years of age. yijki B Hi * Aj * &kt Pyt uijkl
If selection is based on the animal's records for trait A and trait B, where u is a constant,

the generation interval would be 6 years. Hi is the fixed effect of herd i (management level),
. ; . .
) If seiection were based on the mother's records for trait A and A, is the fixed effect of age j,
trait B, J
I = 81 %am,a * B2%dam,B g

Bix is the additive genetic value of animal k in herd i,
the generation interval would be only 4 years. (2;) * Py)) is the real producing ability of animal k in herd i (p,; =
dam'slsezzigc;;:nt::§: gnsed on the animal's record for trait A and the producing ability - additive genetic value), and

IZ = BIX B

the generation interval would be 5 years.

3l ‘s is the resi i )
own, A + Zxdam,B s Hl]kﬂ s the residual {temporary enviromnmental effect on record ¢ of

animal k in herd i making a record at age j.

Assume the top 50% would be chosen whether Il or 12 were used.

Assume the overall economic genetic value is:

The g's are uncorrelated, the p's are uncorrelated, the w's are
uncorrelated and the g's, p's, and w's are mutually uncorrelated.

Heritability is .10.

T = .3(G ) - .1(G )
own, A own,B Repeatability is .40.
Phenotypic variances Genetic variances
and covariances and covariances Phenotypic variance is 64.
xA xB XC GA 6 GC The following records are available to estimate herd and age effects.
1 0 S0 G a)  Set up numerically (but do not solve) the mixed model equations corresponding
XA 0o A to the model and the records.
xB 0 400 100 GB There are: Herd Age Animal i,j,k.R yijkz
Xc| 50 100 900 Ge 2 herds 1 1 1,1 1,1,1,1 114
ages
: . . . . ) : . 1 2 1,1 1,2,1,2 118
variances and covariances involving trait C are to be used in b} for S animals 1 2 1.2 1.2.2.1 108
calculating correlated response. ? e
. . s 2 2 2,1 2,2,1,1 120
a) Compare the annual economic gain expected from use of Il with that 2 1 2 2.1.2.1 118
from the usc of Iz. 2 2 2.2 2.2.2.2 122
. . 2 1 2,3 2.1,3,1 116
b) Compare thc expected yearly correlated response in trait C from use of 5 2 2% N 120
19 with that from the use of [2. If you did not find the weights for Il and I2 ’ e
use: b) Show how the equations would be modified if the relationship matrix and
I; = ‘07Xdam AT .OZXdam B its inverse were:
; 1,1 1,2 2,1 2,2 2,3
and I* = .14x - .01X for your calculations. ’ ' ' ’ ’
z oum,A dam, B asf1 e 0o 0 o)At xS 4 0 0 0 1
1/4 1 0 0 0 ment -4 16 0 0 [V
i 0 0 1 1/2 Q Q 0 20 -10 0
o o 1/72 1 0 0 0 -10 20 O
[ o o 0 0 1 0 o0 0o 0 15 J
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4. (15 points) My last chance to stress the importance of expected values!!
This is an easy problem, if you can manage to read all of it. Good luck!!

The one-way classification, fixed effects model is:

y =H+Fi¢u

ij ij
where yij is the record on the jth animal exposed to fixed effect i,
u is an unknown constant,

Fi is the ith fixed effect, and

w.. =G, +E..
1) J J
Note: E(F,) =F ,
1 i
E{w..) =0 and
1]
2y o o2
E(wij) o

The expectation of the product of any w with any other w is zero.
The least squares equations are:

n_ﬁ + nl'l\:] hd “2?2 * HS?S =Y

"1; * "1;1 = .
“z; * “2;2 RREN
“3.;J * "3;3 =73,

where n is the total number of records,
n. is the number of records for fixed effect i,
y is the total sum of records and
y. is the total sum of records for fixed effect i.
One constraint is needed to solve the equations.
a) When thf COnStfaint is that the Heighted sum of fixed effects equals zero:
npFy * Moy “3;3 =0, then w=y /n

What is the expected value of u?

b) An often used constraint is that the sum of fixed effects equals zero:
fl + F2 + 53 =0 . (> indicates different constraint used.)

. Y Y Yy
Then b = %(—lL » 2l *543
il M2 Mg

What is the expected value of p?

<)

d)

e)

(continued)

* *
When the constraint is u = 0, what is the expected value of p?
(* indicates different constraint used.)

~ -~ »
Would you expect U = p = p? (That is, numerical solutions for u, u, and

*
W to be equal.)

tould you expect when all the n; are very large that y =p ?

Note: gy =y /n andn = n+n, +n

2 3"

What is E(Fl),
E(il), and

E@l)?
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FIRST EXAM, 1983

(30 points)

1.

The sequence of birthdates of the animals in the following arrow diagram

corresponds to the letters (A is the oldest).

a)
b)
<)

d)

€)
)

VA,

e

The inbreeding coefficient of A is }

3 and of B is also }.
Calculate the additive relationships among the eight animals.
Which are inbred? What are the inbreeding coefficients?

If G is mated to H to produce I, what is the additive relationship of
G to I?

What is the inbrceding coefficient of I?
What is the dominance relationship between D and F?

What is the dominance relationship between G and H?

(30 points)

2,

m o 0 o >

The following are tables of

additive rclationships, a.

The following variances are known:

a)
b)

ol = 100
0:0 = 20
050 = 8
U;I = 4
051 = 12
U;E = 18

What is repecatability?

What is heritability in the narrow sense?

Wwhat are the covariances between rccords of:

c)
d)

e)

(A and C)?
(C and D}?

The covariance between two records of E?

ij
dominance relationships, dij
environmental covariances divided by the phenotypic variance, cij
aij dij Cij

A B C )] E A B C D E A B C D £
1 0 /2 1/2  3/8 1 0 0 O 0 - 0 1/3 1/8 0o
0 1 1/2 172 0 o 1 0 o 0 o - 0 0 0
1/2 172 1 /2 316 o0 0 1 1/4 Q0 1/8 0 ~ 1/4 ©
o /2 /2 1 3/16 ¢ 0 1/4 1 0 1/8 0 1/4 - 0
3/8 0 3/16 3/16 5/4 o 0 0 o0 1 0 0 0 0 -
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{30 points) (10 points)

4. Cloning can produce identical twins having completely different uterine
and postpatal environments. Assume the covariance beiwcen pairs of such
genetically identical clones is 90.

3. Set up symbolically and numerically but do not solve the equations that
determine the weights to predict additive genetic value for animals A, B, and C.

The covariance between pairs of identical twins raised in the same maternal

Records of epvironment is 120.
progeny of animal
{(half sibs of Record of The covariance between pairs of paternal half sibs (have same
Own Tecord each other) sire of animal father but unrelated mothers) raised in different environments is 15,
Animal Number  Average Number  Average Number  Average The phenotypic variance for the population is 200.
A 3 50 21 30 1 -10
B T _20 21 60 1 20 a) Interpret thesc covariances assuming that the only genetic effects

are due to additive and to dominance effects, i.e., 9 = Glo + 001.
C 3 70 21 20 1 30 For example, what is the additive heritability and what is heritability
in the broad sense?

Assume: Heritability (narrow sense) .40 b) If you have trouble starting this problcm, the TA will give you a

hint (but you can then earn a maximum of 8 points for this problem).

Repeatability = .60
Dominance variance = 20
Phenotypic variance = 200

Environmental covariances
between full sibs = 40

between half sibs = 10

400¢
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SECOND EXAM, 1983
1} (25 points)
Animals A, B, and C are rare identical triplets. Each has two
records. Their averages, adjusted for the mean and other factors, are:
Xp = 10
Xg = 5
Xc = 15

Assume: Additive genetic variance = 100

Total genetic variaace = 120
Phenotypic variance = 400
Repeatability = .50
Environmental covariance = 0

a) Predict the additive genetic value of animal A. If you are uneaay
working with triplets, you cam, for a penalty of only one point, change
the problem to involve identicsl twins, A and B.

b) Predict a future record of animal A. IF you were working with
twvine, you may continue witb no further penalty.

2) (25 pointas)

The average of 41 daughters of a bull is +2000. With hericabilicy
of .40, the weighting factor to predict one-half of his additive genetic
value is p/(p+9), where p is the number of daughters., Thus, the
prediction of hie¢ transmitting ability is:

I = (41/50)(2000) = 1640 .

The prediction of the average additive genctic value of an infinite
number of him future progeny is also 1640.

The prediction of a record of a future progeny is also 1640.
Assume: h? = .40

r = .60
°: = (2500)2

a) What is the probability the TA of the bull is greater tham 0?

b) What is the 90X confidence range for the average additive
genetic value of an infinite number of future progeny?

c) What is the probability the record of a future progeny is
greater than 16407

d) Uhat is the probability the record of a future progeny is
greater than 0?7

410¢
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Do either of (3i) or (3ii), not both.
3i) (25 points)
Given: Phenotypic variances
milk yield (2000 1b)2
protein yield (200 1b)2
phenotypic covariance (.8)(2000)(100) = 160,000
additive genetic variances
@ilk yield  .25(2000 1b)2 = (1000 1b)2
protein yield .16(100 1b)2 = (40 1b)2

additive genetic covariaonce
(.7)(1000)(40) = 28,000

The covariance between the milk and protein averages for p
daughters of the same bull is

phenotypic cov. + (p-1){.25 gpenetic cov.)
P

Assume & bull has 50 daughters, each with a milk and s protein
yield record. Let Xy = average of the 50 milk records and Xp = average
of the 50 protein records.

Compare two selection indexes to predict additive genetic value for
wilk:

I} = bXy b = 1,5385
snd by = 1.7014
I2 = byXy + bp Xp bp = -5.2634

a) What are the accuracy values for the two indexes for predicting
sdditive genetic value for milk yield?

b} If selection is oo Ij, what is the expected correlsted response
for protein yield?

€) If selection is on I, what is the expacted correlated reaponse
for protein yield?

Do either of (3i) or (3ii), notr both.

3ii) (25 points)

Given: Phenotypic variances
milk yield (2000 1b)2
protein yield (100 1b)2

phenotypic covariance (.8)(2000)(100) = 160,000

additive genetic vsriances
milk yield  .25(2000 1b)2 = (3000 1b)2
proteia yield .16(100 1b)2 = (40 1b)2

additive genetic covariance
(.73(1000)(40) = 28,000

Assuze a cov has both & milk record and s protein record, Xy and
Xp.
Compare two selection indexes for predicting additive genetic vslue

for milk yield:

I] = bXy
and

I2 = byXy + bpXp .
a) What are the accuracy values for the two indexes for predicting

sddicive genetic value for milk yield?

b) 1f selection is on I}, what is tbe expected correlated response
for proteia yield?

c) 1If selection is on I2, what is the expected correlated response
for protein yield?
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4) (25 pointe)

A friend asks you to recomsend the better of two breeding programs
for improviang additive genetic value that your friend is considering.
Show, numerically, the relative expected gain per year for the two

plans.

Plan I.

Plaa II.

A) Select sires based only on records of their mothers.
Assume: 1) The vyy for the additive genetic value of
mothers is .60,
2) Selection is frowm the best 1 of 50, and
3) Generation interval is 2 years for sires.

B) Selecr dams based only on their recorda.
Assume: 1) The rry for dame is .60,
2} Selection is for the best 90X, and
3) Generation interval ia &4 years for dama.

A) Select sires based on records of 50 daughters {an AI
stud maintaina and tests the sires).
Assume: 1) rpy for additive genetic value of rhe sires
is .90,
2) Selection ia for the besr 1 of 10, and
3) Generation interval is 7 years for sirea.

B) Select dama based oa their recorda and evaluations of
their sires.
Aasume: 1) The ryy for dams is .63,
2) Selection ia for the best 90X, and
3} Ceneration interval is 4 years for dams.

FINAL EXAM, 1983
1. (25 points) (This problem should be easy.)

Litter € «——mm— Sow A
Boar X

Litter D &————Sow B
Record of sow A: +10
Record of sow B: ~S
Average for the 6 pigs in litter C: 42

Average for the 10 pigs in litter D: +4

Phenotypic variance = 100

Additive genetic variance = 20

Dominance genetic variance = 8

Additive by additive genetic variance = 4
Envirommental covariance between full sibs = 10
Environmental covariance between half sibs =~ 0O
Enviromental covariance between progeny and dam = 5

Set up numerically (but do not solve) the selection index equatious
to:

a) predict the additive genetic value of boar X.
b) predict the additive genetic value of sow A.

Then show for both cases how you would use the weights (symbolic)} with
the records (numeric) to:

c¢) predict the additive genetic value of boar X.

d) predict the additive genetic value of sow A.

g4€0¢
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2. {25 points) (This problem may seem difficult; if you have
difficuley, start with T « G, snd then expand to T = G4 + Gp.)

Additive genetic value (G) and dominance genetic value (Gp) for
the same trait can be considered to be separate traits although the
phenotypic observations will include both kinds of effects.

Assume selection is for T = G4 + Gp; note that the economic values

are equal.
Aesume the selection intensity factor for both selection plans I
and II ie D = 1.5.

2 =
Asgume 010 40,

characteristic which precludes weasurement on breeding animals.

O%l = 20, o: » 200 apply to asome carcass

Compare two selection plana,

I. Select males based on the average of single records of 10 of
their half sibs.

a < ————————— Sire

10 half sibs "”””’//,

II. Select males based on the average of single records of 5 of
their full sibs.

Q €—————Sire

5 full 8ids <—e— — Dam

For both plans:
a) Determine the expected superiorities in T of selected males.
b) Determine the expected superiorities in G, of selected males.
¢) Determine the expected auperiorities in Gp of selected males.

d) If the selected animals are mated to a random and unrelated

group of females, what fractions of the expected superiorities

will be transmitted to their progeny?

3. (25 points) (This problem is not difficult except possibly for d);
the easiest part is c).)

X; = 1600 is the average of single records of 45 progeny of Sire 1
by unrelated dams,

Xz = 1200 is the average of single records of 25 progeny of Sire 2
by unrelated dams.

Sire 1 and Sire 2 have the same father but are not related in any
other way.

Heritability = .40, phenotypic variance = (2000)2,

The prediction of the additive genetic value of Sire 1 is:
Ig, = 1.6534X] + .0637X; = 2732

The prediction of the additive genetic value of Sire 2 is:
Ig, = -1147X] + 1.4495X; = 1923

The prediction of the additive genetic value of Sire 1 minus the
additive genetic value of Sire 2 is:

IG,-g, = 1.5387X; - 1.3858%; = 799
a) What is the probability the additive genetic value of Sire 1
iz greater chan 20007

b) What is the 80X confidence range for the additive genetic
value of Sire 17

c¢) 1f only progeny of Sire 1 had been used to predict the
additive genetic value of Sire 1, what would be the 80X
confidence range?

d) What is the probability the difference in additive genetic
values (Sire 1 - Sire 2) is greater than 5007
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FIRST EXAM, 1984

1. A friend has determined that an appropriate index should be:
T = 2X) + 3Xp .

The friend also supplies the following variances and covariances:

2 2
o, = 10 oX;xg = 5 ox,T = 4 or~8

Gk, " 20 Oxyr =6

a) What is E%I for the index I = 2Xj + 3X3?

Another friead insists the correct index is
I = (40 Xy + 60 X3)/100

b) What is ra; for the index I = (40 X; + 60 X3)/100 ?

c) Are either of the indexes "the selection index"?

2. With patience,

biologist for a unique (imaginary) species with 6 loci hae determined

perserverance,

persuasion,

eLC..»

a molecular

the identity by origin of the genes carried by animals X and Y to be aa

follows:

Animal X Animal Y
ajay ajaz
bab3 babs
e4c7 c2¢5
dsds dsds
eleg ejeg
454 3£,

a) What is the inbreeding coefficient of animal X?

b) What is the additive relaticnahip between X and Y7

¢) What is the dominance relatioaship between X and ¥Y?

a50¢
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3. In introductory animal genetice courses, a formula is given for
predicting the breeding value (additive genetic value) of an animal from
the average of its records. You are now able to derive that formula. A
formula usually is also given for predicting the real producing ability
of an animal from the average of its records. You are now able to
derive that formula.

Animal i has & records averaging +6.

Animal j has 2 records averaging +8.

n2 = .30 r=.60 o =81

a) Predict the breeding value of i and of j.

b}  Predict the real producing ability of i and j.

c) Can real producing ability be predicted directly from estimated
breeding value without estimating real producing ability from the

formula used in b)? Why?

For d), e), and f), assume animal i and animal j are both inbred

vith F; = Fj = .25,
d)} Repeat a).
¢} Repeat b).

£f) Repeat ¢).

4., A sheep breeder bred the “best ram in the land” to the "best ewe in
the land.” The mating resulted in triplets (A, B, C) that looked so
much alike that the breeder thought they were identical triplets. They
also looked 80 much like the "best in the land" parents that the breeder
decided to establish a line of “best in the land" sheep based on the
triplets using the breeding plan described in the arrow diagram. Blood

tests later determined B and C were identical females; A was a male'!
A\X/B A\x/c
D €
A x F
G
a) Show additive relationshipa among aanimals A through G on the next
blank page.

b) Which animals are inbred and what are ctheir inbreeding

coefficienta?

c) What is the additive relationship of G to the "best ram in the

land*?

For d} and e}, assume u%o = 16, a%]_ - 8, °§0 = 32 and oé - 44,
d) What is the covariance between a record of A and a record of B?

e) What is the covariance between a record of B and a record of C?
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SECOND EXAM, 1984

1. This is a single trait question.

(30 points)

Assume:

o}y = 20
o3, = 16
°§O = 8
ok = 16
o = 100

The environmental covariance between full sibs ia .04(100) = &.

2) A record of animal 1 is Xy = 8.

b)

A record of snimal 2 is Xp; = 12.

Animsl 1 and animal 2 are full siba.

The

-

Predict the additive genetic value of animal 1.

What is che rry?

average of single records of animal 1 god animal 2 is

10. They are full sibe in the same litter. Only the

litter average can be measured.

iv)
v)

vi)

Predict the additive genetic value of animal 1.

Whact is the rp1?

Predict the additive genetic value of a full eib of animals

1 and 2.
What is the ryy?

Predict the gverage gemetic value of animals 1 and 2.

What it the rpy?

2.,

This is a single trait queastion.
Given: Phenotypic variance = 200
Repeatability = .50
Beritability - ,25
Average of o = 3 records of animal Z = 20
T = real producing ability of Z
I = [n/(n+1}])(20) = 15
S (VIR

a) What is the probability that the real producing abilicy

' greater than 157

b) What is the probability that the real producing ahility

greater than 107

¢) What is the probability that the next record of Z ia

than 157

d) What is the probability that the next record of Z is

chan 107

(30 points)

of Z is

of Z is

greater

greater

2.0¢€
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3. For two traits, ! and 2, the following is known (40 points)
2 u 2
°x1 100 hl - .25
2 u 2
axz 400 hz .36
Q. - -
X1x; = 150 fg1gy = 80

Measurements on traits 1 and 2 for animals A and B are:

X X2
A 10 -20
B -10 20

Animals A and B are unrelated.
Asgume the net economic values are:
$5 per unit of traic 1

$10 per unit of trait 2.
a) Predict overall genetic value of animals A and B.

b) What are the relative economic values of traite 1 and 27

Assume the correct index is: -.5X; + 4X32.

Assume selection is based on this index and the largest 1 of 50 is
selected.

c) What is the expected superiority in overall genetic value of the
selected 1 of 50?

d) What is the expected correlated response in trait 1?

FINAL EXAM, 1984

(25 points)
I. This is the Mixed Model Equations problem.

Given:
Weaning Weight

Animal Age of Dam (Yr) Sex of animal

Al 2 Bull = 500

A2 2 Heifer = 2 300

A3 3 2 400

Ab 3 2 200

AS 3 1 600

Age of dam is known to affect weaning weight.

Sex of animal is known to affect weaning weight.

Additive genetic value of the animal iz known to affect weaning
weight.

Heritability of weaning weight is .20, 03 « 400. Acimals 1, 2, 3,
4, 5 are related through bulls C and D as described in the arrow
diagram:

A2 .g‘\i.sn
A3 “\
Sc
Ab
‘:::::=A1

AS

Set up the mixed model equations to predict the additive genetic
values of Al, A2, A3, A4 and A5. <{(Also write the model you are
using.)
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(25 pointa)

2. Thie is the selection index problem for a single trait. Read
carefully.
Part (a) will be to predict the additive genetic value of animal C.
Part (b) will be to predict the additive by additive genetic value
of animal C.

Given:

The sire of C is avimal Z (no records).

The dam of C is animal D.
The average of 4 records of animal D ia Xz = +12,

Aunimals A and B are full sibs.

The parents of A and B are animals $ and D.
The average of single records of animals A and B is X; =
+8.

The inbreeding coefficient of animal € ia Fgc = .25.

Assume: 2

90 ™ 20
a2 =16
2y =8

a:z = 16
a% = 100

The envirormental covariance between full siba is .04(100) = 4,

{20 poiats)
a) Predict the additive genetic value of animal C.

(5 points)
b) Predict the additive by additive genetic value of animsl C.

{25 points)
3. This is the probability problem.

Given: Xg = 24 is a record of animal §
Xr = -9 is a record of animal T
S and T are half-sibs, agy = 1/4
Bl = .40, r= .60, of = 100
(10 points)
a) To psedic: the additive genetic value of §, GAS' the S.I.
equations are:
100bg + 10bp = 40
10bg + 100bp = 10
I = (13/33)(24)+(2/33)(~-9) = 8.9

What is the probability the additive genetic value of animal S is
greater than 14?7

(S poiats)
b} Predict the additive genetic value of auimal T?

(10 points)
c) To predict the difference in additive genetic values between
animals S and T, GAS - Ghr, the S.1I. equations are:
100bg + 10bp = 30
10bg + 100by = -30
I=(1/3)(24) - (1/3)(-9) = 11

What is the probability the difference in additive gemetic values
between aniwals S and T is greater than 147
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4 4, (Continued.) For parts c, d, and e:
(35 potae) (aveoae ot 3 Sotet, 1 Sl eecic wales Lo based on 1V - x
4. This }s the multiple trait and geng:ic auperi?rity problem. (All Assupe 2 animals out of 5 are oelecCe:f evaluated.
genetic values are assumed to be additive genetiec values.)
Given: (5 points) . . A .
Glq is gemetic value for trait 1. c) What is expected genetlc superiority for trait 2?7 Comment??

Gyg is genetic value for trait 2.
Overall genetic value of animal @ = Tg = 5Gjq *+ 2634

Xjq = 40 (average of 5 records on trait 1 for animal a)
No records on trait 2.

Phenotypic
Trait Heritability Repeatability standard deviation
1 .36 +50 10
2 .16 «25 20
. . {3 points)
Benetic correlation - ~.50 . . .. .
phenatypic correlation = 20 d) What is expected gemetic auperiority for traic 17

(10 pointa)
a) Predict overall genetic value for animal a.

(5 poiats)
e) What is expected genetic superiority for T = 561 + 2657

(2 points)

b) Will changing the economic value of trait 2 affect ranking of
animala? Explain!!

4. continued on next page.

1
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First Exam October, 1985 2. (25 poiats)
s 2 2
1. (25 points) Let 0jg = 64, U%l = 32, o3¢ = 16, U%E = 38, U%E =50
Given: Fp = 1, Fp * 1, as8 = 0 and the following pedigree The following are tables of aijs dij’ and €ij for animals A, B, C, D, E.
Ilall l'dll 'lcll
A
" A B ¢ D E A B ¢ '
‘r””’c ‘“‘—-.B D E A B [+ D E
G\ . a1 3 5 7 0 Al £ 2 0 0 ap- 0 0 .05 .20
p A" 3 1 1 1
= 1 3 3 0 B 1 7 0 0o B - 0 .05 .20
I . ¢ 11 o c 1 0o o ¢ - o .02
"
E 1 0 D | Symmetric 1 0 D | Symmetric - .05

/ *‘-——__B D | Symmetric

B Calculate numerical values for:

a) Compute the table of additive relationships. a) Heritability.
b) Repeatability.
¢} Phenotypic variance for records of animals such as A.
d) Phenotypic variance for records of animals such as E.
e) Covariance beween a record of A and a record of B.
") Covariance between a record of A and a record of D.
ﬁ) Covariance betveen a record of A and a record of E.

b} What is the additive relationship between A and I? h) Covariance between a record of B and a record of G.

¢) Betveen G and H? i) Covariance between two records of A.

d) What is the coefficient of relationship between G and H? j) Covariance between two records of E,

e) What is the inbreeding coefficient of 17

£) What is the dominance relationship betweea C and E?

a11¢
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3. (25 points)
Let h? = .20 and 0% = 100
Animal D is the parent of animals A and B that are othervise unrelated.
f’/,aa
T

D
B

The index to predict additive genetic value of D from
Xz, a record of A and

Xg, a Tecord of B
isg Ip = byXy + bpXy

a) Write both symbolically and numericslly , but do not solve, the equations to
find by and by.

b}  Now suppose that additive genetic value of A is to be predicted from
I, = baKa + bpXp. Write both symbolically and numerically, but do not solve,
the equations to find by and bg.

¢} Will by = bg? Why or why not.

d) Write both symbolically and numerically, but do not solve, the equation to
find byy for predicting the additive genetic value of A as I, = bapXap if only
the average of records of A and B is known [that is, X5 = (X5 + Xp)/2].

4.

a)

b)

e)

4)

(25 points)
i H 2 - -
Given: 0y, = 100 0X3X2 20 gy = 40
%, = 100 gy, = 20

0% = 40

Two proposed indexes that use X) and Xy are

Ip = X1 + .5X2 and

Ip = 12X) + 6X2

What is the variance of IR?

What is the covariance between Iy and T?

What is the covariance between I, and Ip?

Are either of these the "best” selection index? 1f yes, which one?

az1¢
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Second Exam November, 1985

(25 points)

1. Compare plans A and B for gain in additive genetic value. Assume

h2 = .25, r = .50 and the following:

Plan Selection path ITY
A Sires of soas .90
Dams of sona .60

Sires of daughters .85

Dams of daughters .55

B sires {1 record of dam) .25
Dams {1 record)} .50

Number
Generation
Selected Available interval (yr)
2 50 10
150 15,000 6.5
Is 50 8
12,000 15,000 5.5
15 15,000 2
12,000 15,000 4

(25 points)

2. Let Xj = 8 = average of single records of 50 paternal half sibs of aaimal D,

Xy = 12 = average of 3 records of the dam of D.

Assume h? = 40, r = .60, a% = 100

The selection index equations for predicting additive genetic value of D are:

11.8by + Oby = 10

Oby + 73.3bp = 20

Thus 1 = ,85(8) + .27(12) = 10.0

(6 pts)

(7 pts)

{3 pts)

(3 pts)

(3 pts)

{3 pts)

a)

b)

c)

d)

e)

£)

What

What

What

What

What

is

is

the probability the additive genetic value of D

exceeds 10?7

the probability the additive genetic value of D

exceeda 157

the probability a single record of D, Xp, would

the probability a single record of D, Xp, would

the probability the real producing ability of D

the probability the real producimng ability of D

be less than 0?

be greater than 257

is lesa than 10?

= ggc1e

is less than 15
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(25 points)

3. The following two tables contain the phenotypic and genetic 4.
variances and covariances among traits A, B, C, and D. If you do
not understand the table, be sure to ask the TA to explain it,

Phenotypic Genetic
i 3. ¢ 13 2 B < D
A: 100 100 120 0 A: 25 40 60 -100
B: 400 100 0 B: 10 50 -20
C: 900 0 C: 400 -150
D: 1600 D: 900

Three breeders want to improve the genetic value of trait A.

Breeder 1 is using
I) = .1Xp
Breeder 2 is using
"Iy = Xg - J1Xp
Breeder 3 is using

I3 = X
Assume equal selection intensities and generation intervals for the
3 plans:

(15 pts) a) Compare expected genetic gains for trait A for aelection based on

1j, Iz, aad I3,

(10 pts) b) If va = 10 and vg = S5, i.e., T = vaGa + vgGc, find the best index

if X; and Xz are available, i.e., I = BaX, + BpXg. Set up numerically

but do not solve the equations.

b)

(25 points)}

X)) =———s5
~—,
(x2) D"
(x3)

X; = average of single records of 5 full sibs (parents are S and D).

Xy = average of two records on each of 20 paternal half sibe

{parents are $ and 20 unrelated dams).

X3 = average of 4 records on D.
Note that S and D are half siba (see diagram).
Given: hZ = .30  o3p/0% = .10  r=.10 o} =100
cppr = .10 crz = .05 €13 = .20
€2 = .05 cz3 = .00

a) Set up numerically the selection index equations to predict the

additive genetic value of S. Do not solve the equations. Note 1:
Compute the relationship table first, Note 2: There are no
formulas in the book for exactly this case.

Graduate students only:!

Set up numerically the selection index equations to predict a
record of a full sib of the animals with records in X; (thar full
sib was born at the same time but does not have a record).
solve the equations.

Do not

gv1e
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Final Exam December, 1985 {25 pointe) Multiple trait problem

. . . . 2, The phenotypic and genetic correlations among, and phenotypic
(25 points) The only problem with mixed model equations. standard deviations and heritabilities for, traits A, B and C are
as follows:
1. Weaning weight can be considered as a trait of the calf or as a

trait of the mother. In the second case the trait can have Correlations
repeated records., Age of the mother and sex of calf are known to Phenotypic
influence weaning weight. As a trait of the mother, assume Phenotypic Genetic standard
heritability is .20 and repeatability is .60 with phenotypic A B C A B c deviation Heritability
standard deviation of 50 1b.
A — .80 -.10 — .60 .00 50 .36
As an example of the mixed model equatioms, set up the equations to
estimate the effects of age and sex and to predict additive genetic B - -.20 - -.10 40 .25
value and real producing ability for cows 1, 2, and 3 from the
following records. < - - 10 .16
Weaning A breeder has been selecting for trait A with I, = .36X,. After
weight Cow . _Age of cow Sex of calf gfveral years genetic Tesponse for trait A was estimated to be
400 1 Young Male 4Gp = 100.
Zgg ; 2:ﬁng ;:::i: a) What is the expected correlated genetic change in trait B?
400 3 Young Female
600 3 0ld Male
500 3 old Female

The cowa are Eull sibs as showm:
b) What is the expected correlated genetic response in trait C?
C] «——§

C2 D

=

c) Traits B and € caanot be measured until late in life. Trait B cam

Some hints: be measured on the sire and trait C can be measured on the dam.
. R Assume the economic values for the additive genetic values are
How many age equations? vy =4, vg=2, vo = 0. Set up {but do not aolve) the equations to

How many sex equations?

How many permanent enviroament equations?

How many additive genmetic value equations? L= B1Xs + Boke.
Can you predict real producing ability directly? 1f not, how? Brx, + B2 Bg BBXCD

find the selection index weights for the index

where X is a record on trait A of the animal being evaluated,

The next page is blank and waiting for the appropriate MME. g is a record on trait B of the sire, and

S
Xep, is a record on trait C of the dam.

Assume the sire and dam are unrelated.

The next page is blank.

451¢
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(25 points) {25 pointa)
3. Selection index problem 4. Another selection index problem
a) Rank the following five animals for additive genetic value. Predict the difference in genetic value (a) between animals X and Z
Assume heritability is .40, repeatability is .80, and phenotypic and (b) between animals Y and 2, i.e., Gy = Gz and Gy - Gz.
variance ia 200. Animals Y and Z are full sibs and are unrelated to animal X.
Animal Information (all as differences from the "mean”) Assume:
1 Record on animal 1 = +20, Animal X has 2 records that average +10,
2 Record on sire of 2 = 430, Animal Y has 1 record of +8,

Aunimal 1 is the dam of 2,
Animal Z has 1 record of +6.

3 The dam of animal 3 is animal 1.
w2 = .60 exy = -00
4 Average of single records on 10 progeny of
animal 4 = +19 r = .80 cxz = .00
{Other parents are unrelated.)
02, /02 = .20 cyz = .15
5 Average of single rtecords of 10 half sibs of
animal 5 = +19. u% = 100

(The half sibs are equally related.)
Predict a) Gy - Gz and b) Gy - Gz.

b) Rank animals 2, 3, 4, and 5 for dominance genetic value. All
information needed is given. Think!!

Go to mext page.

q91¢
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4.

<)

d)

{continued)

Compare the accuracy of prediction of Gy - Gz (difference between
unrelated animals) with the accuracy of prediction of Gy - Gz
(difference between Eull sibs). If you were unable to solve a) and
b) show how you would do the calculations.

How will the equations change if the difference in future records
of animals Y and Z is to be predicted?

First Exam October, 1986

(25 points)

1. In the following pedigree, arrows go from parent to progeny.
Animals B(C) and C(B) are the result of splitting an embryo and thus
are related as identical twins.

c(B)

A
A-———anw;:::¥;::33c\\‘\\\‘\\\s
H

c(ni:::::j;z ::::j;r ’/,//}’

A A B(C)

a) Calculate the additive relationships among the eight animals.

b) Which animals are inbred and what are their iobreeding
coefficients?

H.1€
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(25 points)

2.

Animals A and B are mated. The fertilized egg is split so that
four identical c¢lones are born: €, D, E, and F.

A C

D

Let the average of Five adjusted records of A be X, = 40 gad the
average of adjusted single records of C, D, E, F be X, = 30,

Agsume 0%0 = 50 0%1 = 20 0%0 = 30 o% = 200

hZ = .25 = .50.

Set up symbolically and numerically the equations to find the
weights for X, and X, to use to predict the gemetic value of animsl

B. N

(50 points:equal value to all parta)

3.

a)

b)

<)

d)

e)

£)

Animals A an

predicting tru
2 = 40.
o1

A

B
c
D

Anim

d B have records XI, X and X

2'
e value, T. Animals C and D have Xl and X,.

al X X ¥
20 40 10
0 100 50

40 20 Misging

20 40 Missing

The selection index to predict T for A and B is:

The selection

Rank animals A

2
Calculate I

1= .#Oxl 9 s

index equations to determine the weights are:
100b, +  0Ob, + 10b, = 40.5

Dbl + 200b2 + 20b3 = 21.0
.I.Ob1 + 10b2 + aOb3 = 10.0

and B for T.

+ .10x, + .05X

for this index.

Calculate U% for this index.

What is 9r1 fo

For an animal

For an animal

r this index?

with I = 12.5, what is V(T|I = 12.5)?

with T = 2.5, vhat is V(T{I = 2.5)?

3 available for

Agsume

q481¢
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g}

h)

»

k)

1)

m)

n)

Can animals C and D be ranked if X3 is missing? The answer is Second Exam November, 1986
yes!! Write yes for Ffull credit.

1. (25 points)

What is the selection index to be used for animals C and D? More split embryo, identical twinsf!
The additive relationship between full sib parents of identical
twinsg W and 2 1is .50.

Twin W has 5 records (adjusted for p) sveraging, X, = -lo.

Twin Z has 4 records (adjusted for y) averaging, X; = +12.

i B .
Rank animala A, B, C and D for T Given: “fo = 40, 1 = .60, 0% = 100

a) Set up symbolically and numerically (but do not solve) the
equation{s) to find the weight(s) to predict the additive genetic

. in W.
Which index, the one for A and B or the one for C and D, has the value of tuwin

larger r I? (A numerical answer 3as best; a verbal anewer for part
credit.)

Which index haa the larger 027 {A numerical answer is best; a
verbal ansver for part credit.)
b) Will the predicted additive genetic value of twin Z be the same as
for twin W? Why or why aot?

Which index ias associated with the 1larger V(T|I = I)? (A
numerical anawer is bestj a verbal answer for part credit.)
¢} Set up aymbolically and numerically (but do not solve) the
equation{s) to find the weight(s) to predict a future record of twin
W.

Another index has been proposed:
I= .2x1 + .113.

Will thia index have a larger Tp than I = .aoxl + .l.Ox2 + ,05x,7

I 3

(A numerical ansver is best; a verbal answer for part credit.)

d) Will the predicted future record of twin Z be the same as for twin
Calculate V(T - (.ZX1 + .1X3)]. W? Why or why not?

g6 1¢
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2. (25 pointa)

A group of breeders with small herds asked their extension agent why
genetic progress in their herds seems to be less than in a group of
similar herds where all animals are pooled for gselection. The selection
methods are exactly the same for borh sets of breeders. Selection of
males is based on a performance record. There is no selection on
females. The generation interval for males is 2 years and for females
is 3 years. Heritability of the trait is .36 and the addirive genetic
standard deviation is 600.

In the small herds, in each generation each breeder has available
only 5 males from which the top one is selected based on his record.

In the pooled herds, 10,000 males are available from which 20% are
chosen based on their records and randomly asaignmed to the cooperating
herds.

a) Do you have an explanation?

b) Calculate expected genetic gain.

3. (25 points)

Relative economic values {values per phenotypic standard deviatiom)
for traits A and B are 1,000 and -4,000, respectively. Phenotypic and
genetic variances of and covariances between the traits are: (If you
are not sure what the tables mean, see the TA).

Genetie Phenotypic
A B A B
A 50 20 100 50
B 20 40 50 400
a) A breeder measures traits A and B on all animals. Set up

aymbolically and numerically (but do not solve) the equations to
find the smelection index. For the c¢orrect I, o = 350.

b) The breeder tells you thst trait B is measured late in life and
extends the generation interval an extra 3 years: from 3 years to §
years. The breeder asks you if selection is on trait A alone, what
will the economic gain be as compared to waiting for trait B and
selecting using both traits A and B? Assume the gelection intensity
factor is 1.00 for selection, both om I = BAXA + anﬂ and on

1= 10xA (this is the correct selection index if only XA is used; if
you prefer you can use I = X, because the ranking will be the aame;

for I = lOXA, o= 100.

402¢
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c)

d)

You have what you think ia a good idea and suggest to the breeder
the possibility of using the dawm's record for trait B instead of the
animal's record for trait B which would not extend the generation
interval of 3 years. Assume the dam's record for trait B will be
available at the time of selection. The selection index would be:

I =10.8X - 7.8
A "5 (Dam)

with OI = 185. Compare your idea with thar of the breeder.

Compute expected responses for GA and GB for the index in ¢),

1=10.8X, - 7.8
TS TE)

4. (25 points, maximum loss is 4 points for part c).
A dairy manager has recently been told to minimize risk in choosing
bulls. Risk is rather difficult to define in terms I can
understand. The following problem has something to do with risk.
Transmitting ability has been predicted for ten unrelated bulls,
each having 35 daughters, Assume for milk yield that heritability
is .25, repeatability is .50, additive genetic standard deviation is
1,000 1b and phenotypic standard deviation is 2,000 1b. Note that
b= .7,
The indexes for tramsmitting ability are ranked as follows:
Bull: 1 2 3 4 5 6 7 8 9 10
ETA: 1000 900 800 700 600 500 400 300 200 loo
a) What is the probability that the transmitting ability of Bull 1 is
lesa than 5007
b) What is the probability that a record of a future daughter of bull
will be less than 500? Note that b = .7.
¢} To minimize risk, the general recommendation is to use a group of
bulls rather thao a single bull. The dairy manager decides to use
bulls 1, 2, 3, 4, and 5 equally.
What is the probability that the average transmitring ability of the
5 bulls is less than 5007 Note that
-72 Jg2 = g2 - 2 g2 2 - g2
Q 3,007 = 0F - 13,07 * OF 9%
d) What is the probability iFf each of the S bulls has 1 Future daughter

that the 5 daughters will average less than +500 as compared to
daughters of bulls with ETA = 07

g1¢¢
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Final Exam December, 1986

1. (25 points} More identical twins and split embryos!!

/ S (sire)

R (d 1tipl lated
(dam) multiple ovulate »Egg 1, Egg 2

3 splits 2 splits
{(ideatical genotypes) (identical twins)

/N
/

F

Given: 100 = additive genetic variance
60 = additive by additive genmetic variance
40 = dowinance genetic variance
50 = environmental covariance between members of the same clone

20 = envirommental covariance between full sibs from multiple
ovulation

.50 = repeatability

500 = phenotypic variance
The average of single records of A, B, and C = (XA X4 Kc)/3 = 150 = X
The average of single records of D and E = (X + KE)IZ = 100 = X,.

a) Set vp (but do not solve) the equations to find the weights to
predict the additive genetic value of animal F. The parents of F
are B and D.

b) What is the numerical value of U% for the evaluation in a)?

1°

a)

b)

c)

(25 points)

i : g2 = 2 . 2 =
Given: Ulo 100 020 40 9% 400
h? = .25 r= .50
xA = average of S records on animal A = +24

X

= average of 2 records on animal B = +]S

A and B are unrelated.

To

To

To

To

To

predict the genetic value of animal A:
IA,G - bA,GxA = (7/12)(24) = 14
predict the genetic value of animal B:
IB,G = bB,GxB = (7/15)(15) = 7
predict real producing ability of animal A:
IA,R - bA,RxA = (5/6)(24) = 20
predict real producing ability of aniwmal B:
IB,R - bB’RxB = (2/3)(15) = 10
predict the difference in future records of A and B:

IA—B,F hd beA + beB = (5/6)(24) - (2/3)}(15) = 10

What is the probability that the genetic value of animal B is
greater than 0?

What is the probability that a future record of animal B will be
greater than 207

What is the probsability that a future record of animal A will be
greater than a future record of animal B?

47t
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3. (25 points)
Given: X, = single record on trait A for animal
Xz = pingle record on trait B for aaimal

X, = single record onm trait A for aniwmal

3. Continued
J. Another breeder assigns net economic values of $.50, $2.00, and
$6.00 to traits A, B, and C, For those economic values the index for
J. animal K is I, = .341X + .087X, + .825X..
K 1 2 3
K. ‘ ¢) What are the relative economic values?

Net econcmic values of traits A, B, and C are 0, 0, and $10, per unit of

the three traita, respectively.

Animals J and X are full sibs of different sexes.

Variances and covariances

Genetic
A B
A: 100 10 60 Az
B: 10 200 =50 B:
C: 60 =50 - 150 C:

a)} Set up {(but do not solve) the equations
genetic value of animal K.

b)  What are the relative economic values?

Continued on next page

Phenotypic a)
A B _C
500 40 60
40 400 =50
60 =30 600

to predict the economic

e)

£)

Agsume IK = 100. What is the 682 symmetrical confidence range for

T = $.50(G,) + $2.00(6,) + $6.00(G_) given I = $100?

Calculate the expected response in overall economic value for

selection of the best 141.

Calculate the expected correlated genetic response in trait C for
selection of the best 154%.

ae7¢
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4.

(2]
]

-
L]

@ ~N N W N

a)

(25 points)

SY is the sire of bulls SA and SB'

Sx is the maternal grandsire of bulls SA and Sy and is the sire of SC'

Ser Sp» and S, have progeny with weaning weight records.

The age of the dam of each progeny is known and is thought to affect
weaning weight,

The sex of each progeny is known and is thought to affect weaning weight
(1 = female, 2 = male).

Heritability is .20.

Phenotypic variance is (50 1b)2,

For this illustrative problem, assume only the following records are
available:

Sire Age of dam (yr) Sex Weaning weight
A 2 1 400
A 2 2 440
A 3 2 500
B 3 1 550
B 3 1 510
c 2 2 450
C 2 2 420
C 3 1 460

Write the wodel for a weaniag weight record.

Coantinued on next page

b)

¢)

Set up but do not solve the mixed model equations to predict the

transmitting abilities of the bulls.

The European market wants sire evaluations in terws of estimated

breeding values.

How can you provide EBV's?

g5c¢e
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First Exam October, 1987 (25 points)
2a. Assume Tom Short has calculated the covarlance between paternal half-
sibs (same father, different mothers) to be 1000.
{25 points) Assume Kevin Wade has calculated the covariance between maternal half-.
1. Two regular systems of mating to increase inbreeding rapidly are &) marings sibs (same mother, different fathers) to be 1500.
of a sire to his daughters, granddaughters, etc., and b) matings to full
sibs. These systems are shown below. Assume the calculations are the population covariances between

paternal half-sibs and maternal half-sibs.

a) A
W Can you provide an explanaction for why the two covariances are not
B C D E

—_— =E equal?

A=

L T =V ——2X

For a) i) Calculate the inbreeding coefficients of €, D, and E:

2b. Assume Felipe Ruiz has calculated the covarlance between daughters and
dams to be 2500 and also has calculaced the covariance between full
sibs (same father amd mother) to be 3000. Assume these are populacion
covariances,

Can you provide an explanation for why the two covariances are not
i1) 1Is there a regular pattern of inecrease in the inbreeding equal?
coefficient?

i11) 1f A is mated to E to produce G, what will be the inbreeding
coefficient of G?

For b) iv) Calculate the inbreeding coefficients of 5, U, and W.
v) Is there a regular pattern of increase in the inbreeding
coefficient?

vi) If W is mated to X to produce Y, what will be the inbreeding
coefficient of Y?

49¢¢
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(25 points) 4. Assume Xg = 20 is the average of single records of 5 full sibs
3. Given: (littermates) of animal V that has record Xy = 10.
Assume 02 = 400, h? = .40, and environmental covariance between records of
h? = .40 081 - 100 full sibs is 120.
2 = 200 o3 =~ 1000
720 X a) Predict the additive genetic value of animal V.
o2 = 50
30
Relatives (x and y) axy dxy cxy
A, B 172 1/4 .10
Cc, D 172 0 .05
C, E 1/4 0 .20
G, H 1+ 1/4 0 0
What will be the covarfance: b) What is o027

T

a) between a recoxd of A and a record of B?

c¢) What 1is Tor for 1 = bgXg + byXy, the index for part a)?

b) between a record of C and a record of D?

¢} Dbetween a record of C and a record of E? d) Predict the additive genmetic value of V from Xy.

d) between a record of G and a record of H?

e) What is the rp, for I = bXg for b ~ .107

(2 points; included in 25)
e) What is the correlation between two records on A?

£) Can you calculate the covariance between a racord of D and a
record of E from the information given? 1If so, do so.

qaice
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Second Exam November, 1987

(70 points). If you are not sure of how to solve any part
numerically, please show symbolically (and numerically as much as
possible) how to work the part.

1. For three traits in order of trait 1, 2, and 3:
the variances (diagonals) and covariances (offdiagonals)

are: phenotypic genetic
100 10 30 50 -10 30
10 400 60 -10 100 60
30 60 900 30 60 200

If you are confused by this description of the variances and
covariances, check with a TA.

If v; = 2 and v; = 3, the selection index using only X; and X; is
I = .6316Xy + .6842X;.

a) What are the relative economic values for traits 1, 2,
and 32

b) What is the variance of the index?

<) what is the variance of T?

d) What is the expected superiority in T = v,Gy + V56, if
the best 1 of 10 is selected based on I?

e) What is the expected correlated change in G3 if
selection is based on I ?

1. (continued)

) Given for an animal that: X; = 10, X; = 20, and X3 =
30; what is the probability that T is greater than zero
using I ?

A stubborn friend of mine thinks that an easier method of
selection is to use Iy = 4X5 .
g} What is the variance of I3?

h) What is the expected superiority in T = v3G; + vaGy if
the best 1 of 10 is selected based on I5?

i) What is the expected correlated change in G; if
selection is based on Iy?

Assume if I = .6316X; + .6842X, is used that the generation
interval is 4 years and if I3 = 4X3 is used that the
generation interval is 2 years for both males and females.
3) Calculate expected gain per year in T = 26y + 3G, for
the two indexes with selection of the best 1 of 10.
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(30 points) Problem 2 is a single trait problem.

2.

a)

Assunme:
Phenotypic variance is 100
Heritability is .25
Dominance variance is 10

Environmental covariance
between full sibs is 5

Environmental covariance
between animals that mate is 20

Environmental covariance
between parent and progeny is 0

Show clearly how to find the selection index to predict the
average additive genetic yalue of two full sibs. One of the
full sibs has a record (X;). The average of single records
of the two parents (X;)} is also available. Do not solve for
the weights!!!

2. (continued)
b) Show clearly how to find the selection index to predict the

addjtive genetic_value for the full sib that has a record

using X; and X;. Do not solve for the weights!!!.

c) Indicate clearly how you would change either part a) or
part b) to predict the record of the full sib that does not
have a record. Do not solve for the weights!!!

€62t
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Final Exam December, 1987

(25 points) This is a single trait problem.

Animal D is the dam of animal c.

The average of 4 records of animal D is Xp = +12.

Animal Z is the sire of animal C.

Animals A and B are full sibs.

The average of single records of animals A and B is Xy = +8.
The parents of A and B are animals S and D.

The inbreeding coefficient of animal ¢ is Fc = .25.

Assune:
= 20 16

8 = 16 o2 = 100

2 2 — 2 = 2
%10 %01 %20 °PE X
The environmental covariance between full sibs is
.04(100) = 4.

a) Show clearly how to predict the additive genetic value
of animal C. Do not solve any equations.

b) Show clearly how to predict a future record of C.

<)

a)

e)

f)

CH

h)

What is'q§ for part a) and for part b)?

Show clearly how to compute r%I
part b).

for part a) and for

What is heritability for this trait?

What is repeatability for this trait?

What is the expected covariance between a record of C
and a record of a progeny of C?

What is the expected correlation between a record of
animal ¢ and another record of animal C?
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(25 peints) This is a two trait problem.

2.

a)

b)

Records are available for trait one (growth rate) on an
animal (X;) and on trait two (loin eye area after slaughter)
on a full sib (Xj3).

The phenotypic variances are: for trait one, 4.00; and for
trait two, .50. The phenotypic correlation is .80 between
trait one and trait two on the same animal.

The heritabilities are: for trait one, .40; and for trait
two, .60. The genetic correlation between the genetic value
for trait one and trait two on the same animal is .60.

Assume the economic values are: for trait one, 6; and for
trait two, 12.

Show clearly how to find the selection index to predict
additive genetic wvalue for trait one. Use trait one
measured on the animal (X;) and trait two measured on its
full sib (X3). Do not solve for the weights!!!

Show clearly how to find the selection index to predict
additive genetic value for trait two. Use trait one
measured on the animal (X;) and trait two measured on its
full sib (X;)}. Do not solve for the weights!!!

2.

c)

d)

(Continued)

Show clearly how to find the selection index to predict
T = 6 (additive genetic value for trait one) + 12 (additive
genetic value for trait two). Use trait one measured on the:
animal (X;) and trait two measured on its full sib (X;). Do
not solve for the weights!!!

Show clearly what needs to be changed in c) if X; 1s trait
one and X, is the record for trait two both measured on the
animal belng evaluated, with T = 6Gy + 12G,, where Gj is the
additive genetic value for trait i. The full sib has no
records. Do not solve for the weights!!!
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(25 points) This is a one trait problem.

If you cannot work a part of this problem that is required

for a later part, indicate clearly symbolically (and numerically
as much as possible) how to do the later part.

3.

Animal G has an adjusted record of Xg = 20. A maternal
half-sib, H, has a record of Xy = -16. (G and H have the
same mother and d&ifferent fathers.)

Assume o} = 400, h? = .25, SGH = .1875

a) Predict the additive genetic value of G using X and
Xy- You will need to solve for the selection index
weights.

b) What is the r,, for this index (a)?

TI

3.

e)

(Continued)

c) What is the probability that the additive genetic value
of G is greater than 87

d) An approximate index is to weight the records by the
relationships between the animal! with the records angd
the animal being evaluated, that is,

= 2 2
I+ = a, h?X; + a, h?X; .

1
For an animal and its maternal half-sib, the
approximate index is:

I* = ,25(20) + (.25)(.25)(~-16) = 4

What is the r,

o £OF this index (I*)?

wWhat is the correlation between the index from part a) and
the index from part 4)?

4zee



Veee

(25 points)

4.

Cytoplesmic effects are thought to be passed directly from

mother to daughter. Thus, animals that trace directly from

female to female to the same female will have cytoplasmic
effects alike. Assume the variance of cytoplasmic effects
is aé.

a) For the following set of data, set up the mixed model
equations to predict the additive genetic value for
each animal with a record and also the cytoplasmic
effect for each animal, A, B, C, and D. Pretend all

animals are unrelated. All animals with records are
females. Assume management is a fixed effect on the
records.
Source of

Animal Management cytoplasnm Recoxd

A Galton X 120

B Galton W 110

c Pollak X 90

D Pollak A 80

Assume h? = ,40, r = .60, aé = .10.1}’,, u; = 400.

(Continued)

b) Now assume the diagram describes the relationships
among the animals.

Dto—r———— A «————X
B Z Lo W
Ct—=8§
Show clearly (symbolically and numerically as much as
possible) how to modify part a) to set up the mixed model
equations to predict additive genetic values for animals A,

B, ¢, D, S, and X and the cytoplasmic values for A, B, ¢, D,
X, and W.

geee
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