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PREFACE 

As you will soon realize, this material is simply a compilation 
of mimeographed summary material which was prepared to take the 
place of a textbook for an upper-class and graduate student course 
in Animal Breeding. Consequently, these summaries are meant to 
supplement lectures, not replace them. The coverage is also of 
variable depth; the introductory summaries are quite sketchy while 
the summaries covering the selection index are more complete than 
can be found elsewhere. Most of the ideas expressed concerning the 
selection index have been due, in chronological order, to Sewall Wright, 
Jay Lush, and Charles Henderson, truly intellectual and practically-
oriented giants in the development of modern animal breeding. In 
common with most written material, these pages will contain their 
share of errors--both typographical and of substance, Hopefully, neither 
category of error will be frequent enough to cause much harm. Finally, 
a word about studying this type of material, Reading some of this 
jargon will at first have little meaning to many people unfamiliar with 
the terms and symbols. Working simple problems with pencil and paper 
is for most people the only way to gain an understanding of the concepts. 
Laboratory exercises as well as the sample exam problems will aid in this 
endeavor. And, do not be afraid to test your solutions by a time-
tried maxim--the answers should make sense. 

Good luck. 

Ithaca, New York 

July, 1974 

New topics which have been added in this revision include the 
selection problem with categorical traits and the effect of the fetus 
on performance of the dam, A major addition is an introduction to 
best linear unbiased prediction using mixed model equations, After 
working with expected values for some 12 weeks in studying the selection 
index, least squares equations are easy to write. Modification of 
these to obtain mixed model equations and, thus, best linear unbiased 
predictions is also relatively easy, The use of mixed model equations 
as pioneered by Henderson provide the statistical foundation for 
modern animal breeding which must jointly estimate adjustments for 
fixed effects and predict random effects such as transmitting abilities 
of dairy sires, This introduction has been tried for three to four 
lectures in three different years with variable success. An under-
standing of the ideas, however, is essential for professional animal 
breeders. 

January, 1979 

i 



CONTENTS 

Subject 

Preface 

Contents 

Selected bibliography (books) 

Summary I. Quantifying the Simple Mendelian Model 
Simple quantitative model 
Breeding values 
Summary of mean and variance 

Summary II. Population Genetics 
Hardy-Weinberg law 
Estimation of gene frequencies 
Frequencies of composite genotypes 
Effect of selection 
Detection of carriers of recessive genes 

Summary III. Regression and Correlation 
Regression and correlation 
Parent-progeny regression for the simple genetic 
Heritability for the simple genetic model 
Appendix 

model 

Derivation of additive and dominance variance 
Parent-progeny regression with dominance 

Summary IV. The Basis of Relationships 
Identity by descent 
Additive relationship 
Dominance relationship 
Inbreeding coefficient 
Tabular method of computing relationships 
Appendix 

Probability of genes identical 
Probability of genotypes identical 
Inbreeding coefficient 
Tabular method 

Summary V. Quantitative Genetics: The Mean, Standard 
Deviation, and Expected Values 

Mean and variance 
Covariance and correlation 
Rules for expected values 

ii 

Page 

i 

ii 

vi 

1 
1 
3 
4 

5 
5 
5 
7 
7 

11 

21 
21 
22 
23 
25 

25 
26 

27 
27 
28 
32 
33 
35 
38 

38 
38 
39 
40 

41 

41 
43 
45 



Subject 

Summary VI. Genetic Values, Govariance, and 
Expected Values 

Definition of genetic values 
Genetic covariances among relatives 
Expected values of covariances among relatives 
Appendix 

Additive genetic variance 
Additive by additive genetic variance 

Summary VII. The Selection Index 
The selection problem 
Finding the weights 
Properties of the index 
Models for determining covariances between records 
How to determine the variance of an average 
General form of the covariance between averages 
How to determine the ox T 
Variances of X's i 

Several records on a relative 
Groups of relatives with multiple records 
Inbred animals 

Computation of rfI 
Simplified equations 
Approximation to index when h 2 is small 
Index not as a deviation 
Table of weights and rTI for various sets of relatives 

Summary VIII. Sire Evaluation 
Predicting genetic value 
Predicting future daughters 
Predicting one-half genetic value 
Environmental covariance 
Correction for mates 
Progeny with different numbers of records 
Full sib progeny 

Summary IX. Probability Statements about True Values 
Areas under the normal distribution 
Table of areas 
Application to predicting true value 

For genetic value 
For a future record 
For differences in genetic value 

Summary of distributions associated with the 
selection index 

iii 

Page 

50 

59 

85 

94 

50 
52 
54 
57 

59 
60 
63 
65 
67 
68 
70 
74 

78 
79 
82 
82 
84 

85 
86 
87 
87 
89 
91 
93 

94 
96 
99 

104 

57 
58 

74 
76 
78 

100 
101 
103 



Subject 

Swnmary X. Superiority of the Selected Group 
The normal distribution 
Tables of selection intensity factors 
Genetic superiority of selected groups 
Balancing selection intensity and accuracy 
Genetic value of progeny 
Genetic improvement per year 

Selection Index Flow Chart 

Swnmary XI. Selection with More than One Trait Measured 
Genetic, environmental, and phenotypic correlations 
Overall genetic value 
Methods to predict overall genetic value 

Index each trait separately 
Index overall value directly 

Expected response and correlated responses 
Examples 
Approximate procedure for multiple trait selection 
Using all traits on all relatives 

Variances and covariances of X's 
Response from selection 
Approximate procedure 
Examples 

Methods using standardized records 
Correlations among standardized records 
Equivalences in using standardized and 

nonstandardized records 
Finding the weights 
Correlated responses 
Examples 

Another standardization 

Swnmary XII. Selection Index for Categorical Data 
Example 

Swnmary XIII. Selection for Embedded Traits 
Selection with maternal effects 

Genetic covariances between relatives 
Examples 

Selection for direct or maternal effects 
Correlated responses 
Examples 

Joint selection for direct and maternal effects 
Examples 

Selection when traits influenced by grandmaternal 
and maternal effects 

The fetal effects model (sire of fetus effect) 
Cytoplasmic effects model 

Appendix 

iv 

Page 

106 
106 
108 
110 
110 
112 
112 

114 

115 
115 
116 
117 

117 
119 

120 
121 
124 
127 

129 
130 
131 
131 

135 
136 

137 
138 
139 
140 

141 

143 
146 

148 
148 

149 
150 

154 
155 
156 

158 
160 

162 
166 
171 

178 



Subject 

Summary XIV. Nonlinear Economic Value and 
Restricted Selection 

Selection for traits with nonlinear economic value 
General procedure for predicting quadratic merit 
Restricted selection index 

Summary XV. Index and Economic Values in Retrospect 
The index in retrospect 
Economic values in retrospect 
An empirical selection index 
Economic values form empirical covariances 
Calculation of relative selection emphasis based on 

selection intensity 

Summary XVI. Prediction from Linear Mixed Models 
Rules for writing mixed model equations 
Interpretation of solutions 
Examples 

One-way fixed model 
A little about matrix algebra 
One-way, ANIMAL MODEL 
ANIMAL MODEL with repeated records 
One-way, SIRE MODEL 
Two-way, fixed and SIRE MODEL 
ANIMAL MODEL with animals related 
ANIMAL MODEL augmented for relatives without 

records 
Sire evaluation with ANIMAL MODEL 
Sire evaluation with ANIMAL MODEL ignoring female 

relationships 
SIRE MODEL ignoring mates and female relationships 
SIRE MODEL ignoring female relationships 

Variance of prediction errors and rTI for ANIMAL 
MODEL with repeated records 

Genetic value 
Producing ability 

Variance of prediction errors for other models 
Variance of prediction errors for models with 

fixed effects 
Numerical example for augmented animal model 

with repeated records and fixed factors 
Solving least squares and mixed model equations 

by iteration 
Computing algorithm for calculating coefficients 

and right-hand sides for least squares 
equations 

Flow Chart for Mixed Model Equations 

V 

180 

190 

197 

253 

180 
182 
184 

190 
192 
192 
193 

194 

199 
200 
201 

238 

240 

240 

242 

249 

252 

201 
206 
212 
214 
217 
219 
223 

225 
228 

232 
234 
236 

239 
239 



Summary XVII. Computing the Inverse of the Relationship 
Matrix 255 

A Sampling of Selected Papers 

Exam Questions 

vi 

260 

264A 



SELECTED BIBLIOGRAPHY OF POSSIBLE INTEREST 

Auerbach, C. The Science of Genetics. Paper. Harper and Row, New York. 1961. 

Becker, W. A. Manual of Procedures in Quantitative Genetics. Mimeo. 
Bookstore, Washington State University, Pullman. 1967. 

Bogart, R. Improvement of Livestock. The Macmillan Company, New York. 1959. 

Brewbaker, J. L. Agricultural 
Englewood Cliffs, New Jersey. 

Genetics. 
1964. 

Paper. Prentice-Hall, Inc. 

Collection. 
ductions. 

Papers on Quantitative Genetics and Related Topics. Repro-
Department of Genetics, North Carolina State College, Raleigh. 

Crow, J. F. 
Genetics. 

Basic Concepts in Population, Quantitative and Evolutionary 
W. H. Freeman and Company, New York. 1986. 

Falconer, D. S. Introduction to Quantitative Genetics. 2nd ed. Longman, New 
York. 1981. 

Hutt, F. B. Animal Genetics. The Ronald Press Company, New York. 1964. 

Hutt, F. B. Genetic Resistance to Disease in Domestic Animals. Cornell 
University Press. Ithaca, New York. 1958. 

Johansson, I. Genetic Aspects of Dairy Cattle Breeding. University of 
Illinois Press, Urbana. 1961. 

Johansson, I., and J. Rendel. 
and Company, San Francisco. 

Genetics and Animal Breeding. 
1968. 

W. H. Freeman 

Lasley, J. F. Genetics of Livestock Improvement. 3rd ed. Prentice-Hall, 
Inc., Englewood Cliffs, New Jersey. 1978. 

Li, C. C. Population Genetics. University of Chicago Press, Chicago, 
Illinois. 1955. 

Lush, J. L. Animal Breeding Plans. 3rd ed. Iowa State College Press, Ames. 
1945. 

Mather, W. B. Principles of Quantitative Genetics. 
Company, Minneapolis, Minnesota. 1964. 

Pirchner, Franz. Population Genetics in Animal Breeding. 
Company, San Francisco. 1964. 

Van Vleck, L. D., E. J. Pollak, and E. A. B. Oltenacu. 
Animal Sciences. W. H. Freeman and Company, New York. 

Burgess Publishing 

W. H. Freeman and 

Genetics for the 
1987. 

Warwick, E. J., and J. E. Legates. 7th ed. Breeding and Improvement of Farm 
Animals. McGraw-Hill Book Company, Inc., New York. 1979. 

vii 





Summary I 

QUANTIFYING THE SIMPLE MENDELIAN MODEL 

The usual genetic model is 

Phenotype 
p = 

Genotype+ Environment, 
G + E. 

The simplest Mendelian model has E = 0 and only three possible genotypes for 

one locus with two alleles, A and a, 

In a random mating population, if the gene frequency of an allele, A, at 

a particular locus is p and if there is only one other allele, a, which has 

frequency, 1 - p q, then the expected frequencies of the three possible 

genotypes are by the Hardy-Weinberg law 

Genotype Frequency = fi Value= Yi 
AA p2 u 
Aa 2pq [ (u+v)/2] + d 
aa q2 V 

We can assign arbitrary values to the genotypes as shown. The valued 

is for the dominance deviation of the value of the heterozygote from the 

average value of the homozygotes. There are several possible kinds of domi-

nance depending on the size of d: if d = 0, we say that there is no dominance 

or that there is lack of dominance or that we have an additive effect_s model; 

if d = (u-v)/2, we say that there is complete dominance; and ifjdj> (u-v)/2, 

we say that there is overdominance, 

Population mean 

The definition of the population mean or average, µ (mu), is 

--1--



n 
( E 
i=l 

--2--

where n is the number of different genotypes. Usually, Efi = 1 but will not 

if certain genotypes are discarded due to selection. 

The mean for the simplest Mendelian model is, if there is no selection, 

µ = v + p(u-v), if d = O; and 
µ = v + p(u-v) + 2pqd, if d 0. 

The population average will be maximum when p = 1 if u > v and d ::._ (u-v)/2. 

If d > (u-v)/2 (overdominance), then the population average will be maximum 

when p = {[(u-v)/2] + d}/2d as can be found by equating to zero the deriva-

tive ofµ with respect top. 

Population variance 

The definition of the population variance, a2 (sigma squared) is 

a2 = 

1, then 

The variance is a standard method of describing variability which is recog-

nized by most, if not all, research workers. Note that the variance cannot 

be negative since it is an average of squared deviations from the mean. 

The variance will be more completely discussed in Summary v. 



--3--

Number of genotypes 

If there are n alleles at a locus, the number of possible genotypes, N, 

is N = n(n+l)/2. Note that the number of phenotypes cannot be greater than 

the number of genotypes and may be less. 

Breeding value under simple Mendelian model 

The frequencies of progeny of the three parental genotypes under random 

mating are described in the following table. 

Parent Parent Progeny Frequency 
Genotipe Freguenci AA Aa 

AA p2 p q 
Aa 2pq p/2 1/2 
aa q2 0 p 

The progeny means of the three parental genotypes are 

µAA= pu + q{((u+v)/2] + d}, 

µAa = .Spu + .S{[(u+v)/2] + d} + .Sqv, 

µaa = p{[(u+v)/2] + d} + qv. 

aa 
0 

q/2 
q 

Note: (1) that µA = (µAA+ µ )/2 for any values of p and d, (2) that breeding a u 
value (progeny mean) of the parental genotype depends on gene frequency (even 

if u > v, µAA may be less thanµ when pis small), and (3) that the progeny aa 
frequencies are from mating a particular parent type at random to the rest 

of the population. For example, Aa x population gives from the gametic arrays 

the progeny frequencies, 

[(1/2)(A) + (1/2)(a)] x [(p)(A) + (q)(a)J 

! 
(p/2)(AA) + (1/2)(Aa) + (q/2)(aa) . 
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Summary of Mean and Variance 

Mean Variance Standard Deviation 
Symbols: 

Population µx a2 V(x) a x' X 

Sample µ x' X a2 s2 a x' s x' X X 

Units units units squared units 

Computing formulas: Alternate Computing 
Forms for Variance 

Nonfrequency data: 
l:Xi E(Xi-µx)2 EX2-Nµ2 

Population 
i X = µx N N N 

l:X. E(X.-µ ) 2 EX2-Nµ2 
Sample l l X i X -- = µx = X N N-1 N-1 

EX2-(EX) 2 
i N 
N-1 

Frequency data: 

Population 
l:fiyi Efi (y i-µ)2 Efiy~-(Efi)µ2 

Efi µy Efi Efi 

if Efi=l, Ef y2-µ2 
i i y 

Efiy i 
[
ui (yi-Cy)2] [:...B.....) 

As above, but multiply 

Sample 
N = µy = y by N-1 Ef i Efi N-1 
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Sunnnary II 

SUMMARY OF MATERIAL ON POPULATION GENETICS 

The Hardy-Weinberg law 

If in a large population, pis the frequency of gene A and q is the fre-

quency of the other allele, a, then after one generation of random mating the 

genotypes will have and will continue to have in future generations the fre-

quencies p2 for AA, 2pq for Aa, and q2 for aa. Note that p + q = 1. Hence, 

q = 1 - p, etc. 

This principle can be extended to the case of n alleles, Ai' i=l, ... , n, 

with frequencies pi' i=l, ... , n, by computing the frequencies of the geno-

types obtained from multiplying the gametic array for males by the gametic 

array for females, (p1A1 + 

and their frequencies will be 

homozygotes 

heterozygotes 

n 
Note that c pi= 1. 

i=l 

Estimation of gene frequencies 

Generally, 

+ p A) • (p1A1 + ... + p A). The genotypes n n n n 

with frequencies 

with frequencies 

2 pi for i = 1, ... , n; 

No. of that allele frequency of some allele= -=----c----.=------.,--,....---Total no. of genes at that locus • 

However, the problem of estimation is illustrated in the following special cases. 

(1) Dominance 

We can estimate the frequency of a recessive gene in a random 

mating population from the knowledge that a fraction q2 of the popula-

tion is expected to be homozygous recessive. Then, 
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q =/no.recessive types/total no. of animals, 

and p = 1 - q. 

In the case of multiple alleles with complete dominance, we 

have to estimate the frequency of the most recessive allele first. 

For example, suppose A1 dominant to A2 and A3 , and A2 dominant to 

GenotyPes 

AlAl 
AlA2 

AlA3 
A2A2 
A2A3 
A3A3 

Phenotypes Expected Frequency 

Then, p 3 = /no. A3 type/total no .. Plug the estimate of p3 into the 

next equation, p~ + 2p2p3 no. A2 type/total no., and solve for Pz• 

Substitute the estimates of p 3 and Pz into the remaining equation, 

Pi+ 2p1p2 + 2p1p3 = no. A1 type/total no., and solve for p1 , or find 

p1 by difference since p1 + Pz + p3 = 1, or p1 = 1 - Pz - p 3 . 

(2) Incomplete dominance 

In this case the heterozygotes are distinguishable from the 

homozygotes and the gene frequencies can be found from the general 

formula whether or not the population is randomly mating. For example, 

with 3 alleles, 

No. A1 genes 
P1 Total no. genes 

Each A1A1 genotype contributes 2A1 genes; each A1A2 genotype contri-

butes 1A1 gene; and each A1A3 genotype contributes 1A1 gene. Then, 
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2(no. of A1A1 animals)+ no. of A1A2 +no.of A1A3 
2(total no. of animals) 

and Pz and p3 may be estimated similarly. 

Frequencies of composite genotypes 

The frequencies of composite genotypes (in a random mating population 

which is at equilibrium with respect to linkage relations) equal the products 

of the single locus frequencies. For example, if the frequencies of A1 and 

A2 are p1 and p2 , respectively, and the frequencies of B1 and B2 are r 1 and 

r 2 , respectively, then the frequencies of the composite (two-locus) genotypes 

will be 

Genotypes Frequencies 

AlAlBlBl 
2 2 

plrl 

AlA1B1B2 
2 p1 (2r 1r 2) 

AlA1B2B2 p2r2 
1 2 

AlA2B1B1 (Zplp2)rf 

AlA2B1B2 (2plp2) (2rl r2) 

AlA2B2B2 (Zplp2)r~ 

A2A2B1Bl 
2 2 

p2rl 

A2A2B1B2 
2 p2(2r 1r 2) 

A2A2B2B2 p2r2 
2 2 

The extension to more than 2 alleles per locus follows the same pattern. 

Effect of selection on gene frequencies 

Selection may change the frequency of a certain gene in a population, 

Gene frequency after selection (among the survivors and in the next generation) 

depends on the fitness of the genotypes and the gene frequencies in the 
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current generation. Fitness of a genotype is defined as the proportion of the 

genotype which reproduces relative to the other genotypes; swill be the frac-

tion of AA genotypes which do not reproduce, r the fraction of Aa genotypes, 

and t the fraction of aa genotypes, where 1 ;:_ s, rand t > 0. In general, the 

frequency of gene a after selection is 

no. of a genes among survivors 
2(no. of survivors) 

The change in gene frequency from one generation to another is the difference 

in gene frequencies between the generations, i.e., 

where the subscripts refer to generations n and n-1. 

However, in the following special cases, some simplification may be made, 

(1) No homozygous recessive individuals reproduce (zero fitness for 

aa type) 

The composition of the initial generation (n = 0) is 

Relative Freq, 
Genotyee Frequency Fitness of Survivors 

AA p2 1-s 1 p2 

Aa 2pq 1-r 1 2pq 
aa q2 1-t 0 0 

Total 1 p2 + 2pq = 

Then, by the general equation, 

no. of a genes in survivors 
total no. genes in survivors ' 

~~cc2._e_.q-c-(n"'o'--i--. ~o'-f_a_n_i,..m_a_l_,s~)__,----,--= .....L 
2(p2 + 2pq)(no. of animals) l+q 

1 - q2 
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If this procedure is followed through n generations, the frequency 

of the allele a will be q = q/(1 + nq), where q was the original n 
gene frequency of the recessive gene. 

Corollary: The number of generations, n, required to 

go from a gene frequency of q to one of qt 

is given by n = (1/qt) - (1/q). 

(2) Selection in favor of heterozygotes 

The composition of the initial generation (n = 0) before and 

after selection is 

Relative Freq. 
Genot;yEe Frequenc;y Fitness of Survivors 

AA p2 1-s p2 (1-s) 
Aa 2pq 1 2pq 
aa q2 1-t q2 (1-t) 

Total 1 l-sp 2-tq 2 

Application of the general procedure for finding the new gene fre-

quency, q1 , gives 

The change in gene frequency from the zero generation to the next is 

i\q = pq(sp-tq) 
l-sp2-tq2 

When i\q = O, there will be no change in gene frequency from the (n-l) st 

th generation to then- generation and the population will be at equili-

brium. This will be true when sp - tq = 0. Thus, equilibrium gene 

frequency will be reached when p = t/(s+t) and q = s/(s+t). 
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(3) Partial selection against homozygous recessives 

The composition of the initial generation before and after 

selection is 

Relative Freq. 
Genotl:".ee Freguencl:". Fitness of Survivors 

AA p2 1 p2 

Aa 2pq 1 2pq 

aa q2 1-t q2(1-t) 

Total 1 l-tq 2 

The gene frequency, q1 , in the survivors is by the general procedure 

= q(l-tg) and ql l-tq2 ' 
liq q - q -tq 2 (1-q) 

1 l-tq2 

(4) Selection against heterozygotes 

The composition of the initial generation before and after 

selection is 

Relative Freq. 
Genotype Frequency Fitness of Survivors 

AA p2 1 p2 

Aa 2pq 1-r 2pq(l-r) 

aa q2 1 q2 

Total 1 l-2pqr 

By the general procedure, the gene frequency, q1 , in the survivors is 

g(l-re) and ql 1-Zrpq ' 

liq = ql - q 
reg(2g-l) 

1-Zrpq 

(5) Changes in gene frequencies with other combinations nf fitness values 

can be worked out similarly by the general procedure, 
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Detection of carriers of recessive genes 

The confidence of detection depends on the probability of obtaining at 

least one affected offspring inn offspring if the suspected carrier is actually 

a carrier. This is one minus the probability of obtaining all normal off-

spring inn offspring. 

The general testing procedure is to mate a suspected carrier to a group 

of females which produce a fraction, P, A genes and a fraction, Q, a genes. 

Then, if the suspect is really a carrier, the probability that all n offspring 
n n are normal is [1 - (Q/2)) and the confidence of detection is 1 - [l - (Q/2)) . 

Some special cases are: 

(1) Mating a carrier male to known homozygous recessive females 

The probability of obtaining all normal offspring is (1/2)n. 

Therefore, the "confidence" of detecting him as a carrier is 1 - (1/2)n. 

Note that Q = 1 and that 1 - (0/2) = 1/2. 

(2) Mating a carrier male to known carrier (heterozygous) females 

The "confidence" of detectiQg him as a carrier is 1 - (3/4)n. 

Note that Q = 1/2 and that 1 - (Q/2) = 3/4. 

(3) Mating a carrier male to his own daughters. 

The "confidence" of detecting him as a carrier is 1 - (7/8)n, 

Note that Q = 1/4 and that 1 - (Q/2) = 7/8. This is under the assump-

tion that the dams were all homozygous for the normal allele. 

(4) Mating a carrier male at random in a population where the frequency 

of the recessive gene is q in the previous generation 

The "confidence" of detecting him as a carrier is 1 - [(2+q)/2(1+q)]n. 

Note that Q = q/(l+q) since none of the homozygous recessive females 

will be mated. 

Note well that even one affected offspring marks a suspected carrier as a 

carrier. All normal offspring will never completely rule out the possibility 
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that a male is a carrier although the probability of detection may be quite 

high. 

Table 1 shows the confidence of detection of carrier males for testing 

systems 1, 2, 3, and 4. A further discussion of method 4 follows. 

AI and undesirable recessives 

Method 4 of the preceding section can be used to lower the frequency of 

all undesirable genes by progeny testing all males at random in the population 

before heavy use through artificial insemination. The following describes 

how such a program would work for dairy cattle where AI is widely used, 

The essential question is, "Can AI be used to find carrier bulls before 

they spread undesirable genes?" The answer is yes since any good young sire 

sampling program will provide for each young bull producing at least 200 calves, 

This should yield 50 or so production-tested daughters. At the same time, the 

200 calves will provide an excellent test of whether the bull is a carrier of 

any undesirable recessive gene. 

What does this mean in terms of numbers of affected calves? We can com-

pare an AI program which gets 200 tested calves with what would happen without 

AI. The effect of AI testing with 200 calves versus no testing is shown in 

the following table. 

NUMBER OF AFFECTED OFFSPRING WITH NO PROGENY TESTING AND WITH TESTING WITH 200 PROQBlff 

Before Testing No, of affected calves per million cal••• born in 1en1ratioa 
1 2 . 3 4 5 10 

No testing 250,000} 111,111 62,500 40,000 27,778 20,408 6,944 
both 25% 

AI test 250,000 0 0 2 28 55 9 
(with 200 calves} 

No testing 40,000} 27,778 20,408 15,625 12,346 10,000 4,444 
4% 

AI test li0,000 0 2 28 55 43 7 

No te1:1ting 10,000} 1% freq. 8,264 6,944 5,917 5,102 4,444 2,500 
of red in 

Al test 10,000 Holstein 1 23 55 46 21 6 

No testing 2,500 } 2,268 2,066 1,890 1,736 1,600 1,111 
,25% 

AI teat 2,500 20 54 47 30 20 4 

No uutna 100 } 98 96 94 92 91 u 
.01% 

Al tHt 100 37 23 16 11 8 3 



Table 1. Chances of detecting a carrier male for various types of matings. 

Detects onl;:t one lethal Detects all lethals carried Detects all lethals denendin·g on frequency 
homozygous known random in POEulation 

( 2 + g Jn 
Number of recessive carrier own 1 - 2(1+q) 

females females daughters progeny Lethal Gene Frequency= a in previous generation 
n l-(l/2)n l-(3/4)n 1-(7 /8) n .2 .1 .05 .01 .UUl 

1 .50 .25 .12 .08 .05 .02 .oo .00 
2 .75 .44 .23 .16 .09 .05 .01 .oo 
3 .88 .58 .33 .23 .13 .07 .01 .00 
4 .94 .68 .41 .29 .19 .09 .02 .00 w 

I 

5 .97 .76 .49 .35 .21 .11 .02 .00 I 

6 .98 . 82 .55 .41 .24 .13 .03 .oo 
7 .99 .87 .61 .46 .28 .16 .03 .00 
8 1.00 .90 .66 .50 . 31 .18 .04 .oo 
9 .92 . 70 .54 .34 .20 .04 .00 

10 .94 . 74 .58 .37 .21 .05 .00 
15 .99 .87 .73 .50 .30 .07 .01 

20 1.00 .93 .82 .61 .38 .09 .01 
50 1.00 .99 .90 . 70 .22 .02 

100 1.00 .99 .91 .39 .05 
200 1.00 .99 .63 .10 
300 1.00 . 77 .14 
400 .86 .18 
500 .92 .22 
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Some Hereford breeders were at one time getting up to one-fourth dwarf 

calves. Dwarfism is caused by a recessive gene. With an AI testing program, 

that number could have been reduced to essentially none in a generation. The 

beef industry had not developed AI so they were limited to pedigree analysis 

to solve the problem. Such a system was better than no testing, but wouldn't 

the solution have been easy with AI? 

What can AI do for the breeders of black and white Holsteins? The third 

line in the table shows that they can almost stop worrying about red and white 

calves--if their AI stud is obtaining at least 200 calves from each young bull 

before putting him into heavy service. 

Even when the undesirable character appears very rarely such as 100 times 

in a million or once in every ten thousand calves, the AI testing program is 

much superior to natural selection. A few generations of testing will very 

much reduce the number of affected calves even though the reduction is not 

as striking as when the numbers affected are originally greater. 

Most undesirables probably occur in such low frequencies. Actually, we 

do not worry too much about having one affected calf in ten thousand, but we 

really do not want as many or more than one hundred in ten thousand. We can 

see that an AI testing program for young sires will rapidly reduce the number 

of affected calves to less than one in ten thousand even if the character is 

very frequent before testing begins. 

The reason why AI testing of young sires yields such good results is that 

if the frequency of affected calves is high, practically no carrier young sires 

will escape detection. Thus, only normal sires will be used heavily. There 

is no way of getting affected calves if the sire has two normal genes. 

If the number of affected calves is low, carrier bulls will not be detected 

as well, but there will not be many carrier cows to produce affected calves so 

again we will not get many affected calves. Even if undetected carrier bulls do 
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spread the undesirable gene, almost all carriers in the next generation of 

bulls will be detected and the number of affected calves will be reduced still 

further. 

With all the expressed fears that AI may sabotage a population by spreading 

an undesirable gene throughout the population, it is more than a little reassuring 

to know this is unlikely to happen, More reassuring is the knowledge that 

a properly set up young sire sampling program in AI will actually protect a 

population against undesirable genes and reduce the number of affected calves. 

A more technical description follows on how-to calculate expected fre-

quencies of affected calves of future generations with an AI testing scheme 

with various numbers of test matings and initial gene frequencies, 

The effect of testing bulls in AI on the frequency of recessive genes 

As the frequency of a recessive gene drops under the conditions of AI, 

the confidence of detecting a carrier by random mating goes down. What will 

be the effect of the reduced confidence on selection against the gene? 

The solution can be obtained by computing the gene frequencies for several 

generations. Males will be progeny-tested on n females. All males and females 

which are homozygous recessive will be culled, Heterozygotes have the same 

fitness as the "normal" homozygotes. 

A, in males surviving selection, q, 
J 

Let p. = frequency of the normal allele, 
J 

frequency of the other allele, a, in males 

surviving selection, Pj = frequency of A in females surviving selection, 

Q. = frequency of a in females surviving selection, and j is the generation 
J 

number. The frequency of genotypes in the next generation can be found by 

expanding (pjA + qja)(PjA + Qja). The composition of the next generation 

before and after selection is 
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Males Females 
Frequency Frequency 

Genotype Freguencl:'. Fitn,ess Survivors Freguencl:'. Fitness Survivors 
AA P/j 1 P/j p.P. 1 pjPj J J 
Aa p.Q.+q,P, "1 ai (pjQj+qjPj) p.Q.+q.Pj 1 p jQj +qjP j J J J J J J J 
aa qjQj 0 0 qjQj 0 0 

Total 1 p.P.+ai(p,Q,+q.P.) 1 p,P.+p.Q,+q,P, 
JJ JJ JJ JJ JJ JJ 

a.(i=j+l) is the probability of not detecting a carrier by random mating 
l 

to the population. Males are tested in the population of contemporary females. 
n ai = (1 -.5Qj+l) , where n is the number of progeny and Qj+l is the frequency 

of a among the surviving females, The frequency of a among the selected males is 

The composition of the next generation can be found by expanding 

Note that this is a repeating pattern and can be easily programmed for a 

computer. The results for various combinations of n and initial gene fre-

quencies are shown in Tables 2, 3, and 4 and Figure 1. 
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Table 2. Number of affected offspring per million in the population 
after one generation of testing young sires. 

Number of 
test Initial Gene Frequency 

offspring .5 .2 .1 .OS .02 .01 .001 

0 111,111 27, 778 8,264 2,268 384 98 1.00 

10 40,691 14,432 5,567 1,819 350 93 .99 

25 3,422 4,478 2,952 1,297 303 87 .99 

so 37 534 966 728 239 77 . 97 

100 0 7 96 223 147 60 .95 

200 0 0 1 20 55 37 ,90 

500 0 0 0 0 3 8 78 

1000 0 0 0 0 0 1 . 61 
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Table 3. Number of generations of testing young sires to reduce 
frequency of affected offspring in the population to 
various levels. 

Frequency 
of Initial Gene Frequency 

affected 
offspring .5 .2 .1 .OS .02 .01 

No Test Offspring 
.1 2 1 1 1 1 1 
.01 8 5 1 1 1 1 
.001 30 27 22 12 1 1 
.0001 >50 >50 >50 >50 so 1 
.00001 >50 >50 >50 >50 >50 >50 

10 Test Offspring 
.1 1 1 1 1 1 1 
.01 3 2 1 1 1 1 
.001 10 9 7 4 1 1 
.0001 30 29 27 24 15 1 
.00001 >50 >50 >50 >50 >50 >50 

25 Test Offspring 
.01 1 1 1 1 1 1 
.001 6 5 4 2 1 1 
.0001 16 15 14 12 8 1 
.00001 46 45 44 42 38 31 
.000001 >50 >50 >50 >50 >50 >50 

so Test Offspring 
.001 1 1 1 1 1 1 
.0001 10 9 8 7 4 1 
.00001 26 25 24 23 20 17 
.000001 >50 >50 >50 >50 >50 >50 

100 Test Offspring 
.001 1 1 1 1 1 1 
.0001 7 6 5 4 2 1 
.00001 15 14 13 13 11 9 
.000001 42 41 40 39 37 35 

200 Test Offspring 
.001 1 1 1 1 1 1 
.00001 10 9 8 7 6 5 
.000001 24 23 22 21 20 18 

500 Test Offspring 
.00001 1 1 1 1 1 1 
.000001 13 12 11 10 9 8 

1000 Test Offspring 
.00001 1 1 1 1 1 1 
.000001 10 9 8 7 6 5 
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Table 4. Number of affected offspring per million in the population after 35 generations 
of testing young sires (number of tested offspring equal 200 per sire). 

Initial 
Gene Generation 

Frequency 1 2 3 4 5 6 7 8 9 10 15 20 25 30 35 

.5 .0 .0 1. 7 28 .0 55.4 43.4 27.7 18 .1 12.5 9. 1 3.0 1.4 .8 .6 .4 

.2 ,0 1. 7 28.0 55.4 43.4 27.7 18 .1 12. 5 9. 1 6.9 2.5 1.3 .8 .5 .4 

.1 .9 22.9 54.6 45.7 29.3 19.0 13.1 9.4 7.1 5.6 2.2 1. 2 . 7 .5 .4 

.05 20. 2 53.8 46.9 30.2 19.5 13.4 9.6 7.2 5.6 4.5 1.9 1.0 . 7 .4 ,3 

.02 55,5 41.3 26.2 17.3 12.0 8.8 6.7 5.2 4.2 3.5 1.6 .9 .6 .4 .3 

. 01 36.8 23.4 15.6 11.0 8.2 6.3 4.9 4.0 3,3 2.8 1.4 .8 ,5 .4 .3 

.001 .9 .8 .8 . 7 .6 .6 .5 .5 .5 .4 .3 .2 ,2 .2 . l. 
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Summary III 

REGRESSION AND CORRELATION--
DEFINING HERITABILITY FOR THE SIMPLE GENETIC MODEL 

The linear regression line for predicting one variable, y, when another 

is known, x, is called "best" when the sum of squares of deviations from the 

line is minimized. The statistical equation for the regression of yon xis 

y µy + b (x-µ ) 
y.X X 

or equivalently 

y=a+b x y.x 

where a=µ - b µ and a is the intercept of the vertical axis, b is the Y y.x x y.x 
slope of the regression line, xis a known value, and y is the predicted value. 

Values of y are along the vertical axis and values of x along the horizontal 

axis if the relationship is plotted. Also, y will be predicted from a given 

value of x as y. 

l{ 

If the regression line is estimated from a sample of data; µy 

value of y variable, µx = x = average value of x variable, 

y = average 
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E(x-µ )(y-µ )/(n-1) Exy - (Ex)(Ey) /(n-1) 
b = __ -=.x=---~'------=-'--~---~n=--_.,,.....,_ __ _ 

y.x E(x-µ )2/(n-1) Ex2 - (Ex)2 
X n 

where 

E(x-µ ) 2/(n-1) estimates cr2 (variance of x), and E(x-µ )(y-µ )/(n-1) estimates 
X X X y 

cr (covariance of x and y). (See Summary V.) xy 
If we have all the values in the population, cr2 = E(x-µ ) 2/n cr = 

X X ' xy 

E(x-µ )(y-µ )/n, and the true regression coefficient, 
X y 

S cr / cr2 
y.x xy x 

(Note the similarity between estimating the regression and knowing the true 

regression coefficient.) (Note also that b = b only if cr2 
y.x x.y x 

a = 0.) xy 
The population correlation coefficient is 

r yx 

a xy 
cr2 ,a2 

X y 

and is estimated as 

a 
r = xy 

yx /;2.;2 
X y 

S • S y.x x.y with the sign of crxy' 

= cr2 or if y 

where r must be between -1 and +1 and is a standardized measure of how two 

variables tend to vary together. 

Simple genetic model 

For the simple genetic model (1 locus, 2 alleles, the heterozygote value 

the average value of the homozygotes, d = 0) with no environmental effects, 

the regression of offspring mean on parental value is 1/2. 
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Parent Value Freguency Progeny Mean 
AA u p2 pu + q(u+v)/2 
Aa (u+v)/2 2pq (pu/2) + [(u+v)/4] + (qv/2) 
aa V q2 p(u+v)/2 + qv 

Here, µ = v + p(u-v); the variance of parents= pq(u-v) 2/2 = o 2, the genetic . g 
variance since there are no environmental effects; the covariance of progeny 

and parents= pq(u-v) 2/4 = a:/2; and thus the regression of offspring on 

parent= 1/2. 

The following rules apply: 

1. Any kind of dominance will lower the regression coefficient. 

2. Selection on parents will not affect the regression if the hetero-

zygote has a value which is the average of the values of the homozy-

gotes (additive model). 

3. If there is some form of dominance, selection on the parents will, 

in general, affect the regression, This can also be seen by plotting 

progeny means against parental values. 

Simple genetic model with environmental effects 

Suppose for the simple genetic model we add a random environmental contri-

bution which averages zero but has variance o2 . Then, phenotype= genotype+ e 

environment, or P = G + E. If there is no correlation between G and E, then 

a 2 = a 2 + a 2 • Usually we cannot separate the components of P directly. If P g e 

what we want to measure is G, we may be misled by E. 

Heritability defined 

Heritability is defined in the "broad sense" as the ratio of genetic 

variance to the total variance; 



--24--

(In this printing, heritability will be denoted by h 2 rather than by h. As 

a result, there may be some misprints.) 

We know that with additive gene action (the heterozygote intermediate 

in value between homozygotes) for the simple model that the covariance between 

parent and progeny is (l/2)(cr 2 ) as shown on the previous page. This can be g 

shown to be true even if environmental variation exists since we assume that 

the environmental variation is random with average value zero. 

If d does not equal O (some form of dominance), part of the genetic vari-

ance will be due to the dominance effect, a2 
g ' D 

and some to additive effects, 

If there is some form of dominance, we know that this reduces the regres-

sion between progeny and parent. The covariance, however, between progeny 

and parent is (l/2)(cr 2 ) either with dominance or with no dominance (Appendix). 
gA 

Heritability is defined in the "narrow sense" as the ratio of additive 

genetic variance to the total variance; 

where o2 = g 

it= 
a2 

g 

a2 
gA 

+ a2 
e 

Thus, twice the regression of progeny mean on parent value estimates 

heritability in the "narrow sense" even with dominance in the simple genetic 

model with random environmental effects. 

Later we will see that additive genetic effects are most important 

since they have a much greater chance than dominance or epistatic 

effects of being transmitted from one generation to the next. 
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Appendix to Summary III 

DERIVATION OF o2 o2 o2 FOR 1 LOCUS WITH 2 ALLELES 
G' GA' GD 

Let AA value= 1, Aa value= d, and aa value 

and 1 - p = q with random mating assumed. 

Total genetic variance, a~ 

µG p2 + 2pqd 

02 
G 

p2 + 2pqd 2 + 0 - (p2 + 2pqd) 2 

= p2 + 2pqd 2 P4 _ 4p3qd _ 4p2(q2)d2 

pq[p(l+p) + 2d(d-2p 2-2pqd)] 

If d = 1/ 2, o2 = pq/2. G 

0. The frequency of A 

Regression of G on number of"+" genes, X, to define o2 (depends on p) 
GA 

Genotyee 
AA 
Aa 
aa 

Frequency 
p2 

2pq 
q2 

G 
1 

d 
0 

X 

2 

1 

0 

p 

o~A r~Xo~ = variance due to additive gene effects (regression of G on X). 

0 GX0GX 
o2 

X 

µx 2p 

02 
X p2(z)2 + Zpq - (Zp)2 

= 4p2 + 2pq - 4p2 = 2pq 

µG = p2 + 2pqd as before. 

0XG = 2p2 + 2pqd + 0 - 2p(p2 + 2pqd) 

= 2p2 + 2pqd 2p3 - 4p 2qd 

= 2pq(p+d-2pd) 
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If d 1/2, a~ 
D 

a2 
X 
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[2pq(p+d-2pd)] 2 
2pq 

2pq(p+d-2pd) 2 

2pq(p 2 + d2 + 4p2d2 + 2pd - 4p2d - 4pd2) 

pq/2. Then, 

= a2 
G a2 = variance in G not accounted for by regression 

GA X on . 

p2q[l-p+4d(d-pd-l+p)] 

0 . 

Covariance (progeny, parent) with dominance) 

Values 
Parents Frequency Parent Progeny Mean 

AA p2 1 P + qd 
Aa 2pq d (l/2)(p) + (l/2)(d) 
aa q2 0 pd 

µprogeny= µparent= P2 + 2pqd 

Gov= p2(p + qd) + 2pqd(l/2)(p+d) - (p2 + 2pqd) 2 

= pq(p + d - 2pd) 2 , 

which is (l/2)(aL) no matter what p or dis. 
GA 

Note the values of 1, d, and Oare scaled from general values of u, 

[(u+v)/2] + d', and v by subtracting v from each general value and then dividing 

by u-v. Note that the scaled d = (1/2) + [d'/(u-v)] in terms of the general 

values. To convert the above results (variances) back to general values, 

multiply by (u-v) 2, 



Summary IV 

GENES IDENTICAL BY DESCENT--THE BASIS OF RELATIONSHIP 

Individuals may have genes in common from a common ancestor. Such genes 

are identical by descent. If genes are identical but not necessarily from a 

common ancestor, they are identical in state. 

The concept of identity by descent is a modern approach to the complica-

tions of multi-allelic, multi-loci gene systems which affect quantitative 

traits. With the identity by descent approach there is no need to know how 

many alleles are at a locus, the value of each allele, the number of loci which 

have genes influencing the quantitative trait, or the gene frequencies. This 

approach was formulated by Malecot (1948) and about the same time by 

C. C. Cockerham and C.R. Henderson who have further developed the concept. 

Two limitations are: 

1. Calculations must begin at a specified base period but in all 

likelihood most life has originated from a small number of genes. 

2. The method can only estimate how many genes are in common between 

two animals by descent on a probability basis. 

Notation: An animal will have genes b.b. at the b locus where the sub-
1 J 

script describes the origin of the gene. The basis for calculation of rela-

tionships is the probability that a random gene at any locus, say b, is identical 

by descent between individuals. At some arbitrary base period, tag the b 

genes of the common ancestor and then compute the probability that the b genes 

of the two individuals will be common by descent. 

An example at the "b" locus: 

Let the genotype of two animals be bibj and bmbn where the 
subscript refers to the origin of the gene. We can define the 
probability that the genes at a locus are identical by descent 
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between two individuals by comparing the origins of the first gene 
of the first animal with the first and second genes of the second 
animal, and the second gene of the first animal with the first and 

second genes of the second. 

Thus, we have: 

Probability (bi 

Probability (bi= 

Probability (b j 

Probability (bj = 

b) = 0 if i # m; = 1 if i = m 
m 

b ) n 
b ) = 

m 

b ) = n 

0 if i # n; = 

0 if j # m; = 

0 if j # n; = 

1 if i = n 

lifj=m 

lifj=n 

and 

The probability that a random gene at this locus is identical in two animals 

is the average identical in these four comparisons, i.e., (1/4)[P(i=m) + P(i=n) + 

P(j=m) + P(j=n)]. In fact, this is the probability t~at a random gene from one 
animal and a random gene from the other will be identical by descent. 

Specific example: 
Mate two unrelated noninbred animals, b1b2 x b3b4• The possible 

offspring are b1b3 , b1b4 , b2b 3, b2b4 . The fraction identical between 
any progeny, say b1b3 , and any parent, say b1b2 , is 

P(bl bl) = 1 

P(b 1 b3) 0 

P(b 2 bl) = 0 

P(b 2 = b3) = 0 

Average= 1/4 

Additive relationship 

We normally think of the relationship of an individual with itself as 

one so the a or additive relationship between two individuals is defined as 

twice the fraction of genes identical by descent, and as shown in the appendix to VI, 

since each locus has two additive gene effects this is the measure of ·the 

fraction of additive gene effects in connnon between relatives. In a non-

inbred population, the additive relationship is equal to the coefficient of 

relationship. 
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The coefficient of relationship between animals i and j is 

where aij is the additive relationship between i and j, aii is the additive 

relationship of i to itself (aii = 1 if noninbred) and ajj is the additive 

relationship of j to itself. The following table describes most common 

kinds of comparisons for pairs of individuals. 

POSSIBLE PROBABILITIES OF GENES IDENTICAL BY DESCENT 
Fraction Identical "a" 

Comparison by Descent Relationship 
b1b1 with b1b1 1 2 
(completely inbred with self) 

bl bl ·with bl b2 1/2 1 

bl bl with b2b2 0 0 

b1b2 with b1b2 1/2 1 
(non inbred with self) 

blb2 with bl b3 1/4 1/2 

blb2 with blb4 1/4 1/2 

b1b2 with b3b4 0 0 

Other examples follow: 

Parent-progeny relationship 

table above, the fraction of genes identical by descent for any one parent 

with b1b3 is 1/4; with b1b4 , 1/4; with b2b 3 , 1/4; and with b2b4 , 1/4. The 

average is 1/4 and the coefficjent of relationship is 1/2. 

Grandparent-grandprogeny relationship 

Two animals, b1b2 x b3b4 , have progeny b1b3, b1b4 , b2b3 , and b2b4 . One 

of these progeny chosen at random, say b1b3 is mated to another animal, b 5b6, 
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chosen from the population. Their progeny are b1b5 , b1b
6

, b
3
b

5
, and b

3
b

6
. 

Now compare genes of either grandparent, say b1b2 , with genes of grandprogeny. 

The fraction of genes identical by descent with b1b5 is 1/4; with b1b6 , 1/4; 

with b3b5 , O; and with b
3
b6 , 0. The average is 1/8. 

The same average would be found for the grandparent b1b2 with the other 

12 possible grandprogeny types. Note that in one-half the comparisons the 

grandprogeny and grandparent are unrelated in the sense that no genes are 

alike at that locus. Since the probability of no genes in common at one 
n loci= 1/2, the probability of no genes in common at n loci= (1/2) for grand-

parents and grandprogeny which is not a very large probability. The average 

identical over all loci is likely to be quite close to the probability of 

genes being identical by descent. 

Full sib relationship 

Two animals, b1b2 x b3b4,have progeny b1b3 , b1b4 , b2b3 , and b2b4 . 

There are sixteen full sib comparisons, each having equal frequency. The 

values in the table are the probabilities of genes being identical for each 

comparison. 

Possible 
Genotypes of 

1st Full 
Sib with 

Frequencies 

1/4 b1b3 
1/4 b1b4 
1/4 b2b3 
1/4 b2b4 

1/2 

1/4 

1/4 

0 

Possible Genotypes of 
2nd Full 'Sib with Frequencies 

1/4 1/4 0 

1/2 0 1/4 

0 1/2 1/4 

1/4 1/4 1/2 

The average will be EfiXi. For all 16 cells, fi = 1/16. The average fraction 

of genes identical by descent= (1/16)((4)(1/2) + (8)(1/4) + (4)(0)] = 1/4 as 



--31--

before. Note that although the average fraction of genes identical by descent 

is 1/4 that 1/4 of the comparisons lmve probability 1/2 (an identical genotype), 

1/2 have probability 1/4, and 1/4 have probability 0. One-fourth of the com-

parisons have no genes in common at 1 locus, and therefore the probability of 

no genes in common at n loci= (1/4)n for full sibs. 

Half-sib relationships 

Animal b1h2 is mated to b3b4 , and they have progeny b1b3 , h1h4 , h2b3, 

and b2h4 . Animal b1h2 is also mated to b5b6 , and they have progeny b1b5 , 

b1b6 , b2b5 , and b5b6 . The values in the table are fraction of genes identical 

by descent for each half-sib comparison. 

Possible 
Genotypes of 

2nd Half-
Sib with 

Frequencies 

1/4 b1b5 

1/4 b1b6 

1/4 his 
1/4 b2b6 

1/4 

1/4 

0 

0 

Possible Genotypes of 
1st Half-Sib with Frequencies 

1/4 0 0 

1/4 0 0 

0 1/4 1/4 

0 1/4 1/4 

The average fraction of genes identical by descent is (1/16)((8)(1/4) + (8)(0)] = 

1/8, and the a relationship= 1/4. One-half of the comparisons have no genes 

in common at one locus, and the probability of no genes in common at n loci= (l/2)n, 

Summary 
Ave. Fraction Prob. Genotype Prob. No Genes in 

Relationship in Common in Common Cormnon at n Loci 
Parent-progeny 1/4 0 0 
Grandparent-grandprogeny 1/8 0 (l/2)n 

Full sibs 1/4 1/4 (l/4)n 

Half-sibs 1/8 0 (1/2)n 
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Dominance relationship 

The probability of an identical genotype at one locus by descent is the 

probability that 2 genes are in common at one locus, i.e., for relatives with 

symbolic genotypes bibj and bmbn' P(genotypes identical)= P(bibj = bmbn), 

Only full sibs in the above table can have a genotype at one locus identical 

by descent, e.g., b1b4 and b1b4 . The dominance relationship between a pair 

of animals is defined as the probability of genotypes being identical by 

descent. 

The following is an example of computing average probability of genotypes 

in common for full sibs. 

Let the parents be unrelated so that their symbolic genotypes and those 

of their full sib progeny can be represented as: 

Parents: b1b2 , b3b4 
Full Sib Progeny (with frequencies): 

1/4 b1b3 , 1/4 b1b4 , 1/4 b2b3 , 1/4 b2b4 

To compute the average probability that bibj = bmbn' we must find the average 

of all 16 comparisons as shown in the following table, 

Possible 
Genotypes of 

1st Full 
Sib with 

Frequencies 

1/4 b1b3 
1/4 b1b4 
1/4 b2b3 
1/4 b2b4 

Possible Genotypes of 
2nd Full Sib with Frequencies 

The frequency of each comparison is 

(1/4)(1/4) = 1/16. 

Then, the average P(genotypes in common) 
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(l/16)[P(b 1b3=b1b3) + P(b 1b3=b1b4) + P(b 1b3=b2b3) + P(b 1b3=b2b4) + 
P(b 1b4=b1b3) + P(b 1b4=b1b4) + P(blb4abi3) + P(b 1b4=b2b4) + 

P (b2b3=bl b3) + P(b 2b 3=b1b4) + P(b 2b3=b2b3) + P(bi3=b2b4) + 

P(bi4=blb3) + P(b 2b4=b1b4) + P(b 2b4=b2b3) + P(bi4=b2b4) 

= (1/16)(1 + 0 + 0 + 0 + 0 + 1 + 0 + 0 + 0 + 0 + 1 + 0 + 0 + 0 + 0 + 1) 

= 1/4. 

Note that only 1 of 4 comparisons are expected to have genotypes at the , 

"B" locus in common, but 1/4 also is the average fraction of all loci with 

genotypes in common for one full sib with another full sib, 

Dominance effects are defined as the interaction of two genes at one 

locus, Then dominance can contribute to likeness only between full sibs for 

relatives in the summary table. (Dominance effects occur when the value of 

bibj is not the average value of bi plus the average value of bj,) The 

dominance relationship between noninbred animals A and B, dAB' can be found 

from the additive relationships among the parents of A and Bas will be seen, 

Inbreeding coefficient 

The coefficient of inbreeding, F, is defined as the probability that 2 

genes at one locus will be identical by descent averaged over all loci, i.e., 

for an animal with one locus and genotype bibj, F = P(bi=bj), The two genes 

will be identical only if the parents have genes identical by descent, The 

expected frequency of 2 genes identical by descent at one locus is equal to the 

probability that each parent will contribute an identical gene, i.e., the 

probability of genes being identical between the parents. Therefore, F = p 

(l/2)(asd) where p, s, and d refer to the progeny, sire, and dam, respectively, 

and a = 1 + (1/2)(a d), F is the inbreeding coefficient which corresponds pp s p 
to the fraction of loci having both genes identical by descent. 
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Some useful identities in working with additive and dominance relationships 

If animals A and B have parents AS, ')J and BS, BD, respectively, then 

usually 

aAB (1/4)(aA B + aA B + a'\Bs + a"DBD) s s S D 

Also as shown in the appendix, 

aAB (1/2) (a AB + aAB) if A is older than B. 
s D 

or equivalently (1/2)(aBA + aB')J) 
if B is older than A. 

s 

This equality is the basis for computing additive relationships by the tabular 

method. 

The dominance relationship can also be computed from the additive rela-

tionships among the parents if the animals are themselves noninbred (the 

parents may be inbred). As shown in the appendix, 

dAB = (1/4)(aA B aA_B + aA B aA B) ' 
S S -lJ D S D -lJ S 

and as just seen, the inbreeding coefficient for an animal is one-half the 

additive relationship between its parents, 

and an animal's additive relationship to itself is 

1 + (1/2)(aA A) 
S D 

Expansion to more than one locus 

= 1 + (1/2)(aB B ). 
S D 

The probability of a pair of nonallelic genes being alike in two indivi-

duals by descent= P(genes at first locus are identical by descent) x P(genes 
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at the second locus are identical by descent), Expansion to trios, etc., of 

nonallelic genes is obvious. 

The probability of a particular combination of an allelic pair of genes 

(a genotype) and a nonallelic gene being identical by descent in two indivi-

duals= P(the genotypes are identical) x P(the nonallelic genes are identical). 

The probability of a genotype at one locus and a genotype at another 

locus being common by descent in two individuals= P(first locus genotype is 

alike) X P(other locus genotype is alike), However, these probabilities are 

equal. Thus, the probability of genotypes being common at two loci is P(geno-

type in common) squared or the square of the dominance relationship. 

The expansion to higher order combinations is obvious. 

To apply these principles, we need only two measures of relationship: 

aij = the additive or a relationship between individuals i and j which is 

twice the fraction of single genes which are identical by descent (this will 

be the numerator of the coefficient of relationship), and dij = the probabil-

ity that individuals i and j have a genotype at one locus (an allelic pair of 

genes) identical by descent (this is called the dominance or d relationship). 

Tabular method of computing ai. and di. 

The easiest and safest method of computing additive relationships jg the 

tabular method: 

1. Determine which animals you are going to include in the table. 

Include all animals after the oldest is chosen. Put them in order 

by date of birth, oldest first. 

2. Write the names or numbers of the animals in order of birth across 

the top of the table (the columns) and down the side of the table 

(the rows) as shown in the example which follows. 
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3. Write above the number of the animals the numbers of their parents, 

if known. 

4. Put a 1 in each of the diagonal cells of the table such as row 1, 

column 1, ; row 2, column 2; etc. This is the animal's basic rela-

tionship to itself unless it is inbred. For the base generation 

animals, enter their relationships to each other or assume them to 

be zero, and if you know these, add the inbreeding coefficients to the 

diagonal. 

5. Begin at the diagonal which now has a 1 in it. Add to this 1, one-

half of the relationship between the animal's parents. This is the 

inbreeding coefficient. It will often be zero. Compute the off-

diagonal cells by rule 6. 

6. Compute entries for each off-diagonal cell of row 1 according to the 

rule of 1/2 the entry for the first parent in this row plus 1/2 the 

entry for the second parent in the row. When the first row is finished, 

write the same values down the first column. 

7. Continue as before for the next rows and columns until finished, 

always remembering to do a row at a time and to put the same values 

down the corresponding column before going to the next row. 

The following is an example of the a and di. relationships for paternal 
ij J 

half-sibs A and D. 

-----B A.,._ ____ C 

.,__----B 
D~----- E 



B 

C 

E 

A 

D 

aBA 

aBD 

= 

= 

aCA = 

11CD = 

aEA = 

aED = 

aAA = 

aAD = 

aDD = 
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B C E 

1 0 0 

0 1 0 

0 0 l 

1/2 1/2 0 

1/2 0 1/2 

1/2 (aBB + aBC) = 

1/2 (aBB + aBE) = 

1/2 (aCB + ace) = 

1/2 (aCB + aCE) 

1/2 (aEB + aEC) = 

1/2 (aEB + aEE) = 

1 + 1/2 (aBC) 

1/2 (aAB + aAE) = 

1 + 1/2 (a 8E) = 

B-C B-E 
A D 

1/2 1/2 

1/2 0 

0 1/2 

1 1/4 

1/4 1 

1/2 (1 + 0) 1/2 

1/2 (1 + 0) = 1/2 

1/2 (0 + 1) 1/2 

1/2 (0 + 0) = 0 

1/2 (0 + 0) 0 

1/2 (0 + 1) = 1/2 

1 + 1/2 (0) = 1 

1/2 (1/2+0) 1/4 

1 + 1/2 (0) = 1 

The dominance relationship for non-inbred animals can be found from the 

additive relationships among the parents, e.g., 
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Appendix to Sunnnary IV 

A. Probability of genes identical by descent: (Malecot, 1948) 

1. Definition: Let the pair of animals, A and B, have genotypes b.b, and 
l J 

bkb ,e representing symbollica lly all loci, then 

P(random pair of genes identical)= aAB = ¼ [P(i=k) + P(i=l) + P(j=k) + P(j=t)J 

2. Definition: The additive relationship, aAB 2 a 
AB. 

B. Probability of genotypes identical by descent: 

1, Definition: Let AS and~ be the parents of A and BS and BD be the parents 

of B with genotypes bibj for A and bkb.e for B, then 

P(genotype identical) = dAB = P(b. b. 
l J 

2. Computationally, dAB = 1/4 (aA BX aA B + aA BX aA B) for non-inbred animals: 
SS DD SD DS 

P(AD contributes bj to A and BD, bj=£ to B) 

+ P(AS contributes bi to A and BD, bi=k to B) X 

P(A0 contributes bj to A and BS' bj=£ to B) 

But P(AS contributes b. to A and B contributes b to B) 
l S i 

=P(genes identical by descent for ASand BS) = 

Similarly for the other probabilities. 
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Thus 

P(b b = bkb ,) i j ,, 

C. The inbreeding coefficien½ FA' is the fraction of loci with genes identical by 
descent for animal A. 

By definition F of the loci of A have a = 1 and 1 - F of the loci 
have a = 1/2, 

i.e., F of the loci are of 

loci are of the form 
the form b. b. with a 

l l 
b.b. with a= 1/2. 

l J 

= 1 and 1 - F of the 

1. Thus the average fraction of genes identical for A with itself is: 

aAA= P(genes identical)= (F)(l) + (1-F) (1/2) = 1/2 + (1/2)F and 

a =2a =l+F. AA AA 

2. If S is the sire of A and D is the dam of A, then FA = 1/2 a
80

. 

and b b for D. 
m n 

By definition aAA = 1/4 [ P(i=i) + P(i=j) + P(j=i) + P(j=j~ 

= 1/2 + 1/2 P(i=j) 

Thus FA= P(i=j). 

But P(i=j) is a80 since bi must come from one parent and bj from the other, 

i.e. P(i=j) = 1/4 G(k=m) + P(k=n) + P(£=m) + P(.t~nJ 
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D. The tabular method of computing relationships depends on the fact that if 

B has parents BS and BD, then aAB = 1/2 (aAB + aAB ). 
S D 

The equally possible genotypes of Bare: 

By previous definition, 

aAB = average of aAB , aAB ' 0: and aAB ' AB ' 1 2 3 4 

a AB = 1/4 [ 1/4 [ P(i=k) + P(i=m) + P(j=k) + P(j=m~ 

+ 1/4 [P(i=k) + P(i=n) + P(j=k) + P(j=n8 

+ 1/4 [P(i=J) + P(i=m) + P(j=£) + P(j=mJ 

+ 1/4 ~(i=£) + P(i=n) + P(j=£) + P(j=n~} 

By combining and rearranging we have: 
aAB = 1/8 rP(i=k) + P(i=£) + P(i=m) + P(i=n) + P(j=k) + P(j=£) + P(j=m) + P(j=n8 

But aAB = 1/4 [ P(i=k) + P(i=£) + P(j=k) + P(j=£)] and 
s 

aA13r:,= 1/4 [P(i=m) + P(i=n) + P(j=m) + P(j=n)] 

Thus o:AB and 



Sunnnary V 

QUANTITATIVE GENETICS: THE MEAN, STANDARD DEVIATION, AND EXPECTED VALUES 

Before discussing selection for quantitative traits, a review of some 

basic statistics may be needed. Two important statistics for the description 

of continuous or quantitative data are the mean (or average) and the standard 

deviation. The usual Greek symbols for these areµ, "mu, 11 and a, ~mall "sigma." 

The square of the standard deviation, o2 , is called the variance, "sigma squared." 

Computing the mean 

If x.(i=l, ... , N) is the observation on the i th individual, then the 
l 

estimate of µx is µx or equivalently x, "x-bar"; 

N 
E xi/N = (x1 + x 2 + ... + ~)/N 

i=l 

N 
the average of N observations. The symbol i~l is the mathematical notation 

that means to sum everything that follows the E for changes in the subscript i 

which changes by units of 1 from i = 1 (the first record) to i = N (the last 

record). 

Variance 

Although the standard deviation is more descriptive, the usual measure 

of variability is the variance, o2--the standard deviation squared for trait X. 
X 

Knowledge of variances is necessary in animal breeding for at least two reasons. 

Variances are useful in describing populations and more importantly are used 

along with covariances in developing procedures for predicting genetic values. 

The definition of o2 is 

02 
X 

X 
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where N is the total number of observations in the population. The E stands 

for expected or average value. Thus, o2 equals the average of the squared 
X 

deviations of the observations from the mean for a variable named X. 

While the variance is in terms of units squared, the standard deviation 

is in terms of the units of measurement--the same as the mean, e.g., the mean 

of milk production may be expressed in lb. of milk, the variance in lbf of 

milk, and the standard deviation in lb. of milk. 

Computing the variance 
th If x. (i=l, ... , N) is the observation on the i- individual, then 

1 

02 
X 

N 
E (xi-µ) 2/N 

i=l 

The above procedure is appropriate whenµ is known exactly. When N includes 
X 

the whole population, the computation is the population variance, and when 

N is a sample of the population, the value is an estimate of the population 

variance and should be denoted as o!. If µxis estimated from a sample of 

the data as x orµ, then o2 is estimated as 
'<C X 

o2 = [Ex2 - (Ex)(Ex)]/(N-1) 
X i N 

where N-1 is the degrees of freedom. 

The division is by N-1 so that E(o 2) = o2 , i.e., the average of estimates 
X X 

of o2 will be o2 , Thus, the estimation procedure is said to be unbiased. 
X X 

Some alternative computing procedures were listed earlier on page 4. The 

section on expected values will describe how to find the expected or average 

value of estimates such as o2 . 
X 

The mean and standard deviation characterize a normal distribution of 

observations in the following fashion. Since means of observations from 
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other distributions approximate the normal distribution, there is sufficient 

justification to examine the normal distribution. The normal distribution 

follows the bell-shaped curve where the values along the horizontal axis are 

plotted against the frequencies of those values on the vertical axis. 

Frequencies 

- 00 µ -2o µ -o 
X X X X 

µ +a 
X X 

values= xi 

µ +2o + oo 
X X 

µxis the average of all the xi and lies at the center of the symmetrical 

distribution--one-half the xi above and one-half the xi below µx. The range 

µx±ox will contain 68% of the xi; µx±2ox will contain 96% of the xi; etc. 

The distribution of averages of N observations will haveµ-=µ , but 
X X 

the variance of the averages will be o3..= o2/N. 
X X 

The square root of that, o_ = o_//N, is often called the standard error 
X X 

of the mean. 

Covariance 

The variance thus measures how one trait varies. The covariance, a 

measure of how two traits vary together (co-vary), is also needed in developing 

selection procedures, For example, the covariance between two traits measured 

on the same animal, e.g., height and weight, may be needed or the covariance 

between the same trait measured on two relatives may be needed, The defini-

tion and computing procedures for the covariance are analogous to those for 

the variance. 
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Suppose that the two measures are xi and yi (i=l, ... , N) for the 
th th measurements on the i- individual or on the i- pair of relatives. The 

covariance has the symbol cr (covariance between x and y) and is defined as xy 
the average of products of deviations from the means of traits x and y; 

a xy = E[(xi-µx)(yi-µy)] = 

= [(xl-µx)(yl-µy) + (x2-µx)(y2-µy) + ••• + (¾-µx)(yN-µy)]/N 

N 
E [(xi-µ )(yi-µ )]/N 

i=l x y 
= 

The above procedure is appropriate when µx and µy are known exactly 

and gives the population covariance when N includes the whole population and 

gives an estimate (a ) of the population covariance when N is a sample. xy 
If µx and µy are estimated from a sample of the population as 'if and y 

(µx' µy)' then 

a xy = E[(xi-µx)(yi-µy)]/(N-1) 

(Exi)(Eyi) 
= [Exiyi - N ]/(N-1). 

Note the similarity in the computing procedures for variances and covariances, 

A positive covariance indicates that as the value for one trait increases, 

the value for the other trait also tends to increase, A negative covariance 

indicates that as the value for one trait increases, the other tends to decrease. 

The traits are not correlated when the covariance is zero. The units of a 

covariance are units of the first trait times units of the second trait. 

Correlation 

The correlation coefficient is a standardized measure of the relationship 

between two traits which allows comparisons of correlations among different 

traits, The possible range is -1 to +1. The correlation between traits x and 
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y or relatives x and y is defined as 

r xy 

a xy 

X y 

If estimates of the covariance and variances are used in the formula, then 

r is an estimate of the population correlation coefficient. xy 

Expected values 

After teaching selection procedures for several years and giving rules 

of thumb for finding variances and covariances of combinations of variables, 

some students suggested more facility with expected values would help in 

understanding the procedures. Many classes have, since then, been taught the 

selection index with extensive use of expected values, The use of expected 

values increases the powerfulness and flexibility of the selection index but 

at the expense of the initial frustration of many students who have difficulty 

in developing a feeling for what they are doing, Experience has shown that 

most students overcome this difficulty after some practice and that they become 

much more adept at solving problems which involve more than the usual selection 

for additive genetic value. 

The S'fIIlbol often used for the expected or average value of some expression 

involving constants and variables is E( ), Expected values of most expressions 

used in estimating genetic parameters are relatively easy to find if certain 

definitions are remembered. 

Let c = constant; x = variable from some distribution with meanµ and 
X 

variance o2 • and y = variable from some distribution with meanµ , variance x' y 

o 2 and covariance with x, a y' xy 
Definition 1: E(c) = c, Certainly the average value of a constant is 

that constant. Similarly E(c 2) = c2 . 
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Definition 2: E(x) µ . The average of all possible values of variable 
X 

xis its average or meanµ . 
X 

Definition 3: E(cx) = c E(x) = cµ, The average of all possible values 
X 

of a variable times a constant is the constant times the mean of the variable, 

In expressions involving a constant the constant can be taken outside the 

expectation operation. 

Definition 4: E(x+y) = E(x) + E(y) = µ + µ , The expectation of a sum 
X y 

can be taken as the sum of the expectations of the parts, 

Definition 5: E(x-µ ) 2 = o2 . By definition, the variance of a variable 
X X 

x, o2, is the average squared deviation of the variable from its mean, Thus, 
X 

E(x 2) = o2 + µ2 which follows directly from definition 5, Expand the equation 
X X 

for definition 5 and take the expectations of its parts: 

o2 = E(x-µ ) 2 = E(x 2-2xµ +µ2) 
X X X X 

= E(x 2) E(2µ x) 
X 

+ E(µ2) 
X 

from (4) 

E(x 2) 2µ E (x) 
X 

+ µ2 from 
X 

(1) and (3) 

E(x 2) (2µx) (µ) + µ2 
X 

= E(x 2) µ2, 
X 

Therefore, E(x 2) = o2 + µ2 . Note that E(x 2) = o2 whenµ = 0. Also, as a 
X X X X 

rule for finding the variance for a variable x, E(x 2) = o2 can be used since 
X 

µx does not enter into the variance. 

Definition 6: E[(x-µ )(y-µ )] = o 
X y XY 

By definition, the covariance 

between variables x and y, o , is the average of the products of their devia-xy 
tions from their means. Thus, E(xy) = o + µ µ which follows from defini-xy X y 
tion 6. Expand the equation for definition 6 and take the expectations of 

its parts: 
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a = E[x-µ )(y-µ )) 
XY X y 

= E(xy - µ y - µ X + µ µ) 
X y X Y 

= E(xy) µ E(y) - µ E(x) + µ µ from (1) and (3) 
X y X Y 

= E(xy) - µxµy - µyµx + µxµy 

= E(xy) - µxµy. 

Therefore, E(xy) = a + µ µ • 
XY X y 

Note that E(xy) = a when either or bothµ 
XY X 

and µ = O. y 

The general procedure for applying these definitions to find the expected 

values of more complicated sums of squares and products of variables is to 

use the following steps: 

Step 1. Substitute elements of the model into the function. 

Step 2. Expand the function in terms of the model. 

Step 3. Find the expected value of each term of the function. 

Step 4. The expected value of the function will be the sum of the 

expected values of the individual terms. 

Example 

Let Pij =µ+Ai + Eij' where Pij is an observation (variable) on the 
th th j- record in the i- class,µ is a constant, Ai is a variable with µA= 0 

and variance af, Eij is a variable with µE = 0 and variance a~, and the covari-

ance between any two A's, any two E's or any A and Eis zero. 

The expected value of any observation is 

E(Pij) = E(µ +Ai+ Eij) = E(µ) + E(Ai) + E(Eij) 

= µ + 0 + 0 = µ • 

The expected value of any observation squared is 

E((µ + A + E ) 2) = E(µ2 + A2 + E2 + 2µA + i ij i ij i 

= E(µ2) + E(Af) + E(Efj) + E(2µAi) + E(ZµEij) + 

2µEij + 2Ai Eij) 

E(2AiEij) 
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= µ2 + oi + o~ + 2µE(Ai) + 2µE{Eij) + 2E(AiEij) 

= µ2 + 0 2 + 0 2 A E 

E(Ai) and E(Eij) both equal zero and E(AiEij) = oAE = 0. 

The expected value of the product of observations in the same class is 

(j I 'f j) 

E(µ2+µAi+µEij'+µAi+Af+AiEij'+µEij+AiEij+EijEij') 

= µ2 + O + O + O + oi + O + O + 0 + 0 

µ2 + 0 2 
A 

because both E(AiAij') and E(AiEij) are equal to zero since oAE = 0 and 

E(EiJ.EiJ'') = 0 since oE E = O. 
ij ij' 

is 

The expected value of the product of observations in different classes 

E[(µ +Ai+ E .. )(µ+A., + E1 ,.,)] 
lJ l J 

(i ',f,i and j;!j ') 

E(µ2+µAi ,+µ Ei I j ,+µAi +Ai Ai ,+Ai Ei I j ,+µEij +Ai, Eij +Eij Ei I j,) 

µ2 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 

= µ2 

for similar reasons as for the other expectations of the P's. 

Another Example 

Suppose a phenotypic observation on animal i is made up of a constantµ, 

a genetic value Gi, and an environmental effect Ei: 

Pi=µ+ Gi + Ei 

where µG = µE = 0, E(Gf) = o~, E(Ef) = o~, and no covariance between any G's, 

any E's, and any G and any E. 

µp = E(Pi) = E(µ + Gi + Ei) = E{µ) + E(Gi) + E(Ei) 

= µ + µG + µE = µ 
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E(Pi) = E[(µ + Gi + Ei) 2) = E(µ2 + Gf + Ei + 2µGi + 2µEi + 2GiEi) 

= E(µ2) + E(Gf) + E(Ef) + E(2µGi) + E(2µEi) + E(2GiEi) 

= µ2 + aa +a~+ 0 + 0 + 0 

If aGE; 0, then E(GiEi) would also be different from zero. 

a:= E[(Pi-µ) 2) = E((µ + Gi + Ei - µ) 2) = E[(Gi + Ei) 2) 

= E(Gt) + E(Et) + 2E(GiEi) 

= a 2 + a2 + 0 G E 

E(P?j) = E[(µ + Gi + Ei)(µ + Gj + Ej)J 

= E(µ2 + µGj + µEj + µGi + µEi + GiGj + GiEj + GjEi + EiEj) 

= µ2 

Cov(PiPj) = E[(Pi-µ)(Pj-µ)J = E[(µ + Gi + Ei - µ)(µ + Gj + Ej - µ)) 

= E[(Gi + Ei)(Gj + Ej)J = E(GiGj + GiEj + GjEi + GjEj) 

= 0 + 0 + 0 + 0 from assumptions. 

Practice problem 

Let Xi=µ+ Ei, where Xi is an observation,µ is a constant, and Ei is 

a variable with µE = 0 and variance a~ and the covariance between any two E's 

is zero. For n = 3, i = 1, 2, 3, find expectations of the following. Show 

all steps. 

1) E(Xi) = µ = 6) E[E(Xi-µX)2J = X 
2) E(X2) = 7) E[E(Xi-µX)2/n) = i 
3) 

n 
E(i~l X/n) = E(X) = 8) E[E(Xi-X)) = 

4) E(EXi) = 9) E[E(X -X) 2) = i 
5) E[E(Xi-µx)l = 10) E[E(Xi-X) 2/(n-l)J = 

More complicated expressions are done similarly as in the example and problem. 





Summary VI 

GENETIC VALUES, COVARIANCES, AND EXPECTED VALUES 

Definition of genetic values 

An additive gene effect is defined as the average replacement value of 

that gene, i.e., if that gene replaces the average gene, the change in value 

is the additive genetic effect of that gene. Thus, if two genes are added, 

the change in value will be twice the additive effect of adding one gene. 

The sum over all loci of all additive genetic effects is the additive 

genetic value, GA, of the animal. 

A dominance genetic effect is defined as the average replacement value 

of a· particular gene pair at one locus as a difference from the additive 

senetic value. The sum over all loci of all dominance genetic effects is 

the dominance genetic value, GD, of the animal. 

An additive by additive genetic effect is defined as the average 

replacement value of a pair of non-allelic genes--the specific effect of a 

gene from one locus and a gene from another locus in addition to the normal 

additive gene effects of the genes. The additive by additive genetic value, 

GAA, of an animal is the sum of all effects of non-allelic gene pairs. 

An additive by dominance gene effect is defined as the average replace-

ment value of a gene at one locus and a gene pair (genotype) at another 

locus as a difference from the additive and dominance effects. The sum of 

all such effects is the additive by dominance genetic value, GAD' of an animal. 

Similarly, higher order genetic effects can be defined, e.g., additive 

by additive by additive, additive by dominance by dominance, etc. These 

genetic effects are defined to be independent and to have average values of 

zero. 

--50--



--51--

The total genetic value of an animal is the sum of the various genetic 

values: 

If these values could be measured separately, variances for each could 

be computed, Whether or not they can be measured, a variance can be hypo-

thesized for each kind of genetic value, In fact, since the various genetic 

values are defined to be independent, the total genetic variance is the sum 

of the variances of the couponent genetic values: 

A simpler but less symbolic notation for the components of genetic 

variance is a~. where i refers to the number of single nonallelic genes 
'-J 

and j refers to the number of allelic pairs (genotypes) contributing to the 

genetic effect, This change in notation is summarized in the following 

table. 

Gene action 
sum of effects of 

allelic pair : a1a2 , c1c5 , etc. 

non-allelic pair : a 1b 1 , a2c5 , etc. 

single gene and allelic pair 
a 1b1b 2 , c1d5d6 , etc, 

two allelic pairs: 
a1a3b4b 6 , c1c2b2b3 , etc, 

in general 

Contribution to genetic variation 
symbols 

2 all 

2 0 02 

jargon 

additive genetic variance 

dominance genetic variance 

additive Xadditive 

additive :,_ dominance 

dominance ;, dominance 

where i refers to number 
of nonallelic genes 
acting together with j 
allelic pairs 
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The total genetic variance can then be written as 

a2 = EE a2 = 
G i+j>O ij 

Gene effects in common by descent 

Since there are two additive genetic effects at each locus, the fraction 

of additive gene effects in common for relatives A and Bis aAB which equals 

2 times the probability that a random gene from A is identical by descent to 

a random gene from B. 

The fraction of dominance effects in common will be dAB which equals the 

probability of genotypes identica:11-y descent or fraction of loci uith identical genotypes. 

2 Similarly, aAB is the fraction of additive by additive genetic effects 

in common; aABdAB is the fraction of additive by dominance genetic effects 

alike. 
i j In general, (aAB) (dAB) gives the fraction of genetic effects in 

common due to i non-allelic genes acting together with i allelic pairs 

(genotypes). 

Genetic Covariances between relatives 

The genetic covariance between relatives depends on the fraction of the 

different kinds of genetic effects which are common by descent. In fact, 

the covariance due to additive gene effects in common is aABaf0--the product 

of the fraction of additive effects in common and the additive genetic 

variance. The covariance due to common dominance effects is dABa6l' that 

due to additive by additive effects is aiBa~ 0 , and that due to additive by 

dominance effects is aABdABaf1 . These and others are sununarized below. 
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Contribution to genetic covariance between individuals: 

Genetic components 

2 
010 

2 0 01 

"2 20 

2 011 

2 0 02 

Contribution to covariance 
between individuals A and B 

1 2 (aAB) 010 

1 2 (dAB) 0 01 

(aAB)2 2 0 20 

1 1 2 (aAB) (dAB) "11 

(dAB) 2 2 0 02 

(aAB)l(dAB)2 2 0 12 

2 o .. 
1.] 

(i = O, ... , n; j;:::: O, ... , n with n 1:..1ci, 

also i + j must be > 0 and l. + j n) 

The total genetic covariance is the sum of the parts, i.e. 

This can be written in summation notation as 

Note that the subscripts of the variance components correspond to the 

superscripts of the additive and dominance relationships. When j = 0, 

(dAB)j = 1 for any dAB and when dAB = 0, (dAB)O = 1 but {dAB)l = 0, etc. 

These values are somewhat illustrated in the coefficients in the above 

column for contribution to covariance between individuals. (Note that as 

1,_ increases, the coefficients of the higher order genetic components of 

variance decrease.) Even if ofo is large, the contribution to likeness by 
i that component, (aAB) "io• will be small if i is very large. 
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Use of expected values in showing contribution to genetic covariance 

In brief, the average or expected value of two variables X and Y is 

written E(XY), If E(X) = 0 = the average of variable X, then E(XY) = oxy• 

Similarly, E(X2) = oi, E(KX2) = Koi where K is a constant, E(~Y) = ~~oxy• 

These rules are given in the appendix to Summary VII and pages 45-49. 

This principle will be applied to the genetic covariance between 

relatives X and Y for only 3 kinds of genetic effects which will illustrate 

how the overall genetic covariance between relatives is determined, 

If Y is related to X, then a fraction of 

these gene effects also appear in Gy. Then write 

G'\ GD y GAAy 
A 

G = aXYG¾ + other G'\ + dXYGD + other GD + aiYGAA + other G~. y 
X y X 

The other genetic effects are due to genes from other sources and Mendelian 

sampling. 

Since we have defined the genetic effects to be independent with zero 

means, then 

Substitute for GX and Gy, expand, and take expectations of the parts: 

oGXGY = E(G¾aXYG¾) + E(GAXother G'\) + E(G¾dXYGDX) + E(G¾other GDY) + 

E(G¾aiYG~) + E(G¾other GAAy) + E(GDXaXYG¾) + E(GDXother G'\) + 

E(GD dXYGD) + E(GD other GD)+ E(GD ahGAA) + E(GD other GAA) + 
X X X Y X --,i: X ---y 

E(GA¾aXYGAX) + E(G~other G'\) + E(G~dXYGDX) + 

E(GA¾other GDY) + E(GA¾aiyGA¾) + E(G~other GA'\). 



--55--

(Constants can be factored outside.) Then, 

0 + 0 + 0 + 0 + 0 + 0 + 0 + a 2 • 2 + 0 Il 0 G AA 

The zero terms come from independence of genetic effects and the lack 

of genetic effects in common between terms such as G'½c and other GAy. 

Example: We want to know the contribution of all genetic components up to 

second order (i + j = 2) interaction components to the likeness between a 

parent (X) and its progeny (Y). 

We know a = l and dXY = 0. XY 2 

Therefore: 
o = <1:.)1(0)0 2 + (1:.)0(0)1 2 + (1:.)2(0)0 2 + 

GXGY 2 010 2 0 01 2 (120 

(1:.)0(0)2 2 + (l)l(O)l 2 
2 0 02 2 011 

and so 
1 (1:.)2 2 o = - o2 + 0 20 GXGY 2 10 2 

(Note 0 0 N 0 for N > 0,) that (0) = (N) = 1 for any number (N), but that (0) = 

Another example: The genetic covariance between full sibs, X and Y. 
1 1 We know aXY = 2 and dXY = 4• 

Then 

Note that although full sib pairs and parent-progeny pairs have the same 

additive relationship that the likeness (genetic covariance) will be greater 

between full sib pairs then parent-progeny pairs if dominance effects, 

dominance by dominance effects, additive by dominance effects, etc. contribute 

to genetic variation, 
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These two examples also indicate how the components of genetic variance 

may be estimated, Covariance between pairs of relatives are computed and 

equated to their theoretical composition. In general, as many covariances 

as theoretical components are necessary. In the above two examples, only 

two components could be estimated (and not af 0 , a~0 since both covariances 

have the same expectation for those). The others usually must be assumed 

to be zero, 

E.g., suppose Cov(Full sibs) = 50, Cov(parent-progeny) = 40. Assume 

2 = 2 2 0 a20 a02 =all= • Then 

1 2 1 2 50 • 2 alO + 4 aol 

40 = l a2 
2 10 

Thus, estimates are af 0 = 80 and aij1 = 40. 

In general, for a random mating population, the additive fraction of 

genetic variance, af 0 , is about all we can hope to use since selection for 

gene combinations becomes unimportant after a few generations. Our usual 

goal will be to select for additive merit--the part that contributes afo 

to genetic variance. 

Heritability in the "broad sense" is defined as a'f/(al+ai) where al 

is the total genetic variance, E~a 2 and a 2 is the variance due to non-iJ ij' E 

genetic effects (environmental effects). 

Heritability in the "narrow sense" is defined as afof<al +ap where 

af 0 is the additive genetic variance and a~+ a~ is the total or phenotypic 

variance which is the total genetic variance plus the environmental 

variance. This form of heritability will be used again and again when 

methods of selection for additive genetic value are discussed. 
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Appendix to Summary VI 

1 Reason aAB describes genetic effects in common rather than 2 aAB' 

1. Additive genetic variance, oio 

Consider one locus only. 

Let 

Then 

Thus 

but 

Thus 

COV (GAGB) = 

COV (GAGB) = 

= 

= 

cov 

But 

additive genetic value of animal A due to 
genes ai and aj 

additive genetic value of animal B due to 
genes ai, and aj, 

(cxi "i' + "i"j'+ "j"i' + "j"j') 

E(cx2) = a2 for all m and E(cx ex ,) = m mm 
all m + m'. 

cx2[P(i=i') + P(i=j') + P(j=i') + P(j=j')) 

"2 [4P (random genes identical by descent)) 

"2 [ZaAB) ' 
2 = E[G2) 010 m = E[cxi + " J 2 j 

a2 
10 
2 = 

= 

= 

and 

E[cx2 + "~ + Zcxicxj) i J 

Zcx2 + o 

and unless inbred. 

0 

therefore 
2 

010 This procedure may be extended 
2 

to many loci. 
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2. Additive x additive genetic variance, o~0 . 

Consider the minimum of two loci 
th and let (a$) be the additive x additive effect of the m-- gene at the "a" mn 

th locus and n- gene at the "b" locus. 

Let the additive values of animals A and B be 

and 

Then let the corresponding additive by additive effects be 

Then cov2o<AB) = (aS) 2 [P(i=i')P(k=k')+ P(i=i')P(k=t')+ P(i=j')P(k=k')+ P(i=j')P(k=t') 

+ P(i=i')P(£=k')+ P(i=i')P(£=£')+ P(i=j')P{£=k')+ P(i=j')P(i=£') 

+ P(j=i')P(k=k')+ P(j=i')P(k=£')+ P(j=j')P(k=k')+ P(j=j')P(k=£') 

+ P(j=i')P(R,=k')+ P(j=i')P(R,=£')+ P(j=j')P(£=k')+ P{j=j')P(2=9-')] 

But a2 = 20 

Therefore 

= (aS) 2 [P(i=i')+ P(i=j')+ P(j=i')+ P(j=j')l x 

[P(k=k')+ P(k=£')+ P(£=k')+ P(£=£')) 

= (aS) 2[4P(genes identical)x4P(genes identical)) 

= (aS) 2[(2aA8)(2aA 8)] 

4(aS) 2 and o~0/4 = (aS) 2. 

2 
cov20(AB) = 020 (4ais) = 2 2 using similar assumptions aAB0 20 4 

additive effects. 

as for 





Sunnnary VII 

THE SELECTION INDEX 

The basic problem in animal improvement through breeding is to choose 

animals which have the greatest genetic value to be parents of the next genera-

tion. The simplified model for a record (P) on an animal poses the problem; 

P = µ + G + E , 

whereµ is the population mean, a constant; G is the effect on P due to the 

animal's complete genotype, and Eis the effect of the environment on P and 

thus masks our evaluation of G. We have already seen that only additive genetic 

effects have much chance of beir.g transmitted from one generation to another. 

Thus, we will usually assume that G is the additive genetic effect. 

The problem is to maximize the average G of the selected group, µGs' 

where µG is the average G of the total group, i.e., 

We will see later that genetic improvement per year is 

where 6G is the genetic improvement per generation; rTI is the correlation 

between the true additive genetic value and I, our index prediction of it; 

Dis a factor related to selection intensity (value of O with no selection 

and a value of about 3 for selection of the top one-half percent); oG is the 

genetic standard deviation, and Lis the generation interval in years defined 

as the average number of years between birth of parents and the birth of 

replacement offspring. The four parts of the key equation for genetic improve-

ment will be discussed separately. 

--59--
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What is a selection index estimate of genetic value? This question is, 

perhaps, best answered by an example. 

Suppose we have several animals each with records on three relatives 

(X
1

, x
2

, and x
3

). We know that relatives will have genetic effects in common 

by descent. Thus, the record of each relative should tell us something about 

the genetic value of the animal we are evaluating. A logical way would be to 

weight each record by its relative importance, i.e., estimate of G =I= 

b
1
X

1 
+ b

2
x

2 
+ b

3
x

3
, where the b's are the appropriate weights and the X's are 

known records of the three relatives. I is the selection index prediction of 

true genetic value. 

What should the weights (b's) be? 

Some desirable properties of the index to predict some true value, T, 

should be: 

1. To minimize errors of prediction or the average or expected squared 

difference between T and its predictor, I, i.e., minimize E(T-1) 2 . 

2. To maximize rTI' the correlation between true value and prediction 

of true value which is also called the accuracy of the prediction 

of T. 

3. To maximize the probability of correctly ranking the animals, and 

4. To maximize the average true value of the selected group. 

The selection index procedure which will be described satisfies properties 

1 and 2 and satisfies properties 3 and 4 if the records of relatives, the X's, 

and T, the true value, follow a multivariate normal distribution. These pro-

cedures derive from work by Sewall Wright, Jay Lush, and C.R. Henderson. 

Henderson has proved many of the properties. Most of the development that 

follows was taught for many years by C.R. Henderson at Cornell University 

beginning in 1948. 
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Method of finding b's 

The general index is r = b1x1 + b2X2 + ... + bJ1N for predicting some 

true value, T, which will often be the additive genetic value but is not 

necessarily that. We want to maximize rrr· Maximizing log rrr is equivalent 

to maximizing rrr but is easier to accomplish. 

(l/2)log ai - (1/2)log ai. 

Note that log rrr = log arr -

Use of the rules for finding variances and covariances of linear functions 

(see Summary V) gives us a;r and at in terms of the unknown b's and known 

variances and covariances. Note that a 2 is a constant; 
T 

arr b a + b a + . . . + bNaTX _, and 1 TX1 2 TX2 -~ 

a2 r + ... + 

These expressions are then substituted into log rrr' and the partial derivatives 

of log rrr with respect to each of the b's are set equal to zero, i.e., 

atog rTr 
0x T blai + b2aX X b a 

1 1 1 2 + ... + N Xl¾ 
0 =---ab1 0rr or 

atog rrr 
0 x T bloX X + bzai b a 

2 1 2 2 + ... + N Xz¾ 
0 ab2 

=--- = 
0rr or 

alog rTI a¾T blaXl¾ + b2aXz¾ + ... + bNa¾ 
0 

abN 
=--- a2 = 

0 rr r 

Rearrangement of these equations gives the selection index equations 

(except for a constant, C = ai /arr, on the right hand sides of the equations). 
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b1o~ + b2oX X + b3oX X + . + bNoX X = cox T 
1 1 2 1 3 1 N 1 

bloX X + b o 2 
+ b3oX X + . . . + bNoX X = cox T 

2 1 2 x2 2 3 2 N 2 

Note: 

but 

2 OT' 

L The constant, C = oi/oTI' will not change the relative sizes of the 

h's or the rTI so we will set C = 1, which we will see results in the 

same weights which minimize squared prediction error. In fact, oi = oTI' 

2. The equations are symmetrical, i.e., the coefficients of the unknown 

b's are the same in each column as the corresponding row. See, for 

example, the coefficients in row 1 and in column 1. 

3. The equations are similar to multiple regression equations except 

the true variances and covariances are assumed known and replace the 

sums of squares and products used in multiple regression. 

4. If E(T-1) 2 is minimized, the same equations would result except that 

no constant oi/oTI is involved on the right-hand sides of the 

equations. 

Average squared prediction error is 

}IT= µI 0 or some constant that will not change differences in the I's; 

2 01' and OTI can be expressed in terms of linear functions as for the maxi-

mization of rrr· Equating to zero the partial derivatives of 02 
T + a2 - 2a I TI 

with respect to h1 , b2 , ... , bN will provide the following equations which 

define the h's which minimize prediction error squared; 
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0x T 1 

These are the same equations as for maximizing rTI when o~/oTI is set equal 

to unity. In this derivation 0~ = OTI automatically. 

Other properties of the selection index 

The correlation between the index and true value is: 

rTI = = T + b2°x T + ••• )/of 
l 1 2 

Note by using expected values that: 

and that 

If the index is not the selection index, the definitional form of the 

correlation must be used: 

rTI = 0n 110 i0 f 
where oTI and of are calculated from expected values. 

If the index is the selection index, the definitional form of. the 

correlation reduces to: 

because of= oTI' 

Because I= Ib-X. and the X. are variables, then the index values 
l l l 

will also be variable. In fact, if I is the selection index: 

or= r~ro4 

This expression shows that of corresponds to the variance in T 

which is accounted for by I. 
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When I is not the selection index 

The variance of prediction errors (average squared difference 

of T from I) is: 

This expression corresponds to the variance in T not accounted for 

by I. 

When I is not the selection index, the variance of prediction 

errors must be calculated from expected values: 

The average of true values for animals with index value I 0 

is: 

E(TII=I ) = I 0 0 
Thus the selection index procedure is unbiased. 

Intuitively, we would expect anim;ils with the same index value 

to have different true values. In fact, the variance of true values 

for animals with the same index value, I 0, is: 

o{II=Io = (1-r{I)o{ 

If I is not the selection index, rTI must be calculated from 

E(TI), E(I 2), and a{. We will use this property later to make 

probability statements about the true value of an animal with a 

certain index value. 

The X. used in the selection index are often averages of records. 
1 

The variance of an average depends partly on the covariance between 
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records making up the average. Such covariances will be between records 

on the same animal or between records on relatives such as paternal 

half-sibs. 

Models for determining covariances between records 

Single measurement traits that can be measured only once can be 

represented by the model: 

P. = G. + E. 
1 1 1 

where P. is the phenotypic record adjusted for fixed effects such as the 
1 

overall mean, 

G. is the total genetic value, and 
1 

E. is the total of all environmental effects. 
1 

The covariance between records on relatives i and j can be determined 

by expected values: 

Cov(P. ,P.) = E[ (G. + E.)(G. + E.)) 
1 J 1 1 J J 

under the usual assumption of no covariance 

effects. Note 

Section VI. 

that a G.G. 
1 J 

= (J G.G. 
1 J 

between 

+ (J E.E. 
1 J 

genetic and environmental 

For convenience of notation we will define the covariance between 

environmental effects on records of relatives i and j as 

a = c1. 1· ox2 E.E. 
1 J 

where a~= a~ is the total or phenotypic variance. 

genetic effects are involved: 

Then 

= h2 2 a. . ox 
1J 

Cov(P. ,P. ) = (a .. h2 + c . . )ox2 
1 J 1J 1J 

Thus, if only additive 

Even if other genetic effects are involved, this is often a good approximation. 
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Multiple measurement traits are those that allow repeated records, as 

for example a first milk lactation, a second milk lactation, etc. The 

model for such records is 

P .. = G. + PE. +TE .. 
1) l l 1) 

where P .. is the jth phenotypic record of the ith animal adjusted for the 
1) 

mean and other fixed effects, 

G. is the total genetic value, 
1 

PE. is the total of all permanent environmental effects which affect 
l 

every record the animal makes, and 

TE .. is the total of all random temporary environmental effects which 
1) 

affect only the jth record of animal i. 

This model may be an over-simplification of the true model for 

multiple measurement traits but is often a reasonable approximation. 

Because G. and PE. repeat in every record of the animal, this is 
l l 

sometimes called the repeatability model and sometimes the animal model. 

The sum of all permanent effects of the animal can be denoted as the animal 

effect : 

A. = G. + PE. 
1 l 1 

Repeatability, r, is defined as the fraction of the total variance 

which is variance due to animal effects. 

r = o2 /02 = (02 + 02 ) / (02 + 02 + 02 ) A X G PE G PE TE 

Note that oI = ro~. 

The covariance between two records on the same animal is o2 = ro 2 
A X 

and can be determined with expected values: 
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Cov(Pij'pij') = E[(Ai + TEij)(Ai + TEij')] =al= ra~ 

under the assumption of no covariances between animal effect and temporary 

environmental effects and between temporary environmental effects. 

How to determine the variance of an average 

Let Xi be the average of Ni records: 

+ X.N 1 . 
1 x1. = ---,.,..-----"-N. 

1 

If E(X~.) = aX2 for all ij (that is, all records are from a distribution 
1) 

having the same variance) and if E(X .. X .. ,) = aX'X for all j I j' (that 
1J 1) 

is, all pairs of records have the same covariance), then from expected 

values: 

Nia~ + Ni (Ni-l)ax•x 
= 

N _2 
1 

a2 + X (ni-l)ax•x 
= N. 

1 

In·the following paragraphs when X. is the average of records on the 
1 

same animal, aX'X is the covariance between records on the same animal 

and 

ax•x = ra; 

l'lhen Xi is the average of single records on a group of equally related 

relatives (additive and dominance relationships a .. , and d .. ,), the 
11 U 

aX'X is the covariance between records of any pair of relatives i and i' 
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each contributing a record to the average and 

0x•x = 0G.G., + cii 10~ 
l l 

the sum of the total genetic covariance and the environmental covariance. 

If oG G =a .. ,h 2oX2 (only additive genetic effects contributing to the 
i i' 11 

genetic covariance), then 

OX'X = (a .. ,h2 + c .. ,)ox2 
11 11 

General form of the covariance between averages 

The covariance between averages is usually equal to the covariance 

between any record in the first average and any record in the other average. 

Expected values can be used to determine when this is true. Let Xik 

be a record from average 

x. = 
J 

and x.9 be a record from 
J , 

X. = 
J 

Xil + 

N. 
l 

average 

xj 1 + 

N. 
J 

+ X.N l . 
l 

+ X. JN. 

If E(Xikxj 9) is the same for all k and 9, then taking expected values shows 

from 

Cov (X. , X.) 
l J 

that there are N.N. expected values with the same expectation in the 
l J 

numerator with a denominator of N.N .. Thus, if a representative record 
l J 

from X. is G. + E. and a representative record from X. is G. + E. then 
l l l J J J 

Cov(X. ,X.) = E [ (G. +Ei)(Gj + E.)] 
l J l J 

= a + c .. ox2 G.G. l) 
l J 
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Summary 

1) 

2) 

If Xi is the average of records on relative i, the aX'X = ra~, 

If X. is the average of single records of relatives of type i, 
1 

then ax,x = aG G + c .. ,a;, and 
i i' 11 

type 

3) If X. is the average of n. records on each of p. relatives of 
1 1 1 

i, then also aX'X 

The derivation of 

= aG G + C •• ,a; i i I ].l 

the variance of an average of averages can be done 

with expected values utilizing the property that the covariance between 

averages is the same as the covariance between a record from one average 

and a record from the other average. 

Let 

animal j 

xil + + 

X. = 
1 P. 

1 
in relative group 

x. ipi 

i. 

where x .. 
1J 

The number 

is the average of n. records on 
1 

p, V(X,
3
.) + p. (p. -l)Cov(X .. ,X .. ,) 

= i i _ 1 1 1J 1] 

= 

P. 
1 
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How to determine the cr 
XiT 

If we know a~, ox X, and cr T for all i and j, we can easily set up 
i i j xi 

the equations to find the appropriate weights for the index; cr2 
xi 

can be estimated or derived as shown, is the covariance 

and crX X 
i j 

between 

something we can measure, Xi, and T, 

but aX. T 
l 

something we cannot measure or see. 

Therefore, OX T must be computed indirectly. If we are selecting for additive 
i 

genetic value, crXiT = aiacrfo where aia is the additive relationship between 

the relative with record Xi and the individual a which we are evaluating for GA, 
a 

crio is the additive genetic variance. We can see that this is the portion 

of the genetic covariance between relatives which is due to additive genetic 

effects in common between the relatives. Recall that af0!a~ = h2 , heritability 

in the "narrow sense." Thus, 0 1
2
0 = h2crX2 and cr = a h2cr2 

X. T ia X 
1. 

Although the usual procedure is to select for additive genetic value, 

the selection index is more general and can be used for most possible defini-

tions of T, the true value, which we are trying to predict. The only parameters 

of the procedure that change when Tis redefined are the right-hand sides, 

the crX.T' and also of although other parameters that depend on these will, 
1. 

of course, also change. Expected values and simple models can be used to find 

easily ox T and of. The technique will be demonstrated for several definitions 
i 

of T including the usual one where Tis additive genetic value, To simplify 

expected values, all variables will be assumed to have zero means although 
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as stated earlier the variances will be the same in either case. 

1. T =GA, additive genetic value for animal a. 
a 

Let Xi be a representative record included in Xi with model 

Xi= Gi + Ei or Xi= Gi + PEi + TEi' where Gi can also be separated 

into additive,dominance, additive by additive genetic value, etc. 

PEi is a permanent environmental effect on all records of animal i, 

and TEi is a temporary environmental effect on a specific record of i. 

Then, 

oX T = E(XiGA) = E[(Gi + Ei)(GA )] 
i a a 

= E(GiGA) + E(EiGA) 
a a 

= aia 0 io + 0 

if no genetic by environmental correlation. Thus, the right-hand 

sides will be aiaof 0 = aiah 2of, where oi is the phenotypic variance 

of individual records. If Xi is a record on animal a (i=a), then 

ai = 1 + F. a a Similarly, oi = E(Gi) = aaaof 0 = (l+Fa)h 2of if a is 
a 

inbred and of 0 = h2of if a is not inbred. 

2. T = A = G + PE , real producing ability (i.e., prediction of .the a a a 

permanent ability). 

If i a, oX T = E[(G + PE + TE )(G +PE)]= oG2 + oP2E = o2 = i a a aa a A 
rof, if not inbred. If i + a, oXiT = E(Gi + PEi + TEi)(Ga + PEa)] 

E(GiGa) + E(PEiPEa) + others likely to be zero.= oG G + a 
i a PE/Ea 

(total genetic covariance plus permanent environmental covariance 

usually assumed to be zero but not necessarily so, e.g., for litter-

mates). If all i + a, the index weights will be the same as for 

predicting additive genetic value, but oi will be different; oi = 

E(A2) = E[(G + PE ) 2 ] = o2 = o2 + oP2E, if not inbred, Repeatability a a a A G 
or the correlation between records on the same animal is defined as 

r = (o2 + o2 )/o 2 = o2/o 2 
G PE X A x• 



3. 

4. 

5. 

T = GD ' " 

T GA 
" 

T = G , 
" 

--72--

dominance genetic value. 

0 x T = E[(Gi + Ei)(GD )] = dia 0 61 
i " a2 = 

T E(G2 ) = cr2 
D 01 
" + GD , additive plus dominance genetic value. 

" 0 x T = E[(Gi + Ei)(GA +GD)]= aiacrio + dia 0 61 
i " " a2 = E[ (GA + GD )2] 2 + 2 if not inbred, 

T 010 0 01' 
" " overall genetic value. 

0 xiT = E[(Gi + Ei)(G")] = 0 GiGa= aia 0 io + dia 0 61 + ••• 

a2 = E(G) = cr2 = cr2 + 00
2
1 + ... , T a G 10 

if not inbred. If Ga = GA , then everything is the sam,e. as for pre-

dicting additive genetic value. 

6. T = (1/2)GA, the average part of additive genetic value that is 

" transmitted to progeny--transmitting ability. 

= E[(Gi + Ei)(l/2)(GA )] = (1/2)E[(Gi + Ei)(GA )] 

" " 
Thus, the index weights will only be half as large as when predicting 

a's additive genetic value. 

a2 
T E[(l/2) 2 (Gi )] = (1/4)E(Gi) 

" " (1/4)crf 0 for F" = o. 

The six definitions above show the flexibility of the selection index as 

long as T can be defined. In other cases, there is more difficulty in deter-

mining exactly what Tis: 

7. T = P 
" 

G + E = G + PE + TE , a future record (this is what most 
a a a a a 

breeders think we are doing in cases, 1, 2, and 5). 

If i = a (animal already has a record, e.g., record P and want 
"1 

to predict from this record, record P ), 
"2 

crX T E[(G + PE + TE )(G + PE + TE )] 
i " " "1 " " "2 

= a 2 + a 2 = ra 2 = a 2 
G PE X A 



8. 
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if not inbred. If i I a, 

crX T E[(Gi + PEi + TEi)(Ga + PEa + TEa)] 
i 

= E(GiGa) + E(PEiPEa) + E(TEiTEa) 

= Cov(G.G) + Cov(E.E) 
lCi lCi 

The last two terms are environmental covariances which often are 

assumed to be zero. The first term is the total genetic covariance. 

These right-hand sides and index weights are the same as for predicting 

real producing ability if E(TEiTEa) = 0, but cri is different; cri = 

a2 + a2 
G E 

phenotypic variance of single records. 

T = average of records of m future half-sib progeny of some sire = 

[(l:G.)/m] + 
]. 

[(l:Ei)/m] 

Since the covariance between averages and between individual 

records is the same, let P = G + E be a representative record in a a a 
0 x T =E[ (Gi + Ei)(Ga + E )] = 0 G G ( = aia 0 io if G a a i i a 

However, 
l:(Gi + E.) a2 + (m-l)crxx' 

a2 =E([ 1 ]2} X (see Appendix) = ' T m m 

where crXX, is the covariance between pairs of records in the average 

This term can be evaluated as before and will have one or more 

genetic components and possibly an environmental covariance, crG G + 
i i 1 

T. 

GA 
a 

T. 

a E ' Ei i' 
the genetic plus environmental covariance between i and i' are 

both included in it. 

9. T = average of records of 00 future half-sib progeny of some sire. 

crX T as in (8), but cri = (cr~/m) + [(m-l)crXX1 /m], and as m + oo, 
i 

cr2 + cr '= cr + cr E . 
T XX GiGi, Ei i' 

(1/2)(GA) of a sire when Ga= 
a 

This ease is often similar to predicting 

) . 
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10. T = average additive genetic value of m or 00 future half-sib progeny, 

= aiaafo as in (8); ai = E{[(EGA )/m] 2} = [af 0 + 
a 

af 0 is the variance of additive genetic value 

and aaa•af 0 is the covariance between additive genetic value of a 

and a', a representative pair in the group. As m 00
, ai + aaa•afo· 

For noninbred half-sib progeny, aaa' = 1/4 and a~= (1/4)af 0 as in 

case 6 when predicting (1/Z)(GA ). Note that in (10), a refers 
sire 

to a progeny group, and in (6), a designates a particular animal that 

has the progeny. 

These examples illustrate the power of the selection index method; T can 

be almost anything, even, for example, difference in additive genetic value 

between animals or linear functions of genetic values. The absolute necessity 

of clearly defining what Tis also should be clear and would avoid much of the 

confusion among animal breeders who seem to be selecting for the same thing 

when they actually are not. 

X. are averages of records of a relative i 
1 

If Xi is the average of ni records on an animal, then the variance of the 

average can be found as a function of variances and covariances of the records 

going into the average. If we can assume, as often is nearly true, 

that the variance of first records equals the variance of second record, etc., 

and the covariances are all equal, then 

where a2 is the variance associated with single records and r is repeatability. 
X 

Thus, the diagonal coefficient of the selection index equations to find the 

weights is 
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The off-diagonal coefficients are the same as the covariances between a single 

record of one animal and a single record of another relative. 

If, however, we can assume that the only reason for likeness between rela-

tives is common additive genetic effects, then the off-diagonal coefficients 

are of the form ax X = ai.afo aiJ_Jcri. If other components of genetic vari-
i j J 

ance are important, this will not be true but still may be a reasonable approxi-

mation if the true covariance is unknown because the coefficients of the other 

components will be small. A more likely source of error is the possibility of 

an environmental covariance among relatives. If Cijai is the covariance between 

records of relatives i and j caused by common environmental effect, then the 

off-diagonal 

find the b's 

coefficient should be aXiXj = (aijh + Cij)ai. The equations to 

can now be written (assuming all Cij = 0) to predict GA: 
Ct 

[
l+(n 1-l)r] 2 

nl aXbl + '"2 
al2haxb2 + '7-2 a 13haXb3 + ... + "-2 alNhaXbN 

2. 2 alahax 

2. 2 
[
l+(n 2-l)r] 2 ?- 2 + ... + , 2 2 al2haXbl + n2 aXb2 + a23naXb3 a2NliaXbN = a2anox 

• • • • • • • 

+ 

We can see that o~ appears in each equation so that dividing each equation 

by o~ will not change the solutions for the h's. 

Thus, the equations can be written as: 
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l+(n 1-l)r 
a12h2b2 2 a1Nh2bN a h2 b + + a13h b3 + ... + n1 1 la 

a12h2bl 
l+(n 2-l)r 

b2 a23h2b3 a2Nh2bN a h2 + + + ... + 
n2 2a 

a1Nh2bl + a2Nh2b2 + a3Nh2b3 + ... + 
l+(nN-l)r 

a h2 = 
°N N Na 

Only rand h2 are necessary in order to set up the equations because the 

relationships can be computed and the n's will be known. 

Xi is the average of ni records on pi equally related relatives 

Suppose X. is the average of a genetic group of animals (p.) each with n. 
1 1 1 

records (e.g. a group of paternal half-sisters each with 2 records). ·Further 

suppose 1) each animal in the group has the same relationship, a .. ,, to all 
11 

other animals in the group, and 2) each animal in one group has the same 

relationship to all animals in each other group, i.e., aij's are same for all 

animals in groups i and j. Then the diagonal coefficients become 

cr2 
X 

If other than additive genetic variance contributes to likeness between 

animals in the genetic group, the portion (pi - 1) aii'h 2 will be greater. For 

example, if the environmental covariance is Cii'cr~ and there is also likeness due 

to dominance genetic variance, the diagonal coefficient is: 

cr2 
X 
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After dividing by oi and with the assumptions to be again stated, the 

simplified equations for finding the appropriate weights for the index 

. N 
GA = I • i~lbiXi are: 

a 

l+(n 1-l)r 
+ (pl-l)all, h2 nl 

bl + 812112 b2 + ... + 
P1 

l+(n 2-l)r 
+ (p2-l)a22'h2 n2 a12h2b1+ 

P2 
b2 + ••• + 

The assumptions which are implied in using this set of equations are: 

1) Selection is for additive genetic value, 

2) The variances of single records for all relatives are oi 
3) The covariances among records for each animal are ra 2 

X 
for all relatives, 

4) Only additive genetic variance contributes to the covariance among 

relatives. If this assumption is not true the terms aijh 2 should be modified 

to take into account other components of genetic variance and any environ-

mental covariance. 

5) Each animal in group!. has the same number of records. If not, the 

group should be divided so that each new group has the same number of records. 
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Records from inbred animals 

The variation among non-related inbred animals will be greater than for 

non-inbred animals since the genetic variance of inbred animals is aiiof 0 

(l+Fi)of 0 when only additive genetic effects are considered, Thus, the 

phenotypic variance among single records of inbred animals is (l+Fi)of 0 + 

o2 = [(l+F )h 2 + (l-h 2)]o 2 where o2 is the variance of single records of E i X' X 

non-inbred animals. Thus, the diagonal coefficients of the equations which 

determine the selection index weights will be increased. For single records 

the increase will be Fih 2of to (l+Fih 2)of. For the average of records on the 

same animal the diagonal coefficient will be 

o2 
X 

since the covariance between records on the same animal will be also increased 

For the average of single records on each of pi animals in group i, the 

diagonal coefficient will be 

This situation, however, seems rather unlikely. For the average of n records i 

on each of pi animals in group 

{ [ l+(n.-l)r 
l. 

n. 
l. 

i, the diagonal coefficient 

Fih2] + (pi-l)aii,h2] + 

pi 

becomes 

o2 
X 

If animal a is inbred, rTI will also have (l+Fa)h 2o~ in the denominator as 

o~ when selecting for GA. 
a 

Computation of rTI 

The solutions for the b's will be the same for the simplified equations 
as for the regular equations if the assumptions are true. For the regular 

equations 
Eb o /o 2 

i X.T T 
l. 
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For the simplified equations substitute a h2a2 = 2 for 0x T and note ia X aia 0 10 i 
that a2 = 2 if T is additive genetic value. T 0 10 
Then 

2 
rTI = Ebiaia 0 io10 io = Ebiaia and rTI IEbiaia 

Thus, only rand h 2 are needed to compute the h's and rTI with the 

simplified equations when selecting for additive genetic value. 

Computation of ailr=I 
0 

af0 = ai will be needed since 

2 0 T/I=I = (1-r2 )a 2 = (1-Eb.a )a2 = (1-Eb a )h2a2 o TI T i ia T i ia X 

Additional note 

Often animals will not have records available on the same types of 

relatives. Even when records are available on the same relatives, the rela-

tives may not have the same number of records. The selection inoex pro-

cedure can still be used to compare animals, but then the weights for the 

index for each animal with a different set of records and types of rela-

tives will have to be found from a set of equations corresponding to the 

p, 'sand n.'s associated with that animal. 
i i 

Application of the index to cases where the assumptions are true 

1. One or several records per individual. 

Often individuals must be compared on the basis of their performance but 

with unequal numbers of records. The best procedure is to solve the index 

equations for each specific case (i.e., number of records per individual). If, 

however, all the variances= of, all the covariances among the x's = rcrf, and 

the covariances of the RHS's all are equal then the equations are simplified. 



--80--

Repeatability in the case of equal variances and covariances is defined 

0 
as r XiXj , the regression of the jth record on the ith record or the 

c,2 
xi 

correlation between the i and jth records, 

If the covariances between all records and the additive genetic value of 

the individual are all equal, then the index becomes 

I= bX 

where Xis the average of_!!. records on an individual for which we want to 

predict additive genetic value. 

The equation to 

[ 
and b nh 2 

l+(n-l)r 

find bis: 

1 + ~n-l)r] b h2 for equal variances and covariances 

./2 nh
2 

l+(n-l)r since a 2 
T 

2 
010 

c,2 - [1 Tl I=I 
nh2 ) h2 2 - 0 l+(n-l)r X for animals with the same number of records 

0 

and the same index values. 

This procedure allows animals with varying numbers of records to be 

ranked according to estimated breeding value so that the probability of 

correctly ranking the animals is maximized. 

2. The case of using one record on each of many relatives to estimate 

the breeding value of the ath individual. 

The, index equations will be: 

+ alNh2bN = 

+ a2Nh2bN 

a h 2 
la 

a h2 
2a 

a h 2 
Na 
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Only additive relationships and heritability are needed to set up the 

index equations. 

3. The case where some of the related individuals have more than one 

record (ni). 
l+(ni-l)r 

Now the diagonals will be b instead of bi. ni i 
The off-

diagonals and RHS's will be the same as before. 

4. The case where we have the averages of single records of pi members 

of groups with relationship aii' with each other, all having the same rela-

tionship to a and to other groups or individuals used in the index. 

Now the diagonals become 

The off diagonals and RHS's are the same as before. 

5. The case where members of the groups have more than one record (ni). 

The diagonals now become 

The off diagonals and RHS's are the same as before. This is the general 

form of the diagonal coefficients because when ni = 1, the diagonal is the 

same as for case 4 and when pi = 1, the diagonal is the same as for case 3. 

6. If members of a group of related individuals have differing numbers 

of records, then each subgroup with different numbers of records per individual 

should be treated as a separate group. 
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Weights and accuracy values for predicting add.itive genetic 
value from records of various relatives. (h2 is heritability; 
r is repeatability.) 

Records 

Individual 

Dam or sire 
or progeny 

Sire and dam 

One grandparent 

Four grandparents 

One great-grand-
parent 

Eight great-
grandparents 

(1) 

(!!_) 

(1) 
(_!!) 

(1) 

(!!) 

Individual and one 
parent or progeny 

Individual and 
both parents 

Individual and one 
grandparent or 
grand progeny 

Individual and four 
grandparents 

Parent and progeny 

Progeny (p half-sibs) 

Selection 
Index 
Weights 

h2 

nh2/[l + (.!!-l)_E) 

E..2/2 

nh2/2[1 + (~-l)_E) 

h 2/2· h2/2 - ' -
nh2/2[1 + (!!_-1):i:J; 
nh 2/2[1 + (~-l)E_) 

h2/4 

[h2-(h2/2)2]/[1 - (\:!.2/2)2]; 
[h 2(1:h2)/2)/[l - (~_2/2) 2) 

h 2(h 2-2)/(h 4-2); 
h2 (h2-1) I (h 4-z) ... 

h 2(h 2-16)/(h 4-16); 
4J0(h.2-1)/ (h4-16) 

.h 2 (!:!_2-4) / lli 4_4) ; 

.!!_2(!}_2-1)/(h 4-4) ... 

Accuracy (r TI) 

/h2 

.711!:!_2 

. 7llnh 2./ (1 + (~-l)El 



Records 

Individual (!!_) and 
paternal half-sibs (.!!.) 

Individual (Q) and his 
paternal half-sib 
progeny (.!!.) 

Dam(!!_) and 
paternal half-sibs (.!!.) 

Dam (1), 
sire (1), and 
progeny (1) 

Paternal half-sibs (!"), 
dam (n), and dam's 
paternal half-sibs (.!!.) 

--84a--

Weights Accuracy 





Summary VIII 

SIRE EVALUATION 

Many traits cannot be measured on males, thus genetic evaluation must be 

based either on records of female ancestors or on records of progeny. Evalu-

ation on the basis of progeny usually results in much greater accuracy (rTI) 

than pedigree evaluation. This method has received more use in dairy cattle 

breeding and in poultry breeding than with other classes of animals. 

The basic problem is simple: 

GIVEN: X, the average of single records of p progeny all from different 

dams. 

ESTIMATE: Additive genetic value of sire from I= bX. 

J.f the assumptions discussed earlier are true, the equation to find the 

best weighting factor, b, is: 

1 + (p-1) a 11 , h1- Xl 
b = alah:;.. p Xl' 

========~Sire (a) 

In this situation, all' = 1 and ala = 1 Thus, 4 2 

½ ph1 2p b l+(p-1)£h:i. = 4-h'-. As p , 00 

' b , 2 
p + h ,_ 

For h2 = 1 b 
2p 

for hz= 1 b = = etc. 4' p+lS 2' p+7 

In general, rTI = .ja;;f 
=~ 4-h.._ 

p+ h'" 
Asp -> oo, rTI ---, 1 

Note: 1) That we don't have to set up a new equation for each sire with 

different£. since we have solved for bin terms of p and h~ 

2) b depends on p, 

--85--
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3) rTI depends on p, and 

1,) b can exceed 1. In genetic evaluation, the b's are usually less 

than 1 except for sire evaluation from progeny records. 

Variations on sire evaluation 

The above is the basis for estimating the additive genetic value of the 

sire. Some similar procedures will yield a b which is½ the b we found. 

For example, a Cornell Sire Evaluation Procedure which was called the Cornell 

Daughter Level Report used 
p 

p+l5 rather than 
2p 

p+15 The U.S.D.A. procedure 

also uses a similar form although the heritability they use is slightly lower. 

1bese are two reasons for using the smaller weight: 

A. Rather than estimating the genetic value of the sire, we are interested in 

estimating the genetic value of a future daughter, a. 

a 

Xl Sire --- ---
Xl, 

(--- ---
all' = l as before, but ala = l rather than l 

4 4 2 

Now, b 
p 

and as b 1 = p , oo, , 
4-h"-p + h2-

For h;.= l p 
for h"'= l 

p 
b = b = etc. 

4' p + 15 2' p + 7 

/ ¼ (; +p 4-h~ ½J p 
Also rTI = = p and as p > oo, 

4-hL 
p h,,_ + h l-

--~, ½ . Note this is the accuracy of predicting the genetic value 

of an animal from records of E. paternal half sisters. 

;._ l - ! J p For h - 4' rTI - 2 p + 15 for h,,._= l l t 
2' rTI = 2J p+7 ; e C, 
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B. The daughter or progeny superiority of a sire (also called transmitting ability) 
may be estimated. The daughter superiority is defined to be the average of an 
infinite number of future daughters or one-half the additive genetic value of 
the sire, i.e., 

The equation to find b is: 

1 + (p-1) J.hl-
4 b = l ( J.) h2-p 2 2 

and b = p 
in A. 4-h'- as 

p + h .,_ 

rTI , however, will not be the same as in A. 

Remember hi- [~ <½) <½) rTI c Note that box T • 4-h T 1 p + 7 
But T = (l/2)G, Thus, by the rules, o2 = E(T2 ) = E[(G/2) 2 ) T (l/4)E[ G 

(l/4)oio since G is additive genetic value. Thus, 

r1 2 l 4-h' l· o 10 
p + h'-

which is the same as 

2 010 

21 

when estimating the additive genetic value of the sire. This is reasonable 

since we have divided by a constant one-half. 

Note well: It is important to define T exactly since what T is makes a 

uitference in both band rTI . 

Environmental covariance in sire evaluation 

If progeny are treated more alike because they are related than are un-

related animals, then an environmental covariance i.n addition to a genetic 

covariance exists among animals in a progeny group. 

Suppose that there is an environmental correlation among half-sibs 
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in the same environment, then the environmental covariance is c 11 ,o¾. 

The equation to find the b to evaluate the sire from~ progeny with 

one record each is: 

1 + (p-l)(a 11 ,h~+ c 11 ,J 
p 

where a 11 , is the relationship among animals in the group, a11, = ¼ 
if half sibs. 

cll ,oiis the environmental covariance and 

alCX is the re la ti on ship of animals in the group to a. If a is the 
sire, then a 1a = 1 

2 
1 h"-

= j 1 
¼ eh~ Thus, b = + (p-l)(th2+ ell') and rTI (p-1) [¾t,:z.+ ell,) 1 + 

If c 11 , = ¼ h"-and h"-= ¼ as is approximately true for dairy production: 

b =___e_ 2e rather than 2e and or + 14 + 15 p + 7 p p 

rTI = J;Ti <½) = .71 J ;!-7 
Note that in this case asp~"° b 1 but rTI .71. 

If, ell' f- 0 , then as p ~oo, rTI -..:, less than 1. 

The following table compares the b's and r 's when h~= 14 with and TI 
without environmental correlation. 

Environmental covariance ell' = 0 c11' = 1/16 

No environmental correlation Environmental correlation 

p b =~ rn= Je+i5 b = ..L rTI= • nje~7. e+15 e+7 
1 .125 .25 .125 .25 
3 .33 .41 .30 .39 

10 .80 .62 .59 .54 
20 1.15 .76 . 74 .61 
50 1.54 .88 .88 .66 

100 1.73 .93 .93 . 69 
1000 1.98 .99 .99 .70 
00 2.00 1.00 1.00 .71 
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Note that the b's are smaller and rTI .71 for c 11 , • 1/16. 

This table assumes the environmental correlation is the same for 

all pairs of progeny. The U.S.D.A. sire evaluation procedure, however, 

considers the situation where only daughters in the same herd have an 

environmental correlation. 

If there are n. daughters in the i th herd, then 
1 

b = 2 

4 + (p-1) h'.2-+ 4I:n. (n. -1) 
1 1 

p 

• h,,__ 1 d If - 4 an c 11 , = 1/ 16 , 

b = 2 
I:n. (n. -1) 

1 1 
as compared to b 2p 

p + 15 assuming no 
p + 15 + 

p 

environmental correlation. As before, 

rTI = ½ b = Jp+l 5 + Lni (ni-1) for ,._:i. -- 4' d 1/16 " £ an c 11 , = . 

p 

Correction for level of mates 

If the mates of one sire are much superior to the mates of another 

sire, then this knowledge could be used in evaluating the sires from 

their progeny averages to avoid bias from the selected mates. 

One approach would be to set up one equation for each daughter 

record and one equation for each dam record. For two dams and two 

daughters we would have: 

The equations to find the 

bJ_ + ./,.;.''-b 
4 2 + ,#.1-b 2 3 

¾½,'bl + b2 + 0 b3 

½h\1 + 0 b2 + b3 

Ob1 + .Jd.i:l..b 
2 2 + 0 b3 

Daughter 
Xl 

Daughter 
x2 

b' s for 

+ 0 b4 
+ lh1..b 

2 4 

+ 0 b4 

I 

= 

= 

= 

+ b4 = 

blXl + b2X2 + b3X3 + b4x4 are: 

.1 h:i.. 
2 

½ h:i.. 

0 

0 
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As expected bl= b2 = b . But, b3 = b4 • -½ h~b . Thus, the weight for 

the dam's record is -½ h:2.of that for the progeny. 

This is certainly different from the usual daughter-dam comparison 

where: 

Sire value= daughter average - dams' average . 

With such a procedure, b2 = -b 1 rather than-½ h2 b 1 
The equal parent or American index also weights the dam record too 

mueh. The "logic" for the method is that 

Progeny value=½ Sire value+½ Dam value. 

Rearrangement of the terms gives 

Sire value 2 times Progeny average value - Dams' average. 

The correct procedure can be simplified so that only 2 b's are needed 

because each daughter record receives the same weight as any other daughter 

record and each dam record receives the same weight as any other dam 

record. 

If x1 is the average of single records of p daughters and 

x2 is the average of single records of the p dams, 

the equations to find the weights are: 

1 + (p-1) 
p + 

al2 h'-
-- b + p 1 

1 
p 

The off-diagonal coefficient corresponds to the average covariance 

between the daughters and dams. Each daughter has covariance a 12h ¾~ with 

her dam but covariance zero with the other p-1 dams. 
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Then, 1 + (p-1) ¾h'-- = 2p 
4-h,._ 

p + h"- -
and 

Note the similarity of b 1 to the b when dams are not considered. For 

example, if h1 = ¼ 

bl= p + 14.75 
2p rather than b = 2p 

p + 15 

Similarly, the rTI changes only slightly since a:a::i: = 0 . If h"= 1/4, 

j 2p 
= -p-+--'1"'4-, -7-5 <½) + 0 p + 14. 75 rather than 

J p + 15 when the dams are not considered. 

Progenv with different numbers of records 

Often in evaluation of sires the progeny will have different numbers 

of records. A common example is that dairy cows may often have_more than 

one 305-day lactation record. 

One solution to the problem of weighting these records would be to 

set up one equation for each record. Then the weights would be found for 

each record. 

If the simplified equations are used, the diagonal coefficients will 

be 1. 
•].. 

The RHS's will be aiah as before for all i. In the case of half 

sibs for sire evaluation, these will all be½ h~ The off-diagonal 

coefficients will be of two kinds. The coefficients corresponding to 

covariances among records on the same animal will be repeatability, r 1 

since the covariance, = ra2 
X 

The other coefficients will be a. ,h:z.. 
lJ 

as before where a .. is the relationship between the animals that made the 
lJ 

records. In sire evaluation from half-sister records, these will all be th~ 
Example: Daughter 1 has two 

Daughter 2 has one 

records x1 and x2 , 

record 

Daughter 3 has three records x4 , x5 , and x6 . 
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Estimate the additive genetic value of their sire from 

xl' Xz 

(a) X3 Sire 

X4' X5, X6 

I= b1X1 + b2X2 + b3X3 + b4X4 + b5X5 + b6X6 

The equations to find the b's are: 

bl + rb 2 + h'b3 + 1 h\4 + 1 h'b5 + C h1,6 l h:i. 
4 4 2 

rb 1 + b2 + 1 h1'3 + C h'b4 + l h'b5 + 1 hb6 1 h :,_ 
4 4 4 2 

h1,l + h'b2 + b3 + l h1,4 + C h1,5 + l h1,6 = 1 h :,_ 
4 4 2 

' 2 l m,2 C lili3 b4 + rb 5 rb 6 
1 h1-hb 1 + + + + = 4 4 2 

l h'bl + l ~b + ¼ h1,3 + rb 4 + b5 + rb 6 = ½ h,. 
4 4 2 

l h'bl + C h'b2 + C h'b3 + rb 4 + rb 5 + b = ½ 112. 
4 6 

An easier way to obtain the same result is to divide the daughters into 

groups with the same number of records for each daughter in a group. 

Xl is the average of P1 daughters with nl = 1 record, 

xz is the average of Pz daughters with n2 = 2 records, 

X is the average of pN daughters with nN = N records. n 

The equations to find the weights for 

I = l:biXi are: 

dlbl + al2!{),2 + + alNhbN = alah'-

al2m,l ' ... + d2b2 + ... + a2NhbN = a 2o:h 

a1Jlli1 + a2Nh'bN + dNbN 
• 2. 

... + = aNah • 



--93--

If all animals are half-sibs, 

l + (n. -1) r 
l + (p -l)th2. 

ni i 
di = 

pi 

h 'l- -aij - .l h .,_ 
4 ' and 

a h 1 = ia .!. h z 2 

The rTI will be computed as usual. 

Evaluation with full sib groups 

Some species such as swine and poultry may have full-sib progeny 

groups. Each male may be mated to more than one female. Ordinarily 

each female will produce only one set of progeny. The animals in each 

group will be related as full sibs ("ii' =½)but will be related as 

paternal half sibs (aij = ¾) to animals in other groups. 

If pi is the number in each full sib group and ni = 1 and the sire 

is to be evaluated, the equations defining the b's are: 

1 + (pi-1) ½ h'-

pi 

.!. h'" 2 

where 

Modifications would, of course, have to be 

1!18de for aome n1 > l,and for other possible relationships and environmental 

01.m:~]~tion which is very likely for animals in the same litter. 





Summary IX 

PROBABILITY STATEMENTS ABOUT TRUE VALUES 

We know that the average true additive genetic value, T, for animals 

with the same index value, I= I , is I . Thus, I is the mean of a 
0 0 0 

distribution of T values for animals with the same index, I . The variance 
0 

of T for I= I
0 

depends on rTI and oi 
021 T I=I 

0 
= (1-r 2) 02 

TI T 

If T and I follow a bivariate normal distribution, I
0 

and atlI=Io 

determine the distribution of T for I= I . We will see after a discussion 
0 

of the normal distribution how we can use these to make probability 

statements about T for I= I
0 

The Normal Distribution 

The mean, µ, and the variance, o2, completely determine the normal 

distribution. The normal distribution follows the 

shaped curve. 

Frequency of 
X values 

- "' µ 

values of X 
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so-called bell 
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We will let X be the set of values having the normal distribution. The 

mean is also the median of the X values, i.e., half the values are greater 

thanµ and half the values are less thanµ. 

The distribution of values is also symmetrical. The curve on the 

right-hand side ofµ is the mirror image of the curve on the left-hand 

side ofµ. The variance, a2 , determines how flat or how peaked the curve 

is. A large a2 tends to flatten the curve and a small a2 tends to peak 

the values aboutµ, 

The total frequency of X's is 1 or 100%. Thus, the area under the 

normal curve is also l, The fraction of the area aboveµ is 0.5 and 

the fraction belowµ is also 0.5. 

A table of areas under the normal curve tells us the fraction of the 

area betweenµ andµ+ ta or equivalently betweenµ andµ - ta since the 

distribution curve is symmetrical, This fraction corresponds to the 

probability that a value of X will be betweenµ andµ+ ta. The values 

oft are multipliers of the standard deviation, 

These are two uses of the table (following page): 

A.) To find probabilities (fractions of total area) corresponding to 

truncation points which can be expressed asµ+ ta orµ - ta 

depending on which side ofµ the truncation point is located. 

B,) To find truncation points expressed asµ+ ta orµ - ta corres-

ponding to required probabilities. 

Examples of A. 

Let a= 2 andµ= 10 for distribution of X. Find the probability 

that a value of X will fall between 6 and 12. 
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Table of areas under the normal curve. 

'" 

!:.....<::.....<:"'-1---~-----:.:=--
µ µ+to 

Truncation Point 
t 

.0 

.1 

.2 

.3 

.4 

.5 

.6 

.7 

.8 

.9 
1.0 
1.1 
1. 2 
1.3 
1.4 
1. 5 
1.6 
1. 7 
1.8 
1. 9 
2.0 

2.5 

3.0 

µ-to µ 

Area bet.ween µ+to and µ 

or between µ-to andµ 

.0 

.04 

.08 

.12 

.16 

.19 

. 23 

.26 

.29 

.32 

.34 

.36 

.38 

.40 

.42 

.43 

.445 

.455 

.464 

.471 

.477 

.494 

.499 
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µ=10 µ+t cr=l2 12 

Since the table gives the area betweenµ and µ+tcr, we have to find 

the area betweenµ= 10 andµ+ t 12a = 12 and the area betweenµ= 10 

andµ - t 6cr = 6 . (The subscripts on the t's identify the truncation 

points.) TI1e total area will be the sum of the two parts. In more 

formal terms: 

P(l2 > X > 6) = P(lO > X > 6) + P(12 > X > 10) . 

To use the tables we must find t 12 and t 6 . We know 

but µ = 10 and cr = 2. Thus 

10 + t 12 (2) = 12 and t 12 = (12 - 10) / 2 = I . 

The corresponding area is .34 

The general method of finding at corresponding to a positive 

truncation point greater than the mean is 

t = t cr + µ- µ 
a = truncation point - µ 

a 
We know µ-t 6cr = 6. Thus, 10 - t 6 (2) = 6 and -t 6 = (6 - 10)/2 = -2. 

t 2 and the corresponding area is .477 between 6 and 10. 

t = -
Fort corresponding to 

truncation point - µ 
a 

truncation points less than the mean, 

t __ !truncation In general, point - µI 
a 
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The total area between 6 and 12 is .477 + ,34 = ,817, which is the 

fraction of X's expected to have values between 6 and 12 or equivalently 

the probability that any random X will have a value between 6 and 12. 

Another problem might be to find the probability of an X value above 

a truncation point. 

Example: µ+to= 12, µ = 10 and o = 2. 

We know P( 00 > X > 10) = .5 Also, we have found P(12 > X > 10) .34 . 

Thus, P( 00 > X > 12) = .5 - .34 = .16 , 

The probability of X less than 12 can be found by similar logic, i.e., 

P(12 > X > - oo) = P(l0 > X > - oo) + P(l2 > X > 10) 

Thus, P(12 > X > - 00 ) = .5 + .34 = ,84 . 

Examples of B 

1. Find the region which includes 90% of values of X which is also 

the probability that a random value of X will be in that region. These 

ranges are usually chosen so that they are symmetrical aboutµ. In that 

case: 

µ+to is the upper limit, and 

µ - to is the lower limit 

twill be the same in both. 

We know the area fromµ toµ+ to must be .90/2 = .45. The t corresponding 

to an area of .45 is about halfway between 1.6 and 1.7 so let t = 1.65. 

Ifµ= 10 and o = 2, 

the upper limit is 10 + 1.65(2) 13.30, and 

the lower limit is 10 - 1.65(2) = 6.70 

2. Find the truncation point which 90% of the values of X will 

exceed. µ = 10, o = 2 . 
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µ-to µ 

We must find the t corresponding to an area of .40 betweenµ andµ - to. 

From the table t a, 1. 3 . 

Thus, the truncation point is 10 - 1.3(2) 7.4. The probability of 

a random X having a higher value is 90%. Also 90% of the values of X will 

be greater than 7.4. 

Applications to estimating true value 

We have seen that µTII=I = 10 • 
0 

Thus, I corresponds to the mean of 
0 

the distribution of T values for animals with the same index. We will 

substitute I forµ of the general discussion. Similarly we will substitute 
0 

oTII=I for o of the general discussion. 
0 

(-- Values 
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1. Probability statements about genetic values: T =GA, I predicts additive 
Cl 

genetic value. 

We have a bull that has 35 progeny with 1 record each averaging +200; 

h~= 1/4; af0 = 1000000. What is the probability his true additive genetic 

value is greater than 0? 

b = 2e = 70 
p + 15 50 

rTi 
p 35 = =-p + 15 50 

= 548 . 

1o - t 0TJI=280 = 0 

Then, t = Io - 280 I 
548 

70 1
0 

= 50 (200) = 280, 

02 I T I=I = 
0 

(1 _ 35) 
50 1000000 = 300000 . 

~_5 . The corresponding area gives the fraction 

between 0 and 280 as .19. Thus, the probability of T for the bull exceeding 

0 is .5 + .19 = .69. Correspondingly there is a probability 1 - .69 = .31 , 

that is his true value is less than 0. 

The 95% confidence limits on the .true value for this bull would be 

280 - t(548) to 280 + t(548) . t ~2.0 for area .95 / 2 = .475 . 

the upper limit is 280 + 1096 = 1376 and 

the lower limit is 280 1096 m -816 



--101--

2. Probability statements about a record. 

We previously discussed the probability that an animal's genetic value 

was between, above, below, etc., certain truncation points given the index 

estimate and the corresponding rTI and er~, but in fact when the animal 

actually makes a record, in addition to its genetic value, a new random 

environmental effect influences the record. Thus, the variance of records 

for animals with a predicted genetic value depends on the variance of genetic 

values given the index plus the variance of environmental effects. 

In this case, T = Xa = GA + Ea, where I predicts a future phenotypic 
a 

record of animal a that has no previous record. In this example, the 

assumption is that Ga GA. The selection index equations to find the 
a 

appropriate weights for the X's are, as usual, on the left-hand sides, the 

variances and covariances of the X's. The right hand sides are 

"x T i 
= E(Xi, GA +Ea)= E[(GA + 

a i 
= E(GAiGAa + GAiEa + GAaEi + 

+ E )] a 

The middle two terms are genetic-environmental covariances which are 

usually assumed to be zero. The first term is aia"fo for GA= G, and 

the last term is the covariance between environmental effects on a record 

of i and on a record of a which may or may not be zero. If there is no 

environmental covariance, the right-hand sides are aia"io = aiai{"""i as for 

predicting additive genetic value and the index for predicting a future 

record is exactly the same as for predicting additive genetic value. The 

reason, of course, is that there is no way of predicting E for the new 
a 

record. 

The r~ 1 and "i• however, are different from when I predicted GA. 
a 

+ cr2 = cr2 rather than cr2 
E X GA 

The 

before, but 
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rather than IEb.a. since prediction of E 
l. 1.a. a is zero. Then oilr=I = 

(l -h 2 Eb.a. )oX2 rather than (1 Eb a )h 2o2 
1 ic, - i ia X • 

0 
Notice that many of the same 

quantities, Ebiai, h2 , oi, are involved whether prediction is for GA or 
a 

X = G + E • 
A a ' the arrangement, however, is different. 

a 
Example. The application of these distributional properties makes sense 

primarily when records of ancestors are used in estimating the animal's 

genetic value, as for example, the sire's and dam's estimated genetic value 

are used in estimating the genetic value of their progeny: G progeny 

Gsire + Gdam 
2 

The rir for progeny= l/4rir for sire+ l/4ri 1 for dam if sire and dam 

are unrelated. Assume for milk yield h2 = 1/4 and o2 = (2000 lb) 2 . 
X The 

following table shows the effect of increasing riI for sire and dam on 

0 xl I=I . 
0 

2 
O XII=I rTI 95% c.r. = 

0 ±. 1.96 OXII=I Sire Dam Progeny (for progeny) I 
0 

0 0 0 2000 lb. I + 3920 0 

.25 0 .0625 1984 I + o- 3889 

.25 . 25 .1250 1968 I + 3857 o-

.so .so .2500 1936 I + 3795 o-

.75 .so .3125 1920 I + 3763 0 -

.75 . 75 .3750 1904 I + 3732 o-
1.00 . 75 .4375 1887 I + 3699 o-
1.00 1.00 .5000 1871 I + 3667 o-

0 
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The obvious conclusion from this chart is that the average error of pre-

dicting a record (aXII=I) does not decrease very much even with perfect 
0 

prediction of the parents' genetic values when a~ is relatively large. 

3. Probability statements about differences in genetic values for animals 

with indexes 11 and 12 . 

Suppose animal 1 has index value 11 with rf 1 and animal 2 has index 
1 

value 12 with rf 1 . Differences in true genetic values for animals with 
2 

index values 11 and 12 will have a distribution. The immediate problem 

is to determine the mean and variance for the distribution of T1-T2 111-r 2 • 

The mean is the same as the mean of (T1 I I = 11)-(T 2 I I = 12) and ·is 

E[(T1II=l1) - (T2II=l2)l = E(T1II=I1)- E(T2l1=12)= 11- 12. 

The variance can be determined by the rules for the variance of a linear 

function. 

V[(T1II=I1) - (T2ll=I2)l = V(T1ll=l1) + V(T2II=l2) 

since the covariance between T1 11=11 and T2 11=12 is zero if the records 

in 11 and 12 are independent. Thus, 

V[ (Tl I I=Il) - (T ll=I )] = (2 - r 2 - 2 ) 2 
2 2 Tll rTl 0G . 

2 
These parameters can be used to make probability statements about the 

difference in true values for animals with indexes 11 and 12• 

case, 11-1 2 replaces A of the general discussion and (2 - rf 1 

replaces a2 • 

In this 

1 

Example: Suppose 11 = 500 and 12 = 200, i.e., 11-1 2 = 300 and 

rf 1 = 3/4 and rf 1 = 1/4 and a~= (1000) 2 . What is the probability that 
1 2 

the true difference in genetic values is O or less (i.e., animal with 

1
2 

= 200 actually has equal or greater true value than animal with 11 = 500? 
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0 r 1-r 2 a 300 

<:--- r}r1- 1iir2 -----------

Thus 0 = (I - I) - t - r2 - r 2 aG 1 2 TI 1 TI 2 

and t = (300- - 3/4 - 1/4 (1000)]•.3 

The corresponding area between O and 300 is .12 and the area below O is 

.5 - .12 = .38, which is the probability of the animal with the lower index, 

r2 = 200, actually having a higher true value than the animal with the higher 

index, r1 = 500. 

A more direct approach would be to define T = T1-T 2 and use all infor-

mation to predict T and then follow the general selection index procedure. 

Summary of various distributions associated with the selection index 

Often there is some confusion about whatµ and a are. Actually neither 

µ nor a has any meaning unless defined in terms of the variable they describe. 

In the development of the selection index for a particular trait there are 

at least 6 variables. 

1) The basic distribution is of the phenotypic records. The P's, or as 

we have also called them, the X's. The mean is µX and the variance is 

a2 a 2 + a2 (the genetic plus environmental variance), X G E 

2) If we are attempting to evaluate additive genetic values, the mean is 

µG = 0 and the variance is at= af 0 = h 2a~. Note that at< a~ since h2 < 1. 
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3) Our criterion for evaluating the G's is the index estimate, I. The 

mean isµ = 0 and the variance is cr21 = r 2 a2 
I TI G' Note that cri _:_ at since rir < 1. 

4) Animals with the same index value may not have the same true value, 

The distribution of true values given an index value has mean µTII=I 
0 

= I 
0 

and 

variance 2 0 Ti I=I 
0 

5) Records of an animal with an index value I have a different distribution 
0 

from records with no estimate of true value. 

animals with an index of I
0 

has mean µxlr=I = 
0 

(l-ri 1)cr~ + a~ when rir is for predicting G or 

predicting X. 

The distribution of records for 

I 0 and variance cr~lr=I 
0 

= (l-ri 1)cri when rir is for 

6) The difference in genetic values for animals with index values r 1 and 

r 2 is distributed with mean µT II=I - µT II=I and variance crilr=I + crilr=I = 
1 1 2 2 1 2 

<2-rir -rir )at, 
1 2 

Corresponding to the general a, the standard deviations for the six 

distributions are: 

1) X's ax /a2 + G 
a2 

E 

2) G's aG lh .. la 2 + G 
a2 

E 

3) I's or rTI 0 G 

4) G's given I=I 0 TII=I = 2 ; 
0 rTI crG 

0 
5) X's given I=I 0 x1 I=I = I (l-r 2 )cr2 + a2 = /aZ + aZ . ll-r~ 1lrwhen 

0 TI G E G E 
0 

2 
rTI is for predicting G 

6) 



Summary X 

SUPERIORITY INT OF SELECTED GROUP 

Average of selected group 

The basic principle in selection is to select the best and cull the 

rest, We have said the selection index is the best method of evaluating 

animals to determine which to select or cull. How can we determine how much 

better the selected ones are expected to be than the original group? 

The normal distribution 

The basic problem is this. If a fraction, p, are selected from a 

normal distribution with mean, µ, and variance o2, what will be the mean 

of the selected group, µ . The problem may be diagramed as: s 

µ µ =? s • 

The truncation point, µ+to, depends on E. as before. 

The expected or 

= 

average value of the 
oO 

J 1 
p xf(x)dx 

µ+to 

fraction E. can be found from: 

= µ+Do where f(x) is the 

density function of the normal distribution. 

Do is zo/p where 3/'o is the height of the normal curve at the 

tfunc•tion point and E. is the fraction selected. Note that D z/p, 
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the height of the normal curve for o = 1. The tables of Dare based on 

the normal distribution with o = 1. To convert the table of D values to 

any other distribution, multiply by o. 

Note thatµ-µ= Do, which is sometimes known as the selection s 

differential. Ifµ= 0, µs = Do. 

The table of D for small samples is based on order statistics. 

The values are not the same as z/p. The table of D for large samples is 

the same as z/p. Dr. C. R. Henderson has proposed an approximate correc-

tion for sample size for this table, i e D' = D - •25 wheres is the • • ' s 

number selected. (Notes is not the number available for selection.) 

Example 

A breed organization reports a bull has 100 daughters. The average 

of the top 20 is +1000 lb of milk. The standard deviation of records of 

cows by the same sire is about 2000. What would we expect the average of 

the 100 to be? 

Fraction selected= 20/100 = .20. The corresponding D = 1.4. 

D' 1.4 - .25/20 = 1.3875, 

We know 

µ =µ+DO, s 

1000 µ + 1.3875(2000), µ = 1000 - 1.3875(2000) = -1775 lb 

We would have been misled considerably if we had evaluated the bull 

on his top 20 daughters. 

Question. What should be the number of daughters to use in the formula 

for estimating the genetic value of this bull--20 or 100? 
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Table of D (small samples) 

Expected average of a group selected out of a sample from a normal population when 
the sample size is small (in units of a= 1) 

Sample Number Selected 
Size 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

2 .56 .00 

3 .85 .42 .00 

4 1.03 .66 .34 .oo 
5 1.16 .83 .55 .29 .00 

6 1. 27 . 95 .70 .48 .25 .00 

7 1.35 1.05 .82 .62 .42 .23 .oo 
8 1.42 1.14 .92 .73 .55 .38 .20 .00 

9 1.49 1.21 1.00 .82 .65 .so . 35 .19 .00 

10 1.54 1. 27 1.07 .89 .74 .60 .46 . 32 .17 .oo 
11 1.59 1.32 1.12 .96 .81 .68 .ss .42 .29 .16 .00 

12 1.63 1. 37 1.18 1.02 .88 .75 .63 .51 .39 .27 .14 .oo 
13 1.67 1.42 1.23 1.07 . 93 .81 .69 .58 .48 .37 .26 .14 .oo 
14 1. 70 1.46 1.27 1.12 .99 .87 .76 .65 .ss .45 .35 .24 .13 .00 

15 1. 74 1.49 1.31 1.16 1.03 .92 .81 . 71 .61 .52 .42 .33 .23 .12 
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Table of D (large samples) 

Expected Average of Certain Fractions Selected Out of a Sample from a 
Normal Population (in units of a = 1) 

Table for .001-.099 Selected 

.000 .001 .002 .003 . 004 .005 .006 .007 .008 .009 

.00 3.400 3.200 3.033 2.975 2.900 2.850 2.800 2.738 2.706 

.01 2.660 2.636 2.600 2.569 2.550 2.527 2.500 2.482 2.456 2.442 

.02 2.420 2.400 2.386 2.370 2.363 2.336 2.323 2.311 2.293 2.283 

.03 2.270 2.258 2.241 2.230 2.221 2.209 2.200 2.186 2.174 2.164 

. 04 2.153 2.146 2.136 2.126 2.116 2.107 2.098 2.087 2.079 2.071 

. 05 2.064 2.057 2.048 2.040 2.031 2.022 2.016 2.009 2.000 1.990 

.06 1.985 1.977 1.971 1.965 1.958 1.951 1.944 1. 937 1. 931 1.925 

.07 1.919 1.911 1.906 1.900 1.893 1.888 1.882 1.875 1.871 1.863 

.08 1.858 1.852 1.846 1.841 1.837 1.834 1.826 1.820 1.815 1.810 

.09 1.806 1. 799 1. 793 1. 788 1.784 1.780 1. 775 1.770 1. 765 1.760 

Table for .10-.99 Selected 

.oo .01 .02 .03 .04 .05 .06 .07 .08 .09 

.10 1. 755 1. 709 1.667 1.628 1.590 1.554 1.521 1.488 1.458 1.428 

.20 1.400 1.372 1.346 1.320 1.295 1.271 1.248 1. 225 1.202 1.180 

.30 1.159 1.138 1.118 1.097 1.078 1.058 1.039 1.021 1.002 .984 

.40 . 966 .948 .931 . 913 . 896 .880 .863 .846 .830 .814 

.so .798 .782 .766 .751 .735 .720 .704 .689 .674 .659 

. 60 .644 .629 .614 .599 .585 .570 .555 .540 .526 .511 

.70 .497 .482 .468 .453 .438 .424 .409 .394 .380 .365 

.80 .350 .335 .320 .305 .290 .274 .259 .243 .227 .211 

. 90 .195 .179 .162 .144 .127 .109 .090 .070 .049 .027 

If the number selected is less than 500, subtract from D the quantity 
.25/s, wheres is the number selected. 
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Schaeffer (Biometrics, Dec. 1970) has developed a solution for this 

problem which generally depends only on the fraction selected. 

Genetic superiority of selected group 

We have estimated T from I and have selected a fraction of animals based 

on their index values. What will be the expected superiority in T of the 

selected group? 

The selected I's will be expected to average µ1 s 
µ1 = 0 = µT before selection, a1 = rTicrT, and µTs= µ1s because I is unbiased. 

Then, making these substitutions, we have µT = µT + rTioTD as we stated 
s 

before. The same result can be obtained by the regression of Ton I: 

µT µT + bT•I(µI -µI)= µT + (crTI/cri)(µI + DcrI - µI) 
s s 

µT + (crT/cr 1)D = µT + rTicrTD by multiplying by aT/aT. 

Thus, the genetic selection differential will be ~G = rT 1DcrT per generation. 

If Lis the generation interval in years, then the genetic progress per year, 

~G/yr = rT1DcrT/L. For any given set of animals, however, the best estimate 

of the genetic superiority of the selected group is µ1 -µ 1 , the difference 
s 

in average index value of the selected and whole population. The indexes 

are unbiased predictions of genetic value so that averages of these are also 

unbiased and in fact the difference in the averages is the selection index 

prediction of the difference between the selected group and the group they 

were selected from. 

The expression ~G/yr = rT 1DcrT/L can be used to compare various selection 

programs. This is the key equation for genetic improvement. Sometimes the 

best balance of rTI' D, and L will have to be found. 
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Example: 

There are only IDOO progeny available each year for progeny testing. 

Two replacements are needed eacii year from the males which are progeny 

tested. ·i h = .25, oT = 1000 lb. milk. The foll.owing table illustrates 

that neither the highest rTI nor the highest selection intensity gives 

the highest genetic progress. 

Some possible 
combinations of 

no. males and no. progeny 
No. progeny 

Selected/sampled % per male sampled 

2 of 2 100 500 
2 of 5 40 200 

.995 

.964 

D'=D-.25 
2 

0 
.84 

1000 lb 
1000 

6G 

0 
815 

2 of 20 10 50 .877 1.63 1000 1429 

lb 

2 of 50 4 20 .756 2.03 1000 1535** 
2 of 100 2 10 .633 2.30 1000 1456 
2 of 200 l 5 . 500 2.54 1000 1270 

These {'f; values suggest that of the six combinations, testing 50 

males with 20 progeny each is best. In actual practice, income and cost 

values must be assigned to each plan. Since~ for 2 of 20 is nearly 

as great as b,G for 2 of 50, this may be the most profitable plan. 

Other factors should also be considered in finding an optimum plan. 

The fraction of the population devoted to progeny proving is another 

variable in some cases. The generation interval may also be important. 

The preceding example ignored the fact that ~G is usually different for 

males and females since rTI' D, and generation interval may all be different 

for males and females. Total expected genetic response per year depends on 

both as will be seen although the expected genetic superiority of the off-

spring is the average of the superiorities of the selected males and females. 
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Genetic value of progeny 

Let 6S = rTI DSoG, where 6S is the genetic superiority of selected 
s 

sires, rTI is the accuracy of the index for sires, and DS is the selection 
s 

intensity factor for sire selection. Similarly, let 6D = rTI D0oG, the 
D 

genetic superiority of selected darns. Then, since progeny receive a sample 

half of the genetic value of each of their parents, G = (6S + 6D)/2. progeny 

Genetic improvement per year 

Let 6g be genetic improvement per year, LS be the generation interval 

in years for sires, and LD be the generation interval for darns. Then, 

6g = (6s + 6D)/(Ls + LD), which is not [(6S/Ls) + (6D/LD)]/2. Proof: 

Let S be the genetic value of sires selected to produce the 

next generation and D be the value of selected dams. These selected 

sires are born LS years before they produce replacement progeny 

with genetic value P. The genetic average of bulls born LS years 

ago is P - LS6g. The superiority of the selected bulls over that 

average is 6S. Thus, S = P - Ls6g + 6S. Similarly, D = P - L06g + ~D. 

We know P (S + D)/2 so that by substitution P = (S + D)/2 = (l/2)(P 

LS6g + 6S + P - L06g + 6D). Then,subtracting P from both sides, 

0 = -LS6g - L06g + 6S + 6D. Rearranging gives 6g(LS + L0) = 6S + 60, 

and finally 6 g = (6S + 6D) / (LS + L0). 

This result is due to Dickerson and Hazel (1944). 

Rendel and Robertson (1950) have extended this procedure to consider 

genetic value of sires of sires (SS), dams of sires (DS), sires of dams (SD), 

and darns of dams (DD) selected as grandparents each with different generation 

intervals (L88 , L08 , LSD' and LDD' respectively). 
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I v,oG G 
j=l J i j 

Recall that = r /h 1h~ oXoX and also note that when Gi = Gj, then 
gij J i j 

Solving the equations for the B's then gives I= s1x1 + 

+ BNXN which is the same index as found when indexing each trait 

separately and then weighting by economic value as I= v1r1 + ... + vMIM. 

Expected response from selection for economic value. Total response in 

economic value can be determined as before by either 6T = Do1 or with more 

difficulty 6T = rT 1DoT where oi can be found as the variance of the linear 

function 
N 

V(I) E[( E BiX1 ) 2 ] and 
i=l 

rTI =/Es o /o 2 
i X.T T 

1 

functions and of 

where o T (i=l, ... , N) are the covariances of 
Xi M 

is the variance of the linear function, T = ., 1 J= 

linear 

v.G .. 
J J 

Often the expected correlated response for one or more traits is of 

interest when selecting for some overall economic value. For any index, 

whether the selection index or any other, the correlated genetic response 

for any trait j can be found by the regression of Gj on I: Gj 

G = µ 
j Gj + 

= Cov(Gj, s1x1 + 

JJG. + bG_. 1 (Isel - µ1), where Isel = µ1 + Do1 and 
J J 

,fuGj; thus, & Gj = [Cov(Gj'I)]D/o 1 where Cov(Gj'I) + 

B~N) = 81°G.G + 82°c.G
2 

+ ••• + 81,°G G • 
j N 

This formula holds for any trait 
J 1 J 

whether included in Tor I. However, the correlated responses of the traits 

included in T weighted by their economic values will equal total economic 

An example follows for selection for two traits. Included are examples 

of comparing correlated response in the two traits when selection is for only 

one of them using either both traits or only one of them. 



--121--

Example of selecting for more than one trait 

Let milk yield = Trait 1, type score = Trait 2 

a2 = (2000 lbi2° a2 (2%) 2 a 400 lb % r .1 
Xl X2 x1x2 p 

a2 (1000 lb)2- 02 (1%)2 a 200 lb% r .2 
Gl G2 GlG2 g 

h) 
1 = 1/4 h l- = 2 1/4 

Suppose vl $.025/lb V2 $50. /% 

Method 1. Find 11 = bll Xl + bl2 Xl2 

4,000,000 bll + 400 b12 a a2 = 1,000,000 
XlGl Gl 

400 bll + 4 bl2 a = a 200 
X2Gl G2Gl 

Thus 11 = .2475 x1 + 25.2525 x2. 

rhen find 12 b21 Xl + b22 x2 

I 

4,000,000 b21 + 400 b22 a 
XlG2 

Thus I = 2 

400 b21 + 4 b22 = oX2G2 

.00002525 x1 + .2475 x2 

200 

1 

.025 11 + 50. r2 = [.025(.2475) + 50(.00002525)]X 1+[.025(25.2525)+50(.2475)]X 2 

Total response: a2 = s2 02 + 
I 1 x1 

D 1976 = 31.24 D ($), total expected response. 

Correlated responses: 

Cov(G2,1) 
----D 0 G G + S2 

2 1 
a2 = .00745(200) 

G2 

+ 13.066(1) 14.5; thus & G2 = ~D= 31.24 .464% (D). 

& G = 
Cov(G1,I) 

D . Cov(G1 ,I) = s1 
a2 + S2 10051; a 1 CTI 

, G GlG2 10051 1 Thus £ Gl = 31_24 D = 321.7 lb (D). 

_(j, G should = vl & Gl + v2 & G2 .025(321. 7 D) + 50. (.464 D) 

8.04 D + 23.2 D = 31.24 D 
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Suppose another trait, e.g., fat test Trait 3, is of interest, then 

IA G3 

If r 
gl3 

Cov(G3,r) 

al 

r 

D• , 

= 

aG G ' 
3 2 

-.6, 
g23 

h~ = .5 1 then at 

= .00745(-127) + 13.006(.02121) 

= -.021 D (%F), 

-.67. 

.045 %2 

3 

Example of selecting for one trait using both traits 

Suppose v2 = 0, then v1 can be any positive nonzero value; 1 is convenient, 

i.e., 

then /\ 
L9,. Gl = that 

al 
1 

Thus for v1 = 1, v2 = 0: I= 11 = .2475 x1 + 25.2525 x2 

Response: _D. G1 = 11 = D a1 1 

+ 2(.2475) (25.2525) ax x , 
1 2 

a2 250,556 and a1 500.56. 11 1 

Thus _D. G1 = 500.56 D (lb) 

.Correlated response: When selecting for G1 using x1 and X2 

G2 
Cov(G2,r 1) bll aG G + bl2 at 

74.75 D 2 1 2 D D .149 D (%) = = = 
al al 500.56 

1 1 
Cov(G3 ,r 1) bll aG G + bl2 a 

£. G3 
Gf2 

D 3 1 D ? = = = 
al al 

1 1 
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Comparison with selecting for one trait using only record of that trait 

,25 x1 

Response: D c1 D o1 1 
a = l(.25)2a 2 = 500; thus D c1 = 500 D (lb) 

11 Xl 

Correlated response: Cov(G2 ,1 1) 
-----D 

OI 
1 

= .1 D (%) 

01 
1 

.25(200) D 
500 

This would be the same response as selecting for trait 2 using only trait 1 
since the genetic covariance is positive. 

Comparison with selecting for one trait using only record of another trait: 

Select for c2 using x1 by 12 blXl 
a 

a2 bl= 0x G bl 
GlG2 200 .00005 a a2 = = 

Xl 1 2 GlG2 Xl 
4,000,000 

l = ,00005 x1 DG2 = D a • 01 = .1 2 12' 2 1 

Response: Thus D c2 .1 D (%) as above. 

Summary 

These examples illustrate the method of comparing different selection 

systems:* D G for 
Selection D 01 D G2 .025 = v1 & 50 = v2 For Based on 

.025 c1 + 50 c2 Xl' x2 321. 7 lb .464 % 31.24 $ 

Gl Xl, x2 500.56 lb .149 % 19. 96 $ 

Gl Xl 500 lb .100 % 17.50 $ 

G2 Xl 500 lb .100 % 17 .50 $ 

G2 x2 100 lb .500 % 27.50 $ 

*All expected responses should be multiplied by D. 
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An approximate procedure for selecting for more than one trait 

Often the genetic correlations needed to find the weights for the index 

to estimate, T = v1G1 + ... + vMGM, are not known or are estimated with 

not much reliability. In addition the equations to determine the weights 

are difficult to solve if many traits are included in the index. An approx-

imation which is easy to use is to index each trait using only the records 

for that trait; then substitute those indexes into the economic value equation, 

This approximation can also be used when records of relatives are avail-

able as will be discussed later, The approximation is the same as the exact 

procedure when the phenotypic and genetic correlations among the traits are 

all zero, In fact, that is the assumption made to obtain the approximate 

index. 

When only one record is available on each trait of the animal to be 

evaluated, the indexes for the traits are 

Ij = hjXj and so the approximate overall index is 

I= v1h~Xl + v 2h~Xz + ••• + vM~, 

Note that the phenotypic records are weighted by the product of their 

value and heritability which would be the weights found by solving the 

equations for the S's when all the phenotypic and genetic correlations 

are zero: 

a~ s1 + O's L a2 + O's = vlhl 
1 Xl 

a2 + O's L 

xz Bz v2h2 a2 
x2 

+ O's 

O's+ a¾ SM O's+ 
~

2 
vM a~ 

Some research has indicated that this approximation may be better than 

using poorly estimated genetic and phenotypic correlations to determine 
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the weights for the exact procedure. If the correct genetic and phenotypic 

correlations are known the approximate procedure still may be nearly as 

good as the exact procedure and will be much easier to apply. In such 

cases how good the approximation is may be found by calculating the corre-

lated responses expected for each economic trait when selection is by the 

approximate method. The response in each trait can be compared to the 

response expected from the exact procedure. The responses for individual 

traits can be weighted by economic values to compare economic responses 

expected by the exact and approximate procedure. 

+ B! ¾ be the approximate index. Then the 

correlated response for trait j using the approximate index is 

Cov(G., IA) ,&-, G. = J D as before where E(G., IA) 
J 0 IA J 

Cov(Gj' IA) = BA a + BA a + ... + SA a 1 Gfl 2 Gfz M G/M 

a2 will be determined by the variance of a linear function. Care should 
IA 

be taken to include the correct phenotypic covariances such as a which 
x1x2 

were assumed to be zero in determining the approximate S's. 

Example of approximate procedure 

Suppose that the selection is for milk and type score with variances 

and covariances as in the previous example. In the example, 

v 1 = .025/lb and v2 = $50./%. 

The approximate procedure assumes the phenotypic and genetic covari-

ances are zero. 

Method 1: 

The equations to find the index for milk are: 
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A 4,000,000 b11 + 
A 0b 11 + 

equations to find 

A 4,000,000 b21 + 
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I 2Aare: 
A 

0 bl2 

= 1,000,000 

0 

0 

0 A 4 A 1 b21 + b22 = -;. 
I2A= 0 xl + .25 x2 = h2X2· 

Then IA v1 I 1A+ v2 I 2A= v1hfx 1 + v2h~X2 = .025(.25) X1 + 50(.25) X2 • 

IA= .00625 x1 + 12.5 x2 as compared to the optimum index of 

I= .00745 xl + 13.006 x2 

Total and correlated responses: 

Total response computed as usual as 

6 T = a D· [a 2 = (.00625) 2 ax2 + (12.5) 2 ax2 + 0 = 781.25, a 1 IA , IA 1 2 A 
27.95] 

would not be correct since the ax X really isn't zero. 
1 2 

Actually a1 = 
A 

(.00625) 2 a~ + (12.5) 2 a~ + 2(.00625)(12.5) ax X = 
1 2 • 1 2 

843.75; a 1 = 29.05. 

The correct expected total response can be computed as 

J\ T = Gov (T, ¾), ) D Ll where a1 a IA A 
is computed using the actual ax X and 

1 2 

T = v1G1 + v2G2 . The correct expected total response can also be computed 

from v 1 D G1 + v 2 D G2 , 

Cov(G1,IA) .00625 a2 + 12.5 a 8750 D D Gl = D = Gl GlG2 = = 301. 2 lb (D) 
al 29.05 D 29.05 

A 

Cov(G2,IA) .00625 a + 12.5 a2 

D G2 = D 
GlG2 G2 

D = 13.75 D .473 % (D) = = 
al 29.05 29.05 

A 

Thus, expected 6T = .025(301.2 D) + 50(.473 D) = 31,18 D. If the correlated 

responses are computed assuming ax X and aG G = 0, the incorrect expected 
1 2 1 2 

responses are: 6G1 = [Cov(G1 , IA)]D/a = (.00625 a )d/27.95 = 223.6 lb (D) 
IA Gl 

and 6G2 = [Cov(G2,IA)]D/a 1 = (12.5 O'G )D/27.95 = .447% (D). Note that the 
A 2 
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genetic covariance term in the numerator is ignored and that the incorrect 

a1 is used which ignores the phenotypic covariance. 
A 

The three sets of calculated responses which can be compared are summar-

ized below: 

1) using the correct covariances, 

2) using zero covariances to compute the index but using the correct 

covariances to compute response, and 

3) using zero covariances when really not correct. 

Expected 
Computing of 

D Gl 
Response/ D 

DT h,_ Gl+v2 (lb) h,_ c2 (%) = vl index response ---

correct, correct 321. 7 .464 31.24 

incorrect, correct 301.2 .473 31.18 

incorrect, incorrect 223.6 .447 27.95 

Using records on all traits of relatives 

D G2 

Covariances such as the one between a record for trait 1 of relative 1, 

Plt and the record for trait 3 of relative 2, r 23 , are needed to set up the 

equations to find the proper weights. 

c23 + E23 is our ·.1sual model. Then 

All except Cov (G11 c23) usually will be assumed to be zero. Then the co-

variance is the covariance between the genetic value for trait 1 on relative 

1 and the genetic value for trait 3 on relative 2. If these were measured 

on the same animal, i.e., relative 1 was relative 2 then the covariance is 

simply the additive genetic covariance between traits 1 and 2. But in general, 

the additive genetic covariance is a12 a ; the additive relationship 
GlG3 

between the relatives times the genetic covariance between the traits. This 

corresponds to the additive genetic covariance between relatives for the 

same trait, a12 a~ 
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Thus, if only additive genetic effects are considered Cov (Gij Gi'j') = 

a •• ' aG G 
11. • . ' 

1 J 
where i and i' are relatives i and i' and j and j' are traits 

j and j' . 

If the further assumption of no covariances among genetic and environ-

mental effects and among environmental effects on different relatives is true 

then also 

Cov(P .. P .. ) 
1J 1J 

aii' 0G G i j I 

but when i = i' 

a + a as before and when i 
GjGj, EjEj, 

a2 + a2 
G E j j 

i' and j • I J , 

The notation has been changed to let P .. be a single phenotypic record 
1J 

for trait j on relative i since the selection index will use average records 

on all measured traits for all relative groups. 

Thus, ll = X .. will be the average of records on relative group i for --k 1J 

trait j (nk records for each of pk animals in 
M 

the group). 

The overall index for T = E1 v G will be m= m m 
N 

The 

equations which determine the S's come as usual from maximizing rTI or mini-

mizing E(T - r) 2 • 

Again, either finding the index directly or weighting the indexes for 

the economic traits by the economic values are equivalent. We will describe 

the procedure of finding the index for each trait using all the X's and 
M 

then putting them together as I= m~l vm Im 

The basic step then is to estimate G the additive genetic value for am 
trait m for animal a from all X's (Xk' k=l, ... , N) as 

lam= bml x1 + bmz x2 + ..• + brnN ¾. Note we now must keep track of 

the relationships among the relative groups and the animal being indexed. 
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The general equations to find the b's are: 

ax G 
1 am 

= ax G 
-"N am 

If the usual simplifying assumptions are true the variances and 

covariances can be written in terms of phenotypic and additive genetic 

variances of the traits and of the phenotypic and additive genetic covar-

iances among the traits. 

Variances of the X's a2 
Xk 

l+(nk-l)rj 

where 

a2 
P. is the phenotypic variance for trait j ' 

J 
r. is the repeatability for trait j ' J 
h'.- is the heritability for trait j ' and 

J 

a •• ' is the additive relationship among animals in group i. 
l.l. 

Covariances among the X's, a 
xkxk, 

There are three possible types of covariances. 

1) If k = ij and k' = i'j (different relative group, same trait j) 

ax x., = ax X = ai"' a~ as before where aii' is the additive 
-k -k ij i I j l. j 

relationship between groups i and i'. 

2) If k = ij and k' = ij I (same group, different traits) 
a + (pk -1) aii, a 

o¾¾• = 0 = pjp j I Gfj' where 
xijxij, Pk 

o is the phenotypic covariance between traits j and j' and 
pjpj I 

aii' is the relationship among animals in group i, 
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3) If k ij and k' i'j' (different groups, different traits) 

0 x X = ai'' 0 c G ij i I j l j j I 

Covariances on the RHS's, aX.G 
-l< am 

The covariances between the Xk and G will be of two types: am 
1) If k im (same trait as G) then 

m 

0 x G = 0 x. G 
k a.m 1.m am 

= a. 
1Ct 

02 
G 

m 
and 

2) if k ij (different trait from G) then 
m 

0 x G k am 
N 

Solving the equations gives Iam = k~l bmkXk for trait m. This procedure 

will be repeated for all economic traits. Note that the coefficients of the 

h's will be the same for all sets of equations, only the RHS's will change 

depending on the trait being indexed. 

Finally, I 
Ct 

Response from selection 

As usual b, T = D o1 although ai is very messy to compute,all the 

terms are found in the coefficients in the equations to find the weights. 

The correlated response for any trait c can be computed as usual as 

D, G = 
Cov(G , 

CXC 
I ) 
a D Again 

C 

can be computed: 

where Cov (G ,Xk) ac 

OI 

= Cov(G ,Xi.) = ac J 

and (if c = j) a. 

Cov(G , I) is very messy but ac a 

ia 
a2 

G 
C 



--131--

Approximate procedure 

As before, approximate weights can be determined easily by assuming the 

phenotypic and genetic covariances among the traits are zero. Then many of 

the equations to find the weights have zero off-diagonal coefficients. The 

RHS's are relationships times genetic variance or are zero if indexing 

each trait separately or are economic values times relationships times 

genetic variance if obtaining I directly. 

The approximate procedure is the same as using records of relatives for 

only the trait being indexed. Then the indexes for each trait (based only 

on records for that trait) are weighted by their economic values as before. 

When the phenotypic and genetic covariances are really zero the approxi-

mate procedure is the same as the exact procedure. How much better the exact 

procedure is than the approximate procedure when the covariances are differ-

ent from zero and are known can be determined by calculating the correlated 

responses by both procedures as was illustrated when only records on the 

animal were considered. 

If the phenotypic and genetic covariances are estimated from a small 

amount of data so that they may be seriously in error, especially the genetic 

covariances, then the approximate procedure may be more accurate than using 

the exact procedure with incorrect covariances. The differences in the 

procedures, however, cannot be determined without knowing the correct co-

variances. 

Example 

The following example with two traits measured on the animal and on 50 

paternal half sibs (p.h.s.) will illustrate the exact and approximate pro-

cedures and will demonstrate how to compare the expected selection response 

from both. 
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The following problem illustrates use of standardized variables when three 

traits are measured on the animal being evaluated and when the three traits 

have economic value. A part of the problem also illustrates the consequences 

of assuming the genetic and phenotypic correlations are all zero. 

Problem 

Given: v' = 1 3, 

deviation 

ax 
1 

r 
pl2 

Find I' = 

For 1 1 solve 1 

= 6, 

.1, 

v' 1 I' 1 

v' = 2, 2 
uaits) 

ax 5, 
2 

r 
P13 

+ v' 2 I' 2 

v' = 1 3 

ax 4, 
3 

• 2' r 
P23 

+ v' 3 I' 3 

(the relative economic values 

h z__ = 
1 • 7 ' 

• 3' r 
&12 

rli yl + S' 2 

= 

= 

h z_ = 
2 • 8' h 2- = 

3 

• 6' r • 5 ' 
&13 

y2 + ri3 Y 3 

. 7 

.6 /(. 7)(.8) 

.5 /(. 7) (.9) 

.9 

r 
g23 

Ii= .632 Y1 + .335 Y2 + .170 Y3 

of standard 

.4 

For r; the RHS's become .6 /(.8)(.7) , .8, and .4 /(.8)(.9) so that 

12 = .366 Y1 + .751 Y2 + .041 Y3 

For r; the RHS's are .5 /(.9)(.7) , .4 1(.9)(.8) , and .9 and 

Or, to find I' directly solve 

S' 3 

3(.7) + 2(.6)1(.7)(.8) + (1)(.5)/(.7)(.9) 

3(.6)1(.8)(.7) + 2(.8) + (1)(.4)1(.8)(.9) 

3(.5)1(.9)(.7) + 2(.4)/(.9)(.8) + (1)(.9) 

and I' = 2.85 Yl + 2.57 Y2 + 1.43 Y3 = I and o1, = 4.7 . 
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The correlated response in trait 2 is 

G' 
2 

+ (2,57)(.8) + (1,43)(,4)/(,8)(,9) D 
4. 7 

= . 813 D 

and G2 = 5(.813)D = 4.065 D 

Now assume r 'sand r 's g p Oas for the approximate index. 

The overall equations reduce to Bi= 3(.7), s2 = 2(.8), ands;= (1)(.9) 

so that l' = 2.1 Yl + 1.6 Y2 + .9 Y3 , a2 = 7 78 l' • and a 1 , = 2.79, 

Cov(G2,l') = 1.28 and G2 = 2. 29 D if r 's and r ' s are really zero. g p 

If r 'sand r 's 
p 

are not zero but are as given above and if I'= 2.1 Y1 

+ 1.6. y 2 + . 9 y 3 

then ai, = 7.78 + 2.29, a 1 , = 3.17; Cov(G2, l') = 2.53 and 

(5) ~:f~ D = 3.99 D as compared to 4.06 Dusing the best index 

and to the 2.29D expected by assuming zer9 correlations. 

Another standardization 

Some research reports have used another standardization procedure which 

gives all standardized variables a genetic variance of 1 and a mean value 

of zero. The standardization is to subtract the mean and divide by the 

genetic standard deviation: 

V [a::] = 1 and V [a::] 1-h"- so that 

V(Y) = 

For standardized records on two traits the phenotypic covariance is 

I x1 x2 l a 

Cov(Y 1 , 
x1x2 1 Y2) = Cov -- , -- = = r 

ac aG aG aG P12 
yl y2 Xl x2 1 2 
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a ex 
-2?_]= 

ex ex 
The genetic covariance is Cov (Cy , Cy) Cov 1 1 2 

aG aG a a 1 2 ex ex Xl x2 1 2 
If records are standardized in this way the equations which determine 

the proper weights (h~i' i=l, ... , N) when selecting for trait musing 

r 
gl2 

standardized records on the animal to be evaluated, I" = b 11 Y + + b11 Y are m ml 1 • • • mN N' 

1 b" + 1 b"z + ... +-1- b" hJ ---r r = r 
1 ml '·h '- pl2 111 PlN mN gml 1 2 

(when m = i, 
r 

gmi 
1) 

1 b" +-1- bll + 1 b" --- r r ... + hL r 
lh '·h'· PlN ml lh"h'· PzN m2 mN gmN 1 N 2 N N 

The extension of this to T =Ev" G is straightforward. The economic i m m 

values are given in terms of value per genetic standard deviation, v 11 • The 
m 

index for trait min standardized form can be converted back to non-standard-

ized form as 

I" 
m Similarly 



Summary XII 

SELECTION INDEX FOR CATEGORICAL DATA 

Some traits are subjectively scored on an either-or basis; that is, 

they are assigned to a discrete category. For example, calving 

difficulty for a particular birth might be scored in one of three 

categories: 1, no difficulty; 2, some difficulty; or 3, very difficult. 

One method of analysis is to simply assign a single score to each 

birth. Two ways of doing that have been used: a) the score is the same 

as the category, e.g. a some difficulty birth would be scored as a "2" 

and b) the categories are assigned economic values and the score is the 

economic value associated with the category, e.g. if category 2 has 

economic value -$20, then the score for a some difficulty birth would be 

-20. Note in case a) that a linear scale of economic value is implied. 

In both cases the usual selection index procedure can be used if the 

appropriate heritability is known. 

The best procedure, however, is the selection index procedure with 

each category being considered as a separate trait scored as zero or 

one. There will, however, be covariances among the categories. 

Categorical data have a multinomial distribution. If there are only 

two categories the distribution is the usual binomial one. 

The phenotypic variances of and covariances among the categories 

are determined by the probabilities of being scored in each category. 

These fractions are also the population means when each category is 

scored as a zero (the attribute is absent) or as a one (the attribute is 

present). Suppose the fractions in each category (means) are 
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n1 , n2 , and n3 (the Greek symbol pi is used here to denote proportion). 

Then the phenotypic variances and covariances are: 

There are some distinct properties to consider when dealing with 

multinomial data. The sum of the variance and covariances in any row 

(or column) is zero because n1 + n2 + n3 = 1. 

The genetic variances and covariances follow the same pattern although 

they are not determined by the means. The sum of the variances and 

covariances in any row (or column) is zero. 

a2 (l (l 
gl glg2 glg3 

(l a2 (l 
glg2 g2 g2g3 

(l (l a2 
glg3 g2g3 g3 

Such a property results in what is known as a lack of independence. 

Such variance-covariance matrices are singular. The practical result 

is that instead of using all the traits in predicting the value for any one 

trait as is usual for evaluation using multiple traits, all traits except 

one are used as will be illustrated. 

The selection indexes predict differences from the means as 

follows: 

n2 = b21<x1-n1) + b22<x2-n2) + b23<x3-n3) 

n3 = b3l(Xl-nl) + b32(X2-n2) + b33(X3-n3) 



--145--

Then the probabilities can be predicted by adding the means to the 

indexes as follows: 

gl 11 + TI 1 

g2 12 + TI 2 

g3 = 13 + TI 
3 

Note that gl + g2 + g3 1, and 11 + 12 + 13 = o. Remember that 

the multiple trait observation (Xl, x2, X3) is 

(1, 0, 0) if scored in category 1 

(0, 1, 0) if scored in category 2, and 

(0, 0, 1) if scored in category 3. 

The same properties hold, for example, in the case of sire evaluation 

from I'. half sib progeny except that x1 , x2 , and x
3 

are the fractions of 

progeny scored in categories 1, 2, and 3. 

Then, 

Again EX. = 1, and 
1 

a 

3 

a2 
X. 

l 

X.X. 
l J 

E ax x 
j=l i j 

a2 + (p-1) (!,;a2 ) 
Yi gi and 

p 

a + (p-1) (¼a ) 
YiY. gig, 

p 

0 for all rows (or columns). The RHS's, 

a are determined as usual as the additive relationship times the 
XiT 

appropriate column of the genetic variance-covariance matrix. 

Because of the lack of independence one less equation than number 

of categories is used. The weight corresponding to the equation that 

is left out is set equal to zero. 
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Example 

An example may help clarify the procedure. Suppose for some 

trait with three categories that 1r1 = .5, "2 = .3, and 1r3 = .2. 

Thus, the phenotypic variances and covariances are: 

. 25 

-.15 

-.10 

-.15 

.21 

-.06 

-.10 

-.06 

.16 

Assume the genetic variances and covariances are: 

I 
.05 -.03 -.02 

-.03 .07 -. 04 

-.02 -.04 .06 

When the equation for trait 3 is set equal to zero, the selection index 

equations to determine the weights are: 

RHS's for 

gl g2 g3 

. 25b1 .15b 2 .05 -.03 -.02 

-.15b 1 + • 2lb2 = -.03 .07 -.04 

The indexes are: 

For gl 11 . 20(X1-1r1) + .0(X 2-1rl) + 0(X3-n 3) 

For g2 12 .14(X 1-1r1) + .433(X 2-112) + 0(X3-113) 

For g3 13 -.34(X 1-111) . 433 (X2-1r2) + 0(X3-1r 3) 

and gl 11 + ,r l' g2 = l + 2 1[2' g3 = 13 + 113 

When the animal is scored in category 1, x1 = 1, x2 = 0, and x3 0 so that 

gl .20(1-.5) + 0(0-.3) + 0(0-.2) + .5 = .60, 

g2 .14(1-.5) + .433(0-.3) + 0(0-.2) + .3 .24, and 

g3 -.34(1-.5) - .433(0-.3) + 0(0-.2) + . 2 = .16 
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When the animal is scored in category 2, x1 = 0, x2 = 1, and x3 0: 

' .20(0-.5) 0(1-.3) + 0(0-.2) + .5 = . 40, gl + 

g2 .14(0-.5) + .433(1-.3) + 0(0-.2) + . 3 = .5331, and 

g3 -.34(0-.5) .433(1-.3) + 0(0-.2) + .2 . 0669 

When the animal is scored in category 3, x1 = o, x2 = o, and x3 1: 

gl = .20(0-.5) + 0(0-.3) + 0(1-.2) + .5 = .40, 

g2 .14(0-.5) + .433(0-.3) + 0(1-.2) + .3 = .10, and 

g3 -.34(0-.5) .433(0-.3) + 0(1-. 2) + .2 .50. 

If any other two equations had been used, e.g. x2 and x3 with 

b1 = 0, the evaluation would have been exactly the same. Note that 

the appropriate RHS's to predict g1 , g2 , and g3 would have been 

[ 

-,03 

-.02 

,07 

-.04 

-.04 ] 

.06 

The procedure for finding the weights for sire evaluation would 

be similar, The RHS's would be divided by one-half and the LHS's 

computed as indicated earlier, 

Prediction of progeny frequencies from a particular mating would 

be the same as averaging the evaluations of the sire and dam. 

Fraction in category 1 

Fraction in category 2 = g2S + g2D 
2 

Fraction in category 3 = g3S + g3D 
2 

Economic weights for any of the three cases, animal, sire, or progeny, 

can be assigned to the frequencies which have been predicted. Suppose 

v1 = 60, v2 = -5, and v3 = -100, Then, in the previous example, for an 
animal scored in category 2 (0, 1, O), the aggregate economic value is 

predicted to be: 60(.40) - 5(.5331) - 100(.0669) = -45.5655, 

11/21/ZB 





Summary XIII 

SELECTION FOR EMBEDDED TRAITS 

Some traits cannot be measured directly. An example is a maternal 

trait which makes up part of the environmental effects on the record of 

an offspring. Such traits are embedded traits. Selection for embedded 

traits, however, can be accomplished with the selection index. The pro-

cedure appears to be somewhat of a hybrid between single trait and 

multiple trait selection. The general selection index procedure can 

certainly be applied. Three examples of embedded traits will be discussed 

in this section: the maternal effects model, the grandmaternal effects 

model and the fetal effects model. 

Selection when traits are influenced by maternal effects 

The maternal effect of the mother often has an effect on the pheno-

type of the offspring. This effect is genetic with respect to the 

mother but acts as an environmental effect on the offspring. This 

effect of the mother is in addition to the genetic effect of the sample 

half of her genes that the offspring has obtained. In turn, part of 

the maternal effect may be genetic and part may be environmental. 

(See Willham, Biometrics, 1963 for the complete development.) 
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The following diagram illustrates the various effects when Wis the dam of X. 

PX is the phenotype of animal X. EDX is the non-maternally caused 

environmental effect, GDX is the genetic effect associated with the geno-

type of X, GMW is the genetic maternal effect on X, ''Mw is the environ-

mental maternal effect on X, GMX is the genetic maternal ability of X 

which is not measured, an<l GDW is the genetic effect associated with the 

dam of X, W. Note that GMW + ~W + ~X = EX and GDX = GX of the usual 

model PX = Gx + EX. 

One can consider these to be two traits (a direct trait, D, and an 

indirect maternal trait, M) which may be correlated. Trait Mis measured 

one generation later than the direct effect D. 

The genetic covariances between relatives with maternal effects considered 

Let the model for a record on animal X be 

PX GDX + EDX + GMW + ~W and the model for a record on animal Y be 

Py GDY + ~y + GMZ + ~Z where animal Z is the mother of Y and W 

is the mother of X. 

By the rules for the covariance of linear functions we can find the 

genetic covariance between X and Y. Assuming any environmental covariances 

are zero, we find: 

COV(PX, Py)= COV(GDX' GDY) + COV(GDX' GMZ) + COV(GMW' GDY) + 

COV(GMW' GMZ) 
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In terms of genetic variance and covariance components we have: 
2 2 2 

CJlO 2 °20 CJOl 
D + aXY D + dXY D + • " " 

0 
10, 10 -+ 2 DM axz 

0 
_!Q_,10 + 2 

D M aWY 

2 020 
M 

0
20,20 + 
D M 

CJ ...1.Q_, 20 + 
D M 

2 CJOl 
M + . . . ' 

CJOl,Q.!_ + 
D M 

CJ 
_Q.!_, 01 + 

D M 

. . . ' and 

Thea's and d's are the usual additive and dominance relationships. 

The genetic variances are labelled with the trait, i.e., (CJio/D) is the addi-

tive genetic variance of the direct trait, D. 

The genetic covariances are labelled with both traits, i.e., 
CJl0,10 

D M 

is the covariance between the additive genetic effects for trait D and 

trait M. 

If only additive genetic effects 
2 2 CJ 10 CJ 10 

COV(Px PY)= aXY D + awz M + 

are considered, 
0 10,10 

(axz + aWY) D M = 

Example of genetic covariances between relatives considering only additive 

effects 

Animal with itself: This covariance will be the genetic variance plns 

environmental variance. 

X = Y, W = Z, and aXY 

COV(PXPX) a2 a2 = + + 
GD GM 

In terms of the p G + 
CJ2 + a2 

ED 

1, ¾z = 1, axw 1 
= 2, and ~Z 

1 
2 

1 1 + a2 + a2 a2 Cz + zl 0 G G ¾ ED p 
D M 

E model a2 = a2 and a2 o2 + G GD E C\i a 
GDGM 

+ 
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llam-progcny covariance considering only additive genetic effects: 

X is the progeny 

w is the dam z 

z is the dam's dam w 
/(Y) 

y is also the dam of X X 

T11e genetic parts of the models for PX and Py are: 

PX GDX + C\iw and Py GDY + GMZ 
(Y) (W) (W) 

aXY 1/2, "wz 1/2, ¾z = 1/4, "wY = 1 . 
(Y) 

Then COV(PX,PY) = 1/2 a2 + 1/2 CT~ + (1/4 + 1) aG G 
GD M D M 

Note that the covariance between relatives may contain a genetic covariance 

between the direct and maternal traits. This covariance can be negative·and 

thus mask the additive genetic variances for the direct and maternal 

traits. 

Note that the additive genetic correlation between D and M is 
a 

r GDGM 
Since the maximum absolute value of is 1, gD M r 

' /a2 a2 g 
GD GM 

Thus, there is a possibility of obtaining a negative estimate of the off-

spring-dam covariance if the negative value of a is large enough. 
GDGM 

If maternal effects are important doubling the offspring on parent 

regression can give a biased estimate of heritability of the direct trait; 

i.e., 2[1/2 a2 1/2 a~ 1 a2 a2 1 + + 1 4 aG G] + 2 2 °G G 
if= 

GD M D M GD GM DM = --+ 
a2 p a2 p 02 p 

Of course there are also the other possible genetic causes for bias in 

this estimate due to a~0 etc. 
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Sire-progeny covariance: 

Xis progeny of dam Wand sire Y which has dam z. 

x.,..---wy :dam of X) 

~~--- Z (dam of Y) 

8wz = O, 
1 . -4' 

which is quite different from the off-

spring-dam covariance, 

Practice Problems 

The following problems illustrate some concepts of covariance among 

relatives when maternal traits are important. 

1. Estimate 

Given: Covariance between paternal half sibs • 20 

Covariance between full sibs - 30 

Covariance between offspring & sire - 30 

2. Given: o2 
GD 

= 80, o2 
GM 

• 40, o = -20 
GD~ 

Show all calculations (steps) in computing the covariances between: 

a) offspring and dam 

b) offspring and sire 

c) full sibs 

d) maternal half sibs 

e) paternal half sibs 

f) X and Yin diagram 
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Solutions: 

1, Cov (p 11 s) l/4 a 2 + 0 a 2 + 0 "G G = 20 [ 1 l 
GD GM D M 

Gov (full sibs) 1/2 a2 + a' + (l)oG G = 30 £ 2 l 
GD GM D M 

Gov (offs, sire) 1/2 a~ + 0 a~ + l/4oG G 30 [3] 
D M D M 

From [ 1]: a 2 = 4(20) = 80 
GD 

From [l] and [3]: 1/2(80) + 1/4 oG G 30; rJ -40 
D M GDGM 

From [ 2]: 1/2(80) + a~ + (-40) = 30; 
M 

2. a) 

b) 

X+--Y+--Z 
(W) 

Cov (offspring-dam) 

w 

X/Y Z 
sire 

1/2(80) + 1/2(40) + (1/4 + 1)(-20) 

Cov (offspring-sire) a 1/2(80) + 0 + (1/4 + 0)(-20) = 35 

35 

c) X+--~ sire 
'/ aXY = 1/2 awz = 1 axz 1/2 aYW = 1/2 

Y~dam (W & Z) 

d) 

e) 

f) 

Cov (full-sibs) = 1/2(80) + (1)(40) + (1/2 + 1/2)(-20) = 60 

X~dam (W & Z) 
y~ 

aXY = 1/4 awz = 1 axz = 1/2 ~w = 1/2 

Cov (mat, half sibs) = 1/4(80) + (1)(40) + (1/2 + 1/2)(-20) = 40 

x---W (dam of X) 

>Sire aXY 1/4 awz = 0 axz O aYW 0 

y ___ z (dam of Y) 

Cov (pat. half sibs) = 1/4(80) + 0 + (0 + oj = 20 

1 axz = 3/4 a yw 3/4 

Cov ( X and Y ) = 3/4(80) + 1(40) + (3/4 + 3/4)(-20) = 70 
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The following table gives the additive relationships that are coefficients 

f 2 2 O OG, OG, 
D M 

the previous 

and oG G for the covariances between the pairs of relatives in 
D M 

problem under the assumption that only additive genetic effects 

contribute to direct and maternal genetic effects. 

CONTRIBUTION OF DIRECT AND MATERNAL ADDITIVE GENETIC VARIANCE 
AND COVARIANCE TO THE COVARIANCE BETWEEN RELATIVES 

PX,PY aXY awz axz 8vw 
PX,PX(with self) 1 1 1/2 1/2 
Progeny, dam 1/2 1/2 1/4 1 
Progeny, sire 1/2 0 1/4 0 
Full sibs 1/2 1 1/2 1/2 
Maternal sibs 1/4 1 1/2 1/2 
Paternal sibs 1/4 0 0 0 

Selection for the direct and maternal traits 

Selection for the direct trait. The records used for the selection index 

will correspond to Xi, the average of single records of pi animals in relative 

group i. 

RHS's: o • a o2 + a.. o 
XiGDa ia GD wia GDGM 

• E(Xi,GD0 ) • E[(GDi + G'\J + EDi + E'\J )(GDa)) , 

where W. is the dam of i and a is the ani~l being evaluated. 
1 

Diagonal coefficients: The (pi-1) coefficient will be expanded by the 

maternal variance and maternal-direct covariance. 

is relationship among members of the group, a.. W is relationship among 
wi i' 

dams of group, a 
iWi, is relationship of animal in group to another's dam. 

Off-diagonal coefficients: These will be expanded similarly, 
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Selection for the maternal trait. 

Diagonal and off-diagonal coefficients will be as in selection for the 

direct trait. 

Correlated response when selecting for G~GM. 

If selection is for GDa and Xi(i=l, ... ,N) is the average of relative 

group i and the relationship of 

response in GD will be D GD = 

dam of relative i to a is aw then the 
i fl 

a D (the selection differential Dis 
ID 

different from the subscript D which refers to the direct trait), where 

The response in GD can also be computed as usual as: 

Gov 
b._ GD = 

(GDa' 
al 

D 

= a. 
1a 

ID) 
N 

ih biD Gov (GDa' Xi) 
D 

al 
D 

D where 

Similarly the correlated response in GM can be predicted as 
N 

D = i~lbiD 
al 

D 

Gov (~a• Xi)= aia aGD~ + awiaa~M 

N 

al 

If selection is for GMa by IM= i~lbiM Xi 

N 

D where 

D 

and 

The following example illustrates computations for these concepts and 

also shows how to compute the effect of bias in heritability estimates 

if maternal effects are ignored. 
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Example of selection for direct genetic effects 

Given: 80, a~ 40, aG G = 40, ai 500 
M D M 

Also suppose heritability is estimated in the usual way by twice the regression 

of offspring on dam record. 

1. a) Use this biased estimate of heritability (genetic variance)to find 

the usual weights for indexing genetic value from the animal's own 

record, x1 , and the sire's record, x2 . 

b) What is the expected progress by the usual procedure of calculating 

genetic gain? 

c) Use the incorrect index found in (1 a) but the correct variances and 

covariances to find the expected correlated responses in GD and GM. 

2. a) Use the correct variances and covariances as given to find weights 

for indexing direct genetic value (GD) from x1 and x2 . 

b) Use the correct index for GD and the correct variances and covariances 

to find the expected correlated responses in GD and GM. 

3. Repeat 1 and 2 when a = -40. 
GDGM 

Solutions 

80, 40, 

sire's record. 

40, a2 p own record, x2 

Heritability from twice regression of offspring on dam record 

h4 = 2 Cov (offspring, dam)/ai = 2 [½ (80)+ ½ (40)+ (1¼)(40))/500 = .44 

1. a) bl+ (½) (.44) b2 = .44 

= ½ (.44) 

a 1 = 10.24; would be the 
actual a 1 is 

a = 110. xl xz 

apparent standard deviation of index. The 
9.92 since ax X = 50 while h'-= .44 implies 

1 2 
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b) ~G •/-10. 24 D would be the usual prediction based on h = .44 . 

. 4115[(1)(80)+(~)(40)]+.1295[(½)(80)+(t)(40)] 
------------------'---- D 4. 80 D 

9.92 
bl Cov(GMa'X1)+ b2 Cov(GMa'X2) D = 

or 

,4115[(1)(40)+(½)(40)]+.1295[(½)(40)+(t)(40)] 
______ __:; ______ ,;:_ __ __.:_ ___ D 2, 88 D 

9. 92 

500 b2 = ½ (80) +(t)(40) 

r = .1919 xl + .0808 x2 = GDa 

or= 4.82 

/\ bl Cov(G0 ,x 1)+ b2 Cov(G0 ,X2) 
b) .LS::::,,_ G = a a D = 

o or 
,1919(100)+ .0808(50) D = 4_82 D 

4.82 

3. 

Cov(GMa'X2) D = .1919(60)+ .0808(30) D = 
4,82 

o2 = 500 p 

Now heritability from twice offspring on parent regression 

hi= 2 Cov(offsprinp,,dam)/o~ = 2[f(80)+ ½(40)+ it(-40)]/500 = .04 

(l.a) b1 + ½(,04) b2 = ,04 

,02 bl+ b2 = i(,04) 

I= ,0396 x1 + .0192 x2 = Ga; or= .9918 is apparent or. The actual 

or = 1.007. 

(l.b) D. G = .9918 D usual prediction with h = .04 

(1.c) 
Cov(GDa'Xl)+ b2 Cov(GDa'X2) D = 

or 

.0396[(1(80)- ½(40)]+.0192[½(80)-t(40)] -----------------0 1.007 2,931 D 

2.89 D 
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.0396[(1)(-40)+ ½(40)]+.0192[½(-40)+ t<40)] 
1.007 

500 b2 = <½)(80)+ t(-40) 

I .1168 xl + .0530 x2 = GDa 

a 1 2.932 

A GD= bl 

.1168(60) + .0530(30) D = 2_932 D 
2.932 

.1168(-20) + .0530(-10) D 
2.932 -. 977 D 

D - • 977 D 

Joint selection for the direct and maternal genetic effects 

For one phenotypic trait assume the overall economic value is determined 

partly by the direct genetic component and partly by the maternal genetic 

component so that aggregate genetic economic value for animal a is 

T where a 

vD is the net economic value for the direct contribution and vM is the 

net economic value for the maternal contribution. These values are not 

necessarily the same because,although the gross price is the same for the 

total product,the cost of production may be greatly different for the direct 

and maternal portions. 

The usual selection index procedure for selecting for overall genetic 

value can be used except that records on at least two relatives are needed 

since the maternal and direct traits are measured jointly. In addition the 
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two kinds of relatives must be such that (a 01 , a W) is not proportional to 
0 1 

(a02 , a0W ) , This restriction will be illustrated later. 
2 

The procedure for joint selection for direct and maternal genetic value 

will be illustrated for one trait and using only records on two relatives, 

x1 and x2. The index will be I 0 = b1 x1 + b 2 x2 which estimates 

T 
0 

The general equations which determine the h's are 

= 0 x T 
1 o 

= 0x T 
2 o 

The coefficients of the h's are the same as for selection for GDo or GMo' The 

covariances between the X's and T can be computed as 
0 

VD (a. GG2 + aw GG G) + VM (a. GG G + aw GG2) 10 D i o D M 10 D M i o M 

Then I
0 

= b1 x1 + b 2 x2. An alternative procedure would be to index for GDo 

and GMo separately then weight by vD and vM' i.e., 

IDo = GDo and ~o = GMo as in the preceding sections. 

The expected response by selection can be computed as before 

6. T = V D 6_ GD + VM 6_ GM where 

GOV (GDo' I) GOV (GMo' I) 
_6. GD D and 6_ GM= D . 

GI GI 

The following examples illustrate the computations for selecting for 

both the direct and maternal genetic traits. Example 1 illustrates the 

futility of trying to select for both when (a 10 , aW
10

) and (a 20 , aW
20

) 

where 

are proportional. Example 3 shows the effect of changing the sign of the 

genetic covariance between the direct and maternal genetic values. 
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Example problems in selecting for G0 and GM simultaneously 

Given: a2 = 80 a2 = 40 a 40, a2 = 500 
GD GM GDGM p 

Xl record on the sire, x2 record on the dam. 

1. If V = 4 and vM = 1 can we select for D 

T = (4) GDa + (1) GMa ? 
(l 

2. a) Suppose Xl = record on dam, x2 = record on a paternal half 

What is the index for selecting for T = (4) Goa + (1) 
(l 

b) What is the expected correlated response in G0 and GM 

3. Repeat (2 a and b) when a 
GDGM 

= -40. 

Solutions 

1. X = 1 record on sire x 2 = record on dam 

(ala a W1a ) (1/2 1/4); 

(a2a , aw ) 
2a 

= (1/2 • 1/4). These are 

proportional so selection cannot be for v0G0 + vMGM. 

For example: 

= .46[50] + .46[50] D = 
14.55 3.16 D 

L::,. G = .46(30] + .46(30) 0 = 1.90 D 
M 14. 55 

a = 14.55 I 

I= .34 x1 + .34 x2, a1 = 10.75 and 

= .34[50] + .34[50] D = 3 _16 D 
10. 75 

? 

G Ma 

sib 

? 

= .34[30] + .34(30] D = 
10.75 1.90 Das before for v0 = 4 and VM = 1. 
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2. x1 = record on dam x2 = record on p.h.s. 

a) 

V = 1 M 

2 , 
+ 500b2 = vD(a2aoGD+ aW2aaGMGD) + vM(a2aaGMGD+ aW2aoGM) 

500b1 = 4[½(80) + t(40)]+ 1[½(40) + t(40)]= 230 

500 b2 = 4[t(80) + O J + l[t(40) + o J = 90 

I = .46 x1 + .18 x2 
11.05 

b) & G = COV(GDa' I) 
D GI 

.46[½(80) + t(40)] + .18[t(80) + OJ 
D = 2. 407 D 

11.05 

= 
.46[½(40) + t(40)] + .18[t(40) + OJ 

ll.0 5 D = 1.412 D 

(2.a) 500 bl+ 0 b2 = 4[½(80) + t(-40)] + l[½(-40) + &(40)] 110 

(2.b) 

0 b1 + 500 b2 = 4[&(80) +OJ 

I= .22 xl + .14 x2 

+ l[t(-40) + o l 

GI= 5.83 
.22[½(80) + t(-40)] + .14[t(BO) +OJ 

/j1:,_ G
0 

= -----'-------'------ D 
5.83 

1.612 D 

.22[½(-40)+ t<40)J + .14[1(-40)+ o J s_ GM = 4 D = -.617 D 
5.83 

70 
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Selection when traits are influenced by grandmaternal as well as maternal 
effects 

The granddam may, for some traits, affect her daughter's maternal ability 

which in turn influences the record of the grandprogeny, Beef cattle breeders 

have reported that cows that were large themselves at weaning tend to wean 

calves that are lighter than cows that were not so heavy at weaning. A grand-

maternal effect can be postulated as a cause of this phenomenon. 

This grandmaternal effect may have a genetic basis in the grandmother 

(i'') but is an environmental effect on the maternal ability of the mother 

(i') and on the actual phenotype of the calf (i). In fact, the model including 

maternal effects can be expanded so that the maternal effect is made up of 

direct maternal effect and an environmental effect from the grandmother; 

where GM is the genetic maternal effect, 
i' 

G is the genetic grandmaternal 
Ni'' 

effect, EM is the maternal environmental 
i' 

effect other than that with grand-

maternal causes, and E is the nongenetic (environmental) grandmaternal 
Ni I I 

effect. 

Then, the model for a record on some animal i can be expressed in 

increasingly partitioned form as Pi= GD + Ei where GD is the genetic ability 
i i 

of i, Pi= GD + PM. I + ED where p is the total maternal effect of i' on 
i 1 i Mi, 

pi' and Pi = GD +G + G + ED + E + E 
i Mi, Ni I I i Mi, Ni, I 

Only Pi can be measured, The diagram illustrates, as before, that the 

maternal genetic ability of the mother is expressed only in her progeny. 

Similarly, the grandmaternal genetic effect is expressed only in the grand-

progeny. A sample half of the genes are, of course, for the direct, maternal, 

and grandmaternal effects transmitted,in each generation from parent to offspring. 
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~1/2 sample 1/2 
pi~ 1Di G1Di--•.---===:c....=..;c....-Gri •• 

sample 1/2 sam le 1/2 GM<-+-~---- G G 

i sample 1/2 1Mi, sample 1/2 IMi'' 
GN G G 

i Ni, fi'' 

The covariances among relatives (e.g., X and Y) can be determined as 

PX GD + 
G~• + G + ED + E + E and 

X NX' I X ~II NX' I 
Py = GD + 

G~• 
+ G + ED + E + E 

y Ny,' y ~· Ny, I 

To simplify the expectation, we will define GX = GD + G~• X 
+ G and Gy = Nx,, 

GD + GM__ + GN although only GD 
y ---y I y I ' X 

is the genetic value of X for the measured 

trait. GM, is the maternal genetic value of the dam of X,X', and G is 
--x NX' I 

the grandmaternal genetic value of the granddam of X, X''. 

Thus, 

Cov(G0 GD)+ Cov(GD GM__)+ Cov(GM GD)+ 
X y X --y I --x t y 

Cov(GD GN ) + Cov(G0 GN ) + Cov(GM__ GM__)+ 
X Y'' Y X'' ---x• --y• 

Cov(GM GN ) + Cov(GM__ GN ) + Cov(GN GN ). 
X' Y" --y• X" X'' Y'' 

Each of these terms can be evaluated in terms of additive, dominance, 

additive by additive, etc., components of variance and covariance (where the 

direct, maternal, and grandmaternal components are considered separate traits). 

If only additive genetic effects are assumed, then 

+ 

where the variances are additive genetic variances and the covariances are 
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additive genetic covariances among the direct (D), maternal (M), and grand-

maternal (N) effects. 

The necessary additive relationships can be found from careful drawing 

of the pedigree of symbolic animals X and Y, their dams X' and Y', and 

grandams X'' and Y''. For example, if Xis a sire and Y is the progeny, the 

diagram is 
Sire ~--- X(...----x' ,__ ____ x• ' 

y 
----y.;.•----Y'' 

aX'Y', = O, ~'X', = O, and ax, 'Y', = O. 

However, if Xis a dam and Y is the progeny, the relationships are 

different. 
dam 

Y<.----- X +----- XI----- X' I 
(YI) (Y' I) 

Thus, aXY = 1/2, ~· = 1, aYX' = 1/4, aXY,, = 1/2, aYX'' = 1/8, aX'Y' = 1/2, 

aX'Y', = 1, ~•x•• = 1/4, and ax, 'Y' I = 1/2. The relationships which are 

coefficients of the variances and covariances for some common relatives are 

given below. 
Component 

Relatives a2 0 G G 0 G G a2 0 G G a2 
GD D M D N GM MN GN 

PX,PY aXY aXY,+aYX' aXY' ,+aYX' 1 8 X'Y' aX'Y' ,+aY'X'' ax, 'Y' I 

With self 1 1 1/2 1 1 1 
Sire, progeny 1/2 1/4 1/8 0 0 0 
Dam, progeny 1/2 il 

4 5/8 1/2 il 
4 1/2 

Full sibs 1/2 1 1/2 1 1 1 
Maternal sibs 1/4 1 1/2 1 1 1 
Paternal sibs 1/4 0 0 0 0 0 
Granddam, 1/4 5/8 1 1/4 5/8 1/4 116 grandprogeny 
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The problem of selection is similar to that in the presence of maternal 

effects. The selection index equations are modified to take into account the 

direct, maternal, and grandmaternal components. 

Selection may be for T = GDa (additive direct for animal a) so that the 

right-hand sides become 

0 x T i 

= a o2 + ai, oG G + a o i G i"aGG a D a D M D N 

= + 2 + and o~ = o2 If T = GMa, 0 a o a., o G • XiT ia G0GM 1. a GM D 
If T GNa' 0x T = ai 0G G + ai, 0G G + 2 and ai, 'a.crG 

i a D N a M N N 

the v's are economic values of the components, then 

T = vDGDa + vMGMa + vNGNa, 

a." oG G and 02 2 oG • T 1. a M N M 
o2 = o2 . 

T GH 

or the selection index weights can be determined directly using the RHS's; 

and o2 = T 

0x T i 

+ a o2 + i'a G M 

Records on at least three kinds of relatives (where aia' ai'a' and ai''a 

are not proportional) are necessary for selection with different economic values 

for the direct, maternal, and grandmaternal components. 
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FETAL EFFECTS MODEL (Sire of Fetus Effect) 

There are some traits of a female which may be influenced by the 

fetus she is carrying either during the gestation or following the 

gestation. An obvious example is the ease with which the mother gives 

birth. The genes of the mother directly affect ease of birth, but the size 

of the fetus also may affect the ease of birth by its mother, The size 

of the fetus can most certainly be partially influenced by the genes 

it carries, There is speculation that in dairy cattle, hormones secreted 

by the calf may influence the development of secretory tissue and thus 

influence milk production during the last part of gestation or during the 

lactation which follows birth of the fetus. 

The model is similar to the maternal effects model except that the 

embedded trait is a property of the fetus the animal is carrying rather 

than of the mother of the animal, The figure shows that the animal 

contributes a sample half of the fetal genes as does the sire of the 

fetus. If these genes contribute to the fetal effect (the embedded trait) 

then the sire, through those genetic effects, can influence the performance 

of his unrelated mate. The effect has been called the sire of fetus 

effect or the service sire effect. 

1. Model 

Figure 1 shows the genetic and environmental components for both the 

direct and fetal effects on records of relatives x and y, The fetal effect 

could be on the current record or on a subsequent record. The same model 

applies to calving difficulty as described by Bar-Anan et al. (1976). 

In fact, any trait which is influenced by the mate of the female can be 

described by such a model. Fixed effects on the records will be ignored 



e 
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e 
X y 

p p 
X y 

Figure 1. Diagram of direct genetic and environmental effects (g and e) 
and fetal genetic and environmental effects (f and e) on the ph~notypi~ 
record of animal, x, carrying fetus, w. x , xw are t~e sire and dam of x, 
w is the sire of the fetus, and of course~ xis the dam of the fetus. A 
similar diagram is given for any potential relative, y, carrying fetus, z. 
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here but would need to be considered in prediction procedures or in estima-

tion of components of variance. 

Linear models including effects shown in Figure 1 are the same as used 

by Willham (1963). His application was to a maternal effects model. 

The model is 

p 
X 

and P=g+f+e+e y y z y z 
[l] 

where the g's are genetic values for the direct effect on P, the f's are the 

genetic effects of the fetus on P, and the e's are corresponding environmental 

effects. The pair of animals with records are x and y; wand z are the 

fetuses having sires, w
5 

and z
5

• In the usual P = G + E model, all the 

effects except g would be included in E. The f effects are environmental 

to the animal making the record but are genetically determined. 

Cov(PxPy) = Cov(g g ) + Cov(f f" ) + Cov(g f ) + Cov(g f ) xy W'z xz yw 
and if only additive genetic effects are considered or assumed important, 

the covariances can be written as by Willham (1963): 

Cov(P P) = a o2 + a of2 + (a + a )of 
X y xy g 1,JZ XZ y7,J g I 2J 

where the a's are additive or numerator relationships. If f is a fetal 

effect, then a; is the variance of direct additive genetic effects, of 
is the variance of additive fetal genetic effects, and agf is the covariance 

between additive direct and additive fetal genetic effects. 

This expression can be used to determine the theoretical covariance 

between records of any pair of relatives, x and y, when influenced by 

fetuses of sires, w and z . For example, when calculating the covariance s s 
between a record of a dam and a record of her daughter when the dam's record 

was made with the influence of the fetus which was her daughter, xis the 
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daughter, y = xd is the dam, x is the sire of x but is also z the sire s s' 
of the fetus, x. Then 

Cov(daughter-dam) = ½cr2 + ½a2 + (1 + ¼)a 
g f gf 

Expectations of covariances between usual combinations of records are given 

in Table 1. 

Table 1. Coefficients of the additive genetic variances for the direct 

effect , crJ, for the fetal effect, a}, and of the additive 
ge.netic covariance between the direct and fetal effects, agf' 
for the covariance 1 between various relatives and combinations 

of sires of fetuses. 

Coefficient of 
Animals with a2 a2 records Sire of fetus ____JJ_ _:_t _'!_g_1 
Daughter-dam Daughter not from 1/2 1/8 1/2 

service sire of dam 
Daughter-dam Daughter from service 1/2 1/2 5/4 

sire of dam 

Full sibs Different 1/2 1/8 1/2 
Full sibs Same 1/2 3/8 1/2 
Paternal or Different 1 / 1+ 1/16 1/4 maternal sibs 

Paternal or Same 1/4 5/16 1/4 maternal sibs 

Maternal sibs Sire of Xis 1/4 3/16 1/2 
service sire of y 

Unrelated Sarne 0 1/4 0 

Note tl1at these covariances may also include other more likely 
components due to effects such as direct dominance and maternal 
additive. 
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The practical implications are that the effect of the sire of the 

cow includes the value of the sample half of his genes concerned directly 

with production and a sample quarter of his genes associated with the 

fetal effect since he is the grandsire of every calf his daughter 

produces. Thus, 

Sire of cow effect (which we normally think of as the sire comparison) 

G/2 for production of cow+ F/4 for production of cow. 

The mate effect, or the fetal effect of the sample half of the 

genes contributed by the mating sire to the fetus, is expressed in the 

lactation performance of the mother: 

Sire of fetus effect (mate of cow) 

= F/2 for production of cow 

Note, however, that the sire of fetus is also the sire of the 

possible replacement heifer, resulting from birth and survival of the 

fetus. Thus, in the next generation, the sire of the fetus has become 

the sire of the cow. If there is a negative relationship between the 

direct and fetal effects then effective selection may be difficult. The 

other dilemma is that even if the effects are unrelated, should more 

emphasis be placed on selection of a sire for his fetal effect, which 

almost immediately influences the production of the mate, or for his 

direct genetic value, which does not become expressed until the resulting 

offspring becomes productive. 
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CYTOPLASMIC EFFECTS MODEL 

The cytoplasm of the fertilized ovum comes primarily from the mother. 

Mitochondria in the cytoplasm are responsible for much of the cellular 

metabolism. The DNA of mitochondria in most species is inherited primarily 

from the mother. Thus, cytoplasmic effects generally are thought of as being 

maternal in origin and essentially to be unchanging along the maternal line. 

Males will express the cytoplasmic effects received from their mothers but 

will not transmit their cytoplasm to their offspring. 

FIGURE 1. FRACTION OF ADDITIVE GENETIC (g) 

AND CYTOPLASMIC (c) EFFECTS IN DESCENDANTS. 

For female line of descent: 

Vd-. ---Z9 Y9 
....... 

X9 

gz: gz gz/2 gz/4 

cz: CZ Cz Cz 

With male in line of descent: 

Z9 
V9 
yd - - - ..;. X9 

gz: gz gz/2 gz/4 

Cz: CZ Cz CV 

1-19 

gz/8 

CZ 

1-19 

gz/8 

CV 

Cytoplasmic effects can be incorporated easily into selection index 

procedures either in computing the variances and covariances among the X's or 

the right-hand sides for selection of a function of direct additive and 

cytoplasmic effects. 
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For the purpose of illustration, assume the only genetic effects other 

than cytoplasmic effects are additive direct effects. Maternal effects which 

may be confounded with cytoplasmic effects can be put in the model rather 

easily. 

The models with cytoplasmic effects for records on relatives x and y are: 

p 
X 

g +cf+ b X Xf 
+ e 

X 
and e y 

where g is the additive genetic value for the direct effect on phenotype, c is 

the cytoplasmic effect originating in the female line with animal f, or f', b 

is the interaction between additive genetic and cytoplasmic effects, and the 

e's are random and independent environmental effects (may include random 

cytoplasmic effects). Then when covariances between g's and e's, g's and b's, 

g's and e's, e's and b's, e's and e's, and h's and e's are zero: 

cov(P ,P) - cov(g ,g) 
X y X y + cov(cf,cf,) + cov(b ,b ) + cov(e ,e) 

Xf yf' X y 
If f - f'' 

cov(b ,b ) 
xf Yf' 

As before, let c u2 be the xy X 

x and a record of y. 

Thus for f - f': 

a u 2 and O otherwise. xy b 
environmental covariance between a record of 

cov(P ,P) 
X y a o 2 + o 2 + a o 2 + c o 2 . xy g c xy b xy x 

And for f f f': 

cov(P , P) - a u 2 + c u 2 • x y xy g xy x 
The following table gives the expected make-up of covariances of common 

relatives. 



Relationship 

Female parent - offspring 

Male parent - offspring 

Maternal half sibs 

Paternal half sibs 

Full sibs 

Female grandparent - offspring 

Animal with self 

Identical twins 

Unrelated nuclei in 
same cytoplasm 
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a2 a2 
__g__ C 

1/2 1 

1/2 0 

1/4 1 

1/4 0 

1/2 1 

1/4 1 

1 1 

1 1 

0 1 

a2 b 

1/2 

0 

1/4 

0 

1/2 

1/4 

1 

1 

0 

Environmental/ 2 
covariance 0x 

cMHS 

If a 2 o 2 a 2 and c are known, then variances, of, and covariances, g' c' b' xy 

among, averages can be calculated for setting up the coefficients of the 

selection index equations to find the selection index weights. 

If selection is for direct additive genetic value of animal a, then the 

right-hand sides of the selection index equations as usual will be; 

aX.T = aiaa; 
1 

where a. is the additive relationship between a and i. 
ia 

If selection is for direct additive genetic value of animal a plus the 

cytoplasmic value of a plus the interaction, T - g + c a a then 

if f = f'; 

if f 'f' f'; 

In general, for T = g + c 
a a + b ; 

af' 
a 1aa; + P(f=f')[a~ + aiaatJ 
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where P(f-f') is the probability that the cytoplasm of relative i with the 

record X. and the animal being evaluated, a, is the same. 
1 

If T - g + c , then 
Q Q 

if f - f' 

a. a 2 + u 2 and 
lQ g C 

if f 'f f' 

a = a. a 2 
x. T la g 

1 

Unless a 2 is relatively large, selection for direct additive genetic 
C 

value while ignoring cytoplasmic effects is likely to be nearly as effective 

as jointly selecting for direct additive and cytoplasmic effects. 

Heritability (additive direct) can be overestimated from covariances 

between relatives with the same cytoplasm if cytoplasmic effects on the trait 

are real and if those effects are ignored. Overestimates of heritability will 

lead to overestimates of the accuracy, rTI' of evaluation and overestimation 

of expected superiority for additive genetic value from selection because both 

rTI and aT will be overestimated. 

Unless variance due to cytoplasmic effects is large, the only way that 

selecting for cytoplasmic in addition to direct additive genetic value can be 

relatively important to total genetic gain is if the reproductive rate of 

females to produce female replacements is greatly increased. The reason is 

that of the four paths of selection (in the case of milk yield in dairy cows), 

cytoplasmic effects are transmitted only through the dam to female path. 
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Figure 2. THE FOUR PATHS OF SELECTION 

Nuclear inheritance 

ss -------s 
DS ----

~Progeny 
SD~D~ 
DD~ 

Cytoplasmic inheritance 

ss~s 
DS 

~Progeny 
SD~D~ 
DD~ 

For the sire to sire, dam to sire, and sire to dam paths, selection should be 

for additive genetic value with selection differentials of 6SS, 6DS, 6SD 

for additive genetic value. 

For the dam to dam path, selection can be for the sum of direct additive and 

cytoplasmic effects with the selection differential partitioned into 

6DD (direct additive) and 6DD (cytoplasmic). g C 

These two parts can be obtained theoretically by calculation of correlated 

response. If I is the index for the sum, g + c, then 

6DD g 

and 

6DD 
C 

cov(g.I)D 
al 

cov(c.I) D 
al 

where D is the standardized selection intensity factor. Note that D and a1 
are the same for both calculations. With no covariance between g and c, the 



--176--

only contributions to cov(c,I) will be from females in direct female line of 

descent--daughter, dam, maternal granddam, maternal half sisters, full sibs, 

etc. 

The direct additive genetic differential applies to the usual formula for 

genetic gain from four paths of selection. 

The differential due to cytoplasmic effects contributes immediately to 

progeny and thus gain per year for cytoplasmic effects is the cytoplasmic 

differential divided by the generation interval for the dam of dam path. 

(Some scientists have reasoned that since females to be dams of dams are 

selected jointly for direct and cytoplasmic effects, the division should be by 

the sum of generation intervals.) Thus on a per year basis: 

llSS + .!IDS + llSD + llDD llDD 
ll(g+c) + C 

Lss + LDS + LSD + ~D ~D 
Because increased reproductive rate in females results in the same increase in 

selection intensity for llDD and llDD, the equation can be partitioned into g C 

the three paths, llg3, that do not contribute cytoplasm to the population and 

the two parts due to dams of dams. 

llDD llDD 
ll(g+c) llg + __g + 

3 :EL 
C 

For example, if a 2 is 5% and a 2 is 25% of the phenotypic variance for 
C g 

production of dairy cattle, the gain per year from increasing the standardized 

selection intensity factor will be somewhat greater from llDD /:EL than from g 
llDDc/LDD even though LDD is only about one-fourth of :EL. The extra gain due 

to llDD can be substantial if a 2 is as great as 5% of phenotypic variance and 
C C 

replacement cows can be obtained from the top 10 to 50% of the herd. Such an 

increase in reproductive rate would require sexing of semen or multiple 
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ovulation and embryo transfer. The costs of those reproductive systems is 

likely to be greater than the value of the additional genetic gain. 

Whether cytoplasmic effects can account for as much as 5% of variation is 

doubtful. Because cytoplasmic effects seem to be transmitted essentially as a 

whole, segregation and recombination are not available to maintain 

variability. Thus, cytoplasmic lines may soon be fixed because selection 

should be relatively effective. Not many combinations of mitochondrial DNA 

would be expected as compared to the combinations of nuclear DNA. The few 

combinations of mitochondrial DNA that do survive after a number of 

generations of selection may all be nearly optimum for effects on production 

or reproduction. 
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APPENDIX: COVARIANCE BETWEEN RELATIVES WITH SINGLE LOCUS FOR ADDITIVE EFFECTS 

AND MATERNALLY DERIVED CYTOPLASMIC EFFECT. 

Let records of relatives x and y be represented as: 

xijt - a. + aj + ')'t + (a')') it + (a')')jt + e 
1 X 

yklu - ak + a 1 + ')' + (a1'\u + (a')')lu + e u y 
where each a represents an additive genetic effect of gene m, 

Note: 

Note: 

m 
')'n represents a cytoplasmic effect of cytoplasm n, 

(a,') represents the interaction of the mth additive effect and mn 
th n cytoplasmic effect, and 

e represents environmental effects. 
w 

additive genetic value; g - a + a with a 2 
i j g 

cytoplasmic value; ct - ')'t with a~ - E[,'~] 

genetic by cytoplasmic interaction; bijt - (a')')it + (a')')jt 

by assumption; 

P(i-k) + P(i-1) 

+ E[(a')')~ ] and 
Jt 

E[gijct] 

+ P(j-k) 

- 0, E(gijbijt] 

+ P(j-1) - 2a and P(i-k) - a /2. xy xy 
Let P(t-u) be the probability that the cytoplasm of x is the same as the 

cytoplasm of y (either 1 or 0). 

Cov(x,y): 

E[gijgkl] - E[(ai + "j)(ak + "1)] - E[ai"k + aiai + ajak + "j"l] 

But E[aiak] - (axy/2)E[a 2] - (axy/4)a~ 

a a 2 
xy g 

E[bijtbklu] - E{[(a')')it + (a')')jt][(a')')ku + (a')')lu]) 

- E[(a')')it(a')')ku + (a')')it(a')')lu + (a')')jt(a')')ku + (a')')jt(a')')lu] 

But fort - u; E[(a')').(a')')k] - (a /2) E[(a,') 2 ] - (a /4)ab 2 
1 xy xy 

Thus, E[b .. bk"] - P(t-u)a ab2 ; either a ab2 or 0. 
~t = 
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Therefore, 

cov(x,y) - a a 2 + P(t-u)a 2 + P(t-u)a a 2 
xy g c xy b 
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Summary XIV 

NONLINEAR ECONOMIC VALUES AND 
RESTRICTED SELECTION 

Selection for traits with nonlinear economic value. 

Two general problems not covered by the usual selection index procedure 

involve: (1) the situation where the value of the product changes with the 

output of the product, i.e., the value of an additional pound of milk when 

the level is 109 lbs per day is not the same as when the level is 19 lbs. per 

day, and (2) the situation where the value of a trait depends on the level of 

another trait, e.g., the value of milk depends on the fat test of the milk. 

If costs and income for production are known for different levels of 

production for some trait, the net income curve may be approximated by some 

nonlinear or polynomial function, e.g., 

where c is a constant, the v's are the appropriate polynomial regression 

coefficients from fitting net income to polynomials in total yield, x1 + µ1 , 

where µ1 is a population constant and x1 is the deviation from µ1 . 

Thus, net genetic merit can be defined as 

T = c + vl (Gl+µl) + v2(G1+µ1)2 + v3(G1+µ1)3 + ••• ' 

where G1 is the usual additive genetic value for trait 1. The net genetic 

merit will depend on µ1 as well as G1 . Animals could rank differently in 

populations with different average levels of production, µ1 . 

A possible procedure for use in selection for net genetic value is to 

estimate G1 as usual by r1 and substitute it into the economic equations so 

that T =I= c + v1 (r 1+µ1) + v 2 (r 1+µ1) 2 + v 3 (r 1+µ
1

) 3 + ... 

If only v1 and v 2 are nonzero (linear and quadratic values), then this 

is the optimum procedure for minimizing E(T-T) 2 except for a constant. This 
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has been called the quadratic index. The procedure may be nearly optimum for 

other cases although for the cubic case Mao and Henderson have shown mathematically 

that substituting 11 for c1 is not identical to finding an index by minimizing 

E(T-T) 2 . 

This concept can be extended to more than one trait and to cases where 

levels of one trait determine the value of another trait. As long as terms in 

the procedure of substituting the index for each trait into the economic equation 

is optimum. 

For example, with two traits,if 

T = c + vl (µl+Cl) + v2(µ2+C2) + v3(µl+Cl)(µ2+C2) + v4(µl+Cl) 2 + 

vs(µ2+G2) 2 , 

then the best index for T where 11 = c1 and 12 = c2 is 

T = c' + 1 = c' + vl (µ1+11) + v2(µ2+I2) + v3(µ1+11)(µ2+12) + 

v4(µ1+11)2 + v5(µ2+12)2 ' 

where c' is a constant for all T. Wilton proved that this is equivalent to 

where the S's are the solutions to the equations obtained from minimizing 

E[(T-1) - E(T-1)]2, 

A special example is in the pricing of milk where the value of milk 

depends on the level of fat test. The example does not consider any other 

nonlinear economic value for milk. The income equation for milk can be written 

as income= (µ1+x1)[vm + vf(µ 2+x2-base test)], where µ1 + x1 is the milk 

record, µ2 + x 2 is the fat test, vm is the base price of milk per lb. when 

the milk has the base test, and vf is the differential in price of milk for 

a change in fat test. The equation can be rewritten to compare with the 

quadratic income equation as income= [vm + vf(-base test)](µ 1+x1) + 
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Thus, the best index is 

In some cases a simpler estimate of 11 or 12 may be substituted especially 

when 11 and 12 are based on many progeny, i.e., 11 may include only records for 

trait 1 on many progeny, In all cases with a quadratic index, correlated 

responses are difficult to compute because of terms such as E(XfX2). 

An example of selection when milk price depends on fat test, 

The example also demonstrates that an animal which ranks higher in one 

herd may not in another depending on the average milk yield and fat test, 

Two sires have been evaluated for milk, Im, and test, If. Two herds with 

widely different average milk and test are used, 

Sire 
A 
B 

I 
m 

+2000 lb. 
+1000 lb. 

If 
-.003 
+.003 

Herd 
1 
2 

12,000 lb. 
18,000 lb. 

µf 
.040 
,035 

Three pricing systems are compared where v is the base price per lb, of milk m 

at a base test of .035 and vf is the fat differential--the change in price 

per lb, of milk if fat content changes from none to all. The following table 

gives the results for the six combinations of herds and pricing schemes, 

Sire 
A 
B 

V =, 05, 
m 

Herd 1 
$717 

712 

Herd 2 
$964 
984 

V =,05, m 
Herd 1 

$722 
733 

General procedure for predicting quadratic merit 

Herd 2 
$952 
996 

V =,06, m 
Herd 1 

$951 
922 

Herd 2 
$1176 

1163 

Suppose as an example with only two traits that overall quadratic merit 

can be defined as 

T = vl (µl+Tl) + v2(µ2+T2) + vl2(µl+Tl)(µ2+T2) + vll(µl+Tl) 2+ 

V22(µ2+T2) 2 , 
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where the v's are economic values for linear, product, and squared increases 

in true value for traits 1 and 2 having means µ1 and µ2• T1 and T2 will have 

zero means and variances a2 and a2 
Tl T2. 

T can be rewritten as 

T = aO + alTl + a2T2 + al2TlT2 + allTl + a22T2 ' 

where the constants a0 = v1µ1 + v2µ2 + v12µ1µ2 + v11µf + v22µ~ , a1 = v1 + 

vl2µ2 + 2vllµl' a2 = v2 + vl2µ1 + Zv22µ2' al2 = vl2' all= vll' and a22 = v22· 

Henderson has shown that the best unbiased predictor of Tis T = c + I 

where the indexes for traits 1 and 2, r 1 and 12 , are substituted into the 

quadratic merit equation, I= a0 + a1r 1 + a 2r 2 + a12r 1r 2 + a 11r 1 + a22r 2 , and 

c = E(T) - E(I). c is the same constant for all animals and therefore will 

not change ranking and is necessary only to have unbiased predictions. 

Only one type of term inc= E(T) - E(I) is difficult to evaluate; 

E(T) = E(aO + alTl + a2T2 + al2TlT2 + allTl + a22T2) 

= ao + 0 + 0 + al2oT T + alloi + a22o2 
1 2 1 T2 

E(I) = E(aO + alil + a2I2 + al2IlI2 + allil + a22I2) 

ao + 0 + 0 + al2E(IlI2) + alloil + a22oi2• 

o2 = r 2 o2 and 0
1
2 = r 2 o2 as before where rT2 _1 _ is the squared correla-

11 Tl 11 Tl 2 T2I2 T2 1. 1. 

tion between T. and the index prediction I .. Thus, 
1. 1. 

E(T) - E(I) = al2[oT T - E(11I2)] + alloi (1-ri I)+ a22oi (1-ri T ). 
12 1 11 2 22 

Only E(r
1

r
2

) must be evaluated from the linear functions of 11 and 12• If, 

for example, in the simplest case where x1 and x2 are the records for trait 1 

and 2 on the animal being evaluated, r 1 = b11x1 + b12x2 and r 2 = b21x1 + b22X2 , 

th en E(IlI2) = bllb21°i + (bllb22 + bl2b2l)oX X + bl2bzz 0 i. 
1 1 2 2 
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Restricted Selection Index 

Sometimes one trait is at an optimum level (when an intermediate is 

desirable) but is correlated with another trait of economic importance. 

Ordinary selection for the economic trait would lead to an unwanted corre-

lated response in the trait which is at an optimum level. 

The general problem is to maximize but 

at the same time hold N - Mother traits at their present genetic level, 

i.e., !he = o = M+l A solution to this problem is 

given by Kempthorne and Nordskog in Biometrics (1959). 

In the simplest case T = vlGl and we want .fil.G 2 = o. Available are 

measures on the two traits, x 1 and x2. We will select for T = v1G1 by 

I*= bf x 1 + b~ x 2 where the* indicates the restricted selection index--

restricted in that the index is to maximize6T with the restriction that 

The restriction,£G 2 = 0 

bf ax G + b~ ax G must be 
1 2 2 2 

= Cov(G2 ,I*) 
* D CTI 

so that Cov(G2, I*)= 

zero. 

In addition the equations for the b's to maximize rTI* are 

of bf+ ax X b~ 
1 1 2 

a b* + a2 b* = x 1x 2 1 x 2 2 

0 x T 1 

0x T • 2 
Thus there are three equations including 

the restriction but only two unknowns. 

In order to find a solution we must add a dummy unknown--the so-called 

LaGrange multiplier, A, The equations can now be solved and are symmetrical 

as before. 

b* a2 + b* a + AOX G = 0 x T 1 Xl 2 x1x2 1 2 1 
b* a + b* a2 + ACTX G 0 x T 1 x1x2 2 x2 2 2 2 
b* 1 a 

XlG2 + b* 2 a + 0 = 0 
X2G2 



--185--

The restricted index will be I* bfX 1 + b~X2 . The A can be found but is not 

needed. 

These equations can be derived by minimizing E[(T-1*)2] with the restric-

tion that 2,(bfox G + b~ox G) = 0, i.e., equate to zero the partial deriva-
1 2 2 2 

tives of of+ oi* - 2oTI* + 2,oG I* with respect to bf, b~, and,\.. 
2 

If selection is for more than one trait with restriction of more than 

one trait the procedure can be expanded, instead of A there will be 'i' 

i = M+l, ... ' N where N - Mis the number of traits to hold constant and 

N is the number of economic traits. 

As an example consider M = 2,(T = v1G1 + v 2 G2),and N-M 

£c4). 

The restricted index will be I* 

The restriction equations will be 

0 

= 0 

0 

and 

Thus, , 1 and , 2 will be the LaGrange multipliers in the equations to find 

the restricted selection index weights: 

0 + 0 

0 + 0 

0 x T 1 

0 x T 2 

= 0 x T 
3 

= 

0 x T 4 
0 

0 
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The response in selecting according to I* should probably be compared 

to the response in selecting directly for T = v1G1 + v2G2 by I= s1x1 
+ 

s2x2 + s3x3 + s4x4 with no restriction on change in traits 3 and 4. Compar-

ison could also be made with selection for Tusing just x1 and x2 . It may 

be that although G3 and G4 are optimum that the restriction to maintain 

that optimum will be so costly in terms of6G 1 and6G 2 that a better pro-

cedure would be to let G3 and G4 change while selecting strongly for T. A 

look at the correlated responses may hel!' tE> answer. this. !'rob!e!'l, 

In the typical example above total response 6 T = Cov(T, I*) D 
a I* 

vl ..8 Gl + v2 8 G2 where as usual 8 G1 = and 
Cov(G2 ,I*) 
---==---- D. 

"I* 
These would be compared with 

v16G 1 + v 26G 2 + v36G 3 + v46G 4 as calculated from using the unrestricted 

index where v 3 and v 4 will depend on the loss in changing G3 and G
4 

from their 

present optimums. It may be that the values of traits 3 and 4 will be different 

when the changes are negative from when the changes are positive. 

Examples using the restricted selection index 

Records on animal being evaluated 

Suppose milk yield, trait 1, is to be improved and fat test, trait 2, 

is to be held constant. A record on each trait is available on all animals 

to be evaluated. 

Given: a2 = (2500 lb) 2 a2 = (.3%)2 a = -150 Pl p2 P/2 
a2 = (1250 lb) 2 a2 

Gl G2 
= (. 21%) 2 a = -157.5 

GlG2 

-.2, = -.6, hz. = . 25, 2- .49. r = r h = 
Pl2 gl2 1 2 

Let vl = 1 since selection is for only one trait. 

Find I* 1 = b* 1 Xl + b* 2 x2. 
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The equations determining the weights are: 

(2500) 2 b! -150 b~ -157.5, = (1250) 2 

-150 bf+ (.3) 2 b~ + (.21) 2, = -157.5 

-157.5 b! + (.21) 2 b~ 

I!= .159 x1 + 566.67 x2 

0 and 

a~*= (.159) 2 (2500) 2 +(566.67) 2 (.3) 2 + 2(.159)(566.67)(-150) 
1 

al*= 399.84. 
I*) 

159,876; 

A Cov(G1 , 
Gl 

OI* 
1 D .159(1250) 2 + 566.67(-157.5) D 

399.84 398 D (lb). 
1 

Cov(G2 , A G = 2 OI* 
1 

I*) 
1 D .159(-157.50) + 566.67(.21) 2 D 

399.84 

If selection is for c 1 with no restriction on c 2: 

= .217 x1 - 1388.9 x2 , 0
11 

= 747, 

o. 

747 D (lb) and 
Cov(G2 , I 1) 

D 
01 

.217(-157.5) - 1388.9(.21) 2 D = 
747 -.1277 D (%). 

1 

If selection is for c 1 from x1 only: 

11 = .25X1, o1 = 625, 

Dc 1 625 D (lb), and 

.25(-157.5) D 
625 -.063 D (%). 

Records on paternal half-sib progeny of sire being evaluated 

Evaluate sires by 3 procedures based on 

where x11 is the daughter average for milk, x12 is the daughter average for 

test with 1 record per daughter and p = 20 daughters. 

I* (1) is to improve c 1 and not change c2 , I (2) to maximizeD c 1, I (3) to 

maximize D G1 . 



Given: a = 2500 lb., 
Pl 

as before. 
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.3%, h(= .25, hf= .49, -.6, 

Find the indexes and expected response in milk for all 3 procedures. 

(1) 

Equations: 

(p-1) 
p 

a + (p-1) all' a (p-1) 
+[l + 1 hi.) plp2 GlG2 

b* 4 2 2 b* + ala p 1 p ap 2 
2 

ala CT 
GlG2 bf+ ala CT2 

G2 
b~ + 0 A 0 

Numerically: 

683,594 b* 1 -45 b~ -

-45 b* + 1 .01497375 b~ 

-78.75 bf+ .02205 b* 2 

I* .9047 x11 + 3231 x12 
2 

CTI* 452,748 

CTI* 673 

78.75 1' 781,250 

+ .022051' = -78.75 

= 0 

Cov(Gal' I*) 9 (1 2 1 
8G 1 

• 047 z aG) + 3231( 2 aG G) 
D 1 1 2 

CTI* 673 

Cov(Ga2, I*) .9047(½ CTG G )+ 3231(½ CT2 ) 

&c2 
1 2 G2 D 673 CT I* 

D 

D 

aG GA 
1 2 

a 2 1' 
G2 

= 672 D (lb) 

0 (%) 

-.2 
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(2) l b1 x11 + b2 x12 : equations are upper 2x2 for (1) and same 2 RHS's. 

l = .9943 x11 - 2258 x12 ai = 954,229, a 1 = 977 
1 2 1 

£cl 
Cov(Gal' l) .9943( 2 aG )- 2258( 2 aG G ) 

D 1 1 2 
977 D 

al 
977 D (lb) 

1 2258(-:), a 2 ) 
Cov(Ga2, 1) .9943( 2 aG G )-

R,_ G2 
1 2 2 G2 D = D 

al 977 -.1311 D (%) 

(3) l = bl Xll : equation is first diagonal and first RHS of (1) or (2). 

l 1.1429 x11 
a2 

l = 892,924 al 945 

Cov(G l' I) l.1429(½aa) 

& Gl 
1 D 945 D 945 D (lb) 

al 

1 
Cov(Ga2 ' 1) l.1429("z°G G ) 

ill G2 D 1 2 -.0952 D (%) 
al 945 

Cow selection Bull selection 
Procedure 6G/D 6G/D 6G/D /'),G/D 

I* 1 = b* 1 X + b* 11 2 Xl2 398 lb 0 % 672 lb 0 % 

11 = b 1 xu + bz Xl2 747 lb -.13 % 977 lb -.13 % 

11 = bl Xll 625 lb -.06 % 945 lb -.10 % 



Summary XV 

INDEX AND ECONOMIC VALUES IN RETROSPECT AND SELECTION EMPHASIS 

The index in retrospect 

The index in retrospect is an index that has been used for selection even 

though the weights were unknown at the time of selection. Determining the 

index that was used depends on finding the index which would give a particular 

set of phenotypic selection differentials. 
N 

Let I= i~l wiPi be the underlying but unknown index that was used for 

selection and D the selection intensity factor, Pi will be the phenotypic 

record for trait i measured on the animal being selected. 

With respect to the underlying unknown index, I, the regression of P, 
J 

on I gives the expected phenotypic selection differential for trait j: 

Cov(P. , I) 
L\P . = __ __,,, __ 

J 

Cov(P., I) 

al 

D/cr1 will be a constant for all traits, thus not changing the proportionality 

of the right-hand sides for different traits although both D and I may be 

different for males and females and even from generation to generation, Indexes 

in retrospect may be computed separately for males and females for each 

generation. If D/cr1 is set to one, then the expectations of the phenotypic 

selection differentials are: 

Cov(P1 ,I) 

Cov(P2 ,I) 

Cov(PN,I) = w1crp p + w2crp p + ... + wNcr~ 
1 N 2 N N 

Note that the coefficients of thew's are the same as for finding the best 

index weights, i.e., the phenotypic variances and covariances, Equating the 
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selection differentials to these equations will determine in retrospect the 

relative weights used in the index. The phenotypic variances and covariances 

must be known. 

The proportionality of thew's does not appear to depend on the selection 

intensity or cr1 . A linear index in the phenotypic values is assumed as is 

truncation selection based on the underlying but unknown index, 

The expected correlated responses from using the retrospective index are 

6Gj = (D/cr1) Cov(Gj,I) [j=l, ... , NJ which can be compared with the expected 

responses from the theoretically best index. 

Index in retrospect from genetic selection differentials 

Another approach for finding the index in retrospect depends on knowing 

the genetic selection differentials, 6G. (j=l, ... , N). Usually each would 
J 

be estimated as the difference in phenotypic means between two generations. 

The underlying I and also D may be different for males and females which 

may cause a problem in assigning the fractions of 6G due to male and female 

selection. 

Again let I= EwiPi be the underlying index. The regression of G, on I 
J 

will give the expected genetic selection differential for trait j: 

Set D/o1 
are: 

6G. 
J 

Cov(Gj,I) D _ 
- (D/o1) Cov(GJ.,I) . or 

1, and the expected values of the genetic selection differentials 

Cov(G1 ,I) 

Cov(Gz,Il 
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Thus, if the genetic variance-covariance matrix is known as well as the 

genetic selection differentials, the weights for the underlying index are the 

solutions to the above equations. 

Economic values determined for the index in retrospect 

After the retrospective index I= IwiPi is determined, the relative eco-

nomic weights in retrospect can also be determined if the assumption is true 

that the retrospective index is the best index for T = IviGi. Thus, the 

usual equations to find the weights (which are now known) can be used to find 

the corresponding economic values. The calculated numerical values on the 

left-hand sides are equated to the right-hand sides. 

Even if the LHS1s are unknown, this would be equivalent to equating the phenotypic 

selection differentials to the right-hand sides of the selection index equations 

for predicting total merit and then solving for the economic values. The 

genetic variances and covariances are necessary for determining the economic 

values. 

An empirical selection index 

If the net value of each animal can be determined (even with error un-

correlated with the X's), then the empirical selection index, I =EBiXi, can be 

found from the multiple regression of net value, y, on the phenotypic traits, 
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Xi (i=l, ... , N): 

a~ Sl + ax x Sz + ••• + axlx SN 
1 1 2 --N 

The variances and covariances are all estimated from the data which includes 

net value. The phenotypic variances and covariances could be estimated from 

a larger sample of data, some of which does not include net value.- Solving 
these equations will give the empirical selection index which is an unbiased 

estimate of the best index to predict overall economic value, 

Economic values from empirical covariances 

The model for net value for animal mis ym = Lv G + e where Lv,G, is 
j jm m J JIB 

overall economic value and e is a random error of measurement. Thus, if e 
m m 

is uncorrelated with the e's of the X's (not a very reasonable assumption), 

= i v.aG G for all i which would give these equations: 
J J i j 

vlaa + v2aG G + ''' + vNaG G = 
1 1 2 1 N 

+ 

If the genetic variances and covariances are known and the ax have been 
iy 

computed, the equations can be solved to find the economic values. 

If the empirical selection index weights are unbiased and since the 

right-hand sides should be cv.aG G for all i, the economic values can also be 
J i j 

estimated from these equations since I =LSiXi is a retrospective index: 

If only the v's are unknown, the equations can be solved to find the economic 

values. 



Example of calculation of relative selection emphasis on traits other than a 
major trait in selected matings 

Cows for selected matings are often chosen from a list of the highest 5% 

of cows evaluated for milk production when the highest 1% would be enough to 

produce the required number of young bulls. Obviously traits other than milk 

production are being considered, Some idea of the relative selection emphasis 

on milk and other traits would be informative to those involved in sire selection, 

Expected progress from selection for one trait can be written as ~G = rTIDoG 

where rTI is the accuracy of evaluation, Dis the selection intensity factor, 

and aG is the genetic standard deviation, The genetic standard deviation is a 

constant for a trait. If rTI is assumed to be the same, then the relative 

genetic progress for two selection intensities can be written as n2;n
1 

where 

D1 is the selection intensity factor for the highest selection intensity and 

D2 is the other selection intensity factor. 

If all traits are assumed to have equal heritabilities, h; are uncorrelated, 

and are standardized, then expected progress for a trait such as milk can be 

calculated easily when selection is for milk and other traits. 

Suppose that selection is for milk, y1 , and another trait, y2 , with 

relative selection emphasis of l:m for milk and the other trait, Then the 

index is proportional to Im= y1 + my2 . The progress for milk when selecting 

for milk from I = y1 can be written as :[12 D1 . Progress for milk when selecting 

by I m Y1 + my2 can be written as 

mZ 

which results in relative progress for milk of 

1 

11 + m2 
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This relative progress can be equated to the same relative progress that 

would result from decreased selection intensity, i.e., a selection intensity 

factor of o2 rather than D1 ; 

1 D2 
= 

From this, m = - 1, where mis the relative selection emphasis on 

the trait other than milk, 

Similarly, if selection is for milk, y1 , and n other traits, Yz ... Yn+l' 

with equal selection emphasis on all traits, then the index is proportional to 

In Y1 + Yz + ,,, + Yn+l' Expected progress for milk when selecting for the 

n+l traits can be written as 

with relative progress for milk of 

1 

+ n 

Again this can be equated to relative progress for decreased selection intensity; 
1 D2 

= Dl 

which yields n = (D1/D2) 2 - 1, where n is the number of traits with the same 

selection emphasis as for milk yield, 

The table on the next page gives them and n values corresponding to 

decreasing selection intensity when enough matings can be made from the top 1% 

of cows evaluated for milk yield. 



Table , 

--196--

m and n values corresponding to decreasing selection intensity when 
enough matings can be made from the top 1% of cows evaluated for 
milk yield. 

Cows selected from Relative emphasis Number (n) of 
this fraction when (1:m) on milk and other traits 
only .01 needed one other trait with same emphasis 

.01 1 0.000 0.000 

. 05 1 0,538 0.289 

.10 1 o. 718 0.516 

.20 1 0.949 0.900 

. 30 1 1.138 1.295 

. 40 1 1.324 1.754 

.so 1 1.527 2.333 

.60 1 1.769 3.130 

.70 1 2,086 4.352 

.80 1 2.569 6.600 

.90 1 3.530 12.641 





SUMMARY XVI 

PREDICTION FROM LINEAR MIXED MODELS 

Selection index procedures described in previous sections require the 

assumption that phenotypic measurements are perfectly adjusted for all 

nongenetic factors except the random permanent and temporary environmental 

effects; i.e., xi Yi µ, where Yi is the actual measurement and µ 

represents adjustment for all fixed nongenetic factors such as age effects, 

year effects, and management effects. 

In many situations, the adjustments for the fixed factors must be 

estimated simultaneously with prediction of genetic values. Some adjustments 

such as for age may be made from estimates obtained from previous sets of 

data. Effects of other fixed factors, however, may occur as the records are 

being made, as for example, the effects of year and management, so that prior 

estimates of those effects are not available to use to adjust the records. 

A procedure is available for such situations which has many of the 

properties of the selection index. The procedure is the same as the selection 

index if all fixed factors are known although the two procedures at first 

appear greatly different. 

The mixed model procedure was derived by C. R. Henderson about 1948. He 

has generalized and proved its properties since that time. The procedure 

results in what is called best linear unbiased prediction (BLUP), where best 

is defined as minimizing the variance of prediction error for procedures which 

are unbiased and use linear functions of the data. Best linear unbiased 

predictors can be obtained simultaneously with best linear unbiased estimates 

(BLUE) of fixed factors from solutions to mixed model equations. 
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Both BLUP and selection index procedures require the assumption that 

variances such as genetic and phenotypic variances are known. The properties 

in common are: 

1) both are unbiased; the selection index is automatically unbiased 

whereas BLUP solutions are forced to be unbiased, 

2) variances of prediction errors are minimized (the basis for obtaining 

the equations for both BLUP and selection index, 

3) the correlation between the prediction and what is predicted, rTT' is 

maximized, 

4) i.f the data and T follow a multivariate normal distribution, then the 

predictions maximize the probability of correct pair-wise ranking, and 

5) the predictions are the same as selection index except that with BLUP 

the best linear unbiased estimates of fixed effects are used to adjust 

the records to a G + E basis whereas with the selection index the true 

values of the fixed effects are used for adjustment. 

The mixed model equations are derived after considerable algebra from 

minimizing prediction errors squared and errors of estimates of fixed effects 

with the condition the predictions are unbiased. Variances and covariances 

among the records are considered in an optimum way. The procedure will be 

illustrated for a few models and will not be covered in general. A complete 

discussion would require knowledge of matrix algebra and several semesters of 

statistics. 

When all observations have the same variance, the procedure simplifies to 

a simple set of equations involving all effects in the model except for the 

residual effects. (The procedure is considerably more complex with multiple 

traits with different variances and covariances. Multiple trait applications 
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will not be discussed.) The number of equations is the same as the number of 

effects in the model. 

The equations are the same as ordinary least squares equations if all 

effects (except residual terms) are fixed effects. The equations are called 

mixed model equations when random effects or when both random and fixed 

effects are in the model. The mixed model equations are obtained from simple 

modifications of the least squares equations. Effects are random if they come 

from a distribution with some variance such as would be the case for genetic 

values and real producing abilities. Fixed effects have no variance and 

theoretically can be repeated exactly. A wide range of effects combine some 

of the characteristics of both random and fixed effects. 

The rules for setting up the mixed model equations will be given for 

models where each effect in the model is a whole effect (i.e., gi not gi/2 or 

a covariate). 

Rules for writing mixed model equations 

1. Compute a sum for each effect in the model excluding residual effects 

such that each observation that contains the effect is included in the sum. 

2. Write down the model for each sum (that is, the expected value of the 

sum considering all effects as fixed) excluding the residual term. Equate 

each sum to its model. The result is called the ordinary least squares 

equations (LSE). Put a hat on the effects to denote solutions to the 

equations and not actual effects. 

3. If an effect comes from a distribution of independent effects with 

variance, then add the ratio, ot/o~, to the diagonal coefficient of those 

equations. at is the variance of residual terms. Models where the random 
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effects are correlated, e.g., genetic values when animals are related, will be 

considered by example. 

4. Constraints often must be imposed on the fixed effects equations. The 

rule is one nonestimable constraint for all except one classification of fixed 

effects, e.g., if one constraint is on fl then one classification of fixed 

effects should not have a constraint imposed. Typical constraints are fl - 0 

if there is only one fixed classification; fl - 0 and the last effects in all 

classifications except one also set equal to O if there are more than one 

fixed classification. 

Interpretation of solutions 

1. Solutions for the fixed effects are best linear unbiased estimates 

(BLUE) of estimable functions of the fixed effects. 

interpretation 2. 

The jargon concerns 

2. The expected values of the solutions corresponding to fixed effects 

for models without interaction terms usually have the properties: 

a) E[solution for a fixed effect] r actual fixed effect, 

b) E[solutions for fixed effects] depend on the constraints imposed 

to obtain solutions, and usually 

c) E [difference in solutions for two fixed) 
effects in the same classification 

actual difference in 
the fixed effects 

3. Solutions for effects randomly drawn from some distribution of effects 

such as genetic values are best linear unbiased predictors (BLUP) and have the 

selection index properties except that the observations have been adjusted for 

fixed effects with best linear unbiased estimates of the fixed effects rather 

than by actual values of the fixed effects. 
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Dot notation 

Before the first example, the dot notation will be introduced which makes 

writing the equations in a symbolic form less laborious. A dot (period) in 

place of a subscript signifies summation has occurred over that subscript. 

Suppose observations are denoted symbolically as P ij where the i subscript 

refers to animal i and the j subscript refers to the jth record of the animal. 

Let ni be the number of records of animal i. As an example, let i 1, 2, or 
3 

3, and n1 - 2, n2 - 1, and n3 - 4. The total number of records is ni - n1 
i-1 

+ n2 + n3. In dot notation this is written as n 

records of animal 1 is 

Similarly, the sum of all 

n 1-2 
Pl. 

j-1 J 
The sum of all records is 

Pll + Pl2 + P21 + p31 + p32 + P33 + P34 

Pl. + P2. + P3_ p 

EXAMPLES 

Example 1: One-way fixed classification model 

Suppose records are classified by the age when the record is made and 

that each animal has only one record. Then the model is 

whereµ is a constant, 

is the fixed effect of the ith age, and 

is the random residual term associated with the record of the jth 

animal made at the ith age. 
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Note that a record will always include the G + E terms, whether stated or not. 

In this case, wij - Gij + Eij with two subscripts identifying the animal since 

the numbering of animals (j) starts at 1 for each age group (i). 

Further suppose the following records are available (the record will be 

equated to its model to clarify rules 1 and 2). 

115 Yu µ + Al + wll 95 Y21 µ + A2 + w21 

85 Y12 µ + Al + w12 90 Y31 µ + A3 + w31 

105 Y13 µ + Al + wl3 110 Y32 - µ + A3 + w32 

Thus, i 1, 2, or 3· and n1 - 3' the number of records for age group 1· ' ' 
n -2 1· ' and n3 - 2. 

Rule 1 states that a sum is to be computed for each effect in the model 

( exc 1 uding w terms). The four effects in the model areµ, Al' A2' and A3. 

The sum forµ includes each record havingµ in its model which is true for all 

records; Thus, y - 600. The sum for A1 includes each record containing A1 
which is true for the n1 records with subscript i - l; thus, y1 _ - 115 + 85 + 

105 - 305. Similarly the sum for A2 is y2 _ - 95 and for A3 is y3 _ - 90 + 110 

200. 

The next step is to equate each sum to its model (excluding thew terms). 

The model for y is simply the sum of the models for all records, n., 

included in the sum: 

nl of the records have model µ + Al' 

n2 of the records have model µ + A2' and 

n3 of the records have model µ + A3, 

so that the model for y is (nl + n2 + n3)µ + nlAl + n2A2 + n3A3. Similarly 

the model for Y1. is the sum of the models for the n1 records included in the 

sum: all n1 records containµ and A1 so that the model for y1 _ is n1µ + n1A1 . 
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The same pattern applies to the model for Yz. which is n2µ + n2A2 and for 

y3 _ which is n3µ + n3A3 . 

Written in their usual symbolic form and with A's to indicate solutions: 
A A A 

A µ: n µ + nlAl + n2A2 + n3A3 - y 
A 

A 

Al: nlµ + nlAl - y 1. 
A 

A2: n2µ + 
A 

+ n2A2 Y2. 
A 

A 

A3: n3µ + + n3A3 Y3, 

For the example the numerical equations are: 

Note: 

A 

6µ + 3A1 + 

3µ + 
A 

3A1 
lµ + 

2µ + 

A 

1A2 

A 

1A2 

+ 

+ 

A 

2A3 600 

305 

95 

1) The numerical coefficients are symmetrical; i.e., coefficients in 

the first row are the same as in the first column, etc. 

2) The off-diagonal coefficients among the A equations are zero 

because, for example, a record made at age 1 cannot also be made at age 2. 

3) The three A equations sum to the µ equation. Thus, even though 

there are four equations in four unknowns, the equations are not independent. 

To obtain a set of solutions, one constraint must be imposed on the original 

four solutions. (See rule 4.) 

a) The constraintµ - 0 is the easiest to use computationally. 

The equation forµ is eliminated (to maintain symmetry) as 

well as theµ in the remaining equations which become: 
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A 

b) Another constraint is to set A3 - 0; the equation for A3 is 
A 

eliminated (to maintain symmetry) as well as A3 in the 

remaining equations: 
A A A 

n µ + nlAl + n2A2 y 
A A 

nlµ + nlAl Y1. 
A A 

n2µ + n2A2 Yz. 
A A A 

c) A more complex restraint is to set A1 + Az + A3 - 0. This 

equation is in addition to the least squares equations and 

to make the numerical coefficients of the equations 

symmetrical a dummy unknown (LaGrange multiplier, ). ) is 

added to each equation so that: 
A 

A A A 

nµ + nlAl + n2A2 + n3A3 + 0). y 
A 

A 
nlµ + nlAl + 1). Y1. 

A 
A 

n2µ + n2A2 + 1). - y 2. 
A 

n3µ + 
A 

n3A3 + 1). Y3. 
Oµ A A A 

+ 1 Al + 1 Az + 1 A3 0 

The solutions with the constraintµ 0 are the easiest to discuss: 
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µ = 0 

Note that the constraint µ - 0 is one of the solutions. Another result of 

having to impose a constraint is the property stated under 2 in the 

interpretation of solutions. 

Obviously, and in many cases, E[µ] ,f µ since E[O] - 0. 

found easily with the one-way classification model. Note that E[yij] - µ+Ai 

for all j. Thus, 

Similarly 

E[yll + Y12 + Y13 

[ n 1 (µ + A1)] 

and 

+ . · . + Y1 l n 1 

These results show thatµ cannot be estimated, and also that none of the A's 

can be estimated. What can be estimated are functions of µ + A .. 
1 

A A A A 

For 

example, A1 - A2 can be estimated by A1 A2 since E[Al - A2 ] - [(µ + A1)-

Solutions obtained using other constraints will have 
A 

different expectations. For the constraint A3 - 0, In 
A A 

fact, with that constraint, E[A1 ] - A1 - A3 , E[A2 ] - A2 - A3 , and E[µ] - µ + 

A3 . As with theµ - 0 constraint, exactly the same estimates of differences 
A 

can be obtained. For example, the estimate of A1 - A3 is A1 , the estimate of 
A A A 

A2 - A3 is A2 and the estimate of A1 - A2 is A1 - A2 . 

Finding the expectations with more complicated models is more difficult 

and for ease of computations would require some knowledge of matrix algebra. 
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Matrix algebra is also useful for ease of writing least squares and mixed 

model equations and properties of the mixed model procedure. 

A LITTLE ABOUT MATRIX ALGEBRA 

The set of numbers such as the coefficients in the numerical example of 

the one-way fixed classification model: 

6 

3 

1 

2 

3 

3 

0 

0 

1 

0 

1 

0 

2 

0 

0 

2 

- C 

is called a matrix of 4 rows and 4 columns. Matrices do not have to be square 

or symmetrical as is C. A matrix with only one column is called a vector; 

e.g., the right-hand sides of the previous example can be written as the 

vector, r: 

r -

y 

Y1, 

Yz. 

Y3, 

Matrix algebra is useful in working with and solving least squares and mixed 

model equations. The notation of matrix algebra is especially convenient and 

concise for writing simultaneous equations both symbolically and numerically. 

The rules of matrix algebra are similar to those for scalar algebra with 

some important exceptions. Only four rules will be needed now. 

1) Matrix multiplication is accomplished by summing the products of each 

element of each row of the first matrix with the corresponding element 

of each column of the second matrix (thus the number of elements in 

each row of the first matrix must equal the number of elements in each 
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colwnn of the second matrix to be conformable for 

new matrix is formed from the swns of these row by 

Swn of products of elements of 1st row x 1st colwnn -
Swn of products of elements of 1st row x 2nd colwnn 

Swn of products of elements of 2nd row x 1st column 
Swn of products of elements of 2nd row x 2nd colwnn 

multiplication). 

column products; 

new element 1,1 
new element 1,2 

new element 2,1 
new element 2,2 

A 

(The first subscript refers to the row; the second, to the colwnn of the 

resulting matrix, or vector.) 

For example, let us examine the matrix by colwnn vector multiplication: 

6 

3 

1 

2 

3 

3 

0 

0 

1 

0 

1 

0 

2 

0 

0 

2 

Swn for 1st row by 1st colwnn; 

(element 1,1) -> -> -> -> 
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Sum for 2nd row by 1st column; 

(element 2,1) 

--> -> -> -> 

Sum for 3rd row by 1st column; 

lµ + OA1 + 1A2 + OA3 (element 3,1) 

-> -> -> 

Sum for 4th row by 1st column; 

2µ + OA1 + OA2 + 2A3 (element 4,1) 

-> -> -> 

The results are the left-hand sides (LHS) of the least squares equations for 

the example of the one-way classification model. This example is partially 

numerical, the elements of C, and partially symbolic, the elements of the 

solution vector: 



--209--

' s - µ 

' Al 
' A2 
' A3 

The coefficients of the effects on the L!IS of LSE or MME make up the 

coefficient matrix (for example, the matrix C). 

The sums on the right of the equal signs make up the right-hand side 

(RHS) vector. 

r - y 

Thus, in matrix notation the set of equations can be written: 

Cs - r. 

2) If C is square and composed of independent rows (columns), the matrix 

equivalent of division in scalar arithmetic can be used to solve for 

the solution vector, s. 

In scalar arithmetic, 

2x - 4 

can be solved by premultiplying both sides by the scalar inverse of 2, that is 

by (2)-l; 

(2). 1(2)x - (2- 1)(4) - 2 

Note that (2)- 1(2) - 1 so that x - 2. 

In matrix notation premultiplying both sides by the matrix inverse of C 

produces the solution vector; 
-1 -1 

C Cs - C r . 
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If C is an invertible (i.e., nonsingular) matrix; 

I is the matrix equivalent of the scalar 1. Note that as in scalar 

algebra, the identity (one) vanishes in multiplication: IC~ C, Is - s, etc. 

In fact, I is a matrix with l's as diagonal (top left to bottom right) 

elements and O's as off-diagonal elements; e.g., 

1 0 0 0 

c- 1c 
0 1 0 0 

I 
0 0 1 0 

0 0 0 1 

Thus, solve -1 -1 equivalent 
-1 to Cs - r, then C Cs ~ C r is to Is - C r so 

that -1 
s - C r. 

Note that C-l t I/C which has no meaning in matrix algebra. 

Finding the elements of C-l from C is usually accomplished by computer 

programs although students in matrix algebra courses often are required to 

practice on matrices of order 2x2, 3x3, 4x4, etc. 

Note that constraints often must be applied to LSE or MME to make the 

rows of the coefficient matrix independent so that an inverse of C can be 

obtained. If the rows are dependent, an inverse does not exist and the matrix 

is said to be singular. 

3) Addition (subtraction) of two matrices is accomplished by adding 

(subtracting) corresponding elements of the two matrices (the matrices 

must have the same number of rows and columns to be conformable for 

addition). 

4) Multiplication of a scalar by a matrix is defined as the 

multiplication of each element of the matrix by the scalar. If the 
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scalar is (l-h2)/h2, which for h 2 - .25 is (1-.25)/(.25) - 3, then, 

for example: 

3 0 0 0 

0 3 0 0 
31 -

0 0 3 0 

0 0 0 3 



--212--

Example 2: One-way random classification model--ANIMAL MODEL 

A simple one-way random classification model results when records are 

classified by the animal making the record. If each animal has only one 

record, each record is assigned to a separate classification. This model can 

be used to illustrate the similarity between selection index and BLUP. The 

cases where each animal can have more than one record and where the animals 

are related will be discussed later. 

The model for a record of animal i is: 

where µ is a constant, 

gi is the effect on the record of the animal's genotype (usually 

assumed to be additive genetic effects, with E[g~] - a 2 - h 2a 2 and 
l g y' 

wi is the residual effect of the sum of the environmental effects on 

Yi• E[wi] ~ 0 and E[w~] 
l 

The mixed model equations are obtained by setting up the least squares 

equations (same as considering additive genetic values as fixed effects) and 

then adding a 2 /a 2 to the diagonals of the animal (additive genetic value) w g 
equations. 

Because each animal has only one record, the mixed model equations are 

especially easy to write and are as follows for 3 animals: 

3µ + A + gl A g2 + y 
A µ + (l+.X)gl - Yl 
A µ + (l+.X)gz Y2 
A + µ (l+.X)g3 Y3 

where for h 2 - .25, .X - 3. 
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The four equations in four unknowns(µ, gl, g2, g3) can be solved without 

imposing a constraint because when >. is added to the diagonal coefficients, 

the 3 animal equations do not sum to the µ equation. µ will be BLUE ofµ 

because for this model E(µ] - µ. g1, g2, g3 will be BLUP and correspond to 

selection indexes for additive genetic values of animals 1, 2 and 3. 

The correspondence to selection index can be shown by examining any of 

the animal equations (e.g., animal 3): 

µ + (l+>.)g3 Y3 

(l+>.)g3 Y3 (Note: (l+>.) - 1 + (1-h 2)jh2 

- [h2 + (l-h 2)]/h 2 

- l/h 2 

Thus g3 is the same as selection index, r3 - h2(y3-µ), except that the BLUE of 

µ, µ, is subtracted from the animal's record rather thanµ. In this example, 

µmaybe poorly estimated because only 3 records are used. 

Note thatµ - Y., the average of the 3 records. Substitute gi - h2(yi-µ) 

for i - 1, 2, 3 into the first equation: 

3µ + h2(Y1 + Y2 + Y3 - 3µ) Y. 

3µ + h2 (y 3µ) Y. 

3µ(1-h 2) Y. (1-h•) and thus 

A Y,/3 µ 
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Example 3: ANIMAL MODEL with repeated records. 

Although the records will be classified in one way, by animal, the 

effects associated with animal i on its record are of two kinds, gi + Pi, 

where gi is the additive genetic value and Pi is the effect of permanent 

environmental factors which affect each record of the animal. Again assume no 

fixed effects exceptµ in the model for yij the jth record of animal i: 

yij - µ + gi +pi+ wij 

whereµ is a constant, 

gi is the additive genetic value with ag - h 2 ay, 

Pi is the permanent environmental effect associated with animal i with 

w .. is the residual effect (temporary environmental effects) associated 
lJ 

Let a 2 /a 2 w g 

with the jth record of animal i with ai - (1-r)ay· (Note that 

a 2 + a 2 + a 2 

- a 2 and that a 2 + a 2 

- ray2 .] g p w y g p 

(l-r)/h 2 - ,\ and ai/ap - (l-r)/(r-h 2 ) - 1· The sum of ni records 

on animal i will be y. . 
1. 

As an example, consider 2 animals with n1 and n2 

records. Thus, 5 equations will be needed corresponding toµ, gl, gz, Pl• and 

pz. The least squares equations will be identical for gl and Pl and for gz 

and pz but,\ will be added to the diagonal coefficients of the g equations and 

1 will be added to the diagonal coefficients of the p equations: 

A + A + A + A + A n µ n1g1 nzgz n1P1 nzpz y 
A + (n1+,\)g1 + A n1µ n1P1 Y1. 
A + (nz+-\)gz A nzµ nzpz Yz. 
A + A + (n1+1)fl1 n1µ n1g1 - Y1. 
A + A + (nz+1)fl2 nzµ nzgz Yz. 



--215--

Again, no constraints are needed because the g equations do not sum to 

theµ equation or to the sum of the p equations because of the nonzero ratios 

>. and -y added to the diagonal coefficients. Thus E[µ] - µ. gl and g2 will 

correspond to selection index for additive genetic value of animals 1 and 2. 

Similarly, gi + Pi estimates producing ability of animal i and corresponds to 

selection index for producing ability. 

Both correspondences can be shown by examining the mixed model equations. 

For example, consider the pair of equations for animal 1, the gl and Pl 

equations. Because the right-hand sides of the two equations are the same, 

y1 _, the left-hand sides must also equal each other. Thus, 

n1.u + (n1+>-)g1 + n1P1 - n1.u + n1g1 + (n1+-Y)P1 

Terms inµ and n1 drop out to leave: 

A 

'YPl 

so that 

Now substitute this expression for Pl into the g1 equation: 

Thus with reordering 

[n1 + >, + n1(>-/-y)Jg1 - Y1. - n1.u 

Replace>. with (1-r)/h 2 , -y with (l-r)/(r-h 2 ) and Yi. with n1y1 _ (the average 

times n1 - the sum) and with some algebra 

and 

1 + (n 1-l)r 

h2 
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so that 

which is the selection index for gl for n1 records on animal 1 withµ replaced 

by µ. Because producing ability is gl + Pl, add gl and Pl to estimate 

l+(n 1-l)r 

A µ 

r-h 2 

h2 
l [ 

which is the selection index for producing ability withµ instead ofµ. 
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Example 4: One-way random classification model, SIRE MODEL 

This model applies when the data can be classified according to effects 

which can be thought of as coming randomly from a distribution of effects. 

For example, the records may be grouped according to the sire of the animal. 

Suppose the model is 

where µ is a constant, 

is an effect common to all animals having sire (this is 

equivalent to transmitting ability or 1/2 additive genetic value of 

the sire since a sample 1/2 of his genes are transmitted to each of 

his ni progeny). 0 and E(sV er~ - paternal half- s ib 

covariance, h2 a§/4, and 

w ij is an effect associated with the record of the j th progeny of the 

ith sire. 

(Note si + wij - Gij + Eij so that E(wij) - 0 and 

Thus, ui/u~ - A - (1-h 2/4)/(h2/4) - (4-h2)/h2. 

u2 w 

The mixed model equations now are appropriate and are obtained by setting 

up the least squares equations (same as considering sire effects as fixed 

effects) and then adding ui/u~ - A to the diagonals of the sire equations. 

The A term essentially takes into account the additive relationships among 

animals in the same group as does the selection index procedure. 

The mixed model equations become (for the case of 3 sire groups): 
A nµ + A n1s1 + A 

nzsz + A 

n3s3 - y 
A n1µ + (n1 + A)s1 + Y1. 
A nzµ + (nz + A)sz - Yz. 
A n3µ + + (n3 + A)s3 - Y3_ 
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and if h 2 - .25, then >. - (4-h2)/h2 15. Note that a} is not required 

although the ratio a~/a~ must be known. 

If n1 - 11, n2 - 4, and n3 - 15, the numerical equations except for the 

sums are: 

30µ. + lls1 + 4s 2 + 15s3 - y 

11µ. + (11 + 15)s1 Y1. 

4µ. + (4 + t5)s 2 Y2. 

15µ. + + (15 + 15)s3 Y3_ 

Note that because of the extra diagonal terms, >., the sire equations do not 

add to theµ equation. 

The four equations in four unknowns can be solved without imposing a 

constraint. µ. will be BLUE ofµ since for this model E[µ.] - µ. s1, s2, s3 

will be BLUP and correspond to selection indexes for transmitting ability of 

sires 1, 2, and 3. The equivalence to selection index can be shown by looking 

at any of the sire equations, e.g., sire 1, and noting that y 1 _ - y 1 _;n 1 , the 

average of progeny of sire 1: 

and 

n 1f). + (n1 + 15)s1 

(n1 + 15)s1 

n1 
---] (yl. - µ.) 
n1 + 15 

which is the same prediction as with the selection index except that the BLUE 

ofµ instead ofµ is subtracted from the progeny average. 
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Example 5: Two-way fixed and random (sire) classification model 

Assume the model is 

where yijk 

yijk - µ+mi + sj + wijk 

is the measurement of progeny k of sire j made in management 

level i, 

mi is fixed effect of management i, 

sj is an effect common to animals with the same sire (j) with 

variance a~ - the paternal half-sib covariance - h 2 ay/4, and 

is a random residual effect associated with progeny k of sire j 

in management level i, with variance at 
Note that a§ - a~+ a~. Assume h 2 - 1/4. Thus, at/a~ - A - 15. 

The following observations have been made: 

Y111 - 530 Y211 - 380 

Y112 520 Y212 400 

Y121 460 Y213 410 

Y131 350 Y221 410 

Y132 340 Y222 440 

Y133 300 

Note that the first subscript (i) denotes the management level and the 

second (j) the sire of the animal, The largest third subscript (k) for a 

particular combination of i and j denotes the number of observations of that 

combination (n .. ). 
1J 

For this example, i 1 or 2; j - 1, 2, or 3; and n 11 - 2, n 12 - 1, n 13 
0. Thus there are 6 effects in the model: 
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Equation for µ: 

All the observations containµ so that the sum forµ is y 

Equation for m1: 

- 4540. 

All observations with i - 1 contain m1 so that the sum for m1 is 

y - 2500. 1.. 
Equation for m2: 

The sum of observations with i - 2 is y2 _. 2040. 

Equation for s1: 

All observations with j 1 contain s1 so that the sum for s1 is 

y - 2240 . . 1. 
Equation for s2: 

The sum for observations with j - 2 is y - 1310 . . 2. 

Equation for s3: 

The sum for observations with j - 3 is y_3 _ - 990. 

Usually the easiest way to set up the equations is to make tables of the 

subclass numbers and sums: 

n .. lJ y .. lJ. 
j 1 2 3 n. j 1 2 3 y. 

l. 1 .. 

i 1 2 1 3 6 i - 1 1050 460 990 2500 
2 3 2 0 5 2 1190 850 2040 
n . j 5 3 3 11 y .j . 2240 1310 990 4540 

The least squares equations in symbolic form are: 

A + A + A + A + A + A µ: n µ nl.ml n2.m2 n_lsl n_ 2s2 n.3s3 - y 
A + A + A + A + A 

ml: nl.µ nl.ml nll sl nl2s2 n13s 3 - Y1,. 
A + + A + A + A + A 

m2: n2.µ n2.m2 n2lsl n22s2 n23s3 - Y2 .. 
A + A + A + A 

sl: n_ lµ nllml n2lm2 n.lsl - y .1. 
A + A + A + A 

s2: n.2µ nl2ml n22m2 n. 2s2 Y.2. 
A + A + A + A 

s3: n_3µ n13m1 n23m2 n_ 3S3 y . 3. 
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The nij table summarizes the number of each effect in each sum. For 

example, the sum for m1 includes n1 _ records. Each of those records contains 

µ and m1, Obviously none contains m2. The number of records containing s1 is 

n11 , n12 contain s 2 and n13 contain s 3 . Note that the first row (i-1) of the 

nij table consists of n11 , n12 , and n13 . Similarly the sum for s 1 includes 

n_ 1 records each containingµ and s 1 . The first column (j-1) of then .. table 
lJ 

consists of n11 and n21 , the number of records containing s 1 which also 

contain m1 and m2 . 

To convert the least squares equations to mixed model equations, the 

ratio, ai/a~ - [1 - h 2 /4]ay/h 2 ay/4 - 15, is added to the diagonal coefficients 

of the s equations so that they become (n_ 1 + 15)s1, (n_ 2 + 15)s2, and (n_ 3 + 

15)s 3 . 

In numerical form the mixed model equations are: 

11µ + 6&1 
6µ + 6&1 

5µ + 

5µ + 2&1 

3µ + lm1 

3µ + 3&1 

One constraint 

set of solutions. 

solve become: 

6&1 + 

3&1 + 

Solutions are: 

+ 5m2 + 5s1 + 3s 2 + 3s 3 4540 
+ 2s 1 + ls2 + 3s 3 2500 

5m2 + 3s 1 + 2s 2 2040 

+ 3&2 + (5+15)s 1 2240 

+ 2&2 + (3+15)s 2 1310 

+ (3+15)s 3 990 

must be imposed on eitherµ or one of the in' s to obtain a 

Letµ - 0 and eliminate that equation. The equations to 

2s 1 + 
, 
s2 + 3s 3 2500 

+ 3s 1 + 2s 2 2040 

+ 2os 1 2240 

+ l8s2 1310 

l8s3 990 



-------
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A 0 A 10 µ s1 -
A 420 A 5 m1 s2 
A 400 A -15 mz s3 

A A A 0 Note that s 1 + sz + s3 - . This property holds for any classification of 

random effects. Note that the unbiased estimate of m1 - mz is m1 - mz -

420 - 400 - 20. 

Al though how to find expectations of solutions is generally beyond the 

scope of this course, it is known E[µ] ,f µ, E[m1J ,f m1 and E[mz] ,f mz. 

Obviously E[Jl1J - E[O] - 0. Actually E[m1] ~ µ + m1 and E[mz] - µ + mz with 

the constraintµ= 0. 

If management levels were considered random effects, then changes in the 

example would be these: 

ai/a~ would be added to the diagonals of the management equations, 

ai/a~ would be added to the diagonals of the sire equations, 

no constraints would be imposed, ffi1 + ffi2 = 0, and 

E[µ] - µ but only when no other fixed effects are in the model. 

Note that then a} - a~+ a~+ ai so that ai/a~ may be different from 

when management levels are considered to be fixed effects. 
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Example 6: The ANIMAL MODEL with animals related 

The selection index takes advantage of records of relatives to improve 

predictions. The mixed model procedure can as well. Instead of adding a0/ag 

to the least squares diagonal of each g equation, a function of the additive 

relationship matrix and a0/ag A is added to the block of coefficients for 

the g equations. The additive relationship table can be considered as a 

matrix of additive relationships with the symbol, A. The function of A used 

in the mixed model equations is its inverse, -1 
A ' multiplied by the scalar, 

For this example, the least squares and mixed model equations will be 

written in matrix notation. 

Assume animals 1, 2, 3 each have a record and are related through Sand D 

as diagrammed: 

l><S 

2~D 
3 

Thus, the additive relationships among animals 1, 2, and 3 are: 

[ 
Let Y1, 

1 

1/2 

1/4 

Y2, 

1/2 

1 

1/4 

YJ 

equations are: 

3 

1 

1 

1 

1/4 

1/4 

1 

be 

1 

1 

0 

0 

l 
single 

1 

0 

1 

0 

records of 

1 

0 

0 

1 

15/11 

-7/11 

-2/11 

-7/11 

15/11 

-2/11 

the 3 animals. 

, 
µ 

, 
gl 
, 
g2 
, 
g3 

-2/11 

-2/11 

12/11 

The least 

Y. 

Yl 

Y2 

Y3 

l 
squares 
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-1 To convert the least squares equations to mixed model equations, AA is added 

to the block of coefficients for the g equations (outlined in broken lines), 

For example, if a~/ag - (l-h2)/h2 - 3, then 

AA-l -
3115/11 

-7/11 -2/11 l -7/11 15/11 -2/11 

-2/11 -2/11 12/11 

and the mixed model equations become: 

3 1 1 1 A µ Y, 

1 1 + 45/11 0 21/11 0 6/11 A gl Yl 

1 0 21/11 1 + 45/11 0 6/11 A 

g2 Y2 

1 0 6/11 0 6/11 1 + 36/11 A 

g3 Y3 
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Example 7: ANIMAL MODEL with equations augmented for relatives without 

records 

Calculation of A with many animals is difficult. After A has been 

calculated, -1 the calculation of A for many animals is usually prohibitive 

-1 because computing time for A from A is proportional to n 3 where n is the 

number of animals. 

In 1975 C. R. Henderson made a remarkable discovery that allows rapid and 

direct calculation of elements of A - l without calculation of A. (See Rules 

for Calculation -1 of A . ) The method, however, requires including the 

ancestors that create the relationships. In the previous example, Sand Das 

well as animals 1, 2, and 3 must be included in A- 1 . The mixed mode 1 

equations for animals with records must be augmented with equations for the 

ancestors without records. -1 
Let A+ be the inverse of A+ which includes the 

ancestors without records that create relationships among the animals with 

records. The coefficients of the least squares equations for animals without 

records are all zero and the right-hand sides are also zero. -1 When >-A+ is 

added to the block of coefficients for the animals including the ancestors 

without records, then the coefficients are not all zero for the ancestor 

equations although the right-hand sides are zero. 

The procedure will be illustrated with the previous example. The least 

squares equations are: 

3 1 1 1 0 0 A µ y 

1 1 0 0 0 0 A 

gl Yl 

1 0 1 0 0 0 A 

gz Y2 

1 0 0 1 0 0 A 

g3 Y3 

0 0 0 0 0 0 A 0 gs 

0 0 0 0 0 0 A 0 gD 
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-1 Using the rules for calculating A+ with Sand D included at the end to agree 

with the order in the least squares equations: 
-1 A+ 2 0 0 -1 -1 

0 2 0 -1 -1 

0 0 4/3 0 -2/3 

-1 -1 0 2 1 

-1 -1 -2/3 1 2+1/3 
-1 Then >.A+ is added to the block of coefficients outlined with interrupted 

lines. 

A somewhat surprising result is that the solutions forµ, g1 , g2, and g3 

from the augmented equations are exactly the same as when >.A - l was added to 

equations for g1 , g2, and g3 in the previous example. Even though more 

equations must be solved with the augmented procedure, the total computing 

time is usually much less than calculating A, -1 then A for animals with 

records and finally solving the equations. If, in the augmented equations, 

the equations for g3 and g0 are absorbed into the equations for g1 , g2 , and 

g3 , the equations will be identical to those set up directly for gl, g2, and 

A simpler example will illustrate. Assume Chas n records with parents S 

and D not having records. With animals ordered C, S, D: 
-1 

[ 
2 -1 -1 l A+ ~ 

-1 3/2 1/2 

-1 1/2 3/2 

For the model yij - µ + gi +pi+ wij with). - ai/ag - (l-r)/h 2 and~ - ai/ai 

- (1-r)/(r-h 2 ), the augmented equations are: 
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0 0 A n n n µ Y1. 

n n+>. n 0 0 A 

Pc Y1. 

n n n+2>. -). - ). A 

gc Y1. 

0 0 - ). 3>./2 >./2 A 0 gs 

0 0 - ). >./2 3>./2 A 0 gD 

Note that A A because each has the relationship to their gs gD same progeny 

which has the records. Let a parent solution be gp, Then from either of the 

last two equations 

so that as might be expected 

Substitute gc/2 for gs and g0 in the equation for gc: 

This equation, on combining terms, is the same as the equation for gc if 

relationships to Sand D had been ignored: 

Such a result is expected because neither S nor D contributed any 

information to evaluate C. 

In general, the reasons to include animals with no records are 1) that 

such so-called base animals establish relationships among animals with 

records, e.g. , if a full sib of C had a record, S and D create the 

relationships needed to use that record in the evaluation for C and 2) that 

-1 -1 calculating A+ is easier than calculating A and then A for animals with 

records. 

This example suggests that an animal model can be used to evaluate sires 

that have many progeny. In the simple example the evaluation of S was 

obtained and based on only one progeny. 
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Example 8: Sire evaluation with ANIMAL MODEL 

The animal model is ideal for evaluating sires from their progeny records 

because the merit of the mates of the sires (dams of the progeny) will be 

adjusted for automatically through the relationship matrix in the same way 

that the selection index can be used to account for association of some sires 

with better than average mates and other sires with poorer than average mates. 

The disadvantage of the animal model for large data sets is that a large 

number of equations must be solved. The number of equations is somewhat 

larger than the number of animals and depends on whether repeated records are 

used, how many animals without records are included (base and sires) and on 

the number of other factors in the model to account for such factors as 

management and seasonal effects, 

In the augmented procedure, a base animal that has only one relative to 
-1 be evaluated does not have to be included in A+, e.g, a sire has a son that 

has progeny but the sire of the son has no progeny with records nor any other 

sons with progeny or descendants in the group of animals to be evaluated. 

The example which follows shows the equations for sire evaluation with an 

animal model for the situation where all of the mates of sires are unrelated 

to each other and to the sires. Thus, parents of the mates are assumed not to 
-1 have records and do not need to be included in A+ They could be included 

but the solutions will be the same and more equations would have to be solved. 

To further simplify the example, only females will have records and each will 

have a single record. 
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All C and D animals have a single record. 

There will be 10 equations for animals with records, 

4 equations for sires including S, and 

1 equation forµ for the simple animal model. 

Let the animals be ordered: 

The mixed model equations for the simple animal model with a~/ag 

- 6 are: 

(l-h 2 )/h 2 



10 1 1 1 1 1 1 1 1 1 1 0 0 0 0 µ Y. 
l+Jli/2 0 0 0 0 -Ii 0 0 0 0 0 li/2 0 0 9o Yo 

l+Jli/2 -Ii 0 0 li/2 0 g 1 1 0 0 0 0 0 0 0 Yo 
l+Jli/2 0 -Ii 0 0 0 li/2 

_02 2 0 0 0 0 0 9o Yo 
l+Jli/2 0 0 0 0 -Ii 0 0 0 0 li/2 g J y J 

04 04 
l+Jli/2 0 0 0 0 -Ii 0 0 0 li/2 9o Yo 

1+2/i 0 0 0 0 0 -Ii 0 0 g 5 y 5 
ell ell 

1+2/i 0 0 0 0 0 -Ii 0 g y 
-Ii c22 c22 

1+2/i 0 0 0 0 0 g y 
-Ii 

CJJ CJJ 
1+2/i 0 0 0 0 g y 

SYMMETRIC 1+2/i -Ii CJ4 CJ4 
0 0 0 g y 

(coefficients in a column below the 
-2/i/J -2/i/J 

CJ5 CJ5 
diagonal are the same as those in 5/i/J 0 c:ls 0 
the row to the right of the diagonal) J/i/2 0 0 9s 0 

I 11/i/6 0 g 1 0 I s2 0 17/i/6 !Is 0 M 
N J I 

I 
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Examination of the solution for a sire shows the weight for each mate is 

-1/2 that for each progeny. In other words, an estimate of one-half of the 

dam's genetic value is subtracted from the estimated genetic value of the 

progeny to leave the part of the progeny's genetic value contributed by the 

sire. For example, for S3: 

(17o/6)g 8 3 
(28/3)g 8 + o(gc 

33 

A 
+ gc 

34 
+ gc ) - (o/2)(go 

35 3 
+ gD + 

4 
gD) 

5 
(17o/6)g 8 -

3 
(2o/3)g 8 + S[ (gc 

33 
gD /2) 

3 
+ (gc 

34 
gD /2) + 

4 
(gc 

35 
gD /2)] 

5 
And for S1: 

A (28/3) (gc gD /2) gs 
1 11 1 
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Example 9: Sire evaluation with ANIMAL MODEL ignoring mates and relationships 

through females 

In the past, sire evaluations generally have ignored records on mates 

because of the computing time required. The animal model can be used with the 

same approximation; that all mates are unrelated to each other and to the 

sires. This approximation to the full animal model is equivalent to assuming 

that only relationships from males to males are important. 

Consider the following example where ell' Cl2' and en have single 

records, y11 , Y12• and Y21· 

~S1~ l2 
ell Gl2 c21 

In calculating -1 all dams are considered to be unknown that for animals A+ so 
-1 ordered c11 , c12 , c 21 , s1 , s2 , and S (note that each term in A when the dam 

is missing contains a 3 in the denominator): 
-1 

A+ (1/3) 4 0 0 -2 0 0 

0 4 0 -2 0 0 

0 0 4 0 -2 0 

-2 -2 0 6 0 -2 

0 0 -2 0 5 -2 

o. 0 0 -2 -2 5 

For ai/a~ - A, the mixed model equations are: 



--233--

3 1 1 1 0 0 0 A µ y 

1+4>./3 0 0 -2>./3 0 0 A 

gll Y11 

1+4>./3 0 -2>./3 0 0 A 

g12 Y12 

1+4>./3 0 - 2>./3 0 A 

g21 Y21 

6>./3 0 -2>./3 A 0 gs 
1 

5>./3 -2>./3 A 0 gs 
2 

Symmetric 5>./3 A 0 gs 

The solutions predict genetic values simultaneously for animals with 

records (the progeny) ignoring relationships arising from females, and for 

animals without records, in this case, the sires. 
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Example 10: Sire evaluation with SIRE MODEL ignoring mates and female 

relationships 

The approximate animal model described in the previous example requires 

an equation for each progeny which with many animals may be computationally 

prohibitive. The number of equations can be reduced essentially to the number 

of sires by using the sire model. Only male to male relationships will be 

considered (assumes dams unrelated to sires and to each other). 

model is: 

The sire 

where Si 

and a2 -w 

a2/a2 w s 

- gi/2 is the 

a2 - a 2/4 or y g 

yij - µ + Si + Wij 

transmitting ability of sire i. Note that a2 - a 2/4 s g 

equivalently a2 - h2a2/4 and a2 - (l-h 2/4)a 2 so that s y w y 

The previous example will be used. Now only 
-1 relationships among s1 , s 2 , and Sneed to be considered in calculating A+: 

(1/3) 0 

4 

-2 

-2 

-2 

5 l 
With the sire -1 model -yA+ is added to the block of the coefficient matrix 

corresponding to the sire transmitting abilities. The least squares equations 

are augmented by equations for sires that have no progeny with records but 

which create relationships among sires with progeny with records. The mixed 

model equations for the example are: 

3 2 1 0 ' µ y 

2+4-y/3 0 -2-y/3 ' s1 Y1. 

1+4-y/3 -2-y/3 ' s2 Y2. 

Symmetric 5-y/3 ' 0 ss 

The solutions for ' ' and ' exactly one-half those for the s1, s2, ss are 

previous example (gs ' ' and gs) that had equations for each progeny and gs , 
1 2 
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augmented equations for the sires that had no records themselves. That ."l 

gs /2 can be shown by absorbing equations for g11 and g12 in example 9 into 
1 

the equation for gs . 
1 

The equation for gs will be the same as for s1 except 
1 

that the coefficients for gs and gs are one-half as large as the coefficients 
1 

for s1 and "s· The advantage of the sire model as compared to the equivalent 

approximate animal model is that many fewer equations need to be set up and 

solved. 
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Example 11: Sire evaluation with SIRE MODEL ignoring female relationships 
-1 but calculating A+ from sires and maternal grandsires of males 

Most relationships among males arise from male ancestors. Even if dams 

of males are not included in calculation of A~l among males, sires of the dams 

(maternal grandsires of males) can be used in calculation of A~1 and and if 

they have no progeny with records can be included as augmented equations. The 

increased ties among males will result in slightly increased accuracies of 

evaluation. Only maternal grandsires that have more than one male descendent 

in the list to be evaluated or those with progeny with records need to be 

included in calculating Rules developed by C.R. Henderson for 
-1 calculating A+ from sires and maternal grandsires are similar to the rules 

-1 using sires and dams, and are given in the section on calculating A . 

For this sire model, ui/u~ - 1· 

Assume as an example the same animals and records as in the previous 

example except that Sx is the maternal grandsire of both S1 and Sz: 

Di and Dz will not be included in -1 
A+ With males ordered S1, Sz, s, Sx: 

-1 
A+ (1/11) 16 0 -8 -4 

0 16 -8 -4 

-8 -8 19 4 

-4 -4 4 13 
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As for the sire model and with oi/o~ - (4-h 2 )/h 2 - -y; -1 the elements of -yA+ 

are added to the coefficients of the least squares equations corresponding to 

equations for S1, S2 and augmented equations for S and Sx. 

mixed model equations are: 

3 2 1 0 0 , 
µ y 

2+16-y/ll 0 -8-y/ll -4-y/ll , 
s1 Y1. 

1+16-y/ll -8-y/ll -4-y/ll 
, 
s2 Y2. 

19-y/ll 4-y/11 , 
0 ss 

Symmetric 13-y/ll , 
0 SX 

The variance of prediction errors, e.g.' V(si-si), will 

compared to ignoring Sx· 

The augmented 

be decreased as 
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VARIANCE OF PREDICTION ERRORS 
A 

Calculation of rTi and variance of prediction error, V(T-T) - (1-rfi)of 

can be done for solutions from mixed model equations as from selection index. 

How to calculate them will be described for T in the model: genetic value, 

T - g; transmitting ability, T - s; producing ability, T - g + p; as well as 
A 

for fixed effects estimated from data. The first calculation is for V(T-T) 

which requires the inverse of the coefficient matrix for the mixed model 
A 

equations and ai. The second step is to calculate rfi from V(T-T) which will 

also require the ratio of ai/at. 

model 

For example, assume the repeated records 

yij - µ + gi +pi+ wij 

Let,\ - a2/a2 w g• and -y - ai/ap and the symbolic mixed model equations be: 

A 
C C C µ y µ,µ µ,pl µ,gl 

A 
C C C Y1. P1,µ pl ,pl P1,g1 Pl 

where c µ,µ n ' c - n1, c - n1, c - n1 + -yand the c block 
µ,pl µ,gl P1,P1 gg 

0 + ).A-1 

o n2 

In matrix terms 

Cs - r 

where the solution vector: 
-1 s - C r 
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Let the terms of the inverse of C be 
-1 

C -

These terms when multiplied by ai correspond to prediction error variances and 

covariances: 

V(p1-P1) - cP1,P1ai 

Cov(g1-g1, P1-P1) - cgl,Plai 

so that for producing ability; 

V[(g1+P1) - (g1+P1)l - V(g1-g1) + V(p1-P1) + 2cov(g1-g1, P1-P1) 

_ (cgl,gl + cPl,Pl + 2cgl,Pl)ai 

Variance of prediction error of genetic value: 

Because V(gi-gi) - cgi,giai and also V(gi-gi) - (1-r~g)ag, then cgi,giai 

- (l-r 2 ,)a 2 . The equation can be solved for r 2 •: gg g gg 

r 2 • - 1 - cgi,gi(ai/ag 2 ) gg 
The ratio ai/ag - (l-r)/h 2 must be known and cgi,gi is from the appropriate 

element of the inverse of C. 

Variance of prediction error of producing ability 

( l-r 2 )(a 2 + g+p,g+p g then r2 " " g+p,g+p 1 + 

2cgi,Pi)ai/(ag+ap). The ratio ai/<ag+ap) - (1-r)/r must be known as well as 
-1 elements from C . 
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Variance of prediction error for other models 

For other models calculations are similar to those described in previous 

paragraphs. -1 The appropriate elements from C are multiplied by ai for that 

model. For the sire model, ai - (l-h 2 /4)ay and ai/a~ - (4-h 2 )/h 2 . For the 

animal model with a single record per animal, ai - (l-h 2 )ay and 

Variance of prediction error for models with more fixed effects 

The elements of C-l corresponding to the random effects, g, p, s, etc., 

are used for calculating variances and covariances of prediction errors for 

those effects. 

These elements, however, will depend on the fixed effects in the model 

and on the distribution of records among the levels of the fixed factors. 

With several fixed factors in the model, C is singular so that an inverse 

* cannot be obtained. If constraints are imposed so that the constrained C is 

*-1 nonsingular, then C exists but will depend on the set of constraints chosen. 

The expected values of solutions for fixed effects depend on the constraints. 

Nevertheless, solutions for random effects, g, p, s, will be the same for 

any set of permissable constraints. Similarly, prediction error variances for 

the random effects do not depend on the constraints chosen, i.e., the block of 

*-1 elements of C corresponding to the random effects are unique and do not 

depend on the constraints. 

Variances of estimates of fixed effects 

Estimates of fixed effects also have variances. For example, the 

variance of~ is for models in which µ is the only fixed effect. For 

models with more fixed factors, the variances of the estimates are determined 
-1 similarly from the inverse of C . The problem, however, is that because of 

the constraints needed to obtain solutions, the expected values of the 
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h 

solutions are not the effects represented by µ, etc. Generally differences 

between levels of a factor are estimable. For example, depending on the model 
h h 

and constraints, E[fi-fj] may equal fi-fj for levels i and j of fixed factor 

f. The variance of the estimable difference, fi-fj is V(fi-fj) - (cfi,fi + 

cfJ 'fj - 2cfi 'fj )at. 
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Numerical example of ANIMAL MODEL with a fixed classification and augmented 

equations with different constraints 

The model for a record k of cow j affected by level i of fixed factor f 

is: 

Let ai - (2000) 2 and with r - .6 and h 2 

The cows with records are c 1 (2 records), c2 (1 record), and c3 (3 

records). The parents of C1 and C2 are Sand D, and one parent of C3 is D 

with the other parent unknown and not needed because it has only one relative 

with a record. (See Example 7: ANIMAL MODEL with equations augmented for 

relatives without records.) 

The records for the animals are distributed in the levels of the fixed 

factor as follows: 

Cow 
Fixed 

cl C2 C3 
Fixed factor 

factor totals 

f1 10,000 9,000 19,000 

f2 12,000 10,000 22,000 

f3 15,000 12,000 27,000 

Cow 
totals 22,000 15,000 31,000 68,000 

The augmented mixed model equations are: 
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A 

6 2 2 2 2 1 3 2 1 3 0 0 µ 68,000 
A 

2 0 0 1 0 1 1 0 1 0 0 f1 19,000 
A 

2 0 1 0 1 1 0 1 0 0 f2 22,000 
A 

2 0 1 1 0 1 1 0 0 f3 27,000 

2+2 0 0 2 0 0 0 0 A 22,000 Pl 

1+2 0 0 1 0 0 0 A 15,000 P2 

3+2 0 0 3 0 0 A 31,000 P3 

2+2 0 0 -1 -1 A 22,000 gl 

1+2 0 -1 -1 A 15,000 g2 

3+(4/3) 0 -2/3 A 31,000 g3 
SYMMETRIC 

+2 +1 A 0 gs 

+2(1/3) A 0 gD 

One constraint will be needed because the f equations sum to the µ 

equation. 
A 

With the constraint f1 - 0, the inverse of the coefficient matrix is 
A 

obtained by zeroing the row and column coefficients for f 1 and then inverting 
A 

the remaining matrix. In the inverse the row and column of zeros for f 1 are 

shown: 
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1. 310 .000 - . 500 -.657 -.222 - .065 -.213 -.616 - . 458 -.569 -.287 -.500 

.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

-.500 .000 1.000 .500 .000 .000 .000 .000 .000 .000 .000 .000 

-.657 .000 .500 1. 296 .139 -.157 .019 .130 -.167 .028 - . 019 .000 

- . 222 .000 .000 .139 .417 .028 .056 - .111 .000 .083 -.056 .000 

- . 065 .000 .000 -.157 .028 .435 .037 .009 - . 083 .056 - . 037 .000 

- . 213 .000 .000 .019 .056 .037 .407 .102 .083 -.139 .093 .000 

-.616 .000 .000 .130 - .111 .009 .102 .838 .458 .403 .398 .500 

- . 458 .000 .000 - .167 .000 -.083 .083 .458 .875 .375 .417 .500 

- . 569 .000 .000 .028 .083 .056 -.139 .403 .375 .792 .139 .500 

- . 287 .000 .000 -.019 -.056 - .037 .093 .398 .417 .139 .907 .000 

- . 500 .000 .000 .000 .000 .000 .000 .500 .500 .500 .000 1.000 

With the constraint h 0, coefficients for the µ row and column are zeroed. µ -

The inverse is: 

.000 . .ooo .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

.000 1. 310 .810 .653 -.222 - . 065 - .213 -.616 •. 458 -.569 -.287 - .500 

.000 .810 1. 310 .653 -.222 - . 065 - .213 -.616 • .458 -.569 -.287 - . 500 

.000 .653 .653 1. 292 -.083 -.222 -.194 - .486 -.625 -.542 -.306 - . 500 

.000 - . 222 -.222 -.083 .417 .028 .056 - .111 .000 .083 - . 056 .000 

.000 - . 065 - .065 -.222 .028 .435 .037 .009 -.083 .056 -.037 .000 

.000 - . 213 - . 213 -.194 .056 .037 .407 .102 .083 -.139 .093 .000 

.000 - . 616 -.616 - .486 - .000 .009 .102 .838 .458 .403 .398 .500 

.000 - .458 - . 458 - . 625 .000 -.083 .083 .458 .875 .375 .417 .500 

.000 - . 569 - . 569 -.542 .083 .056 -.139 .403 .375 . 792 .139 .500 

.000 - . 287 -.287 -.306 -.056 - . 037 .093 .398 .417 .139 .907 .000 

.000 -.500 -.500 - . 500 .000 .000 .000 .500 .500 .500 .000 1.000 
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A 

With the constraint f3 - 0 the inverse is: 

1. 292 - . 639 -.639 .000 - . 083 -.222 - .194 - .486 -.625 - . 542 -.306 -.500 

- . 639 1.296 .796 .000 -.139 .157 -.019 - .130 .167 - . 028 .019 .000 

- . 639 . 796 1.296 .000 - .139 .157 -.019 - .130 .167 - .028 .019 .000 

.000 ,000 ,000 .000 .000 .000 .000 .000 .000 .000 ,000 .000 

-.083 - .139 - .139 .000 .417 .028 .056 - .111 .000 .083 - . 056 .000 

-.222 ,157 .157 .000 .028 .435 .037 .009 -.083 .056 -.037 .000 

-.194 - . 019 - . 019 .000 ,056 .037 .407 .102 .083 - .139 ,093 .000 

- .486 -.130 -.130 .000 - .111 .009 .102 ,838 .458 .403 .398 .500 

-.625 .167 .167 .000 .000 -.083 .083 .458 .875 .375 .417 .500 

- . 542 -.028 - . 028 .000 .083 .056 - .139 .403 .375 .792 .139 .500 

-.306 .019 .019 .000 -.056 - .037 .093 .398 .417 .139 ,907 .000 

-.500 .000 ,000 .000 .000 .000 .000 .500 .500 .500 ,000 1.000 

Notice that with any of the three constraints that the blocks of the 

inverses corresponding to Pl• P2, p3, gl, g2, g3 , g0 and gg are the same. The 

solutions for those effects are also the same as is shown in the table. In 

technical jargon, this means that the predictors of the random effects are 

invariant to (do not depend on) the choice of constraints. 

For example: 

V(g0 -g 0) - cgD,gDai - 1.000(2000) 2 

V[(g1+P1) - (g1+r1)] = cPl,Pl + cgl,gl + 2cPl,gl)at 

- [.417 + .838 + 2(-.111))(2000) 2 

A A 
Because what fi estimates depends on the constraint, V(fi) is different from 

constraint to constraint, 
A A A A 

With all 3 sets of constraints f2 f3 estimates f2 - f3, i.e., E[f2-f3] 
A A 

= f2 - f3. For all three cases, V(f2-f3) are the same. 
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A 

For f 1 - 0: 

V(f 2-t3) - (cf2,f2 + cf3,f3 - 2cf2,f3)o& 

(1 + 1.296 - 2(.S00)Jo& - 1.2960& 

Forµ. - 0: 
A A 

V(f2-f3) - (1.310 + 1.292 - 2(.653)Jo& - 1.2960& 
A 

For f3 - 0: 
A A 

V(f2-f3) - [1.296 + 0 - 2(0)Jo& - 1.2960& 
A 

In the last case, f3 - 0. Note that a constant (implied by the 
A 

constraint) has no variance and similarly the covariance of a constant, f3 -
A 

0, with an estimate, f2, also is zero. 

In all three cases the variance of the estimated difference between f2 

and f3 is the same, 1.2960&, From the table the estimate of the difference, 

f2 - f3, is -2278, i.e., f3 is estimated to be larger than f 2 by 2278 no 

matter which constraint was used to obtain a set of solutions. 
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Solutions for augmented and nonagumented mixed model equations with different 
constraints 

Augmented Nonaugmented 
A 

µ-0 
A A 

Solution fi-0 f3-0 f3-0 

A 9,806 0 13,583 13,583 µ 

A 

f1 0 9,806 -3, 778 -3,778 
A 

fz 1,500 11,306 -2,278 -2,278 
A 

f3 3,778 13,583 0 0 

A 83 83 83 83 Pt 
A 306 306 306 306 P2 
A -389 -389 -389 -389 P3 
A 278 278 278 278 gl 
A 500 500 500 500 g2 
A -583 -583 -583 -583 g3 
A 389 389 389 gs 
A 0 0 0 gD 

If the mixed model equations had not been augmented but S and D had been 

used to calculate A for Ct, C2, and c3 , then 

' - [ 1 1/2 
1/4 l -1 

- [ 1. 364 - . 636 -.182 l and A 

1/2 1 1/4 - . 636 1. 364 -.182 

1/4 1/4 1 -.182 - .182 1.091 

With .\ - 1, the mixed model equations are: 
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6 2 2 2 2 1 3 2 1 3 A 68,000 µ 
A 

2 0 0 1 0 1 1 0 1 f1 19,000 
A 

2 0 1 0 1 1 0 1 f2 22,000 
A 

2 0 1 1 0 1 1 f3 27,000 

4 0 0 2 0 0 A 22,000 Pl 

3 0 0 1 0 A 15,000 P2 

5 0 0 3 A 31,000 P3 

3,364 -.636 -.182 A 22,000 gl 

2.364 -.182 A 15,000 g2 

SYMMETRIC 4.091 A 31,000 g3 

The solutions shown in the table are identical to those from the 

augmented equations. Similarly the variances of prediction errors are also 
A 

the same as can be seen from the inverse with f3 - 0. 

1. 292 -.639 -.639 .000 - . 083 - . 222 -.194 - .486 -.625 -.542 .000 .000 

- . 639 1. 296 .796 .000 - .139 .157 - . 019 - .130 .167 - . 028 .000 .000 

- . 639 .796 1.296 .000 - .139 .157 - .019 -.130 .167 - .028 .000 .000 

.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

- . 083 - .139 - .139 .000 .417 .028 .056 - .111 .000 .083 .000 .000 

- . 222 .157 .157 .000 .028 .435 .037 .009 - . 083 .056 .000 .000 

-.194 - . 019 -.019 .000 .056 .037 .407 .102 .083 -.139 .000 .000 

- . 486 -.130 - .130 .000 - .111 .009 .102 .838 .458 .403 .000 .000 

-.625 .167 .167 .000 .000 - .083 .083 .458 .875 .375 .000 .000 

-.542 - . 028 - . 028 .000 .083 .056 - .139 .403 .375 . 792 .000 .000 

.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 
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SOLVING LEAST SQUARES AND MIXED MODEL EQUATIONS 

In many situations, the number of equations is so large that an inverse 

of the coefficient matrix cannot be computed. If prediction error variances 

are not needed, solutions can be obtained by iteration, The most efficient 

computing strategy will depend on the model, the amount of data, and computing 

equipment. The augmented mixed model equations for the animal model are 

especially well-suited to innovative computing strategies. Nevertheless, the 

basic principle of Gauss-Seidel iteration will be demonstrated with three 

equations. 

Let the equations be Cs r, where C is the symmetric matrix of 

coefficients, s is the vector of solutions and r is the vector of right-hand 

sides. Then for three equations: 

cllsl + cl2s2 + c13s3 rl 

c2lsl + c22s2 + c23s3 r2 

c31sl + c32s2 + c33s3 r3 

1) To start the iteration, guess a set of initial solutions for s· 0 
' sl' 

0 0 
S2' S3' The starting values should approximate the expected values of the 

solutions. 

2) The basic step for each equation is to solve for that solution after 

substituting solutions from same or previous rounds of iteration for the other 

solutions. 

Round 1 

i) Solve for s1 with s2 and s3: 

Replace the previous solution for s1 with si, 
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ii) Solve for sz with st and s3 : 

s2 - (1/czzl[rz - c21st - c23s3] 

Replace the previous solution for sz with s 2 . 

iii) Solve for s3 with st and s 2 : 

Replace the previous solution for s 3 with s3. 
Round 2 -> n 

i) sn (l/c 11) [r1 n-1 n-1 
1 <- c12s2 - C13S3 ] 

ii) Sn (l/c 22 ) [rz n n-1 
2 <- c2lsl C23S3 ] 

iii) Sn <- (l/c33)[r3 n c32s2] 3 c3lsl 

Note that the most current estimates ins are used. The Jacobi method does 

not updates until at the end of the round. 

An equivalent expression for s1 is 

This expression requires an extra multiplication and two extra additions per 

equation per round. The advantages may outweigh the extra arithmetic. 

Solving equations by iteration requires a rule for stopping the iteration. 

Such a rule can be based on the expression in brackets on the right which 

would be zero when the solutions are correct. Thus, the difference between 

the right-hand side and the right-hand side regenerated from estimates in the 

most recent round of iteration is often the basis for the stopping criterion. 

One such criterion is (~ei)l/Z / (~r 1)l/Z where 

Dividing by 

i-1 
[ri - c .. sIJ-

. 1 1J J J-

(~r?)l/Z scales the solutions for the trait being analyzed. 
1 
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Iteration is stopped when at the end of a round the stopping criterion is less 

than a pre-set value, e.g., .01 or .001. 

Another advantage is that a modification of Gauss-Seidel iteration called 

successive-over-relaxation is easy to implement: 

where w is the relaxation factor; a relaxation factor larger than 1 but less 

than 2 is likely to result in faster convergence than with Gauss-Seidel 

iteration (w-1). The difficulty is to find the optimum w. 
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COMPUTING ALGORITHM FOR LEAST SQUARE EQUATIONS 

Computing strategies for accumulating the coefficients and right-hand 

sides of the least squares equations naturally depend on the amount of data, 

the model, and computer memory. Nevertheless, a symbolic algorithm can be 

used to remember what coefficients are involved for each record. Data usually 

are presented for computing one record at a time. Coefficients and right-hand 

sides for each record are summed into computer memory assigned and initialized 

to zero before the first record is processed. 

As an example, the model 

yijk - µ + fi + pj + gj + wijk 

has four terms other than the residual. Thus each record is included in four 

sums corresponding toµ, fi, Pj and gj. The record carries four elements of 

the model (excluding wijk) to each sum. Thus, each record contributes to 16 

elements of the coefficient matrix. The locations in the coefficient matrix C 

can be determined by squaring the model (excluding wijk) 

(µ + fi + Pj + gj) 2 

The 16 terms correspond to the elements in C where a 1 will be added for that 

record: 

µµ, µfi, µpj, µgj ' 
fiµ, fifi, fiPj, figj ' 
Pjµ, Pjfi, PjPj, Pjgj 

gjµ, gjfi, gjPj' gjgj 

For example, the diagonals C µµ' cfifi' C ' C will add a 1 and the 
PjPj gjgj 

offdiagonal coefficients represented by products such as µfi will also add a 

1. Notice that the symmetry of the coefficients allows storing only the 

diagonal elements and one side of the off-diagonal elements. Optimum 

strategies for summing and storing the coefficients will depend on the data 

set and computing equipment. 





Flow chart for mixed model equations (MME) 

I. Model 

A. Fixed factors 

B. Random factors (other than G, G/2 , PE), r 
C. G + E; 02 + 02 = 02 (02 = 02 + sum of o 2 's) g e p y p r 

(animal model) 1. G· W = E o 2 = h202 02 = (1-h 2)o 2 
' , g p' w p 

(repeated records) 2. G, PE; W = TE, 02 = h202 02 = (r-h 2)o 2 , 02 = (1-r)o 2 
g p' pe w p 

(sire model) 3. s = G/2 ; W = other G + E, 

02 h2 a2 /4, o 2 (l-h 2 /4)a 2 
s p w p· 

II. L.S.E. (rules: model, ~'s) 

III. Modifications for MME (animals or sires unrelated) 

A. Add o 2/o 2 to diagonal coefficients, other random factors w r 
B. Animals with records,unrelated 

1. Add o 2 /o 2 to diagonal coefficients,g equations w g 
2. If multiple records, add o 2/o 2 , diagonals of pe equations w pe 

C. Sires with progeny with records,unrelated sires 

1. Add o2/o 2 to diagonal coefficients,s equations w s 

IV. Modifications (animals or sires related) 

A. Add o2/o 2 to diagonal coefficients,other random factors. w r 
B. Animals with records related, A is table of relationships. 

1. Multiple records, add o2/o 2 to diagonal coefficients of w pe 
pe equations. 
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2. Add A-l (o 2 /o 2
) tog x g block of coefficients. w g 

3. 

OR 
-1 Calculate A+ directly by rules (noninbred). 

a) Include base animals with no records if related to more 
than one animal with records. 

b) Augment equations to include animals with no records. 

i) sum= O; ii) no model; iii) tied by A+-l (o 2 /o 2 ) 
w g 

c) Jointly predict g; animals with records and base animals 
with no records. 

C. Sires having progeny with records. A is matrix of relationships. 

1. Add A-l (o 2 /o 2 ) to s x s block of coefficients. 

2. 

w s 
OR 

-1 Calculate A+ directly by rules (noninbred) (rules for sire 
OR for sire and maternal grandsire). 

a) Include base animals with no progeny with records if related 
to more than one sire with progeny. 

b) Augment equations to include animals with no progeny records. 
i) sum= O; ii) no model; iii) tied by A+-l (o 2 /o 2 ) w s 

c) Jointly predict G/2 for sires with progeny records and 
relatives with no progeny records. 





Summary XVII 

COMPUTING THE INVERSE OF THE RELATIONSHIP MATRIX 

Mixed model procedures require the inverse of the relationship 

matrix when genetic values are to be predicted (BLUP) to account for 

the covariances among the genetic effects in the model. The usual 

procedure would be to compute the relationship matrix (Table) and have 

a computer program find the inverse. Henderson (1976) has found, 

however, a rapid way of calculating the inverse of the relationship 

matrix directly. If the animals are non-inbred or assumed to be non-

inbred, the procedure is very rapid, Ignoring a small amount of in-

breeding probably is a good approximation in most prediction problems, 

The computing steps involve adding from one to six values to 

different parts of the inverse of the relationship matrix for each 

animal depending on how many parents are known. After all animals have 

been processed, the result is the inverse of the relationship matrix. 

The inverse elements each multiplied by the proper variance ratio, 

a2/a 2 , are used to modify the least squares equations to make the mixed 
W V 

model equations. 

The animals can be processed in any order, Base animals must be 

included even though they may not have records. (Base animals will be 

those which establish relationships among other animals but are not 

themselves related,) 

Because the base animals may not have records the mixed model equations 

are expanded as was illustrated in the cow evaluation model to include 

an equation for each base animal with a zero sum on the right-hand 
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side and coefficients on the left-hand side made up of inverse elements 

of the relationship matrix multiplied by o2 /o 2 • 
W V 

Any base animal with only one relative [an animal with records (sire 

with progeny with records for the sire model) or another base animal] need 

not be included in the expanded mixed model equations. Thus, such a base 

animal need not be included in the inverse of the relationship matrix and 

can be listed as unknown. If such a base animal is included in the 

inverse of the relationship matrix, then an equation for that animal must 

be added to the mixed model equations as for any other base animal. 

Because the computing procedure can accept animals in any order, putting 

the base animals at the end of the inverse table (in contrast to the usual way 

of computing relationships) may make setting up the equations easier. 

The simple rules for building the inverse of the relationship 

matrix for non-inbred animals are: 

If known 
Animal Sire Dam 

p s d Then add what to where 

Yes No No 1 to (p,p) 
Yes Yes No 4/3 to (p 'p) ; -2/3 to (s,p); 1/3 to (s,s) 
Yes No Yes 4/3 to (p 'p) ; -2/3 to (d,p); 1/3 to (d,d) 

Yes Yes Yes 2 to (p 'p) ; -1 to (s,p) and (d,p); 
1/2 to (s,s), (d,d), and (s,d) 

Symmetric: for example, if -2/3 to (s,p), then -2/3 to (p,s). 

Note that p, s, and d will be animal numbers, and (p,p), (s,p), 

etc., combinations refer to a location in the inverse table. 
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In the example that follows, three animals are base animals: GSl, 

Dl, and GS2. The other five animals are related through them. GSl, 

Dl, and GS2 must be included in building the table even though predictions 

are wanted only for Sl, ... ,SS. The relationships for the example are 

diagrammed below. 

S3 

The table will be built beginning with the information for Sl; 

a blank indicates the parent is not known. Actually if an animal 

is a parent of only one animal then that parent does not need to be 

included as a base animal. 

s d What is added where 
Sire 1 GSl 4/3 to (Sl,Sl); -2/3 to (GSl,Sl); 1/3 to (GSl,GSl) 
Sire 2 GSl Dam 1 2 to (S2,S2); -1 to (GS1,S2), and (Dl,S2); 

1/2 to (GSl,GSl), (Dl,Dl), and (GSl,Dl) 
Sire 3 Sire 1 4/3 to (S3,S3); -2/3 to (Sl,S3); 1/3 to (Sl,Sl) 
Sire 4 GS2 Dam 1 2 to (S4,S4); -1 to (GS2,S4) and (Dl,S4); 

1/2 to (GS2,GS2), (Dl,Dl), and (GS2,Dl) 
Sire s GS2 Dam 1 2 to (SS,SS); -1 to (GS2,SS) and (Dl,SS); 

1/2 to (GS2,GS2), (Dl,Dl), and (GS2,Dl) 
GSl 1 to (GSl,GSl) 

Dl 1 to (Dl,Dl) 
GS2 1 to (GS2,GS2) 
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After all 8 animals are processed the inverse of the relationship matrix 

is as given below. 

Sl 
S2 
S3 
S4 
S5 

GSl 
Dl 

GS2 

Sl S2 
10/6 0 

12/6 

S3 

-4/6 
0 

8/6 

S4 
0 

0 

0 

12/6 

S5 1 GSl 
I 

0 I -4/6 
o l -6/6 

0 

Dl 
0 

-6/6 
0 

GS2 
0 

0 

0 o I 
I o I o -6/6 -6/6 

12/6 I o -6/6 -6/6 ------------------------------------4--------------------

Symmetric 

I 11/6 3/6 o 
I I 15/6 6/6 
I 
I 
I 
I 

12/6 

When animals are inbred then the procedure is somewhat more com-

plicated although Quaas (1976) has developed a rapid method of computing 

the diagonals of the relationship matrix (which are l+F) from which the 

inverse of the whole relationship matrix can be easily computed, 

Most relationships among sires that are evaluated from progeny records 

are due to male relatives because few dams have more than one son with 

progeny. Rules for building the inverse of the relationship matrix from 

known sire and maternal grandsire are similar to those using known sire and 

dam. Base animals with more than one relative must be included. Inbreeding 

is ignored. 
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Sire 
Animal 

Dam Maternal grandsire 
(Ignored) 

If known, 
Maternal 

Animal Sire grands ire 
what to where!Y p s m Then add --

Yes No No 1 to (p ,p) 

Yes Yes No 4/3 to (p 'p) : +1/3 to (s, s): -2/3 to (s ,p) 

Yes No Yes 16/15 to (p ,p): +1/15 to (m,m): -4/15 to (m,p) 

Yes Yes Yes 16/11 to (p' p) : -8/11 to (s ,p): -4/11 to (m,p) 

4/11 to (s,s): +2/11 to (m, s) : +1/11 to (m,m) 

a/ Symmetric: for example, if -2/3 to (s,p)' then -2/3 to (p,s). 
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EXAMINATION QUESTIONS 

NOTE WELL: Show all work, Arithmetic errors will not cau~e you to lose ful I 
credit for a problem unless you fail to show how you arrived at 
the answers. If the correct answer is given but no work is shown, 
you may lose part credit. Answers may be left in fractional 
fora. You need not find square roots. 

First Exam.. October 1972 

1. A trait has heritability in the narrow sense of .6 and phenotypic variance 
of 49. What is the expected difference in progeny average between a 
parent with a phenotypic record of 30 and a parent with a phenotypic 
record of 20? 

2, A researcher has gathered the following pairs of records on a parent's 
phenotypic record and its progeny phenotypic average. 

3. 

4. 

,. 

Pair no. --,--
2 
3 
4 
5 

Frequency of 
parent phenotypes 

.09 

.30 
• 37 
.20 
.04 

Parent's 
phenotypic record 

10 
8 
6 
4 
2 

LI '"6.4 
a) What is the phenotypic variance of this trait? 

Progeny average 
7.20 
6.80 
6.34 
5.80 
5.20 

LI • 6.40 

b) What is the additive genetic variance for this traitt (Assume only 
2 alleles at one locus are involved.) 

The regre~sion equation of genetic value on number of B alleles at one 
locus is G • 4 + 2(No. of B alleles), What is the additive genetic 
value for the following genotypes; BB, Bb, and bb? 

The following table shows the frequency of J genotypes at the B locus and 
the corresponding additive and dominance genetic values. 
Genotype Preguency Additive 

BB .25 
Bb .50 
bb .25 

'GA 

genetic value 
9 
7 
5 
7 

Dominance 

'Go 

genetic value 
-1 
+l 
-1 -o 

Show numerically that the total genetic variance is equal to the additive 
genetic variance plua the dominance genetic variance. 

The following is an arrow diagram of brother-sister mating. Assume that 
the original parents (a and B) are not related but that A has an inbreeding 
coefficient of .25 and Bis not inbred. 

A 

B 

C 

0 

E 

F 

G 

H 

a) Show all additive relationships among the 8 animals. 
b) What is the inbreeding coefficient of C? Of E? Of G? 
c) Suppose through artificial insemination A is mated to H to produce 1. 

What is the inbreeding coefficient of 1? The additive relationship 
of A and I? The additive relationship of Hand I? 

6. The following are tables of additive and dominance relationships among 
animals A, B, C, and D. 

A 

B 

Additive relationships 

A B C D 

,1 0 l , 
' 2 ' 

0 l l l 
2 ' 

A 

B 

Dominance relationships 
A B C D 

l 0 0 it 
0 l 0 0 

C C l l l l 
2 2 2 0 0 l l 

' D D , l l l ' ' 2 d 0 l l ' 

,. 

2. 

Given: oi 0 • 64, o~0 • 16, o~1 • 48, oi 1 • 8, and oi • 64. 
a) What is heritability in the narrow sense? In the broad sense? 
b) What is the genetic covariance between A and D? Between C and n? 

Between Band C? Between A and A? Between Band B? 

The heritability 
variance is 100. 
find the weights 
relatives~ 

Second Exam, November 1972 

of a trait is .J, repeatability is .4, 
Set up equations (numerically, but do 

to evaluate an animal that has records 

average of <wo records on the dam .. 400 ; 

and phenotypic 
not solve) to 
on the following 

x,, 
'2• average of~ records on the maternal granddam • 200 
'3• average of two records on each of 20 paternal half-sibs • 
X4, average of single records on each of 10 full sibs • 500. 

-300 

The additive genetic value for the following 6 
by use of selection indexes. The r 11 for each 
r • .6, and variance of single records is 400. 

animals has been predicted 
index is also given. h~• .4, 

a) 

b) 

Animal --.-
B 
C 
D 
E 
F 

Index Value 
40 
50 
10 

-60 
-40 

30 

rTI 

.60 

.50 

.40 

.80 

.60 
Which two animals should be selected to give the greatest superiority 
in predicted additive genetic value? 
What is the expected superiority in additive genetic value if those 
two are selected out of the six? 



J. The following additive relationship table is known. 

,. 

5. 

A • C D 

A l 1/4 0 0 

1/4 1! 
4 0 0 

C 0 0 l 1/4 

0 0 1/4 l 

The following records are available for the four animals. 
Animal No. of Records Ave. of Records -.-- 2 3 

• 1 4 
C 1 -5 
D 3 2 

hi• .25, r • .50, and variance of single records• 36. Predict the 
additive genetic value of animals Band D. 

The following information is available to predict the additive genetic 
value of a sire A. 

X•lOO• 
x1 • 200 • 2 

a single 
a single 
d- D 

record of a progeny with sire A and dam D 
record of another progeny also with sire A and 

x3 • -300 • a single record oft 
o is not related to A. h~- .4, r • .8, and variance of single records• 
(100) 2 . 

a) Predict the additive genetic value for sire A. 

b) 

c) 
What is the rTI for this 
What would be the rTI if 

index? Note rTI" 
the record of Dis not considered? 

A researcher has determined that the environmental covariance between 
full sibs is (.2)crf where~• 400 is the phenotypic variance for the 
trait; heritability is ,60. A breeder wants to predict the additive 
genetic value of an animal with the following information. 

•> 
b) 

the average of single records of 
animal being evaluated, 
a single record of the animal. 

try to give the breeder what he wants. 
How would you predict the additive genetic 
full sibs if its records was -10? 

five full sibs of the 

value of another of the 

6. AssUIIIE! • 30 is the average of single.records of 10 progeny (paternal 
half-sibsl of sire A. and x2 • 60 is the average of single records of 5 
progeny (paternal~half-sibsJ of sire B. The dams are all unrelated as are 
sires A and B. h • .4. r • .5, and variance of single records• 2500. 

•> 
b) 
c) 
d) 

Find the weights for the index, I• b1X1 + b2x2 to .predict the differ-
ence in additive genetic value between •ire• A and B. i.e .• predict 
T • TA-TB. 
Predict the difference in additive genetic value between sires A and B. 
Calculate the ri 1 for this index. 
Cslculate the average squared prediction error for thia index, i.e .• 
E{(I-T) 2} • V(l - (TA-TB)). 

Final Exaa, December 1972 

Some of the questions are rather lengthy and represent lectures more than 
difficult problems so bear with them. and do not give up-. Questions 1, 2, and 
3 are relatively easy. Part c of 14. part d of 15. part b of 16. and half 
of part c of #6 are a little more difficult but do not account for many points. 

1. The heritability of a trait is .3, repeatability is .4, and phenotypic. 
variance is 100. 

,. 

•> 

b) 

Set up equations (numerically. but do not solve) to find the weights 
to predict additive genetic value for evaluating aniaals thar have 
records on the following relatives. 
x1 , average of three records on the sire• 400 ; 
x2, average of four records on the paternal granddam • 200 i 
x3• average of single records on each of 5 maternal half-sibs • 200 
x4 • average of~ records on each of 8 full sibs • 500. 
Can you compare predicted additive genetic values (indexes) of such 
animals with those for animals that have only x1 and X2? In words, 
what is the procedure for evaluating animals thit have only X1.£nd 
x2 if they are to be compare to animals having Xi_• x2 , x3 , ana X4? 

Additive genetic value for several unrelated males and females h= been 
predicted from records of relatives by the selection 
h~• .2, r • .6, and oi • (2000) 2 . 

index procedure. 

a) 

b) 

Male Index rTl Female Index rTI -.- 50() .90 --,- 100 To 
• 1000 . 70 Q -200 .50 
C -500 .so R 500 .50 

s 300 .60 
T -400 .50 

What is the predicted difference in average additive genetic value 
between progeny of males A and C if each sire were mated to all five 
feU1ales, i.e., A with P, Q, R, S, T; and C with P, Q, R, S, T? 
What is the predicted additive genetic value of a progeny obtained 
from mating male B to female R? B to female Q? 

N 
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cr-
cr-:,, 

3. Two inbred lines have been developed so that all animals in line 1 have 
inbreeding coefficient F1 • .6 and all animals in line 2 have inbreeding 
coefficient F2 • .4. The lines have reached a constant inbreeding coeffl-
cient so that all animals within a line are related to each other by 2F 
so that mating of random males and females within a line results in a 
progeny with inbreeding coefficient (1/2)(2F) • F. Assume that the two 
lines are unrelated and are to be crossed as shown. 

A and Bare random linecross progeny of the cross between lines 1 and 2 
since we assume that each parent has only one progeny. 
a) Complete the additive relationship table for F1 • .6 and F2 = .4 

where 11 and ii are ani!Dals from line 1 and .t2 and 12 are animals 
from line 2. 

11• R.2 R.i. '' 
'' ,. 2 ', ,, l 2 A B 

,, l+F 1•1.6 0 2F
1
~1.2 0 

'2 0 l-+-F2•1.4 0 2Ff' .8 

,. 
l 2F1•1.2 0 1+r 1 .. 1.6 0 

,. 
2 0 2F2•.8 0 l+F 2•1.4 

A 

B 

b) What is the additive relationship between linecross animals, e.g., 
A and B? 

c) What is the dominance relationship between A and B? 
d) Ass!.lllle of 0 • 100, o~1 • 50, cf 1 • 25, oi 0 a 60, and o~ • 265. 

What is the genetic covariance between random linecross animals, i.e., 
between A and B? If you are not sure of the answer for parts band c 
use aAB • .25 and dAB • .12. 

4. Often the purpose of measuring traits early in life is said to be chat 
they will predict performance for an economically important trait which 
cannot be measured until later. If such prediction is reasonably accurate, 
then the reduced generation interval will result in more progress for th<' 
economic trait than will selection based on a record of the economic tr~it. 
An example is mastitis in dairy cattle which becomes a major problem in 
third and later lactations. 
Assume x1 and x2 are measure of traits 1 and 2 early in life and x

3 
is a 

measure of the economic trait. Compare genetic progress per year genetic~llv 
in improving trait 3 from two plans: 

a) (1) Select for additive genetic value of trait 3 based on x1 and x2 . 
The top 70 of 100 will be selected and the generation interval is 4 
years. 

b) (2) Select for trait 3 using only X. Since many of the animals will 
have died by then, the top 70 of 90 will be selected. The generation 
interval is 8 years. 

c) Also, what are the expected correlated genetic responses in trait 1 for 
plans (1) and (2). 
The following variance and covariances are known. 
Phenotypic: oi • 64, oX X • 

0x; • 196. 1 2 
0, and 

Genetic: o~ • 40, oG G • -6, oGlGJ 18,-:i~ ,. 36, 
2 l l 2 

5. Additive genetic value has been predicted for a male from his progeny average 
(paternal half-sibs)i JS_, and for a female from her record, x2 , and her 
dam's record, x2. h • .4, rm .6, and the variance of single records is 
o~ • (1000) , 010 • 400,000, of 0 • 630, The index, index values, and ri 1 are given. 
Male: - (5/8)X 1 • 810; ri 1 • 5/16 
Female: I= (3/8)X2 + (1/8)X3 = 390; r{I • 7/16 
a) 

b) 

c) 

d) 

What is the predicted additive genetic value for an unborn progeny of 
mating this unrelated male and female? 
The rTI for an unborn pro~eny of mating this unrelated male and female 
is for sire+ rT for dam. What is the probability that the 
additive genetic value of !he progeny .!!!..!!. exceed -100? If you are not 
sure of the answer to part a use I 400. 
What is the probability that the rgrn,a:n6f the progeny will be than 
-1000? If you are not sure of the answer to part a, use I = 400. 
Show either numerically for this example or indicate algeb¥1£~~fry why 
the ri 1 for a progeny with no records equals the sum of the r 2 for the 
sire and the ri 1 for the dam divided by four when the sire and 1dam are 
unrelated, i.e., rf 1 • (riI + rfI )/4. Some of the following 
square roots not incf58~~ntan be a~tf8ximate3afrom these. 

N 
cr-
cr-
"' 



6. Prediction error can be defined as ea• Ta-Ia where Ta is true value 
I is the index estimate of true value for animal . • 
Assume: 

and 

a) 

b) 

c) 

• 100, OX X • 20, oX T • 40, oX T • 20, and oi • 40, 
I 2 1 Z 

The index which minimizes squared prediction error is I~ (3/8)X.. + (1/8)x
2

. 
What is the average squared prediction effor for this best index? 
What is the variance of prediction error for the index I• 6X1 + zx

1 which is obviously not the index that comes from solving the select on 
index equations? Compare the answers for parts a and b. Which is larger? 
A short answer, why? 
Compare r 2

1 for the indexes I• 6X + 2X and I• 
Why are tfiey the same or why are cfiey dilferent? 
rTI to make the cot11putations easier. 

First Exam, October 1973 

(3/B)X + (1/S)X. 
Note r~ 1 rather £ban 

1. A dai,;y111an has had some trouble computing the inbreeding to be expected 
from some possible matings. Please compute the additive relationships 
among the following animals. Also indicate to him which animals are inbred 
and their inbreeding coefficients. Note well: A and Bare full brother 
and sister. C and Dare identical twin bulls. 

D A 

IG 

C 
H 

CD I 
B 

J I A 

I I B 

• cl A 

B 

2. With the help of a miracle, the following genotypes for ten loci have 
been determined for two animals, The genes are identified by their origin. 
a) What is the estimate of inbreeding for animal X? 
b) For animal Y? 
c) What is the additive relationshi~ between X and Y? 
d) What is the dominance relationship between X and Y? 

Locus Animal X Animal Y 
A ala2 a3a6 
B b7b7 b7b8 
C C2C3 c1c3 D d4d4 d4d8 
E e6e9 e6e9 
F fllf12 flf2 
G g8g6 
H hlh2 1314 I 1616 6 8 J jlOj 12 jlOj 12 

3. 

A 

B 

C 

D 

E 

4 • 

5. 

To set up the selection index equations, the genetic covariances between 
relat½ves are often deeded. Assllllle oi 0 - 32, o~0 • 16, o~ • 8, v~

1 
• 24, 

and oE • 120. The additive relationsfiips and dominance r~lationshlps among 
a group of beef animals are given in the tables below. 

Additive Relationships Dominance Relationships 
A B C D E A B C 0 E 

l l 1 1 1 
2 2 ;; 8 A - 1 0 0 0 ;; 

1 1-'- 5 1 1 
2 4 8 ;; 8 B 1 - 0 0 1 ;; 32 

l 5 1-'- 0 0 2 8 4 C 0 0 - 0 0 

1 1 0 l 1 ;; ;; ;; D 0 0 0 0 1 
16 

l 1 0 1 1 8 8 ;; E 0 1 0 1 -32 16 

a) What is the genetic covariance between a record of A and a record of D? 
b) Between A and B7 
c) Between C and D? 
d) Suppose Band E were mated. What would be the inbreeding of the offspring~ 

The model for a record on some trait is Pi• G1 + Ei where µG - µE • 0; 
o& of 0 + o~0 + 081 • 16 + 8 + 4; o~ • 7z; ana oGE - o. 

a) What is 
b) What ,, 
c) Suppose 
d) Suppose 
e) Suppose 

the variance of single recodds, i.e., oi? 
heritability for this trait? 
OGE• -16. What would be the variance of single records? 
µG • 120 and µE • 0. What is the variance of single records? 
uG - 40 and µE • 110, What is the variance of single records? 

The model for a record on some trait is Pi c G1 + E1 where µG • µE = O; 
o& • of 0 + oi 0 + 081 

2 16 + 8 + 4; o~ 2 7z; and 0GE 2 o. 
A horse breeder wants to select on an index which is the average of the 

;;:e::::es~~~= ~:;o~~~o~!u~ft::e~i:~•;
2
7s ~:;o;~~o~de~f ~h= !!::+!i~/)J + 

P3 is the record of the animal. 
a) What is the variance of this index? Assume the sire and dam are 

unrelated and are not inbred. 
b) What is the covariance between the index and the genetic value of 

the animal? 



1. 

Second Exam, November 1973 

Single records are available on animals A, B, D, E, and F. They are 
related to animal C as indicated in the arrow pedigree shown below. The 
records are: XA • 30 "i, • -10 

:~. 
07• 
F 

"o • 40 ", • 10 x,,. -5 . 

Heritability of the trait is .4, repeatability is .6, and the phenotypic 
variance is 500. 

a) Indicate clearly and numerically as much as possible, but~ 
solving .!!:I. equations, how to predict the additive genetic value 
of animal C. 

b) Repeat a), but show how to predict the additive genetic value of 
animal F. 

c) What assumptions are necessary so that your procedure will minimize 
average squared prediction error? 

2. A dairyiaan wants to predict twice the additive genetic value for some 
type trait for several bull calves from the type trait scores of each 
calf's four unrelated grandparents. Let ~GS' ~GD• ~s• and~ be 
the records of the four grandparents. The beet index is 

I • .18~S + .18~GD + .18~GS + .18\tcn 

Ass1.1111e heritability• .36, repeatability• .49, and variance of single 
records • 9. 

a) What is the rTI for this index? 

b) What is the average squared prediction error for this index? 

Suppose six of the bull calves have grandparents with records as shown: 

cau 
A 
B 
C 
D 
E 
F 

"ros -,-
0 

-z 
-1 

1 
-1 

X,.GD 
-0-

2 
-1 

6 
2 
J 

"i.cs ',.GD -=, -,-
1 0 
0 J 

-4 -1 
0 2 

-2 -2 

c) Rank the six calves for twice their additive genetic value for the 
type trait. 

d) Suppose 
trait. 
genetic 

you choose what you think are the best two calves for this 
What is the exoected superiority in twice the additive 
value for the ~elected two above the initial group of six? 

DO EITHER QUEST10N 3 OR QUESTION 4. 

3. A swine breeder wants you to predict the average of single records of 
10 unborn progeay from mating sire, S, and da:11, D. Five previous full 
sib progeny of Sand D have averaged +5. Assume heritability: .10, 
repeatability .. ,15, the environmental covariance between the full sibs 
already born i~ .2c~, the environmental covariance between the unborn 
progeny will be .20}, and the variance of single records, a}• .36. 
Assume no environmental covariance between the 5 full sib progeny and 
the unborn progeny. 

a) Predict the average of 10 future progeny. 

b) What is the cri for this procedure? 

DO EITHER QUESTION 3 OR QUESTION 4. 

4. Suppose each animal to be evaluated has two records and that the average 
of twenty full sibs each with two records is also known. You are to 
predict a future record of each of the following four animals. 

Ave. of animal's Ave. of 2 records on 
Animal --.-

B 
C 
D 

two records 
4 
2 -• 8 

Heritability of the trait is 
covariance between full sibs 
is ai_ • 100. 

each of 20 full sibs of the animal 
3 
4 

10 
-2 

.25, re~eatability 1s .SO, 
is .20aX, and the variance 

the environmental 
of single records 

5. A bull has sired a number of-daughters resulting in a rather high index 
value for his additive genetic value. The breed organization, however, 
wants to present a Breeder of nerit award to the bull's owner: but they 
vant to be 90% sure that if the bull sires an infinite number of additional 
progeny that his additive genetic value will not fall below +600 pounds. 
The additive genetic variance for the trait is (1200 lb.) 2 , and the 
phenotypic variance is (2400 lb.) 2• Suppose the rTI is .8; how high 
should the index value be before the award is presented? 

N 
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Final Exam, December 1973 

1. a) Col!lpute the additive relationships among the animals shown in the arrow 
diagram. Indicate which are inbred and what their inbreeding coeffi-
cients are. 

2. 

J. 

b) 

Also assume the variance of single record cr: • 200. 

Assume that for SO!lle trait the direct additive genetic variancecr2 • 80; 
GD the maternal additive genetic variance, a~ - 40; and covariance between 

the additive direct and additive maternal Mgenetic effects crG G -50, 
D M 

1) What is the environmental variance for this trait? 
ii) What is the covariance between a record of D and a record of E? 
111) What is the covariance between a record of C and a record of F? 
iv) What is the covariance between a record of G and a record of F? 

A breeder is selecting for a defined true value which has variance cr2 • 52.5, 
There are available three sources of information, x1 , x

2
, and X. Tie 

equations to find the selection index weights are: 100 b1 +soil+ 25b 3 - 52.5; 
50b1 + 100b 2 + 50b 3 • 45; and 25 bl+ 50b2 + lOObJ .. 30. -----rhe we ghts are: 
b1 • .4, b2 • .2, and b3 • .1. Five animals have the following information. 

Animal x1 x3 -.-- 5 -4 3 
B 3 4 -1 
C U -5 
D -5 4 4 
E 2 10 l 

a) Rank the five animals for predicted true value. 
b) What is the expected superiority in true value of the three you think 

are over the two you think are poorest? 
c) What is the average squared prediction error for this index? 
d) Suppose another animal, F, has an index value of 3.0. What is the 

probability that the true value of animal Fis between O and 4? 

A sheepman has the following information for one trait available on all 
of his sheep. He wants you to develop an index to rank his animals for a 
future record. X1 • animal's own record, x2 • average of two record of 
the dam, x3 • avefage of single records of two maternal half-sisters of 
the animal, and x4 • single record of a full sib of the animal. Variance 
of single records - 100; heritability• .40, and repeatability .60. 
Environmental covariance between a record of a mother and her progeny• 
20% of the variance of single records, and environmental covariance between 
records of full sibs 25% of the variance of single records. 

Show clearly how to develop the desired index, Do not solve any equations, 

4, A breeder has decided that the economic value of trait 1 is $100 per 
standard deviation and of trait 2 is $49 per standard deviatioh. 
Heritabilities of the traits are hi• .25 and h~ = .50. He decides to 

c;;)~~;)!:~exT!:rp~~~:~~ca::!!t~::e~;:e~!~i:!:ea!d•c!~~~~!~!~!X1r:: 

,. 

I. 

cr¾ • 100, cri
2 

- 49, oXiXz • 35, o~
1 

• 25, cr~
2 

• 24.5, and crG
1

G
2 

- 15. 

a) What is the rTI for the index? 
b) What is the expected sup·eriority in economic value for selection of 

the top 2 out of 15 animals? 

The govermnent of a country with a shortage of fat and protein wants to 
select dairy cows to improve yield of fat and yield of protein. They 
have decided that a pound of protein is worth $6.00 and that a pound of 
fat is worth $2.00 in their currency. The following variances and covariances 
are known. 

Protein-fat covariance 
Protein variance 
Fat variance 

Pheo.otypic 
6400 
6400 

10,000 

Genetic 
1800 

lGOO 
3600 

Permanent 
Environmental 

1400 
1600 
2500 

Temporary 
Environ..,ental 

3200 
3200 
3900 

a) As their consultant you are asked to prepare an index to predict a 
future economic record for cows that have a first record for both 
fat and protein; that is, 1i • first protein record ao.d x

2 
first 

fat record, Find the appropriate weights. 
b) Describe clearly how to determine the index to predict an econolllic 

record for a daughter of cow with x1 ao.d x2 . Do not solve the equations. 

First Exam, October 1974 

a) One horse breeder has followed a close linebreeding (inbreeding) program 
by continued mating to sire A. ·--·- --E •-- --D 

B--C 

Show all additive relationships among the five horses and give the inhre~din~ 
coefficient for those that are inbred. 

b) Another breeder follows a less intense linebreeding program to sire S. 

5 
-----=--v-........__ s---

T -- ........,.X __ y 

s--~ 
u -- w 
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2. 

3. 

Show all additive relationships among the severn horses and give the 
inbreeding coefficient for those that are inbred. 

c) Another breeder likes the results both (a) and (b) have achieved. He 
buys E and Y. He asks you what the inbreeding coefficient will be 
for progeny resulting from mating E to Y, Your answer is? 

Plant breeders have an advantage in developing inbred lines because of 
the lar~e number of plants that can be used, the shorter generation inter-
val, and the ability of selfing (same plant provides the male and female 
gametes for fertilization). The closest analogy in animal breeding to 
selfing would be if identical twins could be mated. Since identical twins 
cannot be mated, the fastest practical method of inbreeding in animals 
is to make continuous full brother-full sister (full sib) matings. In 
the following problems, assume the base population is noninbred and unre-
lated. Only half credit will be given for the correct answer unless all 
work is shown. 
a) Calculate the inbreeding coefficient after 1 generations of full sib 

matings. 
b) Calculate the inbreediug coefficient after 1 generations of selfing. 

The following covariances between 3 sets of relatives have been computed 
for a trait: between parent and progeny, 56; between paternal half-sibs, 
24; between full sibs, 64. From these values estimate: 

Information for questions 4 and 5 
The variances of averages are often needed to set up the equations to 
solve for the selection index weights. For some trait, assume the 
following: pbenotypic variance - 400; additive genetic variance= 100; 
dominance genetic variance• 60; additive by additive genetic variance= 
40; environmental covariance between parent and progeny= 50; environ-
mental covariance between full sibs 40; environmental covariance 
between paternal half-sibs • 30; permanent environmental variance= 50; 
temporary environmental variance* 150; X1 is the avera~e of sin~le 
records of 10 full sib progeny of sire A and dam B; X2 is the average 
of single records of 5 paternal half-sib progeny of sire A {all have 
different dams, none of which is B); and X3 m (lOX1+5X2)/15, i.e., the 
average of the 15 progeny of sire A. 

4. a) Compute the variance of x1 . 

5. 

b) Compute the variance of x2 . 
c) Compute the covariance between x1 and x 2 . 
d) Compute the variance of x 3 . (Note this kind of average is not used in 

the selection index since all records do not have the same covariance 
with true value.) 

a) Wha, is heritability for this trait? 
b) Wha< is repeatability for this trait? 
c) Whac is <he covariance between parent and progeny records? 
d) Wha< is the covariance between x 2 and <he genetic value of A? 

Second Exam, t:ovember 1974 

1. A and B are materr.al half-sibs. Two records of ,\ averc1g0 +12. four 
records of B average +20. Assume h2 = .4, 4 = .6. and phenPtyp1c vari-
ance = (30) 2 . 

a) Predict the difference in additive genetic value of A flml R, i.t> .. 
GA-GB. 

b} Predict a future record of A and a future record of B. 

2. For some trait, assume that: variance of single records= 100; environ-
mental covariance between identical twins = 30; environmental covarianct> 
between full sibs = 10; environmental covariance between half-sibs 5; 
additive genetic variance - 16; dominance genetic variance " .'<; additiv<c" 
by dominance genetic variance= 4; perman.int environmental variance= 12: 
and temporary environmental variance= 40. You are to predict the genetic 
value of animal 1 from: X1 = record on the animal; X2 = rt>cords on the 
animal's identical twin; X3"" record on a full sib: and X4 = average of 
2 records on each of 20 paternal half-sibs of the animal. Set up, but 
do not solve, the equations to find the weights for X1, X2, X3, and x4 . 
Toumllst show the coefficients both symbolically and nu~erically. 

3. A breeder has available to use in selection a record, x1 , on each animal 
to be ~elected and a record, X2, on the dam of each animal. Y~u know 
that ot1 = 25, oX2 = 25, 0x1x2 = 5, ox 1T = 10, x2r = 5, and a-= 20. 
This would correspond to T = additive genetic value with h2 = !. You 
tell him that the best index is I = (1/8)X1 + {l/8)X 2 . He tells you 
that he has been using the index I= (75X1+25X2)/lOO. 
a) What is the r~ 1 for the best index? For his index? 
b) What is average of squared prediction errors for the best index? For 

his index? 

c) What is the variance of the best index? Of his index~ 
d) What is the correlation between the best index and his index? 

4. Sire A has an index of +200 lb for additive genetic value for milk yield. 
The rfr is .84. Sire B has an index of +1200 lb for additive genetic 
value for milk yield. The rfr is .64. Assume h2 = 1/4, r = 1/2, pheno-
typic variance= (2000) 2 , and chat A and Bare unrelated as are their 
daughters. Their index values are based on records of daughters that 
are related only through the sire. 
a) What is the probability that the additive genetic value of A exceeds 

1000 lb? 
b) What is the probability that a record of a future daughter of A "'ill 

exceed +2500 lb? 
c) What is the probability that the additive genetic value of A exceeds 

that of B? 
d) Wha< fraction of the records of future daughters of A wo11ld be expected 

to be higher than the lo.,est half of future datt~hters of B? 

N -..., 
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N ---., ..... 
:,. 5. C"fflpare the following dairy breeding programs for yearly progress in addi-

tive genetic value for milk yield. Assume h· • 1/4, r • 1/2, and pheno-
typic variance - (2500 lb) . 

a) The careful program? The AI stud will not use sires to sire sons until 
the records of a second (large) group of daughters is available. 
Assume rTI • 1. The generation interval for sires of sires is lengthened 
by 3 1/2 yr to 10 yr. Assume the best 5 of 75 are selected. They also 
will not select cows to produce new sons unless that have at least 5 
records. Assume selection is based on her own 5 records. The genera-
tion interval for dams of sires becomes about 8 1/2 yr. Assume selec-
tion of the top 5%. Assume sires of replacement heifers are selected 
on the basis of 35 daughter records and that only the best 5 out of 
25 bulls are selected. The generation interval is 7 yr. Dams of 
replacement heifers are selected on the basis of 2 records out of the 
top 90%. Assume a generation interval of 6 yr. 

b) The dangerous program? The AI stud selects sires of sires on the basis 
of single records of the first group of 3S daughters. The generation 
interval will be 6 1/2 yr. More bulls are alive to select from. so assume 
the best S of 100 are selected to be sires of sires. Dams of young 
sires will be selected on an average of only 2 of her records. Assume 
selection is from the top 3%. The generation ir.terval will be 6 yr. 
Sires of dams and dams of dams will be selected as for the careful 
program (a). 

Final EJt8DI, December 1974 

l. Pedigree for this problem: 

Assume heritability is .40, repeatability is .60, and the µhenotvpk 
variance is 2500. You want to buy 1 animals from a breeder. He will 
sell you either ?en 1 containing A, B, and C or Pen 2 containiniz D, E. 
and F. You want to buy the pen having the greater average additive 
genetic value. A records, X5 • SO, on animal Band a record, XN • 100, 
on animal N are available. 
a) Predict the difference in average additive genetic value between 

Pen 1 and Pen 2. 
b) What is the variance of what is to be predicted? 
c) What is the variance of prediction error? 

The following is information for questions 2 and 3: 
Assume heritability• .25, repeatability: .40, variance of single records 
(2000 lb) 2. Assume also that animals A, B, C, D, and E are unrelated. 
Animal Records Available -A-- Record on A• +3000; record on A's dam m -500 

B 
C 
D 

E 

F 
G 
H 
I 
J 

Average of single records of 20 paternal half-sibs of B +400 
Record on dam of C • +2000 
Record on dam of D - -1000; average of single records of 20 paternal 

half-sibs of D,. +S00 
Two record on dam of E average +S00; record on a l'laternal half-sib 

of E,. -4000 
Prediction of future record • +500; rTI • .30 
Prediction of future record • +100; rTI • .30 
Prediction of future record • -400; rTI • .30 
Prediction of future record • +1000; rTr • .30 
P't'ediction of future record • -300; rTr • .30 

2. a) Predict a future record for each of animals A, B, C, D, and E. 
b) What is the probability that a future record of C will be less than +4000? 
c) What is the probability that a future record of A will exceed a future 

record of C by 3000 or 1110re? 

3. a) Suppose out of animals F, G, H,I, and J that 2 animals are to be selected. 
What would you predict to be the average superiority in a future record 
of the selected 2 over the average of the group of 5? 

b) Another breeder is going to use a selection index to predict future 
records. The rTI of the index is .30. He will select the top 40% based 
on that index. What is the expected superiority in future records of 
the selected group? 

4. Falconer has pointed out that the expressions of a triat in 2 greatly 
different environments can be considered to be 2 separate traits that 
have a genetic correlation. Suppose that the 2 environments are: 1) 
the temperate US and 2) the tropical area of Puerto Rico, and that we 
are interested in i'proving milk production. Assume: h! • .2S; hj = .20; 
a-~1 .. (2000 lb)2; op 2- (1000 lb) 2 ; r~ 12 • .90. Com~are the following 2 
breeding plans for Puerto Rico. Assume the generation interval ts the 
same for both. 

N ---., ..... 
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> a) Bulls are tested in the US on the basis of the average of single records 

of 50 paternal half-sister daughters. Each generation the best 5 hulls 
out of 50 tested in the US are selected to be used in Puerto Rico. 

b) Bulls are tested in Puerto Rico to be used in Puerto Rico on the basis 
of the average of single records of 25 paternal half-sister dau~hters. 
Each generation the best 5 bulls out of 15 tested in Puerto Rico are 
selected to be used in Puerto Rico. 

5, F9r weaning weight of beef calves, the followfng information is given: 
~r • variance of single r~cor~s c (40 lb) 2 ; oGD = additive genetic variance 
for direct eff~cts E .30o'p; a%~ additive ienetic variance for maternal 
effects z ,40crp; oGn~ - 2addit~ve genetic covariance between direct and 
maternal effects z -.JOop. 

a) Find the weighting factors for predicting the additive genetic value 
for direct effects from X1, a bull calf's own weaning weight, and X2, 
the average weaning weight of 35 of his paternal half-sibs. 

b) Find the weighting factors for predicting the additive genetic value 
for maternal effects from X3, a heifer calf's own weaning weight, and 
X4, the weaning weight of her dam. 

c) Assume bull calves are selected on the basis of (a) frOin the top 5 of 
of 50 and heifer calves are selected on the basis of (b) from the top 
30 of 50. What would be the expected progeny average of mating the 
top bulls to the top heifers? 

First Exam, October 1975 

1. Wednesday 

A breeder of dogs vants to develop an inbred line of dogs in spite of 
all your protests about the dangers of inbreeding. He will practice 
brother-sister (full sib) mating as described below. A and Bare full 
sibs (brother and sister) from mating of noninbred parents. The in-
breeding coefficient of A is FA•½. It is easier to express all cal-
culations as fractions rather than as decimal numbers. 

•~c·"::::;:P~C 
B~ D~ F~H 

a) Show additive relationships among the eight animals. 
b) What will be the inbreeding coefficient of G? 
c) What will be the inbreeding coefficierL;t of progeny obtained from --·-·· Thursday 

A breeder of cats wants to develop an inbred line of cats in spite of 
all your protests about the dangers of inbreeding. He vill practice 
brother-sister (!ull sib) m~ting as described below. A and Bare full 
sibs (brother and sister) from mating of noninbred parents. The in-
breeding coefficient of Bis F5 • ~- It is easier to express all cal-
culations as fractions rather than as decimal numbers. 

A~C~E~G 

B~D~F~H 

a) Show additive relationships among the eight animals. 
b) \,,That will be the inbreeding coefficient of G? 
c) What will be the inbreeding coefficient of progeny obtained from 

111,!lting G and H? 

2. A goat breeder believes that additive genetic effects, dominance 
genetic effects, and additive by additive genetic effects are important 
for some trait. The variances of these effects are assumed to be: 

additive genetic variance - 64, 
dominance genetic variance= 32, and 
additive by additive genetic variance• 16; also, 
variance of environmental effects - 88. 

There are also no environmental covariances among records of relatives. 
Covariances among relatives are needed in order to find the best index 
for selection. Assume the following dominance and additive relation-
ships a~ong relatives 1, 2, 3, and 4. 

Additive Relationships Dominance Relationships 
1 2 3 4 1 2 3 4 

1 1/2 0 1/2 1 1/4 0 0 
2 1/2 1/8 1/4 2 1/4 l/32 0 
3 0 1/8 1/4 3 0 1/32 0 
4 1/2 1/4 1~ 4 0 0 0 

If Xi is the average of 2 records on relative 1, X2 is a record on 
relative 2, X1 is a record on relative 3, and X4 is the average of 
3 records on relative 4, 

a) What is heritability for this trait? 
b) What will be the appropriate covariances for the selection index 

equations? 

3. A swine breeder suspects that there is a strong environmental covariance 
for some trait among full sibs (full brothers and sisters) in the same 
litter. The breeder is willing to assume that the only genetic effects 
are additive genetic effects and that there is no environmental covari-
ance among pigs with the same father but with different mothers (?aternal 
half-sibs) which are born at the same time of year. 

A statistician has gathered some data and has calculated the covariance 
between full sibs and the covariance between paternal half-sibs: 

full sib covariance~ 30, 
paternal half-sib covariance= 10, and 
variance of single records= 100. 
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a) Estimate heritability. 
b) Estimate the envirocmental covariance between full sibs. 

Another breeder, however, believes that dominance effects are also 
important. 

c) Can dominance genetic variance be estimated from the data given 
above? If yes, what is the estimate? If no, vhat can be estimated? 

4. Wednesday 
The following animals all have relatives of type A and B with a single 
reCOTd each 0 XA and XB. 

Record on Relative 
Animal A B 
--1- +20 -10 

2 +40 -30 
3 +8 +20 
4 -• +50 

The following information is known; 

o}-100; 

Cov(XA,T) • 22 ; 

I• .2XA + .1.XB • 

Cov(XB,T) • 14 ; 

a) Rank the animals according to the index. 
b) Will your rank be the same as the rank. for true value? Why or why not? 
c) \lha'C is the variance of this index? 
d) What is the variance of prediction errors, I-T, for this index? 
Another breeder decides the selection emphasis in 'Che above index is 
wrong and uses the index I*• XA + 2XB. 

e) What is the variance of his index? 
f) What is the variance of prediction errors, I*-T, for his index? 
Thursday 
The following animals all have relatives of type A and B with a single 
record each. XA and XB. 

Record on Relat.ive 
Animal A B --,- +20 -10 

2 +40 -30 
3 +8 +20 
4 -• +50 

The following information is known: 

o} • 100 ; Cov(XA,Xs) • 20 

Cov(XA,T) • 22 Cov(X:s,T) • 14 0~ • 50 , 

I• .2XA + .1X5 • 

a) Rank the animals according to the index. 
b) Will your rank be the same as the rank for true value? Why or why not? 
c) What is the variance of this index? 
d) What is the r.orrelation between this index, I, and true value, T? 

Another breeder decides the selection emphasis in the above index is 
wrong and uses the index I* • XA + 2X:s. 

e) What ts the variance of his index? 
f) What ts the correlation between his index. I*, and true value, T? 

Second Exam, November 1975 

1. A dairyman friend knows that you are now an expert iu detenining genetic 
merit of ani111a.ls from their records and records of their relatives. He 
wants you to buy six cows for him that have highest possible genetic value 
for milk yield. The only cows available and infonr1ation on their evalua-
tions are given below. The owner will sell you two groups, but you cannot 
make any substitutions. All groups are equally priced. Heritability for 
milk is .25, repeatability is .50, and the phenocypic variance is (2000 lb) 2. 

Selection Index 
for Additive Average 
Genet.ic Value Index for 
for Milk Yield Group 

Cow (lb2 {lb~ 'TI 
Al +1000 M 

Group A A2 +500 (400) .60 
A3 -300 .40 
Bl +1200 .70 

Group B B2 0 (300) .20 
B3 -JOO .35 

Cl +2000 .50 
Group C C2 +500 (500) .60 

C3 -1000 .25 
Dl +450 .60 

Group D D2 +450 (450) .50 
D3 +450 .40 
El +3000 .70 

Group E E2 -1200 (100) .70 
E3 -1500 .40 

a) Which cwo groups will you purchase? Why? 
b) I/bat ,. the expected genetic superiority of the selected cows above 

random selection int.his situation? 
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:,, 2. Assume a trait has heritability of .30, repeatability of .50, and phenotypic 

standard deviation of 400. The following information is available on 3 
animals: 

Anima.l 
A 
B 
C 

Number of Records 
2 
l 
0 

Average of Records 
+800 

+1000 

Predicted genetic value of C's sire is +1200 with rTI m .95, and 
estimated transmitting ability of C's dam is -200 with rr1 • .60. 

a) Suppose you vant co select for additive genetic value. In what order 
would you choose the animals to furnish herd replacements? 

b) Suppo6e instead chat you want to select for thesumof four future records. 
(Assume all animals would survive for four more records.) In what order 
would you cull? 

3. The trait for the following problem can be measured on both males and 
females, has heritability of .36, and the variance of single records is 
1600. A breeder is considering two selection programs. All selection 
is for additive genetic value. 

Program l: Males will be chosen on the basis of their own single record. 
Salection will be for the top 1 of 15 born each year. The 
generation interval will be 2 years. Fe111ales Ifill be chosen 
on the basis of a single record of their sire and a single 
record of their dam. The generation interval will be 4 years. 
Selection will be for the best 18 of 20. 

Program 2: Males will be chosen on the basis of records of 10 paternal 
half-sib progeny. Selection will be for the top I of 15 

(possible by using artificial inseiru.nation). The generation 
interval will be 3½ years. Females will be chosen on the 
basis of a single record of their sire and a single record 
of their dam. Selection 1dll be for the best 18 of 20, and 
the generation interval will be 4 years. 

a) Which selection program should the breeder use to maximi~e the additive 
genetic value of the herd? (Show all calculations.) 

b) Suppose that you could buy random. progeny of the first generation of 
selection co start your own herd. Which selection program would you 
hope the breeder was following? (Show all calculations.) 

4. The trait 10ea.sured in this problem has heritability• .50, repeatability 
of records on the same animal• .75, and phenotypic variance• (2000)2. 
Two full sibs (A and B) have records XA • 3000 and x8 • -1500. 

a) Predict the additive genetic value of A and of B. 
b) What is the rTI for predicting the additive genetic value of A? 
c) What is the probability chat the additive genetic valu~ of A is 

greater than 400? (If unable co work a and b, assume GA~ 1200 
with r}J ... 50.) 

d) A future record of A is predicted by the selection index to be AA z 

(8/15)(3000) + (1/15)(-1500) = 1500, and a future record of Bis pre-
dicted to be R8 = (1/15)(3000) + (8/15)(-1500) -600. The selection 
index for difference in predicted future records of A and Bis: 

I'"' R~ • [(8/15) - (1/15))(3000) + [(1/15)' - (8/15))(-1500) 
.. 2100 . 

What is the probability that a future record of A, RA, will exceed a 
future record of B, Ra, by 1000 or more? The rfr is .311. 

Final Exam, December 1975 

1. For a trait, the following is known: 

heritability: .40 ; 
repeatability = .60 ; 
phenotypic variance= (90)2 . 

Records and inbreeding coefficients are available on the following unrelated 
animals. 

Average Number of 
Animal Record Records Inbreedin3 -,::-- +100 1 0 

8 +100 1 .25 
C +50 1 0 
0 -100 2 0 
E -100 1 0 

a) Predict the additive genetic value"for the five animals and rank them. 

b) Predict a future record for each of the five animals and rank them. 

c) What is the probability a future record of animal E will exceed +SO? 

2. You are selecting for traits l and 2 with an index: 

I=6X1+SX2 

where x1 and x2 are records for traits 1 and 2 measured on the animal being 
evaluated. 

Assume 

Assume 

a' x, 
the 

= 100, o}2 =4'.>0, oX
1
X

2
"' 40, h1 

selection intensity factor is D 

a) Calculate the expected genetic response 
b) Calculate the expected genetic response 

.25, hf"' .49, and r 
9192 

1.5. 

per generation for trait 
per genera ti on for trait 

-.50. 

1. 

2. 
c) Suppose the econcmic values per unit are $6 for trait 1 and SS for trait 

What is the expected economic gain per generation? 
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3. Predict the value of animal A for: 

T • 6GDA + GMA 

whereGrA and GMA are the additive genetic values of A for direct genetic 
effects and maternal genetic effects. Records are available on the sire 
(X1 z +40) and another relative (x2 z -10) as shown in the diagram. 

Sire of A ..----ex,• 40)....____ 
A..,-- ----- Dam of sire of A 
......._ and of dam of A 

--- Dam of A and ------
--- relative of A 

Relative of A--
(X: • -10) 

...____Sire of 
relative of A 

-20. 

4. You have decided since all your calves have the same breed and age of dam 
that the proper model to describe weaning weight of a population of beef 
cattle is: 

Weaning Weight: Constant+ Sex Effect+ Herd Effect+ Sire Effect 
+ Residual Effect 

which can be written in the usual notation as 

YiJkZ z µ + ai + hj + 8 k + wijkZ " 
Assume sex and herd effects are fixed but unknown effects. The sire effects 
(sire transmitting abilities) are random effects with variance o! = 50. 
The variance of residual effects is o! = 950. 

The following set of records is available: 

( i) 
Sex -1-

1 
1 
1 
2 
1 
2 
2 
1 
2 

(j) 
Herd -r 

l 
1 
1 
1 
1 
1 
1 
1 
1 

(k) 
Sire -r 

1 
1 
1 
1 
2 
2 
2 
3 
3 

(Z) 
calf -r 

2 
3 
4 
5 
1 
2 
3 
1 
2 

(Yi ·kz) 
Weanin2 ~eight {kg) 

00 
240 
220 
180 
200 
260 
240 
220 
200 
220 

Set up (numerically)" the best 1 inear unbiased prediction equations to pre-
dict the effects of sires 1, 2, and 3 and to estimate the fixed effects for 
which adjustments are needed. 

First Exam, October, 1976 

1. In the following pedigree, assume E and E' are identical twins (in a 
species where sex reversal is possible). Animals A and B are unrelated. 

A~C G 
-----::::::: {E- F -----------________. E' _ __. 

B D 

a) Show Che additive relationships among all eight animals. 

b) What is the inbreeding coefficient for C, for E, for E', and 
for G? 

c) Calculate the dominance relationship between A and O and between 
C and D. 

d) Suppose an unrelated animal is mated with E to produce another 
progeny, H. What will be the dominance relationship between C 
and H? 

2. A dairyman believes that the first milk record of a cow is more impor-
tant than her second record which is more important than her third 
record. Therefore, when he finds the average of three records, he 
enters the third record once, the second record twice, and the first 
record four times, and divides by seven, i.e., for cow i: 

- xii + xii + xi1 + xii + xi2 + xi2 + xi3 
xi - 1 

Assume the Xij have been measured as deviations from the population 
mean so that Xij • Gi + PEi :+-TEij • 

Assume the phenotypic variance is (2000 lb) 2 , the genetic variance is 
(1000 lb) 2, and the variance of permanent environmental effects is 
(900 lb) 2 . Note the phenotypic variance is (2000 lb)2 = ~,000,000 lb2. 

a) What is the variance of the "average" the dairyman is using? 

b) What is the covariance of that "average" with the genetic value 
of the cow? 

The usual average is Xi• (Xii+ Xiz + Xi 3)/3, 

c) What is the variance of the usual average_? 

d) What is the covariance of the usual average with the producina 
ability of the cow, Ai - Gi + PEi 
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Q'\ Second Exam, November, 1976 
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3. Given two equivalent models: 

(1) pi • J.Jp + Gi + Ei 

where J.Jc • 0, µE • 0, J.Jp.; 0, and with no covariance 
between Gi and Ei; 

<2> Pi "" JJ + gi + ei 

where Ug ,J. 0, J.Je;. 0, JJ {, 0, and with no covariance 
between gi and ei. 

Assume that Var(Gi) • Var(gi) • oa and Var(Ei) • Var(ei) • ~-

Show that oi is the same for models (1) and (2). a) 

b) If a~• oi o + 0\1 + oi 1- + ol 0 • 30 + 20 + 10 + 40 and o} • 
ripE + afE • 20 + 80 • 100, what is the heritability for this 
trait; what is the repeatability for this trait? 

4. A logical way to estimate the environmental covariance between rela-
tives is to obtain two groups of relatives such that in one group an 
environmental covariance has a chance to be expressed (for example, 
full brothers raised in the same litter of pigs) and such that in the 
other group there ia no chance for an environmental covariance to be 
expressed (for IUt&Dlple, between full brothers separated at birth and 
raised in different litters). Suppose the following phenocypic co-
variances have been CQIIIJ)Uted for weaning weight in pigs: 

Covariance between full sibs in same litter 
Covariance between full sibs raised in different litters 
Covariance between paternal half-sibs in different litters 
Covariance between identical twins in Sa!lle litter 
Covariance between identical twins raised in different litters 
Variance of single records 

.. 5.625 

.. 2.625 
• 1.000 
•ll.000 
"' 7.000 
•25.000 

a} What is the estimate of the enviromnental covariance between full 
sibs raised in the same litter? 

b) What is the est:biate of the environmental covariance between 
identical twins raised in the same litter? 

c) EstiD111te oi 1. (Rint: - 1.) 

d) Estilllate of 9. 

L Do this question. 

2. 

Given: h 2 .. • 40 1' • .55 o'i0 .. 400 0}•1000. 

a) The following unrelated animals are to be ranked for additive genetic 
value. Their records and records of their relatives are given. 

Si!!:S:le Records 
An- Own Sir-t pam 

A 20 
B -15 10 
C s -10 
D -10 2D 
E 30 
F s 15 

b) What would you expect the superiority in additive genetic value co be 
if two of these six anilnals are selected? 

Do this question. 

a) The selection index procedure bas been used to evaluate an animal. 

I• 18 r - .60 h 2 ... 36 

oJ • (50) 2 

What is the probability the true value of the animal is greater than 
121 

b) Given: 08 • (30) 2 

E(X1) ... 0 . 

r • .60 h2 - .36 

The index for predicting a future record of an animal fro~ a record 
of the sire, X1, is I• ½h2X1, Suppose for an animal that I 2 8. 
What is the probability that a future record of the animal will ex-
ceed 48? What is the probability a future record will be less than 
zero? 



3. Do either this q~estion or question 4. 

You are ,sked to compare two proposed boar testing procedures. Selection 
is for additive genetic value. Ten progeny are to be measured for gain 
frOlll 21 days to 60 days. Assume 100 litters are available each year. 
Further assume that all litters have five pigs, that the gains are ad-
justed for sex and for age of the sow, and that all sows are unrelated 
to each other and to the boars. 

Procedure A is to measure two-pigs from each of five litters (20 
boars can be tested). The other three pigs from each litter are not 
111easured. 

Procedure Bis to measure five pigs from each of two litters (SO 
boars can be tested). 

Assume the additive genetic variance is .300'}, the environmental 
covariance between full sibs is .2~a}, and the environQental covariance 
between paternal half-sibs is zero. 

Note that the weighting factors will be the same for all five 
litters in Plan A and similarly the weighting factors will be the same 
for both litters in Plan B. Note that selection intensity will not be 
the satne for plans A and B. 

4. Do either this question 2!. question 3. 

Since the progeny of inbred parents resemble one another and their parents 
to a greater degree than those from noninbred parents, inbreeding is 
sometimes used for generating genetic uniformity. 

A bull stud decides to progeny test 10 unrelated inbred bulls (F • ~). 
They obtain 20 progeny per bull. Assume the dams are unrelated to each 
other and to the bulls. The bull stud plans to select the best two of 
these bulls based on progeny records ~ingle record on each progeny). 

COlllpare this procedure with testing 10 noninbred bulls. The assump-
tions are the same except that F O. Selection is for additive genetic 
value. Phenotypic variance a (20) 2 , additive genetic variance~ (10) 2 , 
and variance of producing ability - (15) 2 . 

Final Exam, December, 1976 

1. Animals A and Bare unrelated. Both have inbreeding coefficients of .50, 
Ma.ting is done as follows; 

2. 

a.) Show the ad.di tive relationships among the seven animals. Note especially 
the relationship between A and G and also that between F and G. 

b) What are the inbreeding coefficients for the seven animals? 

A researcher ha.a calculated the covariance between maternal half-sibs to be 
25. From the literature, he has estimates that the direct additive genetic 
variance for the trait is 4o, the :maternal additive genetic variance is 20, 
a..nd the direct maternal genetic covariance is -10. The phenotypic variance 
is 100. 

a) Wba.t is the heritability for the direct trait'l 

B) What is the heritability for the :maternal trait? 

c) What is the environmental covariance between maternal half-sibs? 

d) How much of the environmental covariance is not associated with genetic 
effects? 

3. Predict the value of animal A for: 

T" 6GDA + GMA 

whereG,:-A and GMA are the additive genetic values of A for d1rect genetic 
effects and maternal genetic effects. Records are available on t~e sire 
(X1 +40) and another relative (X 2 "' -10) as shown in the diagram. 

at 100, af 2 = 100, aXiXz " 0, a$D : 40, cr$M: 20, and oGDGM = -20. 

Sire of A 
.......-----,,, • 40).........__ 

A_,,,,,--- ---- Dam of sire of A 
..______ and of dam of A 

Dam of A and -----
--- relative of A 

Relative of A--
(Xz = -10) 

.____Sire of 
relative of A 
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4. You have decided since all your calves have the same breed and age of dam 
that the proper model to describe weaning weight of a population of beef 
cattle is:, 

Weaning Weight= Constant+ Sex Effect+ Herd Effect+ Sire Effect 
+ Residual Effect 

which can be written in the usual notation as 

yiJ"kl = u + ai + hj + 8k + wijkl • 

Assume sex and herd effects are fixed but unknown effects. The sire effects 
(sire transmitting abilities} are random effects with variance o; ~ot = 50. 
The variance of residual effects is o~ = 950. 

The following set of records is available: 

(i) (j) (kl (Z) {YiJ"kl) 

'" Herd Sire Galf Weanin~ Weight (kg) -,- -r -r -r DO 
l l l 2 240 
l l l 3 220 
l l l 4 180 
2 l l 5 200 
l l 2 l 260 
2 l 2 2 240 
2 l 2 3 220 
I l 3 l 200 
2 l 3 2 220 

Set up (numerically) the best linear unbiased prediction equations to pre-
diet the effects of sires 1. 2, and 3 and to estimate the fixed effects for 
which adjustments are needed. 

First Exam, October, 1977 

1. A breeder has been told that inbreeding will result in more uniform 
progeny. He decides to mate sire A with inbreeding coefficient of 
1/2 to dam B which has inbreeding coefficient of 1/4. The parents of 
A are unrelated to the parents of B. A bteeding plan as shown in the 
diagram is proposed. What will be the inbreeding coefficients of the 
7 animals? What are the additive relationships of A with C, E, F, and G? 

2. Environmental causes of likeness between relatives generally exist 
only if the relatives are kept together. Thus, one way of e~timatin~ 
the environmental covai::iance is from the difference between the co-
variance of a pair of relatives kept together and the covariance of 
the same pair of relatives kept apart. 

The following six covariances have been computed. 
Covariance (full sibs kept together) 44 
Covariance (full sibs kept apart) - 29 
Covariance (paternal half sibs kept together) 17 
Covariance (paternal half sibs kept apart) ll 
Covariance {parent and progeny kep< together) 24 
Covariance (parent and progeny kept apart) 24 

Additive genetic variance, additive by additive genetic variance, and 
dominance genetic variance as well as possible environmental covariances 
are to be estimated by you. 

3. Known: phenotypic variance ,. 80 
repeatability - .60 

heritability {narrow sense) .40 
heritability (broad sense) .40 

x1 is a record on an animal. 
x2 is another record on the animal. 
x3 is a record on a full sib of the animal. 
x4 is a record on another full sib of the animal. 

One breeder (A) uses as an index: 

IA xl + x2 + {X3 + X4)/2 

Another breeder (B) uses as an index~ 

a) What is the covariance between x1 and x2? 
b} The covariance between x1 and x 3? 
c) The covariance between x 2 and x4? 
d) The covariance between x3 and x4? 
e) Which index will spread out predictions the most? 
f) Give a numerical answer to {e). 
g) Will there be any difference in ranking of animals if IA is used 

as compared to using 18 ? 
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4. Although impossible, assume a molecular geneticist can measure precisely 
additive, dominance, and additive by additive genetic effects. Further 
assume,a cytogeneticist can identify exactly the origin of each gene at 
each locus. For a pair of Cornellius wombatus, the obscure species with 
five loci which has an affinity for adverse weather and ordinarily 
resides only in lab exercise 13, the two geneticists have established 
the following: 

Molecular geneticist: 
Additive gene effects associated with: 

"i • 4 bl • 1 cl . 2 dl • -2 '1 • 0 

"2 • 2 b2 • 0 c2 • -1 ", . -1 '2 • 0 

":i • 0 b3 • -1 c, • -1 d3 • 3 . , . 0 

Dominance ge:i.etic effects associated with: 

ala2 . -2 ele3 . 4 

alal . 1 elel . 0 all others .. 0 

a2a2 . 1 e2e2 . 0 

Additive by additive genetic effects associated with: 

blcl . -3 c3el . 4 
all others • 0 

blc2 - 3 c3e3 - -4 

eycogeneticist: 

Your task: Complete the following table 

Additive 
Genetic Value 

Dominance Additive by Additive r 

Second EJtam, November, 1977 

1. An animal breeder (A) has devised a breeding plan which he f~els is 
optimum for a trait. He can select the best 10% of males and best 80% of 
females with correlations between true and predicted genetic values of 
.90 and .45, respectively. The generation interval for males is 6 years 
and for females is 5 years. The heritability of the trait is .30 and 
repeatability is .45. 

Another breeder {B) thinks her plan is optimum for another trait. She 
can select the best 20% of males and best 70% of females. The correlations 
with true genetic value are .85 and .50, and the generation intervals are 
4 years and 6 years. The trait has heritability of .25 and repeatability of 
.so. 
a) Kow much gain per year can breeder A expect? 
b) How much gain per year can breeder B expect? 
c) Which breeder (A or B) can expect to make the most progress? Why? 

2. The transmitting abilities (one-half additive genetic value) of the 
following 3 sires are to be predicted. The 3 sires are unrelated to each 
ocher. All of their mates are unrelated to each other and unrelated to the 2 sires. Heritability• 1/2; repeatability• 3/4; phenotypic variance~ (2,000} 

Sire 
A 

B 

C 

Information available 
10 progeny with one record each average +500. 

5 progeny: first records average +400, second records average +600. 

l progeny with l record of +1000. 
2 progeny, each with 4 records which average +500. 

3. In herd 1, fi:!_e dau_g_hters of sire A average 500 lb more than five daughters 
of sire B; i.e., XA - = 500 lb. 

1 1 

In herd 2, 10 other daughters of sire A average 200 lb less than 10 
daughters of sire e; i.e., XA - Xe -200 lb. 

2 2 
Assume all daughters have unrelated dams. Heritability• 1/4; 

repeatability• 1/2; phenotypic variance• (2,000 lb)2. 

a) Predict the difference in additive genetic value of sires Band e; 
i.e., GB - GC" 

b) 

c) 

What is the correlation between GB 
from part a). 

Ge and the prediction of G8 Ge 

If the difference between GA and G8 is to be predicted, should XA - XC 
2 ·2 be used. If yes, indicate why and how without solving any equations. N .._, 

"' "' 
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4. A cow has two records that averaged +.4% in fat percentage. What 
is the pro~ability that 

a) the next record will be greater than .4%? 

b) greater than 0. 0%? 

What is the probability that the average of five future records will be 
greater than 

c) +. 4%? 

d) 0.0%? 

Heritability~ 1/2; repeatability• 6/10; phenotypic variance - (.5%)
2

• 

Final Exam, December, 1977 

1, The matings, indicated by the arrow diagram, are proposed as a 

way of building up inbreeding. 

16 points t) 
b) 

Compute all additive relationships. 
..bich anilllals will be inbred, and what are the inbreeding coefficients? 

2 points c) Suppose that A and Bare breeds rather than individual animals. The 
diagraG then describes a crossbreeding pattern, Can the usual 
relationship table be used to indicate the fraction of genes each 
parent breed contributes to each generation? For example, what 
fraction of genes does breed A contribute to G? 

2 points d) Derive a general formula to describe the contribution of breed A 
to progeny of the nth generation if the system of mating described 
in the diagram is continued. 

NOTE THAT THIS IS A DOUBLE CREDIT PROBLEM 

2. The following records are available: 
Milk {pounds) 

Average of 20 
half-sib daughters of sire A~ +1000 

Average of 5 
full-sib daughters of sire B = +1200 

One record of 
daughter D of sire C - +800 
One record of 
dam of animal D = +1600 

The following information is also known: 

Milk 

Phenotypic variance (2300) 2 

Heritability .20 

Repeatability .45 
Environmental covariances 

Between full sisters .16(2500) 2 -

Between half sisters . 00(2500) 2 -

Between daughter and .04(2500)2 
dam 

_F~t~uE_<ls) 
One record of a 
full sister of sire A +30 

One record of 
dam of sire B = +20 

Average of 5 paternal 
half sisters of sire B +40 

Average of 10 paternal 
half-sisters of sire C 

(100) 2 

.25 

.50 

(1000) 2 .16(100) 2 

0 .00(100) 2 

(500) 2 .04(100) 2 = 

+IO 

(40) 2 

0 
(20)7. 

fa) 32 points; Rank sires A, B, and C for additive genetic value for milk yield. 
Rank sires A, B, and C for additive genetic value for fat yield. ,b) 

6 points c) Suppose fat has 10 times as much value per standard deviation as 
milk. The value of milk is $.05 per pound. Rank sires A, B, and C 
for their additive genetic economic value for milk and fat. 

2 points 
d) What information do you need to improve the accuracy of the economic 

ranking if the same records are used? 
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3. A specialist in animal breeding has provided the following 
information to a bull stud: 

Prediction of record 
Prediction of Genetic Value of a future daughter 

Correlation with Correlation with 
Bull Index value Genetic Value Index value Record 

A 2000 .50 1000 .125 
B 800 1.00 ,oo .250 

C 600 1.00 300 .250 
D -1000 .80 -500 .200 

Phenotypic variance• (2000)2 Heritability• .25 

The bull stud has e111ployed you to interpret such results, You decide 
to illustrate your knowledge (hopefully) by showing the manager that 
you can cell the bull stud the probability that a bull has genetic 
value greater than +1000 and that you can tell a herd owner the 
probability that a record of a daughter will be +1500 or greater. 

12 point,(•) 

~) 

What is the probability that the genetic value of A is greater 
than +1000? 
What is the probability that the genetic value of Bis greater 
than +1000? 

6 points c) What is the probability that a record of a daughter of B will be 
greater than +1500? 

After you have done this, the manager also asks: 

2 points d) What is the probability that a record of a daughter of B will 
exceed a record of a daughter of C by 500 or more? 

,. A breeder asks you vhich of <wo selection methods yo, would 
reccr.:nmend. 

Method A, Index '" .,x ·" ,, - ,. o= 
Method ., Index - .9X 1, .zx2 , o= dam 

and X are traits 1 and 2 measured on the animal. 
2.-

is trait 2 measured on the dam. Trait 2 is mea~urcd at 

a mature age vhile trait 1 is measured early in life. Thus, tlw 
generation intervals are 5 years for Method A and J years for 
Method B for both males and females. Assume selection inten~ities 
are equal for males and females. Males and females are selected 
by the same index. The situation in beef cattle where trait 1 
vould be yearling weight and trait 2 would be mature veight might 
be similar to this. 

The phenotypic and genetic variances and covariances are 
shown below (variances are on diagonals and covariances on the 
off-diagonals). 

Phenotypic 

,oo 
120 

x, 
120 

100 

Genetic 

G1 121 

55 

55 

36 

The economic values are: for trait 1, $3/unit, and 
for trait 2, -~1/unit 

so that T • $3(Gl,animal) $l(G2,animal) 

3 points a) What is oi ? 

14 points {b) 
l,) 

What are 6G1 
What are L>G1 

and 6T for Method A? 
and 6T for Method B? 

3 points d) Which method would you recommend to the breeder and why? 

N 
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5. This is a bonus problem 

Suppose che record on an animal (,) is influenced by the maternal 

,genetic ability of '" dam (x') and by che value of Che genotype 

of the fetus (w ) 
X 

born ac che start of che record. The model fo, 

the record can be written as: 

P = g + m , + f 
X X X WX 

+ e 
X 

where: •x is che direct additive genetic value of x for the trait; 

m x' is che maternal additive genetic value of x'; 

f is che fetal additive genetic value of w x• and 
w 

X 

e is the total of all other environmental effects. 
X 

The variances and covariances of the direct, maternal, and 
fetal additive genetic and of.!. effects of the same animal are: 

g m f e 
X X X X 

•x 40 -5 -10 0 

m 20 5 0 
X 

f 30 0 
X 

e 120 
X 

The diagonals are the variances and the off-diagonals are the 

covariances. 

a} Develop a general symbolic expression in terms of relationships 
and genetic variances and covariances for the covariance 
between animals x and y with dams x' and y' and with 

records started by birth of fetuses wx and wy' 

b) Calculate the covariance between records of two full sibs 
both of which were mated back to their fathers, 

First Exam, October, 1978 

(25 points) 

I. '!be following arrow diagram describes a set 
Only E has a parent that was not related to 
A and B. Note that F - 1/4 is also known. 
relationship table fo~ the 7 animals. 

of matings a 
the original 
Compute the 

-~:~x· 
G?~]< B 

FD - 1/4 

breeder has mad~•. 
parent pair, 
complete additiv~ 

(20 points) 

A B C D 
A - B 

E 
C - D 

F 
2. 

A 1 ! 0 1 0 5 1 
4 2 ii 4 

B 0 l ! 0 3 3 3 
2 ii 4 16 

C 
1 0 1 _e 0 1 13 
2 8 4 16 

D 0 3 0 l l ] 11 
8 8 16 16 

E .e 3 1 3 
8 4 4 16 

F 1 3 13 11 
4 16 16 16 

Given the partially completed table of additive·relationships: 

a) What is the inbreeding coefficient of E? 

b} What is the additive relationship between E and F? 

c) What is the dominance relationship between E and F? 

N 
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(25 points) 

3. The following tables of additive and dominance relationships are known: 

Additive Dominance 

A B C D E F A B C 0 E F 

1 0 1 1 1 1 
4 4 8 8 A A 1 0 0 0 0 0 

0 1 1 1 1 1 
4 4 8 8 B B 0 1 0 0 0 0 

1 1 1 1 3 3 
4 4 2 8 8 C C 0 0 1 1 - ·-4 
1 1 1 1 3 3 
4 4 2 8 8 D D 0 0 1 1 -- --4 
1 1 3 3 1-' ' 8 8 8 8 4 8 E E 0 0 -- -- 1 --

1 1 3 3 ' 1l 8 8 8 8 8 4 F F 0 0 -- -- -- 1 

The following is also known: 

Phenotypic variance . 100 • 
Heritability (narrow sense) .32. 
Repeatability .60, 
Dominance genetic variance 16, and 

Additive by d0111inance 
genetic variance 8 

a) Whac is the covariance between records of relatives C and o? 

b) What is che covariance between records of relatives A and C? 

c) Whac is the variance of single records of animals such a, A? 

d) _, is <he variance of single records of animals such as E' 

(30 points) 

4. The following index has been proposed to select for additive genetic 
value of an animal when a record on the animal's 1110ther (X1) and also a 
record on the dam of the mother (X2) are available. 

Given cri_ 

Father 
Animal .,___. 

"---- Mother 
(Xl) 

r ... 60 

<-- Dam of mother 
(X2) 

No environmental covariance between a mother and progeny. 

a) What is the variance of true value? 
b) What is the variance of the index? 
c) What is the average squared prediction error of the index? 
d) \Jhat is the rh? 
e) How could you detendne if this is the "best'' index1 

Second Exam, November, 1978 

(5') points) 
(40 points) 1. a) A breeder has asked you to rank the following six unrelated animals 

for additive 8enetic value. 

(10 points) 

Phenotypic variance 
Heritability 

100,000 
.20 

Repeatability 
Environmental covariances: 

.40 

Animal 

A 
B 
C 
D 
E 
F 

Full sibs 
Paternal half aibs 
Parent and progeny 

4,000 
1,000 
2,000 

Records available (difference 

Record on A . 400 
Record on B - 200 
3 records on C ave. - 300 
Records on 2 full sibs ave. 
Record on a paternal half sib 
Sire of F has 5 records ave. 
Dam of F has 1 record = 400 

from mean) 

. 600 {one record each) 
1000 
300; 

b) Indicate clearly without actually ranking the animals how you would 
predict a record for each of the six animals. 

N 
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(25 points) 

2, Selection indexes for two unrelated animals have been calcul~tcC. 
The animals were evaluated for genetic value. 

Phenotypic variance - 1000 
Genetic variances: 

Additive genetic - 200 
Dominance genetic • 100 
Additive by additive genetic m 100 

Permanent environmental variance - 150 
2 

Animal _I_ 'TI 
A 15 .36 
B 10 .91 

is the probability that <he genetic 
10? 
is the probability that the genetic 
10? 

value 

value 

(10 points) a) What 
than 

5 points) b) What 
than 

5 points) c) What is the variance of the difference between 
IA - IB ? 

of A is greater 

of B is greater 

the indexes, 

5 points) d) What is the variance of prediction error for predicting the 
difference in genetic values of animals A and B~ 
The prediction is IA - IB. 

(25 points) 

3. Four sets of animals are available for sale. Each set includes two 
animals. Each animal has one record, but only the average for the 
set is known. Rank the groups according to their predicted additive 
genetic value. 

The following infoTIDation is also known: 

Phenotypic variance • 100 
Heritability (narrow) - .36 
Repeatability • . 60 
Dominance genetic variance - 12 
Environniental covariances: 

Full sibs 
Paternal half aibs 
Unrelated 
Parent-progeny 

Group 

2 full sibs 

• 30 
0 
0 
5 

1) 
2) 
3) 
4) 

2 paternal half sibs 
2 unrelated animals 
parent and 1 progeny 

40 
40 
40 
40 

Prediction 

Remember to write down what information is available and what the true value is 
for each group. 

Final Exam, December, 1978 
(30 points) 
1. The arrow diagram shows the relationships among all animal~ in a herd 

which have records. 

c1 has 4 records~ -200 (average) 

c 2 has record 1050 

c 3 has l record 400 

record= -600 

n1 has 2 records 

n2 has l record 

record 

300 (average) 

500 

-700 

D4 has 1 record • 800 

Phenotypic variance= (400) 2 , heritability• .50, repeatability~ .60. 
The environmental covariance between animals with the same sire is 200. 

a) Show numerically how to set up the selection index equations to predict 
the additive genetic value for each of the animals which have records, 
i.e., cl, c2' CJ, C4, Dl, D2, DJ' and D4 • 

b) 

(30 points} 2. 

Sire C does not have a record. Can the additive genetic value of 
Sire C be predicted? If yes, what records would be used and how. 
A breeder is convinced two traits (A and B) have economic importance 
and that he should select jointly for both of them. He is currently 
selecting on only one trait (A) which is measured earlier in life 
than the second trait (R). If both traits are used in the selection 
index, the generation interval wi.11 be increased by 2 years as 
sho\ltl in the table. The fractions selected for breeding for the 
two plans will be as shown: 

The 

Traits used 
in selection 

A 
A and B 

Generation 
interval 

3 yr 
5 yr 

variances and covariances are: 
Phenotypic 

Trait A B 

A (4ool 0 

B 0 (10) 2 

Fraction selected 
out of survivors 

.10 

.15 
.40 
.60 

Trait A B 

A 

B 

(200) 2 100 
100 (4i2 

Assume the correct economic values are $3 per unit of trait A 
and S20 per unit of trait B; i.e., T ]GA+ 20GB. Compare the tW<'I 
selection proc.ed,,res whi<'h are the s;:ime for h0th males and f,.,m;:iles: 

First procedure is bXA (Note that b can be any number# O.) 
Second procedure is (bA and b8 are to be S.I. weights. J 
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(20 points) 
3. Two unrelated sires are to be evaluated. 

Sire A, by some miracle, is completely inbred, FA .. 1. 
Sire Bis not inbred, ,, • o. 
Each sire has 20 progeny. The 40 mothers are unrelated and 
unrelated co the sires. The progeny averages are: 

Sire Progen::r.: average (single records of 20 progeny) 
A 400 
B 400 

Phenotypic variance• (200) 2 , additive genetic variance - (100) 2 , 
repeatability "' 1/2, heritability • 1/4. 

a) Predict the additive genetic value for each sire. 
b) Calculate the correlation between true and predicted additive 

genetic value (rTI) for each of the two sires, (You can leave the 
answers as r} 1 

Now assume for c) and d) that the environmental covariance among 
records of progeny of sire B equals one-fourth the phenotypic 
variance. 

c) What is the prediction of the additive genetic value of sire B? 
d) What is the rTI for sire B? (Or ri 1 ? ) 

(20 points+ 3?) 
4. Calving difficulty is measured as a categorical trait. If the 

only two categories are (1) difficult, and (2) not difficult, 
the model is the same as for traits measured on a continuous scale. 
In this case the measurements are l, for a difficult birth, and 
0, for a not difficult birth. The sire of the calf (mate of the 
cow) can influence the birth through genes transmitted to the.calf. 
There may also be a need to evaluate the sire of the cow for the 
ease which his daughters give birth. Thus, two predictions are 
needed: effect of sire of calf and effect of sire of cow, 

Separate predictions should be made for each sex of calf but for 
this problem assume sex of calf is in the model as a fixed effect. 

The model for this problem is 

yijkl • u +xi+ sj + 11\ + wijkl 

where u is a constant, 
x1 and x2 are effects of female and male births, 
sj (j=l,2,3) is the effect of the sire of calf (o; ... 005) 
11\ (k~l,2,3) is the effect of the sire of cow (o! = .002) 

•· is the re'sidual effect (o 2 • .160), and wijkl w 
yijkl is the observation on the 1th cow (1 if a difficult 

birth and O if a not difficult birth), (o 2 = .167) y 

.) 

The following table summarizes a set of data. (A real set would 
probably have quite a different pattern.) 

Number of Number of 
difficult births (:'ijk.) calvings (n ... ) 

'F 
Sire (j) Sire (j) 

Sex(i) A B C S= A B C 

2 
D 10 5 D 3D 40 10 

1 E 10 60 7D 

F 15 5 50 10 ,,o 

2 D 10 6 4 20 30 20 

2 E 10 15 70 60 
C • F 20 2 5 60 20 50 

-·----· 
Sum 

a) Set up the equations needed to predict the effects of sires 
A, B, and C as sires of calves and the effects of maternal 
grandsires D, E, and Fas sires of cows giving birth. (Do 
not attempt to solve the equations.} 

Total 

b) Bonus of 3 points (Not credited if you obtain 20 points on part a) 

How many equations should be set up before constraint(s) are applied? 
How many constraints are needed? 
Write down a set of equations to solve the desired prediction~. 

(Do not attempt to solve the equations.) 
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30 points 

A. S. 420 
First Exam 

October, 1979 

I_ A and B are full sibs whose parents are related by so~.. Animals 
A and Bare the basis of a linebreeding program which has progressed 
as fol lows: 

A A 

C---> G---> 

a) ll'hich of the ten animals, A to J, are inbred? 

b) What are the inbreeding coefficients? 

c) Show the additive relationshins among the ten animals. 

d) Can you calculate the dominance relationship between E and F? 
If so, what is it? 

40 points 

2. You are to rank animals A, B, and C. F.ach has the same kind of 
available information, x1 and x2. 

The selection index equations are: 

400 bl 40 b2 155 

40 bl 400 b2 65 

The selection index is: 

I C 3/8 X1 + 1/8 x, 

Can you compute the following? T·'° ye-s, what are the nurn0rical i·a]ues? 
If no why not? 
a) o' I yes no o' I 

b) ' 'n yes no ' 'TI 

c) V(T-I): yes no V(T-1) 

d) Can you evaluate animal D which has only x1 available? If so, 
how would you do it? 

A friend thinks the index should be 

Can you compute the following? If yes, what are the numerical values? 
If no, why not? 

e) a' I 

f) r~I 

g) Can you 
larger? 

h) Tf yes, 

yes no 

yes no 

say which r~ 1 (the 
Why or why not? 

h.01,; much lnrger? 

cr' I 

first index or the second) 1oi l l be 
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:,,- 3. The following were part of larger aij, d 1j' and 

a .. d .. -lJ- -lJ-

' ' C 0 A ' C D 
A 0 1/2 1/2 D 1/4 1/4 
B 0 1\ 0 5/8 0 0 0 
C 1/2 0 1/4 1/ 4 0 0 
D 1/2 5/8 1/ 4 0 1/4 0 0 

The following variances are also known: 

additive genetic variance 
dominance genetic variance 
additive by additive genetic variance 
additive by dominance genetic variance 
environmental variance 

a) What is heritability of this trait? 

b) Whu is repeatability of this trait? 

c) What is the covariance between a record of A 

d) What is the covariance between a record of A 

e) What is the covariance between a record of C 

f) What is the covariance between a record of A 

g) What is the covariance between a record of B 

c .. ,, tables. 
c .. -lJ-

A B C D 

.15 0 1/5 0 
0 .15 0 0 

1/5 0 . 15 1/8 
0 0 1/8 . 15 

40 
20 
24 
16 

100 

and a record of C' 

and a record of D' 

and a record of O? 

and another record of A? 

and another record of ,, 

30 points 

A. S. 420 
Second Exam 

November, 1979 

The variances and covariances needed to derive selection indexes using 
repeated records on an animal are given in the following table. 

Re,.;ord Covariances with 
Future Additive Genetic 

1st 2nd 3rd 4th Record of Value of 
Animal Animal 

1st so 30 30 30 30 20 
2nd 30 so 30 30 30 20 
3rd 30 30 so 30 30 20 
4th JO 30 30 so 30 20 

a) What is heritability of the trait? 

b) What is repeatability of the trait? 

c) Predict a future record for the following four animals. 

Animal A which has a first record of +15 

Animal B which has two records, +10, +8 

Animal C which has four records, the average is +5 

Animal D which is the progeny of animal A. 

2. 30 points 

a) Your employer asks you as an expert in animal breeding to buy 3 animals 
for his herd. The only animals available are owned by a progr'essive 
farmer who has indexed his animals for additive genetic value (which is 
what you know you must select for). 

However!! H~ will only sell one pen of animals and only the whole 
pen. You cannot select animals from more than one pen. What is your 
decision? Please state your reasons. 

h2 .25 r , .40 02 = (2000) 2 
X 

Pen 1 Pen 2 Pen Pen 4 
I rn I 'n rn I rn 

100 .so 300 .80 0 .20 600 .40 
0 .10 300 . 10 0 .20 -300 .20 

-100 .40 -600 .10 0 .60 -300 .40 

b) If you were allowed to buy!:_ animals but only the best one per pen what 
would be the expected additive genetic value of the selected animals? 
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10 points 

3. Records on relatives of an animal have been used to predict the additive 
genetic value of an animal, the selection index is: 

I= 27.2 2 
with rTI = .69 

The same records have been used to predict a future record of the same 
animal; again the selection index is: 

I = 27. 2 

The computer, however, 
record. 

2 was not r,rogrammed to compute tlie r TI for a future 

The trait has heritability= .40 and repeatability= .60 

a) 

b) 

2 Can the rTI for predicting a future record be computed from the 
information giv8n? 
If no, why not? 
If yes, do it and show the steps used in arriving at your answer! 

Can the variance of prediction error for predicting a future record 
be computed from the information given? 
If no, why not? 
If yes, do it and show the steps used in arriving at your answer'. 

30 points 

4. Selection indexes to predict future records for two unrelated animals, 
A and B, have been computed from records of relatives. (There is no 
covariance between the index for A and the index for B.) 

heritability= .30 

repeatability= .40 

phenotypic variance= 100 

I • 25 2 .19 A rTI = 

I • 15 
2 A 

.19 B rTIB 
a) What is the probability that. the next. record of animal A will exceed 

b) What is the probability che next record of animal A will exceed 15? 

c) Whac is the probability Che next record of animal B will exceed 25? 

d) Whac is che probability che next record of animal B will exceed che 
next record of animal A? 

25? 

25 

1. 

Final Exam, December, 1979 

points 

XA" ,,, 'c- 'o are measurements on an animal for traits A, B, C, and D. 

The phenot)'pic and genetic variances and covariances are: 

Phenot)'pic variances Genetic variances 
and covariances and covariar.ce~ 

XA x, 'c 'o GA GB GC GD 

XA 200 -SO -20 -40 GA I 20 10 -10 -20 
x, -SO 100 10 20 GB I JO 30 10 20 

'c - 20 10 300 an Ge 
1

-10 10 so 30 

'o -40 20 BO 400 r,D -20 20 30 100 

A breeder has been using the index 

I = 3XA + 2X8 

You have discovered the correct econo~ic value is 

aJ Calculate the expected superiority in T if the best 20 out of SO 
animals are selected based on I = 3XA + 2x8 where traits XA and x8 are measured on each animal. 

b) Calculate the expected superiority in GD if selection is based on 
I = 3XA + 2X8 . 

25 points 

2. Within the foreseeable future it may be possible to obtain female 
progeny of a bull for which, in a genetic sense, the sire is both 
the mother and father. The process would be equivalent to joining 
a pair of random gametes (X-carrying only) of the sire and then 
incubating the zygote in a recipient female. This introduction applies 
to part c. 
What would be the accuracy (rT 1) of predicting the additive genetic 
value of a sire from: 

a) 20 progeny which result from mating the sire to 20 unrelated 
females. 

b) 20 progeny which result from mating the sire to only one super-
ovulated female with the fertilized ova transferred to recipient 
female~. 

,) 

r 

p 

20 progeny for which the sire is genetically both the mother and 
father . 

. 50 

N 
00 
00 "' 



25 points 

3. A breeder of Charolais cattle thinks age of the dam, sex of the 
calf and sire of the calf affect the weaning weight of the calf. 

The model would be 

where 

yijkl=u+ a. + X. + sk + wijkl ' J 

a. is the fixed effect of the ith age of dam, 
' 

x. is the fixed effect of the jth sex of calf, 
J 

sk is the random effect common to calves of sire k with 
mean zero, and variance a: = 600, and 

is a random effect which includes the other genetic 
effects on the calf and environmental factors with mean 
zero and variance a!= 6000. 

The following data adjusted for days at weaning to a 205-day basis 
have been collected. 

Calf Age of dam (~) Sex of calf Sire of calf Weanin,:: wt. 

A 3 M Grandiose 400 
B 3 F Grandiose 450 
C 3 M Grandiose 350 
D 3 M Bellicose 4D0 
E 3 M Bellicose 500 
F 3 F Comatose 300 
G 3 F Comatose 400 
H 3 M Comatose SOD 
I 3 F Comatose SQQ 
J 3 F Comatose 400 

a) Show numerically how you would jointly estimate the effects of 
age of dam and sex of calf and predict one-half the genetic values 
of the three sires. 

b) How many constraints will be needed to obtain solutions? 

(lb) 

25 points 

4. Many animal breeders have difficulty with interpreting what has been 
estimated by solutions to least squares equations. As you know, the 
constraint(s) imposed on the equations in order to obtain solutions 
determine what has been estimated. A popular constraint is the sum 
to zero constraint; that is, the sum of the solutions for a particular, 
kind of effect are forced to sum to zero. 

Consider the model 
1J + a. + w .. ' ,, 

where i = l, 2, or 3, and ai is the fixed but unknown effect of the 
ith age. yij is the record of animal j of the ith age. The wij are 
uncorrelated with variance o 2 and mean zero. Let n. be the number of 

w ' 
records of animals of age i. Then the least squares equations with 
the sum to zero constraint are 

n u nlal + n2a2 + n3a3 y 

nl u + nlal ' y 1-

n2 u n2a2 + ' Y2. 

n3 u + n3a3 ' Y3_ 

a, a, + '3 0 

Notice the new expression, A, which has the official title of a 
LaGrange multiplier, is added to maintain the symmetrical form of the 
equations and to allow a solution to be obtained. 

With this constraint wht:'n nl . n, . n3 . n, ' . y -- ., . 0, 'r Y1. 

'2 . Yz_ - y and ,_ . Y3. - y where the dot notation denotes -- , 
swnmation over that subscript and the bar denotes average; i.e. , 

)\. = Y1Jn1 
Answer the following when n1 = n, and a 1 a2 
a) What function of the parameters (u, a 1, a2 , is estimated 

by "' b) By '1 
c) Can a 1 be estimated? 
d) Canµ he estimated? 

Hint: Try for n 1 = n 2 
n observations. 

3 if you have trouble with the idea of 

y 
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You are 
for some 

ANIMAL SCIENCE 420 

to rank the 

First Exam 
October, 1980 

fol lowing animals 
trait and explain the reasons 

for additive genetic 
for your decisions. 

value 
Different 

kinds of records are available for each animal, but a kind friend 
has worked out the selection index weights and the rTI 's for each 
index. 

Available records $. I. b' s 
foe 

Animal ~l "-2 
x_ 

"-1 ~2 ".3 -, 
A 45 -30 7/15 2/15 
B 80 1/4 

C -15 90 7 /15 2/15 
D 40 1/2 

E -20 20 1/4 1/4 

F 20 1/4 

G 30 -105 7/15 2/15 

The phenotYJ)ic variance for ' trait is 100. 
The covariance between a parent (X1) and progeny (X2) 
The covariance between true value (T) and X is 
The covariance between T and X? is 40. 1 
The variance of T is al50 4(l_ -

You decide to select on the basis of the index 

lyou.,, XI .,. 2X2 

Your friend prefers the index 

!\'hat is the variance of your index? a) 

b) 

c) 

!Vhat is Che variance of your friend's index? 

l11iat is the covariance hetween your index sad 

d) Which is the better index? Why' 

also 

your 

!.TI 

. 73 

.35 

. 73 

. 71 

.so 

. 35 

. 73 

record is 20. 
20. 

friend's index? 

3. Fathers are normally related to their daughters hy SO%. Full brothers 
and sisters are also nonnally related by 50%. Matings of related 
animals result in inbreeding. Two systems of increasing inbreeding 
are: 

1) to mate a sire back to his daughters, then his granddaughters, 
etc. The system starts: 

A~ A""" 
,---,. C ___ _,,, D etc. 

2) to make continuous foll brother/sister matings. The system 
starts: 

A C E ><! etc. 
B~O>F~ 

Which system will increase inbreeding the more raoidly? Explain! 

4. Suppose the impossible happens and two completely inbred but unrelated 
animals are mated as shown. The table of additive re-

lationships is: 

Suppose for some trait: 

a) 
b) 
c) 
d) 
,) 
f) 
g) 

additive genetic variance~ 50 
dominance genetic variance "' 20 
additive by additive genetic variance 
pennanent environmental variance 20 
temporary environmental variance~ 80 

What is heritability of this trait? 
\'Iha t is repeatability of this trait? 
l'lhat is the covariance between a record 

30 

of 
The covariance between ' record of A and a 
The covariance hctween a record ol'" A and a 
The covariance hetween two records of A? 
The covariance between two records of' C? 

A B 

A 0 
B 0 2 

C 

D 

C and a record of D? 
record of D? 
record of B? 

C D 

N 
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Second Exam, November, 1980 

DIAGRAM PROBLEM 1 

PGS 

'(-

PGD 

Full sibs 4------------ D= 
(none of these) 3 records~ 

. 

//,,. average = x3 

MHS 
of these 

with an average 
of x4 

/ MGD 

1. You are asked by a breeding organization to find the weights to be 
given to records of various relatives for predicting a future record 
of an animal. The organization has a computer to do the calculations. 
YouOT!ly need to tell the computer programmer what must be computed. 
The diagram on the facing page shows the relationships among the 
animals and the records available. h2 = .50, r = .60, o~ = (2000): 

o~1 = .10(2000) 2 , the environmental covariance between full sibs is 
.05(2000) 2 , the environmental covariance between maternal half-sibs 
is .00(2000) 2 , the environmental covariance between paternal half-sibs 
is .01(2000) 2 • 

A) You must show the programmer both symbolically and numerically 
what must be done. You do not have to do any arithmetic calculations. 

B) Show the programmer what must be changed if the animal has no 
record, but the average of single records of two full sibs is 
x1 (i.e., replace the record of the animal with the average of 
2 full sibs). 



2. Selection decisions usually can be reduced to the comparison of 
pairs of animals--one to be culled and the other to be selected 
or to be compared with still another animal. 

For the following 4 situations, predict the difference in additive 
genetic for the pair of animals involve . 

.-\) A has a record of +200. 
B has a record of -200. 
They are not related. 
Predict the difference between A and B. 

BJ A has a record of +100. 
B has a record of -100. 
They are paternal half-sibs (same father, but different 

mothers which are unrelated). 
Predict the difference between A and B. 

CJ Two full-sibs of A and B average +150. 
Predict the difference between A and B. 

D) The father of A and B has a record of +SO. 
A has a record of -100. 
B does not have a record. The mothers of A and Bare unrelated. 
Predict the difference between A and B. 

Heritability= .4, repeatability= .6, phenotYPic variance= (100) 2 , 
the environmental covariance between full sibs is .10(100)2, 2 the environmental covariance between paternal half-sibs is .02(100) 

3. A cow has a record of +4000 lb of milk. 

A) What is the probability that her next record will be +4000 lb 
or greater? 

B) What is the probability that the average of her next five 
records (after the first) will be +4000 or greater? 

These problems may have several steps. If you are not sure of the 
answer for a particular step, indicate symbolically the correct 
ans"1,:er, make a reasonable approximation, and proceed with the 
problem. 

\ssume heritability= .36 
phenotypic variance 4,000,000(lb 2) 
the covariance between records on the same animal 

4. Perfect sexing of semen (i.e. into a part always producing males 
and a part always producing females) could increase the selection 
intensity factor for two of the paths of selection but may reduce 
selection for another path. 

E.g. a) cows to produce heifers top 45% rather than top 90% 
b) cows to produce sons top 1% rather than top 2°a 

cl bulls to produce sons top 5% for both cases 
d) bulls to produce heifers top 20% when not separating semen 

too 2S?o for sexed semen because 
of semen loss in processing 

We will assume for purposes of this problem that sexing of semen 
is possible although currently that is not true. 

Assume the accuracies of evaluation for the four paths are for 

a) 
b) 
c) 
d) 

.58 

. 61 

.90 

.85 

(based 
(based 
(based 
(based 

on 2 records/cow) 
on 3 records/cow) 
on 50+ daughters per bull) 
on SO daughters per bull) 

Also assume the generation intervals are S, 6, 8, and 6 years. 

Heritability is 25% 

A) Compare the expected genetic gain for perfect sexing of semen 
with use of regular semen. 

B) What two important factors must be considered before deciding 
whether to recommend sexing of semen? 

N 
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"' 



Final Exam, December, 1980 

~1aximum loss of 16 points on this problem. 

This is a selection index problem. 

I. A professor from a university in Buenos Aires wrote on 
November 4, 1980, that they in~end to begin calculating estimated 

transmitting abilities (one-half of additive genetic value) of dairy 
cows. He wants a complete set of weighting factors for c.alculating 
the herdrnate ETA of a cow. The word her<lmate indic.ates that all records 
are expressed as differences from herdmate averages. In that way the 
records are corrected for management levels. Thus, the selection index 
procedure can be used. 

Since a complete table of weighting factors is unavailable, you 
must show the professor how the weighting factors can be determine<l 
for up to three kinds of records. The cow, he,:-self, has at least one 
rec.ord. Her mother may have none up to several records. Her sire may 
have no other daughters up to several with one record each. 

I~ other <laughters 
ave. of p2 other Caughters 

Assume heritability is .20 
repeatability is .40 

Cow 
x1 = ave. of 

n1 records 

phenotypic standard deviation is 2000 lb 

If records available, 
x3 = ave. of n3 records 

A) Indica~e numerically how the weighting factors would be determined. 
(Just set up the equations numerically, the computer programmer 
can then calculate the weights for different n1 , p2 , and n3 . 

BJ Suppose the professor then writes back and asks how to modify the 
weights if there is dominance genetic varjance and environmental 
covariances. 

' Dominance variance " ( .1) (2000)-
Environmental covariances 

full sibs {.061 (2oool 
paternal half ::ibs (_(14)(2000) 2 

' parent an<l progeny ( .01) (2000)-

Indicate numerically what must he changed to determine the weighting 
factors. 

Maximum loss 
out of 25 
points 

16 points can be lost on this problem. 

This is a selection index problem and not a mixed model problem. 

2. A bull has 40 daughters (all with unrelated mothers) which average 
+2000. 

The bull has an inbreeding 
Heritability is 
Repeatability is 

coefficient of .25 

Phenotypic variance is 
Dominance variance is 
Environmental covariances are 

Parent-progeny 
Paternal half-sibs 
Full sibs 

.40 

.60 
1,000,000 
100,000 

so,ooo 
10,000 
200,000 

(9) A) What is the probability (chance) the transmitting ability of t~e 
hull (one-half of ~is anrlitive ~enetic value) equals or exceeds the 
average of his first 40 daughters? (Complete all numerical 
computations.) 

[3) 

[2) 

[2) 

BJ What is the probability (chance) that the record o~ the 41st daughter 
will exceed the average of the first 40. (Set up numerically so that 
anyone coulcl do the calculations, but you do not need to complete 
the calculations if the instn1ctions are clear.) 

C) What is the probability (chance) that the next 40 daughters will 
average as much as the first 4n? (The next 40 have unrelated 
mothers which are unrelated to the mothers o~ the first 40.) 
(Set up numerically.) 

D) Suppose the bull was mated back to the same co1,;s and with much. luck 
40 more daughters were obtained. l'ihat is the probability (chance) 
that they would average as much or more than the average o~ the 
first 40? This problem violates some o~ the assumptions of the 
selection index procedure, hut the S.I. orocedure can be used. 
(Set up numerically.) 



16 points can be lost on this problem. 

3. Weights at various ages are the economically most important traits 
of beef cattle. 

A heavy birth weight (Bl'/) may cause calvin.l! rlif-:"iculty. If a 
calf is too small, it may not be strong enough to live. 

ll'eaning weight (t·.~·n is the saleable product of the rancher. 

Yearling weight (Y-f\l) is an inclication o.:- weight at slaughter--the 
final marketable product. 

Mature weight (MW) must be maintained and thus heavy animals are 
Aore costly than smaller animals. 

Assume 

The variances (diagonals) and covariances (off-diagonals) are: 

Phenot]'.'.EiC Genetic 
B>J M'/ YW MN BW \•[W YW MW 

Bi'/: (10)2 so 100 100 (5) 2 30 40 40 

\'lW: (40/ 2000 2100 (25) 2 1000 900 

YW: (100) 2 50110 (70) 2 2500 

r!W: (120) 2 (65) 2 

Compare the economic gain expected from the use of three indexes. 
(Assume an equal fraction selected and equal generation intervals.) 

A) An approximate index (essentially heritahility times economic 
value) based only on B!'1 and WW (when choice of replacement heifers 
would be made). 

IA= -.007SBW + .24\\1'11' 

B) An approximate index (if Y\\' were available). 

C) 

1

8

" -.00758'~ + .24"/IW +,20(YI\' - \VW) 

An approximate index :i.t weaning til'le usin,11; the mother's mature 
weiJ:;ht (<li vided ['ly two). 

IC .0075B\~ + .241'1'/ - .OlS(mot}ier's 111•!/2) 

16 points can be lost on this problem. 

This is a mixed model problem not a selection index problem. 

4. The following set of 5 records is representative of a much larger 
set. To avoid a 16-point loss from your grade in this exam you 
must: 

A) write the model and equations to be solved to predict real 
producing ability (G + PE) for the three animals which are 
unrelated. -- -

Heritability= .40 Repeatability= .60 Phenotypic variance 

Animal 104, first record at 24 months of age= 360 
Animal 104, second record at 36 months of age = 440 
Animal X-3, first record at 24 months of age 420 
Animal H06, first record at 24 months of age 380 
Animal H06, second record at 36 months of age= 400 

B) l..i the animals fil related as shown in the diagram 

Xll 

now indicate how the mixed model equations should be changed 
(numerically as far as you can). 



Second Exam, November, 1982 

1. The fol lowing records are available (all arc adjusted for u): 

Animal l; 
Animal Z; 
Animal 3; 

single record 
single record 
single record 

•10 
+12 ,. 16 } average 

The three animals are full sibs (same sire and dam). 
There is a high environmental correlation among 

trait, cFS" 40. Heritability for the trait 1s h 2 

standard deviation is crx " 5. 

a) Predict the additive genetic value of animal 1. 

b) What is the accuracy of the prediction, rTI? 

•14 

full sibs for this 
.ZO; the phenotypic 

The breeder discovers that there were really four full sibs in the 
group but animal 4 was not recorded for that trait. 

c) Predict the record for animal 4. 

2. Tuo bulls have been evaluated for additive genetic value: 

IA 1200 with r}I . 36 

1, 800 with r}I .84 

For this trait: 
h'' . 2S 

C .40 

o' X (ZOOO l' 

a) What is the probability the additive genetic value of A is greater 
than 0~ 

b) What is the probability the additive genetic valuf' of 8 is greater 
than O? 

3. Recent reports indicate that clones of animals can be obtained by 
splitting off cells of a developing blastocyst. These cells are 
genetically identical. Some of the cells can result in offspring which 
have a record. Others of the cells can be frozen, and after their 
clone mates have provided a "clone" test, can be thawed, grown in 
culture, and resplit to obtain more clones. At least, that is what is 
supposed to happen. 

For the- trait 0f interest: 

o~0 40 

o~E 60 

o}E :100 

Assume that single records of 5 members of the clone are used to "prove" 
the clone. 

a) What is the index for predicting a future record of one of the 
frozen cells? 

b) What is the accuracy of predicting additive genetic value of one of 
the frozen cells? 

c) What is the accuracy of predicting additive genetic value of one of the 
five of the clone that has a record? 

N 
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4. A beef cattle ranch wants to select for increased ,,caning weight 
but also knows that increasing weaning weight may increase the size of 
its cows and thus increase maintenance costs. 

Assume 

There is a problem in measuring mature weight but assume it can be 
obtained reasonably well at 2 years of age. 

The parameters are: 

Heritability 

Weaning weight (ww) .25 
Mature weight (mw) .49 

(15) 2 

(63) 2 

Variance 
Phenotypic 

(30) 2 

{90) 2 

The correlations are: genetic, .60; phenotypic, .40. 

The index to predict T from an animal's own weaning weight and mature 
weight is: I = • 058286Xww + • 003429Xmw 

The rTI for this index is ,4883. 

Waiting to use the animal's own mature weight requires selection be 
delayed for over a year adding to the cost of maintenance and an increase 
in generation .interval (asstlllle 6 years). 

One way to make the selection at weaning time would be to predict 
T from the animal's own weaning weight and the dam's mature weight. 

a) Find the index to predict T from an animal's 1-1eaning weight .ind its 
dam's mature wE'ight. (Assume generation interval is rl•duced to 5 years.) 

b) What is the rTT for this index? 

c) If the intensity of selection is the top 30% for both in<lexc-s, and if the 
generation intervals are 5 years for a) and 6 years u,;ing thc animal's own 
mature weight, what i.5 the expected economic progrE>ss hy u~ ing the index 
using the dam's mature weight (a) a,; compared to the index using the 
animal's own mature wc-ight? 

Final Exam, December, 

J. (30 points) 

Given: a~o 40 

o' 01 20 

o;o 32 

aiE 

o~E JOO 

1982 

Cfull s.ibs 

Chalf sibs 

.125 

a) Predict the genetic~ for each of the following animals: 

i) Anll'lal A: Sire's record" 8, dal'l'S record"" 14 

ii) Animal B: 

iii) Animal C: 

iv) Animal D: 

b) i) What is che 

ii) For animal 

iii) For animal 

iv) For animal 

Average of single records of 5 otherwise unrelated 
progeny " 15 

own record 10, a full sib record 5 

own record 12, I'll " . 25 

rTI for animal A? 

" 
C? 

O? 

N 

"' "' "' 



2. (30 points) 

Trait A cannot be measured until 2 years of age. 

Trait B cannot be measured until 3 years of age. 

If selection is based on the animal's records for trait A and trait B, 
the generation interval would be 6 years. 

If selection were based on the mother's records for trait A and 
trait B, 

the generation interval would be only 4 years. 

If selection were based on the animal's record for trait A and the 
dam's record for trait B, 

I2 " 8Pown,A 6?dam,B 

the generation interval would be yea't's. 

Assume the top 50% would be chosen whether 11 or I 2 were used. 

Assume the overall economic genetic value is: 

XA 

,, 
'c 

Phenotypic variances 
and covariances 

XA ,, 'c 
100 0 so 

0 400 100 

so 100 900 

GA 

,, 
'c 

Genetic variances 
and covariances 

GA ,, 'c 
40 -20 10 

-20 80 30 

10 30 300 

Varjances and covariances involving trait C are to be used in h) for 
calculating correlated response. 

a) Compare the annual economic gain expected from use of r 1 with that 
from the use of I 2 . 

b) Compare the expected yearly correlated response in trait C from u~e of 
r1 with that from the use of r2 . If you did not find the weights for r1 and r2 
use: 

r· l 
r • 2 

.O?Xdam,A 

.14Xown,,\ 

.02Xdam,B 

• OlXdam,B for your calculations . 

3. (25 points) 

The model for a record is: 

H. 
' 

where \J is a constant, 

H. is <he 
' 

fixed effect of herd i 

A. " <he fixed effect ofagej, 
J 

gik is <he additive genetic value 

(management level), 

of animal k in herd i. 

(gik + pik) is the real producing ability of animal k in herd i (pik 

producing ability - additive genetic value), and 

wijk1 is the residual (temporary environmental effect on record i. of 

animal k in herd i making a record at age j. 

The g's are uncorrelated, the p's are uncorrelated, thew's are 
uncorrelated and the g's, p's, and w's are mutually uncorrelated. 

Heritability is .10. 

Repeatability is .40. 

Phenotypic variance is 64. 

The following records are available to estimate herd and age effects. 
Set up nwnerically (but do not solve) the mixed model equations corresponding 
to the model and the records. 

There are: Herd Animal i,j,kJ. y ijk~ 

2 herds I I, l 1,1,1, 1 114 2 ages 
s animals 2 1,1 1,2,1,2 118 

2 1,2 1,2 ,2, I lOB 

2 2, I 2, 2, 1, 1 120 
2 2 ,2 2, 1,2, 1 118 
2 2 ,2 2, 2 ,2, 2 122 

2 2 ,3 2. 1, _-:;, l 116 
2 2' ., 2, 1, 3 ,2 120 

b) Show how '"' equations would be modified if the relationship matrix and 
ltS i nver-.;e were: 

1, l I, 2 2, I 2, 2 2 ,3 
a I 1/4 0 0 0 A-1 1 each 16 -4 0 0 A ; Ts X ele-1/4 I 0 0 0 ment -4 16 0 0 

0 0 l 1/2 0 0 20 -10 
0 1/2 I 0 0 -10 20 

0 0 0 0 IS 



4. (15 points) My last chance to stress the importance of e,::pected values!! 
This is an easy problen, if you can manage to read all of it. Good luck!! 

where 

Note: 

The one-way classification, fixed effects model is: 

y ij , µ . F . 
' 

y ij i, "' record on the jth 

µ i, an unknown constant, 

F. ,, 
' "' ith 

E .. 
J 

E(Fi) = \• 

E(w .. ) " 0 u 
E(wfj) =-o! 

fixed effect, 

aad 

+ w .. ,, 
animal exposed to fi>::ed effect 

aad 

i. 

The expectation of the product of any w with any other w is zero. 
The least squares equations are: 

nµ n/1 ni2 + n/3 y 

"1' n/1 yl. 

"2' n2F2 r,. 
n,µ n3F3 r,. 

where n ,, the total number of records, 

ni is the number of records for fixed effect i, 

y is the total sum of records and 

y i. is the total sum of records for fixed effect i. 

One constraint is needed to solve the equations. 

a) When th: const~aint i! that the weifhted sum of fixed effects equals zero: 

nl 1 + n2F2 + nl 3 = O, then \l = y /n 

\'.'hat is the expected value of )l? 

b) An often used constraint is that the sum of fixed effects equals zero: 

(- indicates different constraint used.) 

)" y y 
Then u = .!.c...l..:.. + .2.:.... + ....l:_) 

3 n1 n2 n3 
ll'hat is the expected value of u? 

4. (continued) 

c) When the const-r,aint is \.I " 0, what is the expected value of~? 

(" indicates different constraint used.) 

. 
d) Would you expect J.J J.J u?' (That is, numerical solutions for J.J, J.J, and . 

J.J to be equal.) 

e) flould you expect when all the ni are very large that ].I =µ 

Note: µ " y /n and n. = n 1 + n2 + n3 -

f) What is E(F 1). 

E(i\L and 

E(Fl) ? 

N 

'° 0:, 
0:, 



FIRST EXAM, 1983 
N ::g (30 points) 
> 

1. The sequence of birthdates of the animals in the following arrow diagram 
corresponds to the letters (A is the oldest). 

C 

A~ ---------G 

FA • l :x:------
B ...________H 

F B • l ...________,._ F ---

The inbreeding coefficient of A is l and of B is also l. 
a) Calculate the additive relationships among the eight anim:ils. 

b) Which are inbred? What are the inbreeding coefficients? 

c) If G is mated to H to produce I, what is the additive relationship of 
G to I? 

d) What is the inbreeding coefficient of I? 

e) h~at is the dominance relationship between D and F? 

f) What is the dominance relationship between G and H? 

(30 points) 

2. The following are tahles of 
additive relationships, aij 
d0111inance relationships, dij 
environmental covariances divided by the phenotypic variance, cij 

a .. d .. C .. • • • 
A B C D E A B C D E A B C 

A 0 1/2 1/2 3/8 0 0 0 0 0 1/S 

B 0 1/2 1/2 0 0 0 0 0 0 0 

C 1/2 1/2 1/2 3/16 0 0 1/4 0 1/8 0 

D 0 1/2 1/2 l 3/16 0 0 1/4 

E 3/8 0 3/16 3/16 5/4 0 0 0 

The following variances are known: 

a' • 100 
X 

a;o 20 

a;o 8 

a' • 11 4 

a~l 12 

a;E 18 

a) What is repeatability? 

b) What is heritability in the narrow sense? 

What are the covariances between records of: 

c) (A and C)? 

d) (C and D)? 

e) The covariance between two records of E? 

0 1/8 0 1/4 
0 0 0 0 

D 

1/8 

0 
1/4 

0 

E 

0 

0 

0 
0 

N 

"' "' to 
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(30 points) 

3. Set up symbolically and numerically but do not solve the equations that 
detenlline the weights to predict additiveg'enetic value for animals A, 8, and C. 

Records of 
progeny of animal 
(half sibs of Record of 

Own record each other) sire of animal 

Animal Number Average Number Average Number Average 

A 3 so 21 30 -10 

B 3 -20 21 60 40 

C 3 70 21 20 30 

Assume: Heritability (narrow sense) .40 

Repeatability .60 

Dominance variance 20 

Phenotypic variance . 200 

Environmental covariances 

between full sibs 40 

between half sibs 10 

(10 points) 

4. Cloning ~an produce identical twins having completely different uterine 
anJ postnatal environments. Assume the covariance between pairs of such 
genetically identical clones is 90. 

The covariance between pairs of identical twins raised in the same maternal 
environment is 12U. 

The covariance between pairs of paternal half sibs (have Sa.Jlle 
father but unrelated mothers) raised in different environments is 15. 

a) 
a,e 

The phenotypic variance for the population is 200. 

Interpret these covariances assuming that the only genetic effects 
due to additive and to dominance effects, i.e., o~ = o: 0 + o~1 . 

For example, what is the additive heritability and what is heritability 
in the broad sense? 

b) If you have trouble starting this probl<!III, the TA will give you a 
hint (but you can then earn a maximum of 8 points for this problem). 

w 
0 
0 
td 



SECOND EXAM, 1983 

l) (25 point•) 

Ani.,.l• A, B, and Care rare identical triplet•. Each baa two 
record•, Their average•, adjuated for the aean and othei- factor•, ai-e: 

XB • 5 

Xe• 15 

As1uae: 100 
120 

Additive genetic v1riance • 
Total genetic variance 
Phenotypic variance 
Reputability 
Environmental covariance • 

• 400 
.so 

0 

a) Pi-edict the additive geoetic value of ani111,11l A. If you are unea1y 
working with tTiplet1, you can, foi- a penalty of only one point, change 
the problem to involve identical twina, A and B. 

b) Predict a future record of animal A. If you were working with 
twin1, you -y continue vitb no further penalty. 

2) (25 poinu) 

The average of 41 daughter• of a bull ia +2000. With heritability 
of .40, the weighting factor to predict one-half of bia additive genetic 
value ia p/(p+9}, vhei-e p ia the number of daughtera, Thua, the 
prediction of hi• tran••itting ability ia: 

I• (41/50)(2000) • 1640 

The prediction of the average additive genetic value of an infinite 
nu.ber of hi• future progeny ia alao 1640, 

The prediction of a record of .! future progeny is alao 1640. 

Anume: h2 • ,40 
r • .60 
o2 - (2500)2 

X 

a) What ia the probability the TA of the bull i• greater than 01 

b) What ia the 90% confidence range for the average additive 
genetic value of an infinite number of future progeny? 

c) What ia the probability the record of a future progeny ia 
greater than 1640? 

d) What ia the probability the record of a future progeny ia 
greater than 01 
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Do either of (Ji) or (Jii), not both. 

Ji) (25 pointa) 

Given: Phenotypic variances 
milk yield 
protein yield 

(2000 lb)2 
(100 lb) 2 

phenotypic covariance (.8)(2000)(100) • 160,000 

additive genetic variances 
milk yield .25(2000 lb)Z • (1000 lb)2 
protein yield .16(100 lb)2 • (40 lb)2 

additive genetic covariance 
(.7)(1000)(40) • 28,000 

The coverience between the milk end protein everege• for p 
deughtere of the aeme bull ia 

phenotypic cov. + (p-1)(.25 genetic cov.) • 
Assume a bull h•• 50 daughtera, each with• milk end a protein 

yield record. Let~• averege of the 50 milk record• and Xp • averege 
of the 50 protein recorda. 

Co.pare two selection indexes to predict additive genetic value for 

I1 • bXM 
••• 

12 • + bp Xp 

1.5385 
1.7014 

-5.2634 

a) What ere the eccuracy valuea for the two iodexea for predicting 
additive genetic value for milk yield? 

b) If aelection ia on 11, whet ia the expected correlated reaponae 
for protein yield? 

c) If selection i• on 12, what ia the expected correleted 
for protein yield? 

Do either of (Ji) or (Jii), not both. 

Jii) (25 points) 

Given: Phenotypic variances 
milk yield 
protein yield 

(2000 lb)2 
(100 lb)2 

phenotypic covariance (.8)(2000)(100) • 160,000 

additive genetic variances 
milk yield .25(2000 lb)Z • (1000 lb)2 
protei~ yield .16(100 lb)l • (40 lb)2 

additive genetic covariance 
(.7)(1000)(40) • 28,000 

Aaaume a cow baa both a milk record and a protein record, and 

Compare tvo selection indexea for predicting edditive genetic value 
for milk yield: 

• •• 
a) What are the accuracy veluea for the two indexea for predicting 

additive genetic velue for milk yield? 

b) If eelection is on Ii, whet ia the expected correleted reaponse 
for protein yield? 

c) If selection is on 12, what ia the expected correleted response 
for protein yield? 

l,J 
0 
N 
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4) (2S poinc.) 

::r> A friend ••k• you to recoaDend the better of tvo breeding program• 
for improving additive genetic value that your friend i• conaidering. 
Show, numerically, the relative expected gain per year for the cvo 
plana. 

A) Select 
Auume: 1) 

2) 
)) 

airea baaed only on recorda of their mothera. 
Th• "TI for the additive genetic value of 
aothera ia .60, 

Selection ia from the beat 1 of SO, and 
Generation interval ia 2 yeara for airea. 

B) Select dams baaed only on their recorda. 
Aaaume: l) The CTI for dama ia .60, 

2) Selection ia for the beat 901, and 
3) Generation interval ia 4 year• for dama. 

Plaa II. A) Select airea baaed on record• of SO daughters (an AI 
atud aaintaina and teat• the airea). 
Aaaume: l) r'TI for additive genetic value of the airea 

i• .90, 
2) Selection i• for the beat l of 10 1 and 
3) Generation interval ia 7 yeara for airea. 

B) Select dama baaed on their record• and evaluations of 
their airea. 

Auume: 1) The 'TI for dau ia .6S, 
2) Selection ia for the beat 90%, and 
3) Generation interval ia 4 yeara for dams. 

FINAL EXAM, 1983 

1. (25 points} (This problem should be easy.) 

Litter C Sov A 

>:::' X 

Litter D B 

Record of aov A: +10 

Record of sow B: -5 

Average for the 6 pigs in litter C: 

Average for the 10 pigs in litter D: 

Phenotypic variance• 100 

Additive genetic variance• 20 

Dominance genetic variance• 8 

+2 

+4 

Additive by additive genetic variance• 4 

Enviroomental covariance between full sibs 

Environmental covariance betveen half siba 

10 

0 

Environmental covariance between progeny and dam• S 

Set up numerically (but do~ solve) the selection index equations 
to: 

a) predict the additive genetic value of boar X. 

bl predict the additive genetic value of sow A. 

Then sbov for both cases hov you vould use the veights (syuibolic) vith 
the records (numeric} to: 

cl predict the additive genetic value of boar X. 

d) predict <he additive genetic value of sow A. 

w 
0 w 
"' 



2. (25 points) (This problelll 1118y seePa difficult; if you have 
difficulty, start with T • GA and then expand Co T,. GA+ Go.) 

Additive genetic value (GA) and d0111.inance genetic value (Go) for 
the same trait can be considered to be separate traits although the 
phenotypic observations will include both kinda of effects. 

Aaauiue selection is for T • GA + Go; note that the economic values 
are eq_ual. 

Assume the selection intensity factor for both selection plans I 
and II is O • 1.5. 

Assume af0 • 40, aij 1 • 20, a; • 200 apply to some carcasa 
characteristic which precludes meaaurePaent on breeding animals. 

Compare two selection plans. 

I. Select lllales based on the average of single records of 10 of 
their half sibs. 

10 half 

II. Select males based on the average of single records of 5 of 
their full sibs. 

For both plans: 

a) Deteriqine the 

b) Deter111.ine the 

,) Determine the 

5 full 

a -<-------Sire 

,ib,XD,m 

expected superiorities in T of selected 1118les. 

expected superiorities in "• of selected males. 

expected superiorities in Co of selected 1118les. 

d) If the selected animals are mated to a random and unrelated 
group of females, what fractions of the expected superior it iea 
will be transmitted to their progeny? 

3. (25 points) (This problem is not difficult except possibly for d); 
the easiest part is c).) 

Xi• 1600 is the average of single records of 45 progeny of Sire l 
by unrelated dalllS. 

X2 • 1200 is the average of single records of 25 progeny of Sire 2 
by unrelated dams. 

Sire l and Sire 2 have the same father but are not related in any 
other way. 

Heritability• .40, phenotypic variance• (2000)2. 

The prediction of the additive genetic value of Sire 1 is: 

The prediction of the additive genetic value of Sire 2 ia: 

Ic 2 • .1147Xt + l.4495X2 • 1923 

The prediction of the additive genetic value of Sire l lllinua the 
additive genetic value of Sire 2 is: 

a) 

bl 

c) 

Ic 1-c 2 • l.5387X1 - l.3858X2 • 799 

What is the probability the additive genetic value of Sire 1 
is greater than 2000? 

What is the 80% confidence range for the additive genetic 
value of Sire l? 

If only progeny of Sire l had been used to predict the 
additive genetic value of Sire 1, what would be the 80% 
confidence range? 

d) What i.s the probability the difference in additive genetic 
values (Sire 1 - Sire 2) is greater than 5001 

w 
0 
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FIRST EXAM, 1984 

1. A friend baa determined that an appropriate index should be: 

The friend also supplies the following variancea and covariances: 

2 
"•1 • 10 ox1X2 • 5 ox1T • 4 ai • 8 

2 ox2 • 20 ox2T • 6 

•l What i, 2 for the index I• 2X1 + 3Xz? 'TI 

Another friend the correct icdex is 

I• (40 Xt + 60 Xz)/100 

b) What ia rit for the index I~ (40 Xi+ 60 Xz)/100? 

c) Are either of the indexes "the selection index"? 

z. With patience, perserverance, per1uaaion, etc... a lllOlecular 

biologist for a unique (i111aginary) species w-ith 6 loci has determined 

the identity by origin of the genes carried by animala X and Y to be •• 

follows: 

Animal X Animal y 

•1•2 •1•3 

bzbJ bzb3 

C4C7 czc5 

d5d5 d5d5 

e1es e1es 

f4f4 f3f4 

a) What ia the inbreeding coefficient of animal X7 

b) What is the additive relationship between X and Y? 

c) What is the dominance relatiooship between X and Y? 

w 
0 
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> ). In introductory aniiaal genetics courses, a for111ula is given for 

predicting the breeding value (additive genetic value) of an aniul from. 

the average of ita records. You are now able to derive that foniula. A 

for,qula usually is also given for predicting the real producing ability 

of an animal from the average of its records. 

derive that forurula. 

a) 

b) 

Animal i has 4 records averaging +6. 

Animal j has 2 records averaging +8. 

r"" .60 

Predict the breeding value of and of j. 

Predict the real producing ability of and j. 

You are now able to 

c) Can real producing ability be predicted directly from. estimated 

breeding value without estimating real producing ability from the 

foilllula used in b)? Why? 

For d), e), and £), asswae aniia.al i and animal j are both inbred 

with Fi• Fj • .25. 

d) Repeat a), 

e) Repeat b). 

£) Repeat c). 

4, A sheep breeder bred the "best ram in the land" to the "beat ewe in 
the land." The mating resulted in triplets (A, B, C) that looked so 

much alike that the breeder thought they were identical triplets. they 

also looked so much like the "best in the land" parents that the breeder 

decided to establish a line of "best in the land" sheep based on the 

triplets using the breeding plan described in the arrow diagram. Blood 

teats later determined Sand C were identical females; A was a ia.ate:: 

G 

a) Show additive relationships among aniia.al:J A through G on the next 

blank page. 

b) 

c) 

d) 

e) 

Which aniia.als 

coefficients? 

are 

What i, the additive 

land"? 

For d) and e), assume 

What i, the covariance 

What i, the covariance 

inbred and what are their inbreeding 

relationship of G to the "best r- in the 

2 - 16, 2 -.. 2 
- )2 and c,i • 44. 010 001 o,o 

between a record of A and • record of B? 

between a record of B and • record of C? w 
0 
cr, 

"' 



SECOND EXAM, 1984 

1. Thi• i• a single trait question. (30 pointa) 

Assume: 

0io - 20 

0&1 16 

o!o - 8 

o:E - 16 

The enviroWDental covariance between full aiba is .04(100) • 4. 

a) A record of animal ia X1 • 8. 

Animal 1 1J.nd aniJa&l 2 are full •iba. 

i) Predict the additive genetic value of animal 1. 

ii) What ia the r-r17 

b) The average of single records of animal 1 and animal 2 ia 

X1 • 10. They are full aiba in the Sallie litt:er. Only the 

litter average can be measured. 

i) Predict the additive genetic value of animal 1. 

ii) Whac i, <he r-r1? 

iii) Predict the 1J.dditive genetic value of a full aib of animals 

1 and ,. 
iv) What i, the rtr7 

v) Predict the averase genetic value of animals l and ,. 
vi) What it the rr,1 

2. Thia is a single trait queation. 

Given: Phenotypic variance • 200 

Repeatability 

Heritability 

• .50 

• .25 

Average of n • 3 records of animal Z • 20 

T • real producing ability of Z 

I • [n/(n+l)](20) • 15 

r>tI • /n7Cn+TT • 1:75 

(30 pointa) 

a) What is the probability that the real producing 1J.bility of Z i• 

greater than 151 

b) What is the probability that the real producing ability of z is 

greater than 10? 

c) What is the probability that the next record of Z ia greater 

than 151 

d) What is the probability that the next record of z ia greater 

than 107 
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a) 

For two traits, 1 and 2, the following is known 

o2 • 100 x, 
o2 - 400 X2 
0x1x2 • 150 rgl& 2 • .80 

Measurements on traits and 2 for animala A and Bare: 

A 

B 

...!J... 
10 

-10 

Ao.imals A and 

ASSIJllle the net 

1s per unit 

j10 per unit 

22... 
-20 

20 

Bare unrelated. 

econ0111.ic values are: 

of trait 

of trait 2. 

Predict overall genetic value of animals A and B. 

b) What are the relative econ0111.ic values of traits l and 21 

Assume the correct index is: -.5X1 + 4Xz. 

(40 points) 

Assume selection is baaed on this index and the largest 1 of 50 is 
selected. 

c) What is the expected superiority in overall genetic value of the 
selected l of 50? 

d) What is the expected correlated response in trait l? 

FINAL EXAM, 1984 

(25 points) 
l. Thia ia the Mixed Hodel Equations probles:a. 

Given: 
Weaning Weight 

Ani111B.l A5e of Dam (Yr) Sex of anilllB.l 

Al 2 Bull • l 500 
A2 2 Heifer • 2 JOO 
Al 3 2 400 

•• 3 2 200 
AS 3 1 600 

Age of d&111 is known to affect weaning weight. 
Sex of animal is known to affect weaning weight . 
Additive genetic value of the animal is known to affect weaning 

weight. 

Heritability of wea::iing weight is 
4 1 5 are related through bulls C 
diagr&111: 

A2----
So .,.-- ' 

Sc ··----/ _., 
AS 

2 • l ,20, Oy • 400. Anima a 1, 
and D as described in the 

2, 3, 
arrow 

Set up the mixed IIIQdel equations 
values of Al, A2, A3, A4 and AS. 
using.) 

to predict the additive genetic 
(Also write the model you are 

w 
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(25 
2. 

2 

pointa) 
Thia ia the 
carefully. 
Part (a) will 
Part (b) will 
of animal C. 

selection index problem. for a single trait. Read 

be to predict the additive genetic value of animal C. 
be to predict the additive by additive genetic value 

Qiven: 

The sire of C ia animal Z (no records). 
The dam of C ia animal D. 

The average of 4 records of animal Dia Xz • +12. 
Animals A and Bare full aiba, 
The parents of A and Bare animals Sand D. 

The average of single records of ani111ala A and B ia Xi • 
••• 

The inbreeding coefficient of animal C is Fe• ,25. 

2 010 • 20 
2 

001 • 16 
2 

020 - 8 

' an; • 16 

ai • 100 

The environmental covariance between full aiba ia .04(100) • 4, 

(20 points) 
a) Predict the additive genetic value of animal C. 

(5 points) 
b) Predict the additive by additive genetic value of animal C. 

(25 ,. 
3 

poiata) 
Thi, i• the probability problesa.. 

Given: X5 • 24 is a record of 

x., - -9 ,. a record of 

Sand Tare ha.lf-sib1, •st• 1/4 

bl• .40, r • .60, a;• 100 

animal s 
animal T 

(10 poinca) 
a) To predict the additive genetic value of S, GAs, the S.I. 

equations are: 

l00bg + l0bt • 40 

!Obs+ lOObr • 10 

I• (13/33)(24)+(2/33)(-9) • 8.9 

What ia the probability the additive genetic value of animal S ia 
greater than 141 

(5 points) 
b) Predict the additive genetic value of animal T? 

(lo points) 
c) To predict the difference in additive genetic values between 

animals Sand T, GAs - GA-r, the S,I. equations are: 

lOOb5 + lOb-r • 30 
lOb5 + lOOb-z-• -30 

I• (l/3)(24) - (1/3)(-9) • 11 
What ia the probability the difference in additive genetic values 

between animals Sand T is greater than 147 

w 
0 
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(25 points) 
4. This is the multiple trait and genetic superiority problm. 

genetic values are assumed to be additive genetic values.) 

Given: 
Gia is genetic value for trait 1. 
G2a is genetic value for trait 2. 

Overall genetic value of animal a• Ta• SG1a + 2Gza 

X1a • 40 (average of 5 records on trait 1 for animal a) 
No records on trait 2. 

(All 

Trait Heritability Repeatability 
Phenotypic 

standard deviation 

(10 pointa) 

l 
2 

.36 

.16 

genetic correlation 
phenotypic correlation• 

.,o 
·" 

-.so 
.20 

a) Predict overall genetic value for animal a. 

(2 points) 

10 
20 

b) Will changing the econoraic value of trait 2 affect ranking of 
animals? Explain!~ 

4. continued on next page. 

' 
4. (Continued.) For part• c, d, and e: 

Assume selection for overall genetic value is baaed on 1* • X1 
(average of 5 records for the animal being evaluated.) 

Assume 2 animals out of 5 are selected. 

(5 points) 
c) What is expected genetic superiority for trait 2? C011m1ent?? 

(3 pointa) 
d) What is expected genetic superiority for trait l? 

(5 points) 
e) What is expected genetic superiority for T • 5G1 2Gz7 



First Exam October, 1985 

1. (25 points) 

Given: FA• 1, Fs • 1, aAB • 0 and the following pedigree -· C ...-------. 
/

G...._________ -· D-
B 

I~ E 

H -----------...______ -· ·- B 

-· -. 
a) Compute the table of additive relationships. 

b) What is the additive relationship between A and I? 

c) Between G and H? 

d) What is the coefficient of relationship between G and H? 

e) What is the inbreeding coefficient of I? 

f) What is the dominance relationship between C and E? 

2. (25 points) 

Let afo • 64, 2 001 • 32, 2 
020 . 16, 2 op, • 38, 2 OTE • 5D 

The following are tables of aij' dij, and Cij for animals A, B, c, 
"a" "d" 

A B C D ' A B C D E 

A I I I D I I D 2 2 4 A 4 4 D A 

B I I D 2 4 B I 
4 D D B 

C I 0 C 0 0 C 4 
D Symmetric 0 D Symmetric 0 D 

E 1l 
2 E E 

Calculate numerical values for: 

a) Heritability. 

b) Repeatability. 

c) Phenotypic variance for records of animala such as A. 

d) Phenotypic variance for records of animals such as E. 

e) Covariance beween a record of A and a record of B. 

-f) Covariance between a record of A and a record of D. 

g) Covariance between a record of A and a record of E. 

h) Covariance between a record of Band a record of c. 

i) Covariance between two records of A. 

j) Covariance between two records of E. 

"c" 
A B 

.IO 

Symmetric 

C 

0 

0 

D, 

D 

.os 

.os 
0 

E. 

E 

.20 

.20 

.02 

.os 



J. (25 points) 
4. 

Let h2 • .20 and ai • 100 

Animal D is the parent of ani~als A and B that are otherwise unrelated. 

.,.....----,,· 
D ----,... 

The index to predict additive genetic value of D frOIII 

(25 points) 

Given: 2 CTXl • 100 O'X1X2 "' 20 

ai2 • 100 

crx1t • 40 

O'XzT • 20 

a~ .. 40 

Two proposed indexes that uae X1 and Xz are 

and 

XA, a record of A 

x8 , a record of B 

and Is• 12X1 + 6X2 

ia 

a) Write both symbolically and num~rically , but do not solve, the equations to 
find bA and bs • 

b) Now suppose that additive genetic value of A is to be predicted froa. 
IA• bAKA + bnx8 • Write both symbolically and numerically, but do not solve, 
the equations to find bA and J>n• 

c) Will bA • J>u? Why or why not. 

d) Write both symbolically and numerically, but do not solve, the equation to 

find bAB for predicting the additive genetic value of A as IA m bABXAR if only 

the average of records of A and B is known [that is, XAB "' (XA + XB)/2). 

a) What is the variance of IB? 

b) What is the covariance between IB and T? 

c) What is the covariance between IA and In? 

d) Are either of these the "best" selection inde~? If yes, which one? 
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Second Exam November, 1985 (25 points) 

2. Let Xi z 8 • average of single records of 50 paternal half sibs of animal D. 
X2 • 12 • average of 3 records of the dam of D. 

(25 points) Assume h2 • .40, r • .60, ai = 100 

1. Compare plans A and B for gain in additive genetic value. Assume 
h2 = .25, r z .SO and the following: 

Number 

Plan Selection e:ath 'TI Selected Available 

A Sires of sons .90 2 50 
Dams of sons .60 150 15,000 
Sires of daughters ·" 15 50 
Dams of daughters .55 12,000 15 ,ooo 

• Sires (1 record of dam) .25 15 15,000 
Dat11S (l record) .50 12,000 15,000 

Generation 
interval (:z:r) 

10 
6.5 • 5 .5 

2 
4 

The selection index equations for predicting additive genetic value of Dare: 

ll.8b1 + Ob2 s 10 

Ob1 + 73.3b2 • 20 

Thus I• ,85(8) + .27(12) • 10.0 

(6 pt.a) a) What is the probability the additive genetic value of D 10? 

(7 pt.a) b) What is the probability the additive genetic value of D 15? 

(3 pt.a) c) What is the probability a single record of D, Xn, would be less than 01 

(3 pt.a) d) What is the probability a single record of D, Xn, would be greater than 25? 

(3 pts) e) What i, the probability <he real producing ability of D i, leas than 10? 

w ..... 
w 
"" 

(3 pts) f) What i, the probsbility <he real i!roduc:ing ability of D i, leas than 15? 



w .... .,,. 
> (25 points) 

3, The following two tables contain the phenotypic and genetic 
variances and covariances alQong traits A, B, c, and D. If you do 
not underatand the table, be sure to ask the TA to explain it. 

., 
B, 

c, 
o, 

Phenotr12ic Genetic 
....!,__ -·- _c_ _D_ ...!__ -·- _c_ 

100 100 120 0 ., 25 40 60 

400 100 0 ., 10 50 

900 0 c, 400 

1600 o, 

Three breeders want to improve the genetic value of trait A. 

Breeder l is using 

11 • .lXB 
Breeder 2 is using 

Iz ... lXc - .lXn 
Breeder 3 is using 

13 • XA 

_D_ 

-100 

-20 

-150 

900 

Assume equal selection intensities and generation intervals for the 
3 plans: 

(15 pts) a) Compare expected genetic gains for trait A for selection based on 
ti, 12 , and 13 , 

(10 pts) b) If vA "' 10 and vc • 5, i.e., T • VACA + vcGc, find the best index 

if XA and XB are available, i.e., I • BAXA + !3BXB• 

but do not solve the equations. 
Set up numerically 

(25 points) 

4. 

X1 • average of single records of 5 full sibs (parents are Sand D). 

Xz • average of two records on each of 20 paternal half sibs 
(parents are S and 20 unrelated dams). 

X3 • average of 4 records on D. 

Note that Sand Dare half sibs (see diagram). 

Given: h2 ,. .30 

cu• - .10 

a~0 ta} • . lo 

c12 "' .05 

r • .70 

c13 • .20 

c23 • .00 

o"i - 100 

a) Set up nu111erically the selection index equations to predict the 
additive genetic value of s. Do not solve the equations. Note l: 
Cot11pute the relationship table first. Note 2: There are no 
formulas in the book for exactly this case. 

Graduate students only:: 

b) Set up numerically the selection index equations to predict a 
record of a full sib of the animals with records in X1 (that full 
sib wa5 born at the same time but does not have a record). 
solve the e9uations. 

w .... .,,. 
"' 



Final Exam December, 1985 

(25 points) The only problem with mixed model equations-

I, Weaning weight can be considered as a trait of the calf or as a 
trait of the mother. In the second case the trait can have 
repeated records. !8,! of the mother and~ of calf are known to 
influence weaning weight. As a trait of the mother, assume 
heritability is .20 and repeatability is .60 with phenotypic 
standard deviation of 50 lb. 

As an example of the mixed model equations,~~ the equations to 
estimate the effects of age and sex and to predict additive genetic 
value and real producing ability for cows 1, 2, and J from the 
following records. 

Weaning 
weight Cow 

400 1 
500 I 
400 2 
400 3 
600 3 
500 3 

The cows are full sibs as shown: 

Some hints: 

How many age equations? 
How many sex equations? 

Age of ,ow 

Young 
Old 
Young 
Young 
Old 
Old 

How many permanent environment equations? 
How many additive genetic value equations? 

Sex of 

Male 
Female 
Female 
Female 
Male 
Female 

Can you predict real producing ability directly? If not, how? 

the next psge is blank and waiting for the appropriate MME. 

calf 

(25 points) Multiple trait problem 

2, The phenotypic and genetic correlations 
standard deviations and heritabilities for, 
as follows: 

Correlations 

Phenotypic Genetic 

among, and phenotypic 
traits A, B and C are 

_L _B_ __C_ _A_ -•- __ c _ 

Phenotypic 
standard 

deviation Heritsbility 

A 

B 

C 

.80 -.10 

-.20 

.60 .oo 
-.10 

50 

40 

.36 

,25 

.16 

A breeder has been selecting for trait A with IA • .36XA. 
several years genetic response for trait A was estimated 

After 
to be 

a) What is the expected correlated genetic change in trait B? 

b) 

,) 

where 

What is the expected correlated genetic response in trait C? 

Traits B and C cannot be measured until late in life. trait B can 
be measured on the sire and trait C can be measur:ed on the dam. 
Assume the economic values for: the additive genetic values are 
vA = 4, vB • 2, vc • O. Set up (but do not solve) the equations to 
find the selection index weights for the index 

1 a1xA • a2xs 5 • a3Xc0 

x. i, a r:ecord on tr:ait A of the animal being evaluated, 

x., i, a recor:d on trait B of <h• sire, and 

Xco i, a record on trait C of <h• dam. 

Assume the sire and dam are unrelated. 

the next page is blank. 



w -a-> (25 points) 

3. Selection index problem 

a) Rank the following five animala for additive genetic value, 
Assume heritability is .40, repeatability is .80, and phenotypic 
variance ia 200. 

2 

3 

4 

5 

Information (all aa differences from the "mean") 

Record on animal 1 • +20. 

Record on sire of 2 ,. +30. 
Animal 1 is the dam of 2. 

The dam of animal 3 is animal 1, 

Average of single records on 10 progeny of 
animal 4 • +19 
(Other parents are unrelated.) 

Average of single records of 10 half sibs of 
animal 5 • +19, 

(The half sibs are equally related.) 

b) Rank animals 2, 3, 4, and S for dominance genetic value. All 
information needed is given. Think!! 

(25 points) 

4. Another selection index problem 

Predict the difference in genetic value (a) between animals X and Z 
and (b) between animals Y and z, i.e., Gx - Gz and Gy - Gz· 
Animals Y and Z are full sibs and are unrelated to animal X. 

Assume: 

Animal X has 2 records that average +10. 

Animal Y has record of +8. 

Animal z has record of +6. 

•' . • 60 cxy • .00 

r • .so cxz. .oo 

a5/a~ .. • 20 cyz • .15 

. JOO 

Predict a) Gx - Gz and b) Gy - Gz. 

Go to next page. 



4. (continued) 

,) Compare the accuracy of prediction of Gx - Gz (difference between 
unrelated animals) with the accuracy of prediction of Gy - Gz 
(difference between full sibs). If you were unable to solve a) and 
b) show how you would do the calculations. 

d) How will the equations change if the difference in future records 
of animals Y and Z is to be predicted? 

First Exam October• 1986 

(25 points) 

1. In the following pedigree, arrows go from parent to progeny, 
Animals B(C) and C(B) are the result of splitting an embryo and thus 
are related as identical twins. 

a) Calculate the additive relationships among the eight animals, 

b) Which animals 
coefficients? 

ore inbred and what are their inbreeding 



(25 points) 

2. Animals A and B are mated. The fertilized egg is split so that 
four identical clones are born: c, D, E, and F. 

A C 

Split D 

B embryo 

F 
Let the average of five adjusted records of A be x1 • 40 and the 
average of adjusted single records of c, D, E, F be x2 • 30. 

Assume aio • 50 ~l • 20 

h2•.25 r•.50. 

'10 • 30 °i "" 200 

Set up symbolically and numerically the equations to find the 
weights for x 1 and X2 to use to predict the genetic value of animal 
J!.. 

(SO points:equal value to all parts) 

3. Animals A and B have records xi' x,, and X3 available for 

predicting true value, T. Animals C and D have xi and x,. 
o:2 ,. 40. xi x, x, T Animal 

A 20 ---..- 10 
B 0 100 50 
C 40 20 Missing 
D 2D 40 Missing 

The selection index to predict T for A and B is: 
1 • .4ox

1 

+ .10~
2 

• .osx
3

• 

The selection index equations to determine the weights are: 
100b1 + Ob2 + 10b3 • 40.5 

Obl + 200b 2 + 20b3 • 21.0 
10b1 + 20b2 + 80b3 • 10.0 

a) Rank animals A and B for T. 

b) Calculate ri1 for this index. 

c) Calculate for this index. 

d) What is aTI for this index? 

e) For an animal with I• 12.5, what is V(TII • 12.5)? 

£) For an animal with I• 2.5, what ia V(TII • 2.5)? 

Assume 

w -00 
"' 



g) 

h) 

i) 

j) 

k) 

Can animals C and D be ranked if X3 is missing? 
yea!! Write yes for full credit. 

The answer is 

What ia the selection index to be used for animals C and D? 

Rank animals A, B1 C and D for T. 

Which index, 
larger rTI? 
credit.) 

the one for A arid B or the one for C and D, has the 
(A numerical answer is best; a verbal answer for pare 

Which index has the larger r,2? 
verbal answel" for part Cl"edit.) 1 (A nu:merical answer is best; a 

Which index is associated with the lugel" V(TII • I 0 )? 
numerical answer is best; a verbal answer for part credit.) 

Another index has been proposed: 

(A 

m) Will this index have a larger rTI than I • .40X1 + .lOX2 + .OSX3? 
(A numerical answer is best; a verbal anawer for part credit.) 

n) 

Second Exam November, 1986 

1. (25 points) 

More split embryo, identical twins!! 

The additive relationship between full aib parents of identical 
twins W and Z i, .so. 

Twin W has 5 records (adjusted for µ) averaging, "w - -10. 

Twin Z has 4 records (adjusted for µ) averaging, "z - +12. 

Given: a~0 • 40, r • .60, ai • 100 

a) Set up symbolically and numerically (but do not solve) the 
equation(a) to find the weight.Cs) to predict the additive genetic 
value of twin W. 

b) Will the pl"edicted additive genetic value of twin Z be the same as 
for twin W'l Why o·r why not? 

c) Set up symbolically and numerically (but do not solve) the 
equation(s) to find the weight(s) to predict a future l"ecord of twin 
w. 

d) Will the predicted future record of twin Z be the same as for twin 
W? Why or why not? 



2. (25 points) 

A group of breeders with smsll herds asked their extension agent why 
genetic progress in their herds seems to be less than in a group of 
similar herds where all animsls are pooled for selection. The selection 
methods are exactly the same for both sets of breeders. Selection of 
msles is based on a perfol"lll.ance record. There is no selection on 
females. The generation interval for males is 2 years and for females 
is 3 years. Heritability of the trait is .36 and the additive genetic 
standard deviation is 600. 

In the small herds, in each generation each breeder has available 
only 5 males from which the top one is selected based on his record. 

In the pooled herds, 10,000 males are available from which 20% are 
chosen based on their records and randomly assigned to the cooperating 
herds. 

a) Do you have an explanation? 

b) Calculate expected genetic gain. 

3. (25 points) 

Relative economic values (values per phenotypic standard deviation) 
for traits A and Bare 1,000 and -4,000, respectively. Phenotypic and 
genetic variances of and covariances between the traits are: (If you 
are not sure what the tables mean, see the TA). 

A 

B 

A 

50 

20 

Genetic 
B 

20 

40 

A 

100 

50 

Phenotypic 
B 

50 

400 

a) A breeder measures traits A and B on all animals• Set up 
symbolically and numerically (but do not solve) the equations to 
find the selection index. For the correct I, a1 "' 350. 

b) The breeder tells you that trait B i.e measured late in life and 
extends the generation interval an extra 3 years: from 3 years to 6 
years. The breeder asks you if selection is on trait A alone, what 
will the economic gain be as COIQpared to waiting for trait B and 
selecting using both traits A and B? Assume the selection intensity 
factor is 1.00 for selection, both on I • SAXA 68Xn and on 
I "' lOXA (this is the correct selection index if only XA is used; if 
you prefer you can use I = XA because the ranking will be the same; 
for I= lOXA, a1 • 100. 

I.,) 
N 
0 
"' 
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<) You have what you think is a good idea and suggest to the breeder 
the possibility of using the dam's record for trait B instead of the 
animal's record for trait B which would not extend the generation 
interval of 3 years. Assume the dam's record for trait B will be 
available at the time of selection. The selection index would be: 

I• 10.SXA - 7.8¾(D8!11) 

with a1 • 185. Compare your idea with that of the breeder. 

d) Compute expected responses for GA and for the index in c), 

(OMIT) 

4. (25 points, maximum loss is 4 points for part c). 

A dairy manager baa recently been told to minimize risk in choosing 
in terms I can 
do with risk. 

bulls. Risk is rather difficult to define 
understand. The following problem has something to 

Transt11itting ability has been predicted for ten unrelated bulls, 
each having 35 daughters, Asau111e for milk yield that heritability 
is .25, repeatability is .50, additive genetic standard deviation is 
1,000 lb and phenotypic atandard deviation is 2,000 lb. Note that 
b • • 7. 

The indexes fot transmitting ability are ranked •• follows: 

Bull: 2 3 4 5 • 8 9 10 

ETA: 1000 900 800 700 600 500 400 300 200 100 

a) What i, the probability that the transuiitting ability of Bull l i, 
less than 500? 

b) What is the probability that a record of a future daughter of bull l 
will be less than 500? Note that b • .7. 

c) To mini111i:z:e risk, the general reco111111endation is to use a group of 
bulls rather than s single bull. The dairy 111anager decides to use 
bulls 1, 2, 3, 4, and 5 equally. 

What is the probability that the average transuiitting ability of the 
5 bulls is less than 500? Note that 

d) What is the probability if each of the 5 bulls has l future daughter 
that the 5 daughters will average less than +500 as compared to 
daughters of bulls with ETA• 07 w 

N .... 
"' 
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l. (25 points) More identical twins and split embryos!! 

R (dam) multiple ovulated 

Given: 100 • additive genetic variance 
60 • additive by additive genetic variance 
40 • dominance genetic variance 

(sire) 

50 • environmental covariance between metQbers of the same clone 
20 m environmental covariance between full sibs fr0111 multiple 

ovulation 
.50 • repeatability 
500 • phenotypic variance 

The average of single records of A, B, and C • (XA + + XC)/3 • 150 • x1• 
The average of single records of D and E • (~ + ~)/2 • 100 • x2• 

Set up (but do not solve) the equations to find 
predict the additive genetic value of animal F. 
are Band D. 

the weights to 
The parents of F 

b) What is the numerical value of af for the evaluation in a)? 

,. 

bl 

(25 points) 
Given: crfo - 100 cr~o • 40 

h2 • .25 r • .,o 
XA • average of 5 records on animal A• +24 

• average of 2 records on animal B • +15 
A and Bare unrelated. 
To predict the genetic value of animal A: 

IA,G • bA,d'-A • (7/12)(24) • 14 
To predict the genetic value of animal B: 

IB,G • bB,G~ • (7/15)(15) • 7 
To predict real producing ability of animal A: 

IA,R • bA,RXA • (5/6)(24) • 20 
To predict real producing ability of animal B: 

IB,R • bB,R~ • (2/3)(15) • 10 

a' X • 400 

To predict the difference in future records of A and B: 

IA-B,F • bAXA + b6~ • (5/6)(24) - (2/3)(15) • 10 
What is the probability that the genetic value of animal B is 
greater than O? 

What is the probability that a future record of animal B will be 
greater than 20? 

c) What is the probability that a future record of animal A will be 
greater than a future record of animal B? 

w 
N 
N 
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3. (25 points) 

Given: x1 • single record on trait A for animal J. 

x2 • single record on trait B for animal J. 

x3 • single record on trait A for animal K. 

Net economic values of traits A, B, and Care O, 0 1 and $IO, per unit of 
the three traits, respectively. 

Animals J and Kare full aiba of different sexes. 

Variances and covariances 

Genetic Phenotypic 

_ A_ -·- _c _ _!.... -·- _c_ 
A, 100 10 60 A, 500 40 60 

B, 10 200 -so ., 40 400 -so 
c, 60 -so 150 c, 60 -so 600 

a) Set up (but do oot solve) the equations to predict the economic 
genetic value of animal K. 

b) What ai::-e the relative economic values? 

Continued on next page 

3. Continued 

Another breeder assigns net economic values of $.50, $2.00, and 
$6.00 to traits A, B, and C. For those econOD1ic values the index for 
animal K is IK • .341X1 + .087X2 + .825X

3
. 

What are the relative economic values? 

d) Assume IK • 100. What is the 68% symmetrical confidence range for 
TK - 4-50(GA) + 42.oo(GB) + 46.00(Gc) given IK - 4100? 

e) Calculate the expected response in overall economic value for 
selection of the best 14%. 

f) Calculate the expected coi::-related genetic response in ti::-ait C for 
selection of the best 14%. 

w 
N 
w 
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Calf 

2 
3 
4 
5 
6 

• 

SY is the sire of bulls SA and SB. 

SX is the maternal grandsire of bulls SA and s8 and is the sire of SC. 

SA, s8 , and SC have progeny with weaning weight records. 

The age of the dam of each progeny ia known and ia thought to affect 
weaning weight. 

The sex of each progeny is known and is thought to affect weaning weight 
(1 .. female, 2 • lllde). 

Heritability ia .20. 
Phenotypic variance is (SO lb)2. 
For this illustrative problem, assume only the following records are 
available: 

Sire Age of dam (zr) Weaning weight 

A 2 400 
A 2 2 440 
A 3 2 500 
B 3 550 
B 3 510 
C 2 2 450 
C 2 2 420 
C 3 460 

a) Write the model for a weaning weight record. 

Continued on next page 

b) Set up but do not solve the mixed model equations to predict the 
transmitting abilities of the bulls. 

c) The European market wants sire evaluations in terms of estimated 
breeding values. How c·an you provide EBV's? 

w 
N 
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First Exam October, 1987 

(25 points) 
1. Two regular systems of mating to increase inbreeding rapidly are a) matings 

of a sire to his daughters, granddaughters, etc,, and b) matings to full 
sibs. These systems are shown below. 

a) 

b) 

For a) i) Calculate the inbreeding coefficients of C, D, and E: 

For b) 

11) Is there a regular pattern of increase in the inbreeding 
coefficient? 

111) If A is mated co E to produce G, what will be the inbreeding 
coefficient of G? 

v) 

iv) Calculate the inbreeding coefficients of S, U, and W. 

Is there a regular pattern of increase in the inbreeding 
coefficient? 

vi) If Y is mated co X to produce Y, what will be the inbreeding 
coefficient of Y? 

(25 points) 
2a. Assume Tom Short has calculated the covariance between paternal half· 

sibs {same father, different mothers) to be 1000. 

Assume Kevin Yade has calculated the covariance between maternal half·, 
sibs (same mother, different fathers) to be 1500. 

Assume the calculations are the population covariances between 
paternal half-sibs and maternal half-sibs. 

Can you provide an explanation for why the two covariances are not 
equal? 

2b. Assume Felipe Ruiz has calculated the covariance between daughters and 
dams to be 2500 and also has calculated the covariance between full 
sibs (same father and mother) to be 3000. Assume these are population 
covariances. 

Can you provide an explanation for why the two covariances are not 
equal? 

w 
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(25 points) 
3. Given: 

\lhat 

.40 
200 

50 

1151 - 100 
1000 

Relatives (x and y) •xy 

A, B 1/2 

C, D 1/2 

C, E 1/4 

G, H 1 + 1/4 

will be the covariance: 

1/4 

0 

0 

0 

a) between a record of A and a record of B? 

b) between a record of C and a record of D? 

e) between a record of C and a record of E? 

d) between a record of G and a record of H? 

(2 points; included in 25) 

.10 

.05 

.20 

0 

e) !Jhat is the correlation between tw-o records on A? 

f) Can you calculate the covariance between a record of D and a 
record of E from the information given? If so, do so. 

4. Assume Xs - 20 is the average of single records of 5 full sibs 
(littermates) of animal V that has record Xv - 10. 
Assume oi - 400, h 2 - .40, and environmental covariance between records of 
full sibs is 120. 

a) Predict the additive genetic value of animal V. 

c) !Jhat is rTI for I - b5Xs + bvXv, the index for part a)? 

d) Predict the additive genetic value of V from Xv. 

e) !Jhat is the rTI for I - bXs for b - .10? 
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(70 points). If you are not sure 
numerically, please show symbolically 
possible) how to work the part. 

of how to solve any part 
(and numerically as much as 

1. For~ traits in order of trait 1, 2, and 3: 
the variances (diagonals) and covariances (offdiagonals) 
are: Phenotypic genetic 

100 10 30 

10 400 60 

JO 60 900 

-10 30 
100 60 

60 200 

If you are confused by this description of the variances and 
covariances, check with a TA. 

If v 1 2 and v 2 = 3, the selection index using only x 1 and X2 is 
I= .6316X1 + .6842X2. 

a) What are the relative economic values for traits 1, 2, 
and 3? 

b) What is the variance of the index? 

c) What is the variance of T? 

d) What is the expected superiority in T = V1G1 + v2G2 if 
the best 1 of 10 is selected based on I? 

e) What is the expected correlated change in G3 if 
selection is based on I? 

1. (continued) 
f) Given for an animal that: X1 = 10, x 2 = 20, and X3 

30; what is the probability that Tis greater than zero 
using I ? 

A stubborn friend of mine thinks that an easier method of 
selection is to use I3 - 4X3 . 
g} What is the variance of r 3? 

h) What is the expected superiority in T = v 1G1 + v 2G2 if 
the best 1 of 10 is selected based on r 3? 

i) What is the expected correlated change in G3 if 
selection is based on I3? 

Assume if I = . 6316X 1 + . 6842X 2 is used that the generation 
interval is 4 years and if I 3 4X3 is used that the 
generation interval is 2 years for both males and females. 

j) Calculate expected gain per year in T = 2G1 + 3G2 for 
the two indexes with selection of the best 1 of 10. 

w 
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(30 points) Problem 2 is a single trait problem, 

2. Assume: 

a) 

Phenotypic variance is 

Heritability is 

Dominance variance is 

Environmental covariance 
between full sibs is 

Environmental covariance 
between animals that mate is 

Environmental covariance 
between parent and progeny is 

100 

.25 

10 

5 

20 

0 

Show clearly how to find the selection index to predict the 
average additive genetic value of two full sibs. One of the 
full sibs has a record (X1). The average of single records 
of the two parents (X2 ) is also available. Do not solve for 
the weights!!! 

2. (continued) 
b) Show clearly how to find the selection index to predict the 

,a~d~d~i~t~i~v~•~~g~•ilu~•~t~i~c~~v~a~l~u=e for the full sib that has a record 
using x 1 and x2 . Do not solve for the weights!!!. 

c) Indicate clearly how you would change either part a) or 
part b) to predict the record of the full sib that does not 
have a record. Do not solve for the weights!!! 



Final Exam December, 1987 

1. (25 points} This is a single trait problem. 

Animal Dis the dam of animal c. 
The aver~ge of 4 records of animal Dis x2 
Animal Z is the sire of animal c. 
Animals A and Bare full sibs. 

+12. 

The average of single records of animals A and Bis x1 = +8. 

The parents of A and Bare animals Sand O. 

The inbreeding coefficient of animal c is Fe .25. 

Assume: 

o:jo = 8 oi :: 100 

The environmental covariance between full sibs is 
.04(100) = 4. 

a) Show clearly how to predict the additive genetic value 
of animal C. Do not solve any equations. 

b) Show clearly how to predict a future record of C. 

c) 

d) 

e) 

f) 

What is of for part a) and for part b)? 

Show clearly how to compute rf 1 for part a) and for 
part b). 

What is heritability for this trait? 

What is repeatability for this trait? 

g) What is the expected covariance between a record of C 
and a record of a progeny of c? 

h) What is the expected correlation between a record of 
animal C and another record of animal C? 

..., ..., 
0 

"" 



(25 points) This is a two trait problem. 

2. Records are available for trait one 
animal (X1 ) and on trait two (loin eye 
on a full sib (X2). 

(growth rate) on an 
area after slaughter) 

The phenotypic variances are: for trait one, 4.00; and for 
trait two, .so. The phenotypic correlation is .so between 
trait one and trait two on the same animal. 

The heritabilities are: for trait one, .40; and for trait 
two, .60. The genetic correlation between the genetic value 
for trait one and trait two on the same animal is .60. 

Assume the economic values are: 
trait two, 12. 

for trait one, 6; and for 

a) Show clearly how to find the selection index to predict 
additive genetic value for trait one. Use trait one 
measured on the animal {X1) and trait two measured on its 
full sib (X2 ). Do not solve for the weights!!! 

b) show clearly how to find the selection index to predict 
additive genetic value for trait two. Use trait one 
measured on the animal (X1} and trait two measured on its 
full sib (X2 }. Do not solve for the weights!!! 

2. (Continued) 

c) Show clearly how to find the selection index to predict 
T = 6 (additive genetic value for trait one) + 12 (additive 
genetic value for trait two). Use trait one measured on the 1 

animal (Xi) and trait two measured on its full sib (X2 ). Do 
not solve for the weights!!! 

d) Show clearly what needs to be changed inc) if x 1 is trait 
one and x7 is the record for trait two both measured on the 
animal being evaluated, with T = 6G1 + 12G2 , where Gi is the 
additive genetic value for trait i. The full sib has no 
records. Do not solve for the weights!!! 



(25 points) This is a one trait problem. 

If you cannot work a part of this problem that is required 
for a later part, indicate clearly symbolically (and numerically 
as much as possible) how to do the later part. 

3. Animal G has an adjusted record of XG 
half-sib, H, has a record of XH "' -16. 
same mother and different fathers.) 

Assume C7i: = 400, h 2 = .25, cGH = .1875 

20. A maternal 
(G and H have the 

a) Predict the additive genetic value of G using Xq and 
XH. You will need to solve for the selection 1ndex 
weights. 

b) What is the rTI for this index (a)? 

3. (Continued) 

c) What is the probability that the additive genetic value 
of G is greater than a? 

d) An approximate index is to weight the records by the 
relationships between the animal with the records and 
the animal being evaluated, that is, 

I* - a 1ah 2X1 + a 2ah2X2 
For an animal and its maternal half-sib, the 
approximate index is: 

I* E .25(20) + (.25)(.25)(-16) 4 

What is the rTI for this index (I*)? 

e) What is the correlation between the index from part a) and 
the index from part d)? 

w w 
N 

"' 



(25 points) 

4. Cytoplasmic effects are thought to be passed directly from 
mother to daughter. Thus, animals that trace directly from 
female to female to the same female will have cytoplasmic 
effects alike. Assume the variance of cytoplasmic effects 
is o-6-

a) For the following set of data, set up the mixed model 
equations to predict the additive genetic value for 
each animal with a record and also the cytoplasmic 
effect for each animal, A, B, c, and D. Pretend all 
animals are unrelated- All animals with records are 
females. Assume management is a fixed effect on the 
records. 

l>ll.iJw. 

A 
B 
C 
D 

Assume h 3 - .40, r 

Maoaaement 

Galton 
Galton 
Pollak 
Pollak 

Source of 
cvtoolasm 

X 
w 
X 
A 

400. 

120 
ll0 

90 
80 

4. (Continued) 

b) Now assume the diagram describes the relationships 
among the animals. 

Show clearly (symbolically and numerically as much as 
possible) how to modify part a) to set up the mixed model 
equations to predict additive genetic values for animals A, 
B, C, D, s, and X and the cytoplasmic values for A, B, C, D, 
x, and w. 
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